processor
handbook

. 2020020
20

OXOIOR VB
UT" /720

processor
“handbook

digtd equipment corporctidn

DEC Typesetting
This Handbook was typed and edited with the aid of the DECsystem 10 time-
sharing system and type was set via a DEC computer typesetling system.

Copyright 1971 by Digital Equipment Corporation

PDP.DEC UNIBLIS are registerd trademarks of Digital Equipment Corpara-
tion :

The material in this handbook i5 for information purposes only and is sub-
ject to change without notice

dlilgliltlall

The POP-11 is o family of upward-compatible computer systems. We believe
that these systems represent a significant departure from traditional methods of
computer design.

The initial design step was the developmant. of o totally new languoge,
notation, and theory of computers called the Instruction Set Processor (ISP). This
language prevides ¢ coneise and powerful generalized method for defining an arbitrary
computer system and its operation. Along with the development of ISP, o PDP~10
program was written for simuloting the operation of any computer system on the bosis
of its 15P description. With the aid of ISP and the machine simulation program,
benchmark comparison tests were run on a large number of potential computer designs.
In this manner it was possible to evaluate o variety of design choices and compare
their features and cdvantages, without the time and expense of actually coastructing

physical prototypes. -

Since the main design cobjective of the PDP-11 was to optimize totol system
performance, the interoction of software ond hardware was carefully considered at
every step in the design process. System progrommers continually evalusted the
efficiency of the code which would be produced by the system software, the eose of
coding o program, the speed of real-time response, the power ond speed that could
be built into a system executive, the ease of system resource monogement, and
numerous other potentiol software considerations,

The current PDP-11 Family is the resulr of this design effort. We believe
that its general purpose register and UNIBUS srganization provides unparalleled
power and flexibility, This design is the basis for our continuing commitment to
fFurther PDP-11 product development,

Thus the PDP-11 Fomily is af once a new concept in computer systems, ond
a tested and tried system. The ultimote proof of this new design approach has come
from the large and rapidly increasing number of PDP-11 users all around the weorld.

Kenneth H, Olsen
President,
Digital Equipmenr Corporation

introduction

This Handbook provides basic infarmation about the PDP-11/20 general purpose
i6-bit computer, the PDP-11/15 OEM computer, and the PDP-11R20 rugged
cormputer. Since these computers are functionally identical, all statements about
the PDP-11/20 apply also to the PDP-11/15 and the PDP-11R2Q. Part | describes
the processor, its major components and how the PDP-11/20 is programmed.
Part 1l is a summary of PDP-11 software; and Part Ill describes PDP-11 time-
sharing, communications, and data acquisition and control systems.

The PDP-11/20 Processor Handbook is supplemented by the PDP-11 Peripherals
and Interfacing Handbook. which includes detailed descriptions of PDP-11 per-
ipherais, options, and the UNIBUS {the single data bus common to all POP-11
family computers).

Manuais covering the various PDP-11 software packages (Paper Tape, Disk Oper-
ating System, FORTRAN. etc.) and detailed hardware maintenance manuals are
also available.

TABLE OF CONTENTS

PART |

PDP-11/20

PDP-11/15

PDP-11R20

CHAPTER 1 INTRODUCTION .. 1
1.1 PDP-11 FAMILY ... ol

1.2 GENERAL CHARACTERISTICS.... 1

1.3 PERIPHERALS/OPTIONS .. .6

1.4 SOFTWARE ... 7

1.5 DATA COMMUNICATICNS8

1.6 DATA ACQUISITION AND CONTROL8
CHAPTER 2 SYSTEM ARCHITECTURE....... 9
2.1 UNIBUS... . .

2.2 CENTRAL PROCESSOR... 10
2.3CORE MEMORY .. .13

2.4 SYSTEM INTERACTION . 15

2.5 AUTOMATIC PRIORITY INTERRUPTS .. SO 1
CHAPTER 2 ADDRESSING MODES 19

3.1 SINGLE OPERAND ADDRESSINGot
3.2 DOUBLE OPERAND ADDRESSING...
3.3DIRECT ADDRESSING ...

3.4 DEFERRED (INDIRECT) ADDRESSING .

3.5 USE OF PC AS GENERAL REGISTER...
3.6 USE OF STACK POINTER AS GENERAL REGISTER. ..oooorvnnolrorrr oo

CHAPTER 4 INSTRUCTION SET 37

4.1 INTRODUCTION ..
4.2INSTRUCTION FORMATS .

4.3 BYTE INSTRUCTIONS .
4.4 SINGLE OPERAND INSTRUCTIONS
4.5 BOUBLE OPERAND INSTRUCTIONS ..
4.6 PROGRAM CONTROL INSTRUCTIONS
4.7 MISCELLANEQUS

CHAPTER 5 PROGRAMMING TECHNIQUES

5.1 5TACK.. v 108

5.2 SUBROUT[NE LINKAGE w113

5.3 INTERRUPTS... 117
54REENTRANCY O -4

5.5 POSITION INDEPENDENT CODE 123

5.6 RECURSION w124

* 6.7 CO-ROUTINES 124
CHAPTER & SPECIFICATIONS 125
6.1 PDP-11/20 AND PDP-11/15 COMPUTER 127

6.2 PDP-11R20 RUGGEDIZED COMPUTER ...ovvvviiriiiiriiriecsninierne e,

6.3 INSTALLATION PROCEDURE ... e

6.4 SYSTEM UNITSAND CABLES ...
..135

6.5 POWER SUPPLY ..
6.6 TELETYPE REQUI REMENTS...

CHAPTER 7 CONSOLE OPERATION.

CHAPTER 8 EXTENDED ARITHMETIC ELEMENT

B.1DESCRIPTION ..o e

8.2 PROGRAMMING ...
8.3 INSTRUCTIONS

vi

132
133
133

.-.137

143

143

«....145
ceeeeerne. 148
8.4 PROGRAMMING EXAMPLES.. ...t seeres s

150

PART I

SOFTWARE
INTRODUCTION ..o ceeoeaeeceemsiseeeee s e ceesess s s sseesess s ereess e 153
CHAPTER 1 PAPER TAPE SOFTWARE " 155

1.1 PAL-11 AS\SEMBLER155
1.2 EDITING SOURCE PROGRAM156

1.3 LOADERS AND DUMPS 156
1.4 FLOATING POINT PACKAGE ... 157
1.5 ON-LINE DEBUGGING 159
1.6 INPUT /OUTPUT EXECUTIVE . 159
1.7 BASIC LANGUAGE . , 160
CHAPTER 2 DISK OPERATING SYSTEM worvrroeeoooceee oo 163
2.1 DESCRIPTION .. TR -
2.2 ASSEMBLY LANGUAGE . 165
2.3 TEXT EDITOR .. 166
2.4 ON-LINE DEBUGGING ... 166
2.5 FILE UTILITY PACKAGE.... 166
2.6 LINKER oroooeooeoe 167
DILIBRARIAN oo 168
CHAPTER 3 FORTRAN IV oo oeooeeooeeoeeeoeeeeeeeoeesoseessessssss s mmemmnsemneees 169
CHAPTER 4 COMMUNICATIONS SOFTWARE (COMTEX-11)..orroooeoromseroeoeee 171

4.1 APPLICATIONS. ..o oorreisnirierianirnensesscvnssrassaresrresn esemssssasesessrmssenenss L7 1

4.2 DESCRIPTION .. 171
4.3 D!STRIBUTION . w172
4.4 CORE REQUIREMENTS T US UV UURURY I
CHAFPTER 5 REAL TIME EXECUTIVE (R5X-11C} 175

5.1 LANGUAGES SUPPORTED ..o 175
S.2SCHEDULING ..o .- 176
5.3MEMORY EFFICIENCY
5.4 MULTI-PROGRAMMING. ..
5.5 INPUT/QUTPUT ..
5.6 OPERATOR COMMUNICATIONA..
5.7 PROGRAM DEVELOPMENT ..

vii

CHAPTER 1 TIMESHARING SYSTEM (RSTS-11)
1.1 PROGRAMMING LANGUAGE ... e

1.2 PROGRAM DEVELOPMENT
1.3 INPUT/OUTPUT ..
1.4 INTERNAL SYSTEM......
1.5 MONITOR FUNCTIONS. ..
1.6 SYSTEM ACCESS ...

PART i1l

SYSTEMS

181

181
... 183
.- 184
....185
... 186
e 185

CHAPTER 2 COMMUNICATIONS ... arrnas 187

2.1POP-11 ARCHITECTURE ...ooovverviniirvni e civsissnesmame e e LB

2.2 HARDWARE ... v 188

2.3S0OFTWARE......... e e 1B

2. 4APPLICATIONS ... 189

CHAPTER 3 INDUSTRIAL DATA ACQUISITION AND CONTROLcvcnniieanins 192
3.1 PROCESS INTERFACES ... 193 -

3.2 REAL TIME OPERATING SYSTEM .. 193

3 3APPLICATIONS. 194

APPENDIXES

APPENDIX A INSTRUCTION REPERTOIRE.......cooirvrviciniininiinarns 195

APPENDIX B MEMORY MAP ... et e 199

APPENDIX C INSTRUCTION SET PROCESSOR.......cvnvrmisnnrmsssmnsinissans 207

INDEXoonrrtirrne e 221

wiii

o0t

PDP-11/20
PDP-11/15
PDP-11R20

PART |
CHAPTER 1

INTRODUCTION

The PDP-11/20 is a powerful 16-bit computer in the medium-sized branch of the
PDP-11 Family of computers. As the first member of the PDP-11 family it is the
computer on which the whole family is based. It is a balanced, modular systermn
with a wide range of features, peripherals, software and growth potential not nor-
mally found in 16-bit computers.

1.1 THE PDP-11 FAMILY

The PDP-11 Family includes several processors, a large number of peripheral de-
vices and options, and extensive software. PDP-11 machines are architecturally
similar and hardware and software upwards compatible, although each machine
has some of its own characteristics. New PDP-11 systems will be compatible with
existing family raembers. The user can chose the system which is most suitable to
his application, but as needs change or grow, he can easily add or change hard-
ware. The major characteristics of PDP-11 family computers are listed in Table 1-
1. ’ :

1.2 GENERAL CHARACTERISTICS

1.2.1 The UNIBUS

All computer system components and peripherals connect to and communicate
with each other an a single high-speed bus known as the UNIBUS -- the key to the
PDP-11s many strengths. Since all system elements, including the central proces-
sor, communicate with each other in identical fashion via the UNIBUS, the pro-
cessor has the same easy access to peripherals as it has to memory.

< 7=
I

FDP-11 Systern Simplified Biock Diagram

With bidirectional and asynchronous communications on the UMIBUS, devices
can send, receive, and exchange data independently without processor inter-
vention. For example, a cathode ray tube (CRT) display can refresh itself from a
disk file while the central processor unit (CPU) attends to other tasks. Because it
is asynchronous, the UNIBUS is compatible with devices operating over a wide
range of speeds.

Device communications on the UNIBUS are interlocked. For each command is-
sued by a “master” device, a response signal is received from a “slave’” com-
pleting thé data transfer. Device-to-device communication is completely indepen.
dent of physical bus length and the response times of master and slave devices.

1

CENTRAL PROCESSOR

TABLE 1-1 PDP-11 Family Computers

PDP-11/05 PDP-11/15 PDP-11/20

KD11-8

General Purpose Registers 8

Instructions

Segmentation Option
Hardware Stacks

Stack Overflow
Detection

Automeatic Priority

interrupt

Overlapped instruction

Floating Point
Hardware

Extended Arithmetic

Power Fail and
Auto-Restart

‘Maximum
Addressable

Mermory Locations

Basic Set

No
Yes

Yes, fixed

single-ling

multi-tevel

No

No
option

standard

32K

PDP-11/R20

KC1L. KA1l
8 8
Basic Set Basic Set
No No
Yes Yes
Yes, fixed Yes, fixed
Single line four-line
multi-level multi-level
{four line
optional)
No Ro
No No-
option ‘option
option standard
32K 32K

(128K optional)

PDP-11/45

KBll
16

Basic Set
and MUL, DIV

XOR,ASH,ASHC,
MARK, SXT,SOB,

_SPLRTT.MFPI,
MTPD,MFPD,MTPI

Yes -
Yes

Yes
programmable

four-line
multi-level
PLUS

8 software levels

Yes
Internal to
CPU(optional)

standard

standard

128K

Interfaces ta the UNIBUS are not time-dependent; there are no pulse-width or
rise-time restrictions to worry about, The maximum transfer rate an the UNIBUS
is one 16-bit word every 400 nanoseconds, or 2,500,000 words per second.

Input/output devices transferring directly to or from memory are given highest
priority and may request bus mastership and steal bus and memory cycles during
instruction operations. The processor resumes operation immediately after the
memory transfer. Multiple devices can operate simultaneously at maximum direct
memory access {DMA) rates by “stealing’™ bus cycles. The UNIBUS is further ex-
plained in Paragraph 2.2, Chapter 2; and is covered in considerable detail in Part
il of the PDP-11 Pefipherals and Intertacing Handbook.

1.2.2 Central Processor

The central processor, connected to the UNIBUS as a subsystem, controls the
time allocation of the UNIBUS for peripherals and performs arithmetic and logic
aperations and instruction decoding. It contains multiple high-speed genera!-pur-
pose registers which can be used as accumulators, peinters, index registers, or as
autoindexing pointers in autoincrement or autodecrement modes. The processor
can perform data transfers directly between 1 /0 devices and memory without dis-
turbing the registers, does both single-and double-operand addressing; handles
both 16-bit ward and 8-bit byte data; and, by using its dynamic stacking tech-
nique, allows nested interrupts and automatic reentrant subroutine catling.

Instruction Set

The instruction complement uses the flexibility of the general-purpose registers to
provide over 400 powerful hard-wired instructions - the most comprehensive and
powerful instruction repertoire of any computer in the 16-bit class. Unlike con-
ventional 16-bit computers, which usually have three classes of instructions
{memory reference instructions, operate or AC control instructions and 1/0 in-
structions) all operations in the PDP-11 are accomplished with one set of instruc-
tions. Since peripheral device registers can be manipulated as flexibly as core
memory by the central processor, instructions that are used to manipulate data in
core memory may be used equally well for data in peripheral device registers. For
example, data in an external device register can be tested or modified directly by
the CPU, without bringing it into memory or disturbing the general registers. One
can add data directly to a peripheral device register, or compare logically or arith-
metically contents with a mask and tranch. Thus all PDP-11 instructions can he
used to create a new dimensicn in the treatment of computer 170 and the need
for a special class of 170 instructions is eliminated. PDP-11/20 instructions are
described in Chapter 4.

The following example contrasts the rotate operation in the PDP-11 with a similar
aperation in a conventional minicomputer:

PDP-11 Approach

ROR A ; rotate contents of memory location A
right one place

Conventional Approach

LDA A ;load contents of memory location A into
AC

3

ROR _;rotate contents of AC right one place
STAA store contents of AC in location A

The basic order code of the PDP-11 uses both single and double operand address
instructions for words or bytes. The PDP-11 therefore performs very efficiently in
one step, such operations as adding or subtracting two operands, or maving an
operand from one location to another:

PDP-11 Approach

ADD AB ; add contenis of location A to location B

Conventional Approach

LDA A ;lead contents of memory location into AC
ADDB sadd ¢ntents of memory location B to AC
STAB ;store results at location B

Priority Interrupts

A muiti-line automatic priority interrupt system permits the processor to respond
automatically to conditions outside the system, Any number of separate devices
can be attached to each line . The PDP-11/15 has only a single line of interrupt
{any number of devices). A multi- line system, like that of the PDP-11/20, is ap-
tional on the PDP-11/15 {KF11-A).

Each peripheral device in the PDP-11 systern has a hardware pointer to its own
pair of memory words (one points to the devices's service routing, and the other
contains the new status processor information). This unique identification eliri-
nates the need for polling of devices to identify an interrupt, since the interrupt
servicing hardware selects and begins executing the appropriate service routine
after having automatically saved the status of the interrupted program segment.

The devices' interrupt priority and service routine priority are independent. This
altows adjustment of systemn bebavior in response to real-time conditions, by dy-
namically changing the priority level of the service routine.

The interrupt system aliows the processor 1o continually compare its own pro-
grammable priority with the priority of any interrupting devices and to acknow-
ledge the device with the highest level above the processors priority level. Servic-
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower priority device is resumed automatically upon com-
pletion of the higher level servicing. Such a process, called nested interrupt servic-
ing, can be carried out to any level without requiring the software to save and re-
store processor status at each level,

The interrupt scheme is explained in paragraph 2.7, Chapter 2.
Reentrant Code
Both the interrupt handling hardware and the subroutine call bardware facilitate

weriting reentrant code for the PDP-11.This type of code allows a single copy of a
given subroutine or program to be shared by more than one process or task. This

4

reduces the amount of core needed for multi-task applications such as the con
current servicing of many peripheral devices.

Addressing

Much of the power of the PDP-11 is derived from its wide range of addressing ca-
pabhilities. POP-11 addressing modes include list sequential addressing, full ad-
dress indexing, full 16-bit word addressing, 8-bit byte addressing, and stack ad-
dressing. Variahle length instruction formatting allows a minimum number of
hits to be used for each addressing mode. This results in efficient use of program
storage space. Addressing modes are described in Chapter 3.

Stacks

In the PDP-11, a stack is a temporary data storage area which allows a program
to make efficient use of frequently accessed data. The stack is used automatically
by program interrupis, subroutine calls, and trap instruciions. When the proces-
sor is interrupted, the central processor status word and the program counter are
saved (pushed) onto the stack area, while the processor services the interrupting
device. A new status word is then automatically acquired from an area in core
memary which is reserved for interrupt instructions (vector area). A return from
the interrupt instruction restores the original processor status and returns to the
interrupted program without software intervention. Stacks are explained in Chap-
fer 5.

Direct Memory Access .

All PDP-11's provide for direct access to memory. Any number of DMA devices
may be attached to the UNIBUS. Maximum priority is given to DMA devices thus
allowing memory data storage or retrieval at memory cycle speeds. Latency is
minimized by the organization and logic of the UNIBUS, which samples requests
and priorities in paraliel with data transfers. v

Power Fail and Restart

The PDP-11's power fail and restart system not only protects memory when
power fails, but aiso allows the user to save the existing program location and
status (including all dynamic registers), thus preventing harm to devices, and
eliminating the need for releading programs. Automatic restart is accomplished
when power returns to safe operating levels, enabling remote or unattended oper-
ations of PDP-11 systems. All standard peripherals in the PDP-11 family are in-
cluded in the systemized power-fail protect/restart feature. This feature is optio-
nal on the PDP-11/15 (KP11-A). Power Fail is discussed in Chapter 2, paragraph
2.

1.2.2 Memories

Memories with different ranges of speeds and various characteristics can be
freely mixed and interchanged in a single PDP-11 system. Thus as memory needs
expand and as.memory technology grows, a PDP-11 can evolve with none of the
growing pains and obsclescence associated with canventional computers. See
Chapter 2, paragraph 2.5

1.2.4 Packaging

The POP-11 has adopted a modular approach to aliow custom configuring of sys-
tems, easy expansion, and easy servicing. Systems are composed of basic build-
ing- blocks, called System Units, which are compietely independent suhsystems
connected only by pluggable UNIBUS and power connections. There is no fixed
wiring between them. An example of this type of subsystem is a 4,096-word
memory module.

Systemn Units can ‘be mounted in many combinaticns within the PDP-11 hard-
ware, since there are no fixed positions for memaory or 170 device controjlers. Ad-
ditional units can be mounted easily and connected to the system in the field. In
case maintenance is required, defective Systern Units can be replaced with spares
and operation resumed within a few minutes.

1.3 PERIPHERALS /OPTIONS

Digital Equipment Corporation (DEC) designs and manufactures many of the per-
ipheral devices offered with PDP-11%. As a designer and manufacturer of per-
ipherals, DEC can offer extremely reliable equipment specifically designed for the
smali computer environment, lower prices, more choices and quantity discounts.

Many processor, input/output, memory, bus, storage, and communications op-
tions are available. These devices are explained in detail in the Peripherals and in-
terfacing Handbook. Options used only by the PDP-11/15, PDP-11/20, and PDP-
11R20 are discussed in Chapter 8.

1.3.1 1/0 Devices

All PDP-11 systems are available with Teletypes as standard equipment. However,
their 1/0 capabilities can be increased with high speed paper tape reader-
punches, line printers, card readers or alphanumeric display terminals. The LA30D
DECwriter, a totally DEC-designed and buiit teleprinter, can serve as an alterna-
tive to the Teletype. It has several advantages over standard electromechanical
typewriter terminals, including higher speed, fewer mechanical parts and very
quiet operation.

PDP-11 1/C devices include:
DECterminal alpI:na numeric display
DECwriter teleprinter
High Speed Line Printers
High Speed Paper Tape Reader and Punch
Teletypes
Card Readers

Synchronous and Asynchronous Communications Interfaces

- 1.3.2 Storage Devices

Storage devices range from convenient, small-reel magnetic tape (DECtape) units
to mass storage magnetic tapes and disk memories. With the UNIBUS, a large
number of storage devices, in any combination, may be connected to a PDP-11
system. TUS6 DECtapes, highly reliable tape units with smaill tape reeis, designed
and built by DEC, are ideal for applications with modest storage requirements.
Each DECtape provides storage for 147% 16-bit words. For applications which re-
quire handling of {arge volumes of data, DEC offers the industry compatible TLI0
Magtape.

Disk storage devices include fixed-nead disk units and moving-head removable
cartridge and disk pack units. These devices range from the 65K RS64 DECdisk
memory, to the RPO2 Disk Pack system which can store up to 93.6 million words.’

6

PDP-11 storage devices include;
DECtépe
Magtape
RS64 65K-256K word fixed-head disk
RS11 256K-2M word fixed-head disk
RKO03 1-2M word moving-head disk
RPO2 10M word rmoving head disk

1.3.3 Bus Options)
Several options (bus switches, bus extenders) are available for extending the UNI-
BUS or for configuring multi-processor or shared-peripheral systems.

1.4 SOFTWARE

Exiensive software, consisting of disk and paper tape systems, is available for
PDP-11 Family systems. The larger the PDP-11 configuration, the larger and
mare comprehensive the software package that comes with it.

1.4.1 Paper Tape Software
The Paper Tape Software system includes:

Editor (ED11)

Assembler (PAL11)

Loaders

On-Line Debugging Technique (ODT11)
Input-Output Executive {I10X)

Math Package (FPP11)

1.4.2 Disk Operating System Software
The Disk Operating System software includes:

Text Editor (EC11)

Relocatable Assembler {PALL1R)
Linker (LINK11}

File Utilities Packages (PIP)

Cn Line Debugging Technigue (ODT11)
Librarian {LIBR11}

1.4.3 Higher Level Languages

PDP-11 users needing an interactive conversational language can use BASIC
which can be run on the paper tape software system with only 4.096 words of core
memory. A muiti-user extension of BASIC is available so up to eight users can ac-
cess a POP-11 with only BK of core.

RSTS-11
The PDP-11 Resource Timesharing System {RSTS-11} with BASIC-PLUS, an en.
riched version of BASIC, is available for up to 16 terminal users.

FORTRAN
PDP-11 FORTRAN is an ANS)-standard FORTRAN 1V compiler with elemants that
provide easy compatability with IBM 1130 FORTRAN.

1.5 DATA COMMUNICATIONS

The advanced architecture of PDP-11 Family machines makes them ideal for use
in data communications applications. For example, the UNIBUS performs like a
multiplexer, and multiple single-line interfaces can be added without special mul-
tiplexing hardware; byte handling, the key to communications applications, is ac-
complished easily and efficiently by the PDP-11. To provide total systerns capabil-
ity-in the communications area DEC has developed a full line of communications
hardware and communications-oriented software.

COMTEX-11 software, is described in Part i, Chapter 4; communications hard-
ware is explained in the Peripherals and interfacing Handbook; and commu-
nications applications are discussed in Part 1ll, Chapter 2,

1.6 DATA ACQUISITION CONTROL

The POP-11, modular pracess interfaces and special state-of-the art software
{RSX-11C Real-Time Executive) combine to provide efficient, low-cost and reliable
systems for industrial data acquisition and control {IDACS) applications. IDACS-
11 hardware is described in the Peripherals and Interfacing Handbook, RSX-11C
is described in Part |l, Chapter 6, and the PDP-11 in data acquisition and control

applications is discussed in Part Ill, Chapter 3.

PART |
CHAPTER 2

SYSTEM ARCHITECTURE

SYSTEM DEFINITION

Digital Equipment Corporation's PDP-11is a 16-bit, general-purpose, parallel logic
computer using two's complement arithmetic. The PDP-11 is a variable word
tength processor which directly addresses 32,768 16-bit words or 65,536 8-bit
bytes. All communication between systern components is done on a single high-
speed bus called a UNIBUS. Standard features of the system include eight gen-
eral-purpose registers which can be used as accumulators, index registers, or ad-
dress pointers, and an automatic priority interrupt system.

2.1 UNIBUS

The UNIBUS is a single, common path that connects the central processor,
memory, and all peripherals. Addresses, data, and controb information are sent
along the 56 lines of the bus.

The form of communication is the same for every device on the UNIBUS. The pro-
cessor uses the same set of signals to communicate with memory as with per-
ipheral devices. Peripheral devices also use this set of signals when commu-
nicating with the processor, memory or other peripheral devices. Each device,
ingtuding memory locations, processor registers, and peripheral device registers,
is assigned an address on the UNIBUS. For example, location 10008 is a core
memory location, while location 177562 is the Teletype keyboard data buffer.
Thus, peripheral device registers may be manipulated as flexibly as core memory
by the central processor. Al the instructions that can be applied to data in core
memory can be applied equally wefl to data in peripheral device registers. This is
an especially powerful feature, considering the special capability of POP-11 in-
structions to process data in any memory Iocatlon as though it were an accumula-
tor.

2.1.1 Bidirectional Lines

Most UNIBUS lines are bidirectional, so that the same signals that are received as
input can be driven as sutput. This means that a peripheral device register can be
either read or loaded by the central processor or other peripheral devices: thus,
the same register can be used for both input and output functions.

