dlilgliltlall

processor
handbook

o0

PCPT40

processor
handbook

digital equipment corporation

Copyright ©® 1972, by Digital Equipment Corporation

DEC, PDP, UNIBUS are registered trademarks of Digital Equipment Corporation.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 11
1,2 GENERAL CHARACTERISTICS 1-2
1.2.1 The UNIBUS ... 102
1.2.2 Central Processorc.cocccooioieiiiiieiei, 1.3
1.2.3 MemMOM€s ... cooovoovoeeooeeeeeveeei . 15D
1.2.4 Floating Pointcocooeviiiioecieeeeeeeee.. 1B
1.2.5 Memory Management ... 15
1.3 PERIPHERALS/OPTIONSc.oooooivevecevieen. 1B
1.3.1 1/ DOVICRS ..ooooovve evoieseeeee e 1-6
1.3.2 Storage Devices ..o 146
1.3.3 Bus Optionsccocoooovvvceiieieeieoiveeeeeeeaeen.. 146
14 SOFTWARE ... 1B
1.4.1 Paper Tape Software 1-7
1.4.2 Disk Operating System Software ... 17
1.4.3 Higher Level Languagescc.c.oeoe.. 17
1.5 NUMBER SYSTEMS 17
CHAPTER 2 SYSTEM ARCHITECTURE - 21
2.1 SYSTEM DEFINITION
22 UNIBUS
2.2.1 Bidirectionat Lines ...
2.2.2 Master-Slave Relation N
2.2.3 Interiocked Communication22
2.3 CENTRAL PROCESSOR ISP UT PO PPUROR 2.2
2.3.1 General Registers T e 2-3
2.3.2 Processor Status Word TR 2-4
2.3.3 Stack Limit Register_ 2.5
2.4 EXTENDED INSTRUCTION SET & FLOATING POINT . . 2.5
2.5 CORE MEMODRY . . 26
2.6 AUTOMATIC PRIORITY INTERRUPTS 2-7
2.6.1 Using the Interrupts
2.6.2 Interrupt Procedure
2.6.3 interrupt Servicing
2.7 PROCESSOR TRAPS

2.7. Power Failure

Odd Addressing Errors

2.7.2

2.7.3 Time-out Errors

2.7.4 Raeserved Instructions

275 Trap Handling

CHAPTER 3 ADDRESSING MODES

3.1 SINGLE QPERAND ADDRESSING ...

3.2 DOUBLE OPERAND ADDRESSING

3.3 DIRECT ADDRESSING
3.3.1 Register Mode
3.3.2 Auto-increment Mode
3.3.3 Auto-decrement Mode
334 IndexMode

3.4 DEFERRED {INDIRECT) ADDRESSING e 3

3.8 USE OF THE PC AS A GENERAL REGISTER e 3412

3.5.1 Immediate Mode .
3.5.2 Absolute Addressmg
3.5.3 Relative Addressing

3.5.4 Relative Deferred Addressing . .. 3415
3.6 USE OF STACK POINTER AS GENERAL REGISTER e 3-16
3.7 SUMMARY OF ADDRESSING MODES R £ {1
3.7.1 General Register Addressing_..... 3-16
3.7.2 Program Counter Addressing 3-18
CHAPTER 4 INSTRUCTION SET ... 4-1

4.1 INTRODUCTION
INSTRUCTION FORMATS
LIST OF INSTRUCTIONS
SINGLE OPERAND INSTRUCTIONS

DOUBLE OPERAND INSTRUCTIONS
PROGRAM CONTROL INSTRUCTIONS
MISCELLANEQUS

Bobobhof b
N bW

CHAPTER 5 PROGRAMMING TECHNIQUES 5-1

5.1 THE STACK ...
5.2 SUBROUTINE LINKAGE .
5.2.1 Subroutine Calls
§.2.2 Argument Transmission . .
523 Subroutine Return
5.2.4 PDP-11 Subroutine Advantage
5.3 INTERRUPTS
5.3.1 General Pnncnples

5.3.2 Nesting .. 5-10
54 REENTRANCY . ., B-13
55 POSITION INDE‘PENDENT CODE U 515
5.6 CO-ROUTINES ... 5-16
5.7 MULTI-PROGRAMMING 5.17
5.7.1 <Control Information 5-17
57.2 Data e DA1T
5.7.3 Processor Status Word 517

CHAPTER 6 MEMORY MANAGEMENT
6.1 PDP-11 FAMILY BASIC ADDRESSING LOGIC &1

6.2 VIRTUAL ADDRESSING . e, B2
6.3 INTERRUPT CONDITIONS UNDER MANAGEMENT
CONTROL ..., 6-2
6.4 CONSTRUCTION OF A PHYSICAL ADDRESS 63
6.5 MANAGEMENT REGISTERS 6-4
6.5.1 Page Address Register 685
6.5.2 Page Descriptor Register 6-5
6.6 FAULT REGISTERS 67
6.6.1 Status Register #0 6-7

6.6.2 Status Register 2 &8

CHAPTER 7 INTERNAL PROCESSOR OPTIONS
7.1 GENERAL .

7-1
7.2 EIS OPTION . y 7-1
7.3 FLOATING POINT OPTION 7-3
7.4 STACK LIMIT OPTION ..., 7-5

CHAPTER B CONSOLE OPERATION

8.1 CONSOLE ELEMENTS 81
8.2 STATUS INDICATORS

e 82
8.3 CONSOLE SWITCHES 83
B4 DISPLAYS ... 8-4

CHAPTER 9 SPECIFICATIONS

9.1 PACKAGING . 9-1
9.2 CPU OPERATING SPECIFICATIONS _ 9-1
9.3 OTHER EQUIPMENT 5-1
9.4 PDP-11 FAMILY OF COMPUTERS ..., 9-4

Appendix A Instruction Set Processor ... Al
AppendixB Memory Map B
Appendix C PDP-11/40 Instruction TIMingcccoce e, c-1
Appendix D Instruction Index and Numerical Op Code List ... D-1

Appendix E Summary of PDP11 Instructions E-l

vi

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The PDP-11 family includes several central processors, a large number
of peripheral devices and options, and extensive software. PDP-11 com-
puters have similar architecture and are hardware and software upwards
compatible, although each machine has some of its own characteristics.
New systems will be compatible with existing family members. The user
can choose the system which is most suitable for his application, but as
needs change or grow he can easily add or change hardware.

This Handbook describes the PDP-11/40, one of the latest computers in
the PDP-11 family from Digital Equipment Corporation {DEC). This
powerful, low-priced machine is packaged in a 21" front panel slide
chassis, allowing convenient access and expansion when mounted in a
standard rack. The PDP-11/40 was designed to fit a broad range of
applications, from small stand alone situations where the computer con-
sists of only 8K of memory and a processor, to ltarge muiti-user, multi-
task applications requiring up to 124K of addressable memory space.
Among its major features are a fast central processor with a choice of
floating point and sophisticated memory management, both of which are
hardware options.

Some of the PDP-11/40 features are:

* 16-bit word (two 8-bit bytes)
direct addressing of 32K 16-bit words or 64K 8-bit bytes (K == 1024)

* Word or byte processing
very efficient handling of 8-bit characters

* Asynchronous operation
systems run at their highest possible speed, replacement with faster
devices means faster operation with no other hardware or software
changes

¢« Modular component design
extreme ease and flexibility in configuring systems

» Stack Processing
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

1-1

« B fast general-purpose registers
very fast integrated circuits used interactively for instruction processing
* Automatic priority processing
four-line, muiti-level system is dynamically alterable
* Vectored interrupts
fast interrupt response without device polling
+ Single & double operand instructions
powerful and convenient set of micro-programmed instructions

DEC References
The following publications contain supplementary and useful information:

Title

PDP-11 Peripherals and Interfacing
Handbook

PDP-11 UNIBUS Interface Manual
Introduction to Programming

Small Computer Handbook

1.2 GENERAL CHARACTERISTICS

1.2,1 The UNIBUS

All computer system components and peripherals connect to and com-
municate with each other on a single high-speed bus known as the
UNIBUS—the key to the PDP-11's many strengths. Since all system ele-
ments, including the central processor, communicate with each other in
identical fashion via the UNIBUS, the processor has the same easy ac-
cess to peripherals as it has 1o memory.

< | l UNIBU] I oy 1 >

Py weaoey | | 10 10 10 10

i

Figure 1-1 PDP-11 System Simplified Block Diagram

With bidirectional and asynchronous communications on the UNIBUS,
devices can send, receive, and exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because it is asynchronous, the UNIBUS is com-
patible with devices operating over a wide range of speeds.

Device communications on the UNIBUS are interiocked. For each com-
mand issued by a “master’” device, a response signal is received from a

1-2

“slave’ completing the data transfer. Device-to-device communication
is completely independent of physical bus length and the response times
of master and slave devices.

Interfaces to the UNIBUS are not time-dependent; there are no pulse-
width or rise-time restrictions to worry about. The maximum transfer rate
on the UNIBUS is one 16-bit word every 400 nanoseconds, or 2,500,000
words per second.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem-
ory cycles during instruction operations. The processor resumes opera-
tion immediately after the memory transfer. Multiple devices can operate
simutltaneously at maximum direct memory access {DMA) rates by
“stealing” bus cycles.

1.2.2 Central Processor

The central processor, connected to the UNIBUS as a subsystern, con-
trols the time allocation of the UNIBUS for peripherals and performs
arithmetic and logic operations and instruction decoding. It contains
multiple high-speed general-purpose registers which ¢an be used as accu-
mulators, address pointers, index registers, and other specialized func-
tions. The processor can perform data transfers directly between O
devices and memory without disturbing the processor registers; does
both single- and double-operand addressing and handles both 16-bit word
and 8-hit byte data.

Instruction Set

The instruction complement uses the flexibility of the general-purpose
registers to provide over 400 powerful hard-wired instructions—the most
comprehensive and powerful instruction reperioire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have three classes of instructions (memory reference instructions, oper-
ate or AC control instructions and 1/0 instructions) all operations in the
PDP-11 are accomplished with one set of instructions. Since periphera!
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memaory may be used equally well for data in peripheral device registers.
For example, data in an external device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg-
ister, or compare logically or arithmetically contents with a mask and
branch. Thus alt PDP-11 instructions can he used to create a new dimen-
sion in the treatment of computer IO and the need for a special class of
/0 instructions is eliminated,

The basic order code of the PDP-11 uses both single and double operand
address instructions for words or bytes. The PDP-11 therefore performs
very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

PDP-11 Approach

ADD A,B ;add contents of location A to loca-
tion B, store result at location B

1-3

Conventional Approach

LDA A ;load contents of memory location A
into AC

ADD B ;add contents of memory location B to
AC

STA B sstore result at location B

Priority Intarrupts
A multi-level automatic priority interrupt system permits the processor

to respond automatically to conditions outside the system. Any number
of separate devices can be attached to each level.

Each peripheral device in the PDP-11 system has a hardware pointer to
its own pair of memory words (one points to the devices's service rou-
tine, and the other contains the new processor status information). This
unique identification eliminates the need for poliing of devices to identify
an interrupt, since the interrupt servicing hardware selects and begins
executing the appropriate setrvice routine after having automaticaliy
saved the status of the interrupted program segment.

The devices’ interrupt priority and service routine priority are independ-
ent. This allows adjustrnent of system behavior in response to real-time

conditions, by dynamically changing the priority level of the service
routine,

The interrupt system allows the processor to continually compare its
own programmable priority with the priority of any interrupting devices
and to acknowledge the device with the highest level above the proces-
sors priority level. Servicing an interrupt for a device can be interrupted
for servicing a higher priority device. Service to the lower priority device
is resumed automatically upon completion of the higher level servicing.
Such a process, called nested interrupt servicing, can be carried out to
any level without requiring the software to save and restore processor
status at each level,

Reentrant Code

Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-11. This type of code allows
a single copy of a given subroutine or program to be shared by more
than one process or task. This reduces the amount of core needed for
multi-task applications such as the concurrent servicing of many peri-
pheral devices.

Addressing

Much of the power of the PDP-11 is derived from its wide range of ad-
dressing capabilities. PDP-11 addressing modes include sequential ad-
dressing forwards or backwards, address indexing, indirect addressing,
16-bit word addressing, 8-bit byte addressing, and stack addressing.
Variable length instruction formating allows a minimum number of bits
to be used for each addressing mode. This results in efficient use of
program storage space.

14

Stacks

in the PDP-11, a stack is a ternporary data storage area which allows a
program to make efficient use of frequently accessed data. The stack is
used automatically by program interrupts, subroutine caits, and trap in-
structions. When the processor is interrupted, the central processor
status word and the program counter are saved {pushed) onto the stack
areay while the processor services the interrupting device. A new status
word is then automatically acquired from an area in core memaory which
is reserved for interrupt instructions (vector area). A return from the
interrupt instruction restores the original processor status and returns to
the interrupted program without software intervention.

Direct Memory Access

All PDP-11's provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices thus allowing memory data storage or retrieval at memory
cycle speeds. Latency is minimized by the organization and logic of the
UNIBUS, which samples requests and priorities in parallel with data
transfers.

Power Fajl and Restart

The PDP-11's power fail and restart systern not only protects memory
when power fails, but also allows the user to save the existing program
location and status (inciuding all dynamic registers), thus preventing
harm to devices, and eliminating the need for reioading programs. Auto-
matic restart is accomplished when power returns to safe operating
levels, enabling remote or unattended operations of PDP-11 systems. All
standard peripherals in the PDP-11 family are included in the systemized
power-fail protect/restart feature.

1,.2.3 Memories

Memories with different ranges of speeds and various characteristics can
be freely mixed and interchanged in a single PDP-11 system. Thus as
memory needs expand and as memory technology grows, a PDP-11 can
evolve with none of the growing pains and obsolescence associated with
conventional computers.

1.2.4 Floating Point (optionai)

A Floating Point Unit functions as an integral part of the PDP-11/40
processor, not as a bus device.

1.2.5 Memory Management {optional)

PDP-11/40 Memory Management is an advanced memory extension,
relocation, and protection feature which will;

extend memary space from 28K to 124K words

atlow efficient segmentation of core for multi-user environments
provide effective protection of memory segments in multi-user en-
vironments

1.3 Peripherals/Options

Digital Equipment Corporation (DEC) designs and manufactures many of
the peripheral devices offered with PDP-11's. As a designer and manu-

1-5

facturer of peripherals, DEC can offer extremely reliable equipment, lower
prices, more choice and quantity discounts.

1.3.1 1/0 Devices

All PDP-11 systems are available with Teletypes as standard equipment.
However, their /O capabilities can be increased with high speed paper
tape reader-punches, line printers, card readers or alphanumeric display
terminals. The LA30 DECwriter, a totally DEC-designed and built tele-
printer, can serve as an alternative to the Teletype. It has several ad-
vantages over standard electromechanical typewriter terminails, incliuding
higher speed, fewer mechanical parts and very quiet operation.

PDP-11 I/O devices include:

DECterminal alphanumeric display

DECwriter teleprinter

High Speed Line Printers

High Speed Paper Tape Reader and Punch

Teletypes

Card Readers

Synchronous and Asynchronous Communications Interfaces

1.3.2 Storage Devices

Storage devices range from convenient, smatl-reel magnetic tape (DEC-
tape) units to mass storage magnetic tapes and disk memocries. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDP-11 systern. TUS6 DECtapes, highly reliable tape units
with small tape reels, designed and built by DEC, are ideal for applica-
tions with modest storage requirements. Each DECtape provides storage
for 144K 16-bit words. For applications which require handling of large
volumes of data, DEC offers the industry compatible TU10 Magtape.

Disk storage include fixed-head disk units and moving-head removable
cartridge and disk pack units, These devices range from the 64K RS64
DECdisk memaory, to the RP0O2 Disk Pack system which can store up to
93.6 million words.

PDP-11 storage devices include:

DECtape

Magtape

RS64 64K-266K word fixed-head disk
RS1I 256K-2M word fixed-head disk
RKO5 1-2M word moving-head disk
RPO2 10M worgd moving-head disk

1.3.3 Bus Options

Several options (bus switches, bus extenders) are available for extending
the UNIBUS or for configuring multi-processor or shared-peripheral
systems.

1.4 SOFTWARE
Extensive software, consisting of disk and paper tape systems, is avail-

16

able for PDP-11 Family systems. The |arger the PDP-11 configuration, the
larger and more comprehensive the software package that comes with it.

1.4.1 Paper Tape Software
The Paper Tape Software system includes:

Editor (ED11)

Assembler (PAL11}

Loaders

On-line Debugging Technique (ODT11)
Input-Output Executive {10X)

Math Package (FPF11)

1.4.2 Disk Qperating System Software
The Disk Operating Systemn software includes:

Text Editor (ED11)

MACRO Assembler (MACRO-11)

Linker (LINK11)

File Utilities Packages (PIP)

On Line Bebugging Technique {(ODT11)
Librarian (LIBR11)

1.4.3 Higher Level Languages

PDP-11 users needing an interactive conversational language can use
BASIC which can be run on the paper tape software system with only
4,096 words of core memory. A multi-user extension of BASIC is avail-
able so up to eight users can access a PDP-11 with only BK of core.
BATCH

The BATCH System adds job stream processing to the DOS System.

RSTS-11

The PDP-11 Resource Timesharing System (RSTS-11) with BASIC-PLUS,
an enriched version of BASIC, is available for up to 16 terminal users.
FORTRAN

PDP-11 FORTRAN is an ANSI-standard FORTRAN IV compiler.

1.5 NUMBER SYSTEMS

Throughout this Handbook, 3 number systems will be used; octal, binary,
and decimal. So as not to clutter all numbers with subscripted bases,
the following general convention will be used:

Octal—for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of &
octal digits

Binary—for describing a single binary element; when referring to
a PDP-11 word it will be 16 bits long

Decimal—for all normal referencing to quantities

1.7

Octal Representation

-—

!“‘I II5]|4 3 12|n [s‘a 7 als 4 3[2 1 o]PDP-]l word
[S i 1 1 Il | 1 1 i L n
T T T T o T o T s

O ad | || O (] 6-digit octal

The 16-bit PDP-11 word can be represented conveniently as a &-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
the MSB of the octal word. The other 5 octal digits are formed from the
corresponding groups of 3 bits in the binary word.

When an extended address of 18 bits is used (shown later in the Hand-
book), the MSB of the octal word is formed from bits 17, 16, and 15.
For unsigned numbers, the correspondence between decimal and octal is:

Decimal Octal
0 ¢00000
(216 -1)= 65,535 177777 (16-bit limit}
(218 _-1Y=262,143 FIITI7 (18-bit limit)

2's Complement Numbers
In this system, the first bit (bit 15) is used to indicate the sign;

O=positive
l=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the re-
maining 15 bits. (The 2's compiement is equal to the 1's complement
plus one.)} The ordering of numbers is shown below:

Decimal 2's Complement (Octal)
Sign Bit Magnitude Bits

largest positive 432,767 4] 77777
+32,766 0 77776
+1 0 00001
0 0 00000
-1 1 77777
-2 1 77776
=32,767 1 Q0001
most negative —32,768 1 00000

1-8

CHAPTER 2
SYSTEM ARCHITECTURE

2.1 SYSTEM DEFINITION

The PDP-11/40 is a 16-bit, general-purpose, parallel logic computer using
2's complement arithmetic. The processor can directly address 32,763
16-bit words or 65,536 8-bit bytes.

The Central Processing Unit performs all arithmetic and logical opera-
tions required in the system. A Floating Point Unit mounts integrally into
the Central Processor as does a Memory Management Unit which pro-
vides a fuli memory managemnt facility through relocation and protec-
tion.

The #DP-11/40 hardware has been optimized towards a multi-program-
ming environment and the processor therefore operates in two modes
(Kernel and User). By taking full advantage of this feature, a software
operating system can insure that no user {(who is operating in User
maode) can cause a failure (crash) of the entire system. Full control of
the entire system is retained at the conscle or by an operator who is in
Kernel mode,

2.2 UNIBUS

The UNIBUS is a single, cormmon path that connects the central proces-
sor, memory, and all peripherals. Addresses, data, and control informa-
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with mem-
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe-
ripheral devices. Each device, including memory locations, processor
registers, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex-
ibly as core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDP-11 instructions to process data
in any memory location as though it were an accumulator.

2.2.1 Bidirectional Lines

Most UNIBUS lines are bidirectional, so that the same signals that are
received as input can be driven as output. This means that a peripheral
device register can he either read or loaded by the central processor or

2-1

other peripheral devices; thus, the same register can be used for both
input and output functions.

2.2.2 Master-Slave Relation

Communication between two devices on the bus is in the form of a
master-slave relationship. At any point in time, there is one device that
has contred of the bus, This controlling device is termed the “bus mas-
ter’”. The master device controis the bus when communicating with
another device on the bus, termed the “slave™. A typical example of
this relationship is the processor, as master, fetching an instruction from
memory {which is always a slave}). Ancther example is the disk, as
master, transferring data to memory, as slave. Master-slave relation-
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a slave
memory bank,

Since the UNIBUS is used by the processor and ail 1/Q devices, there is
a priority structure to determine which device gets control of the bus.
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive control.

2.2.3 Interlacked Communication

Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the response time of the master and slave devices. This asynchron-
ous operation precludes the need for synchronizing with, and waiting
for, clock pulses. Thus, each device is allowed to operate at its maximum
possible speed.

2.3 CENTRAL PROCESSOR

The PDP-11/40 performs all arithmetic and logical operations required
in the system. It also acts as the arbitraticn unit for UNIBUS control by
regulating bus requests and transferring control of the bus to the re-
questing device with the highest priority.

Space is provided within the central processor for the following options:

Extended Instruction Set
Floating Point Unit
Memory Management Unit
Programmable Stack Limit

The machine operates in two modes; Kernel and User, When the machine
is in Kernel mode a program has complete control of the machine;
when in User mode the processcor is inhibited from executing certain
instructions and can be denjed direct access to the peripherals on the
system. This hardware feature can be used to provide complete execu-
tive protection in a multi-programming environment,

The central processor contains 8 general registers which can be used
as accumulators, index registers, or as stack pointers. A stack, as vsed

2-2

in the PDP-11, is an area of memory set aside by the programmer for
temporary storage or subroutine/interrupt service linkage. A program can
add or delete words or bytes within the stack. The stack uses the “ltast-
in, first-out™ concept; that is, various items may be added to a stack
in sequential crder and retrieved or deleted from the stack in reverse
order. On the PDP-1}, a stack starts at the highest location reserved for
it and expands linearty downward to the lowest address as items are
added. Stacks are extremely useful for nesting programs, creating re-
entrant ¢oding, and as temporary storage where a Last-ln, First-Out
structure is desirable. One of the general registers is used as the PDP-
11/40's Program Counter. Two others are used as Processor Stack
Pointers, one for each operational mode.

The CPU performs all of the computer's computation and logic opera-
tions in a parallel binary mode through step by step execution of indi-
vidual instructions.

2.3.1 General Registers

The general registers can be used for a variety of purposes; the uses
varying with requirements. The general registers can be used as accumu-
lators, index registers, autcincrement registers, autodecrement registers,
or as stack pointers for temporary storage of data. Chapter 3 on Ad-
dressing describes these uses of the general registers in more detait,
Arithmetic operations can be from one generai register to another, from
one memory or device register to ancther, or between memory or a de-
vice register and a general register.

REGISTERS Re
R
R2
a3
a4
[

| RE o [we {

KERNEL USER
STACK POINTER STACK POINTER
(WITH MEMORY
P MANAGEMENT DPTION)

PROGRAM COUNTER
Figure 2-1 The General Registers

R7 is used as the machine’s program counter (PC) and contains the
address of the next instruction to be executed. It is a general register

2-3

normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat-
ing the last entry in the appropriate stack {a common temporary storage
area with “'Last-in First-Out’” characteristics}). The two stacks (with the
Memory Management option) are called the Kernel Stack and the User
Stack. When the Central Processor is operating in Kernel mode it uses
the Kernel Stack and in User mode, the User Stack. When an interrupt
or trap occurs, the PDP-11/40 automatically saves its current status on
the Processor Stack selected by the service routine. This stack-based
architecture facilitates reentrant programming.

2.3.2 Processor Status Word

1% 14 13 12 1 8 7 5 4

EEEN//EEmaDonn

— A [——]
CURRENT |\.|cn|:nz“—1
PREVIDUS MODE™
PRIQRITY

CONDITION CODES

* MODE! @a-KERNEL
11=USER

Figure 2-2 Processor Status Word

The Processor Status Word (PS), located at location 777776, contains
information on the current status of the PDP-11/40. This information in-
cludes the current processor priority: current and previous operational
modes; the condition codes describing the results of the last instruction;
and an indicator for detecting the execution of an instruction to be
trapped during program debugging.

Modes {with Memory Management Option)

Mode information includes the present made, either User or Kernel (bits
15, 14) and the mode the machine was in prior to the last interrupt or
trap (bits 13, 12).

The two modes permit a fully protected environment for a multi-
programming system by providing the user with two distinct sets of
Pracessor Stacks and Memory Management Registers for memory map-
ping. In User mode a program is inhibited from executing a “"HALT" in-
struction and the processor will trap through location 10 if an attempt
is made to execute this instruction. Furthermore, the processor will
ignore the “RESET" instruction, In Kernel mode, the processor will ex-
ecute all instructions.

& program operating in Kernel mode can map users’ programs aqywhere
in core and thus explicitly protect key areas (including the_dewce_reg-
isters and the Processor Status Word) from the User operating environ-
ment.

2-4

Processor Priority

The Central Processor operates at any one of eight levels of priority, 0-7.
when the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor imust be operating
at a lower priority than the external device's request in order for the
interruption to take effect. The current priority is maintained in the
processor status word (bits 5-7). The 8 processor levels provide an ef-
fective interrupt mask.

Condition Codes
The condition codes contain information on the result of the last CPU
operation.

The bits are set as follows:

Z = 1, if the result was zero

N = 1, if the result was negative

C = 1, if the operation resulted in a carry from the MSB

¥ =1, if the operation resulted in an- arithmetic overflow

Trap

The trap bit (T} can be set or cieared under program control. When set,
a processor trap will occur through location 14 on completion of instruc-
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

Interrupts and trap instructions both automatically cause the previous
Processor Status Word and Program Counter to be saved and replaced
by the new values corresponding to those required by the routine ser-
vicing the interrupt or trap. The user can, thus, cause the central proces-
sor to automatically switch modes, or disable the Trap Bit whenever a
trap or interrupt occurs,

2.3.3 Stack Register (with Memory Management option)

All PDP-11's have a Stack Qverflow Boundary at location 400.. The Ker-
nel Stack Boundary, in the PDP-11/40 is a variable boundary set through
the Stack Limit Register found at location 777774.

Once the Kernel stack exceeds its boundary, the Processor will compiete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation). H, for some reason, the program persists beyond the
16-word timit, the processor will abort the offending instruction, set the

stack point (RB) to 4 and trap to location 4 (Red or Fatal Stack Viola-
tion).

2.4 EXTENDED INSTRUCTION SET & FLOATING POINT

The Extended Instruction Set (EIS) option fits within the Central Pro-

cessor mounting assembly. It provides the capability of performing hard-

ware fixed point arithmetic and atlows direct implernentation of multiply,

givide. and multiple shifting. A double-precision 32-bit word can be
andled.

The Floating Point Unit, which uses the EIS as a prerequisite, fits within
the CPU mounting assembiy. This option enables the execution of 4

25

special instructions for floating point addition, subtraction, muitiplica-
tian, a_nd division. The EIS and Floating Point hardware provide signifi-
cant time and coding improvement over comparable software routines.

2.5 CORE MEMORY
Memory Organization
A memory can be viewed as a series of locations, with a number (ad-

dress) assigned to each location. Thus a 4096-word PDP-11 memory
could be shown as in Figure 2-3.

LOCATIONS

POOOOOO
000001
QOO0 2
Q00003
Q00009

il |

017774
oLTTTS
037778
017777

Figure 2-3 Memory Addresses

Because PDP-11 memories are designed to accommodate both 16-bit
words and 8-bit bytes, the total number of addresses does not corre-
spond to the number of words. A 4096-word memory can contain 8,192
bytes and consists of 017777 octal locations. Words always start at even-
numbered locations.

A PDP-11 word is divided into a high byte and a low byte as shown in
Figure 2-4,

HIGH BYTE l LOW BVTE
[| 1 1 1 i 1 1 I n P 1 '
15 B T °

Figure 2-4 High & Low Byte

Low bytes are stored at even-numbered memory locations and high
bytes at odd-numbered memary locations, Thus it is convenient to view
the PDP-11 memory as shown in Figure 2-5.

26

16-BIT WORD & BT BYTE
- EVTE BYTE .
LOW

00001 HIGH 000000 WO { oW 00000?

OOOCO S HIGH LOw D002 HIGH 00000
00002

DOOODS WGH Low QOO0 WORD LOW
HIGH 000003
{ Low COOO04
L-,_—’h- \A_/l oR
0ATTTA HIGH LOW 02T { HIGH QEP7TS
037T?S HGH Low Q37774 { LOW 037778
037T7T HIGH LowW 037776 HIGH 0377TY
WORD ORGAMIZATION BYTE ORGANIZATION

Figure 2-5 Word and Byte Addresses

Certain memory locations have been reserved by the system for inter-
rupt and trap handling. processor stacks, general registers, and peripheral
device registers. Kernel virtual addresses from 0 to 370, are always re-
served and those to 777. are reserved on large system configurations for
traps and interrupt handling. The top 4,096 word addresses (from

770000, up) have been reserved for general registers and peripheral
devices.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are traditionally reserved
for peripheral and register addresses and the user therefore has 28K of
core to program. To expand above 28K the user must use the Memory
Management Unit. This device provides an 18-bit effective memory ad-
dress which permits addressing up to 124K words of actual memory.
The unit also provides a facility which permits individual user programs

up to 32K in length and provides a relocation and protection facility
through two sets of 8 registers.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a rnaster and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the pracessor, as
master, is fetching instructions, operands, and data from memory, and
storing the resuits into memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

2.6 AUTOMATIC PRIORITY INTERRUPTS
When a device (other than the central processor) is capable of becom:

ing bus master and requests use of the bus, it is generally for ane of
two purposes:

1. to make a non-processor transfer of data directly to or from
memory

27

2. to interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine is
lacated.

