dilgiltal ‘
\

processor
handbook

- g5 :I. o

ocphas

processor
handbook

dlgltal equipment corporation

Copyright 1973 by
Digital Equipment Corporation
PDP, UNIBUS, DIGITAL are registered trademarks
of Digital Equipment Corporation

The PDP-11 is a family of upward-compatible carnputer systems,
We believe that these systems represent a significant departure from
traditional methods of computer design.

The initial design step was the development of a totally new
language, notation, and theory of computers called the Instruction Set
Processor (ISP). This language provides a concise and powerful general-
ized method for defining an arbitrary computer system and its operation.
Along with the development of ISP, a PDP-10 program was written for
simulating the operation of any computer system on the basis of its
ISP description. With the aid of ISP and the machine simulation program,
benchmark comparison tests were run on a large number of potential
computer designs. In this manner it was possible to evaluate a variety
of design choices and compare their features and advantages, without
the time and expense of actually constructing physical prototypes.

Since the main design objective of the PDP-11 was to optimize
total system performance, the interaction of software and hardware was
carefully considered at every step in the design process. System pro-
grammers continually evaluated the efficiency of the code which would
be produced by the system software, the ease of coding a program, the
speed of real-time response, the power and speed that could be built
into a system executive, the ease of system resource management,
and numerous other potential software considerations.

The current PDP-11 Family is the result of this design effort. We
beligve that its general purpose register and UNIBUS organization
provides unparalleled power and flexibility. This design is the basis for
our continuing commitment to further PDP-11 product development.

Thus the PDP-11 Family is at once a new congept in cornputer
systems, and a tested and tried system. The ultimate proof of this new
design approach has come from the large and rapidly increasing number
of PDP-11 users all around the world.

Lot

Kenneth H. Olsen
President,
Digital Equipment Corporation

CHAPTER 1- INTRODUCTION,

CONTENTS

1
1.1 PDP-11 FAMILY ... 1
1.2 GENERAL CHARACTERISTICS 1
1.3 PERIPHERALS AND OPTIONS 5
1.4 SOFTWARE 6
CHAPTER 2 - SYSTEM ARCHITECTUREo... S 9
2.1 INTRODUCTION . .. 9
2.2 THE UNIBUS . .. - e 10
2.3 CENTRAL PROCESSOR 11
2.4 FLOATING POINT PROCESSOR e 14
25 MEMORY ..o 15
2.6 SYSTEM INTERACTION 19
2.7 PROCESSOR TRAPS e e 22
2.8 MULTI-PROGRAMMING .. .o 24
CHAPTER 3 - ADDRESSING MODES 25
3.1 SINGLE OPERAND ADDRESSING 26
3.2 DOUBLE OPERAND ADDRESSING 26
3.3 DIRECT ADDRESSING27
3.4 DEFERRED ADDRESSING 32
35 USEOFPC 35
3.6 USE OF STACK POINTER 38
CHAPTER 4 - INSTRUCTION SET a1
4.1 INTRODUCTION 42
4.2 INSTRUCTION FORMATS . 42
4.3 BYTE INSTRUCTIONS 43
4.4 SINGLE OPERAND INSTRUCTIONS . B . 45
4.5 DOUBLE OPERAND INSTRUCTIONS 65
4.6 PROGRAM CONTROL INSTRUCTIONS 77
4.7 MISCELLANEOUS INSTRUCTIONS e 118
4.8 CONDITION CODE OPERATORS 126

CHAFTER 5 - ADVANCED PROGRAMMING TECHNIQUES 127

1 THE STACK ...
2 SUBROUTINE LINKAGE ...

3 INTERRUPTS .
4 REENTRANCY ..

5 POSITION INDEPENDENT CODE .

6 RECURSIONo
7 CO-ROUTINES e

;o o e

CHAPTER 6 - MEMORY MANAGEMENT ... 143

1 BASIC ADDRESSING LOGIC ... 143
.2 VIRTUAL ADDRESSING 144
3 INTERRUPY CONDITIONS UNDER MANAGEMENT

CONTROL . 145
4 CONSTRUCTION OF A PHYSICAL ADDRESS 14%
5 MANAGEMENT REGISTERS 147
150
. 154

159
160

6.6 FAULT RECOVERY REGISTERS .
6.7 EXAMPLES
6.8 TRANSPARENCY
6.9 MANAGEMENT REGISTER MAP

CHAPTER 7 - FLOATING PCINT PROCESSOR 163

7.1 INTRODUCTION 163
7.2 OPERATION ... i e, 163
7.3 ARCHITECTURE e ... 164
7.4 FLOATING POINT DATA FORMATS 165
7.5 FPP STATUS REGISTERo, 166
7.6 FEC REGISTERooocooooioviooeeiee oo, ... 168
7.7 FPP INSTRUCTION ADDRESSING 168
7.8 INSTRUCTION TIMING ... 169
7.9 FPP INSTRUCTIONS 169

CHAPYER 8- SYSTEM OPERATOR'S CONSOLE 195

B.1 CONSOLE ELEMENTS 195

8.2 SYSTEM POWER SWITCH 196
8.3 CPU STATE INDICATORS 196
8.4 ADDRESS DISPLAY REGISTER 197
8.5 ADDRESSING ERROR DISPLAY 198
8.6 DATA DISPLAY REGISTER - 198
8.7 SWITCH REGISTER .. . e . 108

8.8 CONTROL SWITCHES 199

vi

APPENDIXES
APPENDIX A - INSTRUCTION SET PROCESSOR (ISP) 203

APPENDIX B - INSTRUCTION TIMING ... 217

APPENDIX C-MEMORY MAP 229

APPENDIX D - PROGRAM INTERRUPT REQUESTS 235
APPENDIX E - MEMORY PARITY ... 237
INDEXES
GENERAL INDEX ... 239

INSTRUCTION INDEX ..., 240

vii

viii

CHAPTER 1

INTRODUCTION

The PDP-11/45 is a powerful 16-bit computer representing the large
computer end of the PDP-11 family of computers. It is designed as a
powerful computational tool for high-speed real-time applications and for
large multi-user, multi-task applications requirtng vp to 124K words of
addressable memory space. It will operate with solid state and core
memories, and incfudes many features not normally associated with
16-bit computers. Among its major features are a fast central progcessor
with choices of 300 or 450 nanosecond memeory, an advanced Floating
Point Processor, and a sophisticated memory management scheme.

171 THE PDP-11 FAMILY

The PDP-11 family includes several processors, a large number of
peripheral devices and options, and extensive software. PDP-11 machines
are architecturally similar and hardware and coftware upwards com-
patible, although each machine has some of its own characteristics. New
PDP-11 systems will be compatible with existing family members, The
user can choose the system which is most suitahle to his application, but
as needs change or grow bhe can easily add or change hardware. The
major characteristics of PDP-11 family computers are summarized in
Table 1-1 at the end of this chapter.

1.2 GENERAL CHARACTERISTICS

1.2.1 The UNIBUS

All computer system components and peripherals connect to and com-
municate with each other on a single high-speed bus known as the UNI-
BUS—the key to the PDP-11's many strengths. Since all system ele-
ments, including the central processor, communicate with each other in
identical fashion via the UNIBUS, the processor has the same easy ac-
cess to peripherals as it has to memory.

With bidirectional and asynchronous communication on the UNIBUS, de-
vices can send, receive and exchange data independently without pro-
cessor intervention, For example, a CRT display can refresh itself from
a disk file while the central processor unit (CPU) attends to other tasks.
Because it is asynchronous the UNIBUS is compatible with devices
operating over a wide range of speeds.

Device communications on the UNIBUS are interlocked. For each com-
mand issued by a “master”’ device, a response signal is received from a
“slave’” completing the data transfer. Device-to-device communication is
completely independent of physical bus length and the response times
of master .and slave devices. Interfaces to the UNIBUS are not time-
dependent; there are no pulse-width or rise-time restrictions to worry

1

about. The maximum transfer rate on the UNIBUS is one 16-bit word
every 400 nanosecends, or 2,500,000 words per second.

input/output (I/ O} devices transferring directly to or from memory are
given highest priority, and may reguest bus mastership and “*steal’” bus
cycles during instruction operations, The processor resumes operation
immediately after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by steal-
ing bus cycles. The UNIBUS is further explained in Paragraph 2.2, Chap-
ter 2, and is covered in considerable detail in the PDP-11 Peripherals
and Interfacing Handbook.)

1.2.2 Central Processor

The central processor, connected to the UNIBUS as a subsystemn, con-
trols the allocation of the UNIBUS for peripherals and performs arith-
metic and logic operations and instruction decoding. It contains multipie
high-speed general-purpose registers which can be used as accumulators,
pointers, index registers, or as autoindexing pointers in autoincrement or
autodecrement modes. The processor can perform data transfers directly
between |/Q devices and memory without disturbing the registers; does
hoth single- and double-operand addressing; handles both . 16-hit word
and 8-bit byte data; and, by using its dynamic stacking technigue, allows
nested interrupts and automatic reentrant subroutine calling.

Instruction Set

The instruction complement uses the flexibility of the general-purpose
registers to provide over 400 powerful hard-wired instructions—the most
comprehensive and powerful instruction repertoire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have three classes of instructions—memory reference instructions, op-
erate or AC control instructions, and I/Q instructions—all operations in
the PDP-11 are accomplished with one set of instructions. Since periph-
eral device registers can be manipulated as flexibly as core memory by
the central processor, instructions that are used to manipulate data in
core memory may be used equally well for data in peripheral device
registers. For example, data in an external device register can be tested
or modified. directly by the CPU without bringing it into memory or dis-
turbing the general registers. One can add data directly to a peripheral
- device register, or compare contents with a mask and branch. Thus all
PDP-11 instructions ¢an be used to create a new dimension in the treat-
ment of computer /0 and the need for a special class of I/ O instructions
is eliminated.. PDP-11/45 instructions are described in Chapter 4.

The following example contrasts the rotate operation in the PDP-11 with
a similar operation in a conventional computer:

PDP-11 Approach Conventional Appreach
ROR A irotate contents LDA A load contents of memory
of memory location location A into
A right one place AC
ROT ;rotate contents of AC

right one place

STA A - ;store contents of AC
in location A

The basic order code of the PDP-11 uses both single and double op-
erand address instructions for words or bytes, The PDP-11 therefore per-
forms very efficiently in one step such operations as adding or subtract-
ing two operands, or moving an operand from one location to another:

PDP-11 Approach Conventional Approach
ADD A,B ;add contents of LDA A ;toad contents of memaory
location A location A into AC

to location B

ADD B ;add contents of
memory lgcation B

STA B ;store results at location B
to AC

Priority Interrupts

A muiti-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system, or in the
processor itself. Any number of separate devices can be attached to
each level.

Each peripheral device in the PDP-11 system has & hardware pointer to
its own pair of memory words (one points to the device’s service routine,
and the other contains the new status information). This unique identifi-
cation eliminates the need for polling of devices to identify an interrupt,
since the interrupt servicing hardware selects and begins executing the .
appropriate service routine, after having automatically saved fthe status
of the interrupted program segment.

The devices interrupt priority and service routine priority are independent.
This allows adjustment of system behavior in response to real-time con-
ditions, by dynamically changing the priority level of the service routine.

The interrupt system allows the processor to continually compare its own
priority level with the level of any interrupting devices and to acknowl-
edge the device with the highest level above the processors priority level.
Servicing an interrupt for a device can be interrupted for servicing a
higher priority device. Service to the lower priority device is resumed
automatically upon completion of the higher ievel servicing. Such a pro-
cass, called nested interrupt servicing, can be carried cut to any level,
without requiring the software to worry about the saving and restoring
of processor status at each level.

The interrupt scheme is explained in Paragraph 2.6, Chapter 2.

Reentrant Code

Both the interrupt handling hardware and the subroutine call hardware
are designed to facilitate writing reentrant code for the PDP-11. This type
of code allows use of a single copy of a given subroutine or program
to be shared by more than one process or task. This reduces the amount
of core needed for multi-task applications such as concurrent servicing
of many peripheral devices.

3

Addressing

Much of the power of the PDP-11 is derived from its wqde range of ad-
dressing capabilities, PDP-11 addressing modes include list sequential
addressing, full address indexing, full 16-bit word addressing, 8-bit byte
addressing, and stack addressing. Variable fength instruction formatting
allows a minimum number of bits to be used for each addressing mode.
This results in efficient use of program storage space. Addressing modes
are described in Chapter 3.

Stacks

In a PDP-11, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data, The stack is
used automatically by program interrupts, subroutine calls, and trap in-
structions. When the processor is interrupted, the central processor
status word and the program counter are saved {pushed) into the stack
area, while the processor services the interrupting device. A new status
word is then automatically acquired from an area in core memory which
is reserved for interrupt instructions (vector area). A return from the
interrupt instruction restores the original processor status and returns
control to the interrupted program without software intervention. Stacks
are explained in Chapter 5.

Diract Memaory Access

Al PDP-11s provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS., Maximum priority is given to
DMA devices thus allowing memory data storage or retrieval at memory
cycle speeds. Latency is minimized by the organization and logic of the
UNIBUS which samples requests and priorities in parallel with data
transfers,

Power Fail and Restart

Power fail and restart, not only protects memory when power fails, but
also allows the user to save the existing program location and status
(including all dynamic registers), thus preventing harm to devices, and
efiminating the need for reloading programs. Automatic restart is accom-
plished when power returns to safe operating levels, enabling remote or
unattended operations of PDP-11 systems.

1.2.3 Memuories

Memories with different ranges of speeds and various characteristics can
be freely mixed and interchanged in a single PDP-11 system. Thus as
memory needs expand and as memory technology grows, a PDP-11 can
evolve, with none of the growing pains and obsalescence associated with
conventional computers. See Paragraph 2.5, Chapter 2,

1.2.4 Floating Point Processor

An advanced-design Floating Point Processor functions as an integral part
of the PDP-11/45 central processor. Floating point instructions overlap
CPU instructions and can continue without CPU intervention, leaving
the CPU free to execute other instructions. Floating Point Processor in-
structions are described in Chapter 7.

4

1.2.5 Memory Management
PDP-11/45 memory management is an advanced memory extension, relo-
cation and protection feature which will;

extend memory space from 28K to 124K words

provide effective protection of memory pages in multi-user environ-
ments.

Memeory Management is explained in Chapter 6.

1.3 PERIPHERALS OPTIONS

Digital Equipment Corporation designs and manufactures many of the
peripheral devices offered with PDP-11s. As a designer and manufacturer
of peripherals, DIGITAL can ofer extremely reliable equipment, lower
prices, more choices, and quantity discounts,

Many processor, input/output, memory, bus, and storage options are
available. These devices are explained in detail in the Peripherals and
interfacing Handbook,

1.3.1 1/0O Devices .

All PDP-11 systems are available with Teletypes as standard equipment.
However, their 1/O capabitities can be increased with high-speed paper
tape readers—punches, tine printers, card readers or alphanumeric dis-
play terminals. The LA30 DECwriter, a totalty DIGITAL designed and built
teleprinter, can serve as an aiternative to the Teletype. It has several ad-
vantages over standard electromechanical typewriter terminals, including
higher speed, fewer mechanical parts and very gquiet aperation.

PDP-11 terminals include:
DECterminal alphanumeric display
DECwriter teleprinter
High-speed line printers
High-speed paper tape reader punch
Teletypes

Card readers

1.3.2 Storage Devices

Storage devices range from convenient, small-reel magnetic tape units to
mass storage magnetic tapes and disk memories. With the UNIBUS, a
large number of storage devices, in any combination, may be connected
to a2 PDP-11 system. TUS6 DECtapes, highly reliable tape units with small
tape reels, designed and built by DIGITAL, are ideal for applications with
modest storage requirements. Each DECtape provides storage for 174K
16 bit words. For applications which require handling of large veolumes
of data, DIGITAL offers the industry compatible TU10 Magtape.

Disk storage devices include fixed head disk units and moving-head re-
' 5

movable cartridge and disk pack units. These devices range from the
65K RS64 DECdisk memory, to the RP02 Disk Pack system which can
store up to 93.6 mitlion words. PDP-11 storage devices include:

DECtape

Magtape

RS64 64K-256K word fixed head disk
RF11 256K-2M word fixed head disk
RKO03 1-2M word moving head disk
RP0O2 10M word moving head disk

1.3.3 Bus Options

Several options (bus switches, bus extenders) are available for extending
the UNIBUS or for configuring multi-processor or shared-peripheral
systems.

1.4 SOFTWARE

Extensive software, consisting of disk and paper tape systems, is avail-
able for PDP-11 Family systems. The larger the PDP-11 configuration,
the larger and more comprehensive the software package that comes
with it

1.4.1 Disk Operating System Software
The Disk Operating System software includes:

Text Editor (ED-11)

Relocatable Assermbler (PAL-11R)

Linker (LINK-11)

File Utilities Packages (PIP)

©On Line Debugging Technique (JDT-11R)
Librarian (LIBR-11}

1.4.2 Higher Lavel Languages

PDP-11 users needing an interactive conversational language can use
BASIC which can be run on the paper tape software system with only
4.096 words of core memory. A multi-user extension of BASIC is available
so up to eight terminal users can access a PDP-11 with onty 8K of core,

RSTS/E
The PDP-11 Resource Timesharing System (RSTS/E) with BASIC-PLUS,
an enriched version of BASIC, is available for up to 32 tenminal users.

FORTRAN
PDP-11 FORTRAN is an ANS|-standard Fortran IV compiler with elements
that provide easy compatibility with 1BM 1130 FORTRAN.

Paper tape software is available on systerns without disks.
6

1.5 DATA COMMUNICATIONS

The advanced architecture of PDP-11 family machines makes them ideal
for use in data communications applications. For example the UNIBUS
performs like a multiplexer and multiple single-line interfaces can be
added without special multiplexing hardware: byte handling, the key to
communications applications, is accomplished easily and efficiently by
the PDP-11. To provide total systems capability in the communications
area DIGITAL has developed a full line of communications hardware and
communications-oriented software.

1.6 DATA ACQUISITION AND CONTROL
The PDP-11, modular process interfaces, and special state-of-the art soft-
ware (RSX-11D real-time executive) combine to provide efficient, low-cost
and reliable systems for industrial data acquisition and control {IDACS)
applications. IDACS-11 hardware is described in the Penpherals and In-
terfacing Handbook.

TABLE 1-1

PDP-11 Family Computers

PDP-11/05 PDP-11/15 PDP-11/20 PDP-11/45

Central
Processor KD11 KC11 KA1l KB11
General Purpose)
Registers . 8 8 B 16
Instructions Basic Set Basic Set Basic Set Basic Set and:
MUL, DIy,
XOR.
ASH, ASHC,
MARK,
SXT, SOB,
SPL, RTT
MTPX, MFPX
Memory
Management No No No Optional
Hardware
Stacks : Yes Yes Yes Yes
Stack overflow
Detection Fixed Fixed Fixed Variable
Automatic Priority
Interrupts Single-Line, Single-Line Multi-Line Mufti-Line
Multi-Level Multi-Level Multi-Level Multi-Level
(four line Plus
aptional) 7 Software
Levels
Overlapped
Instructions . No No No Yes
Extended
Arithmetic Option Option Option Standard
Floating Point Software Software Software Internal to
CPU
Basic Memory Lore Core Core Core, MOS or
Bipolar

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 INTRODUCTION
The PDP-11/45 is a medium scale general purpose computer designed
around the basic architecture of all PDP-11 family machines.

The Central Processing Unit has a cycle time of 300 nsec and performs
all arithmetic and logical operations required in the system. A Floating
Point Processor {described in Chapter 7) mounts integrally into the
Central Processor as does a Memory Management Unit which provides a
full mermory management facility through relocation and protection (des-
cribed in Chapter &),

The PDP-11/45 hardware has been optimized towards a multi-program-
ming environment and the processor therefore operates in three modes
{Kerneil, Supervisor, and User) and has two sets of General Registers.

- — T EE——— e E—— - e — -
i 1
1 i

UKIBUS >

weoBE | | oisx

UNBUS
PRIORITY

ARBITRATION
UNIT l
- ——a

re= s
| FLOATING 1| ARITHMETIC oo laEbgory |

f—— ~ — = e w -

e] o v A = = —

I POINT '
IPROCESSOR 1 1osicaL [MAWASEMENT |
| IR - UNIT L \)r\T :
URNIBUS >
: — —2=
SOLD
| STATE
! MEMORY
L _ Pop-vus cenrraL eROCESSOR_ __ _ _ _ _ __ __ J

Figure 2-1 PDP-11/45 System Block Diagram

The PDP-11/45 communicates with its options through a bidirectional,
asynchronous bus, the UNIBUS,

9

2.2 THE UNIBUS
All devices are connected through hardware registers to the UNIBUS.

— >

CENTRAL

CORE
PROCESSOR | [MEMORY | | DISK Y

Figure 2-2 The UNIBUS

Any device (except memory) can dynamically request the UNIBUS to
transfer infarmation to another using a scheme based on real and simu-
tated core locations. All device registers are located in the uppermost 4K
words of address space (124K-128K). Thus, the Central Processor can
iook on its peripherals as if they were locations in memory with special
properties, and coperate on them using the same set of instructions it
uses to operate on memory.

< e >

- CENTRAL CORE DEVICE TTY.
PROCESSOR | |MEMORY ” COREIMEMORY | gegisTERs [{CONTROLLER
NZK RR0K . 124K 128K
Figure 2-3 Location of Device Registers

The UNIBUS provides the communications path for address, data, and
control information for all devices on the bus through its hidirectional
lines. Therefore the same device registers can be used for both input and
output functions.

Devices communicate on the UNIBUS in a mastesr-slave relationship.
During any bus operation, one device has control of the bus. This device,
called the master, controls the bus when communicating with another,
called the slave,

The relationship is dynamic, thus the Central Processor as master could
send control information to a disk (slave) which then could abtain the
bus as a master to communicate with memaory, the slave.

The UNIBUS is used by the processor and all 1O devices. A priority struc-
ture determines which device has control of the bus at any given instant
of time. Therefore, every device capable of becoming bus master has an.
assigned priority; and when two devices request the bus at the same
time, the device with the higher priority will receive control first,

Communication on the UNIBUS is interlocked hetween devices. For each
control signal issued by the master, there is a response from the slave;
thus, communication is independent of physical bus length and the re-
sponse time of the master and slave devices. The maximum transfer rate
on the UNIBUS is one 16-bit word every 400 nsec or 2.5 million 16-bit

15

words per second. The UNIBUS is fully described in the PDP-11 Periph-
erals and Interfacing Handbook.

2.3 CENTRAL PROCESSOR

The PDP-11/45 performs all arithmetic and logical operations required in
the system. It also acts as the arbitration unit for UNIBUS control by
regulating bus requests and transferring control of the bus to the re-
questing device with the highest priority.

The cenfral processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic with
hardware multiply and divide, extensive test and branch operations, and
other caontrol operations. It also provides room for the addition of the
high-speed Floating Point Processor, and Memary Management Unit.

The machine operates in three modes: Kernel, Supervisor, and User.
When the maching is in Kernal mode a program bas complete control of
the machine; when the machine is in any other mode the processor is
inhibited from executing certain instructions and can be denied direct
access to the perpiherals on the system. This hardware feature can be
used to provide complete executive protection in a muiti-programming
environment.

The central processor contains 16 general registers which can be used
as accumulators, index registers, or as stack pointers. Stacks are ex-
tremely useful for nesting programs, creating re-entrant coding, and as
temporary storage where a Last-In First-Out structure is desirable. A spe-
cial instruction "MARK” is provided to further facilitate re-entrant pro-
gramming and is described in Chapter 5. One of the general registers is
used as the PDP-11/45's program counter. Three others are used as Pro-
cessor Stack Pointers, one for each operational mode.

The CPU is directly connected to the high-speed memories as well as to
the general purpose registers and the UNIBUS and UNIBUS Priority Ar-
hitratior Unit.

Figure 2-4 illustrates the data paths in the CPU.

CENTRAL PROCESSOR ORGAMZATION

<_ UNIBUS >

il FROCESSOR_ STATUS WoRt] ""-
ARBITAATION

MEMURY ARITHHETIC 16
e LOGICAL POENERAL
FROCESSOR [T | FEGIS

¢$Eﬁ%> 1

S0LID 50010 FLDATING
STATE STATE POMT
MEMORT MENGHY PROCESSOR

Figure 2-4 Central Processor Data Paths
11

The CPU performs all of the computer’'s computation and logic opera-
tiens in a paralle! binary mode through step by step execution of indi-
vidual instructions. The tnstructions are stored in either core or solid
state memory.

2.3.1 General Registers

The general registers can be used for a variety of purposes; the uses
varying with requirements. The general registers can be used as accumu-
lators, index registers, auteincremnent registers, autodecrement registers,
or as stack pointers for temporary storage of data. Chapter 3 on Address-
ing describes these uses of the general registers in more detail. Arith-
metic operations can be from one general register to another, from cone
memory or device register to another, or between memory. or a device
register and a general register.

GENERAL SENERAL
REGISTER Re Re REGISTER
SET § " Py SET 0
Rz Az
R3 LE
R4 R4
RS RS
KERNEL SUPERVISOR USER
STACK POINTER STACK POINTER STACK POINTER

cRscne
COUNTER

Figure 2-5 The General Registers

R7 is used as the machine’s program counter (PC) and contains the ad-
dress of the next instruction to be executed. It is a general register
nermaily used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat-
ing the last entry in the appropriate stack (a common temporary storage
area with ‘“Last-In First-Out™ characteristics). (For information on the
programming uses of stacks, please refer to Chapter 5.) The three stacks
are called the Kernel Sfack, the Supervisor Stack, and the User Stack.
When the Central Processor is operating in Kerne! mode it uses the
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User
mode, the User Stack. When an interrupt or trap occurs, the PDP-11/45
automatically saves its current status on the Processor Stack selected
by the service routine. This stack-based architecture facilitates reentrant
programming.

12

The remaining 12 registers are divided into two sets of unrestricted regis-
ters, RO-R5. The current register set in operation is determined by the
Processor Status Word.

The two sefs of registers can be used to increase the speed of real-time
data handling or facilitate multi-programming. The six registers in General
Register Set O could each be used as an accumulator and/or index
register for a real-time task or device, or as general registers for a Kernel
or Supervisor mode program. General Register Set 1 could be used by
the remaining programs or User mode programs. The Supervisor can
therefore protect its general registers and stack from User programs, or
other parts of the Supervisor.

2.3.2 Processor Status Word

[T T [[rmomee [7]x]2][7]<]

5 14,13 12 .11 10 s 7 5 4 3 2z t ©
current mooe™! J .
PREVIOUS MODE -
GENERAL REGISTER
SET (0, 1}
*MOUE: @B =KERMNEL
@t = SUPERYISOR
H=USER

Figure 2-6 Processar Status Word

The Processor Status Word, located at tocation 777776, contains infor-
mation on the current status of the PDP-11/45, This information includes
the register set currently in use; current processor priority; current and
previous operational modes; the condition codes describing the results
of the last instruction; and an indicator for detecting the execution of an
instruction to be trapped during program debugging.

Modes

Mode information includes the present mode, either User, Supervisor, or
Kernel (bits 15, 14); the made the machine was in prior to the last in-
terrupt or trap (bits 13, 12); and which register set {General Register Set
0 or 1) is currently being used {(bit 11).

The three modes permit a fully protected environment for a multi-pro-
gramming system by providing the user with three distinct sets of
" Processor Stacks and Memory Management Registers for memory map-
ping. In all modes except Kernel a program is inhibited from executing
a “HALT" instruction and the processor will trap through location 4 if
an attempt is made to execute this instruction. Furthermore, the proces-
sor will ignore the “RESET” and “SPL’" mstructlons In Kernel mode, the
processor will execute all instructions.

A program operating in Kernel mode can map users’ programs anywhere
in core and thus explicitly protect key areas (including the devices regis-
ters and the Processor Status Word) from the User operating environ-
ment.

13

Processor Priority . .

The Central Processor operates at any of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor might be operating at-
a lower priority than the priority of the external device’s request in order
for the interruption to take effect. The current priority is maintained in
the processor status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask, which can be dynamically altered through use
of the Set Priority Level (SPL) instruction which is described in Chapter
4 and which can only be used by the Kernel. This instruction allows a
Kernel mode program to alter the Central Processor's priority without
affecting the rest of the Processor Status Ward.

Condition Codes

The condition codes contain information on the result of the fast CPU
operation. They include; a carry bit (C}, which is set by the previous
operation if the operation caused a carry out of its most significant bit;
a negative bit (N) set if the result of the previous operation was negative;
a zere bit (Z), set if the result of the previous operation was zero; and
an overflow bit (V), set if the result of the previous operation resulted in
an arithmetic overflow.

Trap

The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through Iccation 14 on completion of instruc-
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previous
Processor Status Word and Program Counter to be saved and replaced
by the new values corresponding to those required by the routine serv-
icing the interrupt or trap. The user can, thus, cause the central proces-
sor to automatically switch modes (context switching), register sets, alter
the CPU's priority, or disable the Trap Bit whenever a trap or interrupt
nccurs,

2.3.3 Stack Limit Register

All PDP-11's have a Stack Overflow Boundary at location 400, The Kernel
Stack Boundary, in the PDP-11/45 is a variable boundary set through
the Stack Limit Register found in location 777774.

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yeilow or Warning
Stack Violation). If, for some reason, the program persists beyond the
16-word limit, the processor will abort the offending instruction, set the
stack pointer {R6) to 4 and trap to location 4 (Red or Fatal Stack Viola-
tion). A description of these traps is contained in Appendix C.

2.4 FLOATING POINT PROCESSOR

The PDP-11/45 Floating Point Processor fits integrally into the Central
Processor. It provides a supplemental instruction set for performing
single and double precision floating peint arithmetic operations and float-
ing-integer conversions in parallel with the CPU. it is fully described in
Chapter 7.

14

2.5 MEMORY
Memory is the primary storage medium for instructions and data. Three
types are available for the PDP-11{45:

SOLID STATE:

Bipolar Memory with a cycle time of 300 nsec.
MOS Memory with a cycle time of 450 nsec.
CORE:

Magnetic Core Memory with a cycle time of 850 ns, access at 350
ns (450 ns at the UNIBUS). ’

Any system can be expanded from the basic 4.096 words to 126,976
words in increments of 4,096 words. The system can be configured with
various mixtures of the three types of memory, with a maximum limit of
32,768 words of Solid State Memory.

2.5.1 Solid State Memory

The Central Processor communicates directly with the MOS and Bipolar
memaories through a very high speed data path which is internal to the
‘PDP-11/45 processor system. The CPU can control up to two independ-
ent Solid State Memory controllers, each of which can have from one to
four 4,096 word increments of MOS memory (16,384 words) per con-
troller, or one 4,096 word increment of Bipolar memory per controller.
Each controller can handle MOS or Bipolar memory but not a mixture
of the two. The user can therefore have a total of 32K of MOS, or 8K of
Bipolar, or 16K of MOS and 4K of Bipolar.

Each controller has dual ports and provides one interface ta the CPU
and another to a second UNIBUS,

e T T T T

sk corE | ek oore || ek core

MEMOFRY | IMEWORY | | MEMORY

SOLID
| conthoL
o Issmllssullésm”ssul Issullssn[l_ssmllssul

SEM= SOLID STATE MEMORY MATRIY (4K MOQS OR 1K BIPOLAR)

Figure 2-7 Memory Configuration

There are two UNIBUSes on the PDP-11/45 but in a single pracesser
envirpnment the second UNIBUS is generally connected into the first

15

and become part of it. The existence of a second UNIBUS becomes sig-
nificant where a high speed device would like to directly access the solid
state memory. A device using the second UNIBUS must include a UNI-
BUS Priority Arbitration Unit, and the bus thus lends itself to multi-pro-
cessor environments.

< _l r GRTBUS 1 r [>

FOP-11 /45 CORE CORE

<L UNIBUS 2 >
e

Figure 2-8 Multiprocessor Use of the Second UNRIBUS

The UNIBUS and data path to the Solid State Memory are independent.
White the Central Processor is operating on data in one Solid State Mem-
ory controller through the direct data path, any device could be using the
UNIBUS 1o transfer information to core, to ancther device, or to the
other Solid State Memory Controller. This autonomy significantly in-
creases the throughput of the system.

2.5.2 Memory Retention

MOS memory bits have a capacitance which is charged to denote a 1
and gncharged to dencte a 0. The entire MOS memory must be refreshed
periodically, or the data will be Jost. On the PDP-11/45, 1/32nd of the
memory is refreshed every 60 microseconds. This process consumes
only one solid state memory cycle.

The power required to refresh MOS memony is significantly less than that
required for operation of the memory. Bipclar memory, on the other
hand, dees not require a refresh cycle but does require the same power
to retain information as to operate.

2.5.3 Core Memory
The Central Processor communicates with core memory through the
UNIBUS.

Each memory bank operates independently from other banks through its
own controller which interfaces directly to the UNIBUS. Core memory
can be continuously attached to the UNIBUS until the system contains
a total of 124K (126,976 words) of memory.

An exterpal device may use the UNIBUS to read or write core memaory
completely independent of, and simultaneously with the Central Pro-
cessor's access of solid state memory. Furthermore, core memory and
solid state memory may be used by the processor interchangeably.

2.5.4 Memory Interleaving
Generally, memory locations are numbered consecutively in a memory

16

bank. Thus, when the address register is incremented on successive
memory cycles the same bank is addressed and a full memory cycle
must be completed before the new address can he used. The maximum
data transfer rate for a device using memory is therefore limited by
memary cycle time. Memory interleaving is a technique that places con-
secutive word addresses in different memory banks and thus allows the
write cycle in one memory to be overlapped with the read cycle in
another,

The PDP-11/45’s architecture with a cortroller inherent to each memory
bank lends itself to memory interleaving, and mixing memories with dif-
ferent cycie times. The standard core memory has a basic cycle time of
850 nsec and is interleaved in pairs of 8,192 word units. A 16K system
would be fully interleaved, whereas a 24K system {3 controllers) would
only have 16K interleaved. Interleaving this memory provides the user
with an effective cycle time of 650 nsec for consecutive accesses to se-
quential word locations.

The MOS memories are interleaved on an equal number of MOS blocks
on eachk controller. Bipolar is not interleaved.

Memory interieaving is completely transparent to the computer pro-
grammer.

2.5.5 Mixing Memory

The PDP-11/45 can be used with the memory mix best suited to a user's
needs. He can not only mix high speed solid state memories with mag-
netic core memories, but he can also choose core memories of different
speeds. This is possible because of the independent nature of the core
memaory controliers.

The PDP-11/45 provides the user with an additional degree of freedom.
in mixing memories. The programmer need not address all of his solid
state memory consecutively, but can intermix solid state and core
physical addresses, Each solid state memory can address a 16K consecu-
tive segment (32K when MOS js interleaved) beginning on & 16K boun-
dary. If the controller contains a full 16K complement of MOS then the
MOS will use up the full 16K address space; however, if there is less
than 16K of MOS on the controller the user can intermix 4K blocks of
core in with the 4K biocks of MOS.

When a program is using Memory Management (Chapter &) this manip-
ulation of physical addresses is upnecessary as it may be done in the
mapping of virtual space into physical space.

The user can reduce the cost of his system by buying only as much high
speed memory as required; and he can increase system performance
through the independence of data transfers on the UNIBUS and the CPU
connection to the Solid State Memories.

2.5.6 Memory Parity

Memory Parity is optional for core and solid state memory. Parity words
are extended to 18 bits and the last twa bits (17, 18) contain the parity
indicators for the two bytes. Parity is generated when a word is written
and checked when the word is read. Parity errors cause the Central Pro-

17

cessor either to trap through location 4 or to halt. The user is referred
to Appendix E for more information on memory parity.

2.5.7 Memory Organization

PDP-11 memories and instructions are designed to handle both 16-bit
“words, and 8-bit bytes. Therefore, since every word cantains two bytes,

a 4,096 word block contains 8,192 byte locations, Consecutive words are

therefore found in even numbered addresses.

HIGH BYTE LOwW BYTE |

15 :| T o
LOCATION
Q00a0 LOW
wWORD 2
juelao | HIGH
QoQo2 LOw
WORD 1
Qo003 HiGH
r_,——_—___\""'_""""‘-v
[o3 Irarars-) HIGH
317?TE LOW
oIy HIGH

Figure 2-9 Memory Organization

Certain memaory locations have been reserved by the systemn for interrupt
and trap handling, and processor stacks, general registers, and peripheral
device registers. Kernel virtual addresses from 0 to 370, are always re-
served and those to 777, are reserved on large system configurations for
traps and interrupt handling, The top 4,096 word addresses from
770000, up) have been reserved for general registers and peripheral de-
vices. Appendix C presents a detailed memory address map.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,006 word tocations are traditionally reserved
for peripheraf and-register addresses and the user therefore has 28K
of core to program. To expand above 28K the user must use the Memory
Management Unit. This device, described in detail in Chapter 6, pro-
vides the programmer with an 18-bit effective memory address which
permits him to address up to 126,976 words of actual memory. The
unit also provides a memory management facility which permits indi-
vidual user programs up to 84K in length (32K of instructions, 32K of
data) and provides a relocation and protection facitity through three sets
of 16 registers.