2.1.2 Master-Slave Relation

Communication between two devices on the bus is in the form of a2 master-slave
relaticnship. At any point is time, there is one device that has control of the bus.
This controlling device is termed the “bus master’’. The master device controls
the bus when communicating with another device on the bus, termed the ““slave”.
A typical example of this relationship is the processor, as master, fetching an in-
struction from memory {which is always a slave). Another example is the disk, as
master, transferring data to memory, as slave. Master-slave relationships are
dynamic. The processor, for example, may pass bus control to a disk. The disk, as
master, could then cormmunicate with a slave memory bank.

9

Since the UNIBUS is used by the processor and all /0 devices, there is a priority
structure to determine which device gets control of the bus. Every device on the
UNIBUS which is capable of becoming bus master is assigned a priority. When
two devices, which are capable of becoming a bus master, request use of the bus
stmultaneously, the device with the higher priority will receive control. The priority
structure is further explained in paragraph 2 .5 of this Chapter.

2.1.3 Interlocked Communication

Communication on the UNIBUS is interlocked so that far each control signal is-
sued by the master device, there must be a response from the slave in order to
complete the transfer. Therefore, communication is independent of the physical
bus length (as far as timing is concerned) and the response time of the master
and slave devices. This asynchronous operation precludes the need for synchro-
nizing with, and waiting for, clock pulses. Thus, each device is allowed to operate
at s maximum possible speed.

2.2 CENTRAL PROCESSOR

The central processor is organized around three functional blocks: the general
purpose registers, arithmetic unit, and UNIBUS and priority control. Data paths
conncecting these units are in a figure eight. The processor may perfarm the fol-
lowing data transfers:

register to register
memaory 10 memory
register to memory

memaory to register

STATUS WORD

O e [T

URIBTS
CONTROL & ARITHMETIC it
ooy | [T |setitems

N

A4

2.2.1 General Registers

The PDP-11/15, PDP-11/20, and PDP-11R20 processors each contain one set of
eight general purpose registers. These registers (referred to as RO, R1, R2,...R7)
may be used as accumulators, as autc index registers, or as pointers. General
Registers R6 and R7 have unique capabilities. R6 serves as the hardware stack
pointer, and R7 is the program counter. Using general registers to perform these
functicns greatly enhances the power and flexibility of the PDP-11. Their use is
discussed in Chapter 3 and Chapter 5.

2.2.2 Central Processor Status Register
The Central Processor Status Register(PS) contains information on the current
priority of the processor, the result of the previous operations, and an indicator

. 10

for detecting the execution of an instruction to be trapped during program de-
bugging. The pricrity of the central processor can be set under proegram control to
any one of five levels. This information is held in bits 5, 6, and 7 of the PS.

Four bits of the PS are assigned to monitoring different results of previous in-
structions. These hits are set as follows:

Z -- it the resuit was zero

N - if the result was negative

C -- i the operation resulted in a carry from the most significant bit
V .- if the operation resulted in an arithmetic overflow

The T bit is used in program debugging and can be set or cleared under program
contrel. If this bit is set, when an instruction is fetched from memaory, a procassor
trap will occur on completion of the instruction’s execution.

The processor status word is lecation 177776 on the UNIBUS and can be oper-
ated on by any instruction.

Register organization for PDP-11/20, PDP-11/15 and PDP-11R20:

GENERAL REGISTERS
RO
at
RE
R3

Ra CENTRAL PROCESSOR SYATUS REGISTER
RS
UNUSED PRIORITY] r | n ! z I v Ic I
4 3 2 1 4]

A6 (5P} : PR
R7 (PC) " g 7T 8 8

2.2.3 Processor States

This description of the KA1l (and KC11) pracessor is intended only to give the
reader a basic description of the processor's operation. More detailed discussion,
including theory of operation and logic design, is provided in the KA1l Processor
Manual, DEC-11-HR2A-D.

The PDP-11 processor has five major states; fetch, source, destination, execute
and service. The first four states are used during narmal processor operation; ser-
vice is used during special operations, such as traps and interrupts.

Fetch: locates and decodes an instruction. When fetch is completed, the
processor enters another major state, depending on the type of instruction
decoded. It is possible to go from fetch to any other state, including back
to fetch. Every instruction starts by first entering the fetch state.

Source: decodes the source field of a double-operand instruction and.
transfers the source operand to the appropriate location, The source major
state is entered only if the instruction is a double-operand type.

Destination: decodes the destination field of the appropriate instruction.
Destination fields are present in both single and double-operand instruc-

11

tions. Destination operand is accessed and transferred to appropriate loca-
tion.

Execute: uses the daia obtained during previous major states to perform
the specified operation. During this state arithmetic operations, logic func-
tions, and tests are performed, and the Destination location is updated it
required.

Service: used to execute special operations, such as interrupts, traps, etc.

Although major states follow the sequence of fetch, source, destination, execute,
and service, not ail major states are required for every instruction. The processor
enters anly the states necessary to execute the current instruction. The minimum
sequence is from fetch of one instruction directly to fetch of the next instruction.
Maximum sequence is fetch, source, destination, execute, service, and back to
fetch.

2.2.4 Processor Traps

There are a series of errors and programming conditions which will cause the
Central Processor to trap to a set of fixed locations. These include Power Failure,
Odd Addressing Errors, Stack Errors, Timeout Errors, Memaory Parity Errors, Use
of Reserved Instructions, Use of the T bit in the Processor Status Word, and use
of the IOT, EMT, and TRAP instructions,

The T bit Trap has already been discussed in this chapter. The 10T, EMT, and
TRAP instructions are described in Chapter 4.

Power Failure :

Whenever AC power drops below 95 volts for 117v nominal power (190 voits for
235 v nominal) or outside a limit of 47 to 63Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically traps to lo-
cation 24 and the power fail program has 2 msec. to save all volatile information
(data in registers}), condition peripberals for power fail, and change the contents
of lacation 24 to a pointer to the power-up routine.

When power is restored the processor traps to location 24 and executes the power
up routine to restore the machine to its state prior to power failure. Power fail and
auto-restart is an optien on the PDP-11/15.

Odd Addressing Errors .

This error occurs whenever a program attempts to execute a word instruction on
an odd address (in the middle of a word boundary). The instruction is aborted
and the CPU traps through location 4.

Time-Qut Errors

These errors occur when a Master Synchronization pulse is placed on the UNIBUS
and there is no slave pulse within 10 psec. This error usually oceurs in attempts to
address non-existant memory or peripherals.

The otfending instruction is aborted and the processor traps through location 4.

Reserved Instructions '
There is a set of illegal and reserved instructions which cause the processor to
trag through location 4.

2.2.5 Trap Handling
Appendix B includes a list of the reserved Trap Vector Locations. When a trap oc-
curs, the processor follows the same procedure for traps as it does for interrupts

12

{saving the Program Counter {PC} and Processor Status Word (PS) on the new
Processor Stack etc...)

2.3 CORE MEMORY

2.3.1 Memory Organization

A memory can be viewed as a series of locatlons with a number {address) as-
signed to each location. Thus a 4096-word PDP-11 memory could be shown as
follows:

Pl

LOCATIONS

(coaoco
el aslsh]
DO00GZ
o003
DO00E

oCTAL ; —————
ADORESSES . P

M77Ta
TS
MF?TE

TTTT
.

Because PDP-11 memories are designed to accommodate both 16-hit words and
8-bit bytes, the total number of addresses does not correspond to the number of
words, A 4096-word memary can contain 8,192 bytes and consists of 017777 oc-
tal locations. Words always start at even-numbered jocations.

A PDP-11 word is divided into a high byte and a low byte as follows:

HIGH BYTE LOW BNTE
I L L l L i I L I L L l L 1

Low bytes are stored at even-numbered memory locations and high bytes at odd-
numbered memory locations. Thus it is convenient for the programmer to view
the PDP-11 memory as follows;

13

16- B TE WORD B-BYTE WORD

~__BwEe___ B

00001 HIGH oW 000000 m{ LOW 8YTE 000000
QU0003 HIGH Low a0z HIGH BYTE 000001
000005 HIBH Low 000004 wor D{ LOW BYTE 000002
HIGH BYTE Q00003
{ LOW BYTE 000004

[—

L L oR e

e
,-""'-_-"'-—'

[aes HIGH Low T { HIGH oTTTS
o17TTDs HIGH Low ErsZ] LOw o17776
o1r7IT™ HIGH LOw [k g { HIGH I

WORD ORGANIZAT KON) BYTE ORGANIZATION

PDP-11 memories are normally pravided in 4096-word read and write modules.
However, there are also B192-word interleaved memory modules. The various
PDP-11 memories, their characteristics and speeds are listed below.

Specifications and Memory Types

Time ’ Time
: Interieaved™
Memary Size Typ Access Cycle Access Cycle
0=
TESs
MMILE 4KX16bit 59 S 500ns 1200ns 500ns 900ns
ol
a = B
MM11-F 4K X 16 bit E ‘ﬁ E 400ns 950ns 400ns 490ns**
—
=2
2 o3
MM11FP 4KX18hit 82 € 400ns 950ns 400ns 490ns**
with parity
(1 bit per
byte)'tﬁ‘ .
M792 3216 bit Readonly; alwo 100ns 100ns NO NO

words available as
bootstrap loader

Alt mermories are PDP-11 Unihus-compatible
Temperature: 0'to 50°C

*MM11-F and MM11-FP automatically.interleaved if 8K or more is ordered. Add
suffix *“X” to part number when ordering MM 11-E interleaved (i.e., MM11-EX).

**For a 16-bit DMA transfer inte memory. A 16-bit transfer out of memory takes
800 ns.

***pAvailable from Computer Special Systems

14

The areas of addresses of particular interest to the programmer are the interrupt
and trap vectars, processor stack and general storage, and peripheral device reg-
isters. Most of the addresses between 000000 and 00370 are reserved for inter-
rupt vectors, and the top 4,096 addresses afe generally reserved for peripheral
device registers. A detailed address map is contained in Appendix B.

The concept of word “pages’” has been completely eliminated in the PDP-11. The
programmer can directly address 32K word locations. A memory extension unit is
available for the PDP-11/20 and PDP-11R20 to extend the number of addres-
sable jocations to 128K.

2,3.2 Interleaving

When an address register is incremented on successive memory cycles, the cycles
are performed with a 4K memory bank and cannot be overlapped. However, a
technique called “interleaving', causes successive memory cycles 1o be per-
formed within alternate 4K memory banks. This allows cycles to be overlapped;
that is the second memory bank can start its cycle before the first memory bank
has completed its cycle, provided the bus is free. This effect is called memory in-
terleaving and results in faster memory operation.

Memory interleave is completely transparent to the user, who addresses core as if
it were one continuous BK block. Interteaved memory allows 16-bit transfers into
memary every 490 nanoseconds, and out of memory every BOD nanoseconds (us-
ing the 950 nanosecond MM11.F).

Interleaving affects 8K blocks. For example, if a system has a 12K memory, the
first 8K is interleaved. If the system has 16K of memory, the first 8K would be in-
terieaved and the second 8K would also be interleaved. Any 8K block of memory
delivered from DEC is automatically interleaved.

2.4 SYSTEM INTERACTION

Ful 16-bit words or 8-bit bytes of information can be transferred on the bus be-
tween a master and a slave. The information can be instructions, addresses, or
data. This type of operation occurs when the processor, as master, is fetching in-
structions, operands, and data from memory, and storing the results into
memory after execution of instructions. Direct data transfers occur between a
peripheral device controi and memory.

2.5 AUTOMATIC PRIORITY INTERRUPTS
When a device (other than the central processor) is capable of becoming bus rmas-
ter and requests use of the bus, it is generally for one of two purposes:

1. to make a non-processor transfer of data directly to or from memory -

2. to interrupt a program execution and force the processor to go to a spe-
cific address where an interrupt service routine is located.

Direct memory or direct data transfers can be accomplished between any two per-
ipherals without processor supervision. These non-processor request transfers,
called NPR level data transfers, are usually made for Direct Memory Access
(memaory to/from mass storage) or direct device {ransfers (disk refreshing a CRT
display). :

The PDP-11 has a multi-line, multi-level priority interrupt structure.

15

DEMIGE.
5T

P REQIE:
ERIQAITY LINE
- PR | | F - —
’ [ovow] o] [orom]
-~— .. ——
. ;
: ' |
<
-+—- BRG —_— — — —]
o
- |
2
L]
. &)
-— BRS _—— — —E
z
4 By ;M [N
--+— B4 | [| _____
3
. HSR | HEP I [KB ‘ . I TR |
- INCRELSING PRIORITY

———— .. TR

See Table 1-1, page 2 , for a summary of the API structures of the various PDP-
11's. Bus requests from external devices can be made on one of five reguest lines.
Highest priority is assigned to non-processor request {NPR). These are direct
memory access type transfers, and are honored by the procesor between bus
cycles of an instruction execution. ™

Bus request 7 (BR7) is the next highest priority, and BR4 is the lowest. Levels be-
low BR4 are not implemented in the PDP-11/20, 11/15, or 11R20. They are used
iy larger machines (PDP-11/45). Thus, a processor priotity of 3, 2, 1, ar 0 will
have the same effect, i.e. all interrupt requests will be granted.

BR7 through BR4 priority requests are honored by the processor between instruc-
tions. The priority is hardwired into each device except for the processor, which is
programmable. For example, Teletypes are normally assigned to Bus Request line
4. Bus request lines assigned to each peripheral davice and option are shown in
Appendix 8.

The processor's prionty can be set under program control to one of eight levels
using bits 7, 6, and 5 in the processor status register. These bits set a priority
level that inhibits granting of bus requests on lower levels or on the same level.
When the processor's priority is set to a tevel, for example PS6, all bus requests
on BRE and helow are ignored.

When more than one device is connected to the same bus request {BR} line, a de-
vice nearer the central processor has a higher priority than a device farther away.
Any number of devices can be connected to a given BR or NPR line:

Thus the priority system is two-dimensional and provides each device with a
unigque priority. Although its priority. level is fixed, its actual priority changes as
the processaor priority varies. Also, each device may be dynamically, selectively en-
abled or disabled under program control.

16

Once a device other than the processor has control of the bus, it may do one of
two types of operations: data transfers or interrupt operations.

NPR Data Transfers - NPR data transfers can be made between any two per-
ipheral devices without the supervision of the processor. Normally, NPR transfers
_are between a mass storage device, such as a disk, and core memory. The struc-
ture of the bus also permits device-to-device transfers, allowing customer-de-
signed peripheral controllers to access other devices, such as disks, directly.

An NPR device has very fast access to the bus and can transfer at high data rates
once it has control. The processor state is not affected by the transfer; therefore
the processor can relinguish contral while an instruction is in progress. This can
occur at the end of any bus cycles except in between a read-modify-write se-
quence. An NPR device can_gain control of the bus in 3.5 microseconds
or less. An NPR device in controf of the bus may transfer 16-bit words from
memory at memory speed.

Interrupt Operations - Devices that request interrupts after getting bus control on
the bus request lines (BR7, BRG, BRS, BR4) can take advantage of the power and
flexibility of the processor. The entire instruction set is availabte for manipulating
- data and status registers. When a device servicing program must be run, the task
currently under way in the central processor is interrupted and the device service
routine is initiated. Once the device request has been satisfied, the processor re-
turns to the interrupted task. This is atl accomplished through hardware, and is
done automatically by the processor.

Example - A peripheral devices requires service and requests use of the bus at ane
of the BR levels.

1. The processor determines which device is reguesting use of the bus, and
compares the priority of the device with the existing processor priority.

2. If device priority is higher, the processor grants priority to the device by
sending a signal along a bus grant line, and the device takes control of the
bus.

3. When the device has control of the bus, it sends the processor an inter-
rupt command with the address of the words in memory containing the ad-
dress and status of the appropriate device service routine.

4, The processor then saves the current central proceésor status {F5) and
the current program counter (PC).

’

5. The new PC and PS are take from the location (interrupt vector) speci-
fied by the device and the next location, and the device service routine is
begun. Note that these operations all occur automatically and that no de-
vice-polling is required to determine which service routine to execute.
(Appendix B contains a list of interrupt vectors.)

6. 7.2 micraseconds is the time interval between the central processor’s re-
ceiving the interrupt command and the fetching of the first instruction.
This assumes there were no NPR transfers during this time.

7. The device service routine can resume the interrupted process by execu-
ting the RTI {Return from Interrupt) instruction. This requires 4.5 micro-
seconds i there are no intervening NPR's. It is done by restoring the old
PC and PS.

17

8. A device service routine can be interrupted in turn by a sufficiently high
priority bus request any time after completion of its first instruction.

9. If such an interrupt occurs, the PC and the PS of the device service rou-
tine are also automatizally saved (wathout loss of the other PC and PS that
had been saved) and the new device routine is initiated. This nesting of
priority interrupts can go on to any level, limited only by the core available
for temporarily storing the PS and the PC.

18

PART |
CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDP-11 instruction {MOV, ADD etc.} which usually ingdicates:

the function {operation code)

a general purpose register 1o be used when locating the source operand
and for a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDP-11 has been designed to handle
structured data efficiently and fiexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register. -

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au-
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro-
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP-11"s also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the “stack.” (See Chapter 5)

In the PDP-11 any register can be used as a “'stack pointerunder program con-
trol, however, certain instructions associated with subroutine linkage and inter-
rupt service automatically use Register 6 as a “‘hardware stack pointer”. For this
reason R6 is frequently referred to as the “3P".

An important PDP-11 feature, which must be considered in conjunction with the
addressing modes, is the register arrangement:

19

RO

R1

R2

R3

R4

RS

R6 (Hardware Stack Pointer)
R7 (Prograrm Counter}

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear, in-

crerment, test) is:

L] * HHE
| MODE :'@l An |
G ' 6,5 4 5 & 9
oF Co0E ——F $

DESTINATION ACDRESS

#vSPECIFIES CRECT OR INDIRECT ADORESS,
¥ =SPECIFES MOW REGISTER WILL BE USED
HNH 1 SPECIFIES ONE OF B GENERAL PURPOSE REGISTERS

Bits 15 through 6 specify the operation code that defines the type of instruction
to be executed.

Bits 5 through O form a six-bit field called the destination address field. This con-
sists of two subfields:

a) Bits 0 through 2 specify which of the eight general purpose registers is to be
referenced by this instruction word.

b) Bits 4 and 5 specify how the selected register will be used (address mode). Bit
3 indicates direct or deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING

Operations which imply two operands (such as add, subtract, move and compare)
are handled by instructions that specify two addresses. The first operand is called
the source operand, the second the destination operand. Bit assignments in the
source and destination address fields may specify different modes and different
registers. The Instruction format faor the double operand instruction is:

20

-5 3 X X * Ko

opoooe[moe QT | wooe (@] e J
3 PRI 6, 5 4 3 2 g,
SOURCE womss—-————* I
DESTIM'”Q’NADI

-J(-DHECI'{IIFERRED BT FOR SOURGE AMD CESTINATION ADDRESS
- SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
H¥uSPECIFIES A GENERAL REGISTER

The source address field is used to select the source operand, the first operand.
The destination is used similarly, and locates the second operand and the result.
For example, the instruction ADD A B adds the contents (source operand) of loca-
tion A to the contents (destination operand) of location B. After execution B will
contain the result of the addition and the contents of A will be unchanged.

Instruction mnemenics and address mode symbols are sufficient for writing ma-
chine language programs. The programmer need not be concerned about con-
vaersion to binary digits; this 15 accomplished automatically by the PDP-11 as-
sembler,

Examples in this section and further in this chapter use the following sample
PDP-11 instructions:

Mnemonic Description ’ Octal Code

CLR clear (zero the specified destination) 0030nn

CLRB clear byte (zero the byte in the specified 1050nn
destination)

INC increment (add 1 to contents of destination) 0052nn

INCB increment byte (add 1 to the contents of 1052nn
destination byte)

COM complement (replace the contents of the 0051nn

destination by their logical complement;
each O bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 1051nn
destination byte by their logical complement,
each 0 bit is set and each 1 bit is cleared). .

ADD add (add source operand to destination oemm nn
- operand and store the result at destination
address)

21

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES

Binary Name Assembler ' Function_
Syntax
000 Register Rn Register contains operand
010 Autoincrement (Rn)+ Register is used as a pointer fo
sequential data then in-
cremented
100 Autodecrement ~(Rn}) Register is decremented and

then used as a pointer,

110 Inclex X(Rn) Value X is added to (Rn) to pro-
duce address of operand. Nei-
ther X nor {(Rn} are madified.

3.3.1 Register Mode
OPR Rn

With register mode any of the general registers may be used as simple accumitla-
tors and the operand is contained in the selected register. Since they are hard-
ware registers, within the processor, the general registers operate at high speeds
and provide speed advantages when used for operating on frequently-accessed
variables. The PDP-11 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As-
sembler syntax requires that a general register be defined as follows:

RO =%0 (% sign indicates register definition)
R1 = %1
‘R2=%2, efc.

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and PC, respectively.

Register Mode Examples
(all numbers in octal)

Symbolic Octal Code Instruction Name
1. INC R3 005203 Increment
Operation: Add one to the contents of general register 3

22

RO
Rl
wH R2
© 0 0 0 1 0O ‘_0.‘.°J°___°i°l°‘ 1 [ELECT o
N €, 5% 4 3 2 G, R4
OP CODE twcmoszn—J I [
DESTINATION FIELD RE (5P}
¥« NRECT ADDRESS : RT IFC)
% +REGISTER MODE
2 ADD R2,R4 060204 Add
Operation: Add the contents of R2 to the contents of R4,
BEFQRE AFTER
G| oooace | e | ooonz |

as [oocoos | mef ocoooe |

3. COMB R4 105104 Complement Byte

Operation: One’s complement bits 0-7 (byte) in R4. (When
general registers are used, byte instructions only
operate on bits 0-7; i.e. byte O of the register)

BEFORE AFTER
Re | oezzez | Ra| oz2188 |

3.3.2 Autoincrement Mode
CPR {(Rn}+

This mode provides for automatic stepping of a pointer through sequential ele-
ments of a table of operands. It assumes the contents of the selected general reg-
ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se-
quential location. The autoincrement mode is especially useful for array process-
ing and stacks. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handling,
this mode _is completely general and may be used for a variety of purposes.

23

Autoincrement Mode Examples

Symbolic Octal Code Instruction Name
1. CLR (R5) + 005025 Clear
Operation: Use contents of RS as the address of the operand.
Clear selected operand and then increment the
contents of RS by two.

BEFORE) AFTER .

ADDRESS SPACE REGISTER AODHESS SPACE REGISTER
aove [ocosoes | Y pwooe Jeoooe] eosces | ms| BREE
30000 3000

2. CLRB (R5)+ 105025 Cloar Byte
Qperation: Use contents of RS as the address of the operand.
Clear selected byte operand and then increment
the contents of RS by one.
BEFORE AFTER .

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
zo000 | 105025 _j a5 | 030000 | 20000 | 105025 RS ORO0C
aonon | 1m0 T e 30000 11 aoo
30002 : 0002 !

3. ADD(R2) +,R4 062204 Add
Operation: The contents of R2 are used as the address of the
aperand which is added to the contents of R4. R2
is then incremented by iwo.
BEFORE AFTER

ADDRESS SPACE REGISTERS ADCRESS SPACES REGISTERS

wooo | oszzoa | fz | 1o000e | wooo [oszaca rz [100004 |
" oo [-
100002 010000 100002

24

3.3.3 Avtodecrement Mode

OPR-(Rn)

This mode is useful for processing data in a list in reverse direction, The contents
of the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
choice of postincrement, predecrement features for the PDP-11 were not arbitrary
decisions, but were intended to facilitate hardware/software stack operations
(See Chapter 5 for complete discussicns of stacks).

Autodecrement Mode Examples

Symbolic Octal Code Instruction Name
1. INCRO) 005240 Increment
Operation: The contents of RO are decremented by two and

used as the address of the operand. The operand is
increased by one.

SEFORE AFTER
ADDRESS SPACE REGISTERS AGRESS SPACE REGISTER
1000 | cosza0 | ee| orrree) sccof ooses0”] e[orirra
7 _ 774 co00m
2. INCB-(RO) 105240 increment Byte
Operation: The contents of RO are decremented by one then

used as the address of the operand. The operand *
byte is increased by one. :

BEFORE AFTER
ADDRESSSHECE REGISTER ADDRESS SPACE REGISTER
oo [vosze0 | re| ovrree | rwoo| ioses0 | re]| w7ems |
wres | 000 | oo rra [oot} oo
ATTTE H 17776 [
3 ADD —(R3),RO 064300 Add
Operation: The contents of R3 are decremented by 2 then

used as a pointer to an operand {source) which is
added to the contents of RO {destination operand).

25

BEFURE AFTER
ADDRESS SPACE REGISTER BDORESS SPACE REGISTER
10020 | oe43o0 | wo oooozs | soceo | 064300 | re | oooooro |
7774 Qo000 77T7a 200040
r1rTe 776
3.3.4 Index Mode
OPR X(Rm)

The contents of the selected general register, and an index word following the in-
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be medified by program to access data in the table. Index addressing in-
structions are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location fellowing the instruction word and Rn is the selected gen.

eral register.
index Mode Examples _ .
Symbolic Octal Code Instruction Name
1. CLR200(R4) 005064 Clear
000200
Operation; The address of the operand is determined by ad-
ding 200 to the contents of R4. The location is
then cleared.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
100 [alup a0 R4 [e il en) I L1y -343 DOS064 Ra [eLrllelely] —_l
022 DOG200 1022 OOO200
024 1024
1200 177ITT 1200 DO
1202
2. COMB 200{R1) 105161
000200 Complerment Byte
Operation: The contents of a location which is determined by

adding 200 to the contents of R1 are one's com-
plemented. (i.e. logically complemanted)

26

BEFORE AFTER

ADDRESS SPACE REGISTER ADDAE S5 SPACE REGISTER
wzo 105161 | oirrrr J 020 10561 R oarrrr |
1022 DOO200) ez 000200
20176 o11 000 20176)
20200 weoo|]
3 ADD 30{R2),20(R5) 066265 Add
000030
Q00020
Operation: The contents of a location which is determined by

adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad-
ding 20 to the contents of R5. The result is stored
at the destination address, ie. 20 (R5).