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision, These non-processor
request transfers, called NPR level data transfers, are usually made for
Direct Memory Access (memory to/from mass storage) or direct device
transfers (disk refreshing a CRT display).

The PDP-11 has a multi-line, rulti-level priority interrupt structure,

DEVICE
(= REQUEET
FRIOAITY LE
N —— e —
'
e - L P —
:
+-—R—— e —
-—BRS ’ | —————

- R4 l | I _____
e Al el

WCREASING PRIORITY

IR

Figure 2-6 UNIBUS Priority

Bus requests from external devices can be made on one of five request
lines, Highest priority is assigned to non-processor request (NPR). These
are direct memory access type transfers, and are honored by the pro-
cassor between bus cycles of an instruction execution.

Bus request 7 (BR?7) is the next highest priority, and BR4 is the lowest.
Levels below BR4 are not implemented in the PDP-11/40. They are used
in larger machines (PDP-11/45). Thus, a processor priovity of 3, 2, 1, or
0 will have the same effect, i.e. all interrupt requests will be granted.

BR7 through BR4 priority requests are honored by the processor between
instructions. The priority is hardwired into each device except for the
processor, which is programmahble. For example, Teletypes are normally
assigned to Bus Request line 4,

The processor's priarity can be set under program control to one of eig_ht
levels using bits 7, 6, and 5 in the processor status register. These hits
set a priority level that inhibits granting of bus requests on lower levels

28

or on the same level. When the processor's priority is set to a level, for
example P56, ail bus requests on BR6 and below are ignored.

When more than one device is connected to the same bus request (BR}
line, a device nearer the central processor has a higher priority than a
device farther away. Any number of devices can he connected to a given
BR or NPR line.

Thus the prigority system is two-dimensional and provides each device
with a unique priority, Although its priority level is fixed, its actual
priority changes as the processor priority varies. Also, each device may
be dynamically, selectively enabled or disabled under program controi.

Once a device other than the processor has control of the bus, it may
do one of two types of operations: data transfers or interrupt operations.

NPR Data Transfers - NPR data transfers can be made between any two
peripheral devices without the supervision of the processor. Normally,
NPR transfers are between a mass storage device, such as a disk, and
core memory. The structure of the bus also permits device-to-device
transfers, allowing customer-designed peripheral controtlers to access
other devices, such as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates once it has control. The processor state is not affected by
the transfer; therefore the processor can relinquish control while an in-
struction is in progress. This can occur at the end of any bus cycles
except in between a read-modify-write sequence. An NPR device can gain
control of the bus in 2.6 microseconds or less. An NPR device in control
of the bus may transfer 16-bit words from memory at memory speed.

2.6.1 Using the Interrupts

Devices that gain bus control with one of the Bus Request lines
(BR 7 - BR 4), can take full advantage of the Central Processor by re-
questing an interrupt. In this way, the entire instruction set is available
for manipulating data and status registers.

When a service routine is to be run, the current task being performed
by the central processor is interrupted, and the device service routine is
initiated. Once the request has been satisfied, the Processor returns to
its former task.

2.6.2 interrupt Procedure

Interrupt handiing is automatic in the PDP-11/40. No device polling is
required to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinguishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt com-
mand and an unigue memory address which contains the address of
the device’s service routine in Kernel virtual address space, called
the interrupt vector address. Immediately following this pointer ad-
dress is a word (located at vector address +2) which is to be used
as a new Processor Status Word.

3. The processor stores the current Processor Status Word (PS) and the
current Program Counter (PC) into CPU temporary registers.

)

4. The new PC and PS {the interrupt vector) are taken from the specified
address. The old PS8 and PC are then pushed onto the current stack
as indicated by bits 15,14 of the new PS and the previous mode in
effect is stored in bits 13,12 of the new PS. The service routine is then
initiated.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt (RTI or
RTT) instruction, described in Chapter 4, which pops the two top
words from the current processor stack and uses them to load the
PC and PS registers.

This instruction requires 2.9 usec providing there is no NPR request.

A device routine can be interrupted by a higher priority bus request any
time after the new PC and PS have been ioaded. K such an interrupt
accurs, the PC and the PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

2.6.3 Interrupt Servicing

Every hardware device capable of interrupting the processor has a unique
set of locations {2 words) reserved for its interrupt vector. The first word
contains the location of the device's service routine, and the second, the
Processor Status Word that is to be used by the service routine. Through
proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor's Priority level to mask out
lower level interrupts.

2.7 PROCESSOR TRAPS

There are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errars, Memoary Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of Reserved Instructions, Use of
the T bit in the Processor Status Word, and use of the |07, EMT, and
TRAP instructions.

2.7.1 Power Failure

Whenever AC power drops below 95 voits for 115v power (190 volts for
230v}) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec, to save
all volatile information (data in registers}, and condition peripherals for
power fail.

When power is restored the processor traps to Jocation 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

2.7.2 Odd Addressing Errors
This error gccurs whenever a program attempts to execute a word instruc-

2-10

tion on an odd address {in the middle of a word boundary}. The in-
struction is aborted and the CPU traps through location 4.

2.7.3 Time-out Errors

These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within 15usec. This error usually
oceurs in attempts to address non-existent memory or peripherals,

The offending instruction is aborted and the processor traps through
location 4.

2.7.4 Reserved Instructions
There is a set of illegal and reserved instructions which cause the pro-
cessor to trap through iocation 10.

2.7.5 Trap Handling

Appendix B includes a list of the reserved Trap Vector locations, and
Systern Error Definitions which cause processor traps. When a trap oc-
curs, the processor folfows the same procedure for traps as it does for
interrupts (saving the PC and PS on the new Processor Stack ete, . .)

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the following priority sequence.

Odd Addressing Error

Fatal Stack Violations (Red)
Memory Management Yiolations
Timeout Errors

Trap Instructions

Trace Trap

Warning Stack Violation (Yellow)
Power Failure

Processor Priority level 7
Floating Point Exception Trap
BR 7

[

Processor D

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDP-11 instruction (MOV, ADD etc.) which usually indicates:

the function {operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handied by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDP-11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au-
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro-
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP-11's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the ' stack.”

in the PDP-11 any register can be used as a “'stack pointer”under program con-
trol, however, certain instructions associated with subroutine linkage and inter-
rupt service automatically use Register 6 as a “hardware stack pointer”. Far this
reason R6 is frequently referred to as the 3P

R7 is used by the pracessor as its program counter (PC). It is recommended that
R7 not be used as a stack pointer.

An important PDP-11/40 feature, which must be considered in conjunction with
the addressing modes, is the register arrangement;

31

Six general purpose registers (RQ-R5)
A hardware stack pointer (R6), (2 with Memory Management)
A Program Counter (PC) register (R7).

{nstruction mnemonics and address mode symbols are sufficient for
writing machine language programs. The programmer need not be con-
cerned about conversion to binary digits; this is accomplished auto-
matically by the PDP-11 MACRO Assembler.

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear,
increment, test) is:

J3 68,5 4 3 2 0

op copE—— 3 T
CESTINATION ADDRESS

Bits 15 through & specify the operation code that defines the type of in-
struction to be executed.

Bits. & through O form a six-bit field called the destination address field.
This consists of two subfieids:

a) Bits O through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b) Bits 3 through 5 specify how the selected register will be used (ad-
dress mode). Bit 3 indicates direct or deferred {indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING

Operations which imply two operands (such as add, subtract, move and
compare) are handied by instructions that specify two addresses. The
first operand is called the source operand, the second the destination
operand. Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

3-2

OF CODE I WODE 1 An MODE] Rn

] % oM 199 8 5, 5 4 3 2 0,
SOURCE ADDRESS ~m———mn 1
DESTINATION ADDRESS

The source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second op-
erand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of tocation A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A wilt be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-11 instructions:

Mnemonic Description Octal Code

CLR clear {zero the specified destination) DO50DD

CLRB clear byte (zero the byte in the specified 1050DD
destination}

INC increment (add I to contents of destination) 0052DD

{NCB increment byte (add 1 to the contents of 1052DD

destination byte)

COM complement (replace the contents of the 0051DD
destination by their logical complement;
each O hit is set and each 1 bit is cleared)

coMB complement byte (replace the contents of the 105100
destination byte by their logical complement;
each O bit is set and each 1 bit is cleared).

ADD add (add source operand to destination 068SDD
operand and store the result at destination
address)

DD = destination field (6 bits)

S5 = source field (6 bits)

{) = contents of

33

3.3 DIRECT ADDRESSING

The following table surnmarizes the four basic modes used with direct addressing.

DIRECT MODES

Mode Name Assembler
Syntax

0] Register Rn

2 Autoincrement {Rn) +

4 Autodecrement -(Rm)

6 Index X(Rn)

331 ister Mode
Regs OPR Rn

Function

Register contains operand

Register is used as a pointer to
sequential data then in.
cremented

Register is decremented and
then used as a pointer.

Value X is added to (Rn) to pro-
duce address of operand. Nei.
ther X nor (Rn) are modified,

With register mode any of the general registers may be used as simple accumula-
tors and the operand is contained in the selected register. Since they are hard.

ware registers, within the processor, the general

registers operate at high speeds

and provide speed advantages when used for operating on frequentiy-accessed
variables. The PDP-11 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As-
semnbler syntax requires that a general register be defined as follows:

RO=%0 (% sign indicates register definition)

R1 = %1
R2 = %2, stc.

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and PC, respectively.

Register Mode Examples
(all numbers in octal)

Symbolic Octal Code Instruction Name
1. ING R3 005203 Increment
Operation; Add one to the contents of general register 3

34

11"
Ri
r Rg
[0000101010]0 0;0!011%6%%__ "3
s 8,9 4 3 2z s Hld__ﬂ_“
1 _T [-4s]
o o Imciose 1 -
AT [PC]
2. ADD R2,RA 060204 Add
Operation: Add the contents of R2 to the contents of R4.
BEFORE AFTER
Rz| oooooe | Rz [oooooz |
R-‘l[0004] Ral_ 0006 !
3. COMB R4 105104 Complement Byte
Operation: One’s complement bits 0-7 (byte) in R4, (When

general registers are used, byte instructions only
operate on bits 0-7; i.e. byte O of the register)

BEFORE AFTER
Ra vazeez | na | ozavss |

3.3.2 Autoincrement Mode
OPR (Rn) +

This mode provides for autornatic stepping of a pointer through sequential ele.
ments of a table of operands. It assumes the contents of the selected general reg-
ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se-
quential location. The autoincrement mode is especially useful for array process-
ing and stacks. it will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handiing,
this mode is completely general and may be used for a variety of purposes,

3-5

Autoincrement Mode Examples

Symbolic
1 CLR (R5) +

Operation:

BEFORE
ADDRESS ZPACE

Octat Code Instruction Name

005025 Clear

Use contents of RS as the address of the operand.

Clear selected operand and then increment the
contents of RS by two.

AFTER

REGISTER ADORESS SPACE REGISTER

zoo00 | 005025 | e

030000 [20000 | oosces 1 as]| 030002

T~

sove

30000 HO00T

2. CLRB (R5) + 105025 Clear Byte
Operation: Use contents of RS as the address of the operand.
Clear selected byte operand and then increment
the contents of RS by one.
BEFORE AFTER
AODRESS SPACE RESSTER ADDRES S SPACE REGSTER
20000 | w5025 | Rs [oscooo Jeoooo | vosoes] as{ oscoon |
/—'——H-\.__\H—
aoonoo [a1 1 1 20000 w1 0o
30002 ! 30002 T
3. ADD (R2)+ R4 062204 Add
Operation: The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
i5 then incremented by two.
BEFD#RE AFTER
ADDRESS 5PaCE RECISTERS ADDRESS SPACES REGISTERS
wooo [osesos] me [tocome | wooo [osezos]| e [ieoooa |

e re 018000

S

.
100002 HAOOD

3-6

3.3.3 Autodecrement Mode

OPR-(Rn}

This mode is useful for processing data in a list in reverse direction. The contents
of the selected general register are decremented (by two for ward instructions, by
one for byte instructions) and then used as the address of the aperand. The
choice ot postincrement, predecrement features for the PDP-11 were not arbitrary
decisions, but were intended to facilitate hardware/software stack operations.

Autodecrement Mode Examples

Symbolic Octat Code Instruction Name
1. INC-{R) 005240 Increment
Operation: The contents of RO are decremented by two and
used as the address of the operand. The operand is
increased by one.
BEFQIRE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 | voseeo | fe| owrre | rooe| 005240] Ao ot |
2. INCB-(R(O) 105240 Increment Byte
Operation; The contents of RO are decrermented by one then
used as the address of the operand, The operand
byte is increased by one.
BEFORE AFTER
ARCRES S SPACE REGISTER ADDRESS SPACE REGISTER
1000 V05240 | ra| orrrTe | woo| iosaee | | owrrs |
— -
’/ 'h‘\.,._,_‘_‘_‘_______/
1TTT4 Qan G Ccoo 1rtia ool 7 oon
17176 ' 1776 .
3 ADD-(R3).RO 064300 Add
Operation: The contents of R3 are decremented by 2 then

used as a pointer to an operand {source) which is
added to the contents of RO (destination operand).

3-7

BEFORE
ADDRESS SRACE

AFTER

REGISTER ALDRESS SPACE REGISTER

woeo | oeazoo | Re[ooooeo | ez | 064300 | ra| oonooto |
7774 0000 ?TTRE DOCD50
77778 17776
3.3.4 Index Mode
OPR X(Rn)

The contents of the selected general register, and an index word following the in-
struction word, are summed to form the address of the operand, The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be modified by program to access data in the table. Index addressing in-
structions are of the form OPR X{Rn) where X is the indexed word and is located

in the memory location

following the instruction word and Rn is the selected gen-

eral register.
index Mode Examples
Symbolic Octal Code Instruction Name
1. CLR 200(R4) 005064 Clear
000200
Operation: The address of the operand is deterrmined by ad-
ding 200 to the contents of R4, The location is
then cleared.
BEFORE AFTER
ADDRESS SPACE REGISTER ADORESS SPALE REGISTER
1020 00 5064 ral ovwoo] ozo 005064 Ra r oot000 |
1022 Q00200 ez QOO200
1024 0 1024
+200
120{ 17FTFT f2oa 1200 QOO0
1202
2. COMB 200{R1) 105161 Complement Byte
000200
Operation: The contents of a location which is determined by

adding 200 to the contents of R1 are one’s com-
plemented. (i.e. logically complemented)

38

BEFRE &F TER

ALDRE 5 SPACE REGISTER LODRESS SPACE REGISTER
1020 105161 mf o om 108161 A i 7T |
0es s, n e a a) ez [njelu-ulv)

276 2MHTE 1660005
20200 20200 i
3 ADD 30(R2),20{R5) 066265 Add
000030
000020
Operation: The contents of 2 location which is determined by

adding 30 to the contents ot R2 are added to the
contents of a location which is determined by ad-
ding 20 to the contents of R5. The result is stored
at the destination address, i.e. 20(R%)

BEFORE AFTER
AOORESS SPACE REGISTER ALOHESS SPAtE REGISTER
1020 OEB2E5 A2 I 00t 106 i 2o OERLES R2 f oonan
w22 Q00030 e Q00030

1024 000020 As 04 200020 RS il

130 o | Go0c0
200 elelelalal] Wz ey fuje kg

Go 2000
¥ LF1+]
1130 2020

3-9

3.4 DEFERRED (INDIRECT) ADDRESSING

The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

in the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is @' {or “'(}'' when this not ambigucus). The
following table summarizes the deferred versions of the basic modes:

Mode Name Assembler Function
Syntax
1 Register Deferred @Rn or (Rn)
Register contains the address of
the operand

3 Autoincrement Deferred @{Rn)+ Register is first used as a
pointer to a word containing the
address of the operand, then in-
cremented (always by 2; even
for byte instructions).

B Autodecrement Deferred @-{Rn) Register is decremented (always
by two; even for byte instruc-
tions) and then used as a
pointer to a word containing the
address of the operand

7 Index Deferred @X(Rn) Value X (stored in a word follow-
ing the instruction) and (Rn} are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified.

Since each deferred mode is similar to its basic mode counterpart, separate de-
scriptions of each deferred mode are not necessary. However, the following exam-
ples illustrate the deferred modes.

Register Deferred Mode Example

Symbaolic Octal Code Instruction Name
CLR @RE 005015 Clear
Operation: The contents of location specified in RS are
cleared,
BE:%;:ESS SPACE REGISTER nF:E;ﬁESS SPaLE REGISTER
w67t [re [oorroo | e s oomroo]
[Fove] i funladivleg 1700 | [alyale ele]

3-10

Autoincrement Deferred Mode Example

Symbalic Octal Code Instruction Name
INC@(R2) + 005232 Increment
Operation: The contents of R2 are used as the address of the
address of the operand.

Operand is increased by one. Contents of R2 is in-
cremented by 2.

HEFIDRE LFTER
ADDRESS SPACE REGISTER ADURESS SRACE REGISTER
rz [orosor] R2 010302 |
g 00024 - 1910 Q00026
.//
w2 e w012
— -
o
) _
10ion coIon 16300 ©a1010

Autodecrement Deferred Mode Example

Symbaolic Octal Code Complement
COM @-(RO) 005150
Ogperation: The contents of RO are decremented by two and

then used as the address of the address of the op-
erand. Operand is one's complemented. (i.e. logi-
cally complemented)

BEFORE AFTER
ADORESS SPACE REGISTER ADORESS SPACE REGISTER
10100 ME345 ma | 010776} 10100 165432 me | 010774 |
10102 10tz T
_—'—'—'_F'_FH"_'/
10774 010100 i a1cion
e 1T 76
Index Deterred Mode Example
Symbolic Octal Code Instruction Name
ADD @ 1000{R2),R1 067201 Add
001000
Operation: 1000 and contents of R2 are summed to produce

the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in R1.

3-11

BEFIRE AFTER

ADORESS SPACE KEGISTER ADORESS SPACE REGISTER
w020 BT at | oorese | o2 aET21 w | omzis |
L] 1
ol i 2 gy S e
Wi2a 1024
1050\ 000002 1050 000002
1400 G O50 o0 1o G050
+100
—T100
-\.___‘__'_,_.,-—'—"’-

3.5 USE OF THE PC AS A GENERAL REGISTER

Although Register 7 is a general purpose register, it doubles in function as the
Program Counter for the PDP-11. Whenever the processor uses the program
counter to acquire a word fram memory, the program counter is automatically in-
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next instruction to be executed. (When the pro-
gram uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard PDP-11 addressing modes. However, there
are four of these modes with which the PC can provide advantages for handling
position independent code (PIC - seeChapter 5) and unstructured data. When re-
garding the PG these modes are termed immediate, absolute {or immediate de-
ferred), relative and relative deferred, and are summarized below:

Mode Name Assembler Function
Syntax
2 Immediate #n Operand fotlows instruction
3 Absolute @#A Absolute Address follows in-
struction
& Relative A Relative Address {index value)

follows the instruction.

7 Relative Deferred @A index wvalue (stored in the
word following the instruction)
is the relative address for the
address of the operand.

The reader should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but the general register selected is R7. the program
counter.

When a standard program is available for different users, it oftan is helpful to be
able to load it into different areas of core and run it there. PDP-11"s can accompl-
ish the relocation of a program very efficiently through the use of pasition inde-

312

pendent code (PIC) which is written by using the PC addressing modes. If an in-
struction and its objects are moved in such a way that the refative distance
between them is not attered, the same offset relative to the PC can be used in all
positions in memory. Thus, PtC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

The PC aiso greatly facilitates the handling of unstructured data. This is partic-
ularty true of the immediate and relative modes.

3.5.1 immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location immediately foliowing the instruction word.

Immediate Mode Example

Symbolic Qctal Code Instruction Name
ADD =10,RQ 062700 Add
000019
Operation: The value 10 is located in the second word of the

instruction and is added to the contents of RO.
Just before this instruction is fetched and exe-
cuted, the PC points to the first word of the in-
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as a painter to fetch the operand {the sec-
and word of the instruction) before being in-
cremented by two to point to the next instruction.

BEFORE AFTER
AODRESS SPACE REGISTER AODRESS $PACE REGISTER
1020 082700 \ﬁa | vooceo "] e 052700 re [coooic |
w022 900G re wzz 000010 o
1024 024

3.5.2 Absclute Addressing
OPR @#A

This mode is the equivalent of immediate deferred or autcincremnent deterred us-
ing the PC. The contents of the lacation following the instruction are taken as the
address of the operand. Immediate data is interpreted as an absclute address
(i.e, an address that remains constant no matter where in memory the as-
sembled instruction is executed).

3-13

Absolute Mode Examples

Symbolic QOctal Code Instruction Name
1. CLR @ #1100 005037 Clear
001100
Operation: Clear the contents of location 1100.
BEFORE AFTER
ADDRESS SPACE ADDRESS SPALE
an COS0ET \ 20 Qo037
z2 LHM 00 B 4 [k lels] PC
20 /
nag [ig s ard nog [alelslnels]
110z LREvr]
2. ADD @ #2000,R3 063703
002000
Operation: Add contents of location 2000 to R3.
BEFORE AFTER
ALDRESS $PACE REGISTER AODARESS SPACE REGISTER
a0 CEATOD R3 r [alelnliTnle] 20 DEIT0A Rr3 I [aln}lalala] 1
22 arEcod \% 2z Q02N -
za 24 e
2000 Lalalel Tuli] 2000 SOO300

3.5.3 Relative Addressing
OPR A or
OPR X%(PC) , where X is the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu-
tation, which is stored in the second or third word of the instruction, is not the ad-
dress of the operand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is useful for writing position independent
code (see Chapter 5) since the location referenced is always fixed relative to the
PC. When instructions are to be relocated, the operand is moved by the same
amount.

314

Retative Addressing Example

Symbolic Octal Code Instruction Name
INC A 005267 Increment
000054
Operation: To increment location A, contents of memory loca-

tion immediately following instruction word are ad-
ded to (PC) to produce address A, Contents of A
are increased by one.

BEFORE aFTER
ADDRESS SPACE AQDRESS SPACE

1020 QOEZET 1023 OO0S2ET

022 000054 \ gz Q00054

04 S 1024 —FC

1026 1026

+54
uated 000C0oo (GG 1100 OO0

3.5.4 Relative Daferred Addressing
OPR@A or
OPR@X(PC), where x is location containing address of A, relative to the in-
struction.
This mode is similar to the relative mode, except that the second word of the in-
struction, when added to the PC, contains the address of the address of the oper-
ard, rather than the address of the operand.

Relative Deferred Mode Example

Symbolic Octal Code Instruction Name
CLR @A 005077 Clear
000020
Operation: Add second word of instruction to PC to produce

address of address of operand. Clear operand.

BEFQRE AFTER
SOORESS SPACE ADORESS SPACE
020 Q05077 \\ 1020 OOE0TT \
igza [slelrle] FC 1waz2 OoouED PC
1024 024

———

= 1044

3-15

3.6 USE OF STACK POINTER AS GENERAL REGISTER

The processor stack pointer (SP, Register 6) is in rmost cases the general
register used for the stack operations related to program nesting. Auto-
decrement with Register 6 “'pushes' data on to the stack and autoincre-
ment with Register & "pops” data off the stack. Index mode with SP
permits random access of items on the stack. Since the SP is used by
the pracessor for interrupt handling, it has a special attribute: autoin-
crements and autodecrements are always done in steps of two, Byte
operations using the SP in this way leave odd addresses unmodified.

wWith the Memory Management coption there are two RG registers se-
lected by the PS; but at any given time there is only one in operation.

3.7 SUMMARY OF ADDRESSING MODES
3.7.1 General Register Addressing

R is a general register, 0 to 7
(R) is the contents of that register

Mode O Register OPR R R contains operand

[}
INSTRLCTION OPERAND
I — J

Mode 1 Register deferred OPR (R) R contains address

2
[wstruction |——of appress |- orerans |

Mode 2 Auto-increment OPR (R)+

R contains address, then increment (R)

il

|Ns‘l‘ﬁu:T|oN_l_.._._.{ AODAESS |——y—] OPERAND |
B
+iFOR BYTE

3-16

Mode 3 Auto-increment OPR @({R)+4 R contains address of address,
deferred then increment (R) by 2

R
[mstruction | —y ADDRESS |—a—] ADORESS COPERAND

S

Mode 4 Auto-decrement OPR —(R)

Decrement (R), then R contains address

"
| msraueTion ——{ acomess -2 FOR WoRD, OPERAND
i j
Mode 5 Auto-decrement OPR @—(R) Decrement (R) by 2,
deferred then R contains

address of address

"
[wstruction b———[aovmess] -2~ by aooress || oreramo |
T J

Mode 6 Index OPR X(R) (R) + X is address

R
pe [nsTrucTion |—— anbress
o
PCez | x l.

Mode 7 Index deferred OPR @X(R) (R} + X is address of address

&
Fc fiNsTRuCTioN | ' apDRESS
PL+2 i % l_ I

ADDRESS | —ef OPERAND

317

3.7.2 Program Counter Addressing
Register =7

Mode 2 Immediate OPR #n Operand n fotllows instruction

FC | INSTRUCTION
o

Mode 3 Absolute OPR @ #A Address A foliows instruction

- (]
peez | a | oeerano |

Mode & Relative CPR A PC + 4 4+ Xis address
R
updated PC

Os
Pr+ad | NEXT INSTR

Mode 7 Relative defered OPR @A
PC + 4 4 X is address of address
e

updated PC
e [WSTRUCTION
o T —
Sof aopREss -] opeman |
L

318

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

The specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special comments, and exampies.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemoenic is aise shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and bit assignments. {Note
that in byte instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:
() = contents of
88 or src = source address
DD or dst = destination address
loc = locatian
« = becomes
T = “'is popped from stack’
I = "is pushed onto stack™
A = boolean AND
v = boolean OR
= exclusive OR
~ = hooclean not
Reg or R = register
B = Byte
0 for word
= {1 for byte
4-1

4.2 INSTRUCTIONR FORMATS
The major instruction formats are:

Single Cperand Group

OP Code dst
| 1 1 I 1 1 I) 1 1
1%
Doutle Operand Group
OF Coda Sre 1 dst
I 1 1 1 i I L 1 I
15 12 1t
Register-Source or Destination
OF Code ¥reg Sre/dst
H i A | N i 1 1 |
15 9 8
Branch
Base Code offsat
l 1 L I L L I 1 l
15 8 T

Byte Instructions

The PDP-11 processor includes a full complement of instructions that
manipulate byte operands. Since all PDP-11 addressing is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified
register to be modified by one to peint to the next byte of data. Byte
operations in register mode access the jow-crder byte of the specified
register. These provisions enable the PDP-11 to perform as either a word

or byte processor. The numbering scheme for word and byte addresses
in core memory is:

HIGH BYTE WORD OR BYTE
AQDRESS ADDRESS
002001 BYTE 1 BYTE O 02000
002003 BYTE 3 BYTE 2 Q02002

The most significant bit (Bit 15) of the instruction word is set to indicate
a byte instruction.

Example:
Symbolic QOctal
CLR 0050DD Clear Ward
CLRB 105Q0DD Clear Byte

4.3

4.3 LIST OF INSTRUCTIONS
The PDP-11/40 instruction set is shown in the following sequence.

SINGLE OPERAND

Mnemanic

General
CLR(B)
COM(B)
INC(B)
DEC(B)
NEG(B)
TST(B)

Shift & Rotate
ASR(B)
ASL(B)
ROR(B)
ROL(B)
SWARB

Instruction

clear destination
complement dst
increment dst
decrement dst
negate dst
test dst

arithmetic shift right
arithrmetic shift left
rotate right
rotate left
swap bytes

Multiple Precision

ADC(B)
SBC(B)
SXT

add carry . . .
subtract carry
sign extend

DOUBLE OPERAND

General
MOV(B)
CMP(B)
ADD
SUB

Logical
BIT(B}
BIC(B)
BIS(B)

Register
MUL
oy
ASH
ASHC
XOR

move source to destination
compare src to dst .. .
add src to dst
subtract src fromdst

bit test . . .
bit clear
bitset .