18

2.6 SYSTEM INTERACTION
System intercommunication is carried out through the UNIBUS.

A device will request the UNIBUS for one of two purposes:

To make a non-processor (NPR) transfer of data. (Direct Data
Transfers such as DMA), or

To interrupt program execution and force the processor to branch
to a service routine.

There-are two sources of interrupts, hardware and software.

2.6.1 Hardware Interrupt Requests
A hardware interrupt occurs when a device wishes to indicate to the
program, or Central Processor, that a condition has occurred (such as
transfer completed, end of tape, etc.). The interrupt can occur on any
ane of the four Bus Request levels and the processor responds to the
tnterrupt through a service routine.

2.6.2 Program Interrupt Requests

Hardware interrupt servicing is ofter a two-level process. The first level
is directly associated with the device’'s hardware interrupt and consists
of retrieving the data. The second, is a software task that manipulates
the raw information., The second process can be run at a lower priority
than the first, because the PDP-11/45 provides the user with the means
of scheduling his software servicing through seven leveis of Program
Interrupt Requests. The Prograrn Interrupt Request Register is located
at address 777772, An interrupt is generated by the programmer setting

a bit in the high order byte of this register.

The reader is referred to Appendix D for more detailed information.

2.6.3 Priority Structure

When a device capable of becoming bus rmaster requests use of the bus,
handling of the request depends on the hierarchical position of that
device in the priority structure.

The relative priority of the request is determined by the Processor's
priority and the level at which the request is made.

The processor's priority is set under program control to ane of eight
levels using bits 7-5 in the processor Status Word. Bus requests are
inhibited on the same or lower {evels.

Bus requests from external devices can be rnade on any one of the
five request lines. A non-processor request {NPR) has the highest
priority, and its request is granted between bus cycles of an in-
struction execution. Bus Request 7 (BR 7) is the next highest
priority and Bus Request 4 (BR 4) is the lowest. The four lower
priority level requests (BR 7-BR 4} are granted by the processor
between instructions providing that they occur on higher levels
than the processor's. Therefore an interrupt may only occur aon a
Bus Reguest Level and not on a Non Processor Request level,

Any number of devices can be connected to a specific BR or NPR
line.

19

if two devices with the same priority request the bus, the device
physically closest to the processor on the UNIBUS has the higher
priority.

Program Interrupt Requests can be made on any one of 7 levels
(PIR 7-PIR 1). Requests are granted by the processor between
instructions providing that they occur on higher levels than the
Processcor’s.

Program Interrupt Requests take precedence over equivalent level
Bus Requests.

PROCESS0OR STATUS WGRD

l PRIGRITY I
T bal

PROCESSOR STATUS WORD

LR REQUEST
PRIQRITY LEVEL

A 7 PR ANY NUMBER
PR T . . OF HARDWARE
DEVICES/LEVEL
s e——eane BRT
OME' PROGRAM/
FIRe t} PIR LEVEL
El
PIRS
[e BRI —— o —r R — rsm——
4
—— FIRA)
— 8R4
3
——- o~ BIR3 .
z
e RR?

- PIR1

IMCREASING FRIGRITY

' QECREASING PRIORITY
Figure 2-10 UNIBUS Priority Structure

2.6.4 Non-Processor Data Transfers

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision. These Non-Processor
transfers, called NPR leve| data transfers, are usually made for Direct
Memory Access {memory to/from mass storage) or direct device trans-
fers (disk refreshing a CRT display).

A NPR device provides extremely fast access to the UNIBUS and can
transfer data at high rates once it gains control of the bus. The state of
the processor is not affected by this type of transfer, and, therefore, the
-processor can relinquish bus control while an instruction is still in prog-
ress. The bus can be released at the end of any bus cycle, except during
a read-modify-write cycle sequence. (This occurs for example in destruc-
tive read-out devices such as core memory for certain instructions.}

20

in the PDP-11/45 an NPR device can gain bus control in 3.5 microseconds
or less (depending on the number of devices on the UNIBUS), and can
transfer 16-bit words to memaory at the same speed as the effective cycle
time of the memory being addressed.

2.6.5 Using the Interrupts

Devices that gain bus control with one of the Bus Request Lines (BR 7-
BR 4), can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire instruction set is available for manipulat-
ing data and status registers,

When a service routine is to be run, the current task being performed by
the central processor is interrupted, and the device service routine is
initiated. Once the request has been satisfied, the Processor returns to
its former task. Interrupts may also be used to schedule program exe-
cution by using the Program Interrupt Request.

2.6.6 Interrupt Procedure

Interrupt handling is automatic in the PDP-11/45, No device polling is
required to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
command and a unique memory address which contains the address
of the device's service routine in Kernel virtual address space, called
the interrupt vector address. Immediately following this pointer ad-
dress is a word (located at vector address +2) which is to be used
as a new Processor Status Word.

3. The processar stores the current Processor Status Word (P5) and the
current Program Counter {(PC) into CPU tempcrary registers.

4. The new PC and PS (the interrupt vector} are taken from the speci-
fied address. The old PS and PC are then pushed onto the current
stack as indicated by bits 15,14 of the new PS and the previous
mode in effect is stored in bits 13,12 of the new PS. The service
routine is then initiated.

These operations are performed in 2.5 usec from the time the control
processor receives the interrupt command until the time it starts execut:
ing the first instruction of the service routine. This time interval assumes
na NPR transfer occurred during this time interval.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt (RTI or
RTT) instruction, described in Chapter 4, which pops the two top
words from the current processor stack and uses them to load the
PC and PS registers.

This instruction requires 1.5 usec providing there is no NPR request.

A device routine can be interrupted by a higher priority bus request any
time after the new PC and PS have been loaded. If such an interrupt
accurs, the PC and the PS of the service routine are autormatically stored

21

in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

2.6.7 Interrupt Servicing

Every hardware device capable of interrupting the processor has a unigue
set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device’s service routine, and the second,
the Processor Status Word that is to be used by the service routine,
Through proper use of the PS, the programmer can switch the opera-
tional mode of the processor, alter the General Register Set in use {con-
text switching), and modify the Processar's Priority leve! to mask out
iower level interrupts.

There is one interrupt vector for the Program Interrupt Request. 1 will
generally be necessary in a multi-processing environment to determine
which program generated the PIR and where it is located in memory.
Appendix D provides an example of how this is done.

2.7 PROCESSOR TRAPS)

There are a series of errors and programming conditions which will cause
the Centra! Processor to trap to a set of fixed locations, These include
Power Failure, Odd Addressing Errors, Stack Errors, Timeout Errors,
Memory Parity -Errors, Memory Management Violations, Floating Point
Processor Exception Traps, Use of Reserved Instructions, Use of the T
hit in the Processor Status Word, and use of the IOT, EMT, and TRAP
instructions.

Stack Errors, Memory Parity Errors, and the T bit Trap have already
heen discussed in this chapter. Segmentation Violations and Floating
Point Exception Traps are described in Chapters 6 and 7 respectively.
The 10T, EMT, and TRAP instructions are described in Chapter 4.

2.7.1 Power Failure

Whenever AC power drops below 95 volts for 110v power {190 volts for
Ov) or outside a limit of 47 to 63 Hz, as measured by DC power, the

power fail sequence is initiated. The Central Processor automatically

traps to location 24 and the power fail program has 2 rmsec. to save all

volatile information {data in registers), and to condition peripherals for

power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

2.7.2 Odd Addressing Errors

This error occurs whenever a program attempts to execute a word in-
struction on an odd address (in the middie of a word boundary). The
instruction is aborted and the CPU traps through lacation 4.

2.7.3 Time-out Errors

These errors occur when a Master Synchromzatlon pulse is placed on the
UNIBUS and there is no slave pulse within 5 uxsec. This error usually
occurs in attempts to address non-existent memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

22

2.7.4 Reserved Instructions
There is a set of illegal and reserved instructions which cause the proces-
sor to trap through Location 10. The set is fully described in Appendix C.

2.7.5 Trap Handling

Appendix C includes a list of the reserved Trap Vector locations, and
Systermn Error Definitions which cause processor traps. When a trap oc-
curs, the processor follows the same procedure for traps as it does for
interrupts (saving the PC and PS on the new Processor Stack etc....).

.In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the priority sequence illustrated
in Figure 2-11,

Odd Addressing Error

Fatal Stack Viclations (Red)
Memory Management Violations
Timeout Errors

Parity Errors

Floating Point Processor Transfer Request
Memory Management Traps
Warning Siack Violation (Yellow}
Power Failure

Processor Priority level 7
Floating Peoint Exception Trap
PIR 7

BR 7

PIR 1

Processor O

Figure 2-11 Processor Service Hierarchy

Appendix C includes more details on the Trap sequence and Trap/
Interrupt interaction.

23

2.8 MULTIPROGRAMMING

The PDP-11/45's architecture with its three modes of aperation, its
two sets of generat registers, its Memory Management capability and its
Program Interrupt Reguest facility provides an ideal environment for
multi-programming systems.

tn any multi-programming systermn there must be some method of trans-
ferring information and contrel between programs operating in the same
or different modes. The PDP-11/45 provides the user with these com-
munication paths.

2.8.1 Control Information

Control is passed inwards {User, Supervisor, Kernel} by all traps and
interrupts. All trap and interrupt vectors are located in Kernel virtual
space. Thus all traps and interrupts pass through Kernel space to pick
up their new PC and PS and determine the new rnode of processing.

Control is passed outwards (Kernel, Supervisor, User) by the RTI and
RTT instructions (described in Chapter 4). :

2.8.2 Data .
Data is transferred between modes by four instructions Move From Pre-
vious Instruction space (MFP!), Move From Previous Data space (MFFPD),
Move To Previous Instruction space (MTPI) and Move To Previcus
Data space (MTPD). There are four instructions rather than two as
Memory Management distinguishes between instructions and data (Chap-
- ter 6). The instructions are fully described in Chapter 4. However, it
should be noted that these instructions have been designed to allow
data transfers to be under the control of the innermost mode (Kernel,
Supervisor, User) program and not the outermost, thus providing pro-
tection of an inner program from an outer.

2.8.3 Processor Status Word

The PDP 11/45 protects the PS frormn implicit references by Supervisor
and tser programs which could resutt in darmage to an inner level
program.

A program operating in Kernel mode can perform any manipulation of
the PS. Programs operating at outer levels (Superviscr and User) are
inhibited from changing bits 5-7 (the Processor's Priority}. They are
also restricted in their treatment of bits 15, 14 (Current Mode), bits 13,
12 (Previous Mode), and bit 11 Register Set); these bits may only be
set, they are only cleared by an interrupt or trap.

Thus, a programmer can pass control outwards through the RTI and
RTT instructions to set bits in the mode fields of his PS. To move in-
wards, however, bits must be cleared and he must, therefore, issue a
trap or interrupt. .

The Kernel can further protect the PS from explicit references (Move data
to location 777776—the PS) through Memory Management.

24

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data han-
dling is specified by a PDP-11 instruction (MOV, ADD etc.) which usually
indicates:

the function {cperation code);

a general purpose register to be used when locating the source
operand and/or a general purpose register to be used when locating
the destination operand;

an addressing mode (to specify how the selected register{s) is/are
to be used.

Since a large portion of the data handied by a computer is usuzlly
structured (in character strings, in arrays, in lists etc.), the PDP-11 has
been designed to handle structured data efficiently and flexibly. The
general registers may be used with an instruction in any of the follow-
ing ways:

as accumulators. The data to be manipulated resides within the
register,

as pointers. The contents of the register are the address of the
operand, rather than the operand itself.

as pointers which autormnatically step through core locations. Auto-
matically stepping forward through consecutive core locations is
known as autoincrement addressing; automatically stepping back-
wards is known as autodecrement addressing. These modes are
particularly useful for processing tabular data,

as index registers. In this instance the contents of the register, and
the word following the instruction are summed to produce the ad-
dress of the operand. This allows easy access to variable entries
in a list.

PDP-11's also have instruction addressing mode combinations which
facilitate temporary data storage structures for convenient handling of
data which must be frequently accessed. This is known as the *stack.”
(see Chapter 5)

In the PDP-11 any register can be used as a ‘‘stack pointer” under pro-
gram control; however, certain instructions associated with subroutine
jinkage and interrupt service automatically use Register 6§ as a “hard-
ware stack pointer.” For this reason R& is frequently referred to as
the “SP.” :

25

R7 is used by the processor as its program counter {PG}. It is recom-
mended that R7 not be used as a stack pointer.

An important PDP-11/45 feature, which must be considered in conjung-
- tion with the addressing modes, is the register arrangement;

Two sets of general purpose registers {RO-R5)
three hardware stack pointers (R6)

a single Program Counter {PC) register (R7).

Register R7 s used as a common program counter {PC). At any point
- in time only one register set is active. Thus a programmer need only
concern himself with the existence of multiple register sets for those
special supervisory tasks which involve Kernel, Supervisor, User com-
munications (e.g. MTPX, MFPX), otherwise he need never worry about
which R3 or R6 an instruction will reference, the choice is automatic
and transparent to his program.

Instruction mnemonics and address mode symbols are sufficient for
writing machine language programs. The programmer.need not be con-
cerned about conversion to binary digits; this is accomplished auto-
matically by the PDP-11/45 assembler.

3.1 SINGLE OPERAND ADDRESSING _
The instruction format for all singie operand instructions such as clear,
increment, test) is: .

1% . 5, 5 4 3 2 Q

[N PIEN s

op copE ——+ 1

DESTINATION ADDRESS
#=5PECIFIES DIRECT OR INDIRECT ADDRESE

¥ ¥ 1 SPECIFIES »OW REGISTER wWILL BE USED
¥% ¥ =5PECIFIES OME OF B GENERAL PURPOSE REGISTERS

Bits 15 through & specify the operation code that defines the type of
instruction to be executed.

Bits 5 through O form a six-bit field called the destination address field.
This consists of two subfields:

a} Bits Q through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b) Bits 4 and 5 specify how the selected register will be used {address
mode). Bit 3 indicates direct or deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING
Operations which imply two operands {(such as add, subtract move and
caompare) are handled by instructions that specify two addresses. The

26

first operand is called the source operand, the second the destination
operand.” Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

- L3 fatad L ¥* oM
L 0P CODE [MODE [Rn] MODE [An
® ® . ® 9 8 &5 &5 4 3 2 o
SOURCE ADORESS ——— ——t J
DESTINATION ADDRESS

#rRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADORESS
W3 =SPECIFIES HOW SELECTED REGISTERS &RE TO BE USED
#¥%MaSPECIFIES A GENERAL REGISTER

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second
operand and the result. For example, the instruction ADD A,B adds the
contents (source operand) of location A to the contents {destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-11 instructions;

Mnemonic Description Octal Code

CLR clear (zero the specified destination) 0050nn

CLRB clear byte (zero the byte in the specified 1G650nn
destination}

INC increment (add 1 to contents of destination) 0052nn

INCB increment byte {(add 1 to the contents of 1052nn

destination byte)

COM complement {replace the contents of the 0051nn
destination by their lagicat complement;
each O bit is set and each 1 bit is cleared)

COMB compftement byte (replace the contents of the 1051nn
destination byte by their logical complement;
@ach O bit is set and each 1 bit is cleared).

ADD add (add source operand to destination gémmnn
operand and store the result at destination
address)

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct
addressing,

27

DIRECT MODES

Binary Name Assembler Function
Syntax

Q00 Register Rn Register contains operand

10 Autoincrement {Rn)- Register is used as a pointer
to sequential data then in-
cremented.

100 Autodecrement —{Rn) Repgister is decremented and
then used as a pointer.

110 ingex X{(Rn) Vaiue X is added to (Rn} to

produce address of operand.
Neither X nor (Rn) are modi-
tied.

3.3.1 Register Mode
OPR Rn

With register mode any of the general registers may be used as simple
accumulators and the operand is contained in the selected register.
Since they are hardware registers, within the processor, the general reg:
isters operate at high speeds and provide speed advantages when used
for operating on frequently-accessed variables. The PDP-11 assembler
interprets and assembles instructions of the form OPR Rn as register
mode cperations. Rn represents a generai register name or number and
OPR is used to represent a general instruction mnemonic. Assembler
syntax requires that a2 general register be defined as follows:

RO = %0 (% sign indicates register definition)
R1 =9l
R2 = 94,2, etc.

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5,
R& and R7. However RG6 and R7 are also referred to as SP and PC,
respectively. .

Register Mode Examples
(alt numbers in octal)

Symbolic Octal Code Instruction Name
1. INC R3 005203 Increment
Operation:- Add one to the contents of genera!l register 3
RO
A1
L33 #* R2
H SELECT
4] [+] [V] L3 1 1R
b o 0ot oo |_._; l FEGSTER | 3
WJ5 £,.5 3 3 2 8 R3
"
OP CODE erClOObEl]——T] id
BESTINATION FIELD RE‘SFfi
s DIFECT ADDRESS R7 (FC)

¥ uREGISTER MODE

28

2. ADD R2,R4 060204 Add)
Operation: Add the contents of R2 to the contents of R4.

BEFORE AFTER
RZI Q0A00E ! "2 GOCNE I
ra [200008 | ma | om0 |
3 COMB R4 105104 Complement Byte
Operation: One's complement bits 0-7 (byte) in R4.

(When general registers are used, byte in-
structions only operate on bits 0-7; i.e. byte
0 of the register)

BEFURE wFTER
ma [vezzez | mef D218

3.3.2 Auvtoincrement Mode
OPR (Rn)+

This mode provides for automatic stepping of a pointer through sequen-
tial elements of a table of operands. It assumes the contents of the
selected general register to be the address of the operand, Contents of
registers are stepped (by one for bytes, by two for words, always by two
for R6 and R7) to address the next sequential location. The autoincre-
ment mode is especially useful for array processing and stacks. It will
access an element of a table and then step the pointer to address the
next operand in the table. Although most useful for table handling, this
mode is comnpletely general and may be used for a variety of purposes.

Autoincrement Mode Examples

Symbolic Octal Code Instruction Name
1. CLR (R5)+ 005025 Clear
Operation: Use contents of RS as the address of the

operand. Clear selected operand and then
increment the contents of RS by two.

BEEDRE AFTER
ADDRESS SPACE REGISTER ADDRESS 5R4CE FEGISTER
2o00¢ | oosoes [msy o3cz00 aocoo [Tossces | rs [330002

g
e //

3000

2, CLRB (R5)+ 105025 Clear Byte

Operation: Use contents of RS as the address of the
operand. Clear seiected byte operand and
then increment the contents of RS by one.

29

BEFCRE EFTER

. ADDRESS SPACE REGISFER ADDRESS SPAGE AEGISTER

zoo0o | wwsozs | ms [o3ooop Jascoo [tosozs] es] omocon |
;
P

sooon | v T e R“/ soooo [M1 1 ooo
o002 i 30002 :
3. ADD (R2)4-. R4 062204 Add
Operation: The contents of RZ2 are used as the address

of the operand which is added to the con-
tents of R4. R2 is then incremented by two.

BEFCRE AFTER
ADORESS SPACE REGISTERS ABDRESS SPALES REGISTERS
oo oe2zos | me | ooooe | woon | Tosezes | ke j 100004 |
e s o |
e al
oobor [oromes] oncce [oraonn

3.2.3 Autodecrement Mode
OPR—(Rn)

This rmode is useful for processing data in a list in reverse direction.
The contents of the selected general register are decremaented (by two
for word instructions. by one for byte instructions} and then used as
the address of the operand. The choice of pestincrement, predecrement
features for the PDP-11 were not arbitrary decisions, but were intended
to facilitate hardware/software stack operations (See Chapter 5 for
complete discussions of stacks).

Autodecrement Mode Examples

Symbolic Octal Code Instruction Name
1. INC--{RO) 005240 Ingrement
Operation: The contents of RO are decremented by two

and used as the address of the operand.
The operand is increased by one,

BEFORE AFTER
ADDRESS SPACE REGISTERS ADORESS SFACE REGISTER
1000 | anszag | Re [outrve | reoo [owszen Jomel o77me
P ——— —=
r"’—f
2. INCB—(RC) 105240 Increment Byte
Operation: The contents of RO are decremented by one

then used as the address of the operand.
The operand byte is increased by one.

30

BEFORE AFTER

ADORESS SPACE REGISTER ADDRESS SPACE REGISTER
wao [1os240 7 me[__orrvre 1 woes [T wseas | re[owrrs |
e S
17774 000 1 Qoo 17774 o 000
17778 _'_ 17776 J
3. ADD-{R3),RO 064300 Add
Operation: The contents of R3 are decremented by 2

then used as a pointer to an operand
(source) which is added to the contents of
RO (destination operand}.

BEFORE AFTER
ADORESS SPACE RECISTER ADCAESS SPACE REGISTER
woEn | 64300 i Re| oooozo | oved | 064300 | se [oooooro |
R a777TTEe _ R3 077774
-~ TTre—— ____f/
PRI DONSSC 17 el
TS ITTE

3.3.4 Index Mode
CPR X{Rn)

The contents of the selected general register, and an index word follow-
ing the instruction word, are summed to form the address of the op-
erand. The contents of the selected register may be used as a bhase for
calculating a series of addresses, thus allowing random access to ele-
ments of data structures. The selected register can then be modified
by program toc access data in the table. Index addressing instructions
are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the instruction word and Rn is the
selected general register.

Index Mode Examples

Symbolic Qctal Code Ins'tructicm Name
1. CLR 200(R4) 005064 Clear
000200
Operation: The address of the operand is determined by

adding 200 to the contents of RA. The loca-
tion 1s then cieared.

BEFORE AFTER
ADDRESS $PACE REGISTER ADDRESS SPACE REGISTER
1B OOE0ES Ra f)] 10e0 DoSDEa R4 [001000]
w2z 00200 w0z ooteon
1024 060 1024
———==____ +200
+ ~—— 200
1200 7T 1200 00000
1202

3

2. COMB 200(R1) 105161 Complement Byte
000200

Operation: The contents of a location which is deter-
mined by adding 200 to the contents of R1
are one’s complemented (i.e. logically com-

plemented).
BEFORE AFTER
ADDRESS SPALE REGISTER ADDRESS SPACE REGISTER
w0en 108E] m[orrr] e 108164 m T oy
1022 DOOE00 102z Qo200
—_— orrz
/ I 12
20176 2H7E
weoe | | wewo| [|
3. ADD 30(R2), 20{R5)066265 Add
Q00030
000020
Operation: The contents of a location which is deter

mined by adding 30 to the contents of R2 are
added to the contents of a location which is
determined by adding 20 to the contents of
RS. The resuit is stored at the destination
address, i.e. 20(R5)

BEFORE AFTER
A0DRESS 5PACE AEGISTER GOORESS SPAGE REGISTER
020 0E8265 [ootwo | o 065265 me [ooveo |

1022 06030 w022 000020
wnzg CQoozg s 1024 QOO0 RS 002600 -

2020 o000 2020 QOG0
LR1v1v) 2HH
+ 30 +20
1130 2020

3.4 DEFERRED (INDIRECT) ADDRESSING

The four bhasic modes may also be used with deferred addressing.
Whereas in the register mode the operand is the contents of the selected
register, in the register deferred mode the contents of the selected
register is the address of the cperand.

In the three other deferred modes, the contents of the register selects
the address of the operand rather than the operand itself. These modes
are therefore used when a table consists of addresses rather than op-
erands. Assembler syntax for indicating deferred addressing is “@"'.
The following table summarizes the deferred versions of the basic
modes:

32

Binary Name Assembler
Code Syntax Function

001 Register Daferred @Rn or (RN} Register contains the ad-
dress of the operand

011 Autoincrement Deferred @(Rn)+ Register is first used as
a pointer to a word con-
taining the address of
the operand, then incre-
mented (always by 2
even for byte instruc-
tions)

101 Autodecrement Deferred @ —{Rn) Register is decremented
(always by two; even for
byte instructions) and
then used as a pointer
to a word containing the
address of the cperand

111 Index Deferred @X(Rn) Value X (stored in a2 word
following the instruction}
and (Rn) are added and
the sum is used as a
pointer to a word con-
taining the address of the
operand. Neither X nor
{Rn) are modified.

Since each deferred mcde is similar to its basic mcde counterpart, sep-
arate descriptions of each deferred mode are not necessary. However,
the following examples ilfustrate the deferred modes.

Register Deferred Mode Example

Symbeclic Octal Code Instruction Name
CLR @R5 005015 Clear
Operation: The contents of location specified in RS are
cleared.
BEFORE AFTER
ADDRESS SRACE REGISTER ADCRESS SPACE REGISTER
LTy RE { [e Favs] 167 T i RE | 1700 i
17040 DOON0D 1700 QOO0
Autoincrement Deferred Mode Example
Symbolic Cctal Code Instruction Name
INC @(R2)+ 005232 Increment
Operation: The contents of R2 are used as the address

of the address of the operand.
Operand is increased by one. Contents of
R2 is incremented by 2,

33

BEFORE

AFTER

ADBRESS SPALE REGISTER AODREES SPACE REGISTER
Rz [- otezeo | A2 10302
LIle] [leller] s 0 Jaleler)
L
wiz o 1otz
——''_'_F'_F'_
_——'__'_'_'_
—

10300 501010 0300 goroig

Autodecrement Deferred Mode Example

Symbolic QOctal Code Complement
COM @—(RO) 005150
Operation: The contents of RO are decremented by two
and then used as the address of the address
of the operand. Operand is one's comple-
mented. (i.e. logically complemented)
BEFORE AFTER
LDDRESS SPACE REGISTER ADDRESS SPACE REGISTER
o [EETES re | Q10776 | rowm 169432 re [oi07Ta
10402 0102 //
T crQind 1077 S0
L [eray-] 10776
Index Deferred Mode Example
Symbolic Octal Code Instruction Name
ADD @ 1000(R2),R1 067201 Add
001000

Operation: I000 and contents of R2 are summed to
produce the address of the address of the
source operand the contents of which are
added to contents of RI; the result is stored
in R1.

BEFORE AFTER
ADCRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 06720 Rt r o0i23e J 020 DETZ0N m} 001236 J

o S S e W SO (Y -

-2 1024

1050 LEI2 1050 COO002

1100 001050 Ty 1100 DHOS0

+1oD
/—'—’1!00
\\‘-‘..____,_,-o-'-"'"

34

3.5 USE OF THE PC AS A GENERAL REGISTER

Although Register 7 is a general purpose register, it doubles in function
as the Program Counter for the PDP-1i. Whenever the processor uses
the program counter to acquire a word from memory, the program
counter is autormatically incremented by two to contain the address of
the next word of the instruction being executed or the address of the
next instruction to be executed. (When the program uses the PC to
locate byte data, the PC is still incremented by two.}

The PC responds to ait the standard PDP-11 addressing modes. However,
there are four of these modes with which the PC can provide advaniages
for handling position independent code (PIC—see Chapter 5) and un-
structured data. When regarding the PC these modes are termed imme-
diate, absolute (or immediate deferred), reiative and relative deferred,
and are summarized below:

Binary Name Assembler Function

Code Syntax

¢1l0 Immediate H#n Operand follows instruction.

011 Absolute @ H#HA Absolute Address follows in-
struction.

110 Relative A Address of A, relative to the
instruction, follows the in-
struction,

111 Relative Deferred @A Address of location contain-

ing address of A, relative to
the instruction follows the
instruction.

The reader should remember that the special effect modes are the
same as modes described in 3.3 and 3.4, but the general register
selected is R7, the program counter.

When a standard program is available for different users, it often is
hetpful to be able to load it into different areas of core and run it there,
PDP-11's can accompfish the relocation of a program wvery efficiently
through the use of position independent code (PIC) which is written by
using the PC addressing modes. |f an instruction and its objects are
moved in such a way that the relative distance between them is not
altgred, the same offset relative to the PC can be used in all positions in
memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

The PC also greatly facilitates the handling of unstructured data. This
is particularly true of the immediate and relative modes which are dis-
cussed more fully in Paragraphs 3.5.1 and 3.5.2.
3.5.1 Immediate Mode

OFR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the
PC. It provides time improvements for accessing constant operands by

35

including the constant in the memory location immediately following the
instruction word,

Immediate Mode Example
Symbolic

ADD # 10,R0O

Operation;

2o
WEE
nz4

BEEGRE

Octal Code Instruction Name

062700 Add
00Q010

The value 10 is located in the second word
of the instruction and is added to the con-
tents of RO. Just before this instruction is
fetched and executed, the PC points to the
first word of the instruction. The processor
fetches the first word and increments the
PC by twa. The scurce operand mode is 27
(autoincrement the PC). Thus, the PC is used
as a pointer to fetch the operand (the second
word of the instruction) before being incre-
mented by two to point to the pext in-
struction.

AFTER

ADMRESS SPALE REGISTER) ADCRESS SPACE REGISTER
e2Fod RE I [aluslera] e OE2TOC RQ l— e evk-ie) j
[elualvl o] \Pc 1G22 nonon /PC
1024
3.5.2 Absolute Addressing
. OPR @ # A

This mode is the eguivaient of immediate deferred or autoincrement
deferred using the PC. The contents of the tocatian following the instruc-
tion are taken as the address of the operand. Immediate data is inter-
preted as an absolute address (i.e., an address that remains constant
no matter where in memory the assembled instruction is executed).

Absolute Mode Examples

Symbolic Octal Code Instructior Name
1. CLR @ #1100 005037 Clear
041100
Operation: Ciear the contents of location 1100,
BEFRE AFTER
ALDRESS SPACE ADDRESS SPALE
ilel 5037 EO- [elaln kg
ZZ fulelREuls] \bc 2z Lrle Liviv] /F‘C
s al]
nao WTITTV RLels] OO
1102 noe

36

2. ADD @ # 2000, R3 063703

032000°
QOperation: Add contents of location 2000 to R3.
BEFORE AFTER
ADDRESS SPATE SEGISTER BDORESS SPACE REGISTER
20 063703 .\Ra | COGS0G l 20 0E3T03 ma [[l]
az ¥l rdelels] B 22 G200 pe
‘/
24 24
2000 000300 2000 fulelekla vl
3.5.3 Relative Addressing
OPR A ar

OPR X{PC) , where Xis the location of A relative to the instruction.

This mede is assembled as index mode using R7. The base of the ad-
dress calculation, which is stored in the second or third weord of the
instruction, is not the address of the operand, but the number which,
when added to the (PC), becomes the address of the operand. This mode
is useful for writing position independent code (see Chapter 5} since
the location referenced is always fixed relative to the PC. When instruc-
tions are to be relocated, the operand is moved by the same amount.

Relative Addressing Example

Symbealic Octal Code Instruction Name
INC A 005267 Increment
000054
Operation: To increment location A, contents of memory

location immediately following instruction
word are added to (PC) to produce address
A. Contents of A are increased by one.

BEFORE AFTER
ADDRESS 5RACE ADDRESS SPACE

1020 DOHEZET 1020 DOGAZET
1022 050044 \ w22 BOO0SE
10624 2 1624 —
1026 vy

w2g

+ 54

¥ e
O
,./
3.5.4 Relative Deferred Addressing
OPR@ or

OPR@X(PC), where x is {ocation containing address of A, relative to the
instruction.

This mode is similar to the relative mode, except that the second word
of the instruction, when added to the PC, contains the address of the
address of the operand, rather than the address of the operand.

37

Relative Deferred Mode Example

Symbalic : Octal Code Instruction Name
CLR @A 005077 Clear
000020
Operation: Add second word of instruction to PC to pro-
duce address of address of operand. Clear
operand.
BEFORE . LAFTER
ADDRESS SPACE LDDRESS SPALE
1020 DOSGTF 1020 CoeQrT
nzz2 QOO0 \PC 1022 file wwrls] BT
W0z4 . 1024 n/
——————
ma’;/_o;on % toaa
'/f-""".d 044
woloo 00

3.6 USE OF STACK POINTER AS GENERAL REGISTER'

The processor stack pointer (3P, Register 6) is in most cases the gen-
- eral register used for the stack operations refated to program nesting.
Autodecrement with Register 6 “pushes’ data on to the stack and auto-
increment with Register & "pops' data off the stack., Index mede with
the 8P permits random access of items on the stack. Since the SP is
used by the processor for interrupt handling, it has a special attribute:
autoincrements and autodecrements are always done in steps of two.
Byte operations using the SP in this way simply leave odd addresses
unmodified, Use of stacks is explained in detail in Chapter 5.

On the PDP-11/45 there are three R6 registers selected by the PS; but
at any given time there is only one in operation.
The following table is a concise summary of the various PDP-11 address-

ing modes
DIRECT MODES

Binary Name Assembier Function

Code Syntax

000 Register Rn Register contains cperand.
010 Autoincrement {Rn) 4 Register contains address

of operand. Register con-
tents incremented after
reference.

100 Autodecrerment —(Rn} Register contents decre-
mented before reference
register contains address
of operand.

11¢ Index X{Rm) Value X (stored in a word
foltowing the instruction} is
added to (Rn) to produce
address of operand. Nei-
ther X nor (Rn) are modi-
fied.

38

DEFERRED MODES

Binary Name Assembler Function
Code Syntax

001 Register Deferred @Rn or (Rn) Register contains the ad-
. dress of the operand

011 Autoincrement Deferred @ (Rn) + Register is first used as
a pointer to A word ¢on-
taining the address of
the operand, then incre-
mented (always by 2;
even for byte instruc-
tions)

101 Autodecrement Deferred @ —(Rn) Register is decremented
{always by two; even for
hyte instructions} and
then used as a pointer
to a word containing the
address of the operand

111 Index Deferred @X(Rn) Value X {stored in a word
following the instruction)
and (Rn) are added and
the sum is used as a
pointer to a word con-
taining the address of
the operand. MNeither X
nor (Rn) are modified

PC ADDRESSING

010 Immediate H#n Operand follows instruc-
tion :

011 Absolute @ HA Absolute address follows
instruction

110 Retative A Address of A, relative to

the nstruction, follows
the instruction.

113 Relative Deferred @A Address of [ocation con-
taining address of A, refa-
tive to the instruction fol-
lows the instruction.

39

40

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION
This chapter describes the PDP-11!45 instructions in the following
order:

Single Operand {4.4)
General

Shifts
Multiple Precision
Rotates

Double Operand {4.5)
Arithmetic Instructions

General Register Destination
Logical Instructions

Program Control Instructions (4.6)
Branches

Subroutines
Traps
Miscetlaneous (4.7)
Condition Code Operators (4.8)

The specification for each instruction includes the mnemonie, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
timing information, a description, special comnfents, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction shows
the octal op code, the binary op code, and bit assignments. (Note that
in byte instructions the most significant bit (bit 15) is always a 1.}

OPERATION: The operation of each instruction is described with a single
notation. The following symbols are used:

{) = contents of
sIc = source address
41

dst = destination address
toc = lecation
« = becomes
t = "is popped from stack'’
| = “is pushed onto stack”
A = boclean AND
~ v = hoolean OR
v = exclusive OR
~ = boolean not
Reg or R = register
B = Byte

INSTRUCTION TIMING: The minimum execution time, including the fetch
of the next instruction, is specified for each instruction. The instruction
is assumed to reside in bipolar memory; both source and destination are
assumed to be general purpose registers. For example, MOV is assumed
to be from a general register to a general register, and JMP is assumed
to be in register deferred mode, For detailed timing information consult
Appendix B.

ISP-—The Instruction Set Processor (ISP} notation has been used with
each instruction. It is a precise notation for defining the action of any
instruction set and is described in detail in Appendix A. It was included
for the benefit of PDP-11 users who wish to gain an in depth under-
standing of each instruction. However, understanding ISP is not essen-
tial to understanding PDP-11 instructions.

4.2 INSTRUCTION FORMATS
The major instruction formats are:

Single Operand Group

G AT I

15 6 5§

Daouble Operand Group

I OF Code L Srg ‘ dst I
L ol I 1 ! 1 1
15 12N 6 5 [7}

Conditian Code Qperators

[0 0 o o e

Register-Source or Destination

[| " tag Sre/del I
1

1 1 l 1 L 1 1 1 1 l L

Subroutine Return

|oI o 5} Ve () ‘ reg I
L 1

8ranch

[OF Code ot fset l
1 1] 1 1 1 1 1 1 1 1 [1 1

4.3 BYTE INSTRUCTIONS

The PDP-11 processor includes a full complement of instructions that
manipulate byte operands. Since all PDP-11 addressing is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autcincrement or autodecrement direct addressing cause the specified
register to be modified by one to point to the next byte of data. Byte
operations in register mode access the low-order byte of the specified
register. These provisions enable the POP-11 to perform as either a word
or byte processor. The numbering scheme for word and byte addresses
in core memory is:

HIGH BYTE WORD OR BYTE
ADDRESS ADDRESS
002001 arTE 1t BYTE Q 002000
002003 BYTE 3 ar¥TE 2 002002

The most significant bit (Bit 15) of the instruction word is set to indicate
a byte instruction.