BEFORE AFTER
ADDRESS SPACE RERSTER BDORESS SPACE REGISTER
020 DEEZED re [ooiwo] wa 066265 m{ oconce |

ez QO0030

1024 000020 s °°3°°° s 000020 m [_ooooo]

2000 2020

27

3.4 DEFERRED (INDIRECT) ADDRESSING

The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is '@ (or “'()" when this not ambiguous). The
foliowing table surmmarizes the deferred versions of the basic modes:

Binary Name Assembier Function
Code Syntax

001 RegisterDeferred @Rnor (Rn) Register contains the address of
the operand

011 Autoincrernent Deferred @(Rn)+ Register is first used as a
pointer to a word containing the
address of the operand, then in-
cremented (always by 2; even
for byte instructions).

101 Autadecrement Deferred @-(Rn) Register is decremented (always
by two; even for byte instruc-
tions) and then used as a
pointer to a word containing the
address of the operand

111 index Deferred @X{(Rn) Value X (stored in a word follow-
ing the instruction} and {Rn) are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn) are modified.

Since each deferred mode is similat to its basic mode counterpart, separate de-
scriptions of each deferred mode are not necessary. However, the foliowmg exam:
ples illustrate the deferred modes.

Register Deferred Mode Example

Symbolic Octal Code Instruction Name

CLR @R5 005015 Clear
Operation: The contents of location specified in RS are

cleared.
AFTER .
ADDRESS SPME REGISTER ANDAESS SPACE, REGSTER

wrr asf omvoo] werT | omtoc |
moe 000100 100 000000

e

Autoincrement Deferred Mode Example

Symbolic Qctal Code Instruction Name
INC @(R2)+ 005232 Increment
Operation: The contents of the location specitied in R2 are
used as the address of the address of the operand.
Operand is increased by one. Contents of R2 is in-
cremented by 2.
BEFURE 4FTER
ADORESS SPACE REGISTER ADDRESS SPACE REGISTER
e[owsee | RZ 010302 |
jleila} 0Do025 110 DOGOZE
wnoz 1wz
tOB00 001 Tl 10300 DOIHG

Autodecrement Deferred Mode Example

COM @—-(RO} 005150 Complement
Operation: The contents of RO are decremented by two and
’ then used as the address of the address of the op-
erand. Operand is one’s complemented. (i.e. logi-
cally complemented}
BEFORE AFTER
ADDRESS SPECE REGISTER ADDRESS SPACE REGISTER
10100 MZI6Y R® | D10776 10100 165432 Re I 0107]
WOz 10408
10774 O 10y00 107 D10100
TQFTE W7
Index Deferred Mode Example
ADD @ 1000(R2),R1 067201 Add

Operation:

001000

1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in R1,

29

BEFORE AFTER

ADDRESS SPACE REGISTER HOORES § SPACE REGISTER
1020 067201 [oonese boorom 067201 LIl 001236 |
w0z 001000 Rz 022 0000 A2 000100
024 1024
1050. G000 1050 D000
1100 001050 1100 COMOSE

3.5 USE OF THE PC AS A GENERAL REGISTER

Although Register 7 is a general purpese register, it doubles in function as the
Program Counter for the POP-11. Whenever the processor uses the program
<courtter to acquire a word from memory, the program counter is automatically in-
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next instruction to be executed. (When the pro-
gram uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard PDP-11 addressing modes. Hawever, there
are four of these modes with which the PC can provide advantages for handling
.. position independent code (PIC - see Chapter 5) and unstructured data. When re-
garding the PC these modes are termed immediate, absclute (or immediate de-
ferred), relative and relative deferred, and are summarized below:

Binary MName Assernbler Function

Code " Syntax

0tc¢ Immediate #n Qperand follows instruction

011 Absolute @ #A Absolute Address folows in-
struction

110 Relative A Address of A, relative to the in-
struction, follows the instruc.
tion.

111 Relative Deferred @A Address of location containing

address of A, relative to the in-
struction follows the instruc-
tion.

The reader should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but the general register selected is R7, the program
counter.

When a standard program is available for different users, it often is helpful to be
able to load it into different areas of core and run it there. PDP-11's can accompl-
ish the relocation of a program very efficiently through the use of position inde-

30

pendent code (PIC) which is written by using the PC addressing modes. If an in-
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

The PC also greatly facilitates the handling of unstructured data. This is partic-
ularly true of the immediate and relative modes which are discussed more fully in
Paragraphs .3.5.1 and 3.5.2,

3.5.1 Immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
censtant in the memory location immediately following the instruction word.

Immediate Maode Example

Symbolic Octal Code Instruction Name
ADD #10,R0O 062700 Add
000010
Operation: The value 10 is located in the second word of the

instruction and is added to the contents of RO.
Just before this instruction is fetched and exe-
’ cuted, the PC points to the first word of the in-
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as a pointer to fetch the operand (the sec-
ond word of the instruction) before being in-
cremented by two to point to the next instruction,

BEEORE AFTER
ADDRESS SPACE . REGISTER ADORE S5 $PACE REGISTER
020 062700 \m [coomeo] 1020 062700 el oooox]
o e e
Hza W24

3.5.2 Absolute Addressing
OPR @ #A

This mode is the equivalent of immediate deferred or autoincrement deferred us-
ing the PC. The contents of the location folowing the instruction are taken as the
address of the operand. Immediate data is interpreted as an absolute address
{i.e., an address that remains constant no matter where in memory the as-
sembled instruction is executed).

31

Absolute Mode Examples

Syrmbolic QOctal Code Instruction Name
1 CLR @ #1100 005037 Clear
001100
Operation: Clear the contents of location 1100.
BEFORE AFTER
ADDRESS $PACE ADORESS SPACE
20 005037 20 O0E03T
22 00t190 e :: 001100 v
100 77TTT) . 10 000000
1oz 1oz
2 ADD @ # 2000,R3 063703 Add
02000
Operation; Add contents of location 2000 to R3.
BEFOAE 4e TER
ADDRESS SPACE RESISTER ADDRESS SPACE REGISTER
20 063703 ps[ooesoa | o 063703 R3f ooweo |
22 062000 ~ - 4 002000 pe
24 24 e
2000 000300 2000 000300

3.5.3 Relative Addressing
OPR A or

OPR X(PC), where X is the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu-
lation, which is stored in the second or third word of the instruction, is not the ad-
dress of the pperand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is useful for writing position independent
code (see Chapter 5) since the location referenced is always fixed relative to the
PC. When instructions are to be relocated, the operand is moved by the same
amount,

3z

Relative Addressing Example
Symbolic ’
INC A

Operation:

-] 005267
w22 o054 \

w2e PC
1026

T |

QOctal Code Instruction Name

005267 Increment
000054

To increment location A, contents of memory loca-
tion immediately following instruction word are ad-
ded to (PC) o produce address A. Contents of A
are increased by one.

AFTEAR
ADDRE S SPACE

1020 DD052E7
ez QO0GSS
wea -—FPC
1026

e .

3.5.4 Relative Deferred Addressing

OPR@A or

OFPR@X(PC), where x is location containing address of A, relative to the in-

struction.

This mode is similar to the relative mode, except that the second word of the in-
struction, when added to the PC, contains the address of the address of the oper-
and, rather that the address of the operand.

*Relative Defeorved Mode Example :
Symbotic Octal Code Instruction Name
CLR @A 005077 Clear
000020
Operation: Add second word of instruction to PC to produce
address of address of operand. Clear operand.
BEFORE AFTER
ADURESS SPACE ADDRESS SPACE
W20 DOSO3T \ 1020 QOS03T
1022 DOOG20 PG 022 OG0020 PC
02e ey L~
wes wae| oworoo |
A=¥A4
oo oo _ooscis |

33

3.6 USE OF STACK POINTER AS GENERAL REGISTER

The processor stack pointer (SP, Register 6) is in most cases the general register
used for the stack operations related to program nesting. Autodecrement with
Register 6 “pushes”data on to the stack and autoincrement with Register 6
‘'pops’* data off the stack. Index mode with the SP permits random access of
items on the stack. Since the SP is used by the processor for interrupt handling, it
has a special attribute: autcincrements and autodecrements are always done in
steps of two. Byte operations using the SP in this way simply leave odd addresses
unmodified. Use of stacks is explained in detail in Chapter 5.

Addressing Modes Summary

The following table is a concise summary of the various PDP-11 addressing
modes

DIRECT MODES

Binary Name Assembler Function

Code Syntax

000 Register : Rn Register contains operand

010 Autoincrement (Rn) + Register contains address of op-

erand. Register contents in-
cremented after reference.

100 Autodecrement -(Rn} Register contents decremented
) before reference register con-
tainc address of operand

110 Index X(Rn) Yalue X (stored in a word follow--
ing the instruction) is added to
{Rn) to produce address of oper-
and. Neither X nor {Rn) are
modified.

Binary
Code

001

011

101

111

010
011

110

111

DEFERRED MODES

Name Assernbler
Syntax
Register Deferred @RnN

Function

Register contains the address of
the operand -

Register is first used as a
pointer to A word containing the
address of the operand, then in-
cremented {always by 2, even
for byte instructions)

Register is decremented (always
by two; even for byte instruc-
tions) and then used as a
pointer to a word containing the
address of the operand

Value X (stored in a word follow-
ing the instruction) and (Rn) are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither
X nor (Rn} are modified

Operand follows instruction

Absolute address follows in-
struction

Address of A, relative to the in-
struction, follows the instruc-
tion.

or (Rn)

Autoincrement Deferred @(Rn) +
Autodecrement @—-(Rn)
Index Deferred @X(Rn)

PC ADDRESSING
Immediate #n
Absolute @#A
Relative A
Relative Deferred @A

35

Address of location containing
address of A, refative to the in-
struction follows the instruc-
tion.

36

PART |
CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION
This chapter describes the PDP-11 instructions in the following order:

Single Operand (4.4)

General

Shifts

Multiple Precision Instructions
Rotates)

Double Operand (4.5)
Arithmetic Instructions

Logical Instructions

Program Control Instructions (4.6)
Branches

Subroutines

Traps

Miscetlaneous (4.7)
Condition Code Operators (4.8)

The specification for each instruction includes the mnemonic, octal code, binary
code, a diagram showing the format of the instruction, a symbolic notation de-
scribing its execution and the effect on the condition codes, timing information, a
description, special comments, and examples.

MNEMONIC: This is shown at the top left hand side of the page. When the word
instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction shows the oc-
tal op code, the hinary op code, and hit assignments. {Note that in byte instruc-
tions the most significant bit (bit 15) is always a 1.)

37

OPERATION: The operation of each instruction is described with a single nota-
tion. The following symbols are used:

() = contents of

sre source address

dst = destination address

loc = location

« = becoimes

A = ‘s popped from stack’”
¥ = *is pushed onto stack”
A = boolean AND

v = boolean OR

¥+ = exclusive OR

© ~ = boolean not
Reg or R = register
B8 = Byte

Instructien Timing

The PDP-11 i5 an asynchronous processor in which, in many cases, memory and
processor operations are overlapped. The execution time for an instruction is the
sum of a basic instruction time and the time to determine and fetch the source
and/or destination operands. The foflowing table shows the addressing times re-
quired for the various modes of addressing source and destination operands. All
times stated are subject to + 20% variation.

Addressing Farmat Timing

{src or dst) srolps) e dst(ps) **
R 0

R)or @R 1.5 1.4*

R+ 1.5 1.4*

-(R) 1.5 1.4*
@R)+ 2.7 2.6
@-(R) 27 2.6*
BASE(R) 2.7 2.6
@BASE(R) or @(R} 3.9 38

* dst time is 0.5 ps. less than listed time if instruction was a
CoMPare, CoMPare Byte
Bit Test, Bit Test Byte
TeST, or TeST Byte

none of which ever modify the destination word.

» referencing bytes at odd addresses adds 0.6us to src and dst times.

38

4.2 INSTRUCTION FORMATS

The major instruction formats are:

Single Operand Group

L OP Code 0 dat]
l 1 1 I A 1 l 1 1 k. - I. [1
1% [3 0
Double Operand Group
l oF Code Srg] dst]
| 1 i 1 L I 1 Fl L L l_ 1 L
] 4}

Condition Code Operators

[
I_I.l'lll

Register-Source or Destination

.]

Srcfdst

Subroutine Return

o 0 [} LIF [3] [reg J
I 1 1 l Ll 1 l L L I L | 1 1
Branch
l 0P Code l offsat
|) L | 1 N] N 1 1 1 i 1
15 7 [3)

4.3 BYTE INSTRUCTIONS

The PDP-11 processor includes a full complement of instructions that manipulate
byte operands. Since all PDP-11 addressing is byte-oriented, byte manipulation
addressing is straightforward. Byte instructions with autoincrement or autodecre-
ment direct addressing cause the specified register to be modified by one to point
to the next byte of data. Byte operations in register mode access the low-order
byte of the specified register. These provisions enable the PDP-11 to perform as
either a word or byte processor. The numbering scheme for word and byte ad-
dresses in core memaory is:

BYTE | BYTE O 2000
BYTE 3 BYTE 2 2002

The most significant bit {Bit 15) of the instruction word is set to indicate a byte
instruction,

Example:
Symbolic QOctal
CLR Q050DD
CLRB 1050DD
NOTE - ISP

ISP - The Instruction Set Processor {ISP) notation has been used with each in-
struction. It is a precise notation for defining the action of any instruction set and
is described in detail in Appendix C. It was included for the benefit of PDP-11
users wha wish to gain an in depth understanding of each instruction. However,
understanding ISP is not essential to understanding PDP-11 instructions.

40

4.4 SINGLE OPERAND INSTRUCTIONS

General: CLR DEC INC NEG TST
CLRB DECBE |INCB NEGB TSTB
Shifts: ' ASR ASL
ASRB ASLB
Muttiple Precision: ADC SBC
ADCB SBCB
Rotates: ROL ROR SWAB
ROLBE RORB

4.4.1 Single Operand General Instructions

41

COM
COMB

CLR
CLRB

23ps

Description:

Example;

ISP:

CLE:
p' - i
W 0;
2~ 1;
Vo qQ;
[]

CLRE:
bb' =~ &
"~ 03
Z+= 1
L
[HEa]

Clear dst 15000
[O/1000|010'000ddddd
I 1 I 1 L !. 1 L L 1 I 1 L
15 & & o]
" Operation: (dst e
Condition Codes: N: cieared
Z: set
V. cleared
C: cteared

Word: Contents of specified destination are replaced with ze-
roes.

Byte: Same
CLR Rl
Before After
(R1Y=177777 (R1) =000000
NZVC NZVC
1111 0100

clear 0, ¥, V, , set I

2lgar B, N, ¥, £; pat Z

42

2.3 ps

Decremant dst

DEC
DECB

nQ530D

Ion ¢ 0 © 1 0o 1 oV 1 [d d d 4 & d]
I i i L A l L 1 i b t L L
15 6 5 0
Operation: {dst e (dst)-1

Condition Codes:

N: set if result is <<0; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if {(dst} was 100000, cleared otherwise
C: not affected

Description: Word: Subtract 1 from the contents of the destination
Byte: Same
Example: DEC RS
Before After
(R5) = 000001 (RS} = 000000
NZVC NZVC
1000 0140
ISP:
DEC:
t = D'-1; naxt result £8 difference of Do1
K+ <15, negative?
(r<l5:0= = @) = (Z ~) slae Z =)3 zerg?

(rEl5:d> = ?7?7?3) = {V+~ 1 alse ¥ ~ 0, overfiow if lamgest positive rumber

I 4 Eragnemit result £o D
DECE:
r+ Db'-1; pexe reault ta diffarence af D-1
N~ e negative?
(rf:fem 0} = {2+~ 1 #lse 2~ 0); ZEPC?
(rTole = W70 iy — 1 else Ve 03 cverflos {f largest positive mmber
oh = r tronemit resuit to D

43

23 us

tncrement dst n05200

Fm O 0 0 1 O 1 O0'1 © I d d4d d d d d I
1 i L | A | : 1 1] 1] I

15 [L] Q

Operation: (dst)e(dst) + 1
Condition Codes: N: set if result is < cleared otherwise
: Z: set if result is O; cleared otherwise
V: set if (dst) held 077777, cleared otherwise
C: not affected
Description: Word: Add one to contents of destination
Byte: Same
Examplec ' INC R2
Before . After
(R2)=000333 {R2} = 000334
NZVC NZVC
Qgoo00 Q0a0
I5P:
IRC:
¥ = D'+l; next repult 1 sum of 41
LI Lo negative?
(ecl5:0> = 0) = {Z +'1 elas £+~ 0); 2ero?

(r<25: 0 = 100008} = (V 1 ulke v = 0);overfios if targest nagative mmber

traemt reault to D

D~
INCE: '
¥ o= DE+1; naxt resnlt ix gwm of O+l
L o H negative?
{paf:= =) » (Z = 1 eloe 2 = 0); zere?

{ec?:il> = WA = (Ve Lelge ¥, overﬂ.m.r iF largest megative mmban

Db = ¢

troeemit result to &

2.3 ps

NEG
NEGB

Negate dst nooS4DD
|Ef1 ¢ © 0 1 0 1 1'c o]d a d a4 4 d—l
I i 1 I 1 1 I 1 1 1 L l 1 L
15 & 5 o
- Operation: {dst)e —(dst)

Condition Codes: N: set if the result is <Q; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if the result is 100000; cleared otherwise
C: cleared if the result i3 0; set otherwise

Description: Word: Replaces the contents of the destination address by its
two's complement. Note that 100000 is replaced by itself -(in =
two's complement notation the most negative number has
no positive counterpart).

Byte: Same
Example:) NEG RO
Before After
(RO} = 000010 (RO)= 177770
NZVC NZIVC
Q000 1001
ISP:
HEG:
r = -D'; oext result {8 negaiive of D
TH o eclEeg negative?
fp<lS; 0> = 0% = (2 = 1 elee 2 = O); Fere?
(r<13: 0= = 100000,) = (¥~ 1 =lsa ¥ = 0 poenficur
(e<15: - = 0} = (C+~ 0 else C+ 1); carry?
[R] tramamit resklt to D
NECR:
-+~ - Db¥; mext result is negative of D
F * r<i>; negativa?
(r<1:0> = 0) = (2~ 1 alss 2 = 0}; zepolf
(70> = 2005) = (¥~ 1 2lee ¥+ 0} suarflou?
(r<P:l> = 0} = (L~ D else C 1) parey?
L tremamit reault to D

45

1.8 us
2.3 ps if Mode O
TST
TSTB
Test dst nOS7DD
|cu1 o 0 0 1t © 1 1'1 1t]ld d4d d d d d
I L I i 1 I 1 1 1 1] . 1
15 & 5 [+
Operation: (dst) (dst)

Condition Codes:

N: set if the result is <Q; cleared otherwise
Z: set if result is O; cleared otherwise

V: cleared
C: cleared
Description: Word: Sets the condition codes N and Z according to the con-
tents of the destination address
Byte: Same
Example: TSTRL
Before After
{R1)=012340 (R1)=012340
NZVC NZVC
0011 0000
1SP:
TST:
r+ B' - 0; next result ta difference of 0 and §
N~ rg neguative?
{r<i5:0> = 0) = (Z + 1 elege Z = 0); zero?
V- 0 alear ¥V oud €
=0
TSTR:
r = Th' - 0; next regult ia difference of D and 0
H = =7 nagative?
(reF 0= 0) = (2 + 1 elpe 2+ 0); rerg?
¥ - 0; clear ¥V and ¢
ce0

- 46

2.3 ps

Complernent dst

COM
comB

510D

15

Operation:
Condition Codes:

EHO o O 1 [+] 1 o0 'r]d d d ¢ d d]
l L 1 l 1 b I A 1 1 1 l I} 1
-]] o

{dst)e~(dst)

N: set if most significant bit of result is set; cleared otherwise
Z: set if resuit is O; cleared otherwise

V: ¢leared
C: set
Description: Replaces the contents of the destination address by their log-
ical complement {each bit equal to 015 set and each bit equal
to 1 is cleared)
Byte: Same
Example: COM RO
Before After
(R0}=013333 (R0) = 164444
NZVC NZVC
0110 1001
ISP: 450 ns
<o
© = D% mext raselt 1g somplament of U
W+ r<iSe; negative?
(r<l5: 0 = 03 = (2 = 1 elee Z +~ 0); zera?
Vo= 0y alear ¥
cw-1; set C
D+~ trmemit resuit to I
C(ME;
¥+ — Db'; nexc megult {e somplament of D
H o= ol nagative?
{r<tils = 0) = (2 1 elan Z ~ 0); rang?
Ve 0; elear V
C+ 1% aet
-t tronamit vesult to D

47

4.4.2 Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithimetic shift left
The sign bit (bit 15) of the operand is replicated in shifts to the right. The tow-or-

der hit is filled with O in shifts to the left. Bits shifted cut of the C-bit, as shown in
the following examples, are lost.

48

23 s
3.5 ps if odd byte

ASR
ASRB

Arithmetic Shitt Right dst 620
IBA 6 0o 0 1 1 ¢ 0'1 0 l d 4 d d 4 d]
I 3§ 1 l 1 1 l 1 1 1 1 I 1 1
15 € 5 [
Operation: (dst)«(dst) shifted one place to the right

Condition Codes: N: set i the high-order bit of the result is set (result << 0);
cleared otherwise
Z: set if the result =0; cleared otherwise
V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded from low-order bit of the destination

Description: Word: Shifts all bits of the destination right one place. Bit 15
is replicated. The C-bit is lvaded from bit © of the destination.
ASR performs signed division of the destination by two,

Word:
T
I 1 __1 l 1 1 I 1 A I 1 L 1 1 o _J-.{:::]_H-
I ; T
Byte:
| ! 1 Fl 1 | Il L I I-‘.IIHI
Q00 ADDRESS e EVEN ACDRESS a
ISP
ASR:
T+ D'f2; nent result i DfE

€= pli=-; sarry recefves Legat significant bit

H o+ 155 negative?

(r<15:0> = 0) = {2 = 1 elpe Z +) next aera?

(NG =y ~1asloe Ve 0} overflow ia "Exclusive GR" of ¥ and C
[4
ASRR:
- Db'f2; et result fa pi2

€ + Dbag™ sarry Mcetves leaat significant bit

K~ i3 . negative?

(ref:0e = 03 » (2~ 1 alem £~ 0)}; next merof?

{(FEBC) > {(¥v+~1 eloe ¥ 0); sverfiow is "Exclusive OFY of F and
bb ~ t

49

23ps
3.5 ps if odd byte

ASL
ASLB

Arithmatic Shift Left dst n0G3aDC

|oz1 o o0 o 1 t o 0'1 1|4 d& 9 ¢ d o I
| 5 1 | 1 1 I 1 1 1 1 | 1
15 : s 5

Operafion: (dst)«(dst) shifted one place to the left

Condition Codes: N: set if high-order bit of the resuit is set (result < Q) cleared
otherwise
Z: set if the result =0; cleared otherwise
¥: loaded with the exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded with the high-order bit of the destination

Description: Word: Shifts all bits of the destination left one place. Bit Ois
loaded with an Q. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in-

dication.
Byte: Same
Word:
E-_L i 1 1 l 1 i 1 1 L, ‘ L i] L i |~_.D
13 4]
Byte:
.FL | - s Imo‘ZI"_—L.J_L__I_x_l_l._l_,.'-o
OD[:I ADDHESS B 7 EVEN ADDRESS Q
1SP:
ASL: |

raguilt fo M2
bit squeesad out to

r +~ Dr<l5x0p'<13: 000, next
g~ 0 <1lé>, next
H o~ r<15;
(e<15:@= = 03 = (Z+~) alea 2 = 0); next
HNEC) = (Ve 1 else ¥ =~ §);

negative?

zerof

averfiat ie "Exclusive OR" of ¥ omd ©
tapramit pesult to B

i I o
ASLE:
r +~ Db ' T>b ™5 0000 next regult fa Dx2 -
€ = Db<6>; next bit aquessed out to O
LI ¥ nagative?
{r<?:@= = D) = (2=~ 1 elae 2.~ 0}; next zere?
(REC) = (¢=—1glye ¥~ 0); coerflot ta "Beclusive ORT of ¥ and
- tramamit peault to D

50

4.4.3 Muitiple Precision

It is sometimes necessary to do arithmetic on operands considered as multiple
words or bytes. The PDP-11 makes special provision for such operations with the
instructions ADC (Add Carry) and SBC (Subtract Carry) and their byte equiva-
lents.

For example two 16-bit words may be combined into a 32-bit double precision
word and added or subtracted as shown below:

32 BIT WORD
£
OPERAND r a1 1 [Y [
1) [3 B o
Ld al
GPERAND L 81] l B9 I
ED ® [3
cesur [) |
ED % 3 0

Example:
The addition of -1 and -1 could be performed as follows:
-1 = 377727777777
(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD R1,R2 ;Add low order parts
ADC R3 :Add carry to high order part
ADD R4,R3 ;Add high order parts

1. After (R1) and (R2) are added, 1 is loaded into the C bit
2. ADC instruction adds € bit to (R3); (R3) = O

3. (R3} and (R4) are added

4. Result is 37777777776 or -2

51

ADC
ADCB

2.3 us

Add Carry dst Q550D
|O/10001011'01d‘dd dd]
l L I L L I L 1 L 1 L
15 6 5 0
Operation: (dst)e(dst) +(C}
Condition Codes: N: set if result <0; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if (dst) was 077777 and (C) was 1; cleared otherwise
C: setif (dst) was 177777 and (C} was 1; cleared otherwise
Description: Adds the contents of the. C-bit into the destination. This per-
mits the carry from the addition of the low- order words to be
carried into the high-order result.
Byte: Same
Example: Double precision addition may be done with the following in-
struction sequence:
ADD A0BO ; add low-order parts
ADC Bl ; add carry into high-order
- ADD Al,Bl ; add high order parts i
ISP:

ADC:
=D + & next
W+ riSe;
(r<lS:d> = 0) = (2 +~ 1 alae Z ~ 0);
(r<15: 0= = 100000g) A {Cn1} = (¥ ~ 1 alse ¥ - 0);
(p<15: 0> = 0) A (=1} = (O~ 1 alea ¢ = 0};
D+r
ARCE:
v+~ D' +] next
N+~ =T
0> = 0} = (2 + 1 eloe Z ~ 0};
(r<:l = 20050 A {C=1) = (V ~ 1 else ¥ = 0);
cfralile w0 A {O=1) 2 {0+ 1 elae - 0);
Db~ r

52

nggative?
zera’
overfiow tf largest negative number

troetamit rooult to D

nagative?
sero?
cvarflow if largest negative number

trunamit resuit to O

2.3 us

Subtrack Carry dst

SBC
SBCB

n05600

F/IOOO10|1'1olddddde
L. r 1, [S VO R

t5

Operation:

Condition Codes:

6 5 o

(dstie(dsH-(C)

MN: set if result <0; cleared otherwise

7: set if result 0; cleared otherwise

Vo set if resuit is 100000; cleared otherwise

C: cleared if result is O and C = 1; set otherwise

Description: Word: Subtracts the contents of the C-bit from the destina-
tion. This permits the carry from the subtraction of two low-
order words to be subtracted from the high order part of the
result.