MUMIPIY . .
divide R
shift arithmeticaliy
arithmetic shift combined
exclusive OR

Op Code

=050DD
m(51DD
85200
8053DD
®054DD
805700

=062DD
=063DD
=(60DD
s061DD
000300

w5500
»0560D
00670D

n135D0
m2SS0D0D
06sSDD
1655DD

=355DD
»455D0
a53500

070RSS
071RS8S

Page

P s
— b D00 O

= o

4-13
4-14
4-15
4-16
4-17

4-19
4-20
421

4-23
4-24
4-25
4-26

4-28
4-29
4-30

4-31
4-32
4.33
4-34
4-35

PROGRAM CONTROL

Mnermonic Instruction Op Code
or
Base Code
Branch
BR branch {unconditional)_.. 000400
BNE branch if not equal (to zero} .. 001000
BEQ branch if equal {to zero) D01400
BPL branchif plus 100000
ami branch if minus s 100400
BVC branch if overflow is clear 102000
8vs branch if overflow isset 102400
BCC branch if carry is clear 103000
BCS branch if carry isset 103400
Signed Conditional Branch
BGE branch if greater than or equal
(to zero) C. ... 002000
BLT branch if less than (zero) o 002400
BGT branch if greater than (zero) 003000
BLE branch if less than or equal (to zere).... 003400
Unsigned Conditional Branch
BHi branch if higher o 101000
BLOS branch if lower or same 101400
BHIS branch if higher or same 103000
BLO branch if tower 103400
Jump & Subroutine
JMP JUMP o001DD
JSR jump to subroutine 004RDD
RTS return from subroutine ... 00020R
MARK mark . 006400
S0B subtract one and branch (if 72 0) 077R00
Trap & Interrupt
EMT emulator trap 104000—104377
TRAP trap 104400104777
BPT breakpoint trap e Q00003
10T inputfoutput trap 000004
RTI return from interrupt 000002
RTT return frem interrupt 000006
MISCELLANEQUS
HALT hatt . 00G000
WAIT wait for interrupt 000001
RESET reset external bus 000005
MFPI move from previous instruction space .. 006553
MTPI move to previcus instruction space .. 006600
Condition Code Operation
CLC, CLV, CEZ, CLN, CCC <¢clear ... 000240
SEC, SEV, SEZ, 8EN, SCC set 000260

45

Page

4-37
4-38
4.39
4-40
4-41
4-42
4-43
4-44
4-45

4.47
4-48
4-49
4-50

4-52
4-53
4-54
4.55

4-56
4.58
4-60
4.61
4-63

4-65
4-66
457
4-68
4-69
4-70

4-74
4-75
4-76
4-77
4-78

4-79
4-79

4.4 SINGLE OPERAND INSTRUCTIONS

clear destination 2050DD
0!10001010'00clddddd4l
I L L I_ AL 1 l 1 1 - L l ol A
15 & & 0
Operation: (dst)0
Condition Codes: N: cleared
7. set
V. cleared
C: cleared
Description: Word: Contents of specified destination are replaced with ze-
roes.
Byte: Same
Example: CLR R}
Before After
(R1y= 177777 {R1}) = 000000
NZVC NZVC
1111 0100

46

COM

complement dst a0510D
lo.n ¢ ¢ o *+ o 1V 0'0 1]d d 9 d d a"l
I L L l L L I 1 i e 1 I 1]
1.1 & 5 <}
Operation: (05t e ~(dst)

Condition Codes: N: set if most significant bit of result is set; cleared otherwise
Z: set it result is O; cleared otherwise
V: cleared
C: set

Description: Replaces the contents of the destination address by their log-
ical complement {each bit equal to 0 is set and each bit equal
to 1 is cleared)

Byte: Same
Example: COM RO
Before After
(RO) = (13333 (RO} = 164444
NZVC(C NZVC
0110 1001

4.7

INC

INCB
increment dst w5200
an ¢ 0 o 1 0 1 a'1 o[d d d d 4 d
r | L " | L L | L L l L L | i L —l
15 6 5 0
Operation: (dst)we(dst) + 1

Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if {dst) held 077777 cleared otherwise
C: not affected

Description: Word: Add one to contents of destination
Byte: Same
Example: INC R2
Before After
{R2) = 000333 {R2) = 000334
NZVC NZVC
0000 0000

4-8

DEC

decrement dst m053DD
10f10001010_'_11]ddddddj
I L L ! L L l A 1 L L L Y L
15 € 5 [5}
Operation {dst)=(dst)}-1
Condition Codes: N: set if result is <0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C. not affected
Description: Word: Subtract 1 from the contents of the destination
Byte: Same
Exampile: DEC RS
Before After
(R5} = 000001 (RS} = 000000
NZIVC NZVC
1000 0100

4.9

NEG
NEGB

negate dst n054DD
LEH o 0 0 1 o 1 1 06 ¢ I d 4 d d ¢ 4]
J_ i L ! 1 L [L L 1 L ’ 4 L
15 6 5 [+
Operation: (dst)« ~{dst}

Condition Codes: N: set if the result is < 0; cleared otherwise
2. set if result is O; cleared otherwise
Vi set if the result is 100000; cleared otherwise
C: cleared if the result is O; set gtherwise

Description: Word: Replaces the contents of the destination address by its
two's complement. Note that 100000 is replaced by itself -(in
two's complemnent notation the most negative number has
no positive caunterpart).

Byte: Same
Example: NEG RO
Before After
(RO) = 000010 (RO} = 177770
NZVLC NZVC
0000 1001

4-10

TST

TSTB
tast dst n(57DD
]Efiooo1o11'11dddudc]

1 1 l 1 1 l | 1 1 1 l 1 1
15 6 5 [+
Operation: {dst)(dst)
Condition Codes: N: set if the result is <0; cleared otherwise
Z: set if result is Q; cleared otherwise
V. cleared
C: cleared
Description: Word: Sets the condition codes N and Z according to the con-
tents of the destination address
Byte: Same
Exampie: TSTR1
Before After
{R1)=012340 {R1)=012340
NZVC NZVC
0011 Qo000

4-11

Shifts
Scaling data by factors of two is accomplished by the shift instructions;
ASR - Arithmetic shift right

ASL . Arithmetic shift left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The low

order bit is filled with O in shifts to the left. Bits shifted out of the C bit, as shown
in the following examples, are lost.

Rotates

The rotate instructions operate on the destination word and the C bit as though
they formed a 17-bit circular buffer'. These instructions facilitate sequential bit
testing and detailed bit manipulation.

412

ASR
ASRB

arithmetic shift right m062DD

[3;1 0o 0 ¢ 1 1 0 0'1 0ld 6 d o d4 d
| i i | | i | 1 1 L n I 1 L
15 6§ 5 0

Operation: {dst)«({dst) shifted one piace to the right

Condition Codes; N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z; set if the result =0; cleared otherwise
V: loaded fram the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: toaded from low-order bit of the destination

Description: Word: Shifts all bits of the destination right one place. Bit 15
is replicated. The C-bit is loaded from bit O of the destination.
ASR performs signed division of the destination by two.

Word:
A I o 1 b
Byte:
IR o L I O
D0 ADDRESS E\'ENADDRESS [+]

4-13

ASL
ASLB

arithmetic shift left =363DD

Ion o 0 0 1t 1 0 o0oV1 1]d & d« d d o I
1 n 1 l 1 L I L Il . L 1 1 L
15 6 5 Q)

Operation: (dst)«{dst) shifted ane place to the left

Condition Codes: N: set if high-order bit of the result is set {result <. O); cleared
otherwise
Z: set if the result =0; cleared otherwise
V: loaded with the exclusive OR of the N-bit and C-bit {as set
by the completion of the shift operation)
C: loaded with the high-order bit of the destination

Description: Word: Shifts all bits of the destination left one place. Bit O is
joaded with an 0. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in-
dication.
Word:

E]"‘Iﬁ_nj.ll.l..l..l..l"_O

Byte:

L
.—I | T BN | J_ OE‘_L_A_I_A_l_J_A_A_]hO
[} GDD ADDRESS] T EVEN ADDRESS a

414

rotate right

ROR
RORB

=06GDD

Condition Codes:

Descripticn:

Example:

Word:

N: set if the high-order bit of the resuilt is set (result < O);
cleared otherwise

Z: set if all bits of result =0; cleared otherwise

V: ioaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation}

C: loaded with the low-order bit of the destination

Rotates all bits of the destination right one place. Bit O is
Ipaded into the C-bit and the previcus contents of the C-bit
are loaded into bit 15 of the destination.

Byte: Same

_-|Tl ol _] i N J. 4‘ - I L 1 I L i]

Byte:

ROL
ROLB

rotate left 8061DD

Ion © 0 © 1 1 o0 0'0 4|4 4 d 4 a d
l i L l 1 1 I 1 1 1 i ’ L i
15 5 5 o

Condition Codes: N: set if the high-order bit of the result word is set
{result < O} cleared otherwise
Z: set if all bits of the result word =0; cleared otherwise
v: loaded with the Exclusive OR of the N-bit and C-bit {as set
by the completion of the rotate operation)
C: loaded with the high-order bit ot the destination

Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C-bit of the status word and the previous
contents of the C.bit are loaded into Bit 0 of the destination.

Byte: Same
Exampla:
Word:
dat

‘_l | TN N : P SRR |
L 3 [
Bytes:

l L a OTO I |] ‘ T S E\:ENI 1

1%

]8 7
-]

4-16

SWAB

swap bytes 0003DD
10101010[010|01011|‘GJUldldldIT‘
15 6 5 o
Operation: Byte 1/Byte 0 «Byte C/Byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise
Z: set if low-order byte of result =0; cleared otherwise

V: cleared
C: cleared
Description: Exchanges high-order byte and tow-order byte of the destina-
tion word (destination must be a word address).
Example: SWAB R1
Befare After
(R1}=077777 {(R1)=177577
NZVC NZVC
i111 a000

4.17

Multiple Precision
It is sometimes necessary to do arithmetic on aperands considered as multiple
words or bytes. The PDP.11 makes special provision for such operations with the

instructions ADC (Add Carry} and SBC (Subtract Carry) and their byte equiva-
lents,

For example two 16-bit words may be combined into a 32-bit double precision
word and added or subtracted as shown below:

32 aIT wORD

i - 1O "

EL []

L
I
OPERAND [B1 _J
[3]

3t

{
RESLT |] [

£ L 15

\
e

15

o | o djol_]

Example:

The addition of -1 and -1 could be perfarmed as tollows;
-1 = 377777797277
{R1) = 177777 (R2) = 177777 (R3) = 177777 (R4&) = 177777

ADD R1,R2
ADC R3
ADD R4R3

I. After {R1) and (R2) are added, 1 is loaded into the C bit
2. ADC instruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added

4. Result is 37777777776 or -2

ADC
ADCB

add carry s055DD
G 1011_"01addddu|
I I 1 | 1 A 1 1 I 1 1 l L 1
15 6 5 [’}
Operation: (dst)e({dst) + (C}
Condition Codes: N: set if result <0; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if {(dst) was077777 and (C) was 1; cleared otherwise
C: set if {dst) was 177777 and (C) was 1; cleared otherwise
Description: Adds the contents of the C-bit into the destination. This per-
mits the carry from the addition of the low-order words to be
carried into the high-order result.
Byte: Same
Example: Double precision addition may be done with the following in-

struction sequence:;

ADD AQBO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al,Bl ; add high order parts

4.19

SBC
SBCB

subtract carry 105600

LeE c o 1 o] 1 1
|

15 -] b)

Operation: {dst e ({dst)-(C)

Condition Codes: N: set if result <Z0; cleared otherwise

. set if result 0; cleared otherwise

- set if {dst) was 100000; cleared otherwise

: cleared if (dst)was Q-and Cwas L; set otherwise

0=

Description: Word: Subtracts the contents of the C-bit from the destina-
tion. This permits the carry from the subtraction of two low-
order words to be subtracted from the high order part of the

result.
Byte: Same
Example: Double precision subtraction is done by:
SuUB ADBO
SBC Bl
SUB Al.B1

4-20

SXT

sign extend 00&7DD
00001101'11dedude
l n [1 L l | - L A _L_L L
15 & 5 1)
Opmtion: (dS‘)‘ Qif N bit is clear
(dst}e -1 N bit is set
Condition Codes: N: unaffected
Z: set if N bit clear
V. unaffected
C: unaffected
Description: If the condition code bit N is set then a -1 15 placed in the
destination operand: if N bit is clear, then a O is placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through multiple words.
Example: SXT A
Before After
{ Ay=012345 (A)Y=177777
NZVC NZVC
1000 1300

4-21

4.5 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction {and time) saving facility
since they eliminate the need for “ioad"and ‘“'save” sequences such as those
used in accurmnulator-oriented machines.

4-22

MOV
MOvB

move source to destination w1S5DD

[0!1001lssss'ssddddddl
1 0 [| n

15
Operation:

Condition Codes:

Description:

Example:

1 M 6 5 3]

{dst)e{src)

N: set if (src) <0; cleared otherwise
Z. set if (src) =0 cleared otherwise
Y. cieared

C: not affected

Word: Moves the source operand to the destination locatian.
The previous contents of the destination are lost. The con-
tents of the source address are not affected.

Byte: Same as MOV. The MOVE to a register (unique among
byte instructions) extends the most significant bit of the tow
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words,

MOV XXX.R1 ; loads Register 1 with the con-
tents of memory location; XXX represents a programmer-de-
fined mnemonic used to represent 2 memory location

MOV # 20RO ; loads the number 20 into
Register 0; * # "indicates that the value 20 is the operand

MOV @ # 20,-(R6) : pushes the operand con-
tained in location 20 onto the stack

MOV (R6)+.@ # 177566 ; pops the operand off a stack
and moves it into memory tocation 177566 (terrminal print
buffer)

MOV R1.R3 ; performs an inter
register transfer

MOVE @# 177562, @#% 177566 . moves a character
from terminal keyboard bufter to terminal buffer

4.23

CMP
CMPB

compare src 1o dst =285DD

IO!‘IIO 1 Dls E sls's H ¢ d 4 d d dl
1 1 1 1
1

1 L ! L L I l
15 12 6 5 o

Operation: {src}-(dst) [in detail, (src) + ~ (dst) + 11

Condition Codes: N: set if result <0; cleared otherwise
2: set if result =0; cleared otherwise
V. set if there was arithmetic overflow: that is, operands were
of opposite signs and the sign of the destination was the
same as the sign of the result; cleared otherwise
C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Description; Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only actian is to set the condition codes. The compare is
customarily followed by a conditional branch instruction.
Note that unlike the subtract instruction the order of oper-
ation is {src)-(dst), not {dst)-(src).

4-24

ADD

add src to st 0655DD

Operation;

Condition Codes:

Description:

Examples:

{dst)w{src) + {dsh)

N: set if result <<0; cleared otherwise

Z: set if result = 0; cleared otherwise

V. set if there was arithmetic overflow as a result of the oper-
ation; that is both operands were of the same sign and the
result was of the oppasite sign; cleared otherwise

C: set if there was a carry from the rnast significant bit of the
result; cleared otherwise

Adds the source gperand to the destination operand and
stores the result at the destination address. The original con-
tents of the destination are lost. The contents of the source
are not affected. Two's complement addition is performed.

Add to register: ADD 20.RO
Add to memnory: ADD RI XXX
Add register to register: ADD R1R2

Add memory to memory: ADD@ # 17750, XXX

XXX is a programmer-defined mnemonic for a memory loca-
tion.

4.25

suB

subtract src from dst 16850D

1 t 1 o 5 H []] s sld d d d d d1
L L. l L 1
o

Operation; {dst)(dst)~(src) [in detail {dst)w{dst) + ~(src) + 1]

Condition Codes: N: set if result <0 cleared otherwise
Z: set if result =Q: cleared otherwise

V. set if there was arithmetic overflow as a resutt of the oper-
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared

otherwise

C: cleared if there was a carry from the most significant bit of

the resuit; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C-

bit, when set, indicates a “borrow'’.

Example: SUB R1.R2
Before After
{(R1)=011111 {RL)Y=011111
(R2) =012345 (R2y=001234
NZVC NZVC
1111 o009

4-26

Logical
These instructions have the same format as the double operand arithmetic group.
They permit cperations on data at the bit level,

4-27

BIT
BITB

bit test #3SSDD
0 0 1 5 s s s s s d d d d d d
I 1 1 L I A 1 1 L l fl L
15 IFER 6 5 [¢)
Operation: (srcy A (dst)

Condition Codes:

Description:

Example;

N: set if high-order bit of result set. cleared otherwise
Z: set if result =0; cleared otherwise

V: cleared

C: not affected

Performs iogical and"comparison of the source and desti-
nation operands and modifies condition codes accordingly.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all correspending bits set in the des.
tination are clear in the source.

BIT #30.R3 »test bits 3 and 4 of R3 to see

. 1f both are off

{30),=0 000 0GDO Q00 011 00O

4-28

BIC

bit clear u4550D
o1 1 0 O|s s s s 's s|d d d d d d
I | I l A L _l L L l i | 1 1 |]
15 KR € 5 5]
Operation: (dst)~(src)Aldst)
Condition Codes: N: set if high order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
Y. cleared
C: not affected
Description: Ctears each bit in the destination that corresponds to a set
bit in the source. The original contents of the destination are
ost. The contents of the source are unaffected.
Example: BIC R3.R4
Before After
(R3)=001234 (R3)=001234
(R4) =001111 (R4) = 000101
NZvVC NZVC
1111 oRol
Before: (R3)=0 000 001 010 011 100

(R4)=0 000 001 D01 001 001

After: (R4)=0 000 000 001 00O 001

4.29

BIS

bit set 8555DD
o4 1 0 1 |s s s s's s]d d 4 4 4 d
I | 1 1 1 I 1 i | 1 l | 1 —l
15 21 6 5 [¢)
Operation: {dst)=(src) v {dst)

Condition Codes:

Description;

Example:

N: set if high-order bit of result set, cleared otherwise
Z. set if result =0 cleared otherwise

V: cleared

C: not affected

Performs “Inclusive OR"operation between the source and
destination operands and leaves the result at the destination
address: that is, corresponding bits set in the source are set
in the destination. The contents of the destination are lost.

BIS RO,R1
Before Ahler
(R =001234 {RO}=001234
(R1y=001111 (R1)=001335
NZIVC NZVC
NoQo goo0o
Before: (RO)=0 000 001 01Q 011 100
(R1)=0 000 001 001 001 0Q1
After: {R1)=0 0O Q01 011 ©O11 101

4.30

(EIS optionyMUL

multiply 070RSS
T
|70|$I!||lol(‘)lolrlrlr lslsjstslsl
15 3 8 € 5 [}
Operation: R, Rvl.e R x{src}
Condition Codes: N: set if product is <Q; cleared otherwise
Z: set if product is O: cleared otherwisa
V: cleared
C: set if the result is less than-2""or greater than or equal to
a1
Dascription: The contents of the destination register and source taken as
two's complement integers are multiplied and stored in the
destination register and the succeeding register (if R is even).
if R is odd only the low order product is stored. Assembier
syntax is . MUL SR,
{Note that the actual destination is R, Rv]l which reduces to
just R when R is odd.)
Example: 16-bit product {R is odd}

CLC ;Clear carry condition code
MOV #400,R1

MUL #10,R1

BCS ERROR :Carry will be set if

;product is less than
.=2'* or greater than or equal to 2"
no significance lost

Before After

(R1)=000400 (R1) = 004000

4-31

DIV 15 option)

divide 071RSS

Loyt e o tr o rfs s sys,r, o]

15 5 B 6 & [+
Operation: R. Rvl« R, Rvl /(src)

Condition Codes: N: set if quotient <0; cleared otherwise
Z: set if quotient =0; cleared otherwise
V. set if source =0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is abarted because the quotient would exceed 15
bits.)
C: set if divide O attempted; cleared otherwise

Description: The 32-bit two's complement integer in R andRvl is divided
by the source operand. The quotient is left in R; the remain-
der in Rvl. Division will be performed so that the remainder
is of the same sign as the dividend. R must be even.

Exampie: CLR RO
MOV # 20001.R1
DIV # 2,R0

Before After

(RO)=000000 (R0)=010000 Quotient
(R1)=020001 (R1)=000001 Remainder

4.32

{E1S option) ASH

shift arithmetically 072RSS
Li
lolllili_l_oltl_o rjrlr slsLstis]?l
15 9 8 & 5 0
Operation: R« R Shifted arithmetically NN places to right or left

Where NN = tow order 6 bits of source
Condition Codes: N: set if result <0; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if sign of register changed during shift; cieared other-
wise
C: loaded from last bit shifted out of register

Dascription: The contents of the register are shifted right or left the num-
ber of times specified by the shift count. The shift count is
taken as the low order & bits of the source operand. This
number ranges from -32 to + 31 Negative is a a right shift
and positive is a left shift.

dlsii.l..l._'.lj.l..]_’
“LmJlL;lJ;:_JLLJJ Jo— e

6 LSB of source Action in general register
011111 Shift left 31 places
000001 shift left 1 place
111111 shift right 1 place
1000400 shift right 32 places
Example: ASH RO, R3
Before After
{(R3)=001234 (R3)=012340
{RD)Y=000003 {ROY=000003

4-33

ASHC &is option)

arithmetic shift combined 073RSS

Operation:

Condition Codes:

Description:

R. Rvl«R, Rvl The double word is shifted NN piaces to the
right or left, where NN =low order six bits or source

N: set if result <=0, cleared otherwise

Z: set if result =0; cleared otherwise

V: set if sign bit changes during the shift, cleared ctherwise
C: loaded with high order bit when left Shift ; loaded with tow
order bit when right shift (loaded with the last bit shifted out
of the 32.hit operand)

The contents of the register and the register ORed with one
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits
16-31) are shifted right or left the number of times specified
by the shift count. The shift count is taken as the tow order 6
bits of the source operand. This number ranges from -32 to
+ 31. Negative is a right shift and positive is a left shift.
When the register chosen is an odd number the register
and the register OR'ed with one are the same. In this case the
nght shift becomes a rotate (for uptoa shiftof16). The 16
bit word is rotated right the number of bits specified by the
shift count.

[l
J_LJJ_._L_I—Ifl,.t.L_I_“

oR a

lllllﬁll]ill]

4-34

XOR

exclusive OR 074RDD

0|1 i Il‘rODr:rdddldddI
o]

Operation: (dst)Rv(dst)

Condition Codes: N set if the result < cleared otherwise
2. set if result =0; cleared otherwise
V: cleared
C. unatfected

Description: The exclusive OR ot the register and destination operand is
stored in the destination address. Contents of register are
unaffected. Assembler format is: XOR R.D

Example: XOR ROR2Z
Before Atter
(RO)=001234 {RO) =001234
(R2y=001111 (R2) =000325
Before: {RO)=0 000 001 0i0 011 100

(R2)=0 000 001 001 001 001

After: {R2)=0 060 000 OI1 G10 101

4-35

4.6 PROGRAM CONTROL INSTRUCTIONS
Branches

The instruction causes a branch to a2 location defined by the sum of the offset
{multiplied by 2) and the current contents of the Program Counter if;

a} the branch instruction is unconditional

b} it is conditional and the conditions are met after testing the condition
codes (status word).

The offset is the number of words from the current contents of the PC. Note that
the current contents of the PC point to the word following the branch instruction.

Aithough the PC expresses a bylte address. the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the ofiset. If it is set, the offset is negative and the branch
is done in the backward direction. Similarty 1f it 15 not set, the offset is positive
and the branch 15 done in the forward direction.

The &-bit offset allows branching in the backward direction by 200, words (400,
bytes) from the current PC, and in the forward direction by 177, words (376,
bytes) from the current PC.

The PDP-11 assembler handles address arithrmetic for the user and computes and
assembles the proper offset field for branch instructions in the form:

Bxx loc
Where “Bxx’" 15 the branch instruction and “loc” i1s the address to which the
branch is to be made. The assembier gives an error indication in the instruction if

the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

4-36

BR

hranch {unccnditional) 000400 Pius offset
l o 0 0 0 0 6 O T OFFSET I
l. 1 i l L L [A ! F I - | J
15 8 7 o
Operation: PC « PC + (2 x offset)
Description: Provides a way of transferring program control within a

range of =128 to + 127 words with a one word instruction.

New PC address = updated PC 4 {2 X offset)
Updated PC = address of branch instruction 2

Example: With the Branch instruction at location 500, the following off-

sets apply.
New PC Address Offset Code Offset {decimal)
474 375 —3
476 376 —2
500 377 —1
502 000 0
504 o0l +1
506 00z +2

4-37

BNE

branch if not equai (to zero) 001000 Plus offset
¢ o ©® o a o 1 0
l 1 1 1 1 1 1 | J A L OFuFSET L J
15 B 7 0
Operation: PC «PC + (2xoffsetyifZ =0

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if the Z-bitis
clear. BNE 15 the complementary operation to BEQ. 1t is used
to test inequality following 3 CMP, to test that sorme bits set
in the destination were also in the source, foliowing a BIT,
and generally, to test that the result of the previous oper-
ation was not zerg.

Example: CMP a&B ccompare A and B
8NE C : branch if they are not equa!

willbranch to C if A ¥ B

and the sequence

ADD AB caddAtoB
BNE C : Branch if the result is not
equailto 0

will branchto Cif A + B £ ©

4-38

BEQ

branch if equal (to zero) 0014G0 Plus offset
0 ¢ o o o o t | OFFSET
1 L L | i ! { L i i i . L
15 a 7 0
Operation: FC « PC + (2 x offset) if 2 =1

Condition Codes: Unaffected

Description: Tests the state of the Z-bit and causes a branch if 7 is set. As
an exampie, it is used to test equality foliowing a CMP oper-
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

Example: CMP AB . compare A and B
BEQ C : branch if they are equal
willbranchto CifA = B (A-B =10
and the sequence
ADD AB raddAto B
BEQ C :branch if the result =0

will branch ta Cif A + B = 0.

4-39

BPL

branch if plus 100000 Plus offset
o 0 0 0 0 o OFFSET
[! i L 1 i PR | ° 1 1 I L L 1 i J_j
15 8 7 0
Operation: PC «PC + (2 xoffset) if N=0
Description: Tests the state of the N-bit and causes a branch if N is

clear, {positive resuit}.

4-40

branch if minus 100400 Plus offset
IIJ0101010|0101'[L lofFSEu l L L I
1% 8 7)
Operation: PC«PC + (2xoffset) if Nwl
Condition Codes: Unaftected
Description: Tests the state of the N-bit and causes a branch if N is

set. It is used to test the sign (most significant bit) of
the resuit of the previous operation), branching if neg-
ative.

4-41

8vVC

branch if overflow is clear 102000 Plus offset
t, 0 0 o, 0 1 0O 0 OFFSET
l_l I 1 I 1 1 I 1 I 1 i l 1 i l
15 8 7 [
Operation: PC «PC + (2 x offset) if =0
Description: Tests the state of the ¥ bit and causes a branch if the V bit is

clear. BVC is complementary operation to BVS.

4-42

BVS

branch if overflow is set 102400 Pius offset

1 ¢ 0 o o 1 0 A QFFSET]
l | Il 4 1 Il 1 1 i I i 1 1 1 1
15 a7 o]

Opacation: PC «PC + (2 xoffset)if V=1
Description: Tests the state of V bit (overflow) and causes a branch if the

¥ bit is set. BVS is used to detect arithmetic overflow in the
previous operation.

4-43

BCC

branch if carry is clear 103000 Plus offset
FFSET
! ' 0 0 l 0 L 1 L ! I 0 ‘ L l OI SEl I L L |
15 7 0
Operation: PC «PC + (2 xoffsety if C=0
Description: Tests the state of the C-bit and causes a branch if C is clear.

BCC is the comptementary operation to BCS

4-44

BCS

branch if carry is set 103400 Plus offset
OFFSET
| ! | ° 1 ° 1 ° 1 ° 1 ! A ! | ! I i ! i 1 1 1 1 ‘1
15 |8 7 [+)
Operation: PC « PC + (2 x offset) if Cw=]
Description: Tests the state of the C-bit and causes a branch if C s set. It
15 used to test for a carry in the result of a previgus oper-

ation.

4.45

Signed Conditional Branches

Particular combinations of the condition code bits are tested with the signed con.
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values,

Note that the sense of signed comparisons differs from that of unsigned com-
parisons in that in signed 16-bit, two's complement arithmetic the sequence of
values is as follows;

largest Q77777
077776
positive
000001
000000
177777
177776
negative
100001
smailest 100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be
highest 177777

000002
000001
lowest 000000

445

BGE

branch it greater than or equal 002000 Pius offset
{to zerq)
-
IOIOIOIOIOI‘IO’OI L IOFIFSEI I L L]
15 8 7 v}
Operation: PCxPC + (2xoffset)if Nv V =0
Description: Causes a branch if N and V are either bath clear or both set.

BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that

caused addition of two positive numbers. BGE will also cause
a branch on a zero result.

4-47

BLT

branch if less than (zero) 002400 Plus offset

(o0, 090 vooqgr | oqyooeeser |

15] 7 [}
Operation: PCePC + 2xoffseh ifNwV = |

Description:

Causes a branchif the "‘Exclusive Orof the N and V bits are
1. Thus BLT wilt always branch foltowing an operation that
added two negative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a
CMP instruction operating on a negative source and a posi-
tive destination (even if overfiow occurred). Further, BLT will
never cause a branch when it follows a CMP instruction oper-
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was
zero (without averflow).

4-48

BGT

branch if greater than (zero) 003000 Plus offset
{ojo 0 040 v 1o}) oeser |
1% B 7 [i}
Operation: PCePC + (2xoffsethif Zw(NvV) =0
Description: Operation of BGT is similar to BGE, except BGT will not cause

a branch on a zero result

4-49

BLE

tranch if less than or equal {to zero} Q03400 Plus offset
0.0 0 0) FFSET
oo o 0go v vy} oqoeeser]
15 6 7 0
Operation: PC« PC + (2 xoffset) if Zv(N v V)=1
Description: Operation is similar to BLT but in addition will cause a

pranch if the result of the previous operation was zero.

4-50

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4.51

BHI

pranch if higher 101600 Plus offset
[1yo,0 040 0 tyof yoeeser |
15 8 7 o
Operation: PCwPC + (2xoffsethyf C=0and Z=0

Description: Causes a branch if the previous operation caused neither a
carry nor a zero result. This will happen in comparisan (CMP)
operations as long as the source has a higher unsigned value
than the destination.

4.52

BLOS

branch if lower or same 101400 Plus offset
1,0 0 0,0 0O 1,1
19, %9,°1°,°% '} ,p OFFSET
15 a 7 0
Operation: PCxPC + (2xoffseth fCvZ = |
Description: Causes a branch if the previous operation caused either a

carry or a zero result. BLOS is the complementary operatian
to BHi. The branch will occur in comparison operations as

long as the source is egual to, or has a lower unsigned value
than the destination.

4-53

BHIS

branch if higher or same 133000 Plus offset
T ¢ o0 ¢ ,0 A1 t QFFSET
RN
15 a7 0
Operation: PC«PC + (2xoffsetyifC = 0
Description: BHIS is the same instruction as BCC. This mnemonic is in-

cluded only for convenience.

4-54

BLO

branch if lower 103400 Plus offset
toe e ¢ o 1 1 OFFSET
I I L I L L I L L L I i i
15 8 T 0
Operation: PC = PC + {2 xoffset)if C=1
Description: BLO is same instruction as BCS. This mnemonic is inciuded

anly for convenience.