Example:

Symbolic Octal
CLR 0050DD
CLRB 10500D

43

4.4 SINGLE OPERAND INSTRUCTIONS
4.4.1 Single Operand Arithmetic Instructions

General: CLR DEC INC NEG TST COM
CLRB DECB INCB NEGB TSTB COMB
Shifts: ASR ASL ASH ASHC
ASRB ASLB
Multiple Precision: ADC SBC SXT
ADCB SBCB
Rotates: ROL ROR SWAB
ROLE RORB

45

300 ns

CLR
CLRB
Clear dst n050DD
[ono,001o1o‘oocddddd]
[1 i l L i l L L L L I L L
15 6 5 0
Operation: (dst)} <0
Condition Codes: N: cleared
Z: set
V: cleared
C: cleared

Description:

Example:

Word: Contents of specified destination are re-
placed with zeroes.

Byte: Same
CLR R1
Before After
{R1) = 177777 {R1) = 00GO00
NZVC NZVC
1111 0100

300 ns

DEC
DECB
Decrement dst n0530DD
Fm o ¢ 0 1 0o 1 0o 7'i1 1 l d d 4 o d dJ
i 1 1 I 1 1 I 1 1 L 1 l 1 L
15 6 5 o -

Operation:
Condition Codes:

Description:

Example:

(dst) «(dst)—2

N: set if result is <0; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if (dst) was 100000;' cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the destina-
tion

Byte: Same
DEC RS
Before After
{R5) = 000001 (R5) = 000000
NZVOC NZVC
1000 0100

47

300 ns

INC
INCB
Increment dst n052DD
[ox10001o1o'10aauaual
| L : | 1 L L 1 1 | 1 1
15 6 5 0
Operation: (dst) «(dst) 4+ 1
Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is O; cteared otherwise
V. set if (dst) held 077777, cleared otherwise
C: not affected
Description: Word: Add one to contents of destination
Byte: Same
Example: INC R2
Before After
(R2) = 000333 (R2) = 000334
NZVC NZVC
0000 0000

750 ns

NEGB
NEG
Negate dst n0054DD
lon c o + 0 1 1 'o old d d d 4 4
I i fl i ' 1 1 1 1 l) 1
15 € 5 3
Operation: {dst) «{(dst)

Condition Codes:

Description:

Example:

N: set if the result is <0; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if the result is 100000; cleared otherwise
C: cleared if the result is O; set otherwise

Word: Replaces the contents of the destination ad-
dress by its two's complement, Note that 100000 is
replaced by itself (in two's complement notation the
most negative number has no positive counterpart).
Byte: Same

NEG RO
Before After
(RO} —= 000010 {R0O) = 177770
NZvVC NZVC
0000 1301

49

300 ns

ST
TSTB
Test dst . 05700
o1 @ 6 0 1 0 1 1'1. 1|]d 6 d d d d
] 1 i _I_ -y 1 I 1 1 L 1 I L |_—|
15 1 5 o]
Operation: (dst) «(dst)
Condition Codes: N: set if the result is < 0; cleared otherwise
Z. set if result is 0; cleared otherwise
V. cleared
C: cleared
Description: Word: Sets the condition codes N and Z according
to the contents of the destination address
Byte: Sarne :
Example: TSTR1
Before After
{R1) = 012340 {R1) = 012340
NZVC NZVC
0011 00c0Q

50

300 ns

COM
COMB
Complement dst nG510D
o1 0 O t 0 1 oo 1 d d d 4 d d
1 1 1 - J_ L J, 1 | l 1 i
15 6 5 o]
Operation: {dst) «— {dst)

Condition Codes:

Description:

Example:

N: set if most significant bit of result is set; cleared
otherwise

Z: set if result is O; cleared otherwise

V. cleared

C: set

Repliaces the contents of the destination address
by their logical comptement (each bit egual to 0O
is set and each bit equal to 1 is cleared)

Byte: Same

COM RO
Before After
(RO) = 013333 (RO) = 164444
NZVC NZVC
0110 1001

51

4.4.2 Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR—Arithmetic shift right ASC-—Multiple shift one word
ASL—Arithmetic shift left ASC—Multiple shift one word

The sign bit (bit 15) of the operand is replicated in shifts to the right.
The low order bit is filled with O in shifts to the left. Bits shifted out
of the C hit, as shown in the following examples, are lost.

52

300 ns

ASR
ASRB

Arithmetic Shift Right dst nQ6200

[onooo
I!Il

'11001.0ddulddd]
L

) I | 1 : 1 I

15

QOperation:
Condition Codes:

Description:

(dst)«{dst} shifted one place to the right

N: set if the high-order bit of the result is set (re-
sult <); cleared otherwise

Z: set if the result = O; cleared otherwise

V: loaded from the Exclusive OR of the N-bit and
C-hit (as set by the completion of the shift op-
eration)

C: joaded from low-order bit of the destination

Word: Shifts al! bits of the destination right one
place. Bit 15 is replicated. The C-hit is loaded from
bit O of the destination. ASR performs signed divi-
sion of the destination by two,

|‘_‘|‘| il
1

Word: :
' 1] L L l i I 5 I_H- -

I 1 L I L
) 0D ADORESS

<]
L I L L l L L
EVEN ADDRESS

1
-] o]

53

300 ns

ASL
ASLB
Arithmetic Shift Left dst n063DD
|im 0o 0 o 1 1 o o'1 114 d & 4 4 al
1 L 1 i 1 L l n l 1 I L | 1
15 & b5 0

COperation:
Condition Codes:

Description:

{dst) «(dst} shifted one place to the left

N: set if high-order bit of the result is set (result
< O); cleared otherwise

Z: set if the result = O; cleared otherwise

V. loaded with the exclusive OR of the N-bit and
C-bit (as set by the completion of the shift opera-
tion)

C: loaded with the high-order bit of the destination

Word: Shifts all bits of the destination left one
place. Bit 0 is loaded with an 0. The C-bit of the
status word is loaded from the most significant bit
of the destination. ASL performs a signed multi-
plication of the destination by 2 with overflow in-
dication.

Byte: Same

Word:

iy S

GD0 ADORESS

| F—Q-—l | I IQ—O
L L
a T

EVEN ADORESS 4]

750 ns + 150 ns x absolute value shift count

ASH
Shift Arithmetically 072RS8S
T
|..O|_1I1I_1|0|1_.0rlrlr slslslslslsl
15 8 € 5 [
Qperation: R« R Shifted arithmetically NN places to right
or left
Where NN — {src¢)
Condition Codes: N: set if result </0; cleared otherwise

Z: set if result = O; cleared otherwise

V: set if sign of register changed during shift;
cleared otherwise

C: loaded from last bit shifted cut of register

Description: The contents of the register are shifted right or left
the number of times specified by the scurce op-
erand. The shift count is taken as the low order 6
bits of the source operand. This number ranges
from —32 to +31. Negative is a right shift and
positive is a left shift.

55

750 ns 4+ 150 ns x absolute value shift count

ASHC
Arithmetic Shift Combined 073RS8S
Lo t 1 1,0 1 ' [s
||1|l| rirlr s|slsli.sl
15 : 9 8 6 5 [}
Operation: R, Rvl <R, Rvl The double word is shifted NN
places to the right or left, where NN = (src)
Condition Codes: N: set if result <Q; cleared otherwise
Z: set if result =0; cleared otherwise
V. set if sign bit changes during the shift; cleared
otherwise
C: loaded with high order bit when SC>0; loaded
with low order bit when SC<0 {loaded with the last
bit shifted out of the 32-bit operand)
Description: The contents of the register and the register ORed

with one are treated as one 32 bit word, R + 1
{bits 0-15) and R (bits 16-31) are shifted right or left
the number of times specified by the shift count.
The shift count is taken as the low order & bits of
the source operand. This numhber ranges from —-32
to 4-31. Negative is a right shift and positive is
a left shift.

When the register chosen is an odd number the reg-
ister and the register OR'ed with one are the same.
In this case the right shift hecomes a rotate. The
16 bit word is rotated right the number of bhits
specified by the shift count.

I | VT SR | P BT |

15 JO
* - (]

—
A [[| AR TN AV SR UR N S SU R |
oR
S]
R S R R N SR TN I

56

4.4.3 Multiple Precision

It is sometimes necessary to do arithmetic on operands considered as
multiple words or bytes. The PDP-11 makes special provision for such
operations with the instructions ADC (Add Carry) and SBC (Subtract
Carry) and their byte equivalents,

For example two 16-bit words may be combined into a 32-bit double
precision word and added or subtracted as shown below:

32 BT WORD
i ™

DPERAND I Al . ' g ag I

M

OPERAND T 81 ‘-I Iﬁ_ ea !

E]]

war |][|

M 16 = Q

Example:

The addition of —1 and —1 could be performed as follows:
—1=237777777777
(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD RI1, R2

ADC R3

ADD R4,R3

1. After (R1) and {R2) are added, 1 is loaded into the C bit

2. ADC instruction adds C bit to (R3}; {R3) =0
3. (R3}) and (R4) are added
4, Resultis 37777777776 or —2

57

300 ns

ADC
ADCB
Add Carry dst n0550D
Ion-ooo T 0 1 1t Vo 11.1 d d a4 o dI
{1 i O | A L L i | L
15] 6 5 0
Operation: {dst} «(dst} -+ (C)

Condition Codes: MN: set if result <<0; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if (dst) was 077777 and {C) was 1: cleared

otherwise
C: set if (dst) was 177777 and (C) was 1; cleared
otherwise

Pescription: Adds the contents of the C-bit into the destination.

This permits the carry from the addition of the low-
order words to be carried into the high-order result.

Byte: Same

Example: Double precision addition may be done with the
following instruction sequence:
ADD A0,BO ; add low-order parts
ADC Bl ; add carry inta high-order
ADD Al,B1 ; add high order parts

58

300 ns

SBC
SBCB
Subtract Carry dst nQ56D0
Ion o 0 ¢ 1 © t 1V1 ofd d a & 4 dl
I 1 i 1 1 l i 1 1 1 l 1 1
15 € 5 5]

Operation:
Condition Codes:

Description:

Example:

(dst) —(dst)—(C)

N: set if result <0; cleared otherwise

Z: set if result O; cleared otherwise

&: set if result is 100000; cleared otherwise

C: c¢leared if result is O and C = I, set otherwise

Word: Subtracts the contents of the C-bit from the
destination. This permits the carry from the sub-
traction of twc low-order words to be subtracted
from the high order part of the result.

Byte: Same

Double precision subtraction is done by:

SUB A0.BO
SBC Bl
sSUB Al,Bl

5%

300 ns

SXT
Sign Extend dst 0067DD
©o 0 0 0 1 1 o 1'1 tld ¢ 4 4 4 4
’ l i 1 I 1 1 I L L L 1 I_ 1 i
15 & 5 Q
Operation: {dst) « O if N bit is clear

Condition Codes:

Description:

Example:

{dsty < —1 N bit is set

N: unaffected

Z: set if N bit clear
V: cleared

C: unaffected

If the condition code bit N is set then a —1 is
placed in the destination operand: # N bit is ¢lear,
then a 0 is placed in the destination operand, This
instruction is particularly useful in multiple preci-
sion arithmetic because it permits the sign to be
extended through muitiple words.

SXTA
Before After
(A) = 012345 (A = 177777
NZVYC NZIVC
1G00 1000

4.4.4 Rotates

The rotate instructions operate on the destination word and the C bit as
though they formed a 17-bit “circular buffer.’”” These instructions faciii-
tate sequential bit testing and detailed bit manipuiation.

6l

300 ns

ROL
ROLB
Rotate Left dst n0&1DD
E£1000\$100'01dd'ddddl
l J— A I L L I L L L] ! L L
15 € 5 o

Condition Codes: N: set if the high-order hit of the result word is set
{result < 0): cleared otherwise
Z: set if all bits of the result ward = 0; cleared
otherwise
V: loaded with the Exclusive OR of the N-bit and
C-bit (as set by the completicn of the rotate op-
eration))
C: {oaded with the high-order bit of the destination

Description: Word: Rotate all bits of the destination left one
place. Bit 15 is loaded into the C-bit of the status
word and the previous contents of the C-bit are
loaded into Bit O of the destination.
Byte: Same

Example:

Word:

62

300 ns

ROR
RORB
Rotate Right dst nQ60DD
: T
Ig1j_°¢°1°l__'|‘1°|0|°|0 didldld]dld[
15 € 5 [i]

Condition Codes; N: set if the high-order bit of the result is set
{result < 0); cleared otherwise
Z: set if all bits of result — 0; cleared otherwise
V: loaded with the Exciusive OR of the N-hit and
C-bit (as set by the completion of the rotate
operation}
C: loaded with the low-order bit of the destination

Description: Rotates all bits of the destination right one place.
Bit O is lpaded into the C-bit and the previous
contents of the C-bit are loaded into bit 15 of the

destination,
Byte: Same
Exampis:
Word:
@_’Lt.lt..l.l..n..
5 10
Byte:

63

300 ns

SWAB
Swap Bytes dst 0003DD
—_
I0|0|010|0;0|0[0|1.1 d]dldldldld—l
15 € & o
Operation: Byte 1/Byte O «Byte O/Byte }

Condition Codes: N: set if high-ofder bit of low-arder byte {bit 7) of
result is set; cleared otherwise
Z: set if low-crder byte of resuit — 0; cleared

otherwise
V: cleared
C; ¢cleared
Description: Exchanges high-o‘rder byte and low-order byte of
the destination word (destination must be a word
address).
Exarmple: SWAB R1
Before After
(R1) = 077777 (R1) = 177577
NZVC NZVC
1111 Q000

I1SP:

4.5 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction (and time) saving
facility since they eliminate the need for “load” and “save” sequences
such as those used in accumulator-orieénted machines.

General: MOV ADD suB CMP
MOvVB . CMPB

Register Destination: MUL DIV XOR

Logical: BIS BIT BIC

BISB BITB BICB
4.5.1 Double Operand General Instructions

65

300 ns

MOV
MOVB
Mov sre. dst nlSspD
Ion o 0 s s s s's s|d ¢ d d d d—l
. 1 L 1 1 L I 1 1 1 1 | 1 1
15 12 1%] 5 [+]
Operation: {dst) «(src)

Condition Codes:

- Description;

Example:

N: set if (src) < 0; cleared otherwise
Z: set if (src) == O; cleared otherwise
V: cleared

C: not affected

Word: Moves the source operand to the destination
location. The previous contents of the destination
are lost. The contents of the source address are
not affected.

Byte: Same as MOV. The MOVB to a register
(unique among byte instructions) extends the most
significant bit of the low order byte (sign exten-
sion). Otherwise MOVB operates on bytes exactly
as MOV operates on words,

MOV XXX,R1 ; loads Register 1 with
the contents of memory location; XXX represents
a programmer-defined mnemonic used to represent
a memuory location

MOV #20,R0 ; loads the number 20
into Register 0; “#' indicates that the value 20 is
the operand

MOV @ # 20,—(R6) ; pushes the operand
contained in lacation 20 onto the stack

MOV (R&)4+, @ #177566 ; pops the operand off
a stack and moves it into memory location 177566
(terminal print buffer)

MOV RI1,R3
terregister transfer

MOVB @ # 177562,@ # 177566 ; moves a charac-
ter from terminal -keyboard buffer to terminal
buffer

; performs an in-

300 ns

ADD
Add src. dst 063500
I o 1 I o0]s s s s's s|d d d4 d 4d d
[1 | 1 1 | i i L | 1 1 1
15 1z 6 5 [
Operation: (dst} «{src) |- (dst)

Condition Codes:

Description:

Examples:

N: set if result <0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow as a result
of the operation; that is both operands were of the
same sign and the result was of the opposite sign;
cleared otherwise

C: set if there was a carry from the most significant
bit of the resuit; cleared otherwise

Adds the source operand to the destination operand
and stores the result at the destination address.
The original contents of the destination are lost.
The contents of the source are not affected. Two's
complement addition is performed.

Add to register: ADD 20,RO

Add to memory: ADD RI1,XXX

Add register to register: ADD R1,R2

Add memory to memory. ADD @ # 17750, XXX

XXX s a programmer-defined mnemonic for a mem-
ory location.

&7

300 ns

SUB
Subtract src. dst 16550DD
rl 1 | O—I s 5 5 s 's 5 l d d d d d d
i L L 1 L l Iy 1 L L l . |
15 1z 1 6 5 o
Operation:

Condition Codes:

Description:

Example:

(dst} «(dst)—(src) [in detail (dst)<{dst) + (src)
+ 1]

N: set if result < 0; cleared otherwise

Z: set if resuit =0; cleared otherwise

V: set if there was arithmetic overflow as a result
of the operation, that is if operands were of oppo-
site signs and the sign of the source was the same
as the sign of the result; cleared otherwise

C: cleared if there was a carry from the most sig-
nificant hit of the result; set otherwise

Subtracts the source operand from the destination
operand and leaves the result at the destination
address. The original contents of the destination
are lost. The contents of the source are not af-
fected. In double-precision arithmetic the C-bit,
when set, indicates a *'borrow’’

SUB R1, R2
Before After
(R1) = 011111 (R1) = 011111
(R2) == 012345 (R2) = 001234
NZVC NZVC
1111 0000

68

300 ns

CMP
CMPB

Compare src. dst n2s8sDD

0/|O1OIssssssdddddd]
IJ‘ L ||||

15

Dperation:

Condition Codes:

Description;

1" o 5 . [

(src) —(dst) [in deatail, (srcy + — {dst} + 1]

N: set if result < 0; ¢leared otherwise

Z: set if resuit =0; cleared otherwise

V: set if there was arithmetic overfiow; that is, op-
erands were of opposite signs and the sign of the
destination was the same as the sign of the result;
cieared otherwise

C: cleared if there was a carry from the most sig-
nificant bit of the result; set otherwise

Compares the source and destination operands and
sets the condition codes, which may then be used
for arithmetic and logical conditional branches.
Both operands are unaffected. The only action is
to set the condition todes. The compare is cus-
tomarily followed by a conditional branch instruc-
tion,

Note that unlike the subiract instruction the order
of operation is (src)—{dst), not {dst}—(src).

6%

3.3 48

MUL
Muitiply O70RSS
[Olilltllolololrlrlr slslslslsls—l
15 9 8 & 5 [
Qperation: R, Rvl« R x{src)
Conditon Codes: N: set if product is < 0; cleared otherwise
Z: set if product is O; cleared otherwise
V: cleared .
C: set if the result is less than —2% ar greater
than or equal to 2V5—1.
Description: The contents of the destination register and source
) taken as two's complement integers are multiplied
and stored in the destination register and the suc-
ceeding register (if R is even). If R is odd only the
low order product is stored. Assembler syntax is:
MUL S5.R.
{Note that the actual destination is R,Rvl which
reduces to just R when R is odd.)
Example: 16-bit product (R is odd)

CLc Clear carry condition code
MOV #400.R1

MUL #10,R1

BCS ERROR ;:Carry will be set if

;oroduct is less than

1—2% or greater than or equal
to 21

:no significance lost

Before After
(R1) = 000400 (R1) = 004000

70

6.9 us—7.5 us

DIV
Divide 071RSS
0||.II1I0IDI1 r|r:r sls.slslsls—l
15 s 8 € S aQ

Operation: R, Rvl «<RA, Rvl /(src)

Condition Codes: N: set if quotient < 0; cleared otherwise
Z: set if quotient =0; cleared otherwise
V. set if source =0 or if the absolute value of the
register is larger than the absolute value of the
source. {In this case the instruction is aborted be-
cause the quctient would exceed 15 hits.)
C: set if divide O attempted; cleared otherwise

Description: The 32-bit two's complement integer in R and
Rvl is divided by the source operand. The quotient
is left in R; the remainder in Rvl. Division will be
performed so that the remainder is of the same
sign as the dividend. R must be even.

Example: CLR RO
MOV #20001,R1
DIV #2.R0O

Before After
(RO} = 000000 (R0) = 010000 Quiotient
(R1} = 020001 {R1) — 000001 Remainder

71

300 ns

XOR

Exclusive Or 074RDD
1011.'. R A dldldldldld]
15 8 € 5 0

{dst) «<Rv{dst)

Operation:
Condition Codes:

Description:

Example:

N: set if the result < 0; cleared otherwise
Z: set if result =0; cleared otherwise

V: cleared

C: unaffected

The exclusive OR of the register and destination
operand is stered in the destination address. Con-
tents of register are unaffected. Assembler format
is: XOR R,D

XOR RO,R2

After
{RO) = 001234
(R2) = 000325

Before
(RO} = 001234
{R2) = 001111

72

4.5.2 Logical Instructions
These instructions have the same format as the double operand arith-
metic group. They permit operations on data at the bit level.

73

300 ns

BIS
BISB
Bit Set src. dst nSSSDD
[o4 1 0 { s s s_ s s s d d d _d 4d4 4d ,
) A Tt | P | i L 1 1 1 1 L)
15 TR 6 5 0
Operatibn: {dst)<(src) v {dst)

Condition Codes:

Description:

Example:

N: set if high-order bit of result set, cleared other-
wise)

Z; set if result = zero; cleared otherwise

V. cleared

C: not affected

Performs *Inclusive OR" operation betwean- the
source and destination operands and leaves the re-
sult at the destination address; that is, correspond-
ing bits set in the source are set in the destination.
The content of the destination are lost.

BIS RO,R1
Before After
(RQ) = 001234 {RO) = 001234
(R1) = 001111 {R1) = 001335
NZVC NZvVC
0000 0000

74

300 ns

BIT
BITB
Bit Test src. dst n38SDD
[0/1l0111!ls]sxslsls'lsld]dldldldI.dl
15 12 N & & o
Operation: {dst)A(src)

Condition Codes:

Description:

Example:

N: set if high-order bit of result set; cleared other-
wise

Z: set if result =0; cleared otherwise

¥: cleared

C: not affected

Performs logical "and’ comparison of the source
and destination operands and modifies condition
codes accordingly. Meither the source nor destina-
tion operands are affected. The BIT instruction may
be used to test whether any of the corresponding
bits that are set in the destination are also set in
the source or whether all corresponding bits set in
the destination are clear in the source.

BIT #30,R3 ; test bits 3 and 4 of R3
; to see if both are off

BEQ to HELP will occur

BEQ HELP :
+ if both are off

75

300 ns

BIC
BICB
Bit Clear secr. dst n4S5DD
IO/1IOOssssssdddddd
i 1 L } 1 1 L 1 1) L . Il
15 [T & 5 ’ o]
Operation; (dst) «~ (src)A(dst)
Condition Codes: N: set if high order bit of result set; cleared other-
wise
Z: set if resuit =0; cleared otherwise
V: cleared
C: not affected
Description: Clears each bit in the destination that corresponds
to a set bit in the source, The original contents of
the destination are lost. The contents of the source
are unaffected.
Example: BIC R3.R4
Before After
(R3) — 001234 (R3) = 001234
{R4) = 001111 (R4) = 000101
NZVC NZVC
1111 0001

76

4.6 PROGRAM CONTROL INSTRUCTIONS

4.6.1 Branches

The instruction causes a branch to a location defined by the sum of
the offset (multiptied by 2) and the current contents of the Program
Counter if:

a) the branch instruction is unconditional

h) it is conditional and the conditions are met after testing the
condition codes (status word).

The offset is the number of words from the current contents of the PC.
Note that the current contents of the PC point to the ward following
the branch instruction.

Although the PC expresses a byte address, the offset is expressed in
words, The offset is automatically multiplied by two to express byles
before it is added to the PC. Bit 7 is the sign of the offset. If it is set,
the offset is negative and the branch is done in the backward direction.
Similarly if it is not set, the offset is positive and the branch is done
in the forward direction.

The &bit offset allows branching in the backward direction by 200,
wards {400, bytes) from the current FC, and in the forward direction
by 177, words (376, bytes) from the current PC.

The PDP-11 assembler handles address aritbmetic for the user and
computes and assembles the proper offset field for branch instructions
in the ferm:

Bxx loc

Where "“Bxx" is the branch instruction and *“loc' is the address to
which the branch is to be made. The assembler gives an error indica-
tion in the instruction if the permissible hranch range is exceeded.
Branch instructions have no effect on condition codes.

77

600 ns

BR
Branch (unconditional) - Q004 Joe
[00000001 OFFSET
i 1 1 i 3 i i 1 1 1 L 1 1 1
15 8 7 0

Operation: PC « PC 4 (2 x offset)

Description: Provides a way of transferring program control
within a range of —128 to 127 words with a one
word instruction.

001000 BR xxx

Example:”

XXX

001002
001004
001006
001010

78

Simple Conditional Branches
BEQ
BNE
BMI
BPL
BCS
BCC
BVS
BvVC

79

300 ns—no branch
600 ns—branch

BEQ
Branch on Equal {zero) 0014 offset
I 6 © 0 0 © 0 1 1 { OFFSET I
1 1 i | 1 1 i 1 1 1 1 i 1 1 .
15 8 7 0
Operation: PC « PC + {2 x offset) if Z=1

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if
Z is set. As an example, it is used to test equality
following a CMP operation, to test that no bits set
in the destination were also set in the source fol-
lowing a BIT operation, and generally, to test that
the result of the previous operation was zero.

Exarmple: CMP AB ; compare A and B
BEGQ C ; branch if they are equal
will branch to C if A — B (A—B=0)
and the sequence
ADD AB ;add Ato B
BEQ C ; branch if the result = ¢

will breachto Cif A + B =0,

80

3008 ns—no branch
600 ns—branch

BNE
Branch Not Equal (Zero) 0010 offset
[6 0 0 0 0 0 1 0o OFFSET J
1 L % 1 1 i 1 A 1 " 1 | 1 1
15 7 [

Operation:
Condition Codes:

Description:

Example:

PC «PC + (Zxoffset)ifZ =0
Unaffected

Tests the state of the Z-bit and causes a branch if
the Z-bit is clear. BNE is the complementary opera-
tion to BEQ. It is used to test inequality following a
CMP, to test that some bits set in the destination
were also in the source, following a BIT, and gen-
erally, to test that the result of the previous opera-
tion was not zero.

CMP AB : compare A and B
BNE C ; branch if they are not equal

will branchto CifA=B"
and the sequence

ACD AB ; add A to B
BNE ©C ; branch if the result not equal
to O

will branchto CHfA 4+ B=0

81

300 ns—no branch
600 ns—branch

BMI

Branch on Minus 1004 offset

[1 o 0 0 0 0 O 1 OFFSET I
i i 1 | 1 1 1 1 | N 3 1 N 1

15 8 7 0
Operation: PC « PC - (2xoffset) if N =1
Condition Codes: Unaffected
Description: Tests the state of the N-bit and causes a branch if

N is set. It is used to test the sign (most significant
bit) of the result of the previous operation}.

82

300 ns—-no branch
600 ns—branch

BPL

Branch on Plus 1000 offset

1t 0 6 0 0 6 0. 0 OFFSET J
1 1 1 1 N L] L 1 L N | N L
3 o

15

PC « PC + (2 x offset) if N =20

Description: Tests the state of the N-bit and causes a branch
if N is clear. BPL is the compilementary operation

of BML.

Operation:

83

300 ns—mno branch
600 ns—branch

BCS
Branch on Carry Set 1034 offset
l 106 0 0 0t 1 1 OFFSET
l L L l 1 " l L L L l il H
15 a 7 0
Operation: PC « PC 4+ (2 x offset) if C =1
Description: Tests the state of the C-bit and causes a branch if

Cis set. It is used to test for a carry in the result
of a previous operation.

300 ns—no branch
600 ns—branch

BCC
Branch on Carry Clear 1030 offset
i o 0o o 0 1 1 © OFFSET . |
1 1 1 | 1 1 | 1 1 s 1 | 1 1
15 7 o
Operation; PC «PC 4+ (2xoffset)ifC =0
Description: Tests the state of the C-bit and causes a branch
if C is clear. BCC is the complementary operation
to BCS

85

300 ns—no branch
600 ns—hbranch

BVS
Branch on Overflow Set 1024 oifset
I t0 0 6 0 1 0 i OFFSET J
i L) | A 1 1 L ! : : | L
15 a 7 0
Operation: PC «PC + (2 xoffset) if V=1
Description: Tests the state of V bit (overflow) and causes a

branch if the V bit is set. BVS is used to detect
arithmetic overflow in the previous operation.

86

300 ns—mno branch
600 ns—branch

BvC
Branch on Overflow Clear 1020 offset
1.0 c 1 0,0 OFFSET I
l 1] I | I 1 i I 1 i
15 8 7 0
Operation: PC « PC 4+ (2 x offgset) if ¥ =0
Description: Tests the state of the ¥ bit and causes a branch if

the V hit is clear. BVC is complementary operation
to BVS.

87

Signed Conditional Branches

Particutlar combinations of the condition code bits are tested with the
signed conditional branches. These instructions. are used to test the
results of instructions in which the operands were considered as a
signed {iwo's complement) values,

Note that the sense of signed comparisons differs from that of unsigned
comparisons in that in signed 16-bit, two's complement arithmetic the
sequence of values is as follows:

largest 077777
077776
positive .
000001
000000
177777
177776
negative X
100001
srnallest 100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be
highest 177777

000002
000001
lowest 000000
The signed coenditional branch instructions are:
BLT BGE
BLE BGT

a8

300 ns—no branch
600 ns—branch

BLT

Branch on Less Than (Zero} 0024 offset
0.6 6 0,0 1 0 1 OFFSET '
[l L 1 I L L I 1 l L 1 I L L I
1% a7 0
Operation: PC «PC + (2xoffset) if Nvv =1

Description:

Causes a branch if the "Exclusive Or”' of the N and
¥ bhits are 1. Thus BLT will always branch following
an aperation that added two negative numbers,
even if overflow occurred.

In particular, BLT will always cause a branch if it
follows a CMP instruction operating on a negative
source and a positive destination (even if overilow
occurred)}. Further, BLT will never cause a branch
when it follows a CMP instruction operating on a
positive source and negative destination. BLT will
not cause a branch if the resuit of the previous
operation was zero {without cverflow}.

89

300 ns—no branch
&00 ns—NDbranch

BGE
Branch on Greater than or Equal (zero) 0020 offset
| 0,0 0 0,0 t 0,0 OFFSET
|] 1)| 1 R |] | ! ! I L !
15 a8 7 0
Operation: PC «~ PC 4+ {2 x offset) f M vV =0
Description: Causes a branch if N and ¥ are either both clear or

hoth set. BGE is the complementary operation to
BLT. Thus BGE will always cause a branch when
it follows an operation that caused addition to two
pcsitive numbers. BGE will also cause a branch on
a zero result.

90

300 ns—-no branch
600 ns—branch

BLE
Branrch on Less than or Equal (zera) 0034 offset
[cg°, 0,900 v, vyry oy oo |
15 B 7 o]
Operation; PC « PC + (2 xoffsety fZwNvV) =1

Description: Operation is simitar to BLT but in addition will
cause a branch if the result of the previous op-

eration was zero.

91

300 ns—no branch
600 ns—hranch

BGT
Branéh on Greater Than (zero) (030 offset
c,0 © 0,0 1 0 OFFSET :
] | [L | I 1 ! | L 1 i ; 1 1 1 —I
15 8 7 o
Operation PC « PC + (2 x offset) if Zw(N v V) = 0
Description: Operation of BGT 1s similar to BGE, except BGT

will not cause a branch on a zero resuit.

92

Unsigned Conditional Branches

The Unsigned Conditional Branches provide a means for testing the
result of comparison operations in which the operands are considered as
unsigned values. ’

BHI
BLOS
BHIS
BLO

93

300 ns—no branch
600 ns—branch

BHI
Branch cn Higher 1010 offset
OFFSET
] ! | ¢ L o 1 °] ° ! ¢ 1 1 | o] !] 1 | ! 1
15 s 7 o
Operation: PC « PC + (2xoffset) f C=0andZ =0
Description: Causes a branch if the previous operation caused

neither a carry nor a zero result, This will happen
in comparison (CMP) cperations as long as the
source has a higher unsigned value than the
destination.

94

300 ns—no branch
600 ns—-branch

BLOS
Branch on Lower or Same 1014 offset
1,0 o o 1.1 OFFSET l
I 1 L A l 1 l 1 1 i 1 L
15 B 7 : [¢]
Operation: PC «PC+(2xoffset) fCvZ=1
Description: Causes a branch if the previous operation caused

either a carry or a zero result. BLOS is the com-
plementary operation to BHL. The branch will occur
in comparison operations as long as the source is
equai to, or has a lower unsigned value than the
destination.

95

300 ns—no branch
600 ns—branch

BLO
Branch on Lower 1034 offset
l-r 0o ¢ 0 o0 1 1 1 OFFSET
l L L I . i l ul J i i k. L.
15 8 7 [+
Qperation: PC«PCH+ (2xoffset)ifC=1
Description: BLO is same instruction as BCS. This mnemaonic is

included only for convenience.

96

300 ns——no branch
600 ns—branch

BHIS
Branch on Higher or Same 1030 offset
1 0 0 ol OFFSET :
I J_ L i O_L o n ! L 1_L J i 1 1 i 1 1]
15 7 o]
Operation: PC « PC + (2xoffset)ifC =0
Description;

BHIS is the same instruction as BCC. This mne-
monic is included cnly for convenience,

97

4.6.2 Subroutine Instructions

The subroutine call in the PDP-11 prowdes for autormnatic nesting of
subroutines, reentrancy, and multiple entry points. Subroutines may call
other subroutines (or indeed themselves) to any level of nesting without
making special provision for storage or return addresses at each level
of subroutine call. The subreutine calling mechanism does not modify
any fixed location in memaory, thus providing for reentrancy. This allows
one copy of a subroutine to be shared among several interrupting pro-
cesses. For more detailed descrigtion of subroutine programming see
Chapter 5.

98

1.5 ps

JSR

Jump to Sub Routine 004 reg. dst
T
[olo'o 1.0|0r|r.rldldldldldl_d‘|
15 a B & 5 5]
Operation: {tmp) ={dst} {&mp is an internal processer register)
1(SPy<reg {push reg contents onto processor
stack)
reg «<PC (PFC holds location following JSR; this ad-
dress
PC «({tmp) (now put in reg)
Description: In execution of the JSR, the old contents of the

specified register (the "“LINKAGE POINTER™) are
automatically pushed onto the processor stack and
new linkage information placed in the register.
Thus subroutines nested within subroutines to any
depth may ail be calied with the same linkage reg-
ister. There is no need either to ptan the maximum
depth at which any particular subroutine will be
called or to include instructions in each routine to
save amd restore the linkage pointer. Further, since
all linkages are saved in a reentrant manner on the
processor stack execution of a subroutine may be
interrupted, the same subroutine reentered and
executed by an interrupt service routine. Execution
of the initial subroutine can then be resumed
when other requests are satisfied. This process
{called nesting) can proceed to any level.

In both JSR and JMP instructions the destination
address is used to load the program counter, R7.
Thus for example a ISR in destination mode 1 for
general register R1 (where (R1) — 100), will ac-
cess a subroutine at location 100. This is effectively
one level less of deferral than operate instructions
such as ADD.

A subroutine called with a JSR reg,dst instruction
can access the arguments following the call with
either autoincrement addressing, (reg} +, (if argu-
ments are accessed sequentially}) or by indexed

99

addressing, X(reg), (if accessed in random order)
These,addressing modes may aisc be deferred,
@ (reg) 4+ and @X(reg) if the parameters are op-
erand addresses rather than the operand them-
selves.

JSR PC, dst is a special case of the PDP-11 sub-
routine call suitable for subroutine calls that trans-
mit parameters through the general registers. The
SP and the PC are the only registers that may be
modified by this call.

Another special case of the JSR instruction is JSR
PC, @(5P) 4+ which exchanges the top element of
the processor stack and the contents of the pro-
gram counter. Use of this instructiion allows two
routines to swap program contrcl and resume op-
eration when recalled where they left off. Such rou-
tines are called “co-routines.”

Return from a subroutine is done by the RTS in-
struction. RTS reg loads the contenis of reg into
the PC and pops the top element of the processor
stack into the specified register.

100

MARK
Mark 0064nn
° | ¢ ! ° ! | ! ! ! ! ° 1 ! 1 ° 1 i 1 " ! " i " 1 " 1 " I
15 5 [
Operation: SP«FC + 2xnn nn = number of parameters

Condition Codes:

Description:

Example:

PC «R5
R5 «(S5P)+

unaffected

Used as part of the standard PDP-11 subroutine
return convention, MARK facilitates the stack clean
up procedures involved in subroutine exist. Assem-
bler format is: MARK N

MOV RS5,—(5P) ;place old R5 on stack

MOV Pl1,—(SP) :place N parameters

MOV P2,—(SP) on the stack to be
;used there by the
isubroutine

MOV PN,—(SP)
MOV =MARKN,—(SP} :places the instruction
;MARK N on the stack

MOV SP.,R5 ;set up address at Mark N
instruction
JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD RS
P1
PN

MARK N

OLD PC

~And the program is at the address SUB which is
the beginning of the subroutine.