Byte: Same

Example: Bouble precision subtraction is done by:
SUB AO0BO
3BC 81
SuUg AlB1

5P

S8CH:

T+~ bb' - O pexc result fg differenoe of 0 and ©

R+ 1<T=; negative?
(p?:0> =0 m {2 « 1 elae £ « 0¥} 3emo?
{r<7;00 = 2008) = (V= 1 else ¥+ 0); overfim?

(r<i:0> = 0) A (Owl) = (C = O else C = 1);

h o=t

tratamit result to D

53

4.4.4 Rotates

The rotate instructions operate on the destination word and the C bit as though
they formed a 17-bit “‘circular buffer’. These instructions facilitate sequential bit
testing and detailed bit maniputation.

2.3 ps
3.5 ps if odd byte

ROL
ROLB

Rotate Left dst n061DD
'Iomoooutoo'o1ld¢¢ddd]
' AL 1 I 1 L I L 1 L 1 l 1 1
15 € 5 Q
Operation: {dst)-&(dst) rotated left one place
Condition Codes: N: set if the high-order bit of the result word is set
(result << O): cleared otherwise
Z: set if all bits of the result word = 0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: Ioaded with the high-order bit of the destination
Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded intc the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit O of the destination,
Byte: Same
Example:

Word:

g‘_lél.rl..r

L {?

1SP:
L
AGL:

16 0 ~ D'<15: 000, pext

N+ r<lse;

(xS = 0) = (2= 1 eloe 2~ 0);

ED + r; next

{R3C) »(Velelse ¥« 0}

ROLB:

rcbile = Db 70RO

K= r<ieg

(+<7:0> = 0) = (Z+ 1 alas Z v~ 0};

b « r; next

(NBe)=(¥—1elseV«0)

reault {8 F ad © volated
nagativa?

zero?

tranetit resalt to O ol D

¥ iz based om new result of ¥ ad ©

peault 1o D ond € rotated
nagativa?

Rext
agra?
tranamit result to ¢ ond O

¥ £ bugeed on new weault of ¥ ond ©

55

ROR
RORB

2.3 ps
3.5 us if odd byte

Ratate Right dst nd60n0
1
]onlo o 0|1 1 010 op4d d dld d d
| 1 1 1] 1 1 1 1
15 6 5 [}
-+ Operation: {dst)=&(dst) rotated right one piace

Condition Codes:
cleared otherwise

N: set if the high-order bit of the result is set (result < 0)

Z: set if all bits of result =0; cleared otherwise

V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate dperation)
C: loaded with the low-order bit of the destination

L5202 + y; next
{NBC) = (Velelse¥ D)
ROKB:
2B 0 = Db'<O-0CODb "<T 1) asse
W= riFe;
(o<¥:0e » 0) = (Z+ 1 elae Z+0);
CMOb = r; next
{(NSC) = (¥ + 1 else ¥+ 0)

56

. Description: Rotates all bits of the destination right one place. Bit 0 is
loaded into the C-bit and the previous contents of the C-bit
are loaded into bit 15 of the destination.

Byte: Same
Example:
Word:
L]
| I 1 1 I 1 1 l 1 1 I 1 1 l | 1]
15 I
Byte:
1 H L l ' i I l I L l 'l ' I 'l 'l |
9 7 ©
L=l L1
15
ROR:
<16 0 = DR-DCOD'<15: I next reault 18 D end C rotated
L 2 nagative?
(150> = 0) = (Z = 1 elge Z = D); zarg?

trmeamit result to O gnd O
¥ {5 based on new result of N amd ©

regult {8 0 and © rotated
negative?

zera?

tranentl t pesult to £ omd D

¥ iz based on naw resslt of ¥ oud ©

2.3 ps

Swap Bytes dst 0003DD

‘o 0 0 0;0 O 0,0 4 1)|d 4 d4,d d 4
l 1 1 I | 1 l | 1 1 | I
15 & & o

Operation: Byte 1/Byte O «Byte O/Byte 1

Condition Codes: N: set if high-order bit of low-crder byte (bit 7) of result is set;
cleared otherwise
‘Z: set if low-order byte of result =0; cleared otherwise

V. cleared
C: ¢leared
Description: Exchanges high-order byte and low-order byte of the destina-
tion word (destination must be a word address).
Example: SWAB R]
Before After
(R1Y=077777 (R1)=177577
NZVC NZVC
1111 Q000
ISP:
SWAR:
£ D7 00D L5 By next reauill is byte swmpped of P
B~ 1=t negative?
(p<?:0-= 0} = {2+~ 1 ¢lon 2+ 0); zero?
Ll H clear ¥, ©
£+ 03
Dwr tranamtt seault to 0

57

4.5 Double Operand Instructions

Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for “Joad" and “save” sequences such as those
used in accumulator-griented machines.

General: MOV ADD SUB CMP
MOVE CMPB

Logical: BIS BIT BIC
BISB BITE BICB

4.,5.1 Double Operand General Instructions

58

2.3 ps

MOV
MOVB

Mo sre, dst nisshon
onooissss'sscddaddl"
| A L N | N " L 1 1 i N
15 12 11 6 o 7
Operation: {dsi)(src)
Condition Codes: N: set if (src) <<(; cleared otherwise
Z: set if (src) =0; cleared otherwise
V. cleared
C: not affected
Description: Word: Moves the source operand to the destination location.
The previous contents of the destination are lost. The con-
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register {unigue among
byte instructions) extends the maost significant bit of the low
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.
Example: MOV XXXR1 ; loads Register 1 with the con-

tents of memory jocation; XXX represents a programmer-de-
fined mnemonic used to represent a memory location

MOV #20,R0 ; loads the number 20 inta
Register 0; " # "indicates that the value 20 is the operand

MOV 20,-(R6) ; pushes the operand con-
tained in location 20 ento the stack

MOV (RE)+,@ # 177566 ; pops the operand off a stack
and moves it into memory location 177566 (terminal print
huffer)

MOV R1,R3 ; performs an interregister
transfer

"MOVB 177562, @ # 177566 ; moves a character from ter-
minal keyboard buffer to terminal buffer

59

ISP

MOVE:
o = % pext
LI o b
{r<15:0= = 0) = (Z =~ 1 elee Z « 0)%

Ve 0
Per

HOVE:
T+ 5h'; next
N« pai>,
(pc?il = §) = (Z+~ 1 elae 2 = 0);
V-0,
D' T

Move soures fa intermediate result reglater, »
nagative?

zevo - iFf I6 bits of * are all zerc then Z {a et
to 1 elee & iy set to O

coerflow 18 eleaved
tranemit wesult to desrination

meUe fouree to fntermedigte resuls
nagative?

zera?

alear ¥

o t pesult do DB

2.3 s

Add sre. dst

Olssssssldddddd
. L L 1 L L _I__l_l._I.J

o
| S
.]

Operation:

Condition Codes:

Description:

Eiamplas: .

ISP:

ADT:

{dst)«(src) + (dst)

N: set if result <<0; cleared otherwise

Z: set if result = 0; cleared otherwise .

V: set if there was arithmetic overflow as a result of the oper-
ation; that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise

C: set if there was a carry from the most significant bit of the
result; cleared otherwise .

Adds the source operand to the destination operand and
stores the result at the destination address. The original con-
tents of the destination are:lost. The contents of the source
are not affected. Two's complement addition is performed.
Add 1o register: ADD 20RO

Add to memory:) ADD RILXXX

Add register to register: ADD RLR2

Add memory to memory: ADD @ # 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca-
tion.

ralé: 0= — 5 + D', pext determung intemediate result sum of 17 bits

N rlisg

negative?

[ecl5:0> = 03 = {Z~) mlae Z +~ O0); Eero T X
{%<15> = DI5>) A (5<15> @ eClih = overflow? Lf signa of operands agree and sigm of

¥ 1 elax V= 0);

¢+ rcléixg

De~r

an cperand ad the aign of the regult disagree
then aet V to } elae eet V to &

carry the 17th bit
tranemit sesult to 0

61

SuUB

Subtract src. dst

2.3 us

165500

| t 1+ 1 o0o]s s s s s sid¢ o o o 4 d
I 1 1 L [- I i 1 1 1 I 1 1

15 1z 1 6 5 0

Operation: (dst)={dst)-(src) [in detail, {dst} + ~(src) + 1 (dst)]

Condition Codes:

N: set if resutt <<0; cleared otherwise

Z: set if result =0; cleared otherwise

V. set if there was arithmetic overflow as a resutt of the oper-
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared
otherwise

. C: cleared if there was a carry from the most significant bit of

the result; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. in double-precision arithmetic the C-
hit, when set, indicates 2 “borrow™.

Example: SUB R1,R2

Before After
(R1}=011111 {R1)=011111
(R2)=012345 (R2) =001234
NZIVC NZVC
1111 0001
ISP:
SUB:
r=D' - &; next 17 it result is D minus 5; mtmliy P o= SR
LR o8 1 X negatival -
(rels; 0> = 0 @ {2+ 1 elee &+ 0 agrad

{D<15r W = 515> A (D15 @ plSs) = f
Ve lelse Ve 0);
C = poling

I

overflow? {pee add)

borrew from 17th bie
mive reswxli te D

62

1.8 ps
2.3 ps if Mode O

Comparea sre. dst n25500
0/1,6 1 0]s s 5 .5 s s l ¢ d d d d]
| 1 3 L i ! A 1 1 1 L 1
[T [T € 5 [3)
Operation: (src)-(dst) [in detail, (sr¢) + ~ {dsb) + 1]

Condition Codes:

Description:

ISP

CHPE:

N: set.if result

<O cleared otherwise

Z: set if result =0 cleared otherwise

V. set if there was arithmetic overflow; that is, operands were
of opposite signs and the sign of the destination was the
same as the sign of the result; cleared otherwise

C: cleared if there was a carry from the most significant bit of
the result; set otherwise

Compares the source and destination operands and sets the
condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is
customarity. followed by a conditional branch instruction.
Mote that unfike the subtract instruction the order of oper-
ation is (src)-(dst), not {dst)-(src).

B0~ 5b' - Db'; nexe eompare affecta OO0 only

N~ t<7=;

regative ?

(7= = 0) = (Z+ ! eloe 2+ 0); zapo?
(Sh<Ta 2 = Db<¥=) A (Sb<T> @ r<l=) = { pverfiow? foee add)
Ve 1 alsa ¥ = 0},

G~ i Bth bit 8 carry
Q4P
E*= 5" - D' nest compare affects OF only
N = r<l5>; regaiive’?
frcl5: e = 0) = {2+~ 1 elaa 2 + 0); a8re?

(515> & - B15e) A (515 @ r<lS-) = { overflow? (see add)

Ve 1alae ¥+~ 0);

¢+~ r<lés

17th bit 48 cavry

63

- 4.5.2 Logical Instructions _
These instructions have the same format as the double operand arithmetic group.
They permit operations on data at the bit level.

2.3 us

BIS
BiSB

Bit Set src. dst n535D0
F’% 1 0o 1]|s s s s's s l d d d a9 d 4]
i 1 i [T | 1 A T 1 '
15 2N € 5 0
Operation: (dst »e(src) v {dst}

Condition Codes:

N: set if high-order bit of result set, cleared otherwise
Z: set if result =0; cleared otherwise

V. cleared
C: not affected
Description: Performs “Inclusive OR"operation between the source and
destination operands and leaves the result at the destination
address; that is, corresponding hits set in the source are set
in the destination. The contents of the destination are lost.
Example: BIS RO,R1
Before After
(RO} =001234 (RO)=001234
(R1)=001111 (R1)=001335
NZV(C NZVC
Q000 aoco
ISP:
BIS:
=BV E"] Daxt reonit ix 5 "OR" O
M+l negotive?
(<150 = 0) = (2« 1 ¢lue T~ 0); aere?
vt alear V
b+r tranamit result to P
BISE:
T~ Db ¥ Eb'; next regult e § "ORT D
K = ey nagative?
{70 = Q) = (2~ | alae T+ D}; aeroT
¥~ 05 alear V
[

truriE reeult to O

65

2.4 ps
2.9 ps if Mode O

BIT
BITB

Bit Test sre. dst n3ssDD

|0/| 0 1 { s s 5 s | s s d d d d d d J
] L " 3 L I L L 1 L l L L
15 2 1% & 5 [+]

Operation: (dst).{src) A(dst)

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: not atfected

Description: Performs jogical “'and”comparison of the source and desti-
nation operands and modifies condition codes accordingiy.
Neither the source nor destination operands are affected.
The BIT instruction may be used to test whether any of the
corresponding bits that are set in the destination are also set
in the source or whether all corresponding bits set in the des-
tination are clear in the source.

Example: BIT #30.R3 ; test bits 3and 4 of R3to see
; if both are off
BEQ HELP ; BEQ to HELP will occur if
; both are off
ISP
BIT:
r+ D' AE'; next tegt resuli {8 "ARD" of O and &
N~ r<l5s; negative?
{r<lB: 0> =0) = (2 +) else Z ~ 303 z2ern?
veQ alear U
BLTE: h
£+~ Db ASb': oext test ragult x "ANDY of D and §
R+~ <?=; nagative?
(rc7:lt> = 0} w {Z « 1 else £ = D}y zere?
v+~ clear V

66

29 s

Bit Clear src dst ndSE00
[on 1 0 0 l s s s s's s|d¢ d d d d d_I
1 1 1 1 i I 1 1 1 1 1 1 L
15 ' N & 5 7]
Operation: (dst)e~{src)A(dst)

Condition Codes: N set if high order bit of resuit set; cleared otherwise
Z: set if result =0; cleared stherwise
V: cleared
C: not affected

Description: Clears each bit in the destination that corresponds to a set
bit in the source. The criginal contents of the destination are
lost. The contents of the source are unaffected.

Example; BIC R3,R4
Before After
(R3)=001234 (R3)= 001234
(R4)=001111 (R4) =000101
NZVC NZIVC
1111 0001
1SP:
BIC:
r+D" A S"'; mext result ia D "ANDY “NOTY 8
H = <l negative?
(rei5:0x = By = (2~ t elge 2 = 0); zero?
V-0 elear ¥V .
D=t tranamit pesuit to D
RICH:
r+~ Db' A= 5b'; naxt regult is D “AND™ NPT 5
M= r<iog negativa?
(refil> = 0) = (2 ~ 1 else 2+ 0); 28107
LU TY alagn ¥
b~z tranemit result to D

67

4.6 PROGRAM CONTROL INSTRUCTIONS
4.6.1 Branches

The instruction causes a branch to a location defined by the sum of the offset
(multiplied by 2}-and the current contents of the Program Counter if:

a) the branch instruction is unconditional

b} it is conditional and the conditions are met after testing the condition
codes (status word),

The offset is the number of words from the current contents of the PC, Note that
the current contents of the PC point to the word folfowing the branch instruction.

Although the PC expresses a byte address, the offset is expressed in words. The
offset is automatically multiplied by two to express bytes before it is added to the
PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branch
is done in the backward direction. Similarly if it is not.set, the offset is positive
and the hranch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200, words {400,
bytes) from the current PC, and in the forward direction by 177, words {376,
bytes) from the current PC.

The PDP-11 assembler bandles address arithmetic for the user and computes and
assembles the proper offset field for hranch instructions in the form:

Bxx loc

Where “Bxx’' is the branch instruction and “ioc' is the address to which the
branch is to be made. The assembler gives an error indication in the instruction if
the permissable branch range is exceeded. Branch instructions have no effect on
condition codes.

2.6 ps

Branch (unconditional) 0004 lose

[o ¢ 0 Q0 0 & ¢ 13 OFFSET "|
1 L 1 l L 1] 1 l i 1 l i L
15 8 7 [+
Operation: PC =« PC + (2 x offsel)
Description: Provides a way of transferring program control within a

range of =128 to + 127 words with a one word instruction.

Example: 001000 BR xxx
001002
001004
axx: 001006
001010
15F:

BR:

T o+~ P+ sign-extend(insteucefoms? 0 x 2%

69

Simple Conditional Branches
BEQ
BNE
BMI
BPL
BCS
BCC
BVS
BvC

70

1.5 ps -- no branch

2.6 ps -~ branch
BEQ
Branch on Equal {zere) 0014 olfsat
OFFSET
DIOIOIOIDIOI“Ill 1 1 1 I | L |—I_
15 & 7 0
Operation: "PCaPC + (@xoffsethif Z =1
Condition Codes: Unaffected
Description: Tests the state of the Z-bit and causes a branch if Z is set. As
an example. it is used o test equality following a CMF oper-
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.
Example: CMP AB ;compare A and B
BEQ C : branch if they are equal
wilibranchto CifA = B A-B=0
and the sequence
ADD AB ;add Ato B
BEQ C ; branch if the result =0
will branchto CifA + B = 0.
ISP:
BEY:

{Z=1) =¥ {PC « PC + sign-extecd(inatruction7:0> x Z}}

71

1.5 ps -- no branch

2.6 us -- branch
Brangh Mot Equal (Zara) 0010 offset
I 0o 0 0 0 0 6 1 0 OFFSET I
i PR | 1 ! 1 | L 1 1 1 | L 1
15 8 T o

Operation: PC «PC + (2xoffsetyif Z = O
Condition Codes: Unaffected
Description: Tests the state of the Z-bit and causes a branch if the Z-bit is

clear. BNE js the complementary operation to BEQ. It is used
to test inequality following a CMP, {0 test that some bits set
in the destination. were also in the source, following a BIT,
and generally, to test that the result of the previous oper-
ation was not zero.

Exampie; CMP AB ;compara A and B
BNE C ; branch if they are not equal

willbranchtoCifA = B and the sequence

ADD AB '~ ;addAtoB
BNE C : Branch if the resuit not equal
o 0

will branchto CifA + B = 0

15P:
BNE:
(2w} = (FC ~ PO + algn-exterd{inscruccion?:0> x 23}

72

1.5 ps -- no branch
2.6 us - branch

Branch an Minus 1004 same offsat

I 1 ¢ © 0 0 0 0 1] OFFSET I
l L 1 l 1 L l i ' i L l L L
15 s 7 O
Operation: PC « PC + (2 x offset) it N=1

Condition Cedes: Unaffected

Description: Tests the state of the N-bit and causes a branch if Nis set. It

is used to test the sign (most significant bit) of the resuit of
the previous operation).

Example:

ISP

BMI:

{1} = (PC = BC + aign-extend{inscruction=7:0n 5 2))

73

1.5 ps -- no branch

2.6 ps - branch
Branch on Plus 1000 offset
J1 o o o o OFFSET
. { E | i 1 ° 1 N i 0 d 0 I 1 1 M 1 1 1 1 I
- B 7 [+}
Operation: PC «PC + (2xoffset) if N=0C
Description: Tests the state of the N-bit and causes a branch ¥ N is clear.
BPL is the complementary operation of BML,
Example:
ISP
BF¥L:

(H=0) = (PG~ L+ sign-excend(instruction<?:0 x Z))

74

1.5 gs - no branch
2.6 ps - branch

BCS

Branch on Carry Set 1034 offset
OFFSET
F 1 ° L ° i 0 1 ° 3 ! 1 ! I ' 1 1 1 1 1 l
15 B 1]
Operation: PC «PC + (2xoffsety ifC=1
Description: Tests the state of the C-bit and causes a branch if C is set. It

ISP:

BCS:

(C=1) = {PC +~ BC + sign-extend{tusiructions?: 0 x I}}

75

i5 used to test for a carry in the result of a previous oper-

£f O=1 then browch

1.5 ps -- no brang

2.6 ps -- branch
Branch on Carry Clear 1030 offset
OFFSET
th)‘olOlOI?'ilOl 1 1 1 | 1 |_L]
15 8 7 o
Operation: PC «PC + (2xoffset} if C=0
Description: Tests the state of the C-bit and causes a branch if C is clear.
BCC is the compiementary operation to 8CS
ISP
BCL:

(Caly = (PG~ PC + sign-extendilascroccionm7; 0= ¥ 2]}

76

1.5 ps -- no branch
2.6 p5 -- branch

BvVS

Branch an Overflow Set) : 1024 ofiset
y OFFSET - . l
1 I 0 1 0 L 0 l O L 1 L 0 l '_I 1 ‘ A L I A A y
15 . .8 7 _ :]
Operation: PC «PC + (2 x offsef) ifvy=1
Des_cription: Tests the state of V bit (overflow) and causeés a branch if the

¥ bit is set. BVS is used fo detect arithmetic overflow in the
previous operation.

I5P:

BYS:
{¥=1) = (PC ~ PC + sipn-extend{instruction:?:0~ 2 23)

77

1.5 ps -- no branch
2.6 ps - branch

BVC

Branch on Qverflg v Clear

1 o] o ¢, 0 1 ¢ o] OFFSET
[DT T ' |
15 a8

1020 affset

1 1 | 1 - l
7 o

Operation: PC «PC + (2 x offset} if ¥=0
Description: Tests the state of the V bit and causes a branch if the V hit is
clear. BVC is complementary operation to BVS,

ISP:
:34+H

(V=0) = {PC ~ PC + sign-extend{inatruction<?: 0 x 233

78

‘Signed Conditional Branches

Particular combinations of the condition code bits are tested with the signed con-
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as a signed (two's complemnent) values.

Note that the sense of signed comparisons differs from that of unsigned com-
parisons in that in signed 16-bit, two's complement arithmetic the sequence of
values is as fotlows:

fargest

posttive

negative

smzllest

Q77777
Q77776

000001
000000
177777

177776

100001
100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be

highest

lowest

177777

000002
000001
000000

The signed conditional branch instructions are:

BLT
BLE

79

1.5 ps -- no branch
2.6 ps - branch

BLT

Branch on Less Than (Zém)) ' 0024 olfset
' .0 0 0,0 1 O OFFSET
I ' L I I 1 L I 1 I L L l] AL
15 8 7 o]
Operation: PCx«PC + (2xoffsehif NvV =1
Description: Causes a branch if the ““Exclusive Orof the N and V bits are

I. Thus BLT will always branch following an operation that
added two negative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a
CMP instruction operating on 2 negative source and a posi-
tive destination (even if overflow occurred). Further, BLT will
never cause a branch when it follows a CMP instruction oper-
ating on a positive source and negative destination. BLT will.
not cause a branch if the resutt of the previgus operation was

. zero (without overflow).

ISP:
BLT:
-(H V) = PC = PC + sign-extend(instruction<?:{= x 2))

1.5 ps -- no branch

2.6 ps - branch BGE
Branch oni Greater than or Equal (zerg) 0020 offsat
OFFSET
Ioiolololonilolo 1 1 1 1 1 1 1 I
15 8 7 o
Operation: PC«PC + 2xoffse)ifNvV =0
Description: Causes a2 branch if N and V are either both clear or both set.
BGE is the complementary operation te BLY. Thus BGE will
always cause a branch when it follows an operation that
caused addition to two positive nurbers. BGE will also cause
a branch on a zero result.
ISP:
BGE:

(¥ 5 %) 2 (BC+ P¢ + sign-extepd{instructionc?i> » 23}

1.5 pus - no branch

26 pus - branch
Eranch on [ass than or Equal {zerg) 0034 offset
ro 6 0 0,0 1 1,1 OFFSET I
I L L l 1 1 | L I L L l L 1
15 8 7 o
Operation: PCePC + 2xoffsel if ZwiNv V}=1
Description: Operation is similar to BLT but in addition will cause a

branch if the resuli of the previous operation was zero.

ISP
BLE:
{Z % {Ea@wv) = (PC+~ P + sign-extend{instruoction=7:M= K 2}}

82

1.5 ps -- no branch

2.6 ps -- branch
Branch on Graater Than (zero) 0030 oftset
o, 0 0 ¢,0 ¢ 1.0 OFFSET
| 1 1 | L 1 | L 1 1 1 | 1 L —l
15 g 7 [3)
Operation: PC« PC + (Z2xoffset) if Zv(N v Q)
- Description: Operation of BGT is similar to BGE. except BGT will not cause
a branch on a zero resut.
1SP;
BGT:

—E v (N @V}) » (BT = PC + sign-extend{instruction?: 0> x 2}}

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

BH!
BLOS
BHIS
BLO

1.5 ps - no branch

2.6 ps -- branch
Branch on Higher 1310 offset
[1 9 6 0,0 0 1 OJ OFFSET I
1 1 1 | 1 P ! 1 :_a 1 1 i
15 a8 7 0
Operation: PC«PC + 2xoffse)if C=0and Z=0
. Description: Causes a branch if the previous operation caused neither a
carry nor a zero result. This will happen in comparison (CMP)
operations as long as the source has a higher unsigned value
than the destination.
ISP:

BHI:

—{C ¥ Z} = (PC ~ P + sign-excend{instrucrions?: 0~ x 2}

85

1.5 ps -- no branch

2.6 ps -- branch
Brarch on Lower or Same 1014 offset
1,0 0o 0,0 0 3,19 OFFSET
rl i 1 L] 1 i 1 1] i I
15 a 7 0
~ Operation: PC«PC + (2xoffsey ifCvZ =1
Description: Causes a branch if the previous operation caused either a

carry or a zero result. BLOS is the complementary operation
ta BHI. The branch will occur in comparison operations as
ong as the source is equal to, or has a lower unsigned value
than the destination.