4-55

JMP

jump 0001DD
[0] o 0 0 o 0 O o] ' 0 1 4 d d d d d
! L i I_ P | I " i 1 L I i L
15 -] -3 0
Operation: PCw{dst}
Condition Codes: not affected

Description:

JMP pravides more fiexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory {no range limitation) and can be ac-
complished with the fuli flexibility of the addressing modes,
with the exception of register mode 0. Execution of a jump
with mode O will cause an “illegal instructioncondition.
{Program control cannot be transferred to a register.) Regis-
ter deferred mode is legal and will cause program control to
be transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from an even-numbered address. A 'boundary er-
ror''trap cordition will result when the processor attempts to
fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of

control to the address contained in a selectable element of a
table of dispatch vectors.

4-56

Subroutine Instructions

The subroutine call in the PDP-11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves} to any level of nesting without making special provision for
storage or return addresses at each level of subroutine catl. The subroutine call-
ing machanism does not modify any fixed location in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among severat in-
terrupting processes. For more detailed description of subroutine programming
see Chapter 5.

4-57

JSR

jump to subroutine 0C4RDD
1 o .0 0 0,1t 0 @ !
[T TR AN AT .
15 g] 0
Operation: (tmple(dst) (tmp is an internal processor register)

Description:

¥ {SPywreg (push reg contents onto processor stack)

reg«PC {PC holds location following JSR; this address
now put in reg)

PC«(tmp) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified reg-
ister (the "LINKAGE POINTER'") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to pian the maximum depth at which
any particular subroutine will be called or to include instruc-
tions in each routine to save and restore the linkage pointer,
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be n-
terrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process {called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) + . (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random ofr-
der). These addressing modes may also be deferred,
@(reg) + and @X(reg) if the parameters are operand ad-
dresses rather than the operands themselves.

4-58

Example:

Before:

After:

JSR PC, dst is a special case ot the PDP-11 subroutine call
suitable for subroutine calls that transmit parameters
through the general registers. The 5P and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP)+ which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines to swap program control and
resurne operation when recalled where they left off. Such rou-
tines are called "co-routines.”

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specifiad register,

JSR R5, SBR

(PC) R7 Stack

(SP) R6 |I|—-———-— DATA O
-

R7

R6& n—2 DATA O
\ -
RS PC+2

4-59

RTS

return from subroutine $0020R
L)
Flololololololol1Aolonololrlrl‘l—l
1% 3 2 o
Operation: PCxreg
reg- (SP) A
Description: Loads contents of reg into PC and pops the top element of
the processor stack into the specified register,
Return from a non-reentrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR R5, dst, may pick up para-
meters with addressing modes (R5) +, X(R5), or @X({R5)
and finally exits, with an RTS R5
Example: RTS REG
Before: {PC) R7 SBR Stack
(SP} R6 |__—n_—|\ DATA O
#1
o
R6 n+2 e DATA O
&

mark 00 64 NN
T
0|0|010I1 1‘011010‘n1n4n1nln1n—4|
18 a 7 5 [i}
Operation: SP«SP + 2xnn nn = number of parameters
PC «R5
R5«(SP) &
Condition Codes: unaffected

Description:

Example:

Used as part of the standard PDP-11 subroutine return con-
vention. MARK facilitates the stack clean up procedures in-
voived in subroutine exit. Assembler format is: MARK N

MOV RS,-(SP)
MOV PL,-(SP)
MOV P2,~{SP)

MOV PN,-(SP}

MOV #MARKN,—(SP)

MOV SP RS
JSR PC.SUB

.place old RS on stack
place N parameters
;on the stack to be
:used there by the
:subroutine

:places the instruction

‘MARK N on the stack

:set up address at Mark N in-
struction

jump to subroutine

At this point the stack is as follows:

OLD RS

P1

PN

MARK N

oD PC

4-61

And the program is at the address SUB which is the beginning

of the subroutine.

SUB: ;execution of the subroutine it-
self

RTS RS ithe return begins: this causes

the contents of R5 to be placed in the PC which then resuits
in the execution of the instruction MARK N. The contents of
old PC are placed in RS

MARK N causes: (1) the stack pointer to be adjusted to point
to the old R5 value; (2} the value now in RS (the old PC} to be
placed in the PC: and {3) contents of the the old R5 to be
popped into RS thus completing the return from subroutine.

4-62

SOB

subtract one and branch (it #) 077R00 Plus offset
1 o 1 4 o1 v oy 4 OFFSET —I
| L i | L 1 . 1 ! L L L)

5 9 8 6 5 0
Operation: R« R -1 if this result # 0 then PC « PC -(2 x offset)
Condition Codes: unaffected
Description: The register is decremented. If it is not equal to O, twice the

offset is subtracted from the PC (now pointing to the follow-
ing word). The offset is interpreted as a sixbit positive num-
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

S0B RA
Where A is the address to which transfer is to be made if the
decremented R is not equal to 0. Note that the SO8 instruc.

tion can not be used to transfer control in the forward direc-
tion.

463

Traps

Trap instructions provide for calls to emulators, 1/ monitors. debugging pack-
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and re-
placed by the contents of a two-word trap vector containing a new PC and new
PS. The return sequence from a trap involves executing an RT! gr RTT instruc-
tion which restores the o'd PC and oid PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

4-64

emulator trap

EMT

104000—104377

r‘ ' 0 i 0 1 0 l 1 A 0 A O l 0 [il l " A] 1 A
15 8 7 o
Operation: ¥ (SP=PS
¥ (SP)PC
PC«(30)
PSw(32)
Condition Codes: N: ioaded from trap vector

Description:

Before:

After:

Z: loaded from trap vector
V. loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are EMT instruc-
tions and may be used to transmit information to the emulat-
ing routine (e.g.. function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the werd
at address 30; the new central processor status (PS) is taken
from the word at address 32.

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

R6, SP n
PS (32)
FC (30) DATA 1
PS 1
5P n—4 E——— PC 1

trap 104400—104777
Itlo.O il A O N T R]
15 a 7 0
Operation: ¥ (SPxPS
¥ (5P.PC
PCx(34)
PS(36)
Condition Codes: N: loaded from trap vector
Z: Ioaded from trap vector
V: lpaded from trap vector
C: loaded from trap vector
Description: Operation codes from 104400 to 104777 are TRAP instruc-

tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34,

Note: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

4-66

breakpoint trap

000003
o . v 0 0,0 0 0,0 0 0,06 0 0,0 1 A
l i i I L n I 1 1 I i 1 l i L —l
15 e
Operation: ¥ (5P)=PS
*(SP)PC
PC «{14)
PS5 =(16)

Condition Codes: N: loaded from trap vector
Z. loaded from trap vector
V- lpaded from trap vector
C: loaded from trap vector
Description: Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de.
bugging aids.

{no information is transmitted in the low byte.)

4-67

10T

input/output trap 000004

I010000000000001ool
L
s

Operation: ¥ (SP)=PS
¥(SP)«PC

PCx{20)

PS«(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20.
Used to call the 170 Executive routine 10X in the paper tape
software systermn, and for error reporting in the Disk Oper.
ating System.

{no infarmation is transmitted in the low byte)

4.68

RTI

return from interrupt 000002
© 0 0 0 0 0 0 0 0 € 0 0O 0 0 1 o0
I ' 1 l L L I L A I A L l L I
15 o]
Operation: PCx(SPY
PS «(SP)4

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service routine. The
PC and PS5 are restored (popped) from the processor stack.

4-69

RTT

return from interrupt 000006

L 1 I Il X ‘ L "

[0 ¢ o o © 0o © 0 0 c,0 0 © 1 1 OI
I 1 1 l 1 A "
15

Operation: PC(SPY 4
PS«(SP} 4

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: This is the same as the RTI instruction except that it inhibits
trace trap, while RTI permits a trace trap. If a trace trap is
pending, the first instruction after the RTT will be executed
prior to the next *'T"trap. In the case of the RT! instruction

the “T" trap will occur immediately after the RTI.

470

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor expansion (reserved instructions) or instruc-
tions with illegal addressing modes (illegal instructions}. Order codes not corre-
sponding to any of the instructions described are considered to be reserved in-
structions. JMP and JSR with register mode destinations are illegal instructions.
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at addresses 10 and 4 respectively.

Stack Overflow Trap
Bus Error Traps - Bus Error Traps are:

1. Boundary Errors - attempts to reference instructions or word operands
at odd addresses.

2. Time-Qut Errors - attempts to reference addresses on the bus that made
no response within15us in the PDP-11/40. In general, these are caused by
attempts to reference non-existent mernory, and attempts to reference
non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables it 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in-
struction that set the T-bit will proceed to completion and then cause 2 processor
trap through the trap vector at address 14 Mote that the trace trap 15 a system
debugging aid and is transparent to the general programmer.

The foltowing are special cases and are detailed in subsequent paragraphs.
1. The traced instruction cleared the T-bit.
2. The traced instruction set the T-hit.
3. The traced instruction caused an instruction trap.
4. The traced instruction caused a bus error trap.
5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the 7-bit was set and the
fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT.
8. The traced instruction was a HALT.

9. The traced instruction was a Return from Trap

Note: The traced insiruction is the instruction atter the one that sets the T-bit.

An instruction that cleared the T-bit - Upon fetching the traced instruction an in-
ternal fiag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word. however, will have a clear T-bit,

An instruction that set the T-bit - Since the T.-bit was aiready set, setting it again
has no effect. The trap will occur.

4-71

An instruction that caused an Instruction Trap - The instruction trap is sprung and
the entire routine for the service trap is executed. If the service routine exists with
an RTI or in any other way restores the stacked status word, the T-bit is set again,
the instruction following the traced instruction is executed and, unless it is one of
the special ¢ases noted above, a frace trap occurs.

An instruction that caused a Bus Error Trap - This is treated as an Instruction
Trap. The only difference is that the error service is not as likely to exit with an
RTL, so that the trace trap may not occur.

An instruction that caused a stack overflow - The instruction completes execution
as usual - the Stack Overflow does not cause a trap. The Trace Trap Vector is
loaded into the PC and PS, and the old PC and PS are pushed onto the stack.
Stack Overflow occurs again, and this time the trap is made.

An interrupt between setting of the T-bit and fetch of the traced instruction - The
entire interrupt service routine is executed and then the T-bit is set again by the
exiting RT1. The traced instruction is executed (if there have been no other inter-
rupts) and, unless it is a special case noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading of the
new PC and PS at the trap vector location. To lock out all interrupts, the PS at
the trap vector should raise the processor priority to level 7.

A WAIT - The trap occurs immediately.

A HALT - The processor halts. When the continue key on the console is pressed,
the instruction following the HALT is fetched and executed. Uniess it is one of the
exceptions noted above, the trap occurs immediately following execution.

A Return from Trap - The return from trap instruction either clears or sets the T
bit. It inhibits the trace trap. If the T-bit was set and RTT is the iraced instruction
the trap is delayed untit completion of the next instruction.

Power Failure Trap - is a standard PDP-11 feature. Trap occurs whenever the AC
power drops below 95 volts or outside 47 to 63 Hertz, Two milliseconds are then

aliowed for power down processing, Trap vector for power fadure is at locations
24 and 26.

Trap priorities - in case muMtiple processor trap conditions occur simultaneously
the following order of priorities is observed (from high to low):

Qdd Address

Fatal Stack Violation

Memory Management Violation
Timeout

Trap Instructions

Trace Trap

warning Stack Violation

Power Failure

The details on the trace trap process have teen described in thg trace trap oper-
ational description which includes cases in which an instruction being traced
causes a bus error, instruction trap, or a stack overflow trap.

4.72

If a bus error is caused by the trap procass handling instruction traps, trace traps,
stack overflow traps, or a previous bus error, the processor is halted.

If a stack overflow is caused by the trap process in handling bus errors, instruc-
tion traps, ar trace traps, the process is completed and then the stack overflow

trap is sprung.

4.73

4.7 MISCELLANEOUS

HALT

halt 000000

I°|° 6 00 0 0 0,0 0 0 0 ©0 0O 0 O
T l . k. l . d l ke, l) ny
15 o

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is
given control of the bus. The console data lights dispiay the
contents of RO; the console address lights display the ad-
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC points to the next instruc.
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
given,

Note: A halt issued in User Mode will generate a trap.

4-74

WAIT

wait for interrupt 000001

[0 0 o
J i A
I

01000100 ¢ 0 o 0o 0 0 1

Condition Codes:

Description:

not affected

Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands fram memory. This permits higher trans-
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in-
structions, the PC points to the next instruction fol-
lowing the WAIT operation. Thus when an interrupt
causes the PC and PS to be pushed onto the pro-
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in-
terrupt routine {i.e. execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

4.75

RESET

reset external bus 000005

Q Q o o] o Q Q g 0 1 Q 1
1 i L | 1 i 1 . L |

]o e o o
l L 3
15

Condition Codes:

Description:

not affected

Sends INIT an the UNIBUS for 16 ms. All devices on the UNI-
BUS are reset to their state at power up.

4.76

(Memory Management option) MFP'

move from previous instruction space 006558
T
logo, e oqr vogryo e s ays v o]
3 6 5]
Operation: (temp) = (src)
4 {SP)e(temp)
Condition Codes: N: set if the source < 0; otherwise cleared
Z: set if the source = (; otherwise cleared
V: cleared
C: unaffected
Description: This instruction is provided in order to allow inter-

address space communication when the PDP-11/40
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory segments determined by
PS (bits 15, 14). The address itself is then vsed in
the previous mode {(as determined by PS (bits 13,
12) to get the source operand). This operand is then
pushed on to the current R6 stack.

4-77

MTP' {(Memory Management option)

mowe to previous instruction space 00660D

L4
G0 © 0,1 1 o,1 1 ofa4 l
l’ll]l_l__lJ_l| Jdldldldid
o

15 & 5
Operation: {temD}e{SP14
(dst)e(temp)

Condition Codes: N: set if the source < O; otherwise cleared

2: set if the source =0; otherwise cleared

V. cleared

C: unaffected
Description: The address of the destination cperand is determined in the

current address space. MTPI then pops a word off the current
stack and stores that word in the destination address in the
previgus mode’s (bits 13, 12 of PS).

478

Condition Code Operators

CLN SEN
CLZ SEZ

CLV SEV
CLC SEC
CCC SCC

condition code operators 0002XX

A
6 o o 0 €0 0 0.0 ' O lo_,'1gulzlvlcl
[1 e 4o | T ! ! i
m o

5 4 3 2 1

Description: Set and clear condition code bits. Selectable combinations of
these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator {Bits O-
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit0, 1, 2 or 3,
if bit 4 is a 1. Clear carresponding bits if bit 4=0.

Mnemonic

Operation OF Code

cLC Clear C 000241

CLY Clear V 000242

CLZ Clear 2 000244

CLN Clear N 000250

SEC Set C 000261

SEY SetV 000262

SEZ SetZ 000264

SEN Set N 000270

SCC Set 2)l CC's 000277

CCC Clear all CC's 000257

ClearVand C 000243
NOP Mo Operation 000240

Caombinations of the above set or clear operations may be ORed together to form
combined instructions.

4-79

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utitize the power and flexibitity of the
PDP-11, the reader should become familiar with the various programming tech-
nigues which are part of the basic design philosophy of the PDP-11. Although it is
possible to program the PDP-11 along traditional lines such as “"accumulator ori-
entation” this approach does not fully exploit the architecture and instruction set
of the PDP-11.

5.1 THE STACK

A “'stack’, as used on the PDP-11, is an area of memory set aside by the pro-
gramwmer for temporary storage or subroutine/interrupt service linkage. The in-
structions which facilitate "stack” handling are useful features not normally
found in low-cost computers. They aliow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the “‘last-in, first-out”
concept, that is, various items may be added to a stack in sequential order Qnd re-
trieved or deleted from the stack in reverse order. On the PDP-11, a stack starts
at the highest kocation reserved for it and expands linearly downward to the low-
est address as items are added to the stack.

HIGH ADDRESSES

LOW ADDRESSES

Figure 5-1: Stack Addresses

The programmer does not need to keep track of the actual locations his data is
being stacked into. This is done automatically through a “stack pointer.” To keep
track of the last itemn added to the stack {or “where we are’" in the stack) a Gen.
eral Register always contains the memory address where the last item is stored in
the stack. in the POP-11 any register except Register 7 (the Program Counter-PC}
may be used as a ‘‘stack pointer under program control. however, instructions
associated with subroutine linkage and interrupt service autornatically use Regis-
ter & (R6) as a hardware ""Stack Pointer.” For this reason R6 is frequently re-
ferred to as the system 5P

5-1

Stacks in the PDP-11 may be maintained in either full word or byte units. This is
true for a stack pointed to by any register except R6, which must be organized in

full word units only.

[nhdlely}
QOTTE
D7oTe
QOruT2
QoreTo
QOTo6E
Q07084

felerglely)
QoToT?
QoTITe
QQToTS

WORD STACK

iTEM w1

ITEM #2

ITEM %3

iTEM # 4

BYTE 3TACK

ITEW

1

ITEM

®2

ITEM

*3

ITEM

*4

- 5P Q00T

NOTEIBYTES ARE
ARE ARRANGED IN
WORDS AS FOLLOWING:

BYTE 3 | BYTE ¢

BYTE 1 lBYTE o]

s

Figure 5-2: Word and Byte Stacks

ltems are added to a stack using the autodecrement addressing mode with the
appropriate pointer register. (See Chapter 3 for description of the autoincre-
ment /decrement modes).

This operation is accomplished as follows;
MOV Source,-{SP)

MOVB Source,-(3P)

MOV Source Word onto the stack

ar

:MOVEB Source Byte onto the stack

This is called a “push™ because data 15 “‘pushed onto the stack.”

5.2

To remove an item from stack the autoincrement addressing mode with the ap.
propriate SP is employed. This 1s accomplished in the following manner;

MOV (3P) + Destination MOV Destination Word off the stack

or

MOVE (SP) + .Destination :MOVE Destination Byte off the stack

Removing an item from a stack is called a "'pop™ for “popping from the stack.”
After an tem has been “popped,” its stack location ;s considered free and avar-
lable for other use. The stack potnter points to the last.used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share-
able temporary storage locations.

HIGH MEMORY
P+ 5P
+ ER - 5P E@
L
aLK ¢ E1 b 50
LW WE MORT
o 1 AN EWPTY STACK 2 PUSHING 4 DAT UM 3 PUSHING ANOTHER
AREA ONTO THE STACK GATUM QNG THE
STACKS
EQ E® £ 3]
3] EN s EN
¥ £2 5P i €3 - 5p
4 ANOTHER PUSH % FOF & PUSH
EX
EQ /
£1 - 5P
T AP

Figure 5-3: lllustration of Push and Pop Operations

5-3

As an example ot stack usage consider this situation: a subroutine {SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro-
gram with their contents unchanged. The subroutine could be written as follows;

Address QOctal Code Assembler Syntax

076322 010167 SUBR: MOV R1, TEMP] ;save R1
076324 Q00074 .

076326 010267 MOV R2, TEMPZ2 ;save R2
076330 Q00072 *

076410 016701 MOV TEMPI1, R1 ;Restore R1
076412 000006 *

076414 016702 MOV TEMP2, R2 ;Restore R2
Q76416 000002 *

076420 000207 RTS PC

076422 000000 TEMP1: O

076424 000000 TEMPZ: O

index Constants

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address Octal Code Assembier Syntax
010020 010143 SUBR: MOV RI, ~(R3):push Rl
010022 010243 MOV R2, ~(R3) :push R2
010130 012301 MOV (R3) + , R2 :pop R2
010132 012302 MOV (83) + .R1 :pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a Stack Pointer

Figure 5-5: Register Saving using the Stack

The second routine uses four less words of instruction code and two words of
temporary *'stack” storage. Another routine could use the same stack space at
some later poeint. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5.4

As a further exampie of stack usage, consider the task of managing an input buf-
fer from a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is aceomplished very easily by maintaining a byte
stack comtaining the input characters. Whenever a backspace is received a char-
acter is “‘popped' off the stack and eliminated from consideration. In this ex.
ample, a programmer has the choice ot “popping” characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

o010
[v11vi]ed
01007
DMOCE
CHG0E

QG104

w

INC R3

4

aoInna
TMHO0E
belalTalud]

ofmlz|o

~a | Toowaz

il | mlzlola|w]cym

-—F { QCng

Fieure 5-6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it wouid accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer withcut the need for a destination
location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer (R6) because RE6 may only point to word {even) locations.

5.2 SUBROUTINE LINKAGE

5.2.1 Subroutine Calls

Subroutines provide z facility for maintaining 2 single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere
else in memory. in order to provide this facility, generalized tinkage methods
must be established for the purpose of contro! transfer and information exchange
between subroutines and calling programs. The PDP.11 instruction set contains
several useful instructions for this purpose.

PDP-11 subroutines are called by using the JSR instruction which has the follow-
ing format.

a general register (R) for linkage —
JSR R.SUBR
an entry location (SUBR) for the subrouting —-d

5-5

When a JSR is executed, the contents of the li

nkage register are saved on the sys-

tem R6 stack as if a MOV reg,-(SP) had been performed. Then the same register

is loaded with the memory address following

the JSR instruction (the contents of

the current PC) and a jump is made to the entry location specified,

hodress Assembler Syatac Ortai Cane
[redieir] I5RRS SUBR 004567
(Ll Inclaz zonstant lor SUBKR DO0064
001064 SUBR WOY A B inarnm
Figure 57. JSR using RS
BEFORE 4FTER
RS 000132 [CET T
ARz 0C{7TE IAE1r 01T T
IRCI=(RT| = OG0 (PR I QUICES
02000 LLLELE [slerdslviy] L)
oot77E mmmmenm [# 5P |_ 201776 001778 eI
oniTTe o177 o013 - 52 CONTT4 |
ooirTE oo T2

Figure 5-8: JSR

Note that the instruction JSR R6,5UBR is not normally considered to be a mean-

ingful combination,
5.2.2 Argument Transmission

The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac-
cessed from the subroutine in several ways. Using Register 5 as the linkage regis-

ter, the first argument could be obtained

by using the addressing modes in-

dicated by (R5), (R5) + . X(R5) for actual data, or @(R5) + , etc. for the address of
data. If the autoincrement mode is used, the linkage register is avtomatically up-

dated ta point to the next argument.

Figures 5-9 and 5-10 illustrate two possibie methods of argument transmission,

Address Instructions and Data

010400 1SR R5.SUBR

010402 Index constant for SUBR SUBROUTINE CALL

010404 arg ¥1 ARGUMENTS

010406 arg #2

020306 SUBR: MOV (RS)+.R1 getarg #1

020310 MOV {R5) + R2 .get arg # 2 Retrieve Arguments
from SUB

Figure 59; Argument Transmission -

5-6

Register Autoincrement Mode

Address Instructions and Data

010400 ISR R5.SUBR
010402 index constant for SUBR SUBROUTINE CALL

010404 077722 Addressof Arg #1
Q10406 G77724 Address of Arg. #2

010410 077726 Address of Arg. #3

077722 Arg %1
077724 arg #2 arguments
077726 arg #3

020306 SUBR: MOV @(R5)+ Rl :get arg %1
020301 MOV @(R5) + R2 sget arg #2

Figure 5-10: Argument Transmission-Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine call.
Thus a subroutine can be cailed to work on data tocated anywhere in mernory. in
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program: MOV~ POINTER, Rt
JSR PC,5UBR

SUBROUTINE ADD (R1}+ (R1) :Add item #1 to item #2, place
result initem # 2, R1 points
to item # 2 now

etc.
or

ADD (R1),2(R1) :Bame effect as above except that

R1 still points to item #1
eic.

Tem o1 e |]

ITEM &3

Figure 5-11: Transmitting Stacks as Arguments

5.7

Because the PDP-11 hardware already uses general purpose register R6 to point
to. a stack for saving and restoring PC and PS (processor status word) informa-
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines. Using R6 in this

manner permits extreme flexibility in nesting subroutines and interrupt service
routines.

Since arguments may be obtained from the stack by using some form of register
ndexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout-
ine. In the previous example RS may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer. If R had been used directly as the base tor indexing and not ''copied”, it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrement/decrement which occurs.

arg #1 arg #1
arg #3 arg #32
Sk —- arg #*3% qrg #3
b whan onothar item
70 is pushed P~ Ta
arg# 2 s 01 source orgd#E gt sguren
-2 [5P) —-4{5P]

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in RS before any arguments are
pushed onto the stack, the position relative to RS would remain constant,

arg #1 =—HS arg w1 - R
SR — arg #2 org #2
5P —a| arg #3
arg# 2 is ot 2R arg 82 u #ill ot 2IRE)

Figure 5-13: Constant index Base Using “R6 Copy”

58

5.2.3 Subroutine Return

In order to provide for a return from a subroutine to the calling program an RTS
instruction is executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine calit. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of re-
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al-
ways used with a JSR; there is no linkage register with a JMP and no way to re-
turn to the calling program.

When a subroutine finishes, it is necessary to ‘clean.up” the stack by eliminating
or skipping over the subroutine arguments. One way this can be done is by insist.
ing that the subroutine keep the number of arguments as its first stack item. Re-
turns from subroutines would then invalve calculating the amount by which to re.
set the stack pointer, resetting the stack pointer, then restaring the original
contents of the register which was used as the copy of the stack pointer. The PDP-
11/40, however, has a much faster and simpler method of performing these
tasks. The MARK instruction which is stored on a stack in place of "'number of ar-
gurment" information may be used to automatically perform these “‘clean-up"
chores.

5.2.4 PDP-11 Subroutine Advantages
There are severat advantages to the PDP.11 subroutine calling procedure.

a. arguments can be quickly passed between the calling program and the subr-
outine.

b. if the user has no arguments ar the arguments are in a general register or on
the stack the JSR PC,DST mode can be used so that none of the general pur-
pose registers are taken up for linkage.

¢. many JSR's can be executed without the need to provide any saving procedure
for the linkage information since all linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
autormatically popping this information from the stack in the opposite order of
the JSR's.

Such linkage address bookkeeping is called automatic “‘nesting” of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, flexible manner. it even permits a routine to call itseif in those cases
where this is meaningful. Other ramifications will appear after we examine the
PDP-11 interrrupt procedures.

5.3 INTERRUPTS

5.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. However, they are
forced. rather than controlled, transfers of program execution occurring because
of some external and program-independent event (such as a stroke on the tele-
printer keyboard). Like subroutines, interrupts have linkage information such

59

that a return to the interrupted program can be made. More information is ac-
tually necessary for an interrupt transfer than a subroutine transfer because of
the random nature of interrupts. The complete machine state of the program im.
mediately prior to the pccurrence of the interrupt must be preserved in arder to
return to the program without any noticeable affects. (i.e. was the previous oper-
ation zero or negative, etc.) This information is stored in the Processor Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6 system stack.
The effect is the same as if:

MOV PS -(5P) : Push PS
MOV R7,-{5P) . Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are calied an “interrupt vector'. The actual locations are
chosen by the device interface designer and are located in low memary addresses
of Kernel virtual space {see interrupt vector list, Appendix B). The first word con-
tains the interrupt service routine address {the address of the new program se-
quence} and the second word contains the new PS which will determine the ma.
chine status including the operational mode and register set 10 be used by the
interrupt service routing. The contents of the interrupt service vector are set un.
der program conirol.

After the interrupt service routine has been completed, an RT? {return from inter-
rupt) is performed. The two top words of the stack are’ automatically ' popped"
and piaced in the PC and PS respectively, thus resuming the interrupted pro-
gram,

5.3.2 Nesting

Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any confusion. By using the RTl and RTS instructions. respectively, the
proper returns are automatic.

1. Process 0 1s running; e
SP is pointing to toca-
tion PO.
Q
PO

2. Interrupt stops process 0
with PC = PCO. and 5P — PLO
status = PSO ;starts process 1.

5-10

3. Process 1 uses stack for

2]
ternporary storage (TEQ, TE1).)
PL
TED
GF — TE1
o
4. Process 1 interrupted with FC=PC1 Fo
and status =PS1: process 2 is started :z‘;
TED
TEN
P55
EP PC
[+]
5. Process 2 is running and does a Fa
JSR R7.A to Subroutine A with :ii
PC =PC2. e
TE1
PSS
PLA
SP - PLZ
2
€. Subroutine A is running
and uses stack for o
temporary storage. P
FCO
TEC
TEM
P51
FC1
PC2
Tan
SF —— TAZ2
a

7. Subroutine A releases the temporary o

sturage hoiding TAL and TA2. P
PCO
TEG
TE!
P51
FC
SF — FCZ
a
Fix
8. Subroutine A returns control to process e
2 with an RTS R7.PC i5 reset to PC2. oo
TED
TE1
L1
5P — PC1

9. Process 2 compietes with an RT1 instruction #o

(dismisses interrupt) PC 1s reset RSO
to PC{1) and statusis reset to PSL; FCo
process 1 resumes. TEC
S TEN

o

10.Process 1 reieases the temporary O
storage holding TEQ and TE1. Fse
P L)

11.Process 1 completes its operation with
an RTI PC is reset to PCO and status is
reset to PS0. °

5P PO

Figure 5-14: Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU ang device priority levels.

5.4 REENTRANCY)
Further advantages of stack organization becorme apparent in complex situations
which can anse in program systems that are engaged in the concurrent handling
of several tasks. Such multitask program environments may range from rela-
tively simple singie-user applications which must manage an intermix of 1/0 in-
terrupt service and background computation to large complex multi-programm-
ing systems which manage a very intricate mixture of executive and multi-user
programming situations. In all these applications there is a need for flexibility
and time/memory economy. The use of the stack provides this economy and
flexibility by providing a method tor aliowing many tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com-
plex program linkages.

The ability to share a single copy of a given program among users or tasks is
called reentrancy. Reentrant program routines differ from ordinary subroutines in
that it is unnecessary for reentrant routines to finish processing a given task be-
fore they can be used by another task. Multiple tasks can be in various stages of
comgpletion in the same routine at any time. Thus the following situation may oc-
cur:

MEMCAY
MEMORY = :

‘ srownsn 1 PEBRBTRE

prccaan 3| “ " © oo 2

I

prooman 3

PDP-11 Approach Conventional Approach
Programs 1, 2, and 3 can A separate copy of Subroutine A

share Subroutine A, must be provided for each program.