SuUB: sexecution of the subroutine it-
seli

RTS RS ;the return begins: this causes
101 '

the contents of R5 to be placed in the PC which
then results in the execution of the instruction
MARK N. The contents ¢ld PC are placed in RS

MARK N causes: (1) the stack pointer to be ad-
justed to point to the old R5 value; (2} the value
now in RS (the old PC) to be placed in the PC; and
(3) contents of the old R5 to be popped into
R5 thus completing the return from subroutine.

Note: H Memory Management is in use a stack
must be in | and D spaces {Chapter &) to execute
the MARK instruction.

102

1.2 us

RTS
Return from Subroutine 00020 Reg
O .5 0 0.0 6 0,0 1 0,0 & O
[I 1 1 ’ 1 i I i i l ' 1 r i " J
15 3 2 v
Operation: PC+reg
reg <(SF}1
Description: Loads contents of reg into FC and pops the top

element of the processor stack into the specified
register.

Return from a non-reentrant subroutine is typically
made through the same register that was used in
its call. Thus, a subroutine called with a JSR PC,
dst exits with a RTS PC and a subroutine called
with a JSR R5, dst, may pick up parameters with
addressing modes {(R5)4, X{R5), or @X(R5) and
finally exits, with an RTS R5.

103

4.6.3 Program Control Instructions
SPL
JMP
S0B

104

600 ns

SPL
Set Priority Level Q0023N
o o0 o © 6 0 0 1 0 0 1 1 na n on J
] N N L L | 1 AL 1 L N | I 1
15 3 2]
Operation: PS (bits 7-5)<«Priority

Condition Codes:

Description

not affected

The least significant three bits of the instruction
are loaded into the Program Status Word (PS) bits
7-5 thus causing a changed priority. The old priority
is lost.

Assembler syntax is: SPL N

Note: This instruction is a no op in User and
Superviser modes.

105

600 ns

JMP

Jump 0001DD

o] Q Q o 0 ¢ 0 T 4] 1 d d d d d d —l
])] . ' b4 e 1 I !

15 -1 S o)

Qperation:

Condition Coxdes:

Description:

PC «(dst)
nat affected

JMP provides more flexible program branching
than provided with the branch instructions. Control
may be transferred to any location in memory {no
range limitation) and can be accomplished with
the full flexibility of the addressing modes, with
the exception of register mode Q. Execution of a
jump with mode O will cause an “illegal’” instruc-
tion"" condition. (Program control cannot be trans-
ferred to a register.) Register deferred mode is
legal and wili cause program control to be trans-
ferred to the address held in the specified registes,
Note that instructions are word data and must
therefore be fetched from an even-numbered ad-
dress. A “boundary error” trap condition will result
when the processor attempts to fetch an instruc-
tion from an odd address,

Deferred index mode JMP instructions permit trans-
fer of contro! to the address contained in a select-
able element of a table of dispatch vectors.

106

750 ns—nao branch
600 ns——branch

SOB
Subtract One and Branch 077R offset
T
PO T T T OFFSET
E | ' L L l L 1 ' I i 1 ! 1 1 | 1 1 —|
15 3 8 € 5 ' o

Operation:

Condition Codes:

Description:

R« R —1 if this result = 0 then PC « PC —{2x
offset)

unaffected

The register is decremented. If it is not equal to 0,
twice the offset is subtracted from the PC (now
pointing to the following word). The offset is inter-
preted as a six bit positive number. This instruction
provides a fast, efficient method of loop control.
Assembler syntax is:

SOB RA

Where A is the address to which transfer is to be
made if the decremented R is not equal to 0. Note
that the SOB instruction ¢an not be used to trans-
fer control in the forward direction.

107

4.6.4 Traps

Trap instructions provide for calls to ernulators, |/O monitors, debugging
packages, and user-defined interpreters. A trap is effectively an interrupt
generated by software. When a trap occurs the contents of the current
Program Counter (PC} and Program Status Word (PS) are pushed onto
the processor stack and replaced by the contents of a two-word {rap
vector containing a new PC and new PS. The return sequence from a
trap involves executing an RTI or RTT instruction which restores the old
PC and old PS by popping them from the stack. Trap vectors are located
permanently assigned fixed address.

TRAP
EMT
BPT
10T
RTI
RTT

108

Emulator Traps

2.25 us

EMT

104000-104377

Operation:

Condition Codes:

Description:

L(SP) <PS
1(SP) «PC
PC «(30)
PS (32}

N: loaded from trap vectar
Z: toaded from trap vector
V' loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are
EMT instructions and may be used to transmit in-
formation to the emuiating routine {e.g.. function
to be performed). The trap vector for EMT is at
address 30. The new PC is taken from the word at
address 30; the new central processor status (PS)
is taken from the word at address 22,

Caution: EMT is used frequently by DIGITAL system
software and is therefore not recommended for gen-
eral use.

109

TRAP
Trap 104400 to 104777
1 ! O fl 0 L 1 L 0 ' 0 l 1] H l L ' ' 1 ' —|
15 B 7 [+}
Operation: L{SP)«PS
WSP) «PC
PC—(34)
PS5 «(36)

Condition Codes:

Description:

N: loaded from trap vector
Z: {vaded from trap vector
V. loaded from trap vector
C: loaded from trap vector

Operation cades from 104400 to 104777 are TRAP
instructions. TRAPs and EMTs are identical in op-
eration, except that the trap vector for TRAP is at
address 34.

Note: Since DEC software makes frequent use of
EMT, the TRAP instruction is recommended for
general use,

110

2.25 us

BPT

Breakpoint Trap. 000003

oi(zflcI 010.0[0.0,0_10,0.0|0.1.1

15 [
Operation: L{5P)=PS
HSPY<—PC
PC«(14)
PC «(16)

Condition Codes:

Description:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: lnaded from trap vector

Performs a trap sequence with a trap vector ad-
dress of 14, Used to call debugging aids, The user
is cautioned against employing code 0000032 in pro-
grams run under these debugging aids.

(nc information is transmitted in the low byte.)

2.25 us

10T

/O Trap

000004

|0 o 0 0 0© OOOTOO Lo I R S | OOI
| 4 1 | P H I 1 1 i I i X 1
15 CQ

Operation:

Condition Codes:

Description:

L(3P}+PS
L(BP)<PC
PC (20}
PS «(22)

N: lpaded from trap vector
Z: loaded from trap vector
¥: loaded from trap vector
C: loaded from trap vector

Performs a trap sequence with a trap vector ad-
dress of 20. Used to call the /O Executive routine
10X in the paper tape software system, and for
error reporting in the Disk Operating System.

{no information is transmitted in the low byte}

112

15 us

RTI
Return from Interrupt 000002
oooolocolo'ooooolo 1 0]
i L H 'l 'l L L ' L L
15 0
Operation: PC «{SP)}
PS «(SP)t
Condition Codes: N: lnaded from processor stack
Z: loaded from processor stack
V. loaded from processor stack
C: Inaded from processor stack
Description: Used to exit from an interrupt or TRAP service rou-

tine. The PC and PS are restored (popped) from the
processor stack.

113

1.5 us

RTT
Return from Trap {00006
rololololololololo .Olo.o.oli.'lo—l
15
Operation: PC «(5P)t
PS (3P}

Condition Codes:;

Description:

N: loaded from processor stack
Z: loaded from processor stack
V. lcaded from processor stack
C: loaded from processor stack

This is the same as the RTI instruction except that
it inhibits a trace trap, while RTI permits a trace
trap, If a trace trap is pending, the first instruction
after the RTT will be executed prior to the next
“T'" trap. In the case of the RTI instruction the
“T" trap will occur immediately after the RTI.

114

Reserved Instruction Traps—These are caused by attempts to execute
instruction codes reserved for future processor expansion (reserved in-
structions) or instructions with illegal addressing modes (illegal instruc-
tions). Order codes not corresponding to any of the instructions de-.
scribed are considered to be reserved instructions. JMP and JSR with
register mode destinations are illegal instructions. Reserved and illegal
instruction traps occur as described under EMT, but trap through vectors
at addresses 10 and 4 respectively.

Stack Overflow Trap
Bus Error Traps—Bus Error Traps are:

1. Boundary Errors—attempts to reference instructions or word
operands at odd addresses.

2. Time-Out Errors—atternpts to reference addresses on the bus
that made no response within 5 us in the PDP-11/45. [n general,
these are caused by attempts to reference non-existent memory,
and attempts to reference non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap—Trace Trap enables bit 4 of the P$ and causes processor
traps at the end of instruction executions. The instruction that is ex-
ecuted after the instruction that set the T-bit will proceed-to completion
and then cause a processor trap through the trap vector at address 14.
Note that the trace trap is a system debugging aid and is transparent
to the general programmer.

The following are special cases and are detailed in subsequent para-
graphs.

1. The traced instruction cleared the T-bit.

The traced instruction set the T-bit.

The traced instruction caused an instruction trap.
The traced instruction caused a bus error trap.

The traced instruction caused a stack overflow trap.

S

The process was interrupted between the time the T-bit was set
and the fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT.
8. The traced instruction was a HALT,
9. The traced instruction was a Return from Trap.

Note: The traced instruction is the instruction after the one that sets
the T-bit,

An instruction that cleared the T-bit—Upon fetching the traced instruc-
tion an internal flag, the trace flag, was set. The trap will still occur at the
end of execution of this instruction. The stacked status word, however,
will have a clear T-bit.

115

An instruction that set the T-bit—=Since the T-bit was already set, setting
it again has no effect. The trap will occur,

An instruction that caused an Instruction Trap—The instruction trap is
sprung and the entire routine for the service trap is executed. If the
service routine exits with an RTI or in any other way restores the
stacked status word, the T-bit is set again, the instruction following the
traced instruction is executed and, unless it is one of the special cases
noted above, a trace trap occurs.

An instruction that caused a Bus Error Trap—This is treated as an In-
struction Trap. The only difference is that the error service is not as
likely to exit with an RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow—The instruction completes
execution as usual—the Stack Overflow does nat cause a trap. The
Trace Trap Vector is loaded into the PC and PS, and the old PC and
PS are pushed onto the stack. Stack Overflow occurs again, and this
time the trap is made.

An interrupt between setting of the T-bit and fetch of the traced instruc-
tion—The entire interrupt service routine is executed and then the T-bit
is set again hy the exiting RTI. The traced instruction is executed (if
there have been no other interrupts) and unless it is a special case
noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter-
rupts, the PS at the trap vector should raise the processor priority to
level 7.

A WAIT—The trap occurs immediately.

A HALT—The processor halts. When the continue key cn the console
is pressed, the instruction foliowing the HALT is fetched and executed.
Unless it is ane of the exceptions noted ahove, the trap occurs imme-
diately following execution.

A Return from Trap—The return from trap instruction either clears or
sets the T-bit. it inhibits the trace trap. If the T-bit was set and RTT
is the traced instruction the trap is delayed until completion of the next
instruction.

Power Failure Trap—is a standard PDP-11 feature. Trap occurs when-
ever the AC power drops below 95 valts or outside 47 to 63 Hertz. Two
milliseconds are then allowed for power down processing, Trap vector
for power failure is at locations 24 and 26.

Trap priorities—in case multiple processor trap conditions occur simul-
taneously the following order of priorities is observed (from high to low):

1. Odd Address
2. Fatal Stack Violation

116

Segment Violation

Timeout

Parity Error

Console Flag

Segment Management Trap
Warning Stack Violation
Power Failure

© 00 NGO R

The details on the trace trap process have been described in the trace
trap operational description which includes cases in which an instruction
being traced causes a bus error, instruction trap, or a stack overflow
trap.

If a bus error is caused by the trap process handling instruction traps,
trace traps, stack overflow traps, or a previous bus error, the processor
is halted.

If a stack overflow is caused by the trap process in handling bus errors,

instruction traps, or trace traps, the process is completed and then the
stack overflow trap is sprung.

117

4.7 MISCELLANEQUS
HALT
WAIT
RESET
MTPD
MTPI
MFPD
MFFI

118

Hailt 000000
o o o o 0 0 0 0 O 6 9 6 0 0 o0
I i 1 n i _l i L]_ i L l - L
15 o]

Condition Codes:

Description:

not affected

Causes the processor operation to cease. The con-
sole is given control of the bus. The console data
lights display the contents of RO; the console ad-
dress lights display the address after the halt in-
struction. Transfers on the UNIBUS are terminated
immediately. The PC points to the next instruction
to be executed. Pressing the continue key on the
console causes processor operation to resume. No
INIT signal is given.

MNote: A halt issued in Supervisor or User Mode
will generate a trap.

119

WAIT

Wait for Interrupt 000001

ooooooooooooooor—l
rllllllllllll_l_ll

i

Condition Codes:

Description:

o

not affected

Provides a way for the processor to relinguish use
of the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instruc-
tions or operands from memory. This permits
higher transfer rates between a device and mem-
ory, since -no processor-induced latencies will be
encountered by bus reguests from the device. In
WAIT, as in all instructions, the PC points to the
next instruction following the WAIT operation. Thus
when an interrupt causes the PC and PSW to be
pushed onto the processor from the interrupt rou-
tine (i.e. execution of an RTI instruction) will cause
resumption of the interrupted process at the in-
struction following the WAIT.

120

10 ms

RESET
Reset External Bus ' 000005
L)
o) o} o] Q o o u] s} a
[1 i I 1 1 ¢ l L ¢ 1 IO n L l 1 1 ¢] !
15 o

Condition Codes: not affected

Description: Sends INIT on the UNIBUS for 10 ms. All devices
on the UNIBUS are reset to their state at power up.

121

900 ns

MTPI
Move to Previous Instruction Space 0066DD
[00001101'10ddddd
I | 1 I 1 1 ’ | | | L [[1
15 3 b
Operation: (temp) —(SP)1
{dst) «{temp}
Condition Codes; N; set if the source < 0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected
Description: The address of the destination operand is deter-

mined in the current address space. MTPI then
pops a word off the current stack and stores that
word in the destination address in the previous
mode’'s | space (bits 13, 12 of PS).

122

Move to Previous Data Space 1066DD

I1 o o o
| IR
15

Operation:

Condition Codes:

Description:

(temp) «~(SP)t
{dst) «<(temp}

N: set if the source <0: otherwise cleared
Z: set if the source =0, otherwise cleared
V: cleared

C: unaffected

The address of the destination operand is deter
mined in the current address space as in MTPI,
MTPD then pops a word off the current stack and
stores that word in the destination address in the
previous mode’'s D space.

123

1.2 us

MFPI

Move from Previous Instruction Space Q06555
1
t
oIOIOIOI I1I{j|1lol1lslslsl_slslS
) _ & 5 . 0
Operation; {temp) < (sre)
L(SP} <(temp)
Condition Codes: N: set if the source <0; otherwise c¢leared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

Description: This instruction is provided in order to allow inter-
address space cammunication when the PDP11/45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<715:14 . The address itself is then used in the
previous | space (as determined by PS<13:123%
to get the source operand. This operand is then

pushed on to the current R6 stack.

124

1.2 M5

MFPD
Move from Previous Data Space 106585
I
[rpe, o000 ot o s s mys e s
A5 6 5 o
Operation: {temp}<(src)
HSP) —(temp)

Condition Codes:

Descriptiom:

N: set if the source 70; otherwise cleared
Z: set if the source =0; octherwise ¢leared
V: cleared

C: unaffected

This instruction is provided in order to allow inter-
address space commurication when the PDP-11745
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is deterimined
using the 5P and memory pages determined by
FS:715:14 . The address itself is then used in the
previous D space (as determined hy PS.13:12>
to get the source operand. This operand is then
pushed on to the current RE stack.

125

4.8 Condition Code Operators 600 ns
CLN SEN
CLZ SEZ
CLV SEV
CiC SEC

Condition Code Operators 0002XX

1
[e,0. 0000000, o] Jujelvie]

% 5 4 3 2 (0O

Description: Set and clear condition code bits. Selectable com-

binations of these bits may be cleared or set to-
gether. Condition code hits corresponding to bits
in the condition code operator (Bits C-3) are modi-
fied according to the sense of bit 4, the set/clear

bit of the operator. i.e. set the bit specified by bit
0,1, 2 or 3,.if bit 4 is a 1. Clear corresponding
hits if bit4 = 0.
Mnemonic
Operation QP Code
CLC ClearC 000241
CLVY Clear ¥ 000242
CcLZ Clear 2 000244
CEN Ciear N 000250
SEC Set C 000261
SEV SetV 000262
SEZ SetZ 000264
SEN Set N 000270
{0 Set all CC's Q00277
CCC Clear all CC's 000257
Clear Vand C Q00243
No Operation 000240

Combinations of the above set or clear operations may be ORed together

to form combined instructions.

126

CHAPTER 5

ADVANCED PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility
of the PDP-11/45, the reader should become familiar with the various
programming techniques which are part of the basic design philosophy
of the PDP-11. Although it is possible to program the PDP-11/45 along
traditional lines such as “accumulator orientation' this approach does
not fully exploit the architecture and instruction set of the POP-11/45.

5.1 THE STACK

A “stack,” as used on the PDP-11, is an area of memory set aside by
the programmer for temporary storage or subroutine/interrupt service
linkage. The instructions which facilitate '‘stack™ handiling are useful
features not normaily found in low-cost computers. They allow a program
to dynamically estahlish, modify, or delete a stack and items on it
The stack uses the “tast-in, first-out” concept, that is, various items may
be added to a stack in sequential crder and retrieved or deleted from
the stack in reverse order. On the PDP-11, a stack starts at the highest
location reserved for it and expands linearly downward to the lowest
address as items are added to the stack.

HIGH ADDRESSES

LOwW ADDRESSES

Figure 5-1: Stack Addresses

To keep track of the last item added to the stack {or “where we are’ in
the stack) a General Register always contains the memory address
where the last item is stored in the stack. In the PDP-11 any register
except Register 7 (the Program Counter-PC} may be used as a ‘‘stack
pointer’ under program control; however, instructions associated with
sibroutine linkage and interrupt service automatically use Register &
{R6) as a hardware “Stack Pointer.” For this reason RE is frequently
referred to as the system 'SP,

Stacksin the PDP-11 may be maintained in either full word or byte
units. This is true for a stack pointed to by any register except R6,
which must be arganized in full word units only,

127

WORD STACK

ooTICco ITEM #1

DO707E ITEM #2

OeTa ITEM #3

Werdered ITEM # 4 ~——sp [oorore
OUTOTC '
007066

0070E4d

NOTE: BYTES ARE
BYTE STACK ARE ARRANGED IN
WORDS AS FOLLOWING.

jalerginle] ITEM #1
QOTOTT ITEM #2
QOTETE ITEM #3
OOTO?S ITEM # 4 - 5P i QOTOFS |

Figure 5-2: Word and Byte Stacks

ltems are added to a stack using the autodecrement addressing mode
with the appropriate pointer register. (See Chapter 3 for description of
the autoincrement/decrernent modes). .

This operation is accomplished as fallows:

MOV Source, —(SP) ;MOV Source Word onte the stack
’ or
MOVB Source,— (SP) - 'MOVB Source Byte onto the stack

This is called a "push’” because data is 'pushed onto the stack.”

To remove an itern from a stack the autoincrement addressing mode with
the appropriate SP is employed. This is accomplished in the following
manner:

MOV{SP) 4, Destination - :MOV Destination Word off the stack
or
MOVB(SP)4-,Destination ;MOVE Destination Byte ¢ff the stachk

Remaoving an item from a stack is called a *‘pop” for “popping from the
stack." After an item has been “‘popped,” its stack location is considered
free and available for other use. The stack pointer points to the last-
used location implying that the next (lower) location is free. Thus a stack
may represent a pool of shareable temporary storage locations,

128

HIGH MEMORT

LOW ME MORT

5P

[1-]

-—5P @

+ EN o 5

} +
STACK
AREL

AN _EMPTY STACK
ARED

T.PUSHING & DATUM 2 PUSHING ANGTHER

OMTO THE STALK DaTuM ONTD THE

STACKS

Ed

1]

'EZ €9

E1

[]

14 EV

EZ

- 3R

I8 E3 - 3P

4. AROTHER

FUSH

E2

E@

£1

-ge

T POP

5 POP

5 PUSH

Figure 5-3; illustration of Push and Pop Operations

As an example of stack usage consider this situation: a subroutine
(SUBR) wants to use registers 1 and 2, but these registers must be
returned to the calling program with their contents unchanged. The
subroutine could be written as follows:

Address

076322
076324
076326
076330

076410
076412
076414
076416
076420
076422
076424

*Index Constants

QOctal Code

010167 SUBR:

000074
010267
Q00072

016701
000006
016702
000004
000207
000000
000000

Assembler Syntax
MOV R1.TEMPL ; save R1
]

MOV R2,TEMP2 ;save R2

MOV TEMP1,R1 ;Restore R1

-3

MOV TEMP2,R2 ; Restore R2
¥*

RTS PC
TEMP1: O
TEMP2: O

Figure 5-4: Register Saving Without the Stack

129

OR: Using the Stack

Address Gctal Code Assembler Syntax
010020 010143 SUBR: MOV R1, —(R3) ;push R1
010022 010243 MOV R2, —(R3) ;push R2
010130 012301 MOV (R3)+.R2 :pop R2
010132 012302 MOV (R3)+.R1 :pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a Stack Pointer
Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two
words of temporary 'stack’ storage. Another routine could use the same
stack space at some later point. Thus, the ability to share temporary
storage in the form of a stack is a very eccnomical way to save on
memory usage.

As a further example of stack usage, consider the task of managing an
input- buffer from a terminal. As characters come in, the terminal user
may wish to delete characters from his line; this is accomplished very
easily by maintaining a byte stack containing the input charactars. When-
ever a hackspace is received a character is “popped’ off the stack and
eliminated from consideration. In this example, a programmer has the
choice of “popping’’ characters to be eliminated by using either the
MOVB {MOVE BYTE) or INC (INCREMENT) instructions.

Qo101
o110
[ala}lelvrg
[stul] e+l
001605
Q01604
Q1003
o000z
001001

WOV R3] + | dest.
AR
NG 5P

Ml Mo A|w]c|o
Syl ol S|mya] e

- [oowoez |

=rs [ooton |

F_igure 5-6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is prefer-
able to MOVB since it would accomplish the task of eliminating the un-
wanted character from the stack by readjusting the stack pointer without
the need for a destination location. Also, the stack pointer (SP) used in
this example cannot be the system stack peointer (R6) because R6 may
only paint to word {even) locations.)

130

5.2 SUBROUTINE LINKAGE

5.2.1 Subroutine Cails

Subroutines provide a facility for maintaining a single copy of a given
routine which can be used in a repetitive manner by other programs
iccated anywhere eise in memory. In order to provide this facility, gen-
eralized linkage methods must be established for the purpose of control
transfer and information exchange betwean subroutines and calling
programs. The PDP-11 instruction set contains several useful instruc-
tions for this purpose.

PDP-11 subfoutines are called by using the JSR instruction which has
the following format,

a general register (R) for linkage
JSR R,SUBR
an entry location {SUBR) for the subroutine

When a JSR is executed, the contents of the linkage register are saved
on the system R6 stack as if a MOV reg,—{SP) had been performed.
Then the same register is loaded with the memory address following the
JSR instruction (the contents of the current PC) and a jump is made
to the entry location specified.

Address Assembler Syntax Octal Code
001000 JSRRS SUBR 004567
001002 index constant for SUBR 000064
01064 SUBR: MOVAE Dinnrmm

Figure 5-7: JSR using R5

BEFORE LFTER
(RS51: DOGH32 (RS 001004
{RS)= 0017786 (REEDOITTS
tFTIIR) 001000 [PCI=A74= 001089

@2000 LELEE N DO2000 RAARDR

01778 mommem fesz | ooTre | aorzre mmmmmm

001774 Bo17ra coo132 +se | ooirre]

ooIPTE ooz,

Figure 5-8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be
a meaningful combination.

5.2.2 Argument Transmission

The memary location pointed to by the linkage register of the JSR in-
struction may contain arguments or addresses of arguments. These argu-
ments may be accessed from the subroutine in several ways. Using
Register 5 as the linkage register, the first argument could be obtained
by using the addressing modes indicated by (R5),{R5)+,X(R5) for actual
data, or @(R5)+, etc. for the address of data. If the autocincrement

131

mode is used, the linkage register 1s autormatically updated to point {o
the next argument.

Figures 5-2 and 5-10 illustrate two possible methods of argument trans-
mission,

Address Instructions and Data

010400 JSR RS, SUBR
10402 : Index constant for SUBR SUBROUTINE CALL
010404 arg #1 ARGUMENTS

010406 arg #2

020306 SUBR: MOV (RS)+ Rl ;get arg #1
020310 MOV {R5)+.R2 :get arg #2 Retrieve Arguments
from SUB

Figure 5-9: Argument Transmission-Register Autoincrement Mode

Address Instructions and Data

013400 ISR R5, SUBR
010402 Index constant for SUBR SUBROUTINE CALL

010404 077722 Address of arg £1
010406 077724 Address of arg #2

010410 Q77726 Address of arg #3

077722 arg #1
Q77724 arg #2 arguments
Q77726 arg #3

020306 SUBR: MOV @(R5)+.R1 :get arg #1
020301 MOV @(R5)+.R2 get arg #2

Figure 5-10: Argument Transmission-Register Autoincrement
Deterred Mode

Ancther method of transmitting arguments is to transmit only the ad-
dress of the first item by placing this address in a general purpose
register. It is not necessary to have the actual argument list in the same
general area as the subroutine cail. Thus a subroutine can be called to
waork on data located anywhere in memory. In fact, in many cases, the
operations performed by the sutiroutine can be applied directly to the
data located on or pointed to by a stack without the need to ever actually
move this data into the subroutine area.

122

Calling Program: MOV POINTER, R1
JSR PC,SUBR

SUBROUTINE ADD {R1) + {R1} ;Add item #1 to item #2, place
result in item # 2, R} points
to item 2 now
etc.
or

ADD {R1},2(R1) ;Same effect as above except
that R1 still points to item #1
etc.

ITEM # 1 -——F1 I I

ITEM #7

Figure 5-11: Transmitting Stacks as Arguments

Because the PDP-11 hardware already uses general purpose register R6 to
point to a stack for saving and restoring PC and PS {processor status
word) infermation, it is quite convenient to use this same stack to save
and restore intermediate results and to transmit arguments to and from
subroutines, Using R6& in this manner permits extreme flexibility in nest-
ing subroutines and interrupt service routines.

Since arguments may be obtained from the stack by using some form
of register indexed addressing, it is sometimes useful to save a termporary
copy of R6 in some other register which has already been saved at the
beginning of a subroutine, In the previous example RS may be used to
index the arguments while R6 is free to be incremented and decremented
in the course of being used as a stack pointer. if Ré had been used
directly as the base for indexing and not “‘copied,” it might be difficult
to keep track of the position in the argument list since the base of the
stack would change with every autoincrement/decrement which occurs.

buf wenan Gnotrac fem
org w1 T is pushed arg
arg #2 arg # 2
5F —- org #3 arg *#3
P - T
arg* 2 is &1 source oeg# 2 is of source
-z I5A -4q15PI

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any argumants
are pushed onto the stack, the position relative to RS would remain
constant.

133

arg #1 -=—RE arg *#1 -—RG

SF ———r arg #2 arg #2
SF—w arg #3
org#2 is at 2 [R5} arg# 2.5 ghill of 2IRSY

Figure 5-13: Constant Index Base Using ‘R6 Copy™

5.2.3 Subroutine Return

In order to provide for a return frorn a subroutine to the calling program
an RTS instruction is executed by the subroutine. This instruction shoutd
specify the same register as the JSR used in the subroutine call. When
executed, it causes the register specified to be moved to the PC and the
top of the stack to be then placed in the register specified, Note that if
an RTS PC is executed, it has theé effect of returning to the address
specified on the top of the stack.

Mote that the JSR and the JMP Instructions differ in that a linkage reg-
ister is always used with a JSR; there is no linkage register with a JMP
and no way to return to the calling program.

When a subroutine finishes, it is necessary to ''‘clean-up’ the stack by
eliminating or skipping over the subroutine arguments. One way this can
be done is by insisting that the subroutine keep the number of argu-
ments as its first stack item. Returns from subroutines would then. in-
volve calculating the amount by which to reset the stack pointer,
resetting the stack pointer, then restoring the originail contents of the
register which was used as the copy of the stack pointer, The PDP-11/45,
however, has a much faster and simpler methed of performing these
tasks. The MARK instruction which is stored on a stack in place of
“number of argument” information may be used to automatically per-
form these *clean-up’ chores. (For more information on the MARK
instruction refer to Chapter4.)

5.2.4 PDP-11 Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling procedure,

a. arguments can be quickly passed between the cafling program and
the subroutine.

b, if the user has no arguments or the arguments are in a general reg-
ister or on the stack the JSR PC,DST mode can be used so that none
of the general purpose registers are taken up for tinkage.

c. many JSR's can be executed without the need to provide any saving
procedure for the linkage information since al! linkage information is
automatically pushed onto the stack in sequential order. Returns can
simply be made by autornatically popping this information from the
stack in the opposite order of the JSR's.

Such linkage address bookkeeping is calfed automatic ‘nesting’’ of sub-
routine calls. This feature enables the programmer to construct fast,

134

efficient linkages in a simple, flexible ranner. It even permits a routine
to call itself in those cases where this is meaningful {e.g. SQRT in
FORTRAN SQRT(SQRT(X)). Other ramifications will appear after we
examine the PDP-11 interrupt procedures.

5.3 INTERRUPTS

5.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. How-
ever, they are forced, rather than controlled, transfers of program
execution occurring because of some external and program-independent
event {such as a stroke on the teleprinter keyboard). Like subroutines,
interrupts have linkage information such that a return to the interrupted
program can be made. More information is actually necessary for an
interrupt transfer than a subroutine transfer because of the random
nature of interrupts. The complete machine state of the program im-
mediately prior to the occurrence of the interrupt must be preserved in
order to return to the program without any noticeable effects. (i,e. was
the previous operation zero or negative, etc.) This information is stored
in the Processor Status Word (PS). Upon interrupt, the contents of the
Program Counter (PC) (address of next instruction) and the PS are auto-
matically pushed onto the R6 system stack. The effect is the same as if:

MOV PS ,—(SP) :Push PS
MOV R7,—(SP} :Push PC

had been executed.

The pew contents of the PC and PS are loaded from itwo preassigned
consecutive memory locations which are called an “interrupt vector.”
The actual locations are chosen by the device interface designer and are
located in low memory addresses of Kernel virtual space (see interrupt
vector list, Appendix C). The first word- contains the interrupt service
-routine address (the address of the new program sequence) and the
second word contains the new PS which will determine the machine,
status including the operational mode and register set to be used by the
interrupt service routine. The contents of the interrupt service vector
are set under program cont{ol.)

After the interrupt service routine has been completed, an RTI (return
from interrupt) is perfoermed. The two top words of the stack are auto-
matically "popped’ and placed in the PC and PS respectively, thus re-
suming the interrupted program.

5.3.2 Nesting

Interrupts can be nested in much the same manner that subroutines
are nested. In fact, it is possible to nest any arbitrary mixture of sub-
routines and interrupts without any confusion. By using the RTI and
RTS instructions, respectively, the proper returns are automatic.

1. Process O is running; SP—wp0
3P is pointing to loca-
tion PO. o

135

2. Interrupt stops process ¢
with PC = PCO, and
status = PS5S0; starts process 1.

3. Process 1 uses stack for
temporary storage (TEOQ, TE1).

4. Process 1 interrupted with PC = PC1
and status — PS1; process 2 is started

5. Process 2 is running and does a)
J5R R7Z.A to Subroutine A with
PC = PC2.

6. Subroutine A is running
and uses stack for
temporary storage.

136

PO
[:14]
SP—» Pea
a
£Q
. P50
L]
TEQ
BF —=| TE1
o
PO
[t=1e]
FCO
TEQ
TE1
P51
5P—a| FCH
Q
PO
F50Q
PLO
TEQ
TEY
P31
ace
5P —- PLZ
L]
PO
RSO
PCO
TEQ
TEY
PE1
P
FC2
THe
5P —m TAZ

7. Subroutine A releases the temporary ke
starage holding TAl and TAZ2. ::‘:
TED
TEA
PS5
[
P—a L2
o
8. Subroutine A returns control to process PO
2 with an RYS R7,PC is reset to PC2. —
TEDQ
TE1
P51
SP—w PC
o
9, Process 2 completes with an RTI ro

instruction (dismisses interrupt) PC
is reset to PC | and status is reset to
PS1; process 1 resumes.

P - TE1

o

10. Process 1 releases the temborary re
storage holding TEQ and TEL. pio
SP—s PO

o

11. Process 1 completes its operation §a—mp0

with an RTI is reset to PCO and status
is reset to PS0,

Figure 5-14: Nested interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately in-
volved with the concept of CPU and device priority levels. For a full dis-
cussion of the uses of the PDP-11/45 priority structure, refer to Chapter
2, System Architecture.

5.4 REENTRANCY

Further advantages of stack organization becomes apparent in complex
situations which can arise in program systems that are engaged in the
concurrent handling of several tasks. Such multi-task program environ-

137

ments may range from refatively simple single-user applications which
must manage an intermix of I/O interrupt service and background com-
putation to large complex multi-programming systems which manage a
very intricate mixture of executive and multi-user programming situa-
tions. In all these applications there is a need for flexibility and time/
memory eccnomy. The use of the stack provides this economy and
flexibility by providing a method for allowing many tasks to use a singie
copy of the same routine and a simple, unambiguous methad for keep-
ing track of complex program linkages.

The ability to share a single copy of a given program among Users or
tasks is called reentrancy. Reentrant program routines differ from ordi-
nary subroutines in that it is unnecessary for reentrant routines to finish
processing a given task before they can be used by another task. Mul-
tiple tasks can be in various stages of completion in the same routine
at any time. Thus the following situation may occur:

MEMORY
FROGRAM 1
PROGRAM 2 SLBROUTINE 5
FROGRAM 3
PDP-11 Approach Conventional Approach
Programs 1, 2, and 3 can A separate copy of Subroutine A
share Subroutine A. must be provided for each program.

Figure 5-15: Reentrant Routines

The chief programming distinction between a non-shareable routine and
a reentrant routine is that the reentrant routine is composed solely of
"pure code,’” i.e., it contains only instructions and constants. Thus, a
section of program code is reentrant (shareable) if and only if it is
“nan self-modifying,” that is it contains no information within it that is
subject to modification.

Using reentrant routines, control of a given routine may be shared as
illustrated in Figure 5-16.

REENTRA4NT [’
ROUTINE

a

Figure 5-16: Reentrant Routine Sharing-

138

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant
Routine Q before it finishes processing.

Task B starts processing in the same copy of Reentrant Routine Q.

Task B relinquishes control of Reentrant Routine Q at some point in
its processing.

5. Task A regains control of Reentrant Routine @ and resumes process-
ing from where it stopped.

The use of reentrant programming allows many tasks to share frequently
used routines such as device interrupt service routines, ASCH-Binary
conversion routines, etc. In fact, in a multi-user system it is possible, for
instance, to construct a reentrant FORTRAN compiler which can be used
as a singte copy by many user programs.

As an application of reentrant {shareable) code, consider a data process-
ing program which is interrupted while executing a ASCll-to-Binary sub-
routine which has been written as a reentrant routine. The same
conversion routine is used by the device service routine. When the device
servicing is finished, a return from interrupt (RTI) is executed and
execution for the processing program is then resumed where it left off
inside the same ASCIi-to-Binary subroutine,

Shareable routines generally result in great memory saving. It is the
hardware implemented stack facility of the PDP-11 that makes shareable
~ or reentrant routines reasonable,

A subroutine may be reentered by a new task before its completion
by the previous task as long ad the new execution does not destroy any
linkage informafion or intermediate results which belong to the previous
programs. This usually amounts to saving the contents of any general
purpose registers, to be used and restoring them upon exit. The choice
of whether to save and restore this information in the calling program or
the subroutine is quite arbitrary and depends on the particular applica-
tion. For example in controfled transfer situations (i.e. JSR’s) a main
program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control,
or the code conversion routine might save the contents of registers
which it uses and restore them upon its completion. In the case of
interrupt service routines this savefrestore process must be carried out
by the service routine itself since the interrupted program has no warn-
ing of an impending interrupt. The advantage of using the stack to save
and restore (i.e. “push™ and “pop™) this information is that it permits
a program to isolate its instructions and data and thus maintain its
reentrancy.

In the case of a reentrant program which is used in a multi-program-
ming environment it is usually necessary t6 maintain a separate R6
stack for each user although each such stack would be shared by all the
tasks of a given user. For example, if a reentrant FORTRAN compiler
is to be shared between many users, each time the user is changed,

139

R& would be set to point to a new user’s stack area as illustrated in
Figure 5-17.

[]
-

Figure 5-17: Muitiple R6 Stack

5.5 POSITION INDEPENDENT CODE~PIC

Most programs are written with some direct references to specific ad-
dresses, if only as an offset from an absolute address origin. When it is
desired to relocate these programs in memory, it is necessary to change
the address references and/or the origin assignments. Such programs
are constrained tc a specific set of locations. However, the PDP-11
aschitecture permits programs to be constructed such that they are not
constrained to specific locations, These Position Independent programs
do not directly reference any absolute locations in memory. Instead all
references are “PC-relative’ i.e. locations are referenced in terms of
offsets from the current jocation (offsets from the current value of the
Program Counter (PC)). When such a program has been translated to
machine code it will form a program module which can be loaded any-
where in memory as reguired, i .