Comparisen of unsigned values with the CMP instruction can
be tested for “higher or same” and **higher’’by a simple test
of the C-hit.

1SF:
BLOS: .
{Cw Z) = (FC ~ EC + pign-extepd (instruction<7: 0> x 2})

1.5 ps - no branch

2.6 s -- branch
Branch on Lower 1034 oftsat
1 & 0 o o 1 ¥ A1 OFFSET |
I L L l | . A J_ L l A L L —

15 a 7 o
Operation: PG« PC + (2 xoffset) if C=1
Description: - BLO is same instruction as BCS. This mnemonic is included

only for convenience.

I5P:
BCS/BLO:

{G=1) = (PC - PC + sign-extend(instruction7:0= x 2]}

87

1.5 ps - no branch

2.6 ps - branch
Brarch on Higher or Same 1030 oftset
1 OFFSET
|||0|0|°l0- l‘lol 1 1 i PR N | l‘l
15 8 7 o
Operation: PCe«PC + (Zxoffse) i C =0
Description: BHIS is the same instruction as BOC. This mnemanic is in-
cluded only for convenience.
ISP:
BCL/BHLS:

{C=0) = (PG~ FC + sign-extend {imatruction?: 0> x 2))

4.6,2 Subroutine Instructions

The subroutine call in the PDP-11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry paints. Subrowtines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutine call. The subroutine cak-
ing mechanism does not modify any fixed focation in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among several in-
terrupting processes. For more detailed description of subroutine programming
see Chapter 5.

89

3.5 ps

RTS

Return from Subrouting 00020 Rep

¥
,ololo‘ololololo” 040 0 ofr r o« I
15 2 0
Operation: PC -{reg)
(reg) = SPA
Description: Loads contents of reg into PC and pops the top element of

the processor stack into the specified register.

Return from a non-resntrant subrouting is typically made
through the same register that was used in its ¢ali: Thus, =7
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR RS, dst, may pick up para-
meters with addressing modes (R5)+. X(R5), or @X(R5)
and finaily exits, with an RTS RS,

ISP;

RIS:
BE +~ Ridr]; returs Jump
Ridr] — Ms[SE]; Lunstack (pap) #[dn]
SE = 8P + 2

20

4.4 ps

Jump to Sub Routine

JSR

304 reg. dst

lo 0 6 0.3 o olr ' r]d d ¢ , 4 4 a—l
I 1 1 i f 1 I i 1
™

Operation:

" Description:

l 1 1 L
N E]

{tmp)«(dst} (tmp is an internal processor registery
¥ (SP)reg (push reg coﬁtents onto processor stack)
reg=PC (PC holds location following JSR; this address
PC«{tmp) now put in reg)

In execution of the JSR, the old contents of the specified reg-
ister (the “LINKAGE POINTER™) are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc-
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the pracessor stack execution of a subroutine may be in-
ferrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (calied nesting) can proceed to any level.

In both JSR and JMP instructions the destination address is
used to load the program counter, R7. Thus for example a
JSR in destination mode 1 for general register R1 (where
(R1)= 1003, will access a subroutine at location 100. This is
effectively one level less of deferral than operate instructions
such as ADD.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) +, (if arguments are accessed sequentially)
or by indexed addressing, X{reg), (if accessed in randocm or-
der). These addressing modes may also be deferred,
@(reg) + and @X(reg) if the parameters are operand ad-
dresses rather than the operands themselves.

JSR PC, dst is a special case of the PDP-11 subroutine calt
suitableé for subroutine calls that transmit parameters

91

ISP:

JER:

SP — 57 - 2; next

HwE[SF] - Rfsv];

Rfar] = PC,;
FC + Daddresz”

through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP)Y+ which exchanges the top element of the processor
stack and the contents of the program counter. Use of this
instruction allows two routines o swap program control and
resumne operation when recalled where they left off. Such rou-
tines are called ‘“‘co-routines."”

Return from a subroutine is done by the RTS instruction. RTS
reg lpads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR used in address mode 2 (autoincrement), increments the
register before using it as an address. This is a special case,
and is only true of one other instruction (JMP)

stack {pusi) H{ar);
load Flsr] with Fo
Jomg:

92

4.6.3 Traps

Trap instructions provide for calls to emulators, 170 monitors, debugging pack-
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software, When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PSW) are pushed onto the processor stack and re-
placed by the contents of a two-word trap vector containing a new PC and new
PSW. The return sequence from a trap involves executing an RTI instruc-
fion which restores the old PC and ofd PSW by popping them from the stack. Trap
vectors are located permanently assigned fixed address.

TRAP
EMT
10T

23

9.3 s

EMT

Emulator Traps 104000-104377
1 0
NIRRT
) 8 7 0
Operation: ¥ (SPMPS
¥ (SP=PC
PC«{30)
PS«(32)
Condition Codes: N. loaded from trap vectar
Z: loaded from trap vector
V: loaded from trap vector
C: ioaded from trap wvector
Description: All aperation codes from 104000 to 104377 are EMT instr.uc-

tions and may be used to transmit information to the ermulat-
ing routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

ISP:
EMT:
5P = 5P-7; next place
Mu[SP] =~ PS; BS and
3F = 5P-2; next
M [SF] = PCy B em stack
BC = MefH]; take new PO and FS from M{30], M[32]
PS = Me[32]

94

2.25 pus

TRAP

Trap 104400 ta 104777
rpo 0 0v o e]]
15 a8 7 o
Operation: ¥ (SP)PS
¥ (SP)PC
PCx(34)
PS-(36)

Condition Codes:

Description:

ISP:
TRAE:

SF « 8P-1; nexc
He[SP} « BS;
3P «~ SP-2: nextc

Mw[SF] ~ PC;
P = Mw[34]
PS5 = Mw[26]

N:loaded from trap vector .
Z: toaded from trap vector
y: loaded from trap vector
C: loaded from trap vector

Operation codes from 104400 to 104777 are TRAP instruc.

tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Nete: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

place {pueht
BS and

B om atask
take new M oud PS from M[34], MP3F]

95

9.3 ps

{No mnemonic)

Hreakpoint Trap 000003
T
Iolojo‘OIOIolololotololololon1“]
15 o
Operation: ¥ (SP)ePS
¥ (SP)ePC
PC «(14)
PS «(16)
Condition Codes: N:loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector
Description: Performs a trap sequence with a trap vector address of 14.

Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de-
hugging aids.

ol
BPT:
SP + §F - Z; mext place
MR[5F) ~ P5: PS5 and
5P ~ §F - I: nexe

W[SF] = PC; P oom gbaek
PO e[l 1 take new PO and FS from M[14], M[16]
73— mal16,]

9.3 ps

10T

150 Trap 00000
T
¢ ¢ 0 O o] o 0 0 0 o 0 O
°] 1 I L o n l_1 i ° " 0—|
15 0
Operation: ¥ (SPyPS
¥ (SPYPC
PC«(20)
PS«(22)

Condition Codes:

Description:

ISP:

[Li3
5P = 5P-I, next
Mw[5F] ~ BS;
5F ~ 5P-Z; naxt

malSP) = BC:
o - mue(20);
PS - Muwf22)

N:toaded from trap vector
Z: loaded from trap vector
V:loaded from trap vector
C:ioaded from trap vector

Performs a trap sequence with a trap vector address of 20.
Used to call the |/0 Executive rautine 10X in the paper tape

software system, and for error reporting in the Disk Oper-
ating Systemn.

place
P qnd

PCoon atask

take new PC otd BY From M EC0], MLEE]

97

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor expansion {reserved instructions) or instrue-
tions with illegal addressing modes (iflegal instructions). Order codes not corre-
sponding to any of the instructions described are considered to be reserved in.
structions. JMP and JSR with register mode destinations are illegal instructions.
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at acddresses 10 and 4 respectively.

Stack Overflow Trap Stack Overflow Trap is a processor trap through the
vector at address 4. It is caused by referencing addresses below 400, through the
processor stack pointer R& (8P) in autodecrement or autodecrement deferred ad-
dressing. The instruction causing the overflow is completed before the trap is
made.

Bus Error Traps - Bus Error Traps are:

1. Boundary Errors - attempts to reference word operands at odd ad-
dresses.

2. Time-Out Errors - attempts to reference addresses on the bus that made
no response within 10us in the PDP-11. In general, these are caused by
attempts to reference non-existent memory, and attempts to reference
non-existent peripheral devices,

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PSW and causes processor traps at
the end of instruction executions. The instruction that is executed after the in-
struction that set the T-bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The following are special cases and are detailed in subsecquent paragraphsﬁ
1. The traced instruction cleared the T-bit.
2. The traced instruction set the T-bit.
3. The traced instruction caused an instruction trap.
4. The traced instruction caused a bus error trap.
5. The traced instruction caused a stack overflow trap.

6. The process was interrupted between the time the T-bit was set and the
fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT.
8. The traced instruction was a HALT.

Note: The traced instruction is the instruction after the one that sets the T-hit.

98

An instruction that cleared the T-bit - Upon fetching the traced instruction an in-
ternal flag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word, however, will have a clear T-bit.

An instruction that set the T-bit - Since the T-bit was already set, sefting it again
has no effect. The trap will ocour.

An instruction that caused an Instruction Trap - The instruction trap is sprung and
the entire routine for the service trap is executed. If the service routine exists with
an RTl or in any other way restores the stacked status word, the T-bit is set again,
the instruction following the traced instruction is executed and, untess it is one of
the special cases noted above, a trace trap occurs.

An instruction that caused a Bus Error Trap - This is treated as an Instruction
Trap. The only difference is that the error service is not as likely to exit wﬂh an
RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow - The instruction completes execution
as usual - the Stack Overflow does not cause a trap. The Trace Trap Vector is
loaded into the PC and PS, and the old PC and PS5 are pushed onto the stack.
Stack Overflow occurs again, and this time the frap is made.

An interrupt between setting of the T-bit and fetch of the traced instruction - The
entire interrupt service routine is executed and then the T-bit is set again by the
exiting RT1. The traced instruction is executed (if there have been no other inter-
rupts) and, unless it is a special case noted above, causes a trace trap.

Note that no interrupts are acknowledged between the time of fetching any
trapped instruction (including one that is trapped by reason of the T-bit being set)
and completing execution of the first instruction of the trap service.

A WAIT The trap occurs immediately. The address of the next instruction is saved
on the stack

A HALT . The processor halts. When the continue key on the console is pressed,
the instruction following the HALT is fetched and executed. Unless it is one of the
exceptions noted above, the trap occurs immediately following execution.

Power Failure Trap - is a standard PDP-11 feature. Trap occurs whenever the AC
power drops below 105 volts or outside 47 to 63 Hertz. Two milliseconds are then
allowed for power down processing. Trap vector for power failure is at locations
24 ang 26.

Trap priorities in case mullipie processor trap conditions accur simultaneously
the followmg order of priorities is observed (from high to low):

1. Bus Errors

2. Instruction Traps

3. Trace Trap

4. Stack Overflow Trap

5. Power Failure Trap

The detaiis an the trace trap process have been described in the trace trap oper-

ational description which includes cases in which an instruction bemg traced
causes a bus error, instruction trap, or a stack overflow trap.

99

If a bus error is caused by the trap process handling instruction traps, trace traps,
stack overflow traps, or a previous bus error, the processor is halted.

If a stack overflow is caused by the trap process in handling bus errors, instruc-
tion traps, or trace fraps, the process is completed and then the stack overflow

trap is sprung.

100

4.7 Miscellaneous
HALT

WAIT

RESET

IMP

RTI

101

18 s

Condition Codes: not affected

Description; Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the console address lights display the ad-
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC points to the next instruc-
tion to be executed. Pressing the continue key on the consoie
causes processor operation to resume. No INIT signal is
given.

ISP:

0ff ~ trwe . set activity to Off state
no more tnatructions oan
be erecuted until a con=
sole action takes place
. lo restart processor

102

1.8 ps

Wait for Interrupt

oooooooooooo1|
| T SRR R TP N

Io o o
l 1 1.
15

Condition Codes:

Description:

1SP:
WALT:
Wair = true

not affected

Provides a way for the processor to relinguish use of the bus
while it waits for an external interrupt. Having been given a
WAIT command, the praocessor will not compete for bus use
by fetching instructions or operands frorn memory. This per-
mits higher transfer rates between a device and memory,
since no processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions,
the PC points to the next instruction following the WAIT oper-
ation. Thus when an interrupt causes the PC and PSW to be
pushed onto the processor ation. from the interrupt routine
(i.e. execution of an RTI instruction} will cause resumption of
the interrupted process at the instruction following the WAIT.

#et gotivity ifo Welt ptate; Interpupts
cart oeeur

103

20 ms

RESET

Reset Exlernal Bus L0005
T
| © 0 6 0 0 O 0.0 0 © 0 0 0,1 0 1 l
1 L . 1 L L i L L | N L 1 L 1
15 0

Condition Codes: not affected

Description: Sends INIT on the UNIBUS for 20ms. All devices on the UNI-
BUS are reset to their state at power up.
At the end of a reset sequence an etfective halt is executed.

ISP:

BReast ;
Inie ~ 1, rawge a atgmal, Init, to be ame for
Pelay (so milllaecards); nexc 28 i idseconds

Inie = ¢

104

4.8 ps

RTI

Return from [nterropt Q00002
o 00 0 0 0 0 060 0 0 ¢ 0 ¢ 1 o—l
| L 1 I L A [L L l L il I Il i
15 o
Operation: PC«{SP)A
PSW(SPY A

Condition Codes: N:loaded from processor stack
Z: loaded from processor stack
v loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service routine. The
PC and PSW are restored (popped) from the pracessor stack.

If a frace trap is pending, the first instruction after the RT!

18P will be executed prior to the next "'T” Trap.
RTI:
PC - Mu{SP]s ungtaek {pen) BT for Jemm
5P = S5F + 2, next
B +« Mw{SF]; wnibeak (popl PS
P - 8P+ 2,
T-trap-ivhibit = true ikhibit T-trap for 1 instruction

105

1.2 ps

Operation:

Condition Codes:

Description:

ISP:

JHE:
PC = Mddress'

PC «dst
not affected

JMP provides maore flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memary (nc range limitation) and can be ac-
complished with the full flexibility of the addressing modes,
with the exception of register mode O. Execution of a jumip
with mode O will cause an ‘ilegal instructioncondition.
{Program controt cannot be transferred to a register.) Regis-
ter deferred mode is legal and will cause program contral to
he transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from- an even-numbered address. A 'boundary er-
ror*trap condition will result when the processor attempts to
feich an instruction from an odd address,

Deferred index mode JMP instructions permit transfer of
control to the address contained in a selectahle element of a
table of dispatch vectors.

P

Daddresa 1g somputed im & fashimm
efmilar ta

106

4.8 Condition Code Operators

1.5 ps CLC SEC
Condition Code Operatars D002 XX
T "

o 0 0 0 ¢ 0D 0,0 1 0O % N]lzlv]ec
[e,0,0,00,0,090,t ¢y fonfnjejv]e]
15 5 4 3 2 1 ¢
Description: Set and clear condition code bits. Selectable combinations of

these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O-
3} are modified according to the sense of bif 4, the set/clear
bit of the operator. i.e. set the bit specified by bit 3 1, 2or 3,
it bit 4 is a 1. Clear corresponding bits if bit 4 =0.
Mniemanic .
Operation OP Code
CLC ClearC 000241
Crv Clear ¥ 000242
CLZ Clear 2 000244
CLN ClearN 000250
SEC SetC 000261
SEV Set v 000262
SEZ Set 7 000264
SEN SetN G00270
Setall CC's 000277
Clear all CC's Q00257
Clear V and C 000243
No operation 000240
MNo operation Q00260

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

107

=iy

£
SEV:

Loty
SR

f e

A

A

)

A

A

A

A

fEdr

i3

29

e

f 1

1

il

f L

108

elgar €

clgar &

elear ¥

elear I

et

get ¥

aat ¥

set €

To remove an item from stack the autoincrement addressing mode with the ap-
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + .Destination :MOV Destination Word off the stack

o

MOCVB (SP) + ,Destination :MOVEB Destination Byte off the stack

Removing an item from a stack is called a *‘pop" for “‘popping from the stack."
After an item has been "popped,” its stack location is considered free and avai-
lable for other use. The stack pointer points to the last-used location implying
that the next (lower) location is free. Thus a stack may represent a poot of share-
able temporary storage locations.

HIGH MEMORY

j-sp
+ EQ -—5p [Z]
Y ' €1 b se
LOW MEMORY
1 AN EWATY STACK 2 FUSHING & DATUM 3 PUSHING ANCTHER
AREA ONTD THE STACK DATUM ONTO THE
STACKS
E9] p E@
1 £1 -sF E1
€2 - 5P 4 E3 -5p
4 ANOTHER PUSH 5 FOF & PUSH
B2
EY
£1 -5p
T POR

Figure 5-3: lllustration of Push and Pop Operations

111

PART 1
CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
FDP-11, the reader should become familiar with the various programming tech-
niques which are part of the basic design philosophy of the PDP-11. Although it is
possible to prograrm the PDP-1] along traditional lines such as “‘accumulator ori-
entation” this approach does not fully exploit the architecture and instruction set
of the PDP-11.

5.1 THE STACK

A vstack", as used on the PDP-11, is an area of memory set aside by the pro-
grammer for temporary storage or subroutine/interrupt service linkage. The in-
structions which facilitate "stack” handiing are useful features not normally
found in low-cost computers. They allow a program to dynamically establish,
madify, or delete a stack and items on it. The stack uses the “last-in, first-out”
concept, that is, various items may be added 1o a stack in sequential order and re-
trieved or deleted from the stack in reverse order, On the PDP-11, a stack starts
at the highest tocation reserved for it and expands linearly downward to the low-
est address as items are added to the stack.

HIGH ADDRESSES

Figure 5-1: Stack Addresses

The prografimer does not need to keep track of the actuat locations his data is
being stacked into. This is done automatically through a “stack pointer.” To keep
track o the last item added to the stack (or “where we are” in the stack) a Gen-
eral Register always contains the memory address where the last item is stored in
the stack. In the PDP-11 any register except Register 7 {the Prograr}l Counter-PC)
me r be used as a “stack peinter'” under program control, however, instructions
astociated with subroutine linkage and interrupt service automatically use Regis-
ter 6 (R6) as a hardware “Stack Pointer.”” for this reason R6 is frequently re-
ferred to as the system “SP.”

109

To remove an item from stack the autoincrement addressing mode with the ap-
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + ,Destination MOV Destination Word off the stack

or

MOVB (SP) + Destination iMOVB Destination Byte off the stack

Removing an item from a stack is called a “pop"’ for *'popping from the stack,”
After an item has been “‘popped,” its stack location is considered free and avai-
lable for other use. The stack pointer points to the kast-used location implying
that the next (lower} location is free. Thus a stack may represent a pocl of share-
able termporary storage locations,

HIGH MEMORY

R
4] e to
TR } X e 5P
LOW MEMGHY
1 AN_EMPTY STACK 2.PUSHING & DATUM 3 PUSHING ANOTHER
AREA ONTO THE STACK CATUM Of E
STACKS
€9 €0 pa EQ
E1 E1 ~5F E1
' Ez =5k E3 -5p
4. ANCTHER PUSH 5 FOP & PUSH
’ES
E@
1 -3
7 PO

Figure 5-3: lllustration of Push and Pop Operations

111

As an example of stack usage consider this situation: a subroutine {SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro-
gram with their contents unchanged. The subroutine could be written as follows:

Address Octal Code Assermbler Syntax

076322 010167 SUBR: MOV R1,TEMPI ;save R1
076324 000072 *

076325 010267 MOV R2, TEMP2 ;save R2
(76330 000070 *

076410 . 016701 MOV TEMP1, R1 :Restore R1
076412 000006 *

076414 016702 MOV TEMPZ2, R2 ;Restore R2
076416 000004 *

076410 000207 RTSPC

076422 000000 TEMFL: O

076424 000000 TEMEZ: O

*Index Constants

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address Octal Code Assembler Syntax
010020 010143 SUBR: MOV RI. ~(R3):push R1
010022 010243 MOV R2. -(R3):push R2
010130 012302 MOV(R3) +, R2 ;pap R2
010132 012301 MOV(R3) +.R1 :pop R1
010134 000207 ' RTSPC

Mote: In this case R3 was used as the Stack Painter

Figure 5-5: Register Saving using the Stack

The second routine uses four tess words of instruction code and two words of
temporary *‘stack’ storage. Another routine could use the same stack space at
some later point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

LIRS

As a further example of stack usage, consider the task of managing an input buf-
fer fram a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters. Whenever a backspace is received a char-
acter is “popped’ off the stack and eliminated from consideration. in this ex-
ample, a programmer has the choice of “‘popping’’ characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

UL R
DOI00
Q01007
DAHOOE
OOYO0S
QOO0
D003
HHOG2Z
el]

MO {5P} + | das!
oR
INC SP

M|p|miz|a|A]en]|c|e
DlmjE|o|=]|wn|c]|0

-5P oowez |

+zsr [oowo |

Figure 5-6: Byte Stack used as a Characier Buffer

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location. Also, the stack pointer {SP) used in this example cannot be the system
stack pointer (R6), because R6 may onty point to word (even) locations.

5.2 SUBROUTINES LINKAGE

5.2.1 Subroutine Calis

Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere .
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange
between subroutines and calling programs. The PDP-11 instruction set cantains
several useful instructions for this purpose.

PDP-11 subroutines are called by using the JSR instructicn which has the follow-
ing format.

a general register (R) for linkage -——
JSR R,SUBR
an entry {ocation (SUBR) for the subroutine—

113

When a JSR is executed, the contents of the knkage register are saved on the sys.
tem R6 stack as if a MOV reg,—(SP) had been performed. Then the same register
is loaded with the memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified.

Address Assembler Syntax Qctal Code
001000 JSRRFSUBR 004767
001002 Index constant for SUBR 000064
001064 SUBR:MOV AB Olmmnn

Figure 5-7: JSR using RO-R5

BEFORE AFTER
(R8I 600132 [REE 001004
REI= 00T T8 [REI=001T 74
tRGI=(RTI1 001000 (ECHRTI=00106 4
QOEODG AANDGR [aled0us) AARTAN
001776 mmmmam |+5F | ooitTs J oarrze [Epp—
voITTS 001774 ooo132 e | oorrae
onTT2 ooT72

Figure 5-8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean-
ingful combinatian.

9.2.2 Argument Transmission

The memory location pointed to by the linkage register of the JSR instruction may-
contain arguments or addressses of arguments. These arguments may be ac
cessed from the subroutine in several ways. Using Register 5 as the linkage regis-
ter, the first argument could be obtained by using the addressing modes in-
dicated by (R5), (R5) + .X(R5) for actual data, or @{R5) +, etc. for the address of
data. If the autoincrement mode is used, the linkage register is automatically up-
dated to point to the next argument.

Figures 53 and 5-10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400 JSR R5,SUBR

010402 Index constant for SUBR

010404 arg #1

010406 arg #2 ARGUMENTS

020306 SUBR: MOV (R5)+ R1:get arg #1

020301 MOV (R5) + ,R2 ;get arg # 2 Retrieve Arguments from SUB

Figure 5-9: Argument Transmission-Register Autoincrement Mode

114

Address Instructions and Data

010400 JSR R5,SUBR

010402 index constant for SUBR

010404 077722 Address of Arg &1

010406 077724 Address of Arg. #2

010410 077726 Address of Arg. #3

b??722 Ar‘g #1

077724 arg w2 argurmnents

077726 arg %3

020306 SUBR: MOV @(RS) +.R1:get arg #1

020301 MOV @(R5) + .R2 get arg *2 Retrieve Arguments

-from SUB

Figure 5-10: Argument Transmission-Register Autoincrement Deferred Moade

Another method of transmitting argurnents is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine cali.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied
directly to the data located on or pointed to by a stack without the need to ever
actually move this data into the subroutine area.

Calling Program: MOY POINTER. R?
JSR PC.3UBR

SUBROUTINE
ADD (R1) + .(R1) Add item #1 to item #2, place
result in item # 2. R points
etc. to item #2 now
or
ADD (R1).2(R1) ;Same effect as above except that Rl still
points to item #1
efc.
ITEM @ 1 P— i —l
ITEM %2

Figure 5.11: Transnmutting Stacks as Arguments

115

Because the PDP-11 hardware already uses general purpose register R6 to point
to a stack for saving and restoring PC and PS (processor status word) informa-
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines. Using R6 in this
manner permits extreme flexibility in nesting subroutines and interrupt service
routines,

Since arguments may be obtained fram the stack by using some form of register
indexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout-
ine. In the previous example RS may he used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer. if R6 had been used directly as the base for indexing and not “'copied", it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrement/decrement which occurs.

org 1 arg &
arg W2 arg #Z
5P org #3 org #F
SF—- T
arg # 213 ut avurce bl wivn gnothir Hem arg# 2 b3 0l urce
-2(5P T In pushed - 415P}

Figure 5-12: Shifting indexed Base

However, if the contents of R& (3P) are saved in RS before any arguments are
pushed onto the stack, the position relative to RS would remain constant.

arg #1 [+— RS arg #1 =—RE
5P — org #2 g #2
5 e ory #3
arg#®2 i ot 2 (RE) urg # 2 s stdl gt Z2IR5}

Figure 5-13: Constant Index Base Using “R6 Copy"'

116

5.2.3 Subroutine Return

In order to provide for a return from a subroutine to the calling program an RTS
instruction s executed by the subroutine. This instruction should specify the
sameregister as the JSR used in the subroutine call. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
~in the register specified. Note that if an RTS PC is executed, it has the effect of re-
turning to the address specified on the top of the stack.

Note that the JSR and the JMP [nstructions differ in that a linkage register is al-
ways used with a JSR; there is no linkage register with 2 JMP and no way to re-
turn to the calling program,

When a subroutine finishes, it is necessary to *'clean-up” the stack by eliminating

_or skipping over the subroutine arguments. One way this can be done is by insist-
ing that the subroutine keep the number of arguments as its first stack item. Re-
turns from subroutines then involve calculating the amount by which tore-
set the stack pointer, resetting the stack pointer, then restoring the originaf
contents of the register which was used as the copy of the stack pointer,

5.2.4 PDP-11 Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling procedure.

a. arguments can be quickly passed between the calling program and the subr-
outine.

h. if the user has no arguments or the arguments are’in a general register or on
the stack the JSR PC DST mode can be used so that none of the general pur-
pose registers are taken up for linkage.