Figure 5-15: Reentrant Routines

The chief prograrmming distinction between a non-shareabte routine and a reen-
trant routine is that the reentrant routine is composed solely of “pure code”, i.e.
it cantains only instructions and constants. Thus, a section of program code is re-
entrant (shareable) if and only if it is ''non self-modifying”, that is it contains no
information within it that is subject to modification.

Using reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16.

513

REENTRAMNT
ROUTIRE
Q

Figure 5-16: Reentrant Routine Sharing

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
Q before it finishes processing.

3. Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinguishes controd of Reentrant Routine @ at some point in its pro-
cessing.

5. Task A regains control of Reentrant Routine and resumes processing from
where it stopped.

The use ot reentrant programming ailows many tasks to share frequently used
routines such as device interrupt service routines, ASCII-Binary conversion rou-
tines, etc. in fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user
programs.

As an application of reentrant {(shareable) code, consider a data processing pro-

gram which is interrupted while executing a2 ASClI-to-Binary subroutine which has
been written as a reentrant routine. The same conversion routine is used by the

device service routine. When the device servicing is finished, a return from inter-

rupt {(RT1) is executed and execution for the processing program is then resumed

where it left off inside the same ASCII-to-Binary subroutine.

Shareable routines generally result in great memaory saving. It is the hardware im-
plemented stack facility of the POP-11 that makes shareable or reentrant rou-
tines reasonabie.

A subroutine may be reentered by a new task before its completion by the pre-
vigus task as long as the new execution does not destray any linkage information
or intermediate results which belong to the previous programs. This usually
amounts to saving the contents of any general purpose registers, to be used and
restoring thermn upon exit. The choice of whether to save and restore this informa.
tion in the calling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlled transfer situations (i.e. JSR's) a
main program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
code conversion routine might save the contents of registers which it uses and re-
store them upon its completion. |n the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in-
terrupted program has no warning of an impending interrupt. The advantage of

5-14

using the stack to save and restore (i.e. “push” and “pop'’) this information is
that it permits a program to isolate its instructions and data and thus maintain
its reentrancy.

In the case of a reentrant program which is used in a multi-programming envi-
ronment it is usually necessary to maintain a separate R6 stack for each user al-
though each such stack would be shared by afl the tasks of a given user. For ex-
ampie, if a reentrant FORTRAN compiler is to be shared between many users,
each time the user is changed, R6 would be set to point to a new user's stack area
as illustrated in Figure 5-17.

USER A STaCK
ﬂ USER @ S5TACK

USER { STACK

Figure 5-17: Multiple R6 Stack

5.5 POSITION INDEPENDENT CODE - PIC

Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memary, it is necessary to change the address references
and/or the origin assignments. Such programs are canstrained to a specitiec set
of iocations. However, the PDP.11 architecture permits programs to be con-
structed such that they are not constrained to specific iocations. These Position
independent programs do not directly reference any absolute iocations in
mermary. Instead all references are ‘PC-relative” i.e. locations are referenced im
terms of offsets from the current location (offsets from the current value of the
Program Counter (PCY). When such a program has been translated to machine
code it wilt form a program module which can be ioaded anywhere in memory as
required.

Position Independent Code is exceedingiy valuable tor those utility routines
which may be disk-resident and are subject to loading in a dynamically changing
program environment. The supervisory program may icad them anywhere it de-
termines without the need for any relocation parameters since all items remain in
the same positions relative to each other {and thus also to the PC),

Linkages to program routines which have been written in position independent
code (PIC) must still be absolute in some manner. Since these routines can be lo-
cated anywhere 1n memory there must be some fixed or readily locatabte linkage
addresses to facilitate access to these routines. This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of nurmeraus linkage information items.

5-15

5.6 CO-ROUTINES
In some situations it happens that two program routines are highly interactive.

Using a special case of the JSR instruction i.e. JSR PC,@(R6) + which exchanges
the top element of the Register & pracessor stack and the contents of the Pro-
gram Counter (PC), two routines may be permitted to swap program control and
resume operation where they stopped, when recalled. Such routines are called
“co-routines”. This control swapping is illustrated in Figure 518,

Routine #1 is operating, it then executes:
MOV & PC2,—(R6)

ISR PC.@{R6} + =
=
with the following results: =
1) PC2 is popped from the stack spa] L PL2
and the SP autoincremented e 2
2} 8P is autodecremented and the
old PC (i.e. PC1) is pushed l
3} control is transferred to the 5P — I +
location PC2 (i.e. routine #2)

Routine # 2 is operating, it then executes:

JSR PC .@(R6) +

with the result the PC2 is exchanged
for PC1 on the stack and control is
transferred back to routine #1.

Figure 5-18 - Co-Routine Interaction

5-16

5.7 MULTI-PROGRAMMING

The PDP 11/40's architecture with its two modes of operation and its
Memory Management provides an ideal environment for mutti-program-
ming systems.

In any multi-programming system there must be some method of trans-
ferring information and control between programs operating in the same
or different modes, The PDP 11/40 provides the user with these com-
munication paths.

5.7.1 Control Information

Control is passed inwards {User to Kernel) by all traps and interrupts.
All trap and interrupt vectors are located in Kernel virtual space. Thus
alt traps and interrupts pass through Kernel space to pick up their new
PC and PS and determine the new mcde of processing.

Controf is passed outwards {Kernel to User) by the RTI and RTT instruc-
tions.

5.7.2 Data

Data is transferred between modes by two instructions: Move From Pre-
vious Instruction space (MFPI) and Move To Previous Instruction space
{MTPI). The instructions are fuilly described in Chapter 4. However, it
should be noted that these instructions have been designed to allow data
transfers to be under the control of the inner mode (Kernel) program
and not the outer, thus providing protection of an inner program from an
outer.

5.7.3 Processor Status Word

The PDP 11/40 protects the PS from implicit references by User pro-
grams which could result in damage to an inner level program.

A program operating in Kernel mode can perform any manipulation of
the PS. Programs cperating at the outer level are inhibited from chang-
ing bits 5-7 (the Processor’s Priority). They are also restricted in their
treatment of bits 15, 14 (Current Mode), and bits 13, 12 {Previous Mode)
these bits may only be set, they are only cleared by an interrupt or trap.

Thus, a programmer can pass control outwards through the RTI and RTT
instructions to set bits in the mode fields of his PS. To move inwards,
however, bits must be cleared and he must therefore, issue a trap or
interrupt.

The Kernel can further protect the PS from explicit references (Move
data to lecation 777776-the PS} through Memory Management,

5-17

CHAPTER 6

MEMORY MANAGEMENT

The PDP-11/40 Memory Management Unit provides the hardware facili-
ties necessary for complete memory management and protection. It is
designed to be a mamory management facility for systems where the
system memory size is greater than 28K words and for multi-user, multi-
programming systems where memory protection and relocation facilities
are necessary.

In order to most effectively utilize the power efficiency of the PDP-
11/40 in medium and large scale systemns it is necessary to run several
programs simultanecusly. In such multi-programming environments sev-
eral user programs would be resident in memory at any given time. The
task of the supervisory program would be: control the execution of the
various user programs, manage the allocation of memaory and peripheral
device resources, and safeguard the integrity of the system as a whole
by careful control of each user program.

In a multi-programming system, the Management Unit provides the
means for assigning memcry pages to a user program and preventing
that user from making any unauthorized access to those pages outside
his assigned area. Thus, a user can effectively be prevented from acci-
dental or wiilful destruction of any other user program or the system
executive program.

The basic characteristics of the PDP-11/40 Memory Management Unit
are:

8 User mode memory pages

8 Kernel mode memory pages

B pages in each mode for instructions and data

page length from 32 to 4096 words

each page provided with full protection and relocation
transparent operation

3 modes of memory accass control

memaory extension to 124K words (248K bytes)

8 & » B 3 » b

6.1 PDP-11 FAMILY BASIC ADDRESSING LOGIC

The addresses generated by ait PDP-11 Family Central Processor Lnits
{CPUs) are 18-bit direct byte addresses. Although the PDP-11 Family
word length and operational logic is all 16-bit iength, the UNIBUS and
CPU addressing logic actually is 18-bit length. Thus, while the PDP-11
word can only contain address references up to 32K words (64K bytes)
the CPU and UNIBUS can reference addresses up to 128K words (256K
bytes). These extra two bits of addressing logic provide the basic frame-
work for expanded memory paging.

61

In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space is always reserved for
UMIBUS /O device registers. In a basic PDP-11/40 mermory confipura-
tion (without Management) all address references to the uppermost 4K
words of 16-bit address space (170000-177777) are converted to full
18-bit references with bits 17 and 16 always set to 1. Thus, a 16-bit
reference to the I/0 device register at address 173224 is automatically
internaliy converted to a full 18-bit reference to the register at address
773224, Accordingly, the basic PDP-11/40 configuration can directly
address up to 28K words of true memory, and 4K words of UNIBUS H O
device registers. Memory configurations beyond this require the PDP-
11/40 Memory Management Unit.

6.2 VIRTUAL ADDRESSING

When the PDP-11/40 Memory Management Unit is operating, the normal
16-bit direct byte address is no longer interpreted as a direct Physical
Address (PA) but as a Virtual Address (VA) containing information to be
used in constructing a new 18-bit physical address. The information con-
tained in the Virtual Address (VA} is combined with relocation and des-
cription information contained in the Active Page Register (APR) to yield
an 18-bit Physical Address (PA). Memory can be dynamically allocated
in pages each composed of from 1 to 128 blocks of 32 words.

PHYSICAL
ADDRESS SPACE
128K SEG 5
VIRTUAL
ADDRESS SPACE
32K PAGE aPR 7 SEG ©
APR &
APR 5 SEG T
APR 4
APR 3 \
4
Y SEG
APR §
o] PAGE APR O PHYSICAL ADDRESS
VIRTUAL ADDRESS ACTIVE PAGE (18 BITS)
18 BITS) REGISTERS

Figure 6-1 Virtual Address Mapping inte Physical Address

The starting address for each page is an integral multiple of 32 words,
and has a maximum size of 4096 words. Pages may be located any-
where within the 128K Physical Address space. The determination of
which set of 8 pages registers is used to form a Physical Address is made
by the cutrent mode of operation of the CPU, i.e. Kernel or User mode.

6.3 INTERRUPT CONDITIONS UNDER MANAGEMENT CONTROL

The Memory Management Unit relocates all addresses. Thus, when_ Man-
agement is enahled, all trap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC}

62

and Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Active Page Register Set.

when a trap, abort, or interrupt occurs the “push’ of the old PC, old PS
is to the User/Kernel RE stack specified by CPU mode bits 15,14 of the
new PS in the vector (00 = Kernel, 11 = User). The CPU mode bits
aisg determine the new APR set. In this manner it is possible for a
Kernel mode program to have comptete control over service assignments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kerne! program may assign the service of some of these con-
ditions te a User mode program by simply setting the CPU mode bits
of the new P3 in the vector to return control to the appropriate mode.

6.4 CONSTRUCTION OF A PHYSICAL ADDRESS
The basic information needed for the construction of a Physical Address
{PA) comes from the Virtual Address (VA), which is illustrated in Figure
©6-2, and the appropriate APR set.

15 13 12 8]

APF DF
A i L i

ACTIVE PAGE FIELD DISPLACEMENT FIELD
Figure 6-2 interpretation of a Virtual Address

The Virtual Address (VA) consists of;

1. The Active Page Field (APF). This 3-bit field determines which of
eight Active Page Registers (APRO-APR7) will be used to form the
Physical Address {PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page fengths up to
4K words (2'* — 8K bytes). The DF is further subdivided into two
fields as shown in Figure 6-3.

12 8 5 0

BN bie
1 A 1 1

BLOCK NUMBER DISPLACEMENT iN BLOCK
Figure 6-3 Displacement Field of Virtuat Address

The Displacement Field {(DF) consists of:

1. The Block Numbhber (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Dispfacement in Block (DIB). This 6-bit field contains the dis-
placement within the block referred to by the Block Number,

The remainder of the information needed to construct the Physical Ad-
dress comes from the 12-bit Page Address Field (PAF) (part of the Active
Page Register) and specifies the starting address of the memory which
that APR describes. The PAF is actually a block number in the physical
memory, e.g. PAF = 3 indicates a starting address of 96, (3 x 32 = 96)
words in physical memaory,

62

The farmation of a physical address takes 150 ns.

The formation of the Physical Address is illustrated in Figure 6-4.

1< 3w 65 &
aPF BLOCK MO ule PRTUAL
L 1 ! 1 ADDAESS

15 - o
i PRE ADDRESS FIELE SETIVE park

P s . . RESISTER

i i 5 s 3
PHYSICAL BULOCK WD 00000 |- ———— PHYSICAL
1 | PesiceLpio e] I orm L

INSPLACEMENT 1h BLOCK |

Figure 6-4 Construction of a Physical Address

The togical sequence involved in constructing a Physical Address is as
follows:

1. Select a set of Active Page Registers depending on current mode.

2. The Active Page Field of the Virtual Address is used to select an
Active Page Register (APRO-APR7).

3. The Page Address Field of the selected Active Page Register con-
tains the starting address of the currently active page as a block
number in physical memory.

4. The Block Number from the Virtual Address is added to the block
number from the Page Address Field to yield the number of the
block in physical memory which will contain the Physical Address
being constructed.

B. The Displacement in Block from the Displacement Field of the Virtual
Address is joined to the Physical Block Number to vield a true 18-bit
PDP-11/40 Physical Address,

6.5 MANAGEMENT REGISTERS

The PDP-11/40 Memory Management Unit uses two sets of eight 32-bit
Active Page Registers, An APR is actually a pair of 16-bit registers: a
Page Address Register (PAR} and a Page Descriptor Register (PDR).
These registers are always used as a pair and contain all the information
needed to describe and locate the currently active memory pages.

One set of APR’s is used in Kernei mode, and the other in User mode.

The choice of which set to be used is determined by the current CPU
mode contained in the Processor Status word.

The various Memory Management Registers are located in the upper-
most 4K of PDP-11 physical address space aleng with the UNIBUS I/0
device registers.

6-4

’] PROCESSOR STATUS WORD
L - L L o
|
KE FPNALL DO USEF! 114)
AP O APRO
APR1 &PR 1
PR aPR2 PAE;EVE
APR3 4PR3 REHISTERS
APRY 4RR4
ARRS 2PRS
APRE APR6
APRT aPRT7
15 o] 15 Q
PAR |—— —_— —l POR J
PAGE ADDRESS REGISTER PAGE DESCRIPTION REGISTER

Figure 6-5 Active Page Registers

6.5.1 Page Address Registers

The Page Address Register is the first word of the 32-bit Active Page
Register; it contains the Page Address Field, a 12-bit field, which speci-
fies the starting address of the page as a block number in physical
memory,

15 2 1 0

PAF
1 1 1 1

Figure 6-6 Page Address Register

Bits 15-12 of the PAR are unused and reserved for possible future use.
The Page Address Register which contains the Page Address Field may
be alternatively thought of as a refocation register containing a reloca-
tion constant, or as a base register containing a base address. Either
interpretation indicates the basic importance of the Page Address Reg-
ister as a relecation tool.

6.5.2 Page Descriptor Register

The Page Descriptor Register contains information relative to page ex-
pansion, length, and access control.

15 14 g 7 © 5 4 3 2 1 o

| | 1 L 1 |

Figure 6-7 Page Descriptor Register

6-5

Access Control Field (ACF)

This 2-bit field, occupying bits 2-1 of the Page Descriptor Register con-
tains the access rights to this particular segment. The acccess codes or
"keys'' specify the manner in which a page may be accessed and whether
or not a given access should resuft in an aboart of the current operation.
A memory reference which causes an abort is not completed. Aborts are
used to catch “missing page faults,” prevent illegal accesses, etc.

In the context of access controi the term “write' 15 used to indicate the
action of any instruction which modifies the contents of any addressable
word. Except in those cases where references are made to the 4K word
UNIBUS I/ 0 register area, a “‘write’' is synonymous with what is usvally
calied a “store” or “modify’’ in many computer systems.

The modes of access control are as follows:

ACF Key Mode

00 0 non-resident abort all accesses

01 2 read only abort on write attempt
10 4 (unused) abort all accesses

11 6 read/write no system abort action

Access Information Bits

W Bit (bit 6)—This bit indicates whether or not this page has been modi-
fied (i.e. written into) since the PSR was loaded. (W = 1 is Affirmative)
The W Bit is useful in applications which invofve disk swapping and
memory averlays. It is used to determine which pages have been modi-
fied and hence must be saved in their new form and which pages have
not been modified and can be simply overlayed.

Note that the W bit is reset to 0 whenever the Active Page Register
{either PAR or PDIR} is modified (written into).

Expansion Direction (ED)

This one-bit field, located at bit 3 of the Page Descriptor Register, speci-
fies whether the segment expands upward from relative zero (ED = 0) or
downwards toward relative zero (ED = 1). Relative zero, in this case, is
the PAF. Expansion is done by changing the Page Length Field. In ex-
panding upwards, blocks with higher relative addresses are added; in
expanding downwards, blocks with lower relative addresses are added to
the page. Upward expansion is usually used to add more program space,
while downward expansion is used to add more stack space.

Page Length Field (PLF)

The seven-bit field, occupying bits 14-8 of the Page Descriptor Register,
specifies the number of blocks in the page. A page consists of at least
one and at most 128 blocks, and occupies contiguous core locations.
If the page expands upwards, this field contains the length of the page
minus one {in blocks). If the page expands downwards, this field con-
tains 128 minus the length of the page (in blocks).

6-6

A Page Length Error occurs when the Block Number of the virtual ad-
dress is greater than the Page Length Field, if the segment expands
upwards, or if the page expands downwards, when the BN is less than
the PLF.

Reserved Bits
Bits 15, 4 and 5 are reserved for future use, and are aiways 0. Bits 7

and O are used by the PDP-11/45, and in the PDP-11/40 they are set
to 0.

6.6 FAULT REGISTERS

Aborts generated by the hardware are vectored through Kernel virtuai
location 250, Status Registers #0 and #2 (#1 is used by the PDP-
11/45) are used to determine why the ahort occurred. Note that an abort
to a location which is itself an invalid address will cause another abort.
Thus the Kernel program must insure that Kernel Virtual Address 10 is
mapped into a valid address, cotherwise a loop will occur which will
require console intervention.

6.6.1 Status Register #0 (SR0) (status and error indicators)

SRO contains error flags, the page number whose reference caused the
abort, and various other status flags. The register is organized as shown
in Figure 6-8.

15 14 13 12 9 =] 7 13 5 4 3 2 1 4]

|

J P -~
ABOAT-NON RESIDENT- J

ABQRT-PAGE LENGTH ERROR

ABORT- READ QLY

t
ACCESE VIOLATION
MAINTEMANCE MCDE
MODE)
PAGE MUMEBER ‘
ENLBLE MANAGEMENT

Figure 6-8 Format of Status Register #0 (SRO)

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Status Register #2.

Note that Status Register #Q (SRO) bits 0, and 8 can be set under
program control to provide meaningful page control information. How-
ever, information written into all other bits is not meaningful. Only that
information which is automatically written into these remaining bits as
a result of hardware actions is useful as a monitor of the status of the
Memory Management Unit. Setting bits 15-13 under program control
will not cause traps to occur; these bits however must be reset to 0
after an abort has occurred in order to resume page status monitoring.

Abort—Non-Resident
Bit 15 is the “Abort—Non-Resident’ bit, It is set by attempting to access

67

a page with an Access Code Field key equal to O or 4. it is also set by
attempting to use Memory Management with a mode of 1 or 2.

Abort—Page Length

Bit 14 is the “Abort—Page Length™ bit. It is set by attempting to access
a locatign in a page with a block number (Virtual Address bits 12-6)
that is outside the area authorized by the Page Length Field of the Ac-
tive Page Register for that page. Bits 14 and 15 may be set simultane-
cusly by the same access attempt.

Abart—Read Only
Bit 13 is the “‘Abort—Read Only™ bit. It is set by attempting to write
in a “Read-Only" page. “Read-Orly"” pages have an access key of 2.

Maintenance/Designation Mode

Bit 8 specifies Maintenance use of the Memory Management Unit. It is
provided for diagnostic purposes only.

Mode

Bits 5, 6 indicate the CPU mode (User/Kernel) associated with the page
causing the abort. (Kernel = 00, User = 11}. ¥ an illegal mode is speci-
fied, management will abort and set bit 15.

Page Number

Bits 3-1 contain the page number of a reference causing a fault. Note
that pages, like blocks, are numbered from O upwards.

Enable Management

Bit O is the “Enable Management” bit. When it is set to 1, all addresses
are relocated by the Management unit. When bit O is set to 0 the Unit
is inoperative and addresses are not relocated or protected.

6.6.2 Status Register #2

SR2 is loaded with the 16-bit Virtual Address at the beginning of each in-
struction fetch, SR2 is Read-Only; it can not be written, SR2 is the Vir-
tual Address Program Counter.

6-8

CHAPTER 7
INTERNAL PROCESSOR OPTIONS

7.1 GENERAL

This chapter describes 3 options which mount in the Central Processor,
assembly unit. The Extended Instruction Set (EIS) option allows ex-
tended manipulation of fixed point numbers. The Floating Point option
{which requires the EIS option) enables direct operations on single pre-
cision 32-bit words. The Stack Limit option allows dynamic adjustment
of the lower boundary of permissible stack addresses.

The options are contained on individual modutes that plug into dedi-
cated, prewired siots.

KE1l-E EIS option
KELLl-F Floating Point option
KJ11l-A Stack Limit option

The basic processor timing is not degraded, and NPR latency is not
affected by the use of these options.

7.2 EIS OPTION
The Extended Instruction Set option adds the following instroction
capability:

Mnemonic instruction Op Code
MUuL multiply 070RSS
Dy divide 071RSS
ASH shift arithmetically 072RS3
ASHC arithmetic shift combined 073RSS

The EIS instructions are directly compatible with the larger 11 com-
puter, the PDP-11/45. The detailed operation of these instructions is
covered in Chapter 4.

Tihe number formats are:

15 14 [*]
. . 1
16-bit single word: | 5 l . JumEER .
PS4 o
| 5 l) s NUMBER PanT .]

32-bit double word:

15 0
L. . L eece pary . i
S is the sign bit. % = 0 for positive quantities
8 = 1 for negative quantities; nomber is in 2's

complement notation
Interrupts are serviced at the end of an EIS instruction.
7-1

7-3 FLOATING POINT OPTION

The Floating Point instructions used with this option are unique to the
PDP-11/40, However, the Op Codes used do not conflict with any other
instructions,

Mnenomic Instruction Op Code
FADD floating add 07500R
FsuB floating subtract Q07501R
FMUL floating multiply 07502R
FDIV fioating divide 07503R
The number format is:
15 7B =]
l) i EXPOHENT ! | FRACTION (HIGH PART) |
1 1 1 1 1
HIGH ARGUMENT
1% Q

| . FRACTION (Low P2ATS
L L

!]

LOW BAGUMENT

S = sign of fraction; O for positive, 1 for negative

Exponent = 8 hits for the exponent, in excess (200), notation

Fraction = 23 bits plus 1 hidden bit (all numbers are assurmed to be
normalized)

The number format is essentially a sign and magnitude representation.
The format is identical with the 11/45 for single precision numbers,

Fraction

The binary radix point is to the left {in front of bit & of the High Argu-
ment), so that the value of the fraction is always less than 1 in magni-
tude. Normalization would always cause the first bit after the radix paint
to be a 1, such that the fractional value would be between 14 and 1.
Therefore, this bit can be understood and not be represented directly,
to achieve an extra 1 bit of resolution.

The first bit to the right of the radix point (hidden bit) is always a 1. The
next bit for the fraction is taken from bit 6 of the High Argument.
The result of a Floating Point operation is always rounded away from
zero, increasing the absolute value of the number.

Expanent

The 8-hit Exponent field (bits 14 to 7) aliow exponent values between
—128 and +127. Since an excess (200}, or (128).. number system is
used, the correspondence between actual values and coded representa-
tion is as follows:

Actual Value Representation
Decimal Octal Binary
+127 377 11 111 111
+1 201 10 000 001
0 200 10 000 000
—1 177 01 111 111
—128 000 00 000 000

7-2

If the actual value of the exponent is equal to —128, meaning a total
vaiuve (including the fraction) of less than 2-®, the floating peint number
will be assumed to be 0, regardless of the sign or fraction bits. The hard-
ware will generate a clean O (a 32-bit word of all zeros).

Example of a Number
+{12).0 = 4-(1100).
= (24, x (.11}, [16 x (V% + 14) =12]

3 Exponent Fraction

e
representation: 0 10 00C 100 1000000 000C000000000000
L hidden bitis a I

radix paint is understood

Registers

There are no pre-assigned registers for the Fleating Point option. A gen-
eral purpose register is used as a pointer to specify a stack address.
The contents of the register are used to locate the operands and answer
for the Floating Point operations as follows:

{R) = High B argument address
(R)+2 = Low B argument address
{R}+4 = High A argument address
(R)}+56 = Low A argument address

After the Floating Point operation, the answer is stored on the stack as
follows:

(R}44 = address for High part of answer
{R}+6 = address for Low part of answer

where (R) is the original contents of the general register used,

After execution of the instruction, the general register will peint to the
High answer, at (R}+4.

Condition Codes

Condition codes are set or cleared as shown in the Instruction Descrip-
tions, in the next part of this section. If a trap occurs as a function of
a Floating Instruction, the condition codes are re-interpreted as follows:

1, if an error occurs
1, if underflow or divide-by-zero

gy

NOZ<

1, if divide by zera
Q
v N C Z
Overflow 1 0o 0 0
Underflow 1 1 0 0O
Divide by 0 1 1 1 0

Traps occur through the vector at location 244, A Floating Point instruc-
tion will be aborted if a BR request is issued before the instruction is
within approximately 8 pusec of completion. The Program Counter will
point to the aborted Floating instruction so that the Interrupt will look
transparent.

INSTRUCTIONS
FADD
floating add 07500R
E:_I_‘A‘ ‘I‘ [x) !LQ_I._OAOLO U‘_Zl; r ‘;]
Operation; [(R)+4, (R)4+6] <[(R)+4, (R}+6]1+[(R)(R)+2], if

result 22 2-'8; else [(R)+4, (R)+6]<0

Condition Codes: N; set if result < 0; cleared otherwise
Z: set if result = O; cleared otherwise
V: cleared
C: cleared

Description: Adds the A argument to the B argument and stores
the result in the A Argument position on the stack.
General register R is used as the stack pointer for
the operation.

A<A1B
floating subtract 07501R
F | 1 1 1 | 1 [n] 1 . O_I‘ [+ 3] L o =]] l r r r
15 3 2 5]
Operation: [(R)+4, (R)+6] <[(R)+4, (R)+6]—-[(R), (R)+2]. if

result z= 2-'1; else [(R)+4, (R)4+6]<0

Condition Codes: N: set if result < O; cieared otherwise
Z: set if result = 0; cleared otherwise
V: cleared
C: cleared

Description: Sutracts the B Argument from the A Argument and
stores the result in the A Argument position on the
stack.

A<A—B
7-4

FMUL

floating muliply 07502R
IOII 1‘_|I‘O'IOI0 DID| O-Et r‘rI
AC] 3 2 o]
Operation: [(R)+4, (R})+6] «<[(R)+2, (R)+6]x[(R}), (R)+2] if
result 2 2-'%; glse [(R)44, (R)+6]«0
Condition Codes: N: set if result < O; cleared otherwise
Z: set if result = O; cleared otherwise
V: cleared
C: cleared
Description: Multiplies the A Argument by the B Argument and
stores the result in the A Argument position on the
stack.
A-A X B
floating divide 070503R
{D.'",'°'1°'°°|°"""’|
15 R S
Operation: ((R)+4, (R)+B]<[(R)+4, (R)+8] / [(R).(R)+2]if
result 2= 2-1%; else [(R)+4, (R)+6)]<0
Condition Codes: N: set if result < O; cleared otherwise
Z: set if result = O; cleared otherwise
V: cleared
C: cleared
Description: Divides the A Argument by the B Argument and

stores the result in the A Argurment position on the
stack. M the divisor (B Argument} is equal to zero,
the stack is left untouched.

A<AfB

7.4 STACK LIMIT OPTION

This option allows program control of the fower limit for permissible
stack addresses. The limit may be varied in increments of (400). bytes
or (200), woards.

There is a Stack Limit Register, with the following format:
12 B T

- l)

75

The Stack Limit Register can be addressed as a word at location 777774,
or as a byte at location 777775. The register is accessible tc the proces-
sor and console, but not to any bus device.

The 8 bits, 15 through 8, contain the stack limit infarmation. These bits
are cleared by System Reset, Console Start, or the RESET instruction,
The lower 8 bits are not used. Bit 8 corresponds to a value of (400},
or (256} ...

Stack Limit Violations

When instructions cause a stack address to exceed {go lower than} a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs., There is a Yellow Zone (grace area) of 16 words below the Stack
Limit which provides a warning to the program so that corrective steps
can be taken. Operations that cause a Yellow Zone Violation are com-
pleted, then a bus error trap is effected. The error trap, which itself uses
the stack, executes without causing an additional violation, unless the
stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. (Odd stack or non-existent
stack are the other Fatal Stack Errors.) When detected, the operation
causing the error is aborted, the stack is repositioned to address 4, and
a bus error occurs, The old PC and PS are pushed into locations 0 and 2,
and the new PC and PS are taken from locations 4 and 6.