Position Independent Code is exceedingly valuable for those utility rou-
tines which may he disk-resident and are subject to loading in a dy-
namically changing program environment. The supervisory program may
load them anywhere it determines without the need for any relocation
parameters since all items remain in the same positions relative to each
ather (and thus alsg to the PC).

Linkages to program routines which have been written in paosition inde-
pendent code {(PIC) must still be absolute in some manner. Since these
routines can be located anywhere in memory there must be some fixed
or readily locatable linkage addresses to facilitate access to these rou-
tines. This linkage address may be a simple pointer located at a fixed
address or it may be a complex vector composed of numerous linkage
information items.

‘5.6 RECURSION

It is often meaningful for a program routine to cali itself as in ihe
case of cafculating a fourth root in FORTRAN with the expression
SQRT{SQRT)(X}). The ability to nest subroutine calls to the same sub-
routine is called recursion. The use of stack organization permits easy
unambiguous recursion. The technique of recursion is of great use to
the mathematical analyst as it also permits the evaluation of some
otherwise non-computable mathematical functions. Although it is beyond
the scope of this chapter to discuss the concept of recursive routines in
detail, the reader should reafize that this technique often permits very
significant memory and speed economies in the linguistic operations
of compilers and other higher-level software programs.

140

5.7 CO-ROUTINES

In some situations it happens that two program routines are highly
interactive, Using a special case of the JSR instruction i.e., JSR PC,
@{R6)+ which exchanges the top element of the Register & processor
stack and the contents of the Program Counter (PC), two routines may
be permitted to swap program control and resume operation where they
stopped, when recalled. Such routines are called '“co-routines.'” This
control swapping is illustrated in Figure 5-18.

Routiﬁe #1 is operating, it then executes:
MOV #PC2,—(R6)

JSR PC, @ (R6)+
with the following resuits:

1) PCZ is popped from the stack — e
and the SP autoincremented

2) §Pis autodecremented and the 1
old PC (i.e. PC1) is pushed SR—=

PLE

3} control is transferred to the
location PC2 (i.e. routine #2)]

R’outine # 2 is operating, it then executes:
JSR PC, @{R6}+

with the result-the PC2 is exchanged
for PC1 on the stack and controf is
transferred back to routine 1.

L et [I8

Figure 5-18—Co-Routine interaction

141

142

CHAPTER 6

MEMORY MANAGEMENT

The PDP-11/45 Memory Management Unit provides the hardware facifi-
ties necessary for complete memory management and protection. it is
designed to be a memory management facility for systems where the
system memory size is greater than 28K words and for multi-user,
multi-programming systems where memory protection and relocation
facilities are necessary,

In order to most effectively utilize the power and efficiency of the
PDP-11/45 in medium and large scale systems it is necessary to run
several programs simuitaneously. In such multi-programming environ-
ments several user programs would be resident in memaory at any given
time. The task of the supervisory program would be: control the execu-
tion of the various user programs, manage the allocation of memory
and peripheral device resources, and safeguard the integrity of the sys-
tem as a whole by careful control of each user program.

In & multi-programming system, the Memory Management Unit provides
the means for assigning memory pages to a user program and prevent-
ing that user from making any unauthorized access to these pages out-
side his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the system
executive program.

The basic characteristics of the PDP-11/45 Memory Management Unit
are:

16 User mode memory pages

16 Supervisor mode memory pages

16 Kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

page lengths from 32 to 4096 words

each page provided with full protection and relocation
transparent operation

& modes of memory access control

memory extension to 124K words (248K bytes)

6.1 PDP-11 FAMILY BASIC ADDRESSING LOGIC

The addresses generated by all PDP-11 Family Central Processor Units
{CPUs) are 18-bit direct byte addresses. Although the PDP-11 Family
word length and operational logic is all 16-bit length, the UNIBUS and
CPU addressing logic actually is 18-bit length, Thus, while the PDP-11
word can only contain address references up to 32K words (64K bytes)

143

the CPU and UNIBUS can reference addresses Llp tc 128K words (256K
bytes). These extra two bits of addressing logic provide the basic
framework for expanded memory operation.

In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space is always reserved
for UNIBUS 1/C device registers. in a basic PDP-11/45 memory config-
uration (without the Memory Management Option} all address references
to the uppermost 4K words of 16 bit address space (170000-177777)
are canverted to full 18-bit references with bits 17 and 16 always set to
1. Thus, a 16 bit reference to the |/ 0 device register at address 173224
is auvtomatically internally converted to a fuli 18-bit reference to the reg-
ister at address 773224, Accordingly, the basic PDP-11/45 configuration
can directly address up to 28K words of true memory, and 4K words of
UNIBUS /O device registers. Memory configurations beyond this require
the PDP-11/45 Memory Management Unit.

6.2 VIRTUAL ADDRESSING

When the PDP-11/45 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct Physical
Address (PA) but as a Virtual Address (VA) containing information to be
used in constructing a new 18-bit physical address. The information
contained in the Vidual Address {VA) is combined with relocation infor-
mation contained in the Page Address Register {PAR) (see 6.4} to yield
an 18-bit Physical Address (PA). Using the Memory Management Unit,
memory can be dynamically allocated in pages each composed of from
1 to 128 integra! blocks of 32 words.

PHYSICAL
ADDRESS SPACE
K

PAGE 5
WIATUAL INSTRUCTION/DATA
ADDRESS SPACE
32K
— FAR 7 PAGE 6
L] PSR ©
™ PAR &
| PaR 4 PaGE ¥
Par 3 \
PAR 2 PAGE 4
PAR 1
o PAR QO o
VIRTOAL ADDRESS PAGE FHYSICAL ADDRESS
{16 BITS) ADDRESS {18 BITS}
REGISTER3

PAR = Page Address Register
Figure 6-1 Virtual Address Mapping into Physica! Address

The starting physical address for each page is an integral multiple of 32
words, and each page has a maximum size of 4096 words. Pages may be
located anywhere within the 128K Physical Address space. The deter-
mination of which set of 16 page registers is used to form a Physical

144

Address is made by the current mode of operation of the CPL, i.e., Ker-
ne!, Supervisor or User mode,

6.3 INTERRUPT CONDITIONS UNDER MEMORY MANAGMENT
CONTROL

The Memory Management Unit relocates all addresses. Thus, when ‘t is
enabled, all trap, abort, and interrupt vectors are considered to be in
Kernel mode Virtual Address Space. When a vectored transfer occurs,
control is transferred according to a new Program Counter (FC) and
Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Page Address Register Set. Relocation of trap ad-
dresses means that the hardware is capabie of recovering from a
failure in the first physical bank of memory.

Wwhen a trap, abort, or interrupt occurs the “push™ of the old PC, old
PS is to the User/Supervisor/Kernel R6 stack specified by CPU mode
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kesnei, 01 =
Supervisor, 11 = User). The CPU mode bits also determine the new PAR
set. In this manner it is possible for a Kernel mode program to have
complete control over service assignments for all interrupt conditions,
since the interrupt vector is located in Kernel space. The Kernel program
may assign the service of some of these conditions to a Supervisor or
User mode program by simply setting the CPU mode bits of the new
PS in the vector to return control to the appropriate mode.

6.4 CONSTRUCTION OF A PHYSICAL ADDRESS

All addresses with memeory relocation enabled either reference informa-
tion in instruction (I} Space or Data (D) Space. | Space is used for all
instruction fetches, index words, absoiute addresses and immediate
operands, D Space is used for all other references. | Space and D Space
each have 8 PAR's in each mode of CPU operation, Kernel, Supervisor,
and User. Using Status Register #3 (6.6.4), the operating system may
select to disable D space and map all references (Instructions and
Data} through 1 space, or to use both [and D space,

The basic information needed for the construction of a Physical Address
{PA) comes from the Virtual Address (VA), which is illustrated in Figure
6-2, and the appropriate PAR set,

15 13 12 Q
I APF DF
ACTIVE PAGE CISPLACEMENT FIELD
FIELD

Figure 6-2: Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Page Address Registers (PARO-PAR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to

145

4K words (2,, — 8K bytes)., The DF is further subdivided into two
fietds as shown in Figure &-3.

12 S El 0

[e]

BLOCK MUMEBER DISPLACEMENT (N 8LOCK

Figure 6-3: Displacernent Field of Virtual Address

The Displacement Field (DF) consists of;

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block {DIB). This &-bit field- contains the dis-
placement within the block referred to by the Block Number (BN).

The remainder of the infarmation needed to construct the Physical Ad-
dress comes from the 12-bit Page Address Field (PAF} (part of the
Page Address Register (PAR)) and specifies the starting address of the
memory page which that PAR describes. The PAF is actually a block
number in the physical memory, e.g. PAF = 3 indicates a starting ad-
dress of 96 (3 x 32) words in physical memaory.

The formation of a physical address (PA) takes 90 ns. Thus in situations
which do nat require the facilities of the Memory Management Unit, it
should be disabled to permit time savings.

The formation of the Physical Address {PA) is illustrated in Figure 6-4.

The logical sequence involved in constructing a Phﬁsical'Address (PA)
is as follows:

1. Select a set of Page Address Registers depending on the space
being referenced.

2. The Active Page Field (APF) of the Virtual Address is used to select
a Page Address Register (PARO-PAR7).

3. The Page Address Field (PAF) of the selected Page Address Register
{PAR) contains the starting address of the currently active page as a
block number in physical memaory.

4. The Block Number {BN) from the Virtual Address (VA) is added
to the block number from the Page Address Field (PAF) to yield the
number of the block in physical memory (PBN-Physical Block Num-
ber) which will contain the Physical Address (PA) being constructed.

5. The Displacement in Block {DIB) from the Displacement Field (DF}
of the Virtual Address (VA} is joined to the Physical Block Number
(PBN) to yield a true 18-bit PDP-11/45 Physical Address (PA).

146

VA ARF I 8N [0] J

1 "]
PAF

e

ParF

PARG par

7 l & 2 ; :
I PBN —[’[-l - l
L - FHYSICAL ADORESS J

Figure 6-4: Construction of a Physical Address

6.5 MANAGMENT REGISTERS

The PDP-11/45 Memory Management Unit implements three sets of 32
sixteen bit registers. One set of registers is used in Kernel mode, another
in Supervisor, and the other in User mode. The choice of which set is to
be used is determined by the current CPU mode contained in the Proces-
sor Status word. Each set is subdivided into two groups of 16 registers.
One group is used for references to Instruction (1) Space, and one to
Data (D) Space. The | Space group is used for all instruction fetches,
index words, absolute addresses and immediate cperands. The D Space
group is used for all other references, providing it has not been disabled
by Status Register #3 (6.6.4). Each grouvp is further subdivided into
two parts of 8 registers. One part is the Page Address Register (PAR)
whose function has been described in previous paragraphs. The other
part is the Page Descriptor Register {PDR). PARs and PDRs are always
selected in pairs by the top three bits of the virtual address. A PAR/PDR
pair contain alfl the information needed to describe and locate a cur-
rently active memory page.

The various Memory Management Registers are located in the upper-
most 4K of PDP-11 physical address space along with the UNIBUS 1O
device registers. For the actual addresses of these registers refer to
Paragraph 6.9, Memory Management Unit—Register Map.

147

| PROCESSDR STATUS WOND I
i

15 |]
KERNEL (OO} SUPERVISOR (01} USER{11)
AR FOR PAR fDR PAR PR
I SPACE
PAR PDR PAR POR PAR POR
O SPACE

Figure 6-5: Active Page Registers

6.5.1 Page Address Registers (PAR)

The Page Address Register {PAR) contains the Page Address Field (PAF),
a 12-bit field, which specifies the starting address of the page as a
block number in physical memory.

Figure 6-6; Page Address Register

Bits 15-12 of the PAR are unused and reserved for possible future use,

The Page Address Register (PAR) which contains the Page Address
Field {PAF) may be alternatively thought of as a relocation register con-
taining a relocation constant, or as a base register containing a bhase
address. Either interpretation indicates the basic importance of the Page
Address Register (PAR) as a relocation tool.

6.5.2 Page Descriptor Register
The Page Descriptor Register (PDR) contains information relative to
page expansion, page length, and access control.

148

= DBl e

Figure 6-7. Page Description Register

6.5.2.1 Access Control Field (ACF)

This three-bit field, occupying bits 2-0 of the Page Descriptor Register
(PDR) contains the access rights to this particular page. The access
codes or ''keys'’ specify the manner in which a page may be accessed
and whether or not a given access should result in a trap or an abort
of the current operation. A memory reference which causes an abort is
not completed while a reference causing a trap is completed. In fact,
when a memory reference causes a trap to occur, the trap does not
occur unatil the entire instruction has been completed, Aborts are used
to catch “missing page faults,” prevent illegal access, etc.; traps are
used as an aid in gathering memory management information.

In the context of access control the term “‘write” is used to indicate
the action of any instruction which modifies the contents of any ad-
dressable word. ““Write” is synonymous with what is usuaily called a
“store’ ar ‘'modify’” in many computer systems.

The modes of access control are as follows:

000 non-resident abort all accesses

001 read-only abort on write attempt mernary man-
agement trap on read

010 read-only abort on write attempt

011 unused abort all accesses—reserved for future
use

100 read{ write memory management trap upon com-
pletion of a read ar write

101 read/ write memory management trap upon com-
pletion of a write

110 read/ write no system trap/abort action

111 unused abort all accesses—reserved for future
use

It should be noted that the use of | Space provides the user with a
further form of protection, execute only.

6.5.2.2 Access Information Bits

A Bit (bit 7)—This bit is used by software to determine whether or not
any acccesses to this page met the trap condition specified by the
Access Contro! Field (ACF). {A = 1 is Affirmative) The A Bit is used in
the process of gathering memory management statistics.

149

W Bit (bit 6)—This bit indicates whether or not this page has been
modified {i.e. written into) since either the PAR or PDR was loaded.
(W = 1 is Affirmative) The W Bit is useful in applications which involve
disk swapping and memory overlays. i is used to determine which pages
have been modified and hence must be saved in their new form and
which pages have not been modified and can be simply overfaid.

Note that A and W bits are “‘reset’” to 0" whenever either PAR or FDR
is modified (written into).

6.5.2.3 Expansion Direction (ED)

This one-bit field, located at bit 3 of the Page Descriptor Register (PDR),
specifies whether the page expands upward from relative zero (ED = O)
or downwards toward relative zero (ED = 1). Relative zero, in this case,
is the PAF (Page Address Field). Expansion is done by changing the Page
* lLength Field (6.5.2.4). In expanding upwards, blocks with higher relative
addresses are added; in expanding downwards, blocks with lower rela-
tive addresses are added to the page. Upward expansion is usually used
to add more program space, while downward expansion is used to add
more stack space.

6.5.2.4 Page Length Field (PLF}

The seven-bit field, occupying bits 14-8 of the Page Descriptor Register
{PDR), specifies the number of blocks in the page, A page consists of at
least gne and at most 128 blocks, and occupies contiguous core loca-
tions. If the page expands upwards, this field contains the length of the
page minus one {in blocks). If the page expands downwards, this fietd
contains 128 minus the length of the page (in blocks),

A Length Error occurs when the Block Number (BN} of the virtual ad-
dress (VA) is greater than the Page Length Field {PLF), if the page ex-
pands upwards, or if the page expands downwards, when the BN is less
than the PLF.

6.5.2.5 Reserved Bits
Bits 15, 4 and 5 are reserved for future use, and are always O.

6.6 FAULT RECOVERY REGISTERS .

Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Status Registers #0, #1,
#2 and #3 are used in order to differentiate an abort from a trap, deter-
mtine why the abort or trap occurred, and allow for easy program restart-
ing. Note that an abort or trap to a location which is itself an invalid
address will cause ancther abort or trap. Thus the Kernel prograrn must
insure that Kernel Virtual Address 250 is mapped into a valid address,
otherwise a loop will occur which will require console intervention.

6.6.1 Status Register #0 (SRO) (status and error indicators)

SRO contains error flags, the page number whose reference caused the
abort, and various other status flags. The register is organized as shown
in Figure 6-8.

150

15 14 13 12 9 B ?* & 5 4 3 2 1 0

LITT 7 | | | | |~ | []]

_j . I e —f e —
ABORT-HON RESIDENT } 1
ABORT-~ PAGE } ‘ :

LENGTH ERROR

ABORT-READ ONLY

ACCESS WVIOLATION

TRAP-MEMORY MANAGEMENT

NOT USED

NOT USED -

ENABLE MEMORY MANAGEMENT TRAF
MANTENANCE MODE.
INSTRUCTION COMPLETED
PAGE MQDE
PAGE ADDRESS SPACE 1/0
PAGE NUMBER
ENABLE RELOCATION

Figure 6-8: Format of Status Register #0 (SR0O)

Bits 15-12 are the error flags. They may be considered to be in a
“pricrity queue’ in that “flags to the right"’ are less significant and
should be ignored. That is, a 'non-resident’’ fault service routine would
ignore length, access control, and memory management flags. A ‘‘page
length™ service routine woutd ignore access control and memory man-
agement faults, etc.

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Status Registers #1 and #2. This
has been done to facilitate error recovery (discussed in 6.6.5).

Bits 15-12 are enabled by a signal called “RELOC." “RELOC” is true
when an address is being relocated by the Memory Management unit.
This implies that either SRO, bit O is equal to 1 {relocation operating) or
that SRO, bit 8 (MAINTENANCE) is equal to 1 and the memory refer-
ence is the final one of a destination calculation {maintenance/destina-
tion mode).

Note that Status Register #0 (SR0) bits 0, 8, and 9 can be set under
program control to provide meaningful controf information, Howewver,
information written intc all other bits is not meaningful. Only that infor-
mation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
Memory Management Unit. Setting bits 15-12 under program control will
not cause traps to occur; these hits however-must be reset to O after an
abort or trap has occurred in order to resume status monitoring.

6.6.1.1 Abort—Non-Resident

Bit 15 is the *‘Abort—MNon-Resident' bit. .1t is set by attempting to
access a page with an Access Control Field (ACF) key equal to G, 3, or 7.
It is also set by attempting to use Memory Relocation with a processor
mede of 2.

151

6.6.1.2 Abort—Page Length

Bit 14 is the “Abort Page Length” bit. It is set by attempting to access
a location in a page with a block number (Yirtual Address bits, 12-6)
that is outside the area authorized by the Page Length Field {PLF) of the
Page Descriptor Register (PDR) for that page. Bits 14 and 15 may be
set simultaneously by the same access attempt.

6.6.1.3 Abort—Read Only
Bit 13 is the “Abort—Read Only'" bit. It is set by attempting to write
in a “Read-Only” page. “Read-Only" pages have access keys of 1 or 2.

6.6.1.4 Trap—Memory Management

Bit 12 is the ‘Trap—Memory Management™ bit. It is set by a read opera-
tion which references a page with an Access Control Field (ACF) of 1 or
4, or by a write operation to a page with an ACF key of 4 or 5.

6.6.1.5 Bits 11, 10
Bits 11 and 10 are spare locations and are always equal to 0. They are
unused and reserved for possible future expansion.

£.6.1.6 Enable Memory Management Traps

Bit 9 is the “Enable Memory Management Traps™ hit. It can he set ar
cleared by deoing a direct write into SRO. If bit 9 is 0, no Memory Man-
agement traps will occur. The A and W bits will, however, continue to
log potential Memory Management Traps. When bit 9 is set to 1, the
next “‘potential’’ Memory Management trap wil! cause a trap, vectored
through Kernel Virtual Address 25G.

Mote that if an instruction which sets bit 9 to O (disable Memory Man-
agement Trap) causes a potential Memory Management trap in the
course of any of its memory references prior to the one actually chang-
ing SRO, then the trap will occur at the end of the instruction anyway.

6.6.1.7 Maintenance/ Destination Mode

Bit 8 specifies Maintenance use of the Memory Management Unit, [t is
provided for diagnostic purposes only and must not be used for other
purposes.

6.6.1.8 Instruction Completed

Bit 7 indicates that the current instruction has been completed. It will
be set to O during T bit, Parity, Odd Address, and Time Out traps and
interrupts. This provides error handling routines with a way of determin-
ing whether the last instruction will have to be repeated in the course of
an error recovery attempt. Bit 7 is Read-Only {it cannot be written). It is
initialized to a 1. Note that EMT, TRAP, BPT, and 10T do not set bit 7.

6.6.1.9 Processor Mode
Bits 5, 6 indicate the CPU mode (User/Supervisor/Kernel} associated -
with the page causing the abort. (Kernef = 00, Supervisor — 01, User
= 11). If an illegal mode (10) is specified, bit 15 will be set and an
abort will occur.

6.6.1.10 Page Address Space

Bit 4 indicates the type of address space (I or D} the Unit was in when
a fault occurred (0 = 1 Space, 1 = D Space). It is used in conjunction
with bits 3-1, Page Number,

182

6.6.1.11 Page Number

Bits 3-1 contain the page number of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from
0 upwards.

6.6.1.12 Enable Relocation

Bit 0 is the “Enable Relocation' bit. When it is set to 1, all addresses
are relocated by the unit. When bit O is set to 0 the Memory Management
Unit is inoperative and addresses are not relocated or protected.

6.6.2 Status Register #1 (5R1)

SR1 records any autoincrement/decrement of the general purpose reg-
isters, including explicit references through the PC. SR1 is cleared at
the beginning of each instruction fetch. Whenever a general purpose
register is either autoincremented or avtodecremented the register num-
ber and the amount (in 2s complement notation} by which the register
was modified, is written into SR1.

The information contained in SR1 is necessary to accomplish an effective
recovery from an errfor resulting in an abort. The low order byte is writ-
ten first and it is not possible for a PDP-11 instruction to autoincrement/
decrement more than two general purpose registers per instruction be-
fore an “abort-causing’”’ reference. Register numbers are recorded
"“MOD 8"; thus it is up to the software to determine which set of reg-
isters (User/Supervisor! Kernel—General Set 0/General Set 1) was modi-
fied, by determining the CPU and Register modes as contained in the
PS at the time of the abort. The 6-bit displacement on R&6(5P) that can

- be caused hy the MARK instruction cannot occur if the instruction
is aborted.

15 L o) 8 7 3 2 o)
AMOUNT CHANGEQ ' REGISTER AMOUNT CHANGED REGISTER
{2's COMPILEMENT) NUMBER (25 COMPLEMENT} NUMBER

Figure 6-9: Format of Status Register #1 (SR1)

6.6.3 Status Register #2

SR2 is loaded with the 16-bit Virtual Address (VA) at the beginning of
each instruction fetch, or witih the address Trap Vector at the beginning
of an interrupt, 7" Bit trap, Parity, Odd Address, and Timeout traps.
Note that SR2 does not get the Trap Vector on EMT, TRAP, BPT and 10T
instructions, SR2 is Read-Only; it can not be written, SR2 is the Virtual
Address Program Counter.

6.6.4 Status Register #3

The Status Register #3 (SR3) enables or disables the use of the D
space PAR's and PDR's. When D space is disabled, all references use
the | space registers; when D space is enabled, hoth the | space and D
space registers are used. Bit O refers to the User's Registers, Bit 1 to
the Supervisor's, and Bit 2 to the Kernel's. When the appropriate bits
are set D space is enabled; when clear, it is disabled. Bits 3-15 are
unused. On initialization this register is set to O and only | space is
in use.

153

e

KERNEL
SUPERVISOR
USER

Figure 6-10: Format of Status Register # 3 (8R3)

6.6.5 Instruction Back-Uip/Restart Recovery
The process of "backing-up’” and restarting a partially completed in-
struction involves:

1. Performing the appropriate memory management tasks to alleviate
the cause of the abort (e.g. loading a rissing page, etc.}

2. Restoring the general purpose registers indicated in SR1 to their
original contents at the start of the instruction by subtractlng the
“modify value' specified in SR1.

3. Restoring the PC to the ‘‘abori-time’” PC by loading R7 with the con-
tents of SR2, which contains the value of the Virtual PC at the time
the '‘abort-generating’ instruction was fetched.

Note that this back-up/restart procedure assumes that the general pur-
pose register used in the program segment will not be used by the
abort recovery routine. This is automatically the case if the recovery
program uses a different general register set.

6.6.6 Clearing Status Registers Following Trap/Abort

At the end of a fault service routine bits 15-12 of SRO must be cleared
{set to 0) to resume error checking. On the next memory reference fol-
lowing the clearing of these bits, the various Status Registers will re-
sume monitoring the status of the addressing operations (SR2), will
be loaded with the next instruction address, SSR1 wilt store register
change information and 5SRO will log Memory Management Status
information,

6.7 EXAMPLES

6.7.1 Normal Usage

The Memory Management Unit provides a very general purpose memory
management tool. It can be used in a manner as simple or complete as
desired. It can be anything from a simple memory expansion device to
a very complete memory management facility.

The variety of possible and meaningful ways to utilize the facilities of-
fered by the Memory Management Unit means that both single-user and
multi-prograrnming systems have complete freedom to make whatever
memory mapagement decisions best suit their individual needs. Although
a knowledge of what most types of computer systems seek to achieve
may indicate that certain methods of utilizing the Memory Management
Unit will be more common than others, there is no limit to the ways to
use these facilities.

154

In most normal applications, it is assumed that the control over the
actual memory page assignments and their protection resides in a super-
visory type program which would operate at the nucleus of a CPU's
executive (Kernel mode). It is further assumed that this Kernel mode
program would set access keys in such a way as to protect itself from
willful or accidental destruction by other Supervisor mode or User mode
programs. The facilities are also provided such that the nucleus can
dynamicaily assign memory pages of varying sizes in response to sys-
tem needs.

6.7.2 Typical Memory Page

When the Memory Management Unit is enabled, the Kernel mode pro-
gram, a Supervisor mode program and a User mode program each have
eight active pages described by the appropriate Page Address Registers
and Page Descriptor Registers for data, and eight, for instructions. Each
segment is made up of from 1 to 128 blocks and is pointed to by the
Page Address Field (PAF) of the corresponding Page Address Register
{PAR) as illustrated in Figure 6-11.

VA ISTITT. PAIUTTT
K 177g (127

K tr6g (¥2640):

VA 1R4TTT 36TTT
BLOCK 475 (394)

BLOCK 4
BLOCK &

312000

300
PoRs P77 47 [0|0 0] 1 |

PLF A W ED ACF

VA 140000

Figure 6-11: Typical Memory Page

The memary segment illustrated in Figure 6-11 has the following attri-
butes:

1. Page Length: 40 blocks.

2. Virtual Address Range: 140000—144777.

3. Physical Address Range: 312000316777,
155

N oo R

No trapped access has been made to this page.

. Nothing has been modified {i.e. written) in this page.

Read-Only Protection.

Upward Expansion.

These attributes were determined according to the following scheme:

1.

Page Address Register (PARS) and Page Descriptor Register (PDR6}
were setected by the Active Page Field (APF) of the Virtual Address
(VA). (Bits 15-13 of the VA = 6,))

The initial address of the page was determined from the Page Ad-
dress Field (PAF) of APR6 (312000 = 3120, blocks x 40, (32}
words per block x 2 bytes per word).)

Note that the PAR which contains the PAF constitutes what is often

“referred to as a base register containing a base address or a reloca-

tion register containing relocation constant.

The page length (47, + 1 = 40 ; blocks) was determined from the
Page Length Field (PLF) cantained in Page Descriptor Register PDR6.
Any attempts to reference beyond these 40 , blocks in this page
will cause a *Page Length Error,” which will result in an abort, vec-
tored through Kerne! Virtual Address 250,

The Physical Addresses were constructed according to the scheme
illustrated in Figure &-4.

The Access hit (A-bit) of PDR6 indicates that no trapped access has
been made to this page (A bit = Q). When an illegal or trapped refer-
ence, {i.e. a viclation of the Protection Mode specified by the Access
Control Field (ACF) for this page), or & trapped reference (i.e. Read
in this case), occurs, the A-bit will be set to a 1.

The Written bit (W-bit) indicates that no locations in this page have
been modified (i.e. written). If an attempt ts made to modify any
location in this particular page, an Access Control Violaticn Abort
will occur. If this page were involved in a disk swapping or memaory
overlay scheme, the W-bit would be used to determine whether

it had been modiHied and thus required saving before overlay.

This page is Read-Only protected; i.e. no locations in this page may
be modified. In addition, a memory management trap will occur upon
completion of a read access. The mode of protection was specified
by the Access Control Field (ACF} of PDRé.

The direction of expansion is upward (ED = Q). If more blocks are
required in this segment, they will be added by assigning blocks
with higher relative addresses.

Note that the wvarious attributes which describe this page can all be
determined under software control, The parameters describing the page
are alt loaded into the appropriate Page Address Register (PAR} and Page
Descriptor Register (PDR)} under program control. In a normal applica-

156

tion it is assumed that the particular page which itself contains these
registers would be assigned to the control of a supervisory type program
operating in Kernel mode.

6.7.3 Non-Consecutive Memory Pages)

‘K should be noted at this point that although the correspondence be-
tween Virtuai Addresses (VA) and PAR/PDR pairs is such that higher
VAs have higher PAR/PDR’s, this does not mean that higher Virtual
Addresses (VA) necessarily correspond to higher Physical Addresses
{PA). It is quite simple to set up the Page Address Fieids (PAF} of the
PAR’s in such a way that higher Virtual Address blocks may be .located
in tower Physical Address blocks as illustrated in Figure 6-12.

WA Q3TTTT P& 467777

VA 020000 PA 450000

wAQITTTY

P BBEOTT?

y PA 541C00

Figure 6-12: Non-Consecutive Memory Pages

Note that aithough a single memory page must consist of a2 block
of contiguous locations, memory pages as macro units do not have to
be located in consecutive Physical Address {PA) locations. It also should
he realized that the assignment of memory pages is not limited to con-
secutive non-cverlapping Physicai Address {PA} locations.

6.7.4 Stack Memory Pages

When constructing PDP-11/45 programs it is often desirable to isolate
all program variables from *‘pure code’ (i.e. program instructions) by
placing therm on a register indexed stack. These variables can then be
“pushed” or “popped™ from the stack area as needed (see Chapter 3,
Addressing Modes). Since all PDP-11 Family stacks expand by adding

157

locations with lower addresses, when a memory page which contains
“stacked’’ variables needs more room it must “expand down,"” i.e.
add blocks with lower relative addresses to the current page. This mode
of expansion is specified by setting the Expansion Direction (ED) bit
of the appropriate Page Descriptor Register (PDR) to a 1. Figure 6-13
illustrates a typical ‘‘stack'’ memory page. This page will have the fol-
lowing pararneters:

PARG: PAF = 3120
PDR6: PLF = 175, or 125, (128,,-3)

ED=1
A=0wdarl
W=00orl

ACF = nnn (to be determined by programmer as the need dictates}.
note:; the A, W bits will normally be set by hardware.

VA 157777 _ PA 331777
BLOCK 1775 (127)

BLOCK 176g 126y}
VA (57500 BI-OCK 1753 1250) Ps. 331500

%
% PA 312000

vA 140000

PARE w PAf
pose N sLr TS

Figure 6-13: Typical Stack Memory Page

In this case the stack begins 128 btocks above the reiative origin of
this memary page and extends downward for a length of three blocks.
A “PAGE LENGTH ERROR™ abort vectored through Kernel Virtual Ad-
dress (VA) 250 will be generated by the hardware when an attempt s
made to reference any location below the assigned area, i.e. when the
Block Number (BN) from the Virtuat Address (VA) is less than the Page
Length Field (PLF) of the appropriate Page Descriptor Register (PDR).

158

6.8 TRANSPARENCY

It should be clear at this point that in a multiprogramming applicaticn
it is possible for memory pages {o be allocated in such a way that a
particular program séems to have: a complete 32K basic PDP-11/45
memory configuration. Using Relocation, a Kernel Mode supervisory-type
program can easily perform all memory management tasks in a manner
entirely transparent to a Supervisor or User mode program. In effect, a
PDP-11/45 System can utilize its resources to provide maximum through-
put and response to a variety of users each of which seems to have a
powerful system '“all to himself."”

159

6.9 MEMORY MANAGEMENT UNIT—REGISTER MAF

REGISTER) ADDRESS
Status Register 3 0(SR0O) 777572
Status Register 3 1(SR1) 777574
Status Register #2({SR2) 777576
‘Status Register #3(SR3) 772516
User | Space Descriptor Register (UISDRO) 777600
User | Space Descriptor Register (UISDR7) 777616
User D Space Dgscriptor Register {(UDSDRO) 777620
User D Space Descriptor Register (UDSDR7) 777636
User | Space Address Register (UISARQ) 777640
iJser I Space Address Register (UISAR7) 777656
User D Space Address Register (UDSAROQ) 777660
.User D Space Address Register {UDSAR7) 777676
Supervisor | Space Descriptor Register (SISbRO) 772200
'Supervisor | Space bescriptor Register {SISDR7)} 772216
Supervisor D Space Descriptor Register (SDSDRO) 772226
;Supervisor [Space Descriptor Register (SDSDR7) .772236
Supervisor | Space Address Register (SISARO} 772240
'Supervisor | Space Address Register (SISAR7) 772256

160

REGISTER ADDRESS

Supervisor D Space Address Register (SDSARO) 772260
;Super\tisor D Space Address Register (SDSDR7) .772276
Kernel | Space Descriptor Register (KISDRO) 772300
kernel I Space Descriptor Register (KIDSR7) '772316
Kernel D Space Descriptor Register (KDSDRQ) 772320
i(ernel D Space Descriptor Register (KDSDR7) -772336
Kernel | Space Address Register {KISARO) 772340
i(ernel | Space Address Register (KISAR7) .772356
Kernel D Space Address Register (KDSARD) 772360
Kernel D Space Address Register (KDSAR?) 772376

161

162

CHAPTER 7

FLOATING POINT PROCESSOR

7.1 INTRODUCTION

The PDP-11 Floating Point Processor is an optional arithmetic processor
which fits integrally into the PDP-11/45 Central Processor. It performs
all floating point arithmetic operations and converts data between in-
teger and floating point formats.

The hardware provides a time and money saving alternative to the use
of software floating point routines, Hs use can result in many orders of
magnitude improvement in the execution of arithmetic operations.

The features of the unit are:

Overlapped operation with central processor

High speed

Single and double precision {32 or 64 bit) floating point modes
Flexible addressing mades

Six 64-bit floating point accumulators

Error recovery aids.

7.2 OPERATION

The Floating Point Processor is an integral part of the Central Processor.
It operates using similar address modes, and the same memory man-
agement facilities provided by the Memory Management Option, as the
Central Processor. Floating Point Processor instructions can reference
the floating point accurnulators, the Central Processor's general registers,
or any location in memory.

When, in the course of a program, an FPP Instruction is fetched from
memory, the FPP will execute that instruction in paraliel with the CPU
continuing with its instruction sequence. The CPU is delayed a very short
period of time during the FPP instruction’s Fetch operation, and then is
free to proceed independently of the FPP. The interaction between the
two procaessors is automatic, and a program can take full advantage of
the parallel operation of the two processors by intermixing Floating
Point Processor and Central Processor instructions.

Interaction between Floating Point Processor and Central Processor in-
structions is automatically taken care of by the hardware. When an FPP
instruction is encountered in a program, the machine first checks the
status of the Floating Point Processor, If the FPP is “busy,” the CPU
will wait until it is “done’” before continuing execution of the program.

LDD (R3)4,AC3 ;Pick up constant operand and place it in
AC3.
ADDLP: LDD (R3)+,ACO ;Load ACO with next value in table

163

MUL AC3 ACO ;and multiply by constant in AC3
ADDD ACO,ACI ;and add the result into AC1
- S0B R5,ADDLP icheck to see whether done
STCDI AC1,@R4 ;done, canvert double ta integer and store

In the above example the Fioating Point Processor would execute the
next three instructions. After the “ADDD" was fetched into the FPP, the
CPU would execute the “SOB" and then wait for the FPP to be “done”
with the “ADDD" before giving it the “LDD" or “"STCDI" instruction.

As can be seen from this example, autcincrement and autodecrement
addressing automatically adds or subtracts the correct amount to the
contents of the register depending on the modes represented by the
instruction.

7.3 ARCHITECTURE

The floating Point Processor contains scratch registers, a Floating Ex-
ception Address pointer {FEA), a Program Counter, a set of Status and
Error Registers, and six general purpose accumulatars (ACO-ACS}.

Each accumulator is interpreted to be 32 or 64 bits long depending on
the instruction and the status of the Floating Point Processor. For-32-bit
instructions enly the ieft-most 32 bits are used, while the remaining 32
bits remain unaffected.

r 64 BT . -
| ACCUMUL ATOR |
| 12 AT - — |
! nwﬁ excePTon Ll s]
REE%DTEER REGISTER UNIBUS
1 acg [|
| ace : |
P | [centaa .
NTRAL PR

|] FRTEe | | |ProcESsOR BTATUS
P oace CONVERSION | Ny c?c:chnL —
[oacs UNIT | 06 o

T REGISTER
I © SCRATCH I

PROGRAM POINTER

| B, |) e
| INSTRUCTION |
1 CAUSING ERRDR I

o FLOATING POINT PROCESSOR o

Figure 7-1: Floating Point Processor

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for all data transfers between the FPP and the General Registers or
Memory.