¢. many JSR's can be executed without the need o provide any saving procedure
for the linkage information since all linkage information is automatically
pushed ontc the stack in sequential order. Returns ¢an simply be made by
automaticatly popping this information from the stack in the coposite order of
the JSR's.

Such linkage address bookkeeping is called automatic "“nesting”’ of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, fiexible manner. It even permits a routine to call itself in those cases
where this is meaningful (e.g. SQRT in FORTRAN SQRT(SQRT(X)). Other ramifica-
tions will appear after we examine the POP-11 interrrupt procedures.

5.3 INTERRUPTS

9.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occuring because
of some external and program-independent event (such as a stroke on the tele-
printer keyboard). Like subroutines, interrupts have linkage information such

117

that a return to the interrupted program can be made. More information is ac-
tually necessary for an interrupt transfer than a subroutine transfer hecause of
the random nature of interrupts. The complete machine state of the program im-
mediately prior to the occurrence of the interrupt must be preserved in arder to
return to the program without any noticeable effects. (1.e. was the previous oper-
ation zero or negativels, efe.) This information is stored in Processor Status Word
(PSW). Upon interrupt, the contents of the Program Counter (PC} (address of
next instruction and the Processor Status Word (PSW)} are automaticaliy pushed
onto the R6 system stack. The effect is the same as if:

MOV PS.-(SP) :Push PS
MOV R7,-(SP) ; Push PC

had been executed.

The new contents of the Program Counter {PC) and Processor Status Word (PSW)
are loaded from two preassigned consecutive memory locations which are called
an “interrupt vector’'. The actual locations are chosen by the device interface de-
signer and are located in low memory addresses (see interrupt vector tist, Appen-
dix D). The first word contains the interrupt service routine address (the address
of the new program sequence) and the second word contains the new Processor
Status Word (PSW) which will determine the machine status at the start of the in-
terrupt service routine. The contents of the interrupt service vector is set under-
prograrm control.

After the interrupt service routine has been completed, an RT1 (return from inter-
rupt} is performed. The two top words of the stack are automatically 'popped’’
and placed in the PC and PS respectively , thus resuming the interrupted pro-
gram.

5.3.2 Nesting

Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any canfusion. By using the ATl and RTS instructions, respectively, the
praper returns are automatic.

R TP —e PO
1. Process O is running; Stack Pointer (SP)
points to location PQG.
[+]
L]
. [:11]
2. Interrupt stops process O with PC = o =y
PC{O) and status = PS{Q);starts process 1,
Q

3. Process 1 uses stack for temporary storage
{TEQ,TEL).

4. Process 1 interrupted with PC =PC{1) and
status = PSI; process 2 is started.

5. Process 2 is running and does a JSR R7, A to
subroutine A with PC =PC(2).

6. Subroutine A is running and uses the stack
for temporary storage.

119

[,

PO

SF—a

FO

F—e

P50

TEG

TE1

PS5O

PCQ

TEQ

TE

P31

FCY

P50

FCO

TEQ

TEY

P51

Pe1

Pl

31

FCO

TED

TEN

P51

PLZ

Tal

TAZ

FO
[4-1~]
[l
TEDQ
7. Subroutine A releases the temporary storage TET
holding TAl and TAZ. =)
PC1
5P —w rcz
&
FD
PSO
PCO
. TEDQ
8. Subroutine A returns control to process 2 =
with an RTS R7, PC is reset to PC2. o
SP—= PCT
o
P
FPS0
9. Process 2 completes with an RTI instruction eCo
{dismisses interrupt), PC is reset to PC{1) and TEO
status is reset to PS{1) process 1 resumes. F—w TE1 .
(1]
SP—PO
10. Process 1 releases the temporary storage
holding TEOQ and TEL. o
(3]
11. Process 1 completes its operation with an)
RTI, PC is reset to PCO and status is reset to sP—- FCO
PS{C).
L+

Figure 5-14: Mested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately invotved with
the concept of CPU and device pricrity levels. For a full discussion of the uses of
the PDP-11 priority structure, refer to Chapter 2, System Architecture.

5.4 REENTRANCY

Further advantages of stack organization become apparent in complex situations
which can arise in program systems that are engaged in the concurrent handling
of several tasks. Such multi-task program environments may range from rela.
tively simple single-user applications which must manage an intermix of 1/2 in-
terrupt service and background computation to large complex multi-programm-
ing systermns which manage a very intricate mixture of executive and multi-user
programming situations. In all of these applications thereis a need for flexibiity
and time/mermory economy. The use of the stack provides this economy and
flexitility by providing a method for allowing rnany tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com-
plex program linkages.

The abitity to share a single copy of a given program among users or tasks is
called reentrancy. Reentrant pragram routines differ from ordinary subroutines in
that it is unnecessary for reentrant routines to finish processing a given task be-
fore they can be used by another task. Multiple tasks can be in various stages of
completion in the same routine at any time. Thus the following situation may oc-
cur:

ME MORTY
PROGRAM 1 PROCRAM 1
PROGRAM 2 : SUBROUTINE A
PROGRAM 3
PROGRAOM 2
PROGHAM 3
PDP-11 Approach Conventional Approach
Programs 1,2, and 3 can A separate copy of subroutine A
share subroutine A must be provided for each program

Figure 5-15: Reentrant Routines

The chief programming distinction between a non-shareable routine and a reen-
trant routine is that the reentrant routine is composed solely of “pure code”, ie.
it contains only instructions and constants. Thus, a section of program code is re-
entrant {shareable) if and only if it is “non self-modifying™, that is it contains na
information within it that is subject to modification.

Using reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16,

121

IIASI: AI |TnSNB|

REENTRANT
ROUT IME

Q

Figure 5-16: Reentrant Routine Sharing

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
Q before it finishes processing.

3. Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinquishes contro! of Reentrant Routine Q at some point in its pro-
cessing.

5. Task A regains control of Reentrant Routine Q and resumes processing from
where it stopped,

The use of reentrant programming allows many tasks to share frequently used
routines such as device interrupt service routines, ASCI-Binary conversion rou-
tines, ete. In fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user
programs.

As an application of reentrant (shareable) code, consider a data processing pro-

gram which is interrupted while executing an ASClI-to-Binary subroutine which has

heen written as a reentrant routine. The same conversion routine is used by the

device service routine. When the device servicing is finished, a return from inter-

_ rupt {RTl} is executed and execution for the processing program is then resumed
where it left off inside the same ASCII-to-Binary subroutine.

Shareable routines generally result in great memory saving. It is the hardware im-
plemented stack facility of the PDP-11 that makes shareable or reentrant rou-
tines reascnable.

A subroutine may be reentered by a new task hefore its completion by the pre-
vious task as long as the new execution does not destroy any linkage information
or intermediate results which belong to the previous programs. This usually
arnounts to saving the contents of any general purpose registers to be used and
restoring them upon exit. The choice of whether to save and restore this informa-
tion in the cafling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlled transfer situations (i.e. JSR's} a
main program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
cade conyersion routine might save the contents of registers which it uses and re-
store them upon its completion. In the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in-
terrupted program has no warning of an impending interrupt. The advantage of

122

using the stack to save and restore {i.e. “'push” and “pop’) this information is
that it permits a program to isolate its instructions and data and thus maintain
its reentrancy.

In the case of a reentrant program which is used to in a rulti-programming envi-
ronment it is usually necessary to maintain a separate R& stack for each user al-
though each such stack would be shared by all the tasks of a given user. For ex-
ample, if a reentrant FORTRAN compiler is to be shared between many users,
each time the user is changed, RS wouid be set to point to a new user's stack area
as illustrated in Figure 5-17.

USER & STACK
ﬂ USER @ STACK
el uSER C $TACK

Figure 5-17: Multiple RS Stack

5.5 POSITION INDEPENDENT CCDE - PIC

Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memory. it 15 necessary to change the address references
and/or the origin assignments. Such programs are constrained to a specifiec set
of locations. However, the PDP-11 architecture permits programs to be con-
structed such that they are not constrained to specific locations. These Position
Independent programs do not directly reference any absolute focations in
memaory. Instead all references are “PC-refative™ 1.e. locations are referenced in
termns of offsets from the current location {offsets from the current value of the
Program Counter (PCY), When such a program has been translated to machine
code it will form a program module which can be loaded anywhere in memory as
reguired.

Position Independent Code is exceedingly valuable for those utility routines
which may be disk-resident and are subject to loading in a dynamically changing
program environment. The supervisory program may load them anywhere it de-
termines without the need for any relocation parameters since all items remain in
the same positions relative to each other (and thus also to the PC).

Linkages to program routines which have been written in position independent
code (PIC) must still be absolute in some manner. Since these routines can be lo-
cated anywhere in memory there must be some fixed or readily locatable linkage
addresses to facilitate access to these routines, This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of numerous linkage information items,

123

5.6 RECURSION

It is often meaningful for a program routine to call itself as in the case of calcu-
lating a fourth root in FORTRAN with the expression SQRT(SQRT(X)). The ability
to nest subroutine calls to the same subroutine is called recursion. The use of
stack organization permits easy unambiguous recursion, The technique of recur-
sion is of great use to the mathematical analyst as it also permits the evaluation
of some otherwise non.computable mathematical functions. Although it is be-
yond the scope of this chapter to discuss the concept of recursive routines in de-
tail, the reader should realize that this technique often permits very significant
memcory and speed economies in the linguistic operations of compilers and other
higher-level software programs.

5.7 CO-ROUTINES

In some situations it happens that two program routines are highly interactive.
Using a special case of the JSR instruction i.e. JSR PC.@(R6} + which exchanges
the top element of the Register 6 processor stack and the contents of the Pro-
gram Counter (PC), two routines may be permitted to swap program control and
resume operation where they stopped, when recalled. Such routines are called
“co-routines'’. This control swapping can be illustrated as in Figure 5-18.

Routine #1 is operating, it then exe-
cutes:

JSR PC,@(R6} +

with the following results: P pe2
1} PC2is popped from the stack _l
and the SP autoincremented S ez
2} SP is autodecremented and the pC2
old PC (i.e. PC1) is pushed
3} control is transferred to the 1
location PC(2) (i.e. routine #2)
P PCI I
Routine #2 is operating, it then exe-

cutes:
ISR PC.@{R6} +

with the result the PC2 is exchanged
for PC1 on the stack and contral is
transferred back to routine #1.

Figure 5-18: Co-Routine Interaction

124

PART |
CHAPTER 6

SPECIFICATIONS

Physically, the PDP-11 is composed of a number of System Units. Each System
Unit is composed of three eight-slot connector blocks mounted end-to-end as
shown in Figure 6-1. The UNIBUS connects to the System Unit at the lower left
and at the upper left. Power also cannects to the unit in the lefimost black. A Sys.
tem Unit is connected to other System Units only via the UNIBUS.

UNIBUS CONNECTION
AN

FOWER]
@

1]
§
NN

1]]
§
1]
&

I
Y11

UNIBUS &NECTK}N

Figure 6.1 System Unit

The remainder of the System Unit contains logic for the processor, memory or an
140 device interface. This lo; 'c is composed of single height, double height, or
quad height modules which are 8.5 deep.

The use of System Units allows the PDP-11 to be optimally packaged for each in-
dividual application. Up to six Systern Units can be mounted into a single mount-
ing box. For a basic PDP-11/20 system, the processor /console would fill 2 1/2
System Unit spaces and 4096 words of core memory would fill one System Unit
space, This leaves 2 1/2 spaces for the user-designated options. This would allow
the user to add 8192 words of additional core memory, a Teletype control, and a
High-Speed Paper Tape Control, or 4096 words of core memory, and six Teletype
interfaces. Larger systems will require a BA11-EC or BA11-ES Extension Modnting
Box which contains space for six additional System Units.

The use of System Units also facilitates expansion of systems in the field and ser-
vice. To add an additional option to a PDP-11 system, the proper Systern Unit is
mounted in the Basic or Extension Mounting Box and the UNIBUS is extended.
Servicing of the PDP-11 can be done by swapping modules or by swapping Sys-
temn Units. ’

When ordering PDP-11 systems it is important that suificient mounting hardware
is ordered 1o accommodate each system. Parficular_attention should be given to
the of DD11's reguired and whether a BA11-EC or BA11-ES Extension Mounting
Box is needed.

125

To determine the number of DD11's to order, total the number of spaces required
for each item ordered times the quantity ordered. Subtract two from this number
and divide by four. Round up to the next whole number if there is a remainder. Or-
der this number of DD11's.

of “Spaces” used -2

= # of DD11's needed
4

Nate: Round up to a whole number.

Six System Units will mount in either the Basic or the Extension Mounting Box, To
determine whether to order an Extension Mounting Box, total the products of the
number of System Units required for each itern ordered times the quantity or-
dered. include DD11's and BB11's. Add one and divide the new total by six and
round up to the next whole number if there is a remainder. If the result is one, an
Extension Mounting Box is not needed. If the result is two, order an Extension
Mounting Box (BA11-£S or BAL1-EC) and Power Supply (H720A or H720B).

of System Units used

= # of Mounting Boxes Required
6

Note: Round up to a whole number. if the result is greater than one an Ex-
tension Mounting Box is needed.

DD11's are system Units prewired to mount small peripheral controllers such as a
Teletype control or a High Speed Paper Tape Reader /Punch control. Each DD11
can hold four controllers and mounts in 1/6 of a Basic or Extension Mounting
ng.l 'll'his is in addition to the two small peripheral controlier siots available in the

CPL OCCUFES 2-U SYSTEMS UNITS, 2 Sl

A PERFHEMAL CONTROLLER SLOTS {3} AVAHL ABLE HERE.
]

% 3
ERRRENNARRRRRNY

= N
P Es
) B SEW

=1F UL U T EE _—
NN

CONSDLE

2] &
L N AN \ POWER ¢
MOUNTING BOX mLL HOLD UP T4 Lo 4 suALL PERFHERAL ounrncugn SLOYS BRE
& SYSTEMS LT AWANLABLE IN EACH [HU-11 (PRE- WIRED}
BE-t1{UN-WIRED) SYSTEMS LWIT; A TOI‘
WOTE: 16 DEC LOGIC SLOTS ARE AVAILABLE N EN:H
. SYSTEM UNIT

SYSTEMS UWITS SRE NOT TWCLUDED WITH
WOUKTING BOX.

CPU PLLUGS INTD 3 SYSTEMS LNITS{SUPPLIED

T e Lot & WCLOED WiTH € % THESE SMALL PERIPHERSL CONTROLLERS M&Y BE:
LT i WITH EACH
MEMGRY DRDEREDIEXCEPT M7e2} 1. TTY COMTROLLER (KL- 11}

2 HIGH-SPEED READERSPUNCH CONTROL
3 LME-PRINTER CONTROL

4 CARD AEADER CONTROL

5 32-WORD DHODE ROM BOOTSTRaP

4 DR-11A GEMERAL PURPDSE INTEAFACE

Figure 6-2 PDP-11 Box Configuration

+ -

6.1 PDP-11/20. PDP-11/15 COMPUTERS

The PDP-11 is available as either a tabletop or rack-mounted configuration. The
rack-mounted configuration may be installed in a DEC cabinet or mounted in a
customer cabinet, The PDP-11 mounts in an EIA standard 19 inch cabinet. The
rack-mounted PDP-11 has tilt-slides as standard mounting hardware.

The following mounting units and cabinets are available for PDP-11 systems.

6.1.1 PDP-11 Tabletop Box and Power Supply For 11/20, 11/15 Systems (BA1l-
€C and H720)
This cover and box may be specified with a basic system and includes:

1. H720 Power Supply
2. 15" of power cord with ground wire

For 115 V standard, parallel blade, U-ground, 15 ampere connectors
{NEMA 5-15F)

For 230 V 3 prong U-ground (NEMA 6-15P)
3. Cocling Fans
4. Filter
5. Programmers Conscle with 11/20 or Turn-Key Console with 11/15

Approximate Size: 11" high, 20" wide, 25 5/8" deep. Figure 6 shows the layout of
this unit,

Figure 6.3 Tabie Top PDP-11 Dimensions

127

Approdimate Weight: 100 Ibs, {including CP, console and 4K core)

Power: 120V + 10%, 47-53 Hz 5amps. single phase
(BA11-CC and H720-E)
230V + 10%, 47-63Hz 2.5 amps. single phase
{BA11-CC and H720-F)

6.1.2 PDP-11 Basic Mounting Box and Power Supply (BA11-CS and H720)
This basic mounting box may be specified with a basic 11/20 or a 11715 system

and incfudes:
1. Titt and Lock Chasis Slides
2. H720 Power Supply
3. 15" of power cord with ground wire

For 115V standard, parallel-blade, U-ground, 15-ampere connector,
(NEMA 5-15F)

For 230 V 3-prong, U-ground, NEMA No. &-15P
4. Cooling Fans
5. Filter
6. Programmer's Console with 11/20 or Turn-Key Console with 11/15

Approximate Size: 10 1/2" high, 19" wide, 23" deep. Figures 10-3, 10-4 and 10-5
show the layout of this unit and give slide dimensions.

Approximate Weight: 90 Ibs. {including CP, console and 4K core)

Power: 120V + 10%, 47-63 Hz 5 amps. single phase
(BA11-CS and H72)-E)
230V + 10%, 47-63Hz 2.5 amps. single phase
(BA11-CS and H720-F)

128

129

. DR Dheme ——— —1
P R R
L ey | N D
Y B Ptre—e —- 1|
i N e __-ﬂh L. ST Tmmmmmmmeme L »

SHE VIEW OF MOUKTING HARMRE

Figure &6 Side View of Mounting Hardware

6.1.3 PDP-11/20 and PDP-11/15 Tabletop Extension Mounting Box (BA11-EC}
The tabletop Extension Box is supplied, when ordered, for mounting of up to 6 ad-
ditional System Units which can not be contained in the Basic Mounting Box. This
unit is supplied with:

1. 15 of power cord with ground wire

For 115 V standard, paralle) blade, U-ground, 15-ampere connector
(NEMA 5-15P)

For 230 V 3-prong, U-ground, NEMA &-15F
2. Cooling Fans
3. Filter
4. Front Panel
5. UNIBUS Cable from Basic Mounting Box, 8'6" long
Approximate Size: 11' high, 20" wide, 24" deep

Power: 120V + 10%, 47-63 Hz 5 amps. single phase
{when H720-E is added)
230V + 10%, 47-63Hz 2.5 amps. single phase
{when H720.F is added)

6.1.4 PDP-11/20 Extension Mounting Box (BA1l1-ES)

The Extension Box is supplied, when ordered, for mounting of up to 6 additional
System Units which can not be contained in the Basic Mounting Box. This unit
contains:

1. Tilt and Lock c¢hassis slides
2. 15 of power cord with ground wire

For 115 V standard, parallel-blade, U-ground, 15.ampere connector
(NEMA 5-15P)

For 230 ¥V 3-prong, U-ground (NEMA 6-15F)
3. Cooling Fans
4. Filter
5. Front Panel

6. Bus Cable from Basic Box, 86" long
130

Approximate Size: 10 1/2 high, 19" wide, 23" deep

Pawer: 120V + 10%, 47-63 Hz Samps. single phase
{(when H720-C is added)
230V + 10%, 47-63 Hz 25amps. single phase
{when H720-F is added)

6.1.5 PDP-11 Freestanding Base Cabinet (H960-CA}

This optional cabinet can be used to mount the BA11.CS Basic Mounting Box and
a BA11.ES Extensien Mounting Box supplied with Tilt and Lock chassis slides in
addition to other PDP-11 equipment.

Panel capacity is six 10 1/2" high mounting spaces, each of which is covered with
black plastic panels if equipment is not mounted - {5 panels, maximum, sup-
plied).

{tems supplied with the cahinet include:

1. HG50-A Frame

. H952.E Coasters

. H-952-F l!.e\;elers

. H-952.C Fan Assembly {in top of cabinet)

. H-950-S Filter

. PDP-11 Logo

. H-950-B Rear Door

. 10 1/2" Plastic Bezels, maximum of 5 supplied
. Two H952-A End Panels

WO~ e W N

6.1.6 Cable Requirements

When an Extension Mounting Box is used, an external cable, the BC11A, is the
only signal connection between mounting boxes. This external bus cable may also
be used to connect other peripherals to the PDP-11. The maximum combined, in-
ternal and external, bus cable length is 50",

6.1 7Environmental Requirements - PDP-11/20, PDP-11/15

The POP-11 is designed to operate from + 10° to +50° € with arelative bum-
idity of from 20% to 95% (without condensation).

131

6.2 PDP 11R20 RUGGEDIZED COMPUTER

The PDP-11R20 Rugged computer is available in a rack-mountable configuration
which may be installed in a DEC cabinet or mounted in a customer cabinet. The
PDP11R20} mounts in an EIA standard 19 inch cabinet and has tilt and lock
chassis slides as standard mounting hardware,

6.2.1 PDP 11R20 Basic Mounting Box and Power Supply
This basic mounting box comes standard with the PDP-11R20 system and in-
cludes:

L. Tilt and Lock chassis slides

2. H720 Pawer Supply

3. 15 of power cord with ground wire
For 115 V standard, three prong twist lock connector
For 230 V three prong twist lock cannector.

4. Cooling fans

5. Filters

6. Programmers Conscle

Approximate Size: 10 1/2" high. 19" wide, 25" deep
Approximate Weight: 110 ibs

Power Line Frequency: 47-63 Hz, 380-420 Hz

Power Line Voltage: 100, 115 VAC + 10% 200, 215, 230 VAC + 10%
Power Line Current: 5 amps max @ 115 VAC

Power Dissipation: 500 Watts max

6.2.2 BAR11EC Rugged Extension Mounting Box

The rugged extension mounting box is designed for mounting up to & additicnal
system units which cannot be contained in the basic Rugged mounting box, This
unit contains:

1. Tiit and Lock chassis slides
2. Cooling fans

3 Filters

4. Blank front panel

5. Rugped internal and 10" external unibus cable to connect to the basic
hox,

6.2.3 Cables

All options ordered with the rugged PDP-11 must have special rugged cables or-
dered with them. All cables that go into this box do so by means of 1/4 turn-mil-
type connectors. The convenience outlet is a 3-prong twist lock femate plug

132

6.2.4 Environmental Requirements

TEMPERATURE

Operating: UCto +55C

Non-operating: -55"ta +85°C

HUMIDITY: 95% RH

VIBRATION: Vibration applied on 3 mutually perpendicular axis.
59 Hz, 1.0" double amplitude;9-500 Hz, 2.5G

SHOCK: 3 shocks in each direction on 3 mutually per-
pendicular axis (18 shacks)

Operating: 53, 11 msec

Non-operating: 156G, 11 msec

ALTITUDE

Operating: 10,000 feet max.

Non-operating:

50,000 feet max.

INCLINATION: Operates in any attitude
RELIABILITY:
{at 25C) Processor: 22,000 hours MTBF

Power Supply: 33,000 hours MTBF
Memory: 11,000 hours MTBF
Computed from MIL-HDBK-217A, 1 Dec. 65

6.3 INSTALLATION PROCEDURE
The PDP-11 is crated for shipment to the customer site to prevent damage. In-
stallation is provided by DEC personnel at the customers site.

Computer customers may send personnel to instruction courses on computer op-
eration, programming, and maintenance conducted regularly in Maynard, Mas-
sachusetts, Palo Alto, California, and Reading, England.

6.4 SYSTEM UNITS AND CABLES .
The following items are available for mounting standard and special peripheral
device logic into a PDP-11 system.

6.4.1 Peripheral Mounting Unit (DD11-A)

The DD11 is a prewired system Unit which allows standard small peripheral inter-
faces to-be mounted in a PDP-11 systemn. it accepts standard small peripheral in-
terfaces (up to 4) such as the KL11 Teletype Control or the controller portion
(PC11-M) of the High Speed Reader/Punch. For mounting, it requires one-sixth
(1/6) of a BA11 Mounting Box.

6.4.2 Blank System Unit (BB11)

The 8611 consists of three 288-pin connector blocks connected end-to-end. This
unit is unwired except for UNIBUS and power connections and allows customer-
built interfaces 1o be integrated easily into a PDP-11 systemn. For mounting it re-
quires one-sixth (1/6) of a BAIl Mounting Box.

133

6.4.3 UNIBUS Module (M920)

The M920 is a double module which connects the UNIBUS from one System Unit
to the next within a Mounting Box. The printed circuit cards are separated by
1"for this purpose. A single M920 will carry all 56 UNIBUS signals and 14
grounds,

6.4.4 UNIBUS Cable (BC11A)

The BC11A is a 120-conductor flexprint cable used to connect Systern Units in dif-
ferent mounting boxes of a peripheral device which is removed from the mounting
boxes.

The 120 signals consist of the 56 UNIBUS lines plus 64 grounds. Signals and
grounds alternate to minimize cross talk.

Type Length
BC11A-2 2
BC11A-5 5
BCE1A-BA g'e”
BC11A-10 10°
BC11A-15 15
BC11A-25 25

6.5 PDP-11 POWER SUPPLY SUBSYSTEM H720

This Power supply is used in the Basic and Extension Mounting boxes and sup-
plies power to all devices mounted in one of these boxes. It is included in basic
PDP-11 systemns, but must be ordered separately with a BA11ES or BA11EC Ex-
tension Mounting Box.

Approximate Size: 16 1/2" wide, B high, €' deep
Approximate Weight: 30 Ibs,
Power; IN 117v 10% 4763 Mz 6A H720E

230V 10% 47-63Hz 3A H720F
215¥ 10% 47-63Hz 3A H720F
200V 10% 47-63Hz 3A H720F
QUT +5V 5% 22A (H720E,F)
-15v 5% 225 (H720E.F)

+8 RMS (UNREGULATED) 1.5A
_ (H720E,F)
-22 V (UNREGULATED) 1.0A (H720E.F)

AC LO
DC LO

134

6.6 PDP-11/20 Power Requirements
Power Dissipation: 400 watts

6.7 Teletype Requirements

The standard Teletype requires a floor space approximately 22 1/2 inches wide by
18 1/2 inches deep. The Teletype cable length restricts its location to within 8
feet of the side of the computer.