Stack Limit Addresses
The contents of the Stack Limit Register (SL} are compared to the stack
address to determine if a violation has occurred, The least significant

bit of the register {bit 8) has a value of (400).. The determination of
the violation zones is as follows:

Yellow Zone — (5L) 4 (340 threugh 377), execute, then trap

Red Zone = {5L) 4 (337). abort, then trap 1o lo-
cation 4

If the Stack Limit Register contents were zero:
Yellow Zone — 340 through 377
Red Zone — 000 through 337

7-6

CHAPTER 8

CONSOLE OPERATION

8.1 CONSOLE ELEMENTS
The PDP-11/40 Operatoi's Console provides the following facilities:

Power Switch {with a key lock)
ADDRESS Register display (18 bits)
DATA Register display (16 bits)
Switch Register (18 switches)

Status Lights
RUN
PROCESSOR
BUS
CONSOLE
USER
VIRTUAL

Controt Switches
LOAD ADRS {Load Address)
EXAM (Examine)
CONT (Continue)
ENABLE/HALT
START
DEP (Deposit)

8.2 STATUS INDICATORS

RUN Lights when the processor clock is run-
ning. It is off when the processor is wait-
ing for an asynchronous peripheral data
response, or during a RESET instruction.
It is on during a WAIT or HALT instruction.

PROCESSOR Lights when the processor has control of
the bus,

BUS Lights when the UNIBUS is being used.

CONSOLE Lights when in conscle meode (manual op-

eration). Machine is stopped and is not
executing the stored program.

USER Lights when the CPU is executing program
instructions in User mode.

VIRTUAL Lights when the ADDRESS Register display
shows the 16-bit Virtual Address.

8-1

8.3 CONSOLE SWITCHES

POWER OFF
ON

LOCK
Switch Register

{ Up =1}
(Down =)

Control Switches

LOAD ADRS
(depress to activate)

EXAM
(depress to activate)

CONT
{depress to activate)

ENABLE/HALT [ENABLE

HALT

Power to the processor is off.

Power to the processor is on and all con-
sole switches function normally.

Power to the processor is an, hut the Con-
trol Switches are disabled. The Switch
Register is still functional.

Used to manually load data or an address
into the processor,

Transfers contents of the Switch Register
to the Bus Address register,

The resulting Bus Address is displayed in
the ADDRESS Register, and provides an
address for EXAM, DEP, and START. The
LOAD Address is not modified during pro-
gram execution. To restart a program at
the previous Start Location, the START
switch is activated.

Causes the contents of the location speci-
fied by the Bus Address to be displayed in
the DATA Register. If the EXAM switch is
depressed again, the contents of the next
sequential word location are displayed.
(Bus Address is incremented automati-
cally). If an odd address is specified, the
next lower even address word will be dis-
played.

Causes the processor to continue opera-
tion from the point at which it bad stopped.
The switch has no effect when the CPU
is in the RUN state. If the program had
stopped, this switch provides a restart
without a System Reset.

Allows the CPU to perform normal opera-
tions under program control.

Causes the CPU to stop. Depressing the
CONT switch will now cause execution of
a single instruction.

82

START
{depress to activate}

DEP
(raise to activate)

8.4 DISPLAYS
ADDRESS Register

DATA Register

If the CPU is in the RUN state, the START
switch has no effect,

If the program had stopped, depressing
the START switch causes a System Reset
signal to occur; the program will then
continue only if the ENABLE/HALT switch
is in ENABLE,

Deposits contents of the Switch Register
into the location specified by the Bus Ad-
dress. If the DEP switch is raised again,
the Switch Register contents {which were
probably modified) are loaded into the
next word location, (Bus Address is incre-
mented automatically). If an odd address
is specified, the next lower even address
word will be used.

Displays the address of data just exam-
ined or deposited. During a programmed
HALT or WAIT instruction, the display
shows the next instruction address.

Displays data just examined or deposited.
During HALT, general register RO contents
are dispiayed. During Single Instruction
operation, the Processor Status word (PS)
is displayed.

83

CHAPTER 9

SPECIFICATIONS

9.1 PACKAGING

The PDP-11/40 Central Processor is housed in a 21" slide chassis unit
that mounts in a standard 19” rack (see Figure 9-1). The included power
supply has sufficient excess capacity to drive core memory modules and
peripheral logic mounted within the unit. The first 9 sltots of the assembly
are prewired for basic and optional CPU modules. In addition, space is
provided within the chassis for mounting 7 System Units, each of which
can hotd 4 large (hex) modules. The power supply does not slide out, but
stays mounted stably in the cabinet. The slide chassis provides con-
venient access to all logic modules. With a cabinet the PDP-11/40 weighs
about 400 lbs,

9.2 CPU OPERATING SPECIFICATIONS

Temperature: +16° to 4-50°C
Relative Humidity: 209, to 959, (without condensation)
Input Power: 115 VAC = 109%, 47 to 63 Hz

or 230 VAC = 109%, 47 to 63 Hz

A system using a PDP-11/40 CPU loaded with 3 System Units
of memary and peripheral fogic draws about 12 amps at 115
VAC, or 6 amps at 230 VAC.

9.3 OTHER EQUIPMENT

Digital Equipment Corporation manufactures and seils a wide range of
peripheral eguipment, cabinets, and mounting assemblies. The PDP-
11/40 CPU can be the heart of the system suited to your needs. There
are several other PDP-11 computers available, offering price/perform-
ance choices.

Alt PDP-11 computers and systems are shipped with extensive support
documentation, such as:

instruction manuais

system and diagnostic software
installation and mounting information
systems checkout report

9-1

f— 17" ——n]

\ 17" —e
25"
SPACE
For PWR
sysTem ||SUP
UNITS
21“
CPU
TOP VIEW
FRONT VIEW

Figure 9-1 PDP-11/40 Assembly Unit

9.2

€6

9.4 PDP-11 FAMILY OF COMPUTERS

CENTRAL PROCESSOR

11/05 11/10

11/15 11/20

11/40

11/45

Main Marhet

Memory

Reg to Reg Transfer
Max Mem Size (words}
Generail Purpose Reg
Stack Processing
Micro-programmed

instructions

Extended Arithmetic
(hardware}

Fleating Point

Stack Limit Address

Memory Management

Modes

Automatic Priority
Interrupt

Powaer Fail and
Auto-Restart

OEM End User
core
2.7 us
3ZK
g
yesS
yes

basic set

option {external

saoftware only

400 (fined)

not available
1

4-line
roulti-level

standard

OEM End User
cove
23 ns
32K 128K
a8
yes
no

basic set

option (external}

software only

400 (fixed)

not available

1
1 line 4-hne
multi-tev multi-lev
(4-line,
opt)
aption standard

OEM & End User
core
0.9 us
128K
8
yes
yas

basic set
XOR. SOB, MARK,
SXT, RTT

option (internal}
MUL, DIV,
ASH, ASHC

hardware option
3Z-bit word

400 or
programntable
(option)

option
{subset)

1 std, 2 apt

4-hne
muiti-level

standard

OEM & End User
bipolar, MOS, core
23 045 09
128K
16
yes
yes

same as 11/40 4+
MUL, DIV, ASH,
ASHC, SPL

standard {int}

hardware option
32 or 64-bit word

programinable

aption
(fully

3
4-line
multi-level
+
8 software levels

standard

APPENDIX A

& DESCRIPTION OF THE PUP-11 1
USING THE [HSTRUCTTON SET PROEESSOHR 4 [3RY NUTATLON

ISP is & Lenguage for npration! which cin be used to detuine the action of &
compucer's instruction set. It defines a computer, teeluding console and periph-
arals, as se¢n hy & programmer. 1r has cwo goals: to bu precise enough to con-
acitute the complete specification fer a compuraer and ra still be highly readable
by & human wser far purposes of reference, such ac this mapual. This eppendix
rontains an ISP descriptian of the PDP-11, using & few Enplish language comments
89 SuppoTt.

The follawing brief incrodeccion co the ngracion is piven wsing examplies fram
the POV-11 Medel 20 15F deseriprion. The complete POP-11 description tollows the
incroducticon.

A pracesspr is completely defined st the programming lewvel by plving 1cs
iastruction set and its inferpreter in térms of hasic operations, Jdata tvpes and
the system”s memarv. For claricy the ISP deacription is usually given imy 8 Fixed
erder:

Declare the system's memory:
Frocesdar stace 1cthe infprmation necesgary Lo resCart the processar

if stopped hetween instuuctions, e.g., peneral regiscers, FC, index
reglstars)

Primary merory_state (che memory directly addreszable From the
processar)

ronscle stato 18ny external keya, switches, lights, ete., thét
affect the \nterprecatian process’

Seconddty memory {the dizks, drums, dectspes, wapnecic capes, ete,*

Trapsducér stdte (memory available in any periphersl davicas that
ie #ssumed in the instructions of che processart!

Leclare the eastrucrtea format

Petine the operand address calculation procass

Declare the daca types

Declire the operacione on the datd types

Define the instruction interpretdtion process including interrupts, traps, etc,

Define the ingcrucrian sef and the lostruction éxecul lanm process iprovides an
15F ewpression for edch imstrucciond

Thus, the computér system iz described by first declaring memory, déca-types 4nd
primitive daca operaclons, The pnscructlon interpreler aad the instructfion-set
is then defined in terms of these entitima.

The 15P notacien is simllar to that used in higher kevel programming langudges,
Its statements defime entities by medns of expressipns invelviag echer engicies |n
the svstem. For ¢xAmple, &n instructicn to increment [add-cne! to memory would be

Loncrement = (Mix] — M[x] + 11; adf e to memown, »

Thie defines #n operation, called "increment'™, that takes the contents af memory
M at an address, %, and replaces L1 with & valug ooe higher, The := symbol simply
4s5igns 2 name (on the left: to stand for ghe expression fon the righe). English
language comments are given 1n igalice, Table 1 gives & reference lisy of nota-
tions, which are illustrated beolow.

[SF express.ons are fnherently interpreted in parallel, reflocting the under-
1yving parellel néture of hardware cperationsz, This la an wmportant difference
berween [5F and standazd programming languages, Which are inherently serial. For
axample, in

I}
The notation derived and uaed 1o the book, Compurer Srructures: keadings and
Exemples, McCraw-HLlL, E971 by C. Sordon Bell &nd Allen Hewell. Tha book contéins

[5P's of l& computers.

A-1

Zo.m M{xT = SR My = HIx]E

bath righehand sides of che datd cransmession gperacer [+ are evaluaced §n che
furtent memory $tate in patallel #nd then trensmission occurs. Thus the old
value of M|x] would go into M|y|. Serial ordering of processing is indicaced by
using the term "next", For example,

Z = {H[x] = 5'+D"; naxt M[v] ~ M x});

periorms che righthand data tcansmission #ttar che lefchend one. Thus, the new
valug of M|z] would he wged for M[yi in this latter case,

demory Teclarazions

Memoty is defined by giving a memory declarstion &5 shown in Table 1. For
axample

k
Mp(0:2° - 1115 -0
.k
declares a memory named, Mp, of 2 words Wlxerﬁ k has heen given & valus), The

addresses of the words in mempry are 0,1, .,,,2 -], Each word hes 16 bits and the
byes ate labeled 15,14,...,0. Some other ¢xamples of memory declarations dre:

Boundery-grrot., | Foolacn mamopdca; escazler hit alssmurtives
Eoundéry~ecrror }

Aprivityy raPRary it, hplding value 2,7, or 2

Y Kogative idma, ¥ and iegat are SuRONGMOuR
Lo hit 3 ef 2 pegister

w2zl T vector

MO 15T 4099 [T 0 array of

hrop...l-ﬂ‘\lﬁ

brop&?:ﬂ"z

Benaming and Restructuring of Previowsly Defined kegiaters

Registers c#n be dafined in terms of existing registers. [n eifect, sach
Llme the omme ta the lefr of the = symbal is encountered, the value iz compured
according co the expression to the right of :=. A procass can be evekwd to form
the vatue and side-effects are possible when the value i9 compuged,

Examples of zimple rwneming in part or whole of exiating memory

N Hegative = CCo3~ ¥ iz name it 3 of regigter 0
S5BOLS: 0 o= RIB <15 8= EP {z the aame ar register RS

Examples of register formed by concatsanation
LAcL,0:11. := LOAC<D:11-

LR 4T e AT T IR 20
Huord [0]<15; 0> ;= Mbyte[07-7; E-Mbyte] L7 0

Exgmpies of values and reglsters formed by evaludtion of & process

aifaddress-Lnerement<l: O 1= { vaiue of ai I8 2 1f - Byte op,

— byte-op = 2; clge valwe ta 1
byte-gp = 1% i R
Run ;= [Activity = O} fun=i or 0 depending on malue of detivdry

i & ar mot J
Ipsctucgion Format being & 0

Instruccion formate wre declared in the same fashion 43 memary and are oot
discinguishable &5 apacial noa-memary entities, The instructions are cavried in
% repistar; thug tt iz oEgurdl to declére them by giving names o che varigus
parcs of the instruction Tegistar. Usually only & single declaration is mede,
the instruction/i, follwwed by the declarations of the parcs of che instruction;
che gperacion code, the sddrasy fields, indireec bir, etc.

Example

This declaration would correspond to the usual box diagram:

Table 1, ISP iharacter-%er and Expression Forms

PR P

name alpkaber, This characeer ser 15 used for
namus .,

comments., lcalics are weed far commencs,

W e i memoTy declardtion. An n-dimensional memary

arrav of words where a:h ... v:w are the range
" of values for the first and last Jdimensians.

The walugs al the firsr dimensipn are, tor
exémple, &, a+l, ..., b far a = b jar
a,a-l,,..,b for @ - 31, The word length base,
2z, i5 normally & if pet specafied, The digics
of the word are s, n+l,,..v.

a .= {rexpressian defirycion. vhe operator, .=, detinas memery,
name s, PTOCEss, OF OPETAELons a0 cerms of
existing memory and aperations. Each accur-
rence ol "'a” causes the in place suhstitution
hy [iexpression).

[ELE- S N K EMpression: *he definiticn b, may have dummy parameters,

E,...q.8&, Which are used o glexpressiont.

odme' o= hiexprestion: side effects naming canvencion. Inm this

descriptian we have vsed ' 1o indicate chac
4 reference to chis name will cause other

regLsters ta change.

a4 = jiexpressian: transmizsion operator. The content: in
fiexprasziont ~ a regitter 4 are replaced by the value of
the function.

parancheses, Oefines precedence and Tange
of warious operdtions &nd definitions
itoaghly equivalene to begin, and eod}.
[data-type’ operasor and data-rype modifier

hrooledn = expression: conditianal éepression, equivalent (o ALUGL
it hpelean thop expression

ovledn = rexpression-l else equivalenc to Algal if boelean then expression-!
expression-21; else expressions?

. next sequential delimicer interoretatlon is to agcur
= concAtenation. Consider the tegisters to the
left and right af T to he one.

H scazement delimiter. Cep#rates stacements,
N vcem delimiter, Sepirates lists of variablas,

division and synonvm. LU'sed Lo ewd contexts:
for divisian and for defining the name, a
ra ke an atias (synonym)] of che name, b

unkoewn oF unspacified value

set value. Takes on all values for a digit
af the given base, a.g., 1{'2 specifies either
IIII2 ar 112

Ki;= bopledn: = expression: instruction value defipicion. The name X is
defined te have the value of the boglean,
When che hooledn is true, [he expresslon
will be evaluaced.

Common Arithmetic, logical and Reldtional Operdtors

Arithmetic Logical Eelational

+ add = el i identical

- gubreacr, Al negactuve A and # nor idencical
wooulriply Woar = equal

Sodivide & exclusive-ar # noc equal

mod modulo {remadindect I equivalence - gradter than

0¥ squared = greater than or equal
{ +® mxponantiation < less than

i }ra ewponentiation % less chan or equal
i tp bage

i *lb baze

QL 1 squAre raat
abai | absolute value
sign-extendi)

[bep [I | 4f |
- o
ifinetructiom:l5: 0 the Trzzrusiion
hopd; O tfies hingny [dyas
sf5: ik 5 Baurce (TP ;
df5. 0 prarand and destinztion

Operand Address Calew ion Propcese

[n all processors, Lnscruccions make uae of aperands. [n most conventional
processors, the operand is usuially in memory or in the processor, defined ag M[2!,
where 2 1s che effective address, [n PDP-11, a destinacion wddress, Daddress, is
used in this fashion for ooly two ioatrvections. 1t is defingd in 159 by giviag
the process chat célcolates it, This pracesz mdy involve only accesses to primry
memory (possibly indexed), but kt may alse invelve side effeccs, v.e., the modifica-
tion of eithar of primary memory oT PrOCessQT memory (2.g., by lncremencing & reg-
ister). MNote that che effective address is emleulated whenever its nama is en-
councered in evaludting an ISP expreasion (#ither in an ingtruction or in the inter-
pret#tion expression)., That is, it i§ avaluaced on demand, CLonsequently, sny $ide
effects may be executed more than ooce.

Qperation feretmination Procasses

[nttead of ¢ffective-addrese, the cperands arw ususlly determined ditectly,
For sxampla, the lé-bit destination reglater is just the registar selected by rhe
dr £leld of an instruction, {.e.,

Rd = Rldr] the destimation pegister

In one cther case, the operand ig juat the next word [ollewing an ipscruccion.
Thig next word can be defined,

e 15 B fnexr-word 1= (WIPC]: PC = BC + 2} the mext werd 1s aclested and PO i moved

Here, the ' shows that & reference to me will cause side sifects, in chis case,
PG+ PC + 2. For calculating the spurce opetand, 3, the process is:
il = o velue for sourme operand

(am=0) = R[er]; if mode={ thew 5' i the Register adiressed
fo {matruction fleld e

ismel] = Mw[Risr]t {F mpdred the ©F dg dadipect viz & oar

{am=2} A far=T) = nu; if mpdes? gnd source registerafT then the
mexs word {8 the operand; this oo be
seen by subatituting the expression far wu’

A4

An sxprassion 1 4lep needed for the oparend, 5, which doas not ceuse the wide
effecta, amd aweiming the effects heve taken place, counterdcts them. Thus, §

would be:

Sl = 0
(wm0} = Riwr];
(mo=1) w Hw[R{sx]};
(w2} A {are7) = Me(PC-2]

ro aide effacts
no etde effects
eounterast previous side affects

1n tha i5F deacription a general process is given which detarmines opatinds for
Source-Deatisetion, word-byte, and with-without side-wifects, [n order ta clarify
what teslly happans, the mource oparand caleulerion, for words, with side xffects,

is given bielow.

Sf<h b o 12llcb
-y wici:
[T L § Ja)

L afd: i

' <15: 00 = {Muw[PC]; PO+ PCA2)
Re<15:0> ;= Rfar)

§°<13: 0= /Scures <v {0

{am=0) = Ra;

(mwm2) A (8rf?) = (Hw[Ra)
Re = Ra + 2};

(owmd) A Car=1] % mw,

(st} w (Rm ~ He = 2; next
Melze]):

(wa=t) A (arp?) % Me[me' + Ra];

{mw=i) A {wr=7) * Mw[ow' + BC;

{#aml} = He[Rs]:
coamd) A {(ard7) = (uitwRe]];
ks = Fs + 23
{m=3) A (ny=T} = Miogw'],
{sm5) & (Re ~ Ko - I; ‘et
M (Mw[Be]]Y;
(awmT) A {er$?) = mwlpwime' + Ra]]:
(M7} A (ere?) = Mu[Mw[mv' + PC]]
%
{arab) A [(mmh) v (mme=5)) A
{SR&D%] = (Scack overflow ~ 1)

Daia-Typas ’

source fiald (8-bita} of instructiom
gource mode control fleld

defevred aldress control

regieter spectfioation for aourae

nert wond; used ap gperand
souree regigter spect floation

value for the sourcs--direct addressing
ume the regiater Re ae operoul

direst auto-inarament ({ncrement

Rel); upually used asz FOP

direct; actually immediate operand
dirgot; auto-desmement (decrement

Rel; usually waed aa PUSK

direct; indered vig Ra--uses nert-uword

direct; relativa to FC; uses mext-word
value for the source-defined addressing

dafer through R

dafer throwgh stack; auto

ittaremant

defer via next word; abeolute addreseing
defer through stach after aute
desrament

dafer, indered via Ra

defer ralative to OC

end ealpalation process;

shecka {f atack overflowved for sevaral
modes

end aoupra ooleulation

A data-typs specifias the ancodiog of & oedning inte sn inforoation wedium.
The madning of the data+cype {what Lt designetes or refurs to) is called ite
ratarunc {or valua). The referent by be anythlog renging from highly abstract
{the ynintarpreced bit) to highly concrecs {the payroll account for & mpucific

type of mmployss).

Evary dara-cype has a carrisr, into which all it3 componant date-cypas can

be mappad, The carrisr is used Ln storing the date-cypa in mecories and iz uyu

1y

» word or sulcipla chaywof. It must be axtensive wnough o hold all the component
daca-typen, but mAy bhe 4 larger (having errar chacking aod correcting birm, or

A-5

even yaused bitad, The mapping af the component data-types into the carrier is
called the format, Tt is glven we o list which asspelates to each component an
axpreseion invelving the carrier (e.g., &8 in the instruction format).

I5F providez a way of naming daca-cypes, which B30 Swrves B8 8 hasgis for
abbrevietions. Some deta-types wimply have conventionsl names {e.g,, characcerfch,
floscing potnc numhers_.l'f)-, others are nemed by chekr value {e.g., '\n:lger."ri_}. Daca-
typet which ace iterdtes of & basic component can be named by tne component guffixed
by & length-type. The length-Lvpe can be atrvay/a, implying a mulci-dimensional
array of Fixed, bur unspeciiied dimenalons; & string/at, implying 4 slozle sequence,
of variabie length fon each cccurrancel; ar a veetor/ v, Implying & one dimensional
arrey of a fixed bur unppecified number of components. The length-type nied not
axiat, and then thias form of the name is not applicable, Thus, iv is che abbrevi.
ation for an labeger vecear, 1t 18 also posgible fo name s data-tvpe by simply
listing its components.

Det&-tvpes Are often ol & given precision and it nks become customary to
medsure chis in terms of che number of components chat arve used, e.g., Lriple
precision integers. 1In ESF this Lis ipdicated by prefixing the precisien sympal
ra the basie daca-type rame, £.g,, di for dowble preclsicon integer. MNote thay a
deuble precision integer, while taking two words, ia not the seme thing as & fwo
integer vector, sa that the precision and the lengrh-iype, though hoth implviog
something about che size of che carrier, do oot ewpress the same thing,

A list of common deta-types and chelr mbbreviacious 1s given [n Table 2.

Operacions on [Ata-types

operacions produce resulok of specific date-types ftom operands of specific
data-types, The data-tvpes themselves determine by and large the possible operm-
ctone thar spply e them, No attempt will be wade ro define Lhe varisus .opera-
tions hers, ms they are sll familiar. & reasonably comprehensive 1ist 13 given in
Table 1. An operatign-modifier, enclosed §n braces, { J, can he used to distinguish
viriant operations. The operation-modifier is usuwlly the name of & data-type, &,8.,
A+BE] is a floecing poinc addltion. ModlFiers cam also be a description neme ap-
plying te the operation, e.g., 832 [rtotacel.

Xew operations can be detined by means of forms. For example, che various
add operstions on differing data-types ace specified by writing idaca-type} after
che opeTALion.

lostruction Interprethtipn Process

The instruction interpretarion expression and the insgroerion s4f consbituce
4 singie ISF expression that defines the processor's mction. In effect, this
aingle expression i% egvaluared and all che other parcs of the LS description of
4 processor are avoked #5 indirect consequeénces of this avaluation. Simple inrer-
precer wlithout incerrupt fRejlities ghow the [mmiliar eycie af feteh-the-instruction
and exécute-the lnatructioa,

Examp e

2 {8 a s'mple
terpreter, not fhe
ne for the POP-]1

funy = {inectruction = M[FC; B~ PC + 1, next 'T'?_:
Instruction-exdculion; next) v

In more complex processors the conditions for trepping and intarTupting masg
wlsze be deucribed, The effectiva address calculstion may also be carried out in
the interpreter, prior to edecuting the instruccion, especially L[E [t is Lo be
calculeted anly once and will have a fixed value independent of snything that
happens while executing instructions. <Console activity can alse be described in
the interprater, ¢.g., the effect of » switch chat permits stepping through the
program under mamual control, or interrogdting #nd ch#nging memory.

The normal statement for FOP-1i interpretation is just:

= Iacerrupt-tq A Run = (instruciion = Mw[PC]; BC = PC + 7, next Serah
inetructicn=-execul ion; pext erecute
T-flag = (Sr.ue—u:hangetla‘qa]; T-tlag = 03) e made

fable 2. Common Uata-Types Abbrevizrcions

Primitive fering and vectar
b hit s Boslean b bic.veetor
by hytno by, gt hyre.scelng
eh rcharacter cn.st characrer.siring

cx complex

db double precisien Pheacong
du douhie word

d diuic e j=digit numher
I fleating

fr iracrion

ha halt word

i integer

mx mixed nember

qw quadruple length word

ww triple lenger word

W word

Lostruction=Set anrl Instruction Lxecuiion Process

Thy instrectivs set and Lhe proacess hy which vech instructiun is executed
are usudlly given together in & single definition; thie proceas 1a called

Instrugt jan-gxeculion in mast (57 descriptions., This usoally includes the defii-
tion of rhe conditions for execut:ion, i,e,, the pperacien code, value, che name
al the instyoction, a magranic alias, and the procuess for ifs erecution. Thus,
an individueal instroeccion cypicdlly has cthe form;

= 00012' *

1E

next

Tarmiediaie ne

K- 13
r Bl w2 il =] else Eoe @0y

Yoy

by, traamIt omegalt o so

With chis farmar for che instruction, the earlte inscructlon aec is siwvpl-
a list of al! the instructions. On any particular execution, 45 eveked by the
inpterpraca o expression, Lvpicdlly one asnd ¢nly voe gperation code corvelariga
Will bu satistied, hence one and poly one (nstruction will be exscuted.

in the case of POP-11, the texr carries the definician of the individual
inscractions, hence chey are not redefined in the appendix, [nscead, che appendix
defines the coendiiien ter executing the instructions. For example,

Mt = fheap = DDOIZ\

1% given fo the appendix, and the act of MOV iz defined (in 15F) in the text.

A-7

THE PDF-11 ISP

PDP-1]'s Primary (Program! Memoey and Proceaaor State

The Adeclaration of thia wemory fneludes all the state (bita, words, ete.) that a brogran
(programmer) has cecess to in this part of the computer. The comsole iz mor imeluded. The
various secondaruy memories (e.g., diaks, topeal end imput-sutput device state dezlarationa ape
inaluded (v @ fellowing seotion.

Feeirar (ppogram) Memowy

Mpfd:2 «1j13:0. artual rhyeieal, 18-bt mempru of o narticulor
ayatem; ko= 15, ..., 17
M/ Hword (xc15: e Jnls: O = () vapd-geceased mamgmi
- medre = Mp[a=15:1-]5 ward on even Myte Frundary, all pight

w0 w {Tuzlue i Boundary-wrror = 1) wopd on ofd bute Bowndary, trar

MbfMbyee[%cls; 017 00 cm | byte-aocegaad mamory

0. Mp[RCLS; L jeT 0 s

woil m Mplwels: 1 [LS B take Hi-oeder bits if odd

take lowsopder Bite i even

Prosgsror ELate

R0 715 0- eighs, J8-Uit Gemeral-fegisters, wped for
aoeumalatara, indering and stacks
EP:15: 0 /Stack-Pointer := R[6] special atosk, semtralled bw B(F)
PC15: 0/ Program-Counter :w A7} lecation mext fmsirustism, aise 5[7]
PSoL3:O-/Processor-5rate-word T6-hit register giuing pest of srate
Unused<7- 0o/ Undefined ;= P§:15: 8- mapping of bia into FE
B2 Priaricy c= PEET-5 irterrurt level control of nrecesser
1/trace = PRk . denstes WHether frap o accur afeer gach
Ingtruction
o) 0 frondicion-Codes = PS3: 0 get ar a Funotion of dnatruction and results
o Hegative o= GO if resuit = -
zizere s if pesult = ¢
v/ overtlow ca ool £f peault overflows
cfcarry o= Lo f result sareied intps/borroved from mant

signifipant it

Procepsor-Cantrolled Errer Plage (resulting fron {nztruatfon-eraswtion)

Bownd ey -Error et 1f uord {2 aceessed on ordd bute bowndmry

Srack -Dverflow et i word gecessed, via SF < 405‘8

Time=Cut -Error get ©F non-eriétent memert ¢p device ia
refgrenaed

1llegal~Instruction cet £F 2 particular elass of instructions fa
exesuted

Frogesaor—ast Tuity

Activity, termary, apect

fuing state of processsr
Bun = (Activiey = 0} warmal iratruction iHterpretgtion
Waje = (Acrivity = 1} wafting far interrupt

Gff i (Aoriviey = 20 aff, desnant

Error-Flzgs (pesulzing from uf thout the presesace)
Power-Fail-Flag sgt 1F power s Low
Fower-lp-Flag et when pouer somes on

Tnztruerion forrat Meld

i215:6 -flastruction

bapd & cm §l5:12 bnapre gregls formaz
=054 p= oiadil b Bouroe
S cw 5fa 501 FONroe - bits
5d c= 5 f.03 A A wr bit
seg c= gfel zaurce reqiater - J Rts
dEchef R] Jeatinagtion Meld
dln8 v df3 T dertination mide - & Bito
dd c= dEd dazrination fefer hit
dra cwodfzi derrtnaticn regiater - IR
uap-:]:D‘B i@ 1506 wutigry gp codfe fand satoal, skifes)
af s foemar
jsop- 70 w b 159
ari dF : Format
bI‘OP-'.'].:O-lﬁ ARt L3 rransk format

offsets? - ;e sipgn-sxtend (i 7:0 1 ét Lalue

:rapﬂl:O'“ LS trar “ormar
utused-cropel 0., e 79

aopb: - cm o ulic T
erdil. FCRNTE:
#sfiS: 0 iw TR0 ertended source ffels
£ang = esfefid- moscle
asd r= esfed - defer
esty = egfiRoD - register
fop?: Q- EEIRTY b1Y- & Flsmting op “ormat
I I sx b regirter destination
[s£05:0- AR O 1 Ul saurce
15 0
| bes T st Y] | binary operand (2 operands) fomnat
a A 1 LI WA N T S N T el
& I3 an dr
ad dd
| o, uop ‘I At _'i undry operand (1 aperand), JMP farmat
Lo L
l Isop ar 1 df] JER Format
H L] . ., 1 1 1. - P -

b
14 A A J_-_Loln“l“.]_J_I bramch fermac

valug ' yign-extand (offsec}

! (- J“IDpl il [: unused "J'| trap format
! eop | er i esf l extended operdtion fermat
L fap] Er Fsl | flodting op Eormat

aifeddrus

s-ineTement L0 o=

— Brterop = 2;

Byre

Byte-ap = (MOVE

Reserved -

Aga

o et vwords 15: 0
o' fnext-word' 15:0

v/ last ~ward

R 150
Rde15: 0

Oprd' wl:

cop = 1
4 BECHE v BISE + BITE
INCE + DECH v NEGE
TTE + RORB W ROLE

SWAR}

TOMB
EBCE
ASLE

W
w
“
instractien : =

SRS I R

mg Sora Addressed Inae

= MwlBCY
= MW PO PO -
150 13 -2
= Blse't15.0.
i= Ridr]:15:0-

ans

eral pr\:,\:,‘?durs"&' E
effeots, resrec 21
Oprd =15 OFiMe, 2, 5m,sT}
Oped . 15; 0 -{Mw, 2,sm,5v)
Oprd'=7: 0 {Mb, 2, sm,sr)
oprd T 0=(Mb, 1,sm,s7)

Oprd o 15; 0w, 2,dm,dr)
Oprd<ls: 0w, 2,dm,ded
Cprd -7 9x{Mb, 1, dm,dr]
oprdsT: Do{Mb, L1, dm,dc)

T(#,ai,m,cgl o L

At 15-0- := Klrg]

{m=11 = Rr<wl: 0

(me2} A {Tg#7} = (M Rr); naxt
Rr = Fr + aidg

(m=2) A (rg=l) = nu'ewl; 0

(m=a,; = {REr = Rr - ai, next
MiRr11;

(g} A frgdl) = M[ew' + Br]:

(mek) A {rg=l; = Hinw' + PC];

(m=1} = M{Re];

tmw3] A (rgf7i = {M[Mu(Re)); next
Br = Rr + 27,

(m=3y A {rge?) = Mime');

(w5 w [y = Rr - al; mext

MMwiRr]]ls

W

v

FC o+ 2)

and #o are uze:l
aiu

CLRE
ADCH v
ASRE v
umwge:d {Assruetions

T voadli= 1

Towm Format Trecd Teard

Leh3

uzed in ererand determingiion

with of

feats

PURETE effestq
the pourme registep

the destingticn regiater

: orerandz thet sauss eide-effpare
oz K coepartds that do ot saquse zide
o determine theae averands for atde ef-

oures wemd ape gide-effects

srupes womd ppera leag ffects

aource bute

Jegtivation operands

Effeatal

aaiug For womd or Bute oparand; direct
addreseing: wl ras lemagth; M
mode, avd rg regiaten

sezondary Jelinitfon Jor peginter
i, wse the register, Fr, 15 osergmd
2, Hreot aute-fnorement (increwent
Frl; waually ueed in pop 2tack

2, direst; nert-wewrd {5
sperand

fmadiare

4, diract; after auts dearesett
wawaTln wsed gg PUSH stack

£, direst; indered »ia Rp udes mext-
e

8, dirent; ralative to I uses reri-
word voluwe for word orerard defer
addrersing

1, defer through Rp

3, defer through MalRr] fuswally stack),
Juo-irepeen?