164

7.4 FLOATING POINT DATA FORMATS

The FFP handles two types of floating point data: Single Precision or
Floating Mode (F) which is 32 bits long, and Double Precision (D) which
is 64 hits long. The exponent is stored in excess 128 (200,) notation.
Exponents from —128 to 127 are therefore represented by the binary
equivalent of O to 255 {0-377,). Fractions are represented in sign-
magnitude notation with the binary radix point to the left. Numbers are
assumed to be normalized and, therefare, the most significant bit is not
stored because it is redundant. |t is always a 1 except where the ex-
ronent is zero, then the complete number is declared to be 0.

F Formats;
s Exp FRA | —--L CTION]
L L s T A .
D Formats:

CUUVCTIY FUNCIUN o WSROI

15 14 T B Q 15
L u -] -]
ER T % ' 3

$ — Sign of Fraction
EXP = Exponent in excess 200, notation

FRACTION = 23 hits in F Faormat, 55 bits in D Format, 4+ one hidden
bit {narmalization}. Binary Radix point to the left.

The results of a Floating Point operation may be either truncated or
rounded off. “"Rounding” rounds away from zero and thus increases the
absolute value of the number,

The FPP provides for conversion of Floating Point to Integer Format and
vice-versa. The processor thus recognizes single precision integer (1) and
double precision integer long {L) numbers,

The numbers are stored in standard two's complement farm,

1 Format:

l_s] HUMBER
- M .

g o]

L Format:

s w0 e]

1514 a it]

S = Sign of Number
NUMBER = 15 bits in | Format, 31 bits in L Format.

165

7.5 FLOATING POINT UNIT STATUS REGISTER

This register provides mode control for the floating point unit, as wetl as
the condition code and evror recovery information from the execution

of the previous instruction.

Four bits cbntrol the modes of cperation:

Single/Double—Floating Point numbers can be either single or

double precision.

Long/Short—Integer nurnbers can be 16 bits or 32 bits fong.

Truncate/ Round—The result of Floating Point operation can be

either truncated or rounded off.

Normal/ Maintenance—a special maintenance ‘mode is availahie.

There are four condition codes;

BIT

15

14

I3
12
11

10

Carry, overflow, zero, and negative, which are equivalent to the
CPU condition codes, and five error interrupts which can be dis-

abled individually or as a group.

FERIFID UNUSED FILN]FIU IFIV IFIC[FD

FL] FT’FMM| FNI FZ] FVI FC

5 <4 13 2 "1 % & ? 66 5 4 3 ¢ {1 0
NAME DESCRIPTION

Floating Error (FER) Fipating Point Error flag, The re-
suit of the Jast operation resuilted
in a Floating Point Exception and
the individual interrupt (FIUV,
FIU, FIV, FIC} was enabled.

Interrupt Disable (F1D) All FPP interrupts disabled when
this bit is set.

Not Used

Not Used

Interrupt on Undefined Variable (FIUV)

When set and a —0 is obtained
from memory, an interrupt will
occur. When clear, —0 can be
loaded and used in any arith-

metic operation.

interrupt on Underflow (FIU) When set,

result will be set to zero.

166

Fleating Underflow
will -cause an interrupt, The re-
sult of the operation, causing
the interrupt, will be corract ex-
cept for the exponent which will
be off by -1-400,. If the bit is re-
set and the underflow occurs, the

BIT NAME
g Interrupt on Overflow (FIV)

DESCRIPTION

When set, Fioating Overflows
will cause an interrupt. The re-
sult of the operation causing the
interrupt will be correct except
for the exponent which will be
off by +400,. If the bit is reset,
the resuit of the operation will
he the same as detailed above
but no interrupt will occur.

8 Interrupt on Integer Conversion Error {FIC}

When set, and the STCF| (Store
and Convert Floating to Integer)
instruction causes FC 1o be set,
an interrupt will occur, If the in-
terrupt oceurs, the destination is
set to O and all other registers
are left untouched. If the bit is
reset, the result of the operation
will be the same as detailed
above, but no interrupt will cccur,

7 Ftoating Double Precision Mode (FD)

6 Floating Long Integer Mode (FL)

5 . Floating Truncate Mode (FT)

Determines the precision that is
used for Floating Point calcula-
tions. When set, Double preci-
sion is assumed; when reset
Floattng precision is used.

Active in conversion between In-
teger and Floating Point format.
When set, the Integer format as-
sumed is Double Precision two's
complement (i.e. 31 bits 4 sign).
When reset, the integer format
is assumed to be Single Preci-
sion two's complement (i.e. 15
bits + sign).

When set, causes the result of
any arithmetic operation to be
truncated. When reset, the re-
sults are rounded.

4 Floating Maintenance Mode (FMM}

3 Floating Negative {FN)
2 Fioating Zero (FZ)

1 Floating Overflow (FV)

167

The result of the last operation
was negative.

The result of the last operation
was zero.,

The result of the last operation
resulted in an arithmetic owver-
flow.

BIT NAME DESCRIPTION

0 Floating Carry {FC) The resutt of the last operation
resulted in a carry of the most
significant bit. This can only oc-
cur in integer-Floating conver-
sions.

7.6 FEC REGISTER: ERROR DETECTION

One Interrupt vector is assigned to take care of all floating point excep-
tions (location 244). The eight possible errors causing the trap are
coded in a four bit register, the FPP's Exception Code, ““FEC,” Register.

The error assignments are as follows:

0 Not_ used

2 Floating OP Code Error

4 Floating Divide by Zerc

[Floating Integer Conversion Error
8 Floating Overflow

10 Floating Underflow

12 Floating Undefined Variable

14 Maintenance Trap

7.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING

Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except for mode 0. In mode O the operand is located in the
designated Floating Point Processor Accumulator, rather than in a Cen-
tral processor general register. The modes of addressing:

0 = Direct Accumulator

= Deferred

—

2 = Auto-increment
3 = Auto-increment deferred

4 — Auto-decrement

i

5 = Auto-decrement deferred
6 = Indexed
7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F Format and 10, for D Format.

168

In mode O, the user can make use of all six FPP accumulators (ACO—
ACS5) as his source or destination. In all other maodes, which involve
transfer of data from memory or the general register, the user is re-
stricted to the first four FPP accumulators {AC0O-—AC3).

In immediate addressing {Mode 2, R7) only 16 bits are loaded or stored.

7.8 FLOATING POINT PROCESSOR INSTRUCTION TIMING
The following table represents execution times of the Floating Point
Processor for AC-—AC operations (Address Mode 0).

Instruction Execution Time in Microseconds
Singte Precision Double Precision
min max min max

ADDX 3.2 46 3.8 6.2

SUBX 3.2 4.6 38 6.2

MULX 4.6 6.6 6.6 12.0

DIvX 4.6 10.0 6.6 184

Minimurn and maximum times for FPP instruction execution are given
in this chapter using the definition Mode C-AC operations operating in
bipolar memaory.

“For more detailed information on FPP instruction timing and FPP/CPU
interaction consult Appendix B.

7.9 FLOATING POINT INSTRUCTIONS

Each instruction that references a floating point number can operate
on floating or double precisicn numbers depending on the state of the
FD mode bit. In a similar fashion, there is a mode bit FL that deter
mines whether a 32-hit integer (FL = 1) ar a 16-bit integer (FL = Q)
is used in conversion between integer and floating point representatian.
FSRC and FDST use floating point addressing modes, SRC and DST
use CPU addressing Modes.

Floating Point Instruction Format
Double Operand Addressing

I oc | FOC
I 1 A il l i 1 1

[AC ‘FSRC,FDST,SRC,DST . |
15 2 11 a 7 6 5 o

Single Operand Addressing

r oc 1’ FOC l FSRC, FDST, SRC, DST I
I ! 1 L 1 I i 1 L L I 1 1
15

12 6 5 o]

OC = Op Code = 17

FOC = Floating Op Code

AC = Accumulator

FSRC. FDST use FPP Address Modes

SRC, DST use CPU Address Modes
169

General Definitions:
XL = largest fraction that can be represented:

1-2-2%, FD =Q

1.2 56, FD = 1
XLL = smallest number that is not identically zero 2-128
XUL = largest number that can be represented: 2t27+XL
JL :_Iargest integer that can be represénted:

AE1HFL=0 22,1 fFL =1

170

7 us
LDF
LDD
Load Floating/ Double 172{AC + 4)FSRC
‘ ' 1 'l ‘ 'l 1 0 'l 1 L 0 J. 1 [AIc I L L FslRC 1 3]
13 [FONRT! 8 7 & 6 o
Operation: AC « (FSRC}
Condition Codes: FC«0
FY <0

Description:

FZ«1 if {AC)=0 else FZ <0
FN <1 if (AC}0 else FN<O

Load Single or Double Precision Number into
Accumulator

171

174ACFDST

LI 1

FD,ST

]

15

Operation:

Condition Codes:-

Description:

FDST «(AC)

FCFC
FV «FV
FZ«FZ
FN<«FN

o

Store Single or Double Precision Number from

Accumulator

172

5.17 ps

6.47 us
ADDF
ADDD
Add Fioating/Doubie 172ACFSRC
ll’l‘l‘ 0I11010T A'C -‘V L |FSFCR L l
15 . ¢ 11 a 7] 5 0
Operation: _ AC<(AC) + (FSRC) If [(AC) + (FSRCY>XLL or

FiJ = 1, else AC <0

Condition Codes: FC <0
FV<1 If (AC)>>XUL else FV <0
FZ«1 If (AC)=0 else FZ<0
FN <1 If (AC)< 0 else FN<Q -

Description: Add the contents of FSRC to the contents of ac-
cumulator. In Single or Double Precision result is
in accumulator unless Underflow occurs and the
interrupt is not enabled: in this case AC is set 1o 0.

173

5.17 us

647 us
SUBF
SUBD
Subtract Floating/PDouble _ .173ACFSRC
1t t 1 1{0 1 1 o0l ac FSRC
N ERE I
15 T 8 7 8 5 0
Operation: AC «(AC)—(FSRC) If [(AC)—(FSRC)]~XLL or FIU =
1 else AC <0

Condition Codes: FC«0O
FV«1 If (AC)>XUL else FV«0
FZ«1 If (AC)=0 else FZ 0
FN«1 If (AC)<<0 else FN <0

Pescription: Subtract the contents of FSRC from the accumu-
lator in Single or Double Precision. Result is in
accumulator unless Floating Underflow occurs and
the interrupt is not enabled, in this case AC is set
te 0.

174

2.97 us

2.97 us
NEGF
NEGD
MNegate Floating/Double 1707FDST
0|1'1 1 oool1 11 FDIST
15 L Ia 11 i i i L 6 5 L L 0
Operation: FDST«—(FDST) -

Condition Codes: -

Description:

FC <0

FV 0

FZ<1 If (FDST) = else FZ<0
FN<1 If (FDST)<(0 else FN <0

Negate Fleating or Double Precision numbér, store

result in same location. (FDST)

175

7.17 ns

10.97 us
MULF
MULD

Multiply Floating/Double. 171ACFSRC

FSRC

| ‘ I 1 L 1 Il 1 0 ' o i 1 I O 1 n|C l A 1 r 'l L J

15 2 1 8 7 & 5 <)
Operation: AC«(AC)¥*(FSRC) If [{ACY*{(FSRC)]>XLL or FIU=1,

else AC <0

Condition Codes: FC «0
Fv<1 If AC>XUL else FV<«0
FZ<1 If (AC) = 0 else FZ <0
FN <1 If (AC)< 0 else FN <0

Description: Multiply the contents of the selected accumulator
by the contents of FSRC. Store result in accumui-
lator unless Flgating Underflow occurs without the
interrupt enabled in this case AC is set to 0.

176

8.17 ps

11.87 us
DIVF
DIVD
Divide Floating/Double 174(AC 4+ 43FSRC
[1 I 1 L 1 ' 1 1 ' D i 0 l 1 l Alc l L - L TIRC 'l 1 I
15 1 8 7 6 & 0
Operation: If (FSRC) =0

Condition Codes:

Description:

AC «(ACY/(FSRC) If [(AC)/{FSRC)]>-XLL or FIU=1,
else AC <0
If (FSRC) = O registers, including AC, untouched

FC <0

Fv«1 if (AC)>XUL else FV <0
FZ<1 If (ACY=D0 else FZ <0
FN <1 If (AC)<Z0 else FN«Q

If the centents of FSRC are not equal to zero, divide
the accumuiator by (FSRC) and store the result in
the accumutator unless Floating Underflow occurs
and the interrupt is not enabled in this case the AC
is set to 0. If attempt is made to divide by zero,
accumulator is left unchanged and FEC Register is
set to 4.

177

4.17 us

4.37 ns

CMPF -

CMPD
Compare Floating/ Double 173(AC + 4)FSRC

FSRC

I‘l‘l‘l‘lolil1|‘IAICl 1 A l: l]
15 ° [T 8 7 6 65 Q

Operation: " {FSRC) — (AC)

Condition Codes: FC«0
: FV<0

FZ 1 If (FSRC)—(AC) = 0 else FZ«0

FN<«1 If (FSRC)—{AC)<0 else FN«D

Description: Compare the contents of FSRC with the accumu-
lator. Set the appropriate flloating point condition
codes: FSRC and the accumulator: are left un-
changed.

178

7.87 us
15.27 ps

MODF
MODD

Multiply and Integerize Floating/ Doubte 171(AC + 4)FSRC

1'11'10011[“]
I Ill L

FSRC J
1 1 I L Al

15

Operation:

Condition Codes:

Description:

" g8 7 & 5 o]

AC v 1«Int[(AC)*(FSRC)] I [(AC)*{FSRC)]=>XLL
or FIU =1, else AC v 1«0 ’
AC«{AC)*(FSRC)Y—(AC v 1} W [(AC)*(FSRC)]>XLL
or FIU = 1, else AC<0 - ‘

FC0
FVel If (AC)>>XUL else FV <0
FZ<«1 If (AC)=0 else FZ<«0

FN <1 If (AC)< 0 else FN <0

The prodact of (AC) and (FSRC) is produced to 48
hits in Floating Mode and 59 bits in Double Mode.
The integer part Int[(AC)*(FSRC)] of the product is
then found and stared in AC v 1. AC » 1 is the FFP
Accumulator OR'd with 1. The fractional part is
then cbtatned and stored in AC. Thus if even-
numbered Accumulatars (0 or 2) are used this
instruction uses two actumuiatars (0 and 1; 2 and
3); whereas if odd-numbered accumulators are used
only one Aeccumulator is used (1:3) and all that is
left is the fractional part of the operation. If under-
flow octurs and the interrupt is not enabled, AC
and AC v 1 are lcaded with zero.

NOTE: Multiplication by 10 can be done with zero
error allowing decimal digits to be ‘'stripped off”
with no joss in precision.

179

3.27 s
3.27 ps

LDCDF
LDCFD

Load and convert from Double to Floating

or from Floating to Double 177(AC + A)FSRC
FSRC
1 I ‘ ' ‘ 1 ‘ 1 L 1 i ‘ I 1 l AJC i L L I L L
15 12 N 8 T -1 5 o
Operation: AC<C.(FSRC) I [(FSRC)]>XLL or FIU =1, else

Condition Codes:

Description:

AC <0 Where C,, specifies conversion from floating
mode x to floating mode vy, and x=Fandy =D If
FO=0,arx=Dandy=F WFD = L.

FC<0
FV<1 If (AC)>>XUL else FV<0
FZ«1 If (AC)=0 else FZ «Q
FN<1 If (AC)<0 else FN <D

If the current mode is Floating Mode (FD = 0) the
source is assumed to be a double-precision number
and is converted to'single precision. i the Floating
Truncate hit is set the number is truncated, other-
wise the number is rounded. i the current mode is
Doubie Mode (FD = 1) the source is assumed to
be a single-precision number and is loaded left
justified in the A{. The lower haf of the AC is.
cleared.

180

2.97 us

3.57 pus
STCFD
STCDF

Store and convert from Flcating to Double

or from Double to Floating 176ACFDST

o 1 1 0 0| Ac FOST]

I 1 1 L Il I 1 1 I I P f L L
15 " g8 7 6 5 o

Operation:

Condition Codes:

Description:

FDST «C.,(AC) where C.. specifies conversion from
floating mode x to floating mode y and x = F and
y=DUWFD =0, orx=Dand y=FIif FD=1

FC<Q

FV<1 If (AC)>XUL else FV <0
FZ <1 If (AC)=0 else FZ<0
FN <1 If (AC)<:O else FN <0

If the current mode is Floating, the Accumulator
is stored left justified in FDST and the lower half
is cleared; otherwise in Double Precision, the con-
tents of the accumulator are converted to single
precision, truncated or rounded depending on the
state of FT and stored in FDST.

181

5.37 us
5.57 us
5.97 nus
6.27 us

LDCIF
LDCID
LDCLF
LDCLD

Load and Convert Integer or Long Integer to
Floating or Double Precision 177ACSRC

15 12

Operation:

Condition Codes:

Description:

AC«C(SRC) where C;. specifies conversion from
integer mode j to floating mode x and j =1 if FL
=0or LifFL=1and x=F if FD=0, or D if
FD = 1.

FC«0
FV<0
FZ <1 If {AC) = 0 else FZ0
FN <1 If (AC)< 0 else FN <D

Conversion is performed on the contents of SRC
from a 2's compliment Integer with precision jto a
floating point number of precision x. Note that j and
x are determined by the state of the mode bits FL
and FD: te. J=1lorl, and X=F or D.

when a 32 bit Integer is specified (L mode) and
{SRC) has an addressing mode of 0, or immediate
addressing mode is specified, the 16 bits of the
source register are left justified and the remaining
16 bits loaded with zeros before conversion. In the
case of LDCLF the fraction is truncated and only
the highest 24 significant bits are used.

182

5.17 us
597 ns
5.97 us
5.97 us

STCFI

STCFL
STCDI
STCDL

Store and Convert from Floating or Double to
Integer or Long Integer 175¢AC + &DST

Operatlon:

Condition Codes:

Description:

oo 1 [AC —[DST . |
] L 1 N L ! 1 1 1
-] 7 & 5

" 0

DST«C.{AC) H—JL—1<C,(ACY<IJL, else DST«0
where C,; specifies conversion from floating mode x
te integer mode jand j = |if FL = Q or Lif FL =
land x=Fif FD=0C, orDifFD =1

CFC 0 If —JL—1<C(AC)<JL else FC«1
VeFVD

ZeFZ<1 H{DST) =0 else FZ<0

N«<FN«l1 If (DST)<0 else FN< O

Conversion is performed from a floating point
representation of the data in the accumulator to
an integer representation. When the conversion is
to a 32 bit word (L mode) and an address mode
of 8, or immediate addressing mode, is specified,
anly the most significant 16 bits are stored in the
destination register. If the operation is out of the
integer range selected by FL, FC is set to 1 and
the contents of the DST are set to O.

Numbers to be converted are always truncated
{rather than rounded) before conversion. This

is true even when the truncate mode bit is cleared
in the Fioating Point Status Register.

183

277 us

LDEXP
Load Exponent 176(AC + 4)SRC
111111101[;\0] SRC
Y —_ PR | L L L 11 i
15 21t 8 7 & 5 0
Operation: AC SIGN<(AC SIGN)
AC EXP<(SRC) L 200
Condition Cades: FC <0
FV <0
FZ 1 i (AC} = 0 alse FZ <}
FN <1 If (AC)< 0 else FN<Q
Description: Load Exponent Word from SCR inte Accumulator.
Convert (SRC) from 2's complement to excess 200

notation.

184

3.67 pus

STEXP
" Store Exponent 175ACDST
FII|1|‘ 1.0|1|0‘Aicl 1 |.DS|T| i
15 2T 8 7 6 5 ¢}
Operation: DST«-AC EXPONENT —200
Condition Codes: C+FC«0
VeFV 0
Ze-FZ<1if (DSTY=0 else FZ <0
N«FMN<1 if (DST)}<0 else FN <0
Description: Store accumulator's exponent in DST, convert it

from excess 200, notation to 2's complement.

185

237 us

2.57 us
CLRF
-CLRD
Clear Floating/Double 1704FDST
[1111000:0\0 FDST]
1 1 1 1 ! 1 N L 1 ' 1 : 1
15 2N E 5 : 0
Operation: FDST«0
Condition Codes: FC«0
FV <D
FZ«1
FN <0
Description: Set FDST 1o 0. Set FZ condition code.

186

Make Absctute Floating/Double 1706FDST

c o 0 1 1 o] FDST [
1 1 l 1 L 1 Il I L 1

Operation:
Candition Codes:

Description:

1 & 5 0

FDST «—{FDST) If (FOST)< 0 else FDST «(FDST)

FC<0
Fv<0
FZ<1 K (FDST) == O else FZ <0
FN <0

Set the contents of FDST to its absolute value,

187

277 us
2.77 us
TSTF
TSTD
Test Floating/ Double 1708FDST
i FDST
bl?|1110.0I0]1|011 L i 1 L |—|
15 2 M . 6 5 Q
Operation: FDST—(FDST)
Condition Codes: FC«0
FV <
FZ«1 IF (FDST) = O else FZ<0
FN<1 IF (FDSTY<4 else FN <0
Description: Set the Floating Point Processor’s Condition Codes

according to the contents of FDST.

188

237 us

SETF
Set Ficating Mode 170001
['1'.'.'0.0.°|0.°.°l°.°.°|°.0.1—|
15 . Q
Operation: FD«0
Pescription: Set the FPP in Single Precision Mode
2.37 ps
SETD
Set Floating Double Mode 170011
LT O.O.°|°.0.0|0.0.1I°10.']
15)
Operation: FDe«1
Description: Set the FPP in Double Precision Mode

189

237 us

SETI
Set Integer Mode 170002
r‘l1I'l'IOIOIOlOIOIOIOIOIOIOI’IOJ
15 o)
Operation: FL<O
Description: Set the FPP for Integer Data
2.37 ps
SETL
Set Long Integer Mode 170012
o ¢ © 0o 1 0
171|1|'|1 OEOIOIO‘ 1 | N n'lol Ij
15 2 N [
Operation: Flel
Description: Set the FPP for Long Integer Data

190

LDFPS

Load FPPs Program Status 17015RC
‘ SRC
[' 1 ! L 1 1 ! 10 1 ° L e J_O 1 ¢ 1 ! 1 1 l 1 1
15 12 1t 6 5 [+}
Operation: FPS «(5RC)
Description: Load FPP's Status from SRC.
215 us
STFPS
Store FPPs Program Status 1702DS5T
DsT
11|1I14_1[0|01_0|0|1|0 " i | 1 L
15 12 11 5 5]
Operation: DST «(FPS)
Description; Store FPP’s Status in DST

151

2.57 ps

STST
Store FPPs Status 1703DsT
1 1 +l0 0o o,0 1 1 bsT
l 1 ! 1 i 1 1 | 1 i L L 1 | 1 L]
15 [T 5 [i]
Operation: DST —(FEC)
DST + 2«(FEA)
Deseription: Store the FEGC and then the FPP's Exception Ad-
dress Pointer in DST and DST 2
Note: If destination mode specifies a general reg-
ister or immediate addressing, only the FEC is
saved.
2.37 us
CFCC
‘Copy Floating Condition Codes 170060
1111[00000000000
1 I 1 i L I 1 i]), i | 1 1
15 2 N L) 0
Qperation: C«FC
V<«FV
- Z+FZ
N<«FN
Description: : Copy FPP Condition Codes into the CPU’s Condition
Codes.

192

183

61

USER 1

USER D

DATA PATHS

Bs REGSTER

ADBSERR RUN PAUSE

KERNEL | PROG PHY -._\‘

EERNEL & CONS, PHY

4 ADRS FPRACR

DEMLAT REGISTER

MASTER - USER SUPER NEMNEL DATA

Figure 8-1 System Operator's Console

CHAPTER 8

THE SYSTEM OPERATOR'S CONSOLE

The PDP-11/45 System Operator's Console is designéd for convenient
system control. A complete set of function switches and display indi-
cators provide comprehensive status monitoring and controt facilities.

The System Operator's Console is illustrated in Figure 8.1.

8.1 CONSOLE ELEMENTS
The PDP-11{45 System Operator’'s Console provides the following
facilities: .

1) A System Key Switch {OFF/ON/LOCK)

2) A bank of 7 indicator lights, indicating the following Central Processor
states: RUN, PAUSE, MASTER({UNIBUS), USER, SUPERVISOR, KER-
NEL, DATA.

3) An 18-bit Address Register display
4) An Addressing Error indicator tight {ADRS ERR)
5} A 16-bit Data Register display
6) An 18-bit Switch Register
7y Control knobs
a) Address Display Select
1. USER | VIRTUAL

USER D VIRTUAL
SUPERVISOR | VIRTUAL
SUPERVISOR D VIRTUAL
KERNEL I VIRTUAL
. KERNEL D VIRTUAL
. PROGRAM PHYSICAL

8. CONSOLE PHYSICAL
b}y Data Display Select

1. DATA PATHS

2. BUS REGISTER

3. FPP 2ADRS.CPU LADRS.

4. DISPLAY REGISTER

195

NGO w N

8) Control Switches

a) LOAD ADRS (Load Address)

by EXAM (Examine)

¢) REG EXAM (Register Examine)

d} CONT {Continue)
e) ENABLE/HALT

f) S-INST/S-BUS CYCLE (Single Instruction/Singie Bus Cycle)

g) START
hy DEPOSIT

i) REG DEPOSIT (Register Deposit)

8.2 SYSTEM POWER SWITCH

The System Power Switch controls Central Processor power as follows:

OFF

POWER

PANEL LOCK

Power off for CPU.
Solid-State Memory still receives power
in order to insure data retention.

Power ON for CPU—normal use all
console controls operable,

Power ON for CPU.
All cansole controls not operable ex-
cept switch register.

Note: Since the theory of operation of high speed solid state memory
involves the retention of a capacitive charge, it is essential that power
be continually suppiied in order to insure full data retention during those
periods when the CPU power is OFF, When this facility is not required,
Memory Power may be discontinued by flipping the Master Power switch
in the rear of the CPU mounting cabinet to OFF,

B.3 CENTRAL PROCESSOR STATE INDICATORS
This bank of indicator lights shows the current major system state as

follows:

RUN

PAUSE

The CPU is execuling program instruc-
tions. If the instruction being executed
is a WAIT instruction, the RUN light
will be on. The CPU will proceed from
the WAIT on receipt of an exterpal in-
terrupt, or on console intervention.

The CPU is inactive because:

1) The current instruction execution
has been completed as far as possible
without more data from the UNIBUS
and the CPU is waiting to regain con-

196

MASTER

USER

SUPERVISOR

KERNEL

DATA

trol of the UNIBUS (UNIBUS master-
ship) (see MASTER state.)

OR
2) The CPU has been HALTed from the
System Operator's Console.

The CPU is in control of the UNIBUS
{UNIBUS Master). The CPU relin-
quishes control of the UNIBUS during
DMA and NFR data transfers.

The CPU is executing program instruc-
tions in USER mode. When the Mem-
ory Management Unit is enabled all
address references are in USER Virtual
Address Space

The CPU is executing program instruc-
tions in SUPERVISOR muode. When the
Memory Management Unit is enabled,
all address references are in SUPER-
VISOR Virtual Addressing space.

The CPU is executing program instruc-
tions in KERNEL mode. When the Mem-
ory Management Unit is enabled, all
address references are in KERNEL Vir-
tual Addressing space.

If on, the last memory reference was
to D address space in the current CPU
mode. If a 0, the last memory refer-
ence was to | address space in the
current CPU mode.

8.4 ADDRESS DISPLAY REGISTER
The Address Display Register is primarily a software development and
mainternance aid. The contents of this 18-bit indicator are controlled by
the Address Select knob as follows:

VIRTUAL

PROGRAM PHYSICAL

The Address Dispiay Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled, otherwise
it indicates the true 16-bit Physical
Address. Bits 17 and 16 will be off un-
less the Memory Management Unit ts.
disabled AND the current address ref-
erences some UNIBUS device register
in the uppermost 24K of basic address
space (i.e. 28K-32K}.

The Address Display Register indicates

-the current address reference as a true

18-bit Physical Address.
197

CONSOLE PHYSICAL The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled otherwise
it indicates the true 16-bit Physical
Address.

Bits 17 and 16 indicate the contents
of corresponding bits of the Switch
Register as of the last LOAD ADRS
console operation.

8.5 ADDRESSING ERROR DISPLAY
This 1-bit display indicates the occurrence of any addressing errors.
The following address references are invalid:

1. _Non-existent memory

2. Access Control violations

3. Unassigned memory pages
{See chapter 6: Memory Management)

8.6 DATA DISPLAY REGISTER

The Data Display Register is primarily a hardware maintenance facility.
The contents of this 16-bit indicator are controlled by the Data Display
Select knob as follows:

DATA PATHS The Data Display Register indicates the
current output of the PDP-11/45 Arith-
metic/Logical Unit subsystem.

BUS REGISTER The Data Display Register indicates the
’ current output of the PDP-11/45 CPU
(UNIBUS I, i and the EXPRESS BUS).

FPP »ADRS.CPU nADRS. The Data Display Register indicates the
current ROM address, FPP control
micro-program (bits 15-8), and the
CPU control micro-program (hits 7-0).

DISPLAY The Data Display Register indicates the
current contents of the 16-bit write-
only "Switch Register” located at
Physical Address 777570. This register
is generally used to display diagnostic
information, although it can be used
for any meaningful purpose.

8,7 SWITCH REGISTER
The functions of this 18-bit bank of switches are determined by:

1) Control Switches
2) Address Display Select knob
198

These functions will be described in the next section along with the
appropriate comtrol switch.

Note that the current setting of the Switch Register may be read under
program control from’ a read-only register at Physical Address 777570.

8.8 CONTROL SWITCHES

8.8.1 LOAD ADRS (Load Address)

When the LOAD ADRS switch is depressed the contents of the Switch
Register are loaded into the CPU Bus Address Register and displayed
in the Address Display Register lights. If the Memory Management Unit
is disabied the address displayed is the true Physical Address.

If the Memory Management Unit is enabled the interpretation of the
address indicated by the Switch Register is determined by the Address
Display Select knob.

Note that the LOAD ADRS function does not distinguish between PRO-
GRAM PHYSICAL and CONSOLE PHYSICAL.

8.8.2 EXAM (Examine)

Depressing the EXAM switch causes the contents of the current location
specified in the CPU Bus Address.Register to be displayed in the DATA
Display Register.

Depressing the EXAM switch again causes a EXAM-STEP operation to
occur. The result is the same as the EXAM except that the contents
of the CPU Bus Address Register are incremented by two before the
current location has been selected for display. An EXAM-STEP will not
cross a 32K memory hlock boundary.

An EXAM operation which causes an ADRS ERR (Addressing Error} must
be corrected by performing a new LOAD ADRS operation with a valid
address.

8.8.3 REG EXAM (Register Examine)

Depressing the REG EXAM switch causes the contents of the General
Purpose Register specified by the low order five bits of the hus address
register ta be displayed in the Data Display Register.

The Switch Register is interpreted as follows:

Contents Register Displayed

05 General Registers 0-5 (set 0)
& Kernel Mode Register 6

7 Program Counter

10,—15, _ Genera! Register 0-5 (set 1)
16, Supervisor Mode Register 6
17, User Mode Register RE

8.8.4 CONT (Continue)
Depressing the CONT switch causes the CPU to resume executing in-

159

structions or bus cycles at the address specified in the Program
Counter (Register 7-(PC)). The CONT switch has no effect when the
CPU is in RUN state,

The function of the CONT switch is modified by the setting of the
ENABLE/HALT and S/INST-5/BUS cycles switches as follows:

ENABLE (up) CPU resumes normal operation under
program control,
HALT (down) A. S/INST (up)—CPU executes next

instruction then stops,

B. $/BUS cycle {down)—CPU executes
next address reference then stops.

8.8.5 ENABLE/HALT)
The ENABLE/HALT switchtis a two-position switch with the following
functions:

ENABLE (up) The CPU is able to perform normal
crerations under program control.

HALT (down) ’ The CPU is stopped ana is oaly op-
erable by the console switches.

The setting of the ENABLE/HALT switch modifies the function of the
CONTINUE (8.8.4) and START (8.8.7) switches.

B.8.6 S/INST—S/BUS CYCLE (Singie Instruction/Single Bus Cycle)
The S/INST-S/BUS CYCLE switch effects only the operation of the CON-
TINUE switch as described in section 8.8.4. This switch has no effect
on any switches when the ENABLE/HALT switch is set to ENABLE.

8.8.7 START
The functions of the START switch depend upon the setting of the
ENABLE/HALT switch as follows:

ENABLE Depressing the START swilch causes
the CPU to start executing program in-
structions at the address specified by
the current contents of the CPU Bus
Address Register. The START switch
has no effect when the CPU is in RUN
state.

HALT Depressing the START switch causes a
console reset to occur.,

£.8.8 DEP {(Deposit) _

Raising the DEP switch causes the current contents of the Switch Reg-
ister to be deposited into the address specified by the current contents
of the CPU Bus Address Register.

Raising the DEP switch again causes a DEP-STEP operation to occur.
The result is the same as the DEP except that the contents of the CPU
Bus Address Register are incremented by two before the current location

200

has been selected for the deposit operation. A DEP-STEP will not cross
a 32K memory block boundary.

A DEP operation which causes an ADRS ERR (addressing Error} is
aborted and must be corrected by performing a new LOAD ADRS opera-
tion with a valid address.

8.8.9 REG DEPOSIT (Register Deposit)

Raising the REG DEP causes the contents of the Switch Register to be
deposited into the General Purpose Register specified by the current
cantents of the CPU Bus Address Register,

The CPU Bus Address Register should have been previously loaded by
a LOAD ADRS operation according to the Switch register settings de-
scribed in REG EXAM (8.8.3).

NOTE: The EXAM and DEP switches are coupled to enable an EXAM-
DEP-EXAM sequence to be carried out on a location, without having to
do a LOAD ADRS. The following sequence is possible:

EXAM

DEP ADDRESS A
EXAM

STEP EXAM

DEP ADDRESS A + 1
EXAM

8.8.10 ADDRESS SELECT

The ADDRESS SELECT knob is used for two functions.)t provides an
interpretation for the ADDRESS DISPLAY REGISTER as explained in
section 8.4, It also determines for EXAM, STEP EXAM, DEP and STEP
DEP, what set of Page Address Registers, if any, will be used to relocate
the address loaded by the LD ADRS function.

KERNEL |, KERNEL D, SUPER |, SUPER D, USER | and USER D posi-
tions cause the address loaded inte the switch register to be refocated
if the Memory Management Option is installed and operating. Which
set of the 6 sets of Page Address Registers (PARs) is used is determined
by the ADDRESS SELECT switch. EXAMs, STEP EXAMs, DEPs and STEP
DEPs, under these conditions, are relecated to the physical address
specified by the appropriate PAR. If the action attempted from the
console is not allowed (for example—attempting tc DEP intoc a READ
CNLY page) the ADRS ERROR indicator wili come on. A new LD ADRS
must be done to clear this cendition. Note that, in the general case,
the physical location accessed is different from the virtual address
loaded into the switch register. The ADDRESS DISPLAY REGISTER wil!
always, in these €& positions, show exactly what was icaded from the
switch register. These positions make it convenient to examine and
change programs which are subject to relocation, without requiring
any knowledge of where they have actually been relocafed in physical
mernory.

201

PROGRAM PHYSICAL. This position is provided to allow one, when
“single cycling” through a program, to monitor the physical addresses
being accessed by the program. It is most useful when the accesses are
being relocated by the Memory Management Option. In this case the
Address shown in Address Display Register is different than that shown
in the other positions. This position should not be used to perform
EXAM, STEP-EXAM, DEP or STEP DEP functions.

CONSOLE PHYSICAL-—This position is provided to allow EXAM, STEP
EXAM, DEP and STEP DEP Functions to physical memory locations
whether or not the Memory Management option is instatled or operating.
In this position the ADDRESS DISPLAY register indicates the physical
address loaded from the switch register.

202

APPENDIX A
INSTRUCTION SET PROCESSOR

& DESCRIPTIDN OF THE FDP-11 1
USIRG THE LNSTRUCTION SET PROCESSOR (ISF) HOTATION

[$F is & language (or notaclon) which can be uwed to define the action of &
eomputer's inatruction set, [t defines &4 computar, including c¢énsole and peciph-
erals, ag seen by & programmer, It has twe geals: o be precise enough to con-
stitura the complare speclfication for m computer aod to srill be highly readable
by 4 human wser for purposes of veference, guch 45 this manoal, The méin parc af
the manudl concdined 4n English language description of the PDP-L1, using IS¢ en-
prassions as gupport in defining each instrection. This appendix comcains an ISP
description of the FOP-11, using & few English languege comments 23 support,

The following brief intreduction to the notacion is given using exemples fram
the PDP-LL Model 2{0 ISP description. The complete PDP-1l descriptlon follows the
introduct ion.