Input Voltage: 115 Vac 10%, 60 Hz 0.45 Hz, 230 Vac 10%, 50 Hz 0.75 Hz
Line Current Drain: 2.0 amperes
Power Dissipation: 150 watts

The Teletype plugs into the rear of the PDP-11 Basic Mounting Box and is turned
ON and OFF by the power switch on the front panel of the PDP-11.

135

9ET

ADDRESS REGISTER RLUN BuU3 FETCH EXEC
| 1 1 1] L 1] L 1
O ATA SOURCE DESTMATION ADDRESS
— | l L 1 i | 1 1 M |
ofF L SWITCH REGISTER gonn |Exam [cout Jouae Jsnmar [stant | | oer
x|V [l]Jelvn]w][elelrTe]s [Tz]e BoR Wt e

@)

PART)
CHAPTER 7

CONSOLE OPERATION

The PDP-11/20, PDP-11/15, and PDP-11R20 Operators' Consoles provide users
with comprehensive information regarding the status of the system, and with
function switches tc control the system. Each section of the Operator's Console is
discussed in this chapter, The PDP-11R20 Cansole differs slightly in layout due to
ruggedized construction constraints, but it is functionally identical to the PDP-
11/20 Console. The PDP-11/15 conscle differs only in that there are 16 lights
and switches in the Address Register, instead of 18 as in the PDP-11/20.

INDICATOR LIGHTS

RUN On Indicates that the processor clock is run-
ning, processor has control of bus, and is
executing an instruction.

Ot indicates that the processor is waiting for
an asynchronous peripheral data re-
sponse, or that the processor has surren-
dered its control to the console or a per-
ipheral.

Remarks: ‘ Flickers on and off during normal machine
- operation, except during the foilowing pro-
grammed instructions: WAIT (completely

on); HALT {cormnpletely off).

BUS Om Indicates that a peripheral device is con-
trolling the bus.

Remarks: Only on when there is a bus malfunction
or where a peripheral holds the bus for ex-
cessive periods of time, or in large sys-
tems when muttiple devices are using the
bus for DMA operations.

When Bus and Run are off, bus control
has been transferred to the console.

FETCH Function: . Indicates that the processor is in the
’ FETCH state and is obtaining an instruc-

tion.
Remarks: Only Fetch and Run lights are on during

the Fetch state if no rnon-processor
reguests are honored.

137

EXEC Function:

Remarks:

DEST. Ffunction:

Remarks:

SOURCE Function:

Remarks:

ADDR. Function:
(2 lights)

Remarks:

SWITCH REGISTER
18 Key-Type Switches*

Function:

Rermarks:

Indicates that the processor is the Execute
state, perforrming an action specified by
the instruction.

Oniy Exec and Run indicators are on dur-
ing the Execute state if no non-processor
requests are honored.

Indicates that the processor is in Destina-
tion state and is obtaining destination op-
erand data.

Destination a2nd Run are both on during
the Destination state. Address lights may
be on in various combinations. Bus is off
if no non-processor requests are honored.

Indicates that the processor is in the
source state and is obtaining source oper-
and data.

Source and Run lights are both on during
the Source State. Address. Lights may be
on in various combinations. Bus if OFF if
no non-processor requests are honored.

Indicates bus cycles used to obtain ad
dress data during Source and Destination
states. Binary code of lights indicates ad-
dress cycle (1,2, or 3y machine is in source
or destination state.

When either light is on, either Source or
Destination is on. Bus if off if no non- pro
cessor requests are honored,

Used 1o manuatly oad 16-bit data word or
address into processor.

UP=0N=1 -
DOWN =0FfF =0

if the word in the Switch Register repre-

" sents an address, it can be loaded into an
- sents an address, it can be loaded into an

Address Register by depressing LOAD
ADDR key.

If the word contains data, it can be Inaded
into to address specified by the ADDRESS
REGISTER by lifting the DEP key. The data
will appear in the DATA display.

*16 Switches on KY11C Console (PDP-11/15)

TR

Remarks:

CONTROL SWITCHES
LOAD ADDR.
Funetion:

{Depress to activate)

Remarks:

EXAM Function:
{depress to activate)

Remarks:

CONT Function:
{depress to activate)

Remarks:

ENABLE /HALT
Function:
{2-position switch)

Remarks:

The console permits the user to immedia-
tely examine data just deposited with out
readdressing, to re-deposit if necessary,
and to continue without automnatic in-
crementation. These sequences are asso-
ciated with the functioning of DEP and
EXAM Switches. The state of the switches
can be read as 1's and O's under prograrm
control by reading address 777570.

Transfers contents of switch register

- to bus address register,

The resulting bus address, displayed in
the ADDRESS REGISTER, provides an ad-
dress for EXAM, DEP, and START.

Transfers contents of bus address for
DATA display. Data address will appear in
two ADDRESS REGISTER.

If the EXAM switch is depressed on suc-
cession, the contents of the next sequen-
tial bus address are displayed in DATA.
This action is repeated each time EXAM is
depressed provided no other Switch is
used between these steps.

Causes processor to continue operation
from ther paint at which it had stopped, If
ENABLE/HALT is on ENABLE, returns bus
control from console to processor and
continues program operation. Jf EN-
ABLE/HALT is on HALT, causes the pro-
cessor to perform a single instruction or a
single bus cycle and stop.

If program stops, this switch provides a
restart without program clear.

Allows either the program or the console
to controd processor operation. ENABLE
permits system to run normally. HAET
stops the processor and passes contrel to
the console,

Continuous program control requires the
ENABLE mode.

HALT mode is used to interrupt program
control, perform single-step operation, or
clear the systemn. HALT is used with the
CONT switch to step the machine through

139

S-INST/S-CYCLE
Funiction:
(2 pasition switch)

Remarks:

START~ Function:
(depress to activate)

OEP Function:

Remarks:

ADDRESS REGISTER .
18-Bits, divided in 3-bit sequence.

Function:

Remarks:

DATA
16-Bit Display

Function:

programs and facilitate intermediate ob-
servations,

Allows processar to step through program

operation either one instruction or one
bus cycle at a time. S INST: processor
halts after an instruction. S-CYCLE: pro-
cessor halts after a bus cycle,

Enabled by ENABLE/HALT in HALT mode.

If ENABLE /HALT is on ENABLE, provides
a system clear operation, then begins pro-
cessor operation. A LOAD ADDR operation
establishes the starting address. If EN-
ABLE/HALT is on HALT, provides a sys-
tem clear {initialize) only. Processor does
not start.

Transfers contents of console SWITCH
REGISTER to bus address.

After use data will appear on DATA dis-
play, address in ADDRESS REGISTER.

Displays the address of data examined or
deposited. (16-bit in the PDP-11/15)

During a programmed HALT or WAIT in-
struction, display contains the address of
the instruction.

During direct memary operations, the pro-
cessor is not involved in data transfer
functions, and the address displayed is
not of the last bus operation.

When console switches are used, this dis-
play contains the following:

LOAD ADDR - Transferred

SWITCH REGISTER - data

DEP or EXAM - the bus address just de-
posited into or examined

S-NST or S-CYCLE - the Jast processor ad-
dress

Displays data from processor data paths.
This is not a single register but the sum of
two tater registers on the data paths (16-

140

Remarks:

POWER LOCK
OFF /POWER /PANEL LOCK

3-position switch
QFF:

POWER:
PANEL LOCK:

Remarks:

bit on the PDP-11/15) on both machines,
na distinction necessary,

Data is mainly loaded into this register by
setting the data value into SWITCH REGIS-
TER and lifting the DEP switch.

When console switches are used. this dis-
play contains:

LGAD ADDR - no indication

DEP - the switch register just deposited.
EXAM - the data from the address exam-
ined.

5-INST - no indication when stepping
through a program by single instruction.
S-CYCLE - last data in the daia paths.
WAIT - no indication

HALT - displays processor register RO
when bus control is transferred to console
during a HALT instruction.

RESET - displays register - RO for during of
RESET (70 msec).

Removes all power from processor 3 posi-
tion switch

Applies primary power to processor
Disahtes all console controls except

switch register key switches,

OFF. System is not being used
POWER: Normal operation; all conscle
controls fully operational

141

142

PART |
CHAPTER 8

EXTENDED ARITHMETIC ELEMENT

8.1 EXTENDED ARITHMETIC ELEMENT KE11-A

The Extended Arithmetic Elernent (EAE) (KE-11A} is an option which performs
multiplication, division, multiple position shifts and normalization significantly
faster than software routines. It connects directly to the UNIBUS and is pro-
grammed as a peripheral, allowing overlap between CP and EAE operations.

The KE11-A performs the following operations:
Multiply Two 16-bit numbers are muitipiled to give a 32-bit product .
Examples: ' ’

000002 * 000005 = 000000-000012 (2 # 5 = 10},
177775 » 0Q0Q07 = 177777177753 (-3 » 7 = =21},

176000 + 177400
010000 » 100000

D00004-000000 (-2 % -2¢ = 2%)
174000-000000 { + 12+ % -2 = -27)

Divide A 32,.-bit dividend is divided by a 16,,bit divisor to give a 16,.-bit quotient
and a 16 -bit remainder. The sign of the remainder is always the same as the
sign of the dividend, unless the remainder is zero(i.e.-8/3 = -2REM-Z nat -3
REM 1), The KE11-A indicates overflow if mare than 16, hits would be needed to
express the quotient (i.e. overflow if the quotient is out of the range (2')-1 to
(-2%). Zera divided by zero gives overflow.

Examples:

“000000-000013 7 000003 = 000003 REM 000002 (11,,/3 = 3 REM 2)
177777-177765 7 000003 = 177775 REM 177776 (-11,,/3 = -3 REM -2)

000010-000800 /000020 = Overflow 219/2¢ = 2
000007.177777 / 000020 = 077777 REM 000017

27_1/2* = 2°-1 REM (2'-1)

177770-000000 / 000020 = LOODOO REM 000000 (-2%)/2¢ = -21%)
000007.177777 + 177760 = 100001 REM 000017

(2)-1/-(2") = —((2')-1) REM (2'-1)

NOTE
Atl numbers are octal unless followed by a subscript 10" for decimnal. Also, 32,

bit numbers are shown in octal as two sixteen bit numbers, thus, 00000 1-000000
is 2", .

143

MNormalize A 32,,-bit number is shifted left until the two most significant bits are
different. Zeros fill the empty positions on the right. A count is kept of the number
of places the 32,.-bit number is shifted. There are three special cases:

The nurmber is of the form 111...1100...0000 (BINARY) In this case, the
number is shifted until it is 140000-000000.

The number is 177777-177777. In this case the result is 140000-000000,

and the count is 30,.

The number is QO0000-000000Q. In this case the. result is O0OCO0-000000,

and the count is 31,,.
Examples:
000041-170324 becormes 041741-124000
177777-174321 hecomes 106420-000000
177740-000000 becomes 140000-000000

Count: 9,,
Count: 20,,
Count: 9,

Multiple Shifts A 32,,:bit number is shifted either left or right the number of
places specified by a count, The count is a &-bit 2's complernent number. If the
count is positive, the number is shifted left; if it is negative, the number is shifted
right. This allows for shifts from 31 positions left to 32 positions right. A count of
Zero causes no change in the number. There are two different shift operations:

Logical Shift: Zeros always fill the vacated positions.

RIGHT (SC<0)
o—-r ac J__ Mo }—-D—-LOST
18 CIET) G SR
LEFT (SC>0)
LOST-—D“—L AC Ma I'__
= s 0 15)

Arithmetic Shift: When shifting left, zeros fill the vacated positions and the
most significant bit of the number is not shifted {the sign never changes).
When shifting right, the most significant bit is replicated (the sign is ex-

-

tended).
RIGHT{ $¢:<0)
I R N
aCy5 9 o1] SRg
LOST)
-—— -‘-—L AL l % n]
ACig S 14 o5 o

The KE11-A indicates overflow an left shifts if the result is not the correct multiple
of the originat number. This occurs if the most significant bit changes on a logical
shift, or if it would have changed on an arithmetic shift. No overflow is possible
on right shifts.

Examples:

Original Number Count Logical Shift Arithmetic Shift
000777-177700 15 177770-000000 07 7770-000000 overflow
177525-052525 653 165252-125240 165252-125240
000777177700 73 000017-177776 000017-177776
177525.052525 63 - 000007-175252 177777.175252

8.2 PROGRAMMING

Number Formats All numbers in the KEL1-A are in signed, 2's complement nota-
tion. This means that if the most significant bit of a number is zero, the number
is positive and the rest of the number is the magnitude. If the most significant bit
is one, it means that the number is negative and the rest of the number is the 2's
complement of the magnitude. Zero is represented with all bits zero.

There are two different number formats in the KE11-A. One format uses 16,, bits:

Lo []

BT 15 14 1 Q

This gives a range of numbers from +(215)-1 to -(215). The largest positive
number is 077777 and the largest negative number is 100000. A pius one
would be DOO0OL; minus one would be 177777 and -((215)~1 would be
100001,

The other format uses 32,, bits:

L=] | |

BT 31 30 Q

This gives a range of numbers from {2311)-1 to -(231). The largest positive num-
ber is O77777-177777 and the largest negative number is 100000-000000. 4 The
2's complement of a number is formed by changing all 1's to 0's, all 0's to 1's,
and then adding 1.

REGISTERS ADDRESSES
Accumulatar (AC) . 77302
Multiplier Quotient (MQ) 777304
Step Counter (8C) 777310
Status Register (SR) 717311

145

Accumulator (AC) and Multiplier Quotient (MQ)

These are the two data registers in the KE-11A. Each is 16,.-bits. They are some-
times used together to hold one 32,;bit number, in which case the MQ is the low
order par! of the word (bits Q0-15) and the AC is the high order part (bits 16-31).

s L AL MG J

BT 3 30 % B o

Whenever a part of this double-word register is loaded, the sign is always ex-
tended into the higher bits that were not loaded. For example:

MOVB A MO :MQBITS 8 15 AND AC BITS 0-15 EXTENDED
MOV A MO ;AC BITS 0-15 EXTENDED

MOVEB AMQ+1 ACBITS0-15 EXTENDED

MOVB AAC ;AC BITS 815 EXTENDED

MOV AAC iNO EXTENSION

MOVB AAC+1 iNO EXTENSION

Thus, when loading the AC and the MQ with word operations, first the MQ and
then the AC must be loaded. When using byte operations, first the low byte of the
MQ, the high byte of the M, the low byte of the AC, and then the high byte of the
AC must be loaded.

NOTE: This applies to all instructions that effect the destination not only MOVe.

On muitiplication, the MQ initiatly contains the equitiplier and the AC is ignored.
After the multiply, the AC-MQ contains the 32,.:bit product. On division, the AC-

. MG initially contains the 32,.-bit dividend, and after the divide, the MG contains
the quotiertt and the AC contains the remainder, On normalize and shifts, the AC-
MQ contains the 32,,bit number which is shifted.

Step Counter (5C)

The SC controls the number of steps done in alt operations which the KE11-A per-
forms. 1t gets loaded automatically on multiply, divide, normalize and shifting.
The register is six bits tong, and is at address 777310

Status Register (SR)

The SR contains bits which give information about the fast operation performed
and the status of the AC and MQ, It is 8 bits long and it is at address 777311 (the
high byte of the AC address).

Ly [rofrofejeofe] fusel | §][]]

SRS 7 & 5 4 3 2 1 0 5
WORDBITS 15 414 13 12 1 0 0% CB O7F 06 G5 04 O3 02 Ot QO
RO=READ ONLY

.

146

BIT NAME FUNCTION

G Carry On shifts this bit contains the last hit
shifted out of the AC-MQ.

1 AC =MQ On multiply, divide, and normalize this 15
bit is cleared. When set, this bit means
that every bit in the AC is the same as MQ
bit 15, and therefore the number in the
AC-MQ has only single word precision.

2 AC=MQ=0 When set, indicates that both the MG and
AC are all zero.
MQ=0 When set, indicates that the MQ is zero.
4 AC=0 When set, indicates that the AC is zero.
AC =177777 When set, indicates that the AC contains
all ones.
6 NEG On shifts, normalize, and multiply this bit

is set if the AC sign bit is set. On divide, if
there is no overflow, this bit is set if MQ
sign bit is set. if there was overflow, this
hit is set if the original dividend was nega-
tive.

7 : This bit, in ¢ njunction with Bit 6, is used
to indicate ow flow conditions. It is coded
with Bit 6 as f¢ lows:

Bit7 Bitb

o] 0 Paosit. e and no overflow

0 1 = Negative and averflow
1 0 = Positive znd overflow
1 1 = Negative and no gverfiow

The reascn for coding bits 6 and 7 in this manner is so the processor condition
code bits "N and *V"' can be set by a “ROLB SR" (rotate left byte} instruction.
When the processor does a ROLB instruction, the old bit 6 becomes the new bit 7
and gees into candition code bit *'N™, and the old bit 5 exclusive-or'ed with the old
bit 7 goes into condition code bit “V". Therefore. by doing a “ROLB SR" after a
KE11-A operation, the “N" and V" bits in the processor will get set, and some of
the conditional branches can be used. 1t should be noted that the other two bits in
the processor condition codes, "Z" and “C’, wili not be set correctly {(although
they will be changed) and therefore not all of the conditiona) branches will work,

Since it is not desirable to actually rotate the status register with the “ROLB SR",
when the processor writes back the rotated SR into the KE11-A. nothing will ac-
tually change. This is .done by inhibiting the SR from being written when ad-
dressed as a byte. Therefore, no instruction that atternpts to write the SR as a
byte will have any effect on the SR, although the KE11-A will respond normally.
For examgple, “CLRE’, “MOVB™, etc. will not charnge the SR.

However, to allow for reentrant programming of the KE11-A, it is necessary to be
able to save the SR and restore it. Therefore, when the word which contains the
SR and SC is written (777310). both the SR and 5C are loaded. The SC, just like

147

the SR, however, cannot be loaded by addressing it as a byte. When reloading the
registers as a word, bits O through 5 of the 5C and bits 0, 6, and 7 of the SR are
the only ones that actually change. Bits 1 to 5 of the SR always indicaté the pres-
ent state of the AC and MQ. Examples of reading and writing the SR and SC:

;ASSUME THE SC = 70 AND THE SR = 140
;THE COMBINED WORD IS THEN 060070

MOVB SC,RD ‘RO WOULD BE 000070

MOVB SR,RO :RO WOULD BE 000140

ROLB SR 'SR WOULD REMAIN 140, “N"* AND “v"
: BITS WOULD SET

MOVB #-1,5C :SC WOULD. REMAIN 70

MOVE #-1SR 'SR WOULD REMAIN 140

MOV #-1SC - :SC WOULD BE 77, SR WOULD BE 301

'WORD WOULD BE 140477

8.3 INSTRUCTIONS

Operations in the KE11-A are started by storing a humber at an address. There is
ane address for each of the five operations that the KE11-A performs. The num-
ber must be stored as a ward or as the low byte, in which case the sign is auto-
miatically extended to the high byte. Storing the number as the high byte has no
effect on the KE11-A. Onie an operation is initiated in the KE11-A, it will not re-
spond to any instructions until it is finished with that operation. Thus, whenever
the KE11-A is examinaed for a result, it will always be the correct, final answer, and
never be some intermediate number. The maximum amount of time the KE11-A
takes after an operation is started is 4.25 microseconds, and therefore, the most
@ processor can wait for a result is about 2 microseconds, due to the averlap in
aperation and beginning the fetch for the result..

Multiply The multiply operation is initiated by writing the 16,,-bit multiplicand at
the multiply address. This number is then multiplied by the M@, and a 32,-bit
product is left in the AC.-MQ. Reading the multiply address always returns
000000,

Address: 777306
Execution Time: 4 ns
SR Bits: 0 cleared

1, 2, 3. 4, 5 set cenditionally
6 sign of the produce (AC)
7 no overflow possible

Divide The divide operation is initiated by writing the 16,,-bit divisor at the divide
address. This humber is then divided into the AC-MQ, and a 16..-bit quotient is
left in the MQ and a 16,.-bit remainder is left in the AC. Reading the divide ad-
dress always returns 000000.

148

Address: 777300
Execution Time: 4.25 us
SR Bits: 0 cleared

1, 2, 3, 4, 5 set conditionally

6 if no gverflow, sign of the quotient (MQ)

if overflow, sign of the dividend (original AC

sign)

7 Overflow possible
MNormalize The normalize operation is initiated by writing something at the nor-
rmalize address. The number written there is ignored. The operation normalizes
the number in the AC-MQ. The count of the number of eft shifts can be read at
the normalize address, where it will be in the lower six bits. {The SR will not be in
the high byte). Since the count is always a positive number, reading the norma-
lized address as a2 word will get a *'sign extended' value, and that number ¢an be
directly added or subtracted from an exponent.

Address: 777312
Execution Time: 0-4 ps
SR Bits: 0 cleared

1 set conditionally

2 unchanged

3. 4 set conditionally

5 cleared

6 sign of the AC

. 7 no overflow possible

Logical Shift The logical shift operation is initiated by writing a six bit shift count
at the logical shift address. The number in the AC-MQ is then shifted right or left
the numher of places determined by the count. Reading the logical shift address
always returns 000000.

Address: 777314
Execution Time: 0-4 ps
SR Bits: 0 Right shift: last bit shifted out of MQ{O0)

Left shift: last hit shifted out of AC(15}
1, 2 3, 4 5 set conditionally
6 sign of the AC
7 Right shift: no overflow possible
Left shift: overflow is AC(15) changed at any
point
Arithmetic Shift The arithmetic shift operation is initiated by writing a six bit shift
count and the arithmetic shift address. The number in the AC-MQ is then shifted
right or left the number of places determined by the count. Reading the arithme.
tic shift address always returns 000000,

Address: 777316
Execution Time: 0-4 s
SR Bits: 0 Right shift: Last bit shifted out of MQ(O)

Left shift: Last bit shifted out of AC{14)
1,2, 3, 4, 5 set conditionally
& sign of the AC
7 Right shift: no overflow possible
Left shift: overflow if AC(15) would have
changed at any point

149

8.2 PROGRAMMING EXAMPLES

DIV =777300
AC =777302
MQ =777304
MUL = 777306
SC =777310
SR =777311
NOR =777312
LSH = 777314
ASH =777316

MOV #MO.RO

;THE AUTO-INCREMENT AND AUTO-
DECREMENT MODES QF ADDRESSING
CAN BE USED TO TAKE ADVANTAGE OF
THE ORDERING OF THE KE1l-A AD-
DRESSES

JSET UP RO TO ADDRESS OF MQ. RO ASSUMED TO HAVE THIS ADDRESS FOR

ALi OF THESE EXAMPLES
MULTIPLY EXAMPLE
MULT: MOY A.(0) +

PUT ~A™ INTO MQ

MOV B,(0) ;MULTIPLY BY “B"
MOV -(0),C :PUT LOW ORDER PRODUCT IN C
MOV ~(0).D :PUT HIGH ORDER PRODUCT N D
TST (0) + ;BUMP RO BACK TO THE MQ

DIVIDE EXAMPLE
DIVD: MOV A,(0)

{NOTE THAT IF THE PRODUCT IS KNOWN
TO BE LESS THAN 16 BITS, THE LAST
TWO LINES ABOVE CAN BE ELIMINATED.

:LOAD LOW ORDER DIVIDEND IN MQ

MOV B,~(0} ;LOAD HIGH ORDER DIVIDEND JN AC
MOV C,~(0) ;DIVIDE BY “C"
TST (0) + :BUMP RO BACK
MOV (0) + .D :PUT REMAINDER IN D"
MOV (O)E :PUT QUOTIENT IN “E"
NORMALIZE EXAMPLE, (ASSUME AC-MQ ALREADY LOADED)
INC @ # NOR
SUB @ # NOR,R1 {SUBTRACT COUNT FROM R1

SHIFT EXAMPLES
MOV #3.@ #LSH

MOV # -5,(@ # ASH

;LOGICAL SHIFT LEFT BY 3
JARITHMETIC SHIFT RIGHT B8Y 5
150

~ [parc2

SOFTWARE

152

PART 1
INTRODUCTION

SOFTWARE

A comprehensive collection of proven software is available for the PDP-11, The
programmer can choose from two major software systems (a3 number of special-
purpose systermns are available), depending on his particular application and hard-
ware configuration (amount of core, external memory, and peripherals). The ma-
jor software systems are:

1. Paper Tape System
BASIC Interpreter
PAL-11 Assembier
ED-11 Text Editor
ODT-11 and ODT-11X Debugging Programs
Bootstrap and Absolute Loaders
Binary and Octal Core Dump Programs
10X, Input/Ouiput Executive
Floating-Point Package

2. Disk Operating System
DOS Monitor
FORTRAN IV Compiler
PAL-1IR Assembler
Edit-I1 Text Editor
ODT-11R Debugging Program
PIP, File Utility Package
Link-11 Linker
Libr-11 Librarian

Each system contains a comprehensive software package of commonly used sys-
tem programs, providing the systems and applications programmer complete fa-
cilities for wniting, editing, assembling or compiling, debugging, loading, and run-
ning his own programs.

The software system to be used depends greatly on the hardware configuration of
the POP-11. The Paper Tape Systemn software is capable of running on all PDP.11
configurations, with 1/0 to the user's terminal, paper tape reader and punch, and
line printer. It requires only 4,096 words of core memary and a teletype (an 8K
and larger version of PAL-11 assembler is also available). The Disk Operating
System software requires at least 8K of core and a disk and/or DECtape, and can
use virtually any peripheral.

In the Paper Tape System, input and output of programs and data are performed
manually via a paper tape reader and punch; printed output can be directed to
the user's terminal or line printer; the user communicates with the system pro-
grams from the terminal keyboard.

153

In the Disk Operating System, input and output of programs and data can be ¢n
virtually an 1/0 device; the user communicates with the DOS Monitoer and system
programs fram the terminal keyboard, thus eliminating the need to manipulate

paper tapes.