3, defer pic next-wopd; abealute
cddressing

5, defer through stask after oute

dearement

A-10

(m=7) A LrgeT) = M|Mwinw' + BT]C;
(=73 A& (rg=T) = M[Mw[nw' + PC]D;
)
{eg=hy A (Im=d) v (m=5)) oA
{$P < 400)1 = Stack-guerflow ~ 1]
]

2, defer indezed wiaz “r

7y defer relardve to AC
end caloulation peeosse

cheek 17 stask overrions

end aremant ealawigrion srecesa

Gemgral Mrerm? Calawiztion Process (drkour Yide Dffeats!

Oprdon):0-(Mopi o, rgd T 8
Res15:0: o= R[rg)
{m=0} = krowl 0
imm2} A iTzfTl = MulRr - ail;
(medh A qrge?) = lw.wl 0
(i) = M[Rr];
{m=&] A (rg?) = M[lw + Rr|;
im=6) A (sg=T) = M[Llw + PC];

{mel) = M{Bri;

{muil a (TgE7) W MiM@TRe - Z1];
(m=3% A (rg=7] » M{lu];

(me5) = MIMwlRT]

(m=?3 A {cgh?) = MiMw[lw + Rr]}.
(m=?3 A {rgd?) = Mitw[lw + PCT])

DescinAtion addresses for JMP and J3R
Da<15: 0 := {4
{dm=0} = {7; |llegai~instruction = 1};
{dm=2% & {dr#?} = (kd; Bd «~ Rd + Z};
{dm=2}; & {dr=71 = (PC; PC = PC + I,
{dmeay = (Rd < Rd - 2; next Rd);
(dm=t) A (drd?) = (me' + Rd);
[de=6) A {dr=7} = (nw" + B();
(dm=l) w Mw(Rd];
(dm=3) A
{dmmd} A (dr=7] = '
{dm=5} = (Rd = Rd - 2; nexc Mw[Rd]);
{dm=71 A {drF7) = Mu[nw + Rd|:
{dm=7) ~ {dr=7} = Mw/nw' + PC1), next

(dr#7) = (Mw[Bd]. Rd = Rd + 23

T opnENs 8

rrgulieg

srgnicus

diregats:

{1Zegal regfeter address
auto-{rapemant
il
duta- desramens
frdered
relative

de e

‘a regizter

via dito-Trorement
aheolute address
auto-dearemant
via Index

relative tc U

(dr=b) & = ((de=0) vidm=3) ¥ {(dm=7)) o (SP < 400,) = aheak fop atash overflow

stack-gverflow = L}}

Gata Type Formats

byfbytec?: 0=

w/wordcls. 0

wi/word, integar<l5:
bybv/byre, bonlean-vectara7; b
vhefugrd boplean-vactor<ls; it
d/d.w/double,word<3l: i

A-11

£d. i double,word , floacing<dl; 0
fa/floating.aign :» $2301-
fe/flonting. exponene<?: Ix = £20: 33
fm/ Eloating.mantissa 22 0> ;o [22:00

tfevipla.wordsd?; I

qf quadruple.word<bd: &

qf/quadruple.word. Float ing-poine<td;
qfe = gfcels
qfe ;= gi<6i: 55>
qfm = qf<bb. U=

I/G Devicea and Interrupty, State Mmformation
Device[B:H-1]
Davica-neme[J]=15: 0 = T

Device-interrupt-location[J)<15: 0> o K

dobfdevice-pucpur-buffer|J[<15:

dib/device-input-buffer[J]<15:0-

dafdevice-gracua[JT]<)5: 0
derr/device-error-flaga[1p<3:0x @ ds[I]<15:12»
dbuny/davice-busy[J} = ds[J)<Llx

¥ 170 deviges - apsume deviee J

rumbar to which device respomses and
ig addreased

sach device has a value, X, whish {t
usag g8 an address to interrupt procegsar

program eontrolled device data

a regigter with device sontrsl stgte
oo

Blatur

dunit/device-unit-selection[J]<2: 0~ 1= da[J]<10: 8 qupin s

ddone{l] ;= dg[J]<T~
denb/device-done-intarrupt-snable ;= dslt o
derrent/device-arror-interrupt -enable = da{J kb
fme/device mamoty-axtension(J]<b: 3> e da[Thh: 3=
dfnc/device-function[J <2 0> = do[2]<2: 0
dintrg/device-inteTrupe -requeat (] = ¢
(ddone[3] A denk(J] v {{derc[J} 4 D} A derrenb(I])}
dil/device-intarrupr-level (1]<7 4%

each device ix gsaigned to I of 4 leveals

Mapping of Deviees Tnto M. Each deviee's registers are mapped inte primary vord memory, e.g.,

Talatype
M'(177560,) = tha/ds [TTY -keyboard)
M'i1T7862,] @ ckb/dib[TTY -keyboard]
M [137564,] = tps/ds[TTY-printer]
W [177566,]) o= tph/dob [TTV-printer]

Interrupt Requests
br/bus-raquest-for-interrupt<T:4> = (
(dincrql0] = dil{d]} v
{dintrq[L] = d41{}}} Yu.ou
(dincrqfl) = di1[F1) w...
(diatrq[N] = dil [N}

Incerrupt-rq :® (intrgl 2 p)

intrgl/ interrupt -request-levelo2 0 o=
brs?e = 7;
- ke A brebs @ b

S Brir A = bECBE A — braSt A brabks B 4

A-12

hepbomrd etatus

keyboord inpue data
teleprinter gtatug
teleprinter data to primt

OR of all device requeats

interrupt £F a request g & priority P

imptruction Interpretation Process
Imeerrupt-rq A& Run = {Kormal-interpretation);

Hormal-ingerprecation ;= (1 = Me[PC); PO = PO+ 2 nexc Freeh
Instruction-execution, next axeoute
TElag = {Sga:e—chanssilhal; T-flag - 01] trace
Incerrupk-rq A — Gff = (
Statk-changeibevice-intervupt-locdcion[1]¥; aegwme levioe 7 fntgemunts
P = intrgl}:
off = { 1;

— Interrupt-rq A Waict = { 3;

State-change(x} = {
SF = 5P - I, next
Mw[5P] ~ P5;
5P = 5F - 2, néwt
Mw[5F] - PO,

PC o= Mwix
S ~ Mw|x+2]

Boundary -ErTor = [sv.ue—:han,;e(i.s)-. Eoundary-ecror ~ 0]

Time-{ut-frroar — (5tue-chanse{hel, Time=jut-Error — 0]

Power-Fail-Flag = (scate-change(24 }i Power-Fail-Flag = 0;) orogien musl furm of T comrurer

Power-Up-Flag = (FL ~ 24, Power-Up-Flag = 0 Activiky « 0 Teirr M an powner-en

Tngtrured

Faoh grgtmyosion 5 iv the tarr, to

Tp o1l ompr Re mercaced here.

ISP ror Floating Potat Procegase/FPP
Devige-interrupt-location [FPF] := H'[?Ms]

FEC15: Flegting point progesgor error code
register
FOCE = {FECwl) floating op code eprsn
FDIE = (FECwS) Floating Fvide by zero
FICE := [FEC=b) ,“Ioan‘ng‘t'waeger
comvergton errer
FYE .w (FEO=8} Floaring suerflow
FUE = (FECw1) Flogting under o
FUVE = (FECw1Z) Flogting wndefined variable
FAC[G:5]<b3: 0 £ Floating point gdecurmulseers
Frafd: - terporary flogiing peint regriater
FPC1S: 0> floating point FC
FPER<13: - logting point Proseesor ACILLE Pegister
FER := FPER<I5: floating grror
FLE := FPSA<14> interrupt enable
FIUV:= FPSR=11> irterrupt on wide fined variabls
FIU ;= FPSR<1O- interrupt on oider flow

FIV t= FESR=%
FIQ := FPER<E-

interrupt on sverflow

imterrupt on trieger comvergion error

o = FPSR<T: Flogeing dowble prectaion mode
FL := FPSRh: flogting lomg integer mode

FE = FPSRS: floating truncate rmode

P

Flogting maintendnoe mode

A-13

i FPSR<D:
i& FPSReX
F¥ = FPSR<1:
F{ := FPSR <@

Floating magative
floating zere
floating cverfiow
floating sarry

R
FZ

Inatruction format
3 O o= isll5: 12

op code
FOU<3: 0> ;= L=<1]1:8~ Floating op code
Al = g Tb ascumulaton

Gereral Lefinitions
=24
XL ce ((FDm0) = 1-27C H largest fractian

(FD<1) = 1270
HLL ;= 2‘128 emllest nom-zepo number
=27 . XL largest rumber
ILoe {irieny = 2l largest integer

(re1y = 2y

Addregs Caleulation
FPS=63:0= = | floating point procesacr spurce
(deenl) w FAC(dr);
(dnf0} = {
(FDmD) = D<15; 0-CMu{pCH J;
(FD=1) = D<l5: =M [FC+2 1D
M [PCH, O PO#6 1))

FPS'<B3: 0= = (floating point prosegear acurcg with
(dmD) = FAC(AT); glde effects
(i) » {

(FIm0} w D'<L5:J=0Ome’
(Fiml) = D'<15: % Ome " Ome " Onw') }

FRD<63: 0 = FPS<6D: 0 Floating point processor destination

FPD <63: 0> FP3'<63; 0> floating point processcr deatingtion with
aide ¢ffecta

FR215;0= = D150 floating souree, CPU mode

F8'<15;0 ;% D'<15: 0= floating pource witk atde effecta,
{RY mode

FD15:8 o= D150l floating deatination, [PU mode

FD'<15:{ & B'<LS: 0 Floating destingtion i th side effecte,
CPY made

Fac ;= FACIAC) deatination floating register

T -
@ 17 kit rasult, r, uvsad only for descriptive purposes

28 prime is used in % (e.g., 5') Aad D {¢.., D'} to iodicate that when & word is accessed in
this fashion, side effects may peeur. That is, reglscers of R may be changed,

*1f sli 16 bits of result, r = 0, then 2 is ser o 1 else 2 is set to 0,

*The B least significdnt bits #re vsed to form & 16-bil positive or regdtive oumber by extend-
ing bit ¥ inge 1%:8,

Sa = b weans: if boole#n 4 is trus then b is executed,

“Mu means the memory taKen as & work-orgénited memoty.

A-14

APPENDIX 8 MEMORY MAP

INTERRUPT VECTORS.

000
004
010
014
020
024

Q70
074
100
104
120
124
130
134
140
144
170
174
200

210
214
220
224
230
234
240
244
254

264
270
274

RESERVED

TIME OUT, BUS ERROR

RESERVED INSTRUCTION

DEBUGGING TRAP VECTOR

0T TRAP YEGTOR

POWER FAIL TRAP YECTOR

EMT TRAP VECTOR

“TRAP" TRAP VECTOR

SYSTEM SOFTWARE

SYSTEM SOFTWARE

SYSTEM SOFTWARE

SYSTEM SOFTWARE

TTY IN-BR4

TTY OUT-BR4

PC11 HIGH SPEED READER-BR4
PC11 HIGH SPEED PUNCH

KW11L - LINE CLOCK BR6

KW11P - PROGRAMMER REAL TIME CLOCK BR6
XY PLOTTER

DR11B-(BR5 HARDWIRED)

ADO1 BRS.(BR7 HARDWIRED)

AFC11 FLYING CAP MULTIPLEXER BR4
AAL1-AB,C SCOPE BR4

AALL LIGHT PIN BR5

USER RESERVED

USER RESERVED

LP11 LINE PRINTER CTRL-BR4

RF11 DISK CTRL-BRS

RC11 DISK CTRL-BR5

TC11 DEC TAPE CTRL-BR6

RK11 DISK CTRL-BRS

TM11 COMPATIBLE MAG TAPE CTRL-BRS
CR11/CM11 CARD READER CTRL-BR6
UDCL1 (BR4, BR6 HARDWIRED)
11/45 PIRQ

FPU ERROR

RP11 DISK PACK CTRL-BRS

USER RESERVED
USER RESERVED

START OF FLOATING VECTORS

B-1

DEVICE ADDRESSES

NOTE: XX MEANS A RESERVED ADDRESS FOR THAT OP-
TION. OPTION MAY NOT USE IT BUT IT WILL RE-
SPOND TO BUS ADDRESS.

777776
777774
777772
777716
777676
777656
777646
777636
777626
777616
777606
777576
777574
717572
777570
777566
777564
777562
777560
777556
777554
777552
777550
777546

777516
777514
7775812
777510

7177476
777474
777472
777470
777466
777464
777462
777460

777456
777454
777452
777450
777446
777444
777442
777440

CPU STATUS

STACK LIMIT REGISTER
11745 PIRQ REGISTER

TO 777700 CPU REGISTERS
TO 777600 11/4% SEGMENTATION REGISTER
TO 777650 MX11 #6

TO 777640 MX11 #5

TO 777630 MX11 #4

TO 777620 MX11 #3

TO 777610 MX11 %2

TO 777600 MX11 21
11/4555R2

11/45 SSR1

11745 SSRO

CONSOLE SWITCH REGISTER
KL11 TTY OUT DBR

KL11 TTY OUT CSR

KL11 TTY iN DBR

KL11 TTY IN CSR

PC11 HSP DBR

PC11 HSP CSR

PC11 HSR DBR

PC11 HSR CSR

LKS LINE CLOCK KW11-L

LP11 DBR
LP11 CSR
LP11 XX
LP11 XX

RF1] DISK RFLA LOOK AHEAD
RF11 DISK RFMR MAINTENANCE
RF11 DISK RFDBR

RF11 DISK RFDAE

RF11 DISK RFOAR

RF11 DISK RFCAR

RF11 DISK RFWC

RF11 DISK RFDSC

RC11 DISK RCDBR
RC11 MAINTENANCE
RC11 RCCAR

RC11 RCWC

RC11 RCCSR-

RC11 RCCSR1

RC11 RCER

RC1t RCLA

B-2

777434 DT11 BUS SWITCH #7
777432 8US SWITCH #6
777430 BUS SWITCH #5
777426 BUS SWITCH #4
777424 BUS SWITCH #3
777422 BUS SWITCH #2
777420 BUS SWITCH #1

777416 RKDB RK11 DISK
777414 RKMR
777412 RKDA
777410 RKBA
777406 RKWC
777404 RKCS
7177402 RKER
777400 RKDS

777356 TCXX
777354 TCXX
777352 TCXX

777350 TCOT DEC TAPE (TC11)
777346 TCBA
777344 TCWC
777342 TCCM
777340 TCST

777336 ASH EAE (KE11-A)#2
777334 LSH

777332 NOR
777330 SC
777326 MUL
777324 MQ
777322 AC
777300 ON

777316 ASH EAE (KE11-A)# 1
777314 LSH

777312 NOR
777310 SC
777306 MUL
777304 MO
777302 AC
777300 DIV

777166 CR11 XX

777164 CRDBR2 CR11 CARD READER
777162 CRDBR1
777160 CRCSR

776776 ADOL-O XX
776774 ADODI1-D XX

776772 ADDBR A/D CONVERTER ADO1.D
776770 ADCSR

B-3

776766
776764
776762
776760
776756
776754
776752
776750
776740
776736
776734
776732
776730
776726
776724
776222
776720
776716
776714
776712
776710

DAC3 DAC AAllL
DAC2

DAC1

DACO

SCOPE CONTROL - CSR
AALL XX

AATL XX

AA1l XX

RPBR3 RFP11 DISK
RPBR2

RPBR1
MAINTENANCE #3
MAINTENANCE =2
MAINTENANCE #1
RFDA

RPCA

RPBA

RPWC

RPCS

RPER

RPDS

776676 TO 776500 MULTI TTY FIRST STARTS AT 776500

776476
776476
776456
776436
776416

TO 776406 MULTIPLE AA11'S SECOND STARTS @ 776760
TO 776460 5TH AALL
TO 776440 4TH AALl
TG 776420 3RD AAlL
TO 776400 ZND AA1L

NOTE 18T AALl IS AT 776750

776377 TC 776200 DX11

775600 DS11 AUXILEARY LOCATION
775577 TO 775540 DS11 MUX3
775537 TOQ 775500 DS11 MUX2
775477 TO 775440 DS11 MUX1
775436 TO 775400 DS11 MUXO
775377 TO 775200 DN11

775177 TO 775000 DM11

774777 TC 774400 DP11

774377 TO 774000 DC11

773777 TO 773000 DIODE MEMORY MATRIX

773000 BM792.YA PAPER TAPE BOOTSTRAP
773100 BM792.YB RC.RK.RP,RF AND TC11 - BOOTSTRAP
773200 BM792.YC CARD READER BOOTSTRAP

773300
773400
773500
773600

773700 RESERVED FOR MAINTENANCE LOADER

B-4

772776 TO 772700 TYPESET PUNCH
772676 TO 772600 TYPESET READER

772576 AFC-MAINTENANCE

772574 AFC-MUX ADDRESS

772572 AFC-DBR

772570 AFC-CSR

772546 KWL1P XX

772544 KW11P COUNTER

772542 KWI11FP COUNT SET BUFFER
772540 KWI11P CSR

772536 TML1 XX

772534 TM11 XX

772532 TM11 LRC

772530 TM11 DBR

772526 TM11 BUS ADDRESS

772524 TM11 BYTE COUNT

772522 TM11 CONTROL

772520 TM11 STATUS

772512 OST CSR

772510 0ST EADRS1,2

772506 OST ADRSZ

772504 OST ADRS1

772502 OST MASK2

772500 05T MASK1L

772416 DR11B/DATA

772414 DR11B/STATUS

772412 DRL1B/BA

772410 DR118/WC

772136 TO 772110 MEMORY PARITY CSR
172136 15

772120 4

772116 3

772114 2

772112 1

772110 0

771776 UDCS - CONTROL AND STATUS REGISTER
771774 UDSR - SCAN REGISTER
771772 MCLK - MAINTENANCE REGISTER
771766 UDC FUNCTIONAL 1,0 MODULES
771000 UDC FUNCTIONAL 1/0 MODULES
770776 TO 770700 KG11 CRC OPTICN
770776 KG11A KGNU7

770774 KGDBR7

770772 KGBBC?

770770 KGCSR7

770716 KGNUI1

770714 KGBCC1

770712 KGDBR1

770710 KGCSR1

770706 KGNUO

770704 KGDBRO

770702 KGBCCO

B-5

770700 KG11A KGCSRO
770676 TG 770500 16 LINE FOR DM11BB
770676 DM11BB # 16
770674

770672

770670

770666 DMI11BB #15
770664

770662

770660

770656 DM11BB # 14
770654

770652

770650

770646 DM11BB #13
770644

770642

770640

770636 DML11BEB #12
770634

770632

770630

770626 DML1BB #11
770624

770622

770620

770616 CM11BB #10
770614

770612

770610

770606 DM11BB #9
770604

770602

770600 DMLIBE #8
770076 LATENCY TESTER
770074 LATENCY TESTER
770072 LATENCY TESTER
770070 LATENCY TESTER
770056 TO 770000 SPECIAL FACTORY BUS TESTERS
767776 TO 764000 FOR USER and SPECIAL SYSTEMS---DR11A ASSIGNED IN
USER AREA-STARTING AT HIGHEST ADDRESS WORKING DOWN
767776 DR11A ®#0
767774

767772

767770

767766 DR11A #1
767764

767762

767760

767756 DR11A =2
767754

767752

767750

B-6

764000 START NORMAL USER ADDRESSES HERE AND ASSIGN UPWARD.
760004 TQ 760000 RESERVED FCR DIAGNOSTIC - SHOULD NOT BE ASSIGNED

B-7

APPENDIX C

PDP-11/40 INSTRUCTION TIMING

INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memaory being referenced.
In the most general case, the Instruction Execution Time is the sum of
a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time 4 DST Time 4 EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary =109,

I. BASIC INSTRUCTION SET TIMING

Double Operand
all instructions,
except MOV: Instr Time = SRC Time + DST Time 4 EF Time
MOV Instruction: Instr Time = SRC Time 4 EF Time

Single Operand
all instr, except MFPI, MTPi: Instr Time = DST Time 4+ EF Time
MFPi, MTP! instructions: Instr Time = EF Time

Branch, Jumnp, Control, Trap, & Misc
all instructions: Instr Time = EF Time

NOTES:

1. The times specified generally apply to Word instructions, In most
cases Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All exceptions are noted.

2. Timing is given without regard for NRP or BR servicing. Memory
types MM11-S, MF11-L, and ML11 are assumed with direct use of
the special processor MSYNA signal and with memory within the CPU
mounting assembly. Use of the regular Unibus BUS MSYN signal
means 0.08 usec must be added for each memaory cycle,

3. If the Memory Management (KT11-D) option is instailed, instruction
execution times increase by 0.15 gsec for each memory cycle used.

c-1

SOURCE ADDRESS TIME

fnstruction Source Mode SRC Time (A) Memory Cycles

0 (.00 usec 0

1 .78 1

2 B4 1
Double 3 1.74 2
Operand 4 B4 1

5 1.74 2

6 1.46 2

7 2.36 3
NOTE (A): For Source Modes 1 thru 7, add 0.34 usec for Odd Byte in-

structions.
DESTINATION ADDRESS TIME
Instruction Destination Mode DST Time (B) Memory Cycles
Single 0 0.00 usec 0
Operand, 1 78 (.90) 1
and 2 B4 (.90) 1
Double 3 1.74 (1.80) 2
Operand 4 84 (.90} 1
(except 5 1.74 (1.80) 2
MOV, JMF, JSR) 6 1.46 (1.74) 2
7 2.36 (2.64) 1

NOTE (B):

For Destination Modes 1 thru 7, add Q.34 usec for Qdd Byte

instructions. Use higher values in parentheses () for ADD,
SUB, CMP, BIT, BIC, or BIS and a Source Mode of D.

EXECUTE, FETCH TIME

Double Operand

SRC Mode 0 SRC Mode 1 to 7|SRC Mode Ot0 7
Instruction DST Mode O DST Mode O DST Mode 1 to 7
(use with SRC EF Mem EF Mem EF Mern
Time & DST Time)l Time Cyc Time Cyc [Time{C) Cyc
ADD, CMP, 0.99 us 1 160 us 1 1.76 us 2
BIT, BIC, BIS
SUB .99 1 1.60 1 1.90 2
XOR .99 1 — — |1.76 2
NOTE (C): For Destination Modes 1 thru 7, add 0.48 usec for Odd Byte

instructions.

EF Time

DST SRC EF Time (Odd or Memory

Instruction Mode Mode (Word instr) Even Byte) Cycles
0 0 0.90 usec 1.80 usec 0
o lto? 146 1.80 0
1 Oto7 2,42 2.56 2
2 Cto7 2.42 2.56 2
MOV 3 Oto7 3.18 3.32 3
4 Cto7 2.42 2.56 2
{use with 5 Oto7 3.18 3.32 3
SRCTime) ¢ 0 2.84 2.98 3
& 1to7 3.18 3.32 3
7 0 3.68 3.82 4
7 lto7 4.02 4.16 4

Single Operand

Instruction Pestination Mode Q0 | Destination Mode 1 to 7
Mem Mem
{use with DST Time) EF Time Cycles| EF Time (D) Cycles
CLR, COM, NEG, INC,
DEC, ADC, SBC, TST, 0.99 us 1 1.77 us 2
ROL, ASL, SWAB
ROR, ASR 1.25 (E) 1 2.06 2
SXT .90 i 1.77 2
NOTE (D): For Destination Modes 1 thru 7, add 0.48 usec for Odd Byte
instructions.
NOTE (E): For RORB and ASRB, add 0.14 ase¢ for Even or Odd Byte
instructions.
Instruction Instr Time Mem Cycles Note
MFFI 3.74 us 2 These two instructions are im-
MTPI 3.68 2 plemented only if Memory
Managernent is installed.
Branch Instructions
Instr Time Instr Time
Instruction {Branch} (No Branch) Memory Cycles
BR, BNE, BEQ, BPL, BMI,
BVC, BVS, BCC, BCS,
BGE, BLT, BGT, BLE, 176 usec 1.40 usec 1
BH!, BLOS, BH!S, BLO
SOB 2.36 2.04 1

C-3

Jump Enstructions
Instruction Destination Mode Instr Time Memory Cycles

1.80 usec
2.10
2.30
1.90
2.30
2.36
292

2.94
324
3.44
3.04
3.44
3.50
4.06

JMP

JSR

YU E WP e [DO B 0 N
PWWNWONMNILBRNN - -~

Control, Trap, & Misc instructions

Instruction Instr Time Mem Cyc Notes

RTS 2,42 usec 2

MARK 2.56 2

RTI, RTT 292 3

SET N,ZV.C 1.72 1

CLR N,ZV.C 2.02 1

HALT 2.42 1 Console loop for a switch
setting is 0.44 usec.

WAIT 2.24 1 WAIT loop for 2 BR is 1.12 usec.

RESET 80 msec 1

10T, EMT 5.80 usec 5

TRAP, BPT

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in-
struction. For a typical instruction, with an instruction execution time of
4 xsec, the average time to request acknowledgement would be 2 usec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 5.42 ssec, max.

NPR (DMA)} fatency, which is the time from request to bus mastership
for the first NPR device, is 3.50 sxsec, max.

C-4

Il. EIS, KE11-E, INSTRUCTION TIMING
Instr Time = SRC Time 4+ EF Time

Source Mode SRC Time

o] 0.28 usec

1 .78

2 98

3 1.74

4 .98

5 1.74

6 1.74

7 2.64
Instruction EF Time Notes
MUL 8.88 usec
DIy 11.30
ASH (right) 2.58 Add 0.30 usec per shift.
ASH (left) 2.78 Add 0.30 usec per shift.
ASHC (no shift) 2.78
ASHC (shift) 3.26 Add 0.30 usec per shift.
LATENCY

Interrupts are
terrupt service

1. FLOATING

acknowledged at the end of the current instruction. In-
time is 5.42 xsec, max. NPR latency is 3.50 usec, max.

POINT, KE11-F, INSTRUCTION TIMING

Instr Time=Basic Time43hift Time for binary pts4Shift Time for norm

Time per shift to Time per shift

Instr Basic Time line up binary points for normalization
(0 to 23 shifts) (0 to 25 shifts)
FADD 18.78 usec 0.30 usec 0.34 usec
FSUB 19.08 .30 .34
FMUL 29.00 — 34
FDIV 46.72 — .34

Basic instruction times shown for FADD and FSUB assume exponents
are equal or differ by one.