A processopr is completely defined at the programming level by giving Lts
indtreccion set and ks incerprectar in cemms of basic operacions, daca types amd
the syscem's mgmorvy. For clagicy the ISP descriptlon i3 wsvally ziven in & fiwed
arder:

Declare the system's memory:

Procaesor scate {(the informAcion necessary Lo Testart the pracessor
if stopped becween inscruccions, €.%., gtoecel regiscars, PC, index
registers)

Primary memory scate {the memery directly addresasble from the
procaiack)

Console state {any external keya, awitches, lighes, etc,, that
affect the interpretation proceas)

Secondary memory {che disks, drumg, decrapes, magneric capes, etc.!)

Tranaducer jcats [(memory avdilable in #ny pecipheral devices chat
is asgvmed in the ingtructiony of the processor)

Declare the inscruction formec

Hafine the operand sddress cklculation process

Declare the data types

Declare the operdtions on the dara cypea

Dafine the instruction interpretation process including interyupts, tvapa, etc,

Define che instructlon s«c and che instructlon execution process (provides an
I5F expresasion for e#ch instruction}

Thus, the computer system is described by first declaring memory, data-types and
primitive data operations, The instruction interpretar and cthe inscruccion-sec
is then defined in terms of these entities,

The [5F notation is similar eo thac wsed in higher level programming languages.
Its statements define mncities by mesns of expressions involving ather entitiles In
the system, For exsample, &an inscruction to increment {ddd-one) to memory would be

Increment % (M, x] — M(x] + 1, add one to memory, I .
This defines an operation, called “increment', that takes the concanes of mamory

M &t an address, x, amd replaces it with & valye one higher. The '+ symbel simply
Apgigns & name (on the lefr!) to scand [eor the expression {an the right). Englich
lungusge comments are given tn tcelics, Table 1 gives & reference 1L5t of nota-
rions, which #re illuscrated below,

15P expresgions are inherently lnterpreced in parallel, reflecting the undar-
lying parallel néturz of hardwars oparations, This is an important difference
between [SF and standard programming l#nguapes, which are inherently serial. For
example, in

The notacion derived and used in the book, Computer Strugtures: Readings and
Examples, Melraw-Hilt, Y97} by . Sordon fiell and Allen Newell, The book contains
I5P"s of Y4 compurers.

203

Z o= (M[x] =~ 5'4D"; M[y] = M[x1};

both righthand sides of rhe daca transoission operator (~} are evaluated in the
current memory state in parallel and then transmission occurs. Thus the old
value of M[x] would go into M{yl. Serial ordering of processing ls indicaced by
using the term "next", For exsmple,

Z :m (M[x} = §'+D'; next Mly] ~ M|x};

performs the righthand data transmission after the lefithend one. Thus, the new
value of M[x] would be used for M[y] in this lacter case,

Memory Declarations
Memory is defined by piving a memoyv declaration as shown in Table 1, For
eximple,
Mp[U:Zk - 1315:0

declares a memory named, Mp, of Zk vords (HherE k has been given & value), The
addresaes of the words in wetory are 0,1,,..,2 -1, Each word has l& bits and the
bits dre labeled 15,14, . .0, Some other examples of memory declarstions are:

Boundary -error, | boolear memories; seatar Bit altermatives
Boundary ~ertor }

Activityy termary digit, holding value 0,1, or 2
Hf Hegative glfaz, ¥ and Negative are synonomous

Ce Y kit 3 of o register

H[O:le—l}c?:l‘b vector of 219 8-kt words

M{O:15T[0:4095 <7 1 O array of 16 % 4096 5-bit words

bropcl: O, altermative vays o defining a register
hrow:?-.(bz using bote 16 and base 2

Rendming and Restructuring of Previpusly Defined Pepisters

Regiaters can be defined in terms of existing tegisters. In effect, each
time the name to the lefr of the ;= symbel is encountered, the value is computed
according to the expression to the right of =. A process can be evoked o form
the value and side-offeces are posszible when the value is computad.

Examples of simpie renaming in part er whele of exiscing memory
N/ Hegative := <3 ¥ is nome of bit & of register T
SPSES: 0> = R[6]<15 0 EF ip the pame as regisrer R[F]
Examples of register forped by concarenacion
LACL,0:11> ;= LOAC<D: 1L~

AB<D:4T: = MO 2ToB<D: 23
Mword[01<15:0> = Hbyre{0]e?: O=cMbyre[1]<7: 0>

’
Exawples of values apd regiscers formed by evaluacion of a process

aif sddzess-inerenent=l:05 o= (valwe of gl g 2 £f - byte op,
— byte-op = 13 elge value s 1
byre-op = 1)
Run := (Activity = 0) Rum=1 or @ desending on value ef Activity

Instruction Formac bedng @ or not 4

Instruction formats are declared in the szame fashion as memary and are not
distinguishable #s special non-memory entities. The instructions are carried io
a8 reglster; thus it is natural to declave them by giving names Lo the various
parts of the lpstruction ragister. (Usually only & single dJeclaration (= made,
the jnstruceionfi, fgllowed by the declarations of the parts of the instruction;
che gperacion code, the address Eields, indivect bit, etc.

Example

This declaration would corvespond to the vsual bex diagrem:

204

Table 1, ISP {haracter-5et and Expression Forms

L TTRTNE 7 PRI PR NP T

Miab| L., |viw] ey
. "‘\.""_—/ z

& ;= Frexpression}

bic,as-,28} @ giexpression)

name" .= h{sxpressionl

a = flexpression)
fiexprestion) = a

{daca-cypal

beolean = expreagion;

bogledn = [expression-l elae
expression-2}; -

1 next

o

Xi:= booplean) = axpreasion;

name alphaber. This chacacrer set i5 used for
name s .

commenrs. lralics are wused for commencs.

memgry declaration. An n-dimensional mempry
array of words where a:h ... v:w are che range
of values for the first and laic dimeénsions,
The values of the first dimension are, for
example, a, atl, ..., b for a 3 b (ar
a,a-1,..,,b for @ - b}, The word length basze,
z, is normally 2 if nor specified. The digits
wf the word are <, x+l,...¥.

definution. The operator, :=, defines memory,
ndmes, procees, Orf operdtions in terms of
existing memory and operations. Each accur-
rence of "a" causzes the in place asubstitubion
by [lexpression). :

The definition b, wmay have dummy parameters,
Crueayt, Which are used in gl{expression}.

side effects naming convention. [I[n this
deseriprion we have uaad ' to indicats that
4 raference to this name will cause ather
registers to change.

transmission operator. The contents lo
register a are veplaced by the value of
the funciiea.

parentheses, Defines precedence and vange
of varipus operationa amd definicions
troughly equivalent to hegin, amd end).
aperator and ders-tvpe modifier

conditional expression; equivalent to ALGOL
if boalean then expression

equivalent to algel L£f boclean TREN expression-l
2lge expressian-2

sequantial delimirer interprecation is to occur

concAtendtion., fLonsider che regfizcers to the
left armd right 4f O to be one,

scatement delimlcer. Separares statmments,
item delimitar, Separates lists of variables,
division and synonym. Uaed in two contexts:
for divisien and for defining the nama, a,

to be an alias (synonym) of the nimm, b,
unknown or unapecified vaiue

ser valug. Takes on all valuea for a4 digit
of the given base, e.3., “2 apecifies either
lll2 ar 112

ingtruction value definlclon. The nsme X ia
defined to have the value of the boolean,

When rh& boalean ia true, the espression
will be avaluatced,

205

Table 1. cone’d,

Lommon Aricthmeric, logical snd Relstional Opevetors

Arithmetic Relational
+ add = identical
+ subtract, also negative (i not idencical
multiply = gqual
J divide @ exclusive-ar # not equal
mod module {remainder’ = equivalence - greacer than
{ 1% gquared z greaver than or equal
[a® exporenciacion 2 less thaa
{ }ta ewponentiation % less than or equal
[1y baae
1k bone
QUL) square roOb
wbsi) whaolute value
signeextend }
bep 13 df
i/inservction1s: O the ingtructic™

bop-3: 0 = is15:12- gpecifies bimary (dyadie) operations

sB5: 0. e iilié- speet fies gource (firgt) cperand

df 5:0- = i-5:0- speaifics avcond operand and destination

Qperand Addrexs Calculsavign Process

in a1l progessors, instructions méke use of gperands, in most conventional

T ptocessors, the opersod ia usually in mempty o in the proceasor, defined a3y Mz},
where & la.the gffeceive audreas, In POF-11, & destinaticen addresa, Daddress, is
used in this fashion for only two inacructioom. It is defined in ISP by giving

the process chac calculeten {t. Thie procesa may involve only acceaded tg primary
wempry {poasmibly indexed), bug it may &lso involve alde effects, i.e., the medifica-
cion of gither of primary memory or processor memory {(e.g., by incramenting e reg-
ister}. Hote that the effective address ia calculated whenever ira name 19 en-
countered in avalusting an ISP expreasion {either in &n instruccion or In che incer-
pretacion expressicn), That i, it is evalvated on demand., Consequentiy, any side
affaects way be executed more than onca.

Operation Determination Processes

Instead of effectiveraddreas, the operande are ugually determined directly.
For example, the lé-bit destlnacion register is Just the register selected by che
dr fiald of an instruction, 1.e.,

Rd = R{dr] the destingtion register

In one athetr cas&, thw opersnd is just the next word following en instructlen,
This next word can be defined,

w15 S next-vord 1= (M[PC]; PO~ BC + 2} the next word {g gelected and PO is movad

Here, the ' shews that # reference ro mw will cause gide effects, In this case,

BC = PC + 2, For caiculating the source operand, 5, che process is:

)50 = | value for source operand
(gu=0) = Riwgr]; if sode=0 then 5' iz the Register addressed
by ingtruction field en
(emel} = Mw[R[sr]] if mode=I the £' i [ndirent vig F sr
(aor=i) A (=7 = me; if moderZ and scurce refiater=P then the

nezt word {8 the cperand; this ocwt be
seen by substituting the expression for m)'

206

An expression is @lac needed for the gperand, 5, which doee not cavse the aside
effects, and assuming the effects have taken place, councersses them, Thus, 5
would he:

2180 1=
{sm=0) = Kler]; ne atde effects .
{z2m=11 = M K[=r]]: nz gide effects
fsm=f_! oA {sr=l) = Me[PO-2] sounterard p_reuious gide £ffecta

In rhe ISP description & peneral process is given which determines operands for
Source-Destination, word-byee, apd with-without side-¢ffeccs. In order to clarlfy
what really happens, the swrvee operand calceulaelen, for words, with side effecrs,
is ziven below.

S50 o= Dolle~ souree fleld (§-bite) of imatructise
smy o= sfeSide aouree mode somtrel field
=d o= osfde deferred address control
sbg o= sfiZ:ds regiater specificgeion for gource
w150 ra (MWPCD:; PC = PO42Y next word; woed ga sperand
Rs15:0+ = Risr] spurce regigter specifigation
5'15; o fSouree = {1 value for the aource--direct addpesatag
(sm=0! = Bs, uge the regieter Fs ae operand
(sm=2% A 18t¥T: = (MwlRs] dirget quic-inopement [inorement
Ba ~ Re + 20 Ral;, usually uaed ag POF
(gw=2] M (sT=7) W nw; : direct; actuglly frnediate operand
{gmed) = (Rs ~ Ry - 2, next dipeet; duto-decrement “desremgnt
Mu[Rs 71 Ral); wawally wsed as PUSH
(sm=b) A (SrET) = Mw|me' + Ral; direct; indezed via Ra--uses mert-word
(am) A njs.r—?) = Mw[me' + PCI, Jipect; relative to PF; «ces ns.\:t-u-‘or-:l'
value for the source-defimed gddresaicg
1mat; = Mw{Rs]; defer through Ra
csem3) A {srE7} = {MW[Mw[As4]; defer through stack; guts
Rs ~ Re + 213 Ingpement
(em=3] A (8T=7) = M ma']; defer vig next vord; ataolute a:"ir-esa:'r.g
(amm5} = (Rs = Rs - 2, naext fefer through stack afeer auts
He[Mw{Ra]]); decrement
(ar?) A {sTATY = BulMw|ow' + Rs]); defer, indezed via As
vsme?) A tsT=T) ® Mu[Mwine' + PC)) defer relative to PO
i end caloalation process;
{aTe6) A ((mm=4) v (sm=53) A shecks IF ataek cuerfloues Far severa!l
{8P<A005) = iStack overflow ~ 1) roden
¥ end gounce calowlation

bath-Types

A data-tvpe specifies che encoding of A4 aeening intg &n information medium,
The memning of the dare-type (wher ir designaces or refers tol 15 calied Lrs
referent (or value}, The referent may be Anything renging {rom highly abstract
ithe wpinterpreted bic} to highly toncrere (che pavrell accownt for a specifiic
type of ewployee!.

Every data-type has a carrier, into which all its component data-types can
be mapped. The carrier ip wsed in acoring che daca-type in mewories and is usually
& word or muleiple thereof, [f must be extensive enpugh to hold all the camponent
daca-types, but may be & larger (having error checking end correctiog bits, or

207

even usuedd bitsa), Tha mapping of tha compovent data-rypees into the carrier is
called the formar, It ik given as & list which asapciates to edch comppnent an
axpreasion involving the carrier (e.g., #8 in the Insctruction Eormat).

ISP provides & way of npeming deca-types, which also serves as & basis for
abbreviationsa. Some data-types aimply have conventicnal names (e.8a, charlc:er,"ch,
floating polnt mmbers/f}; others are named by their value {e,g., inceger/il. Dara-
types which are iLterwtes of & basic compeonent can be named by the component suffixed
by & lsngth-type, The Length-rype can be array/as, implying & multi-dicenaional
array of fixed, but unspecified dimensions; & string}'st, jmplying & gingle sequance,
of variable length (on emch accurrence); or a4 vector/v, implying 4 one Jimensional
arzey of @ fixed but unspecified numbér of componencs. The langth-type need not
exiat, and then this form of the nme Is not spplicable. Thus, iv is the abbravi-
ation for an integer vector. It is also possible to name m data-type by simply
liscing lrs componants.

Data-+types are often of a given preclsicn amd it haa become customary ta
weasurs chis in rerma of che mmber of cemponants thet are uvaed, ¢.g., triple
precigion integers, In ISP this is iodicated by prefixing the preciaion symbol
ro the basic data-cype name, e.g., 61 For dowble précision integer. Note that a
double precision integer, while taking two Wwords, is noc the same thing asz a two
inceger vector, so chet the precision end the length-type, though both implying
someching about che size of the carrier, do noc express the same ching.

A list of common data-types and their sbbraviations is given in Table 2,

&g iont on DALa-types

Opergtions produce vesules of specific daca-types from operands of specific
data-types, The dacd-types themselves determina by and lerge the possible opera-
tions that apply to them, Fo atgempt will be made to define the verious opard-
tigns he&re, 8% chey ares &1l Eamiliar. A ressonably comprehensive list is given in
Table 1. An operstion-molifier, enclosad in braces, {], can be used te distinguish
waTiAnt gperations, The operation-medifier is usually the name of & daca-type, e€.x.,
A+B[f] is @ flomcing p- int addition, Medifiers can also be & description neme ap-
plying ta the aperstiom, e.g., a x2 frotare},

New operations cen he defined by means of forms. For exmmple, che various
add operstions on differing data-rypes are spacified by writing {deta-typa} after
the operation.

Instruction Interpretation Process

The instruttion interprecation eXpression and the instructlon set constituce
€ singlg ISP expreseion that defines the processor's ecticn. in effece, rhis
single exprassion s evaluated mod all the other parts of the (SF deacription of
a procesagr @re evokzd &5 indirect conzequances of this evaluation. Simple inter-
pracer without intervupt facilities show the familisr cycle of ferch-the-instruerion
and execute-the lnstruction.

Exemple: .
Run = (ipstruction = M{PCL; PC =~ PC + L} next T‘i_:':ls is o simple
Instruction-execution; rexc} . intarpreter, Mot the
¢cme for the FOP-;I

In more complex processors the condiriens for erapping and interrupting must
eise be dexcribed, The effective address calculation may also be carried out in
the interprecer, prior to executing the instruction, especially Lf it ie fo ba
calculsted only once &nd will have a fixed value independent of anything chat
hippens while executing instructions, Consple activicy can alse be deseribed in
the interprefar, &.g., the affect of = switch that permits &tepping through the
program under maonual contrel, or inrerrogating and changing memory.

The normal scarement for POP-1) inpcerpretarion is jusc:
— Interrupt-tqg A Run = {instruccion = Mw{PC]; PU = PC + 2, next

Inatruction-execution; next .
T-flag = {S:ue-:han‘ge(lﬁs): T-flag - 21) EPSNE moce

208

Table 2, Comson Dats-Types Abbreviariona

Primicive String and Yector
b bit or boolean by bit.vactor
by byre by.at byce.sering
ch charscter ch.at character,string

cx complex

df double precision floating
dw double word

d dipic 34 J-digic number
i floacing

Ir fracrion

hw half word

intagar

mixed number

quadruple length word
triple langth word

word

TIeR-

Instruction-5at and Instructlon Execution Frocesa

The instruction aset and the process by which each {nstruction is executed
&re ususily given together in & single definition; this process ix called
Ingtructlon-execution in mosc [SP deseriprigns, This uvaually includea the defini-
tien of the condicions for execution, {.e., the operation code, value, the name
of the instruction, a mnemonic alims, wnd the process for its execution. Thus,
an individual ilnsctuction typically has the form:

MOV (= bop = 000L,) = { move word
xr = 8" next move aourde to intermediate regiater
N+ rolis>; nagative?
(r<l5: 0 = 0] = (E2= 1 alee 2 = 0); zero?
¥ e 0 overflow cleared
D~ 1}; tranemit reduit to desttnation

With this format for the instruction, the entire Instruction set is simply
A lisc of all the instructiona. O any pacticular sagcution, a5 evoked by the
intarpretarion expresaion, typically ane snd only one operarion code corvelation
will be satisiied, hence ona and only one Lnstruction will be executed.

In the case of PDP-11, the rext carries tha definition of che iadividual

instructions, hence they ara noc redefined in the sppendix. Instead, rhe sppendix
defines the condition for executing the instructions. For exspple, |

MOV = (bop = GB0Ly)

ia given in the appendix, and the actlon of MOV i3 defined (in ISP} in the Cext.

208

THE FDF-11 18p

FOP-11'a Primaruy {Program) Memory atd Procesgor State
The declarationm of thie memory ineiludes all the state (bits, words, ete) that a program

(programmar) has desese to in this part of the complter.

The acmaals is not included. The

uvaricds seegndary memories (e.g., diska, tapes) and dnput-ocutput devioe state deelarations are

neluded in g following section.

Primary (prograomt Mamory
Hp[ﬂ.—zk—l F15: 0=

M/ Mward (2215 81015 0 1w
— xl = Mp[wal5: =],

will> w {?pglue ; Boundary-error = 1))

benbyte[qui:ﬁ'.:-]c?:tr) =6
— %0 w Mp[al%: x|t 06
0z = Mp[x<ls: L=] 15; &)

Frocesser State
R[0:7]<15: @

SPLlS: &fStack-Polnter := R[6]
PC<15: 0x/Program-Counter := R[7]

P5<15: 0/ Processor -State-Word

Unused<?: 0= Undeflned ;= PS<15;8-
B2 0/ Priority 1= PEST >
T/ Trace N
GCo3 i Cond Lt Lon-Godes ;= B5<3 i
Hf Negicive P e
z/2ero eI o
v/itnerflow [ek
FL I o it ()

C/carry

actual physiedal, 18-Lit memery of a particular
syetem; k= 12, ..., 17

word-aceeased memoTy
word on even byte bowundary, all vight
word on odd byte bowndary, trap

by te-gesessad memory
take lowv-opder Bits 1F suven

take Ai-drder bits if odd

efght, 18-Bit Deneral-Fegisters, used for
acoumulators, indezing and stacks

special stack, comtrclled by R[F]

lagation next {ngtruction, alac A[?]

1g-bit regtster giving rest of state
mapping of bita tnte PS
interrupt Lewel gomtrol of progeseor

demotes whether trap iz to oegun after cach
tnatruction

et gs a furation . {ngtruction gud resulta
if result = -

if result = ¢

if result overfious

i result careied Inte/borrowed [rom mose
atgniftemt bit

Proceancr-Controlled Ervor Flags {resulting from inatrustim-execution)

boaundary-Error
Stack-Overflow
Time-(ut-Ecror

Illegal-Ingtruction

Pracessor-activi iy
.M:\‘.ivi.t)l'3
Run = (Acpivity = O)

Walt

off

1= (Aerdviey = 13
1= (Activity = 23}

set if wopd is asegased on odd byte boundary
set if word gecesased, via EF < 00,

zet 1f not—priztent wmemapu or devise tg
referenced

set if a partioular class of fastructions is
exgsuted

teymary, spectifying state of croceasor
normal inatruction intgrpretation
writing for interrupt

off, dormomt

Error-Flags (regulting from without the pragessor)

Power-Fail-Flag
Power-Up-Fleg

get 1f power {8 lou

set tHgrl powdr Sories o

210

Inetruation format field declaratioma

115 0 {ostruction
bop<d; & w415 12 binary opeode format
af<h; B LI 29§ 11 = sourae field
=y im A5 T source mode - 3 bits
od 1= gE<I source defer bit
org = afa?: aouroe register - 3 bits
df<s: 0 [ERE La 7Y) destingtion field
dmy i dfS: 3 destination mode - I bite
Codd e AT deatination defer bit
drg cw dfc2 0 dewtination regieter - 3 bits
uop<ld:ilz, im 1<15:6 wnary ap gode famith., logieal, ehiftsl}
dar vee bingry op format
Juop< 0 LI T4 LT3~ Jar format
ary df #ee binarmy op format
brop<l: 0>, 1= 1<15:% braneh format
of faet<?: > ;= mign-expend (i<?: 0=} offeet value
trop<li0> = 4<15:E> trap format

unuud-trop(l:bm HL A S -4

aopk; 0> w415 8 extanded oposde format
a3 - LR &= P18 axtended register
anfs: i FLIE 4311~ eztended source flaild

sy 1w gpfeS: 3> mode

ead iw aafcis defer

e8Ty 1w esf2: 0 register
fop<?: 0> w150 & fleating op Format
fy<? 0 R St - regtater deatination
Ea b5 > FLgR R3] -4 souree
1] 0
| bop ! sf t af l binary operand (2 operands) format

L A 'l L ' L ' i A 1 1 i

T s 6
zd dd
o df unsry operand (1 gperand}, JMP formar
|_| Jjaiopl 2 A larl I i L Idtl L L I ISk format
I L bfoﬁ i | Lo nlﬂa.“, . l branch fermarc
valug = sign-extend {offser)

[L1 ltrlnpu [!/ vrsed [r/j trap format
i eop i er J_ asf extended operacicn former
| fop I fr I faf t floating op format

211

L/ widrees-Lncrement<l: G =
= Byte-op » 2}
Bytu-op = L)
Byte-op := (MOVB ¥V BICH Vv BISE v BEITB ¥ CLRB ¥
COME v TRCR W DECE v NEGE V ADCR W
S5BCB ¥ TSTH ¥ RORE v ROLR ¥ ASEE ¥
ASLE v SWAB)
Resarved-iostruction := ({L=)} v (1= ¥ v..,w(i= }) wused trstructions

Registers and Data Addressed via Inetruction Format Spaeifieationa

wwfnext-vard<l5: 0> := M[PC) . uged in operand determingtion
ow' fnexc -word'<l5: 0= (MW[PC); BC - PC 4+ 1) with gide effects
1wflascwordl5: 0> = MW[PC - 2) undoee eide effects

Recli:i> i R[arK15:0> the aouree regisgter

pacl5: 0 o= R[dr <150 the destination regteter

Operand Determingtion for Spurce and Deetinatiom

T typee of operands are waed: S°, D7, Sh* amd DB - for operands that cause side-effects
(f.8., other regiaters are changed; and 5, D, 5b and Db for operands that do not cause side
affacts. Two genergl proceduyes Wo' and Wo ave uped to determine these operands for side ef-
feate omd no eide sffects, respectively

§'<15:0> v Oprd’<15:0-(Mw, 2, so,81) source word epevand aide-affects
$15:0 ;= Oprd<l3:Q-{Mw, 2,mm,sv) source word cperands no side-effecta
Sb'<l:il> = Oprd'<l:d=(Hb, 2, sa,sT) sourta byte

5?0 1= Oprd<7:@-(Mb, 1,sm,sT)

D'215: 0 = Oprd'<l5:0(Mw, 2,dm,dr) Pegtination cpenands

pcl5:0e = Opred<li Qe (Mw, 2,dm,dr)
pb'<F 0 = Oprd'<?: (Wb, 1, dm.dr)
Db<?: 0> im Oprd<i:iOa(Mb, 1, dm,de)

Gamerit! Opargnd Caleulation Process (with Side Effecte)

Oprd'owl: (M, a1 ,m,Tg) = {{ wriuve for word or byte cperand; direct
addreseing: wl indicotes length; m
mode, and rg megister

Rr<l5:{- :» R[tal secondary dafinition for register
{w=0} = Brwl. 0> @, use the register, Rn, a# cperand
(m=2) A (vef7) = (H(BT]; Dext 2, direot auto-inorement (imoramemt
Br = Br + al); Arl; uenally ueed in pop stack
(w=2) A {rg=7?) = ow'<wl: 0>, 2, direct; meamt-uord {s immediate
oparand
{wm4) » (Rr +« Br - 41; oext 4, direet; after muto decrement
H[Re]); wusually wsed as PUSH atacek
(=5} A (ra#7) = Hiome' + Rr]; 5, ﬁmct; indezed via Rr ugda rert-
W,
(a=5) A {rg=7) » M[m' + PC]; 4, direct; relative to FC; uses next-
. wvord value for wond operamd dafer
addressing
(w=l) = M[Rr]; 2, defer through Rr
(a3} A {TgfT) = (MiMw[Rr]]; next 3, dafer through Mo(Rr) (usually stack),
Rr -~ Rt + 2); auto-tnarement
=3 A (rp=?) = ¥iow']; 2, defer via next-word; abeolute
addrensing
{em5) w (Rr — Rr - ai; naxt &, defer threugh stack after auto
WMw[Br]]): decrenent

212

(w=7) A (rgf7) = H{Mwimw' + Rrj);
(m=7) A {rg=7) = H[Me[m' + PCi];
I8

(rgmb) A ({wmb] v [m=5)1] A
{SP < -‘oﬂllsJ) = (Stack-vverflow ~ 1)

}

General Operand Caloulation Process (without Side

Opedewl: 0= (M. ni m,rg) ™ (
Recl5: 6> = Rirg]
(o=D) w Reowl:0=;

(a=2} A (rg#7) = Mw(Rr - al]:

(o2} A (rgel) = Llwawl: 03

(mm4) = M[Rr]; R

{m=b) A (rgf'.l') = M[lw + Rr);

{wmb) A (rg=7) = H[lw + PC];

(wml) = M[Er];

(3 A {rgh7) = M[MwRC - 217;
(=3} A (rg=?) = H[lw];

(m=5) = H[Mw[Rr]];

[trﬁ?) = MM iv + Br]];
(m=?) A (rghT} = U[Mw[iv + PCI])

Deatination addrepasn for JMF and ISR
Das15:0> = ({
{dwr=0) w (7; Illegal-ingtyuction ~ 1};
(dum2} A (drf7) w (Rd; Rd ~ RA + 2,
(dw=2) A (dre]) = (PC; PC + PC + 2);
(daret)*= (Rd +~ Rd - 2; next Rd);
(dr=6) A (drfd7) = (ow' + Rd};
{da=6) A (dr=7) = (uw' + PC);

{dw=1}
[
(dw=3)

- Mw[Rd);
A
A
(doww5) = {Rd +~ Rd « Z; next Me[Rd1);
A
A

(drf?) = (Mu(Rd]; Rd =~ Rd + 2):

(dr=7) = mw';

(dwm7) A (drd7) = Ww(nw. + Rd};
(dw=7) A (dr=7)} = Mw[mw' + PC]); next

7, defer indered via Rr
7, defer relative to PO
end caloulation procecs
cheak £f gtask overflows

end opervmd oalaoulation proceas

Ef fecta)

wnds previcus aide-zffests
wnde previous aide-effecta

wndo previcus aide-effests
wndo previows -gide—eflfecte

unde previous sida-effacts
wndo previcus eide-effects

wde previous aide-affecta
wndp previcus side-effecta

directs:
tllegal regiater address
atominarement
nauil
auto- decrement
fndazed
relgtive

defars:
via register
vig aute-tncrement
abpolute addrees
auto-deremant
vig index
relative to FU

(dr=6) A ((domD) V@dw=1) ¥ {do=7)) A (SP < &D0g) =(check for stack overflow

stack-overflow = 1})

Data Typa Formats

byfhy tec?:

wivord<ls: i

wifword. integee<15: 0>
bybv/byte.boolasn-vector<?: 0>
vy /word, boolean-vector<15; >
4/d.w/double.sord<3L; 0>

213

£f4.£/double.vord, Floating<d1: 0>
o/ floaring, sign = &I
Eef tloating, exponent<?: O = F<I0:23
o/ floacing. mantiase<22: 0 1o £22:0
tferipla.wordi T: 0
of quedruple.word<6d: 0>
qff quadruple.word. Floacing-poine<6d: &>
qfs = qf<6is
qfe > qE<62:55%
qfu := qf<54: 0

I/ Devioes and Interrupts, State Information
pevice{d:H-1]
pevice-name[JF15:0> (=]

Device-incerrupt~iocation[J]<15:0> = K

dob/device-oueput -buffer{)]<15: T

dib/device-1aput-buffer[)]<15:0x

dafdevice-stacus(J)=ls: 0=
dert/device-error-flags(] }<3:0> = ds[J]<15:12>
dbusy/devicesbusy{l] :v da[J}IL>

¥ L0 devices « aasume deice J

wmber to which device responses and
ia addressed .

eaeh device hae a value, X, which {¢
uses a5 an addreas to interrupt processor

progran controlled device data

a register with device control atate
el el
status

dunitfdevice-unic-selection[J1<2: 0> = ds[JI10:8> ggqigpmente

ddone(J) := da[I}<7>
denh/device-done-intertopt-enable = defJ}6:
dertaok/device-error-interrupt-enable := du[J}35>
dua{'dcviu-muory-lxteuslon[.]]d:b = Ja[I b3
dfne/device-function[J}<2: 0 1= ds[J)<2: 0>
dintrg/device-ioterrupt-raquest[J] ;= (
(ddone(J] A deok[J] ¥ {{derr[J] # 0) A decvendb[1]})
dil/device-incerrupt-level [J 17 4

sach device Ta cesigned to 1 of 4 levels

ﬁpimg of Devices into M, Eaoh devioe’s registera are mupped inte primary word memory, &.d..
e letypea

M'[177560,] := tka/ds [TTY -keyboard]
M [1775625] := tkb/dib[TTV-keyboard]
H'[l?‘!S“s] 1w epafde[TTE-printar]

M (L77566,] = tpbydob [TTY-printer)

Interrupt Requesta
bt/bun-request-for-loterrupe<i > = (
(dinkrr {07 = d11[0]} v
(dinergrl] = dil(1]) V...
(diseeq[s) = dil[J}) Y...
(dintrq(N] = dil[H]})

Interrupt-rq ;= {intrql 2 p)

lntrql/tntlrrupc-:eqnn:-lave].-:z:!b EL I
bl w 75
- brcT> A bE<E> m B
- e A = DOCE A ey br<h> A brah> 2 4)

214

kayboard atgtus

Yayboard input data
teleprinter atatus
teleprinter data to print

OR of all device requests

interrupt if a request is ¥ priority/P

Ingtrurtion Tnfzrpretation Process
InterrupE=-Tq A Run & (Normdi-interprecacion);
Numal-lnt!rpretl.ation tw {1~ Mw[PC]; BC - PC 4+ 2 next
© Instruction-execution; next
T-flag = (Sl.al.e-change(léa): T-Flag « 0})
Incerrupt-rq A — GEf w |
s_ute-chanse(Devlce—mterrupt—l.oca:'ton[ﬂ)'.
P~ intrgll,
off =™ [};
— Taterrupt-rq » Wait = { };
Stace-change{x) v (
5P~ 5F - 2, next
MwiSE] ~ PS;
5P~ SP - 2] nexc
MeiSP] ~ BC;
PCo~ Mw[x]:
B5 - Mw[n+l]
Boundary-Error = (Stau-change{ﬁs); pouidary-etrar = @)

Time(ut-Error ~ tsnu-c‘nan;e(f-s); Time=put-Error = 0}

fateh
erecute

trace

aasume device J interrupte

for stasking atate onf restore

Power-fail-Flag = (sLate—change(ZﬁB]; Powar-Fail-Flag = 0;) program muat fiom aff sorouter

Fower-Up-Flag = [FC — Z4p; Pover-Up-Flag — 0, dctivicy — 00 Stare Up on Dower-up

Imatraction-Set Jefinttion

Fach {nstruction fs defined in J5F in the text, thersfora, {f will uot be repeated here,

ISP far Flogting Point MvocessorsFEP
Device-Intarrupt-location [FPP: := M' [ZMB]

FEC<15: 0 Flpgiing point processor error code
ragistar

FOCE := ({FEC=2) Floaring op code error

FU2E := (FEC=4) Floating divide by zere

FICE := [FEC=} ﬂmcing'inceger

cgnuargion error

FYE := (FEC=8) floating overflow

FUE .= (FEC=10} floating widerflow

FUVE .= {FEC=<1I} Floating undafined variable
FAC[0:5]<63; 00 ¢ floawing point accumalators
Fra6d: 0 temporary floating point pegister
FRO<CLS 0 flogting point PO
FPSR=15: 0> floating point procesdor status registar

FER := FPSR<15~ : floating errar

FIE .= FPER<l4x IneErrupt enable

FIUVr= FPSR<11> interrupt cn widefined varighle

FIU ;= FPSR<1Er. interrupt on underflow

FIV := FP3R. 3 intersapt om averiow

FIC := FPSR<B- interrupt on integer comversiom epror

FI ;= FPSR=7. floating doubie preataton modae

FL i%= FPER<6- floating long tnteger mode

FT = FPSR<5™ floating trunsate mode

P = FPSRch- floating meintemance mode

215

F¥ = FPSR=Y: Floaeing negative
FZ := FPSR<Z- Floating zera
F¥ = FPSR<In Floating overflmt
FC = FPSE <> Floating carmy

imatpuction format

o< s 7 =151k op oode

FOC<3:0> o= i211; B flogting op code
ACZL; 0= i= pPibn aocumalator

General Definitions

HL e ((FDRD) = 12704 largest frastica
tFo=1s = 1-276
XLL := P amallest mon-zero number
awn w2 Largest Aumber
JLoooe {(FLEOY = 215—1: largest {nteger

(FL=1) = 271

Adfress Calouiation
FP5<63 0 o= | floating poini prosesser source
{da=0} = FAC{dC);
{duf0) = ¢
{FD=0} = DoL5: (Ot P47)
(FDm1} w BolS; T=rwfpPoeZ (0
M [PO ICHw [PE+HR] 1D

FP5'<63:00 ;= | floating point praseasor scurce with
{@mmQ) = FAC{dr); zide effects
(Amp0) = (

{FIm0) = B°15; (Ons”
(FO=1) = D150 -0 ' Qo " Oow ' 1)

FPD-63: 0~ ;= FRS<&): (- floating point processor destination
FFD'<63: Oor= FPS'<B3: 0. floating roint prosesgor destination with
. zida ¢ffects

FE<15.0- ;= D150 fleating source, CPU mode

FE'cl5:0> ;= D'<15:0 Tieating aowrea with aide effeste,
CPU mpde

FO 150 & Dei5: . Floaring destdmarion, TV mode

R 150 ;= p'ul%-0 fioating destingtion with aide effects,
CPY mode

Fa¢ :m FRC{AC)H destinarion floating pegisser

Ta17 it resulk, r, used only for descriptive purposes

2A prime is nsed in 5 (#.g., 5') end D {e.g., D'} to indicate chet when a word is accessed in
this tashian, side gffects mey occur, That ila, Tegisters of B may be changed.

*IF all 6 bits of tesult, £ = 0, then is et to | else T iz amt to 0.

*The B least significent bice are used to Form a 16-bit positive or negarive aumber by extamd-
ing bir 7 fato 15:8,

Pa = b means; if booledn & is true them b s executed.

“Mw weans che memory caken #5 & work-orgdnized memory.

216

APPENDIX B
INSTRUCTION TIMING

B.1 INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itseif,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, and an Execute, Fetch Time.

instr Time — SRC Time + DST Time 4 EF Time

Some of the instructions require only some of these times, and are so
noted, Times are typical; processor timing, with core memary, may vary
+159% to —109%,.