C-5

LATENCY

If an interrupt request of higher priority than the operating program
occurs during a Floating Point instruction, the current instruction will be
aborted unless it is near completion. The maximum time from inte""."pt
request to acknowledgement duting Fioating Point instruction execution

is 20,08 usec. Interrupt service time is5.42 usec, max. NFPR latency is
3.50 usec, max.

c6

APPENDIXD
INSTRUCTION INDEX

ADC(B) ...l 419 FDIV i 75
ADD 4-25 FMUL 7D
ASL(B) ... 4.-14 FSUB ..., 14
ASH 433
ASHC ... 4-34 HALT . 474
ASR(B) ... 4413

INC(BY ... 4B
BCS ... 4.45
BEQ ... 4439 JMP . 456
8GE - JSR 4-58
BGT 4-49
BHI 452 MARK 4861
BHIS . 4-54 MFPI 4-77
BIC(B) 4-29 MOV(B} 4-23
BiS(B) 4-30 MTPL 478
BIT(B} e 4-28 MUL . 4-31
. 4-48
4-50 NEG(B}ccccvuneere 4210
4-55 NOP ... i, 879
. 4-53
4-41 RESET ..., 476
e, 4-38 ROL(B) . 4-16
. 4-40 ROR(B) 4-15
4-67 RTH .. 4-69
4-37 RTS ... 460
. 4-42 RTT . 470
4-43

SBC(B) ... 420
CLR(B)ccccciveciiere. 46 rvereeean. 4463
CMP(B)c.ooee 4-24 I
coM(B) 417

COND. CODES ... 479 SXT oo 4021

DEC(B)occceeneee. 49 TRAP . 4-66
DIV .. 432 TST(B) .o 4011

EMT 465 WAIT . 475

D1

Op Code

00
oo
0o
Qg
oo
ao
ao
ao

oo
oG

0

ao

oo
an

Q0

oo
o0

0
oo
Qo
Of
0o
00
jals}

DG

a0
DG
Do
DG
[olV]
0f
00
0o

oo
ao
00
an
Do
oo
oo
0o

01
oz

bz

oz

0z
o2

oz
02
03

04
G
14
20
24
30
34

4R

50
51
52
53
54
55
56
587

als}
01
0z
03
04
05
06
oz

DD
(]34

10

27

XXX
b398
XXX
L 9.9.4
XXX
XXX
XXX

DD

DD
DD
DD
oD
oD

bD
on

NUMERICAL OP CODE LIST

Mnemonic

HALT
WAIT
RTI
BPT

1aT
RESET
RTT
{unused)

IMP
RTS

{unused)

SPL
NOP

cond codes

SWAB

BR

BNE
BEQ
BGE
BLT
BGT
BLE

J5R

CLR
com
INC
DEC
NEG
ADC
SBC
TST

Cp Code

od
ao
oo
oo
an
00
00
G0

oo

Qo

01
G2
03
04
0%
06

Q7
o7
o7
o7
67

07
o7
o7
07

07

07
07

10
10
10
o
10
10
10
10

&%
61
62
63
64
65
66
&7

70
77
55
ss
55
55

55
$S

OR
IR
2R
3R
4R
54
50
50
50

50
t
67
7R

{a
G4
10
14
20
24
30
34

oD
bD
Do
DD
MM
55
[a]0]
bD

00

77

bo
DD
DD
cD
DD
DD

58
£5
5%
55
DB

OR
1R
2R
3R

40

77
NN

XXX
XXX
XXX
XXX
XXX
KEX
L4
RAX

D-2

Mnemonic

ROR
ROL
ASR
ASL
MARK
MFF|
MTPI
SAT

(unused}

MOV
cMP
BIT
BIC
BIS
£DD

MUL
oIV
ASH
ASHC
XOR

FADD
FsU8
FMUL
FDIY

(unused}

SOB

BFL

EMI

BHI

BLOS
BvC

BvS

BCC, BHIS
BCS, BLO

Op Code

10

10
10

10

10
10
10
10
10
10
14
10

10
10
10
10

10

10

10
10

10

10

11
12
13
14
15
16

17

17

a0
43
44
47

50
51
52
53
54
55
56
57

60
51
&2
63

64
64

65
66

&7
!

77

55
58
58
8§
88
55

oo

i

77

oo

77
0o

77

bD
oD
] 8]
[nlw]
DB
oD
oD
DD

DD
DD
oo
DD

00

77

58
Do

ao

77

DD
DO
DD
BD
DD
oD

o0

77

Mnemaonic

EMT

TRAP

CLRE
COMB
INCB
DECB
NEGE
ADCB
SBCB
TSTB

RORB
ROLB
ASRB
ASLB

{unused)

MFFPD
MTPD

(unused)

MOVB
CMFB
BITB
BICB
BISB
SUB

floating
point

APPENDIX E SUMMARY OF PDP11 INSTRUCTIONS

GENERAL REGISTER ADDRESSING MOBE F
Mode Name Symbolic Description
0 register R (R) is operand [ex. R2 = 9,2]
1 register deferred (R) (R} is address
2 auto-increment (R)+ (R) is adrs; (R}4(1 or 2)
3 auto-incr deferred @(R)+ (R) is adrs of adrs; {(R)}+-2
4 aute-decrement —{R) {RY — {1 or 2); (R} is adrs
5 auto-decr deferred @—(R) (R) — 2; (R) is adrs of adrs
6 index X(R) (R)+X is adrs
7 index deferred @X{(R) (R)+X is adrs of adrs
PROGRAM COUNTER ADDRESSING | MOOE ’ | Reg =7
2 immediate #n operand n follows instr
3 absolute @#A address A follows instr
& relative A instr adrs +44-X is adrs
7 relative deferred @A instr adrs +4-X is adrs of adrs
LEGEND
Op Codes Operations
B = O for word/1 for byte {) = contents of
88 = source field (6 bits) s = contents of source
DD = destination field (& bits) d = contents of destination
R = gen register (3 bits), Oto 7 r = contents of register
XXX = offset (8 bits), +127 to —128 <« = becomes
N = number {3 bits} X = relative address
NN = number (6 bits) o = register definition
Boolaen Condition Codes
A = AND * = conditionally set or cleared
v = inclusive OR — = not affected
¥ — exclusive OR 0 = cleared
~ = NOT 1 = set
NOTE:

& — Applies to the 11/40, & 11/45 computers
& = Appliestothe 11/45 computer

E-1

SINGLE OPERAND: OPR dst
15] =3
’_I o CODE | CID _I
Mnemonic Op Code Instruction dstResult N Z V C
General
CLR{B} RO50DD clear Q 0100
COM(B) BO05IDD complement (1's) ~ ** 01
INC(B) B 052DD increment d+1 A
DEC(B) M 053DD decrement d—1 AR
NEG(B) WO054DD negate (2's compl} —d *ow oo
TST(B) M 057DD test d * 00
Rotate & Shift
ROR(B) MO60DD rotate right L
ROL(B) HO61DD rotate left ®OH R A
ASR{(B) B 062DD arith shift right di2 o &k
ASL(B} WO063DD arith shift left 2d *oE oo
SWAB 0003DD swap bytes BoEoE
Multiple Precision
ADC(B) MOS55DD add carry d+C ek ok
SBC(B) W(056DD subtract carry d-C oA ok ®
A SXT 0067DD sign extend Oor —1 —
DOUBLE OPERAND: OFR src,dst OPR scr,R or OPR R,dst
15 12 I € H
r OF COOE T !)
1 1 1
15 k] ,] E 5
P CODE | "R 55 DR DD
[J i s L J i L
Mnemonic Op Code Instruction Operation N ZV C
General
MOV(B) E1SSDD move de«s #F 0 _
CMP(B) M2SSDD compare s—d *oE ¥ %
ADD 06SSDD add d«~s+4+d Rk ¥
SuUB 1688DD subtract ded—s & B & &
Logical
BIT{B} B 335DD bit test (AND) sad L
BIC(B) W 435DD bit clear de (~s)yad*® * 0 _
BIS(B) E5S5DD bit set {OR) desvd * 50 _
A Register
MUL 070RSS multipiy Ferxs * x Qo
Div 071RSS divide r<ris Ok
ASH Q72RSS shift arithmetically * ok ok
ASHC 073RSS arith shift combined R E %
XOR O74RDD exclusive OR dervd R QD _

E-2

BRANCH B _ _ location

15 BE_ T]
]' BaSE CODE I X% I
1 1 1 1 1

If condition is satisfied:
Branch to location,
New PC « Updated PC 4 (2 x offset)

Op Code = Base Code 4 XXX édrs of br instr +21
Base

Mnemonic Code Instruction Branch Candition

Branches

BR 000400 branch {unconditional) (always)

BNE 001000 brif not equal {to ©) 0 Z=0
BEQ 001400 brif equal {to 0) =0 2Z=1
BPL 100000 Branch if pius + N=0
BMI 100400 branch if minus - N=1
BvVC 102000 br if overflow is clear v=20
BYS 102400 brif overflow is set V=1
BCC 103000 brif carry is clear cC=0
BCS 103400 brif carry is set c=1
Signed Conditional Branches
BGE Q02000 brif greateroreq (o) =0 NyV=0
BLT 002400 br if less than {0) <0 Ny¥=1
BGT 003000 br if greater than (0} =0 Zv(N¥V) =0
BLE 003400 briflessorequal (to0) =<0 Zv(N+V)=1
Unsigned Conditional Branches
BHI 101000 branch if higher > CvZ=0
BLOS 101400 branch if lower or same = LCvi=1
BHIS 103000 kranch if higher or same = C=0
BLO 103400 branch if lower < =1
JUMP & SUBROUTINE:
Op Instruction
Mnemonic Code Notes
JMP 0001DD jump PC « dst

JSR 004RDD jump to subroutine
RTS O0020R return from subroutine } use same R
AMARK 0064NN mark aid in subr return
AS0B O77RNN subtract1 &br (if £20) (R) — 1, thenif (R) £ O:
PC « Updated PC —
(2 x NN)

E-3

TRAP & INTERRUPT:

Op

Mnemonic Code
EMT 104000
to 104377

TRAP 104400
to 104777

BPT 000003
10T 000004
RTI Q00002
ARTT 000006

Instruction

emulator trap
{not for general use)

trap

breakpoint trap
input{output trap
return from interrupt

return from interrupt

Notes
PC at 30, PS5 at 32

PC at 34, PS at 36

PC at 14, PS at 16
PC at 20, PS at 22

inhibit T bit trap

MISCELLANEOUS:

Op
Mnemonic Code
HALT 000000
WAIT 000001
RESET Q00005
NOP 000240
® SPL 00023N
4 MFPI 006558
A MTPI 0066D0D
& MFPD 106555
& MTPD 1066DD

Instruction

halt

wait for interrupt
reset external bus
{no operation)

set priority level (to N}

mave from previous instr space
move to previous instr spaca
move from previous data space
move to previous data space

CONDITION CODE OPERATORS:

15

L

0F CODE BASE : 000240 |
L P

T T

Op
Mnemanic Code
CLC 000241
CLV 000242
CLZ 000244
CLN 000250
ccc 000257
SEC 000261
SEV 000262
SEZ 000264
SEN 000270
sCC 000277

Instruction

clear C
clear ¥
clear Z
clear N
clear all cc bits

setC
sety
set Z
set N
set all cc bits

E4

O-CLEAA SELELTED COND LODE BITS
1=3ET SELECTED COND CODE BITS

NZVC

|
= ol o]
| = < | o]
| I I = N I

=
=
Ll |

PDP11/40 FLOATING POINT UNIT:

FADD 07500R

FSUB 07501R

FMUL 07502R

FDIY 07503R

DEVICE REGISTER ADDRESSES

Device

KW1l-L Line Clock

Kw11l-P Real Time Clock
control & status
counter

LA3D DECwriter
keyboard
printer

LP11 Line Printer

LT33 Teletype
keyboard
printer

PCI1 Paper Tape
reader
punch

RC11/RS64 Disk (64K words)
look ahead
disk address
error status

command & status

word count
current address
maintenance

RF11/RS11 Disk (256K wards)

control status
word count

current mem adrs

disk address
adrs ext error
maintenance
segment address

floating add
fioating subtract
floating multiply

floating divide

Control
&
Status

777 546

772 540
772 544

777 560
777 564

777 514

777 560
777 564

777 550
777 554

777 440
777 442
777 444
777 446
777 450
777 452
777 454

777 480
777 452
777 464
777 466
777 470
777 474
777 476

E-5

Data
Buffer

772 542

777 562
777 566

777 516

777 562
777 566

777 552
777 556
777 456

777 472

NZVC
E- I 0 0
* % 0
* % 0 O
L] 0 0
Inter-
rupt Priority
Vector Level
100 BRé&
104 BR&6
60 BR4
64 BR4
200 BR4
60 BR4
64 BR4
70 BR4
74 BR4
210 BRS
204 BR5

RK11/RKO5 Disk Cartridge 777 416 220 BR5
drive status 777 400
error 777 402
control status 777 404
word count 777 406
current address 777 410
disk address 777 412
maintenance 777 414
TC11/TUS6 DECtape 777 350 214 BR6
control 777 340
command 777 342
word count 777 344
current address 777 346
TM11/TU10 Magtape 772 530 224 BR5
status 772 520
command 772 b22
byte counter 772 524
current address 772 526
read lines 772 532
PROCESSOR REGISTER ADDRESSES
Processor Status Word
PS—777 776
15 "Moo3 2 on
--I///// oty 17+] 1= HE I
e — Cnnm‘
.l O\ERFLO\II'
1 ——-——l\zégnonvz
TRALE TRAP
L S
— - - CLRRENT MODE
DO=#EANEL & 1=SUPERVISOR® 11=USERa
4 Stack Limit Register — 777 774
® Program Interrupt Request — 777 772
General Registers RO — 777 700 R4 — 777 704
{console use anly} R1-— 777 701 RS — 777 705
R2 — 777 702 R&6 — 777 706
R3 - 777 703 R7 — 777 707

Console Switches & Display Register — 777 570
INTERRUPT VECTORS

000 {reserved)
004 Time Out & other errors

010 illegal & reserved instr
014 BPT

020 10T

024 Power Fail

030 EMT

034 TRAP

E-&

Address

T

744
746
750
752
754
756
760
y62

ABSOLUTE LOADER

Starting Address:

Memory Size: 4K

8K
12K
16K
20K
24K
28K

500

—~—
017

037
057
Q77
117
137
157

(or larger)

BOOTSTRAP LOADER

Cantents

olé
000
012
000
005
105
100
116

701
026
702
352
211
711
376
162

£7

Address

. 754
. 766
- 70
VN
774
778

Contents

000 C02

400

005 267

177 756

00C 765

177 560 (KB)
or 177 550 (PR)

NOTES

NOTES

NOTES

NOTES

piciTaL equipient corroration RITEEREN worLowioe sates anp service
MAIN OFFICE AND PLANT

HCATHEAST

REGICNAL QFFICE

BVE Wyman Sirad Wylifigen, baseachogetis 09159
Taleghone (617032000330 TWRE 0 eGhe
WALTHAM

1% Lunge Sireet. Walthsm, Maagnchuesiey 12154
Talephone (G17)83 1030 Tx TI0.34-E10
CAMBRDGE /A05TON

200 BAn.n Stress, Cumbrlge, Mansachusats 191%
Telephons (EI7)-450 5130 Té T0-XbT
POCHESTER

130 Allens Creen Rand, Aochasar, Naw York 14618
Falephons (TIE)461130 Twia M10.353-3078
LONNECTICUT

24} Pomeroy dvenus Mandan, Sonnecticut DS440
Talaphing (ZO0]-237-B441 /7468 T 10 8GO

MID-ATLANTIC — SOUTHEAST

REGIINAL QFFICE.

LS Aoute 1. Princetan. Mew lareay om0

Tulephgne (609)-450-2040 Twi 510.685.2330

NEW YORK

95 Cottar Lara. Enplawoct Mew larssy Q763
Talbphone (2011471 4364 [212) MRS, (212) FE-44T
TWX TI0-951 0721

MEW JERSEY

1250 Fauta 46, Poe o ppany. Mew leeney 179054
Telaphong: (19353200 Tl TIG0aTES
PRINCETON

U5, Aouts |

Prancaton. Mew Jarmmy DB
Talephora 00| £53-204)
LONG ISLAND

I Huregean Quadrangla
Huna 1507 Huntengton Stetion. Haw York 13146
Takophena: {SIE-G9-4171. |[212HRR5-006G
FHILADELPHIA

Stan o Squire Theae. Pacl., Fannsylvania 19301
Talaphone: (2156040005410 Tatme. 5106858005

Tid SHE-G 2w

WX TR AP Cabie DIGITAL MAYN Tolas 948457

UMNITED

MID-ATLANTIC -— SOUTHEAST [cont)
WASHINTGN

Fracutiva Building

GBI Keribnarth Suve Fevsrdaln Marylang 20640
Tutaphone (X010 119 1603 TE2ETE) TWE 114306 D662
CURHAL CHAPEL Hile
2MH Chapet Hill Buulevard
Crurham. Horih Caroline 2107

Tulephone Y486 1W7 Tove 5109274412
DRLANDD

Suie 130, 7001 Loky Ellengd Orive, Dilands, Floods TG
Telephiria (HI5)-B51 450 TWe 21G-A50-DIRD

AlLanTa

S Claarvien Plu:e Stk 100,

Ataria, Geoeg.

Talephene [m] 451310 37350 37 TR B10- 15T 4223
MNCEVILLE

Tulaphone ism]sssr.sﬂ T\-.rx 814 5830120
CEHTRAL

REGIQMAL DFFICE

1EG0 Frammmge Hiad Nirihbak, [e G007
Telephars [IZFEA-3500 Tofa 686 DEns
AITTREURGH

o0 Pera Canlar Boulavard

Fitisnurgh Pennaylyane 1523

Telephare (417243 04M TW T10-TB2 3657
CRICATD

1850 Frorawge Aoad, Nonhbeack, 1noie 8062
Talaphorm (31245 2500 TWX 99)-6BE (S5
ANN ARBOR

230 Huran Yiaw Buoulewsed, Ann A bor, bhchgan s103
Telaphara (337631150 Twi B19.220-4053
CHE R

24T Graeanfald Goad, Suite 185

Savihheld Mschigen 0TS

Telephaona [32).

STATES

CENTRAL jeonr}
WWDIANAPOLIS

71 Dezchway Drve - Surle G
tadiarapol-a Indoana si2ad
Telagh 201 MBI
MINHEAPOLLS

Suile 111, B0 Ceda: Averae South,
Minaeypoln Mirnenoty 55430
Tebeghone 6125546562 345
CLEVELAND

Path U1l urliding 36134 Eun 1id et
WhiBoughtyy, [A5

Tebaphoie (FIELRAG A W B10.407 2000

CENTAAL REGION CATEGORY

KAMZAZ CITY

532 Eaal dZrd 51 Inceperdence Misnour: 84155
Teleghcne (HIG-G1-3430 TWX GAE-401- 300

57 OIS

Saare LI IS Prograns Packway, Marylacd Heighle,
Kiagun 633
Telephone [1143.A78 <310
Darron

M Kettering, Boukeward. Daytar, Ghio 45478
Falophone (5192843377 TW2 RIS 1E76
ML AUKEE

B51 W Copriar Drwe, WMilwaukee Wigeant ST7
Telepnane wase TwK 91071
OALLAS

BAEE, Marth Slzmmmu Freewny Dalina Tuazs 35047
Telephone TNl D188 w0
HOUSTON

FAIT tAdam Sireer. Sute & Houwtan. Taves 7902
Telmphone 17L3-524-2961 TN R 1551
MDA CRLE Ah
i Fudgatake Drees, Sune 100
HMetaria. Lauciens J
Tulephone 534 &3-1257
WEST

REGIONAL OFFICE

N0 Soqual Way, Sunmpvale, Calilueria 94008
Tolaphans {408)-735-5200

T R 30

a

T 1062810

Thrk, GIC-TRA TN

MB fdain Sireel Magrard, Aassachusarra o 8 A 01754 « Tataphens Fram Melragonran Oostor fish S600 « Disewrece [61F) 897 8211
T

WEST feonl.)

AMAHE M

801 E Ball Aoad, Anshew, Califormoe 3705
Palwphane (714)-2766932/8730 Tl D050 .1 180
WEST LS AMGECES

1510 Colngr Avanue, Lor Aagaiws Califoenis 90005
Talaphone (FF4FITRAGE TR Db RS
SAN HEGOD

E154 Mipaon Giorge Aoad. Sune 114

San Dhega Calvfoena 421
Telephayne (714)-200-7880. 7970
SAk FRANCISCO

140} Teran Batle, Mouniom Vs, Cplifidnos 040
Telephone [VSOBEEND T 910-373-1285

PALC ALTO

S84 San Antonio Road Pelo Alta, Cenformia S0308
Telephone {415] 959-6300 T 03731288
QAKLANDY

7650 Edyawnter O we, Ouhlard Califounin G421
Teleghone (415) BI5-54530 T30 TWX- 9IN-366- 128
AlAUGUERDOE

BX3 Il ign Shanl Soucl. W E | Albutroue. N ETIID
Tolaohene (SI5)-296-5411 /0428 TWX B-0R3-06L4
DENVER

7305 Sauvih Colorada Boulsesrd, Sule #5

Danver Colerada B2

Tatephone [33) 152, 2437 ¢ Ful 16541 T8 1650

T 910331 2850

SEATTLE

1527 13HR WE . Ballwwan Washinpon RGOS
Telephara |06} 45440058 7 455 5404 Tiex 310432306
SALT LARE CIT¥

431 South Ird East, Sall Laka City. Liteh g4100
Telephone. [B01)- 128 568 Tl 410505 5034
AHDENEY

435k Eanc Benadwy Aaad. Phosmic, Arpons G500
Tetephoas. (002)-260. 3488 T 410550 4591
POATLA

Suite 188

5319 5 W. Canyon Cawrl Portlend Cragas §77
Telephone (503)-297-3%1. 3785

T LN 12N

EUROFEAN HEADQUARTERS

Eughar Equi eM Cotporatran Interneccnal Ewrops
a1 Aoune de 1

1211 Canews M. %lmrland
Talaphone. 42 18 50 Telex 22683

FRANCE

Equigmant Dhgital $.4 A L.

paRIs

327 Ave de Charenlon, 75 Fang 12 846 Frange
Telophene 7607 Talar 21208
GRENOELE

10 rae Augaate Asvier, F-39 Grencute, France

Talaphore (6] B7 56 0102 Telex 3 35 F [Code 212)

GERMAM FEDERAL REFUBLIC
ingilal Egmpmen GmbH
FAUNICH

B Mmnchen 13, \'\'allenslmrolau]
Tolephane OM11LGH01 Teles a2
COLOGNE

SXoein 41, Aucheaer Suesse 111
Tedephone [221-40 4 35 Teles BBA 126
Tetegraim Flip Chip Kaeln

FRANEFIIRT

SLA M- Fanhung 7

&m Fursthant Diravenbosgh 5.0

Terophone 2613200506 Talea 40-76-32
HANNOVER

A Hannawhi Frodbel skisidgase 102
Telephane 0511.59-10-95 Teles &2% 352

ALETRIA

Dugtel Equipment Corporatizn Gas mb H
VIEHNA

Mgr.ghulfrasirnsze 13 1150 Vieraa 15 dusina
lewgphone 85 51 B6

UNITED KINGDOM

Chgueal Equipmant Ca . Led

UK HEADQUARTERS

Aubwrighl Aoad, Resdng, Berhs,
Talgphuhie N7H-SIEG5 Telew BA227
REACING

The Evering Past Buldirg, Tesea Ropad
Reading. Barks

Founts i douse

Hutty Carire

Haathng, RGI 70

Tulephurs Headug SE3ESE

Telea 8ATH

BURAINGHAM

/3 Birmingham Foad Suan {ulfe . W ks,
Telephong {004] 21 354 5601 Tales 445 360
MANCHESTLR

13 Upper Frecinct, Walhden, M hester g EAT
Telephane &1 7206411 Tale

LONDON

Bl House, Usbrnidge Aoad. Ealing Londen W5
Telephare G 57234 Tales 7237
ECHNBLIRG H

Shial Hauae, Cragahill, Liwwgzlon,
Weat Lathian Geatlard
Talaphone TG Teles T21HK5

INTERNATIONAL

METHERLAMDS
THE MaGiE
Crn

K
S Wnglea Churchiliiazn 370
Rz jh! The Hugue. Helheilanda
hune JTSEE-IRD Teles H5H

1140 Srpaels, Hely um
Talephone 3B Teles 2528

SWEDEN
sl Seupnan A8

ETCCRRILM
Ewlurdscagen

171 81 Seing Swecen

Telephane 581 Telex 17050
Cubie O | Siuckholm
NORWAY

Doyt Ea pmen! Zorp &4%5
LH0

Trandhamsveen a7
Dsla & Marwsy

Telephone (2766 34 o0 Teles. 197 DEC M

DENMARK,

DAl bquanmeal Ak
ZOPERHAGEN
Hellerupueg 6

FHC Petlerup. Denmrark

SWITZERLAND

Zngilal Cgwepment Corparshon £

wwlag

GENEVA
Bl Hunty ¢4 | ara
1211 Cwnava 26, Seanzarl
Telephane 42 75 S

Telex 17 881

(LIt

tfilaty
Corsa Ganbald 48 X121 tdara lialy
Telephone BiF F4n 691 WM Trles 3¥S

SPAIN

MAADR)

Ata o Ingereros 5 & . Eangae arreta 13 Hodr 018
Te-ephcae 215 3% 43 Telps 27043

BARTCFIINA

Ldan Ingaraeros 5 4
Teleahane 21 o4 &6
Dhgilai Equipment Carporacca Lid

CANADA

Chgueal Equipmen: ol Sanada L4

{TANALIAN HEADOLARTERS

110 Rrsomend Serear, Carlaton Plack, Cnta o
Telephana [E13 257 260 TAK GTDu1.165

anduser W Bareulona 6

CANADA {cant)
CTTAWa

120 Hotland Sreel Citaws 3 Ondaea KI1¥ D67
Trlaphone |R13] 7202153 Tw¥ E10- 5528807
ORGNTE

24 Lakasnnre Paad East Poa Credd Oncana
Te cohong (4TH] 2741241 TwR 810452 4306
MONTREAL

#75 Cate 4e Liesse Rrad

Doreal Queacs Canada #0

Telephoan A14.536 9393 Twax G Cazianze
CALGARY rEdmantzn

Saule 180,) F sher Roar 5 0
Calgary, Albgna, Canaca
Telépbane () 4X-a881 TWE
VANCIWER

Chinal bquiament o Sanada Lid

2211 Weasr 1R Avenue

Vanciuer 9, He laa mwa Cznads
Tolephars |54; 736 5616 T 610029 2006

GEMERAL INTERNATIONAL SALES
AEGIOMAL DIETRICT CFFICE
146 Mann Sirget, Mayrard Mass acha setls 3175
Te vk 1617 YA

From beir Dulnlsn Buslun G450 ba 27
T Ninaava /ol
Cakly 100
Teles 94-3457

AUSTRALIA

Lligrtal Egquipruet Ay #iea 1 My Lol

SYONEY

M Sor 43, Cruws MNest

NS Ausiahia 2065

1o pphune aXIE6E Telen AR

Lanle Ingiral, Sydnes

ML BOLURNE

B Fark Sneer Soacih Mackorra Vicoiarn $m0a
1 pohpne BRGIAY Talen ALK

105 2248

PERTH
G831 Murray Seract
west Farih, Wastarn Aaserl g BLD

Tetrphone 212993 Tawps 2432140

T Mgl St6e1, S brishane
Queensianc. Austea i 4191

Telzphune 44-a47 l& pn DANKIL
ADELAIDE
i WAl i

M raha W
Teleprane o3 1333 Telmx &482925

NEW ZEALAND

[gueal Fnpment ©oonarainn Lt
SLICKE AR
Thlcen Hewse, 43 Guesn Saeeer, Das 2401
Bucklard HWew Zealand

Tilephara bk

HAPAN
fJ:g ml E Qg

Sotparator latarngninal

ana Hu.lumg Ma T Sesond Flooe
dIM AL A

Wnaen- K, Tukyes, Japan
Talephans 534

Telaa TE fiady

IAPAN (cont.)

Arker Tegiding S L0, (sulen anly?
Wozato-Kathan Big

Mo, ¥ 14, Meahmhimbashe Fochame
Kuzia-Ku, Tokyo. lapar

Tulephnng 5915745 Teles 7314208

PUERTO RICO

Cugital Eguipmanr Zorparanon e Puarie Fieo
amenzan dorl nes Bldg

B34 Ponce De cann dliramar, Fuar i Fign
Telaphone BO9. wAADGH ST Talen 09055

ARGENTINA

BUENGS ANRES

Caamn &8

Virray del Fing 071 Buanogg Bred
Telgphina B35 Teles 012-2:34

BRASIL

HICHGE JANEIRG — 5A

Ambaies £ A

Mua Cewd, W4 27 ¢ 3" ancares
Forca J31-#560/ad, 257 2473
Zabln RAIQCARC D

SAD PAULLY — SP

Brmbriex 5.4

Fua Tupr 535

Frres W11 500650 5 5006
Tahla KAIQCARDRD

PORTD ALEGRE — RS
Ambiez 5.0

Bus Cel. ¥icerde, 421 17 andar
Fones 280411 240656

Cahle

CHILE

SanTIAGD

Coasin Chile Ledn salns ool

Camlla 1RER, e 15 Sannagu
Telapkena 2N Zanle COACHIL

INDIA

BOMBAY

Hindtrer Compulers Pyt Lid
iR L Jagmihandag Marg

Telex 0113584 Plenly

Cahle Tekrind

MEXICO

WAERILD C1TY
Menlek 5 4.
CugRria 4B Drptos |
Al Prstal 1 1017
Mpaig 12 GF

PHILIFFINES

Stanlced £Iompnaer Corpnranmn

B Bar I

M6 Dasmarnas &, Waria
Telaphane 496856 Telox 200

HHHHHHH