B.1.1 BASIC INSTRUCTION SET TIMING
Double Operand

all instructions,
except MOV: Instr Time = SRC Time 4 DST Time
+ EF Time
MOV Instruction: Instr Time —= SRC Time 4 EF Time

Single QOperand
all instructions: Instr Time = DST Time 4 EF Time or
Instr Time = SRC Time 4 EF Time

Branch, Jump, Control, Trap & Misc
all instructions: instr Time = EF Tims

B.1.2 USING THE CHART TIMES

To compute a particular instruction time, first find the instruction “EF”
Time. Select the proper EF Time for the SRC and DST modes. Observe
all “NOTES" to the Ef Time by adding the correct amount to basic EF
number,

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if so, add the approprnate amounts to correct EF
nuember.,

B.1.3 NOTES

1. The times specified generally apply to Word instructions. In most
cases Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All exceptions are nofed.

2. Timing is given without regard for NRP or BR servicing, Memory
types MM11-S, MF11-1, and ML11 are assumed with memory within
the CPU mounting assembly.

3. If the Memory Management (KT11-C) option is installed and oper-
ating, instruction execution times increase by .09 usec for each
memeory cycle used.

4, When MM11-S, MM11-L, MF11-L or ML11! are used, due to overlap
of central processor gperation with memory cycles, there is no ad-
vantage as far as processor instruction timing is concerned by inter-
leaving memory.

5. All times are in microseconds.

217

B.1.4 SOURCE ADDRESS TIME

SRC Time
Memory
Instruction Source Mode Bipolar MOS Core Cycles
0 0.00 .00 .00 0
1 .30 45 83 1
2 .30 45 .83 1
Double 3 75 1.05 1.81 2
Operand 4 A5 .60 .88 1
5 80 1.20 1.96 2
6 .60 .90 1.73 2
7 1.05 1.50 271 3
B.1.5 DESTINATION ADDRESS TIME
DST Time (A)
Mode) Memory
Instruction Destination { Bipolar MOS Core Cycles
0 .00 00 .00 0
1 .30 A5 .83(B) 1
Single Operand 2 .30 A5 B3(B) 1
and Double Oper- 3 75 1.05 1.81(B) 2
and {except MOV, 4 .45 &0 .98 1
MTP, JMF, JSR) 5 .90 1.20 1.96 2
& 60 .90 1.73(B) 2
7 1.0% 1.50 2.71{B) 3
NOTE (A): Add .15 usec for odd byte instructions, except DST Mode O

NOTE (B): Add .07 psec if SRC Mode = 1-7.

218

612

B.1.6 EXECUTE, FETCH TIME

Double Operand
Instruction
SRC Mode O SRC Mode 1-7 SRC Mode O to 7
(Use with DST Mode O DST Maode O DST Mode 1to 7
SRC Time ———EF Time — Mem | ———ET Time —— | Mem EF Time Mem
and DST Time) | Bipolar MOS Cove Cyc | Bipolar MOS Core Cyc |Bipotar MOS Core Cyec
ADD, SUB, .30 45 .90 1 45 .60 1057 2 .75 1.05 2.00 2
BIC, BIS D) (D) (©) (B) (D) (E}
CMP, BIT .30 45 .80 1 A5 &0 1.05 1 A5 .60 1.13 1
(D) (D) © D) (D) (E)
XOR .30 A5 .80 1 — — — .75 1.05 2.00 2
(DY (D) (€}

NOTE (C): Add .23 psec if DST is R7.

MNOTE (D): Add .3 usec if DST is R7.
NOTE (E): Add .23 psec if DST is R7, add .08 psec if DST is odd byte and not R7.

0z

Double Operand (Cont.)

Instruction EF Time ¢ EF Time

(Use with DST DST [remobe=0) || | (srcmobE = 1.7) | Memory
SRC Time) Mode Register Bipolar MOs Core Bipolar MOS Core Cycles

0 0-6 .30 45 9 A5 .60 1.05 1

D 7 .60 75 1.13 75 .90 1.28 1

1 0-7 75 1.05 2.00 75 1.05 1.95 2

2 0-7 75 1.05 2.00 .75 1.05 195 2

MOV 3 0-7 1.20 1.65 2.68 1.20 1.65 3.05 3

4 0-7 .90 1.20 2.15 90 1.20 203 2

5 Q-7 1.25 1.80 3.13 1.25 1.80 3.13 3

5] 0-7 1.05 1.50 290 1.20 1.65 3.05 3

7 0-7 1.50 2.10 3.88 1.65 2.25 3.96 4

122

Single Operand

DST MODE =0 DSTMODE1TO?7
Instruction EF Time Memory —EF Time Memory
{Use with DST Time) Bipolar MOS Core Cycles Bipolar MOS Core Cycles
CLR COM, INC, DEC, ADC,
ABC, ROL, ASL, SWAB,
SXT .30 45 .80 1 .75 105 2.0 2
e &) @)
NEG 75 .90 1.28 1 1.05 140 218 2
F
TST .30 A5 .80 1 .45 60 113 1
¢J) &) (G)
ROR, ASR .30 A5 90 1 75 105 2.0 2
) e)] (G) (H)
ASH, ASHC 75 .9 1.28 1 .90 1.05 1.43 1
(n n ()] n N m
NOTE (F): Add .12 usec if odd byte.
NOTE (G): Add .23 usec if DST is R7.
NOTE (H): Add .15 usec if odd byte.
NOTE (1): Add .15 psec per shift.

NOTE (J):

Add .30 usec if DST is R7.

Single Operand (Comt.)

Instruction - Memory
{Use with SRC Times) Bipotar MOS3 Core Cycles
MUL 3.30 3.45 3.83 1
BV
by zero .90 1.05 1.43 1
shortest 6.90 7.05 7.83 1
longest 8.55 870 9.08 1

Instruction Bipolar MOS Core Mermory Cycles
MFPJ 1.05 1.35 218 2 (use with
MFPD 1.05 1,35 2.18 2 SRC Times)

DsT r—Instruction Time——

Instruction Mode Bipolar MOS Core Memory Cycles
MTPI 0 .90 1.20 203 2.
MTPD 1 1.20 1.65 293 3

2 1.20 1.65 293 3
3 1.65 2.25 4.03 4
4 1.35 1.80 301 3
5 1.80 2.40 4.11 4
6 1.65 2.25 4.03 4
7 2.10 2.85 5.01 5
Branch Instructions
Instr Time Instr Time
{Branch) {No Branch) Memory

Instruction Bipolar s MOS Core | Bipolar MOS Core| Cycles

BR, BNE, BEQ, .60 .90 1.13 | .30 45 .80 1

BPL, BMI, BVC,

BVS, BCC, BCS,

BGE, BLT, BGT,

BLE, BHI, BLOS,

BHIS, BLO

S0B 75 .90 1.13] .60 75 1.28 1

Jump Instructions

Destination p——=Instr Time Memory
Instruction Mode Bipolar MO3 Core Cycles
1 .50 1.15 143 1
2 .90 1.16 1.43 1
3 1.20 1.50 2.26 2
JMP 4 90 1.15 1.43 1
5 1.35 1.65 241 2
6 1.05 1.35 2.18 2
7 1.50 1.95 3.16 3
1 1.50 1.80 2.63 2
2 1.50 1.80 263 2
3 1.80 2.25 346 3
J5R 4 1.50 1.80 263 2
5 1.95 2.35 3.61 3
6 1.50 1.95 3.38 3
7 2,10 2.70 4.36 4
Control, Trap, & Miscellaneous Instructions
Instr Time——-—--——‘ Memory
Instruction Bipolar MOS Core Cycles
RTS ~ 105 1.45 2.11 2
MARK .90 1.20 2.03 2
RTi, RTT 1.50 1.95 3.16 3
SET N, Z, V., C
CLE N, Z V. C 60 75 1.13 1
HALT 1.05 1.05 1.05 - 0
WAIT 45 .45 A5 0 WAIT Loop
fora BR is
.3 usec.
RESET 10ms 10ms 10ms 1
10T, EMT,
TRAP, BPFT 2.40 3.15 5.26° 5
SPL .60 75 113
INTERRUPT 2.2% 2.85 4,95 -4 First Device

223

B.2 LATENCY

Interrupts (BR requests) are acknowledged at the end of the current
instruction. For a typical instruction execution time of 3 psec, the aver-
age time to request acknowledgement would be one-half this ar 1.5 nsec,
The worst case {longest) instruction time (Megative Divide with SRC
Mode 7) and, hence, the longest request acknowledgement would be
11.79 pusec max with core {10.2 usec with MOS and 9.00 usec with Bi-
polar).

The Interrupt service time, which is the time from BR request acknow!-
edgement to the fetch of the first subroutine instruction, is 4.95 usec
max with core, 2.85 usec with MOS and 2.25 usec with Bipolar.

Hence, the total worst case time from BR request 1o begin the fetch of
the first service routine instruction is:

Bipolar MO3 Core

Narmal 11.25 12.87 16.74
Memary Management
Operating 11.70 13.32 17.90

The tota! average time for BR request to begm the fetch of the first serv-
ice routine instruction is:

Bipolar MOS Core

Normal 3.95 4.85 3.45
Memory Management
Operating 4.40 5.30 8.90

NPR Latency is 3.5 usec worst case.

224

B.3 FLOATING POINT INSTRUCTION TIMING

Floating point times are calculated in a similar manner to the CPU In-
struction times. The times involved are preexecution Interaction time,
source or destination tirme, execution time, CPU d|sp!acement time, and
the time taken to fetch the next Instruction,

With the fleating point Instructions the CPU and the FPP operate in
paraflel and hence, the Instruction time includes a CPU time and a
parallel FPP time. These times do not coincide, each wnit is free to con-
tinue at a different time with its next operation.

Instruction Time (CPU) = pre-interaction 4 source 4 disengage -
fetch of the wiext instruction.

Instruction Time (FPP) — pre-interaction 4- source 4 execution.

Pre-execution Interaction time: This involves the passing of informa-
tion between the CPU and the FPP. The tota! time is 800 ns. The float-
ing point unit Interacts only during the last 150 ns.

Therefore, the CPU becomes active at the time 0, and remains so until
time 600 ns, while the FPP becomes active at time 450 and remains
active unti} the time 600 ns. The FPP could have been active from a
previous task during the initial 450 ns.

B.3.1 Source or Destination Times

These times are the same whether the calculation is for source or
destination. The times given are for the address calculation. To this must
be added rmemory access time to actually fetch the operands:
Integer—1 word; Long integer and Floating—2 words;

Double Precision—4 words

Therefore: SOURCE/DST = Calculation Time 4+ MEMORY ACCESS TIME.

Calculation Time
300 ns Bipolar 450 ns MOS 850 ns Core

(M511-C) (M511-B) (MM11-5)
Reg mode 0 1120 1120 1120
Floating mode O 1120 1120 1120
1 1260 1260 1260
2 1260 1260 1260
3 1650 1760 2100
4 1260 1260 1260
5 1800 1920 2250
6 1650 1760 2100
7 2080 2300 3100

MEMORY ACCESS TIME: to be added to all modes except 0.

ADD: 1600 ns for core OR
ADD: 1100 ns for MOS OR
ADD: 950 ns for BIPOLAR
for every memory Access required to fetch the data.

225

B.3.2 Fioating Point Execution

Floating Point Instructions

Mnemonic Instruction Time (us)
Floating AC—Floating Source Group: OPR FSRC, AC
MIN MAX

LDF Load floating 15 1.5
LDD Load floating double 1.7 1.7
ADDF Add floating 2.4 5.5
ADDD Add floating double + 2.6 7.9
SUBF Subtract floating 2.4 5.5
SuUBD Subtract floating double 2.6 7.9
MULF Multiply floating 4.7 7.1
MULD Multiply floating double 6.6 128
DIVF Divide floating 5.4 8.4
DIVD Divide Floating double: 7.5 13.8
MODF Multiply and Integerize floating 5.3 7.9
MODD Multiply and Integerize fioating double 78 202
LDCDF Load and convert from double to floating 1.7 24
LDCFD Load and convert from floating to double 1.7 2.4
STF Store floating .88 .88
8TD Store floating double .88 .88
Floating AC—Floating Destination Group: OPR AC, FDST
CMPF Compare floating 2.6 3.2
CMPD Compare double 2.8 35 .
STCFD Store and convert from floating to double 1.7
STCDF Store and convert from double to floating 1.7 3.0
Floating AC—Source Group: OPR SRC, AC
LDCIF Load and convert from integer to floating 36 4.6
LDCID Load and convert from integer to double 38 4.8
LDCLF Load and convert from long integer to

floating 38 57
LDCLD Load and convert from long integer to

double 4.1 5.9
LDEXP Load Exponent 1.5

226

Mnemaonic

Instruction

Time (us)

Floating AC—Destination Group: OPR AC, DST

STCFI
STCFL

STCDt
STCDL

STEXP

Store and convert from floating to integer

Store and convert from floating to long
integer

Store and convert from double to integer

Store and convert from double to long
integer

Store exponent

Floating Destination Group: OPR FDST

CLRF
CLRD
NEGF
NEGD
ABSF
ABSD
TSTF
TSTD

Clear floating

Clear double

Negate floating
Negate double

Make absolute floating
Make absolute double
Test floating

Test double

Operate Group: OPR SRC

LDFS
STFPS
STST

SETF
SETI

SETD
SETL

Load floating program status OPR DST

Store floating program status

Store floating status (exception & code
and program counter)

Copy Condition codes

Set floating mode

Set integer mode

Set double rmode

Set long integer mode

227

MIN

Aa
M RS =

P
B

b L bt e
[L NS R R B E N TR I

et s gg

b bk bt bl B et

MAX

B.3.3 Disengage and Fetch Next Instruction

This is the time required by the CPU to disengage from the FPP and
fetch the next instruction, If the instruction is a Floating Point instruc-
tion then the CPU restarts the cycle described in this section (B.2), other-
wise, it returns to the CPU cycle described in section B.1.

CPU time only:
990 ns Core

600 ns MOS
450 ns Bipolar

Example

ADDF A{R), ACO :a floating point add instruction in indexed
source mode (&), and in single {32 bit
precision).

Pre-Interaction Time:
CPU 600 ns FPP 150 us

Source: 300 us Bipolar 450 ps MOS 850 us Core
{MS11-C) (MS11-B} (MM11-5)

Calculation Time: 1650 1760 2100
Memory Access 1930 2200 3200

(2 words)

3630 3960 5300

Execution Average 3950 3950 3950
Disengage 450 600 530

Fetch Next

CPU Instruction Time: Starting at T =0
Bipolar 600 4 3630 + 450 = 4880

MOS 600 + 3960 + 600 = 5160
Core 60C + 530 4 990 = 6890

FPP Instruction Time: Starting at T — 450
Bipolar 150 4- 3630 4 3950 = 7730
MOS 150 + 3960 4 3950 = 8060
Core 150 -+ 5300 -+ 3950 = 9400

228

APPENDIX C

MEMORY MAP AND RESERVED LOCATIONS

000000 -
000037 TRAP VECTORS
000040 SYSTEM SOFTWARE
000057 - COMMUNICATION WORDS
000080
INTERRUPT VECTORS
[PLEASE REFER TO PDP—H]
000377 PERIPHERAL HANDEOOK
e T]
770000
PERIPHERALS
AND
REGISTERS

The lacation of trap vectors for processor conditions is as follows:
Note: all tocations are located in Kernel Virtual Address Space.

Vector Condition
4 0dd address error—an attempt has been made to reference a word
at an odd address, The instruction causing the error has been
aborted (at the microinstruction causing the “bus pause' asso-
ciated with the bad bus cycle).

4 Fatal stack violation (red), warning stack violation (yellow)—an
attempt has been made to modify (DATIP, DATO, OR DATOB) a
word whose address is below the final stack boundary (red), or 16
wards before the boundary (yellow) with an R6-related operation.*
The instruction causing the error is aborted {as above), R6 is set
equal to the quantity 4 and a trap is taken. Odd address errors
and timeout assaciated with R&-related operations will also lead to
fatal stack violations (instead of their normal sequence).

+ TRe final stack boundary is 16 words beyond the stack lirnit.
229

4 Timeout—no SSYN was seen within 5 usec of processor transmis-
sion of MSYN. The instruction causing the error is aborted.

4 Parity error—incorrect data parity has been detected by a slave
device during a processor initiated DATA or DATIP. Note that this
will be acted upon onily at the next bus cycle initiated by the pro-
cessor,

10 llegatl and reserved instructions—JMP R:JSR M,R; "HALT" in user
mode; FPP instructions when FPP not available; and the reserved
instructions are:

000007-000077
000210-000227
007000-007777
075000-076777
106400-107777

MOTE: If FPP i= availahle, iltegal FPP instructions trap to Location 244 with an
exception code of 2.

14 Opcode 000003 and the T bit trap through this vector. The T bit
causes this trap whenever it is set and there is no RTT instruction
in the instruction register.

20 10T Trap

24 Power Fail

30 Emulator Trap (EMT)
34 Trap Instruction (TRAP)Y

Interrupt Vectors
240 Programming Interrupt Request

244 Floating Point Exception

250 Memory Management violations and memory management traps

Register Locations
Memory Management: (All Memory Management Registers use 2 Word
Locations))

777572 through 777577 Memory Management Status Registers 0-2
772516 through 772517 Memory Management Status Register 3
777600 through 777617 User Instruction Descriptor Registers 0-7
777620 through 777637 User Data Descriptor Registers 0-7
777640 through 777657 User Instruction Address Registers 0-7
777660 through 777677 User Data Address Registers 0-7

772200 through 772217 Supervisor Instruction Descriptor Registers 0-7
772220 through 772237 Supervisor Data Descriptor Registers 0-7
772240 through 772257 Supervisor lastruction Active Registers (-7
772260 through 772277 Supervisor Data Address Registers 0-7
772300 through 772317 Kernel Instruction Descriptor Registers 0-7
772320 through 772337 Kernel Data Descriptor Registers -7
772340 through 772357 Kernel Instruction Address Registers 0-7
772360 through 772377 Kernel Data Address Registers -7

230

Memory Parity Status Registers:

772110 Memory Parity Status Register 0-8K
772112 Memory Parity Status Register 8K-16K
772114 Memory Parity Status Register 16K-24K
772116 Memory Parity Status Register 24K-32K
772120 Memory Parity Status Register 32K-40K
772122 Memory Parity Status Register 40K-48K
772124 Memory Parity Status Register 48K-56K
772126 Memory Parity Status Register 56K-64K
772130 Memory Parity Status Register 64K-72K
772132 Memory Parity Status Register 72K-80K
772134 Memory Parity Status Register 80K-88K
772136 Memaory Parity Status Register 88K-96K
772140 Memory Parity Status Register 96K-104K
772142 Memory Parity Status Register 104K-112K
772144 Memory Parity Status Register 112K-120K
772146 Memory Parity Status Register 120K-124K

Processor:

777570 Console Switch and Display Register
777772 Program Interrupt Register

777774 Stack Limit Register

777776 Processor Status Word

ORDER OF SERVICE
In the case of concurrent trap/interrupt conditions. The PDP-11/45
service requests in the following order:

Order Condition Action
Odd Address Trap {4)
0 Fatal Stack Violation (Red) SP4; Trap (4)
0 Page Violation Trap (250)
0 Timeout (NXM) Trap (4}
0 Parity Error Trap {4)
1 FPP Data XFER Request DO Bus Cycle
2 Console Flag _ Console Control
3 Memory Management Trap Trap (250)
4 Warning Stack Viclation {Ye[) Trap (4)
5 Power/Fait Trap (24)
*e*Processor Priority Level 7##%
FPP Exception Trap Trap (224)
PIRQ 7 Trap (240)
8 BR7,INTR Interrupt

231

*#*Procesgor Priority Level 6%%*%

9 PIRQ & Trap (240)

10 BRE, INTR Interrupt
¢«Processor Priority Level 5%
= =*Processor Priority Level 1%%% -

17 PIRQ 1 Trap (240)
*¥2 Processor Priority Level J%%%

18 T-Bit Set and not RTT Trap (14)

NOTES .

1. Order O conditions are mutually exclusive and take immediate pre-
cedence over all other conditions. They force immediate interruption
{abort) of instruction execution when they occur.

2. Other order conditions permit the instruction in progress (including
traps) to proceed to completion before being serviced.

3. Lower order conditions depend on the Processor Status setup by

previously serviced conditions. Thus power/fail service should {and
generally wouid) raise the processor priority to level 7 to lock out
interrupts,
The T-hbit condition is not locked out by any processor priority jevel.
Fatal Stack Violations supersede warning stack violations. In case
both occur during an instruction only the fatal violation is acknowl-
edged, .

6. If a Memory Management Trap and a Fatal Stack Violation occur

together, the PDP-11/45 will loop:
A. The Fatal Stack Violation sequence is exceeded.
B. The first instruction of the “Trap 4" Service Routine is exe-
cuted setting the SP to 0. .
C. The Memdry Management Trap begins but causes a Fatal
Stack Viclation.
D. Step A, Step B, Step C, ...
7.)f power fails before execution of a Fatal Stack Violation Trap

Sequence:
A. The PS and PC are taken from the power fail sequence.
B. The SPis set to 4.
232

8.

10.

11,

C. The previous PC and PS (from the routine causing the stack
violation} are saved and {(pushed into) locations 0 and 2.

D. Execution of the Power/Fail Service Routine begins—a sug-
gested beginning is:

TST SP
BNE SPOK
MOV #N,SP ;set up emergency stack

If power failed during (or after} execution of a Fatal Stack Viola-
tion Trap Sequence:

A. The Stack Violation Trap Sequence completes—saving the
PC and PS associated with the violations 0 and 2 and establishing
a new PS and PC as determined by the vector at 4.

B. The first instruction of the “Trap 4 service routine is exe-
cuted.

C. The Power{Fail Vector is loaded into the PS and PC.

D. An attempt is made to push the old PC and PS5 into the stack.
The stack pointer however is probably at 0 so a Fatal Stack
Violation occurs.

E. Operation proceeds as in ncte #7. The PC and PS of the
routine causing the Fatal Stack Violation are overwrititen (they
were saved in locations 0 and 2). The PC and PS for the “Trap 4"
Service Routine are the same as the contents of the Power/Fail
Vector—also the same as the contents of the current PS and PC.

The vectors for Power/Fail and Stack Violation Traps {at 24 and 4)
must raise the processor Priority to tevel 7 to lock out interrupts, In
addition they must not set the T-bit, Since there is no stack left, any
interrupts Tor T-Bit Traps will cause Fatal Stack Viclation and either:

A. Loop if the vector at 4 is mis-set.

B. Loss of the Power/Fail Trap if the vector at 24 is mis-set.

If an interrupt or trap causes a Fatal Stack Violation, the PS and PC
loaded from the Interrupt Vector are saved in locations 0 and 2.
The PC and PS of the Interrupted {Main Line) Program are iost.

If any order O conditions occur in the Fatal Stack Violation Trap
Sequence before a new stack is established. The processor will
enter the loop described in Note 6 above.

233

12. If a particular error condition is endangered by the routine to service

13,

that condition the stack will grow to its limit and then cause a Fatal
Stack Violation,

Reserved and illegal instructions (including the Floating Point in-
structions when Floating Point Hardware is not implemented as well
as attempts to halt in User Mode) are treated just as instruction
traps (e.g., trap, EMT). Note however that in the case of Floating
Paint Instructions the PC pushed on the stack points at the instruc-
tion word,

234

APPENDIX D

PROGRAM INTERRUPT REQUESTS

Program Interrupt Requests

A request is booked by setting one of the bits 15 through 9 (for PIR 7—
PIR 1) in the Program Interrupt Register at location 777772, The hard-
ware sets bits 7—5 and 3-—1 to the encoded value of the highest PIR
bit set. This Program Interrupt Active (PIA} should be used to set the
Pracessor Level and also index through a table of interrupt vectors for
the seven software pricrity levels. Figure D-1 shows the layout of the
PIR Register.

i}i?lﬂl.ﬁlﬁlﬂlmrzi%zlélz%szl?%

Figure D-1 Program Interrupt Request Register

When the PIR is granted, the Processor will Trap to location 240 and
pick up PC in 240 and the PSW in 242 It is the interrupt service rou-
tine's responsibility to queue requests within a priority level and to clear
the PIR bit before the interrupt is dismissed.

The actual irterrupt dispatch program should look like:

MOVB PIR,PS ; places Bits 5—7 in PSW Priority Level
Bits

MOV R5.—(SP} ; save R5 on the stack

MOV PIR,RS

BIC #177761,R5 ; Gets Bits 1—3

JMP @DISPAT(RS) ; use to index through table

which requires 15 core locations.

235

236

APPENDIX E

MEMORY PARITY

When memory parity is installed on a system, the user can keep track
of the status of his' memory thraugh memory status registers,

There are 16 memory status registers on the PDP-11/45 each one asso-
ciated with an 8K section of memory. (See Appendix C} The status reg-
ister uses the format:

15 1m_w % a 7 Q

| I 1 1 | 1 [I [1 I] Il I N| ol]
b e P —
!] T T

[HALT ENABLE

TYPE OF PARITY
PARITY ERROR

Bit 15 Parity Error

Bits 11, 10 Type of Parity Bits 11 and 10 are associated with
the high order 4K and low order 4K
of this memory address bank. When
set to a 1 they specify odd parity for
their respective half banks; whean
clear, even parity.

Bit 9 Halt Enahle When bit 9 is set the machine will
execute a halt if a parity error oc-
curs; when clear, the machine will
perform an effective timeout and ‘in-
terrupt’ through location 4,

Bit 8 Parity Disable When this bit is clear, a parity error
will cause an interrupt (or hait as
specified in bit 9); if it is set, no ac-
tion will be taken on a parity error.

When the machine is powered-up, the status registers have bit 15 set
to 0, and the remaining bits set to 1: halt, odd parity enable; parity
disable. ’

237

238

Ahsolute Addressing ... 36
Addressing 3,25
Architecture ... _....................... 9
Autodecrement Mode 30
Autoincrement Mode e 29
Branch Instructions ... T 77
Bus Options ... 1)
Byte instructions ... 43
Central Processor 2,11
Co-Routines 14}
Communications 7
Core Memory 16
Condition Codes 14
Condition Code Instructions .. 126
Console 194
CPU 2,11
Data Acquisition and Control ... 7
Deferred Addressing 32
Direct Addressing 27
Direct Memory Access ... 4
DMA 4

Double Operand Instructions . 65
Floating Point Instructions ...
Floating Point Processor 4, 14, 163
FORTRAN

CFPP 4
General Registers 12
Immediate Mode 35
Index Mode 31
Indirect Addressing 32
Instructions 2,41
Instruction Timing 217
Instruction Set Processor 42, 203
Interdeaving 16
ISP . e 42,203
I.oglcal Instructlons 73
Memories . 4,15
Memory Management 5,143
Memory Parity 17
Memory Retention ... U 16
Modes, Addresslng 25
Nestlng UTTUPRTOTP 135

Operator's Console 192
Options

PC
PDP-11 Family 1
Peripherals TR 5
PIC . e 140
Position Independent Code ... 140
Power Fail And Restart -4
Power Failure 22
Priority Interrupts 3,19
_Processor Status Word ... 13,24
Processor Traps 22
Processor Priority 14
Program Counter 26 35

Program Control Instructions . 77
Programmlng Techniques
Recursion

Reentrancy
Reentrant Code ...
Register Mode

Registers ...

Relative Addressing 37
Ratate Instructions ... 61
RSTS-11 6
Shift Instructions 52
Single Operand Instructions .. 45
Software TP .6
Solid State Memory 15
SP e 25

Stack Limit Register 14
Stack Pointer ...

Stacks ...
Storage Devices

Subroutine Instructions 98
Subroutinges 131
~ System Interaction .. . T 19
Timing
. Traps
Trap Instructions ... 108

UNIBUS110

239

INSTRUCTION INDEX

ADC(B) .
ASL(B)
ASH ...

BHIS oo e
BIG(BY oo,
BIS(BY oo,
BIT(B)
BLT
BLO oo
BLOS .o
BML
BNE .,
BPL
BPT oo,

BR ..., s

BVC o,

BYS oo

CLR(B)
CMP(BY ...
COMBY . ooveereier o,
COND. CODES

DEC(B)
DIV

NEG(B)

RESET
ROL(B)
ROR(B) ...
RTL o,
RYS i .
RTT o e,

SBC(B)
SWAB

240

FPP INSTRUCTIONS

ABSD .. 187
ABSF ... 187
ADDD ... 173
ADDF 173 .
CFCC .. 192
CLRD ... 186
CLRF .. 186
CMPD 178
CMPF .. 178
DIVD 177
DIVF 177
LDCOF ..., 180
LODCFD ... 180
LDCID e 182
LDCIF . 182
LDCLD ... 182
LDCLF .. 182
LDD ..o 171
LDEXP ... 184
LDF . . 171
LDFPS 191
MODD . 179

MODF
MULD

. 179
176
... 176

175
175

189
189
... 190
..... 190
... 181

.. 183
i83
181
.. 183
183
172
185
172
. 191
192
174
174

.. 188

241

NOTES

242

NOTES

243

8FZ

DIGITAL EQUIPMENT CORPORATION mnannan WORLDWIDE SALES AND SERVICE
MAIN OFFICE AND FLANT

1AE ger Steaer. aynded. Mandechusaite, L5 A §I750 ¢ Teieghore: From tenopolien @oslan. 4 8600 « Elaewhare (62 7]-837-5111
PN, F10-307-021F Cadie DIGITAL MAYN Talwe §0457

NOATHEAST

REGIONAL OFEICE

75 Wpman Sweel. Waltharm, kassachugcng G254
Telephona (B 7-S00RRAKK TWK 7103046910
VAL THAR

15 Lunda Sireql, Waltham. Massachusglte 0915
Teléphane (8118811030 TWa 71D Tathy
CAMPRIOGE/BOSTON

B4 Baun Siemet. Combridge. Mandbchuseits (18
Falephare 1610450600 Tws 710320 1187
ROCHEETER

130 Alirne Crak Aoad Aoaciester, Mew Yok 14618
Trlephars {T16) 4511700 TWX. 0353209
FYRALLSE

5858 Easl Malboy Rged. Aum 142, Prgard Budding
Syracuss, Naw York 13711

Telephona [315)-455-5087 (B8

COMNE(TICUT

ray Avenue. héondea, Conae thout 06410

- (IO0NTATBAESMGE TIAE I0AEE-DO54

MID-ATLANTIC — SOUTHEAST
RIuOhas SFEICE

T
Tell‘l:llm

U5 At 1, Breocelon, Mew Ieray g5
leluphon |S08) 452 &) Thux D0EE 116
PANHATTAN

BIE Tth Age.

MHew York MY, 16019

Telephana. (212) 5431300

NEW VORW

A Codar Lane, Tnplewant Mew huesy
Telaphne (301087145684, l2|2>5&dﬂ9¢!. [JI?] L3 DT
P Tinag AT

HFW (ERSEY

10 Figte 45, Paranipang Hine | ey 0474
Tulephone 207 330 100 3w 710 961-E310
ARINC TON

UE Nude 1

privwlan, M letsy W

TR 4N B 7338

195 hgin St
Mehichen M.} 03040
Talaphins: (2054341 002000

UNITED

MID-ATEANTIC — SOLTHEAST (cont)
LONG 15LANS

I Huntingien Quatrangle

1305 Wanhingean Station. Mew Yark 117

Telephors |016] B3, (N2).656 BIES
PHILADELPHIA

Saanon Siusra Theee, Paol, Peangylvarm 1930
Tolephgre (2150E4T-H09400 Telgn 410-550-63m
WASHJHG?CI

]
£eon. Riugroale Kargland JIB40
lelanhone 10| 77816000 2508797 T T10-596-3662
CLIRMARS C!mPEL HiILL
Eencutive Pa
amﬂ Chapel H:II Blvd.

Fitum Harth Cor gl 22707
.eleP“lum—. [T AN Ty S0l M
LRRLANDO
Sue 130, M1 Lake Ellenar Drose, Chlando. Floride HE0a
Telephone (MG)AGIA460 T RIGHES0.0180
ATLANTA

@ Tl vew Ploce, Suite 100,
Atlantr, Georon XG0

Telophone. (#4561 314731 35
KWOEILLE

G311 Katgalan Pike. Suale 210
Knmwrll, | eninggon 3740
Telaphoru (FI5)SRES 1

CENTRAL

RLGIONAL QFFICE

18! Frontuge Rond, Morimbrock 1H1inaes £0062
Teapplacne (B10) 498 2500 TWl S60-684 065
PITTEBURGH

1 P Cemer Bouieuard
Bitleburgle, PcnrwN.w 14235

43-9904 1% 710.737-3507

TWK. BIO-TST 223

T RIDSHIBIZY

VB Framage Hogel, Manhbroik, oo s G067
Teltphare talaj B TR 0GR
ANM AR '
IR Hurgn v’n.-w Burlevard, Anp Arlud, Wizlugan 48103
Taltghane (33TE1-1150 TWX HIMIZIELS
DETROIT

13137 Trcenfu i Aoad
Seuthtiekl Mach
T luphiie

STATES

CENTAAL (cont)
INDLARARGLIE

2 Badihwiy Odeeh — Suitn G
Lighanspeda, Fiefiang 45324
Tebephone (31 7] 436041
WINNEAPDLIS

Siate 11, BX] Ceor Avenue Sowh.
Kinagspohy. Mirseaola 5543
Teleghuig |58 2HA-FEET 3 4.5
CLEVELAND

25006 Euchid Ave.
Eyghid, Ohup 43117
Telaphane. (:lﬁ] -D4E-B4B4
Kan5AS CIF

532 ot 43nd St . Indmnﬂ«r\ce_ Mhigggnn BADGS
Telephane: [B184481-340 TWWK: BIS-81.00

&7 LOwns

Suue 110, ||5 Proprasn Porkwny. Boryisnd Hiights.
Keazdar B

Talgphiane. tsu] 2724310
DarYFaN

301 Kamarng Boulavard, Dayron, Qhig 45433
Telephone [S13RHH-20G7 Twik: 8158
AILWALIREE

G W Capitol Groen, Mibuguke s, SWigcond i G327
Talephten (ALAFAESA1IE FWX F1RPER 1198
DALLAS

8855 MisIh Slemmann Fremvay, Dl Teass 75247
Telephane. [14) B8 4880 TV 910-B41-4000
HOUSTON

3T Milam Stroet. Suie A Hewaban, Tasan 37002
Tobmphong: [T1IF524-2061 Tovd 910801 6856
RO ORLEANS

100 Fudgalaks Drva. Suite 08

el e, Low geana 70002

Tetephare: (58370257

ROUHAORL

500 South Wyme St

Agchberd, [inoie §11H

Felephang (815)-965-5587

TULSA

34D Winstan
Winzlan S. Sidg

Sunte +

Tulsn, Dhlohamas 74135
Taloohone: (315). M54 78

TWX BID-M1-ME

TWE §I0-50-TRE

TWE B10-437- 260

TW 310, 7640831

WEST

REG/OMAL CIFFICE.

500 Soquel Way. Sunny'val: Carllarrea 24086
Telephana. [#4)- 72

LANTA AMA

2110 5. Anpe St

Sanla Ana. Calif. B4

Teleghone |[TI4-970-2480

F.35. PACDTI-245 Wl BAG-301-1189

WEST LOS ANGELES

IBIG Canar Augnue, Loa Angalss, Gahfremia 90025
Tulpphune (FEI-LPEIMPEAATIH T 410 226964
SAlN DIEGD

£144 Minscon Gorge Fusd, Suite 11D

San Duga Caddarra 22120
Talephona: {F1ah280. 080, 700
SAN FRANCISCO

T4 Twiig Bl bApunimn Ve, Cahfonnls 3408
Telaphane (415)-864.8200 Tw¥ O10-373-1286
DAKLANL

B0 Edgewater D, Chakland, Coédarn s 4621
Telaphano [#15h B3 5S404 7830 T, D056 728
ALALQLERGUE

R bndian School Road, ME., Albuguerqua, M.M. 8T110
Talophine (o05] SE0401/0cs T, BID-AE0.0614
OENVER

134 Sauth Caloruda Bouleverd, Suite #5

Derver. Colarada

Telephone (300)-757- 353 /756-1650/ 759 | 658

T 3105312650

TWX. SI0-X05-1200

FEATILE
1421 150N N F., Ballewge, Wanhinglan 53005
Telophatw (206).454- 4008/ 405.5404 T QI0443.2006

SALT LAKE CITY

41 Sauth wo Easl, o0 Loks Ciky, Wtsh 24111
Telephore 16019-120 2830 TN 910-025-5834
PHOLNGE

#8 Easl Droaowny Hoad, Phoaio Anzoao BRIy
Falepnone G2 2603408 Twuxt: SO0.0G04E50
FORTLAND

e |

531 T W Wesigate Drive. Portiend. Oregon B7221
Teteahone. (500]-201.3001 /AT

dlilgliltall

.

digital equipment corporation

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	248
	xBack