The descriptions in the following chapters highlight some of the benefits and fea-
tures of PDP-11 software. The PDP-11 user needing complete information should
refer to the various PDP-11 software manuals.

1R4A

PART Il
CHAPTER 1

PAPER TAPE SOFTWARE

1.1 PAL-11 ASSEMBLER

PAL-11A provides the programmer a means of writing programs with meaningful
symbols rather than with numericat code of usually no mnemonic value. These
symbols are then assembled into absolute binary code capable of being executed
by the PDP-11. The binary program is normally produced after two passes
through the Assembler, although a third pass is available if desired, for either pro-
ducing a listing or punching a binary tape.

A source program in the PAL-11A language is composed of a sequence of state-
ments where gach statement is on a single line as follows:

- ABCD: MOV XY ; MOVE THE CONTENTS OF X TG LOCATION Y

PAL-11S {Program Assembly Language for the PDP-11, Relocatable Version) like
PAL-11A, provides the PDP-11 programmer a means of writing programs with
meaningful symbols rather than with numerical code of usually no mnemonic
value, However, with this relocatable version, symbols are assembled into object
maodules which are then processed by the LINK-115 Linker. LINK-11S produces a
load module that is loaded for execution. Object Modules may contain absalute
and /or relocatable code; and separately assembled object modules may be linked
with the aid of global symbols. The object module is produced after two passes
through the Assembler. A compiete octai/symbolic listing ot the assembfed pro-
gram may also be obtained.

Some notable features of PAL-11S are:
Selective assembly pass functions
Error listing on command output device
Alphabetized, formatted symbol table listing
Relocatable object modules

Glohal symbols for linking between object modules

1.1.1 Representing Code

Binary code can be represented in a variety of ways. At one level higher than bi-
nary, the octal number system is the primary way of specifying numerical data,
Decimal numbers can be specified by following a number with a decimal point,
Proceeding to a level higher, symbols can be used to represent octal or decimal
values by directly assigning a value to a symbol. Similarly ASCIl symbols, the loca-
tion counter symbol (specifying the current address), or arithmetic/logical ex-
pressions can be used to represent numerical code.

1.1.2 Operating Proceduras

The Assembler enables the user to assemble ASCII tapes containing PAL-11A
statements into an absolute binary tape. To do this two or three passes are neces-
sary. On the first pass the Assembler creates a table of user-defined symbols and

155

their associated values, and lists undefined symbols on the teleprinter. On the
second pass the Assembler assembles the program and punches out an absolute
binary tape and/or cutputs an assembly listing. During the third pass (optional)
the Assembler punches an absolute binary tape or outputs an assembly listing.
The syrnbol table (and /or a tist of errors) may be output on any of these passes.
The input and output devices as well as various options are specified during the
initial dialog.

1.2 EDITING THE SOURCE PROGRAM, ED-11

The PDP-11 Text Editor program (ED-11) enables the user {o display his source
program (or any text} on the teleprinter, make corrections or additions to it, and
punch all or any portion of the program on paper tape.

This is accomplished by the typing of simple one-character cammands on the key-
board.

Editor Commands can be grouped according to function:
input /output
searching for strings of characters
positioning the current character location printer
inserting, deleting, and exchanging text portions

All inputsoutput functions are handled by 10X, the PDP-11 Input/Cutput Execu
tive (See 1.6).

1.3 LOADING AND DUMPING CORE MEMORY

1.3.1 The Bootstrap Loader

The Bootstrap foader is a program that instructs the computer to accept and
store in core, data that is punched on paper tape in bootstrap format. The Bootst-
rap Loader is used to load very short paper tape programs of 162 16-bit words of
less -- primarily the Absolute Loader and Memory Dump Programs. Either the low-
speed reader or high-speed reader can he specified. Programs longer than 162
16-bit words must be assernbled into abselute binary format with the PAL-11A
ASSEMBLER and loaded into core with the Absolute Loader. The Bootstrap
Loader is usually loaded into the highest core memory bank using the console
switches and is not destroyed by DEC programs. A 32-word diode ROM hardware
bootstrap is available.

1.3.2 The Absolute Loader

The Absclute Loader is a systern program that foads into any core memaory bank,
data punched on paper tape in absolute binary format. it is used primarily to load
the paper tape system software (excluding certain sub-programs) and the user's
object programs assemnbled with PAL-11A.

The loader programs are loaded into the uppermost area of available core so they
will be available for use with system and user programs. User programs should
not use the locations used by the loaders without restoring their contents.

Major features of the Absolute Loader include;

Testing of the checksum on the input tape to assure compiete, accurate
loads.

156

Starting the loaded program upon completion of loading without additio-
nal user action, as specified by the .END statement in the program just
loaded.

Specifying the load address of position-independent programs at load time
rather than at assembly time, by using the desired Loader switch register
option.

1.3.3 Loading Absolute Tapes)
Any paper tape punched in absolute binary format is referred to as an absolute
tape, and is loaded into core using the Absolute Loader.

1.3.4 Core Memory Dumps

A core memory durmnp program is a system program which enabfes the user to
dump (print or punch) the contents of all or any specified portion of core memory
onto a device, as indicated below.

There are two dump programs available in the Paper Tape Software System:

a. DUMPTT, which dumps the octal representation of the contents of specified
portions of core onto the teleprinter, low-speed punch, high-speed punch, or
line printer,

h. DUMPAB, which dumps the absolute binary code of the contents of specified
portions of core onte the low-speed punch or high-speed punch.

Both dump programs are supplied on punched paper tape in bootsirap and abso-
lute hinary formats. The bootstrap tapes are loaded over the Absolute Loader.
The absolute binary tapes are position-independent and may be loaded and run
anywhere in core. Operation of these programs is controlled by the user at the
POP-11 console.

1.4 FLOATING-POINT AND MATH PACKAGE, FPP-11

The Floating-Point and Math Package for the PDP-11 (FPP-11) is a com-
prehensive set of subroutines that enables the user to perform a variety of
arithmetic operations. FPP-11 provides for:

floating-point operations - add, subtract, multipty. divide:

calcutation of transcendental functions -- sine, cosine, arc tangent, lo-
garithm, square root. exponential;

operations to negate, normalize, move, and compare floating-point num-
bers;

fixed-point operations of single- and double-precision multiply and divide;
conversion te and from ASCII strings.

Floating-point operations automatically align the binary points of operands, re-
taining maximum precision by discarding leading zeros. In addition to increasing
precision, floating-point operations relieve the user of having to scale numbers (a
problern common in fixed-point operations).

The code of the Floating-Point Package is position independent; that is, it may be
stored and executed in any contiguous block of core memory without reassembly.
The code is also reentrant; that is, any subroutine may be interrupted and reen-

157

tered from the interrupt handler. This eliminates the necessity for multiple copies
-- one for the main program and one for intercupts.

fPP.11 has considerable flexibility. It can handle numbers that are octal or deci-
mal, fractional or integer, signed or unsigned. A number may be represented as
one. two, or three binary words, or as a string of ASCIl characters. Numbers may
be converted from one representation to another e.g.. numerical to ASCIL

FPP-11's flexibility extends to the ways of calling and of specifying operands. The
subroutines may be called with the addresses of the operands specified directly or
indirectly.

The indirect method using the EMT instruction employs a trap bandler to perfarm
housekeeping functions. Three calling modes for specifying source and destina-
tion addresses are available when using EMT:

1. full addressing mode using the full power of the PDP-11 address modes.
2. fast addressing mode using two general registers as pointers

3. Polish mode that pops the operands off a last-in-first-out stack. leaving the re-
sult on the top.

The direct method uses the JSR instruction, thereby requiring that housekeeping
be performed by the calling program.

The compiete package consists of eleven partially-interdependent modules. The
symbotic tapes of the modules may be rearranged and some may be deleted be.
fore assermbily to tailor FPF-11 to the main program’s needs. It is also possible to
delete modules without reassembly.

Four farmats are available for numerical representation of data:
1. Single-Word Integer

2. Double-Word Integer

3. Floating-Point Normélized (3-word)

4. Floating-Point Unnormalized {3-word)

Following is a tist of the FPP-11 subroutines:

Subroutine name Meaning

ADDF ADD Floating

SUBF SUBtract Floating

NEGF NEGate Floating

MULF MULtiply Fioating

DIVF DIVide Floating

NORM NORMalize .

MOVF MOVe Floating

CMPF CoMPare Floating

FIX convert fioat to FIXed point

FIXD convert ffoat to FIXed point
Double-word

i58

CFLT convert fixed point to FLoaTing

FLTD convert Double-word to FLoaTing

ITOA convert Integer TO ASCII

JTOA convert double word (J) TO ASCII

FTOA convert Floating point TO ASCH

ETOA) canvert Exponential form of
floating point TO ASCII

OTOA convert Octal TO ASCII

ATOI convert ASCIH TO integer

ATOF convert ASCH TO Hoeating point

ATOO convert ASCI TO Octal

COs COSine {argumert in radians)

SIN SINe (argument in radians)

ATAN Arc TANgent

LOG LOGarithm to the base e

EXP EXPonential function

SQRT SQuare RooT

MUL MULtiply single-word integer by
single word integer

v DiVide double-word integer by

single-word integer

1.5 DEBUGGING OBJECT PROGRAMS ON-LINE, 0DT-11

0ODT-11 {On-line Debugging Technique for the PDP-11) is a systemn program that
aids in debugging assembled object programs. From the keyboard the user is able
to interact with DT and the object program to accomplish the following:

print the contents of any location for examination or alteration,

run ail or any partion of his abject program using the break-point feature,
search the object program for specific bit patterns,

search the object program for words which reference a specific word,
calculate offsets for relative addresses.

A breakpoint feature facilitates monitoring the progress of program execution. A
breakpoint may be set at any instruction that is not referenced by the program
for data. When a breakpoint is set, ODT replaces the contents of the breakpoint
location with a trap instruction so that when the program is executed and the
breakpoint is encountered, program execution is suspended, the original contents
of the breakpoint location are restored, and ODT regains control. ODT types a
message to the user of the form Bn {(Bm;n for ODT-11x} where n is the breakpoint
address (and m is the breakpoint number). The breakpoints are automaticatly re-
stored when execution is resumed.

1.6 iINPUT/QUTPUT EXECUTIVE, 10X

i0X, the PDP-11 Input/Output executive, frees the user from the details of deal-
ing directly with the 1/0 devices. IOX provides asynchronous | /0 service for the
- following non-file-oriented external devices:

keyboard, teleprinter, and low-speed paper tape reader and punch
high-speed paper tape reader and punch

159

For line printer handling, an addition to all 10X facilities, IOXLPT is available,

Simple 170 requests can be made, specifying devices and data forms far inter.
rupt-controlled data transfers, which can be occurring concurrently with the exe-
cution of a running user program. Multiple 1 /0 devices may be running single or
double bufferred 1/0 processing simultaneously.

Real-time capability Js provided by allowing user programs to he executed at de-
vice priority levels upon completion of a device action or data transfer.

Communication with 10X is accomplished by 10T {Input/Cutput Trap) instruc-
tions in the user’s program. Each 10T is followed by two or three words consisting
of ore of the 10X commands and its operands. The |IOX cormmands can be divided
into two categories:

those concerned with establishing necessary conditions for performing in-
put and output (mainly initializations), and

those concerned directly with the transfers of data.

When transfer of data is oceurring, |0X is operating at the priority level of the de-
vice. The calling program runs at its priority level, either concurrent with the data
transfer, or sequentially,

1.6.1 The Device Assignment Table

Lise of the Device Assignment Table (DAT) serves to make the user's programs
device-independent by allowing him to reference a slot to which a device has been
assigned, rather than a specific device itself. Thus, changing the input or output
device becomes a simple matter of reassigning a different device to the slot in-
dicated in the program.

1.7 PDP-11 BASIC PROGRAMMING LANGUAGE

PDP-11 BASIC (Beginners All-purpose Symbolic Instruction Code) is an easy-to-
learn, conversational, prograrmming language for scientific, business and edu-
cationatl applications. PDP-11 BASIC is directly derived from Dartmouth BASIC
with a few limitations and many added features which provide more power and
flexibility than is available with standard Dartmouth BASIC. Notable features in-
clude:

Use of BASIC statements in immediate mode (no line number).

Ability to use any BASIC command (RUN. LIST. etc.) in deferred mode
(with a line number).

Recursive subroutine calls.
Multiple statements on a single line.
Array names ‘of a letter followed by a number.

User programs can e halted {with CTRL/P) without clearing variables.
PRINT can then be used to examine vaiues.

Ability to call assembly language functions.

Basic can run in the minimal 4K PDP-11 configuration. Any additional 4K
© memory increments are available for user storage unless restricted at load time

160

{see Absolute Loader). A 12K configuration would normally provide 8K plus about
450 words of user storage, and an additionat 1000 words are available if BASIC's
arithmetic functions are deleted at toad time.

161

162

PART II
CHAPTER 2

DISK OPERATING SYSTEM

2.1 DISK OPERATING SYSTEM

The PDP-11 Disk Operating System {DOS) represents a significant advance in
software development for small computers, providing capabilities which were for-
mally available only on jarger machines such as the PDP-10.

The DOS is a program development system for a PDP-11 with a minimum of 8K of
core, one or more disks and DECtapes or high-speed paper tape. The DOS Monitor
supports the PDP-11 user throughout the development and execution of his pro-
gram by:

providing convenient, complete access to system programs such as the as-
sembler, compiler, debugger, editor, file utility package, etc.

performing input/output transfers
handling secondary storage management

The PDP-11 DOS is a keyboard-oriented system containing a powerful Monitor
and a comprehensive package of systern programs. The DOS is modular and
open-ended. permitting users to incorporate the programs required for a particu-
lar application and to have full access to disk and DECtape for storage and re-
trieval of system and user programs.

By typing appropriate commands to the DOS Monitor and system programs, the
user can generate, edit, assemble or compile, debug, load, save, call, and run pro-
grams with ease.

System programs can be called into core from disk or DECtape with Menitor com-
mands issued from the keyboard. This feature eliminates the need to manipulate
numergus paper tapes, and provides the user with an efficient and convenient
programming tool.

Keyboard commands enable the operator to load and run programs, dump data
from core, start or restart programs at specific addresses, modify the contents of
memory registers, redirect /0 with logical assignments, and retrieve system in-
tormation such as time of day, date, and system status.

The user communicates with the Monitor in two ways: through keyboard instruc-
tions called commands, and through programmed instructions called requests.

Programmed requests are assembled into the user's program. Some programmed
requests are used to access input /output transfer facilities, to specify where the
data is, where it is going, and what format it is in. In these cases, the Monitor will
take care of bringing device drivers {170 routines} in from the disk, performing
the data transfer, and notifying the user of the status of the transfer. Other
requests access Monitor facilities to obtain such information as time of day, date,
and system status, and to specify special functions for devices.

163

2.1.2 Monitor Core Qrganization
Core memory is divided into:

a user area where user programs and buffers are located,

the stack where parameters are stored temporarily during the transfer of
control between routines:

The free core or buffer area which is divided into 16-word blocks assigned
by the Monitor for temporary tabies, for device drivers calied in from disk,
and for data buffering between devices and user programs;

the resident Monitor itself which includes ali permanently resident routines
and tables; ’

the interrupt vectors.

2.1.3 Hardware Configurations .
The following DOS configurations are supported by DEC:

Configuration {

The reliability and speed of a large fixed-head disk are combined with DECtape
an inexpensive means of storing large amounts of fite-structured data, both on-
line and off-line. :

PDP-11/20; extra 4K core {8K total), with cabinet and Teletype
RF11/RS11 256K-word, DEC Disk and Contral

TC11/TUS6 Duai DECtape Transport and Control -

BM792-YB ROM Bootstrap Loader

Configuration I}
This configuration is a lower cost alternate to configuration |. It is intended for
applications not requiring a lot of removable storage.

PDP-11/20; extra 4K core (8K total). with cabinet and Teletype
RF11/RS11 256K-word DEC Disk and Control

PCI1 High-Speed Paper Tape Reader and Punch

BM792-YB ROM Bootstrap Loader

DD11-A Peripheral Mounting Panel for BM792-YB

Configuration Il

This configuration is based on a small, fast 64K fixed-head disk used for systems
residency. The DECtape provides the media for on-line file, data or program stor-
age. Off-line storage is also provided by the removable DECtapes.

PDP-11/20; extra 4K core (8K total): with cabinet and Teletype
RC11/RS64 64K-word Disk and Control

TC11/TU56 Dual DECtape Transport and Control

BM792-YB ROM Bootstrap Loader

164

Configuration IV

This system combines the fiexibility of a disk system with the convenience of a
removable disk cartridge pack. It is particularly well suited for applications where
several groups use and share the same system. Each group can easily maintain
their files independently of the others.

PDP-11/20; extra 8K core (12K total) with cabinet and Teletype
RK11/RKO3 1.2 million word DECpack Disk and Control and cabinet
TC11/TUS6 Dual DECtape Transport and Control

BM792-YB ROM Bootstrap Loader

Configuration V (For very high speed operation and large file storage)

This system has all the advantages of configuration IV plus: the additional fixed-
head disk increases system throughput; the DECtape provides an inexpensive
means of providing large amounts of off-line file-structured data storage.

PDP-11/20; extra 8K core (12K total) with cabinet and Teletype
RK11/RKD3 1.2 mijlion word DECpack Disk and Control and cabinet
RC11/R564 64K fixed head DEC Disk and Control

TC11/TUS6 Dual DECtape Transport and Control

BM752-YB ROM Boatstrap Loader

2.2 PAL-11R PROGRAM ASSEMBLY LANGUAGE

PAL-11R (Program Assembly Language for the PDP-11, Relocatable Version) op-
erates under the Disk Operating System. Like PAL-114, its counterpart in the Pa-
per Tape System, PAL-11R provides the PDP-11 programmer a means of writing
programs with meaningful symbols rather that with numerical code of usually no
mnemonic value. However, with this relocatable version, symbols are assembled
into object modules which are then processed by the LINK-11 Linker, LINK-11
produces a load module that is loaded for execution by the Monitor RUN com-
mand. Object modules may contain absolute and/or relocatable code; and sepa-
rately assembled object modules may be linked with the aid of global symbols.
The object module is produced after two passes through the Assembler. A com-
plete octal/symbolic listing of the assernbled program may also be obiained. This
listing is especially useful for documentation and debugging purposes.

Some notable features of PAL-11R are:
Selective assembly pass functions
Device and file name specifications for pass functions
Error listing on command output device
Double buffered and concurrent 1/0
Alphabetized, formatted symbol table listing
Relocatable object modules

Global symbols for linking between object modules

165

Conditional assembly directives
Program sectioning directives

Instruction mnemonics and statement format are identical to those of PAL-11A,
described in the previous chapter. However, labels in PAL-11R may have either
absolute or relocatable values. In the latter case, the final (absolute) value is as-
signed by the Linker by adding a relocation constant to it.

PAL-11R assembler directives include those of PAL-11A, described in the previous
chapter, except that .EOT is effectively ignored under the Disk Operating System.

2,3 EDIT-11 TEXT EDITOR

The DOS Text Editor, Edit-11, is an on-kne text editing program providing charac-
ter, line, and file manipulations. Edit-11 will read and write ASCI files to and from
any device.

In addition to normal editing functions, Edit-11 provides for command racros
and multiple input /output files.)

An 8K system can accommodate about 4000 characters of text. All additional
core memory is available for text storage, i.e., about BODO characters of text for
each additional 4K memory bank.

2.4 ODT-11R DEBUGGING PROGRAM

ODT-11R is the on-line debugging program for the PDP-11 Disk Operating Sys-
temn. It is a system program which aids in debugging assembled and linked object
programs, From the teleprinter keyboard the user interacts with ODT-11R and the
object program to:

print the contents of any location for examination or alteration,

run all or any portion of your object program using the break- point fea-
ture,

search the object program for specific bit patterns
search the object program for words which reference a specific word,
calculate offsets for relative addresses,

fil a block of words or bytes with a designated value.

2.5 PIP-11 FILE UTILITY PACKAGE

The File Utility Package performs fite handling operations for the PDP-11 Disk
Operating System (DOS). Some examples are file transfers, directory listings, and
file renaming. The Package is named PIP (Perih- eral Interchange Program}) to be
compatible with similar programs on other DEC systems.

2.5.1 File Handling
The transferring of files between devices is one of PIP’s primary functions. There
are two basic methods of file transfer;

1. Transferring and combining - used to combine several files from one or more
source devices into one file on the destination device.

168

2. Transferring without combining -- used to move several files from the source
devices to the destination device as in- dividual files.

A file is specified by a file extension and filename. Several files can be specified by
using the asterisk * in place of the filename, extension, or both, The * symbol de-
notes "all*".

For example:
DTQ. < *.PAL

will transter all files with the extension PAL from the systems device to DECtape
unit 0,

MAIN */BR
will output a brief directory tisting all files with the file name MAIN.
*TMP/DE

will delete all files with the extension TMP from the systerns device. Unless speci-
fiegd the systems device is assumed to be the disk.

A comprehensive description of PIP's features and operation is contained in the
PDP-11 PIP File Utility Package, Programmer’s Manual, DEC-11-PIDA-D.

2,6 LINK-11 LINKER

" The LENK-11 Linker is a system program for linking and retocating user programs
assembled by the DOS Assembler. It enables the user to separately assembie his
main program and various subprograms without assigning an absolute address
for each segment at assembly time.

The binary output {object module} of each assembly can be processed by LINK-11
to:
Relocate each object module and assign absolute addresses.

Link the modules by correlating global symbols defined in one module and
referenced in another medule,

Produce a load map which displays the assigned absolute addresses.

Create a load module which can subsequently be ioaded (by the Monitor or
the Absolute Loader) and executed.

The advantages of using LINK-11 include:

The source program can be divided into segments (usually sub-routines)
and assembled separately. If an error is discovered in one segment, only
that segment needs to be reassembled. LINK-11 can then link the newly
assembled object module with other object modules.

Absolute addresses need not be assigned at assembly time; the Linker
automatically assigns absolute addresses. This keeps programs from over-
laying each other. This also allows subroutines to change size without in-
fluenzing the placement of other routines.

Separate assemblies allow the total number of symbaols to exceed the num-
ber allowed in a single assembly.

167

Internal symbols (which are not global) need not be unique among object
modules. Thus, naming rules are required for global symbols only when
differant programmers prepare separate subroutines for a single program.

Large numbers of commonly used routines can be kept in a library and be
retrieved with the Library search facility of the Linker,

Selective DOS monitor modules which are normally disk resident and
swapped on request can be selected to be core resident for the duration of
a program run using the Linker's DOS monitor Library search feature.

A core library facility is provided. with the user optionally requesting that
the defined symbols be written onto a file for retrieval by later linking pro-
cess.

2.7 LIBR-11 LIBRARIAN

The PDP-11 Librarian (LIBR-11}) is a system program for the Disk Operating Sys-
tem providing facilities for creating, modifying, deleting, and listing the contents
of Jibraries. A library can be created from one or mare files. A file consists of one
or more object modules. i.e,, the binary output of the DOS Assembler.

LIBR-11 is a vatuable program for the DOS user because;

It eliminates having separate directory entries in a User File Directory
{UFD) for each cbject module.)

It expedites the linking process in conjunction with the Linker's library
search capabilities.

It allows for standardizatior and controlied updating of frequently used
routines, e.g., FORTRAN cosine routine.

The user controls the operation of LIBR-11 through command strings typed on
the keyboard. Specified in the command strings are such things as devices, h-
brary. file, object modules name, and switches which indicate the LIBR-11 oper-
ation desired. The user can direct LIBR-11 to:

Create a library

Uipdate a library

Insest one or more object modules in a library
Replace cne or more aobject module in a library
List the directory of a library

Delete one or more object modules from a library
Delete an entire library .

A directory listing of the object modules of a library can be obtained merely by
specifying the device on which the directory is to appear and the name of the li-
brary.

The flexibility of LIBR-11 enables the user to specify certain combinations of oper-
ations in a single command string. For example, a library can be modified, re-
named, and listed in one command string.

1A%

PART (I
CHAPTER 3

FORTRAN IV

FORTRAN IV (FORmula TRANskation) languwage is a problem-oriented language
designed to help scientists and engineers express a computation in a natation
with which they are familiar. A FORTRAN source program is composed of state-
ments in easy-to-read form. Commands are descriptive of the functions they per-
form, and computa- tional elements are expressed in a notation similar to that of
standard mathematics.

PDP-11 FORTRAN IV is an ANSI-standard FORTRAN IV compiler with elements
that provide easy language compatibility with 18M 1130 FORTRAN. Since PDP-11
FORTRAN runs in the DOS environment, it requires only the hardware necessary
to run DOS, There are no other hardware requirements, but the system will take
" advantage of added resources; more than 8K of core provides faster compilations
and/or compilation of larger programs. PDP-11 FORTRAN uses DOS monitor 1/0
cails, and will support all peripherals supported by the disk operating system.

Some of the advantages of PDP-11 FORTRAN are:
random access 1/0
mixed mode arithmetic is supported
generalized expressions are allowed as array subscripts

implicit statements aliow the user to conveniently control the data type of
variables

improved error diagnostics. A useful error traceback feature specifies: a)
precisely where an error occured, b) all the linkages back to the main pro-
gram

arithmetic can be performed with or without the PDP-11 Extended
Arithmetic Element; PDP-11 FORTRAN will provide up to 24-bit accuracy
for two-word formats (real), or up to 56-bit accuracy for four words
(doubie-precision)

character-handling capability with the LOGICAL *1 capability
the ability to conserve core memaory by selecting ONE WORD integers

the ability to generate relocatable binary code directly from the compiler,
or to generate intermediate assembiy code for custom modifications

extensive compiler diagnostics with text accompanying the diagnostic. The
text may optionally be ornitted

a completed, comprehensive and reentrant math library and object time
system.

169

170

PART 1l
CHAPTER 4

COMMUNICATIONS SOFTWARE
COMTEX-11

COMTEX-11 (Communications Oriented Multi-Task Executive) is a communica-

tions software package for the PDP-11 famnily of computers. COMTEX-11 pro-
vides the following benefits:

Maximizes message throughput by fast processing of bursts

Software support for PDP-11 Communication Line Adaptors

Software support for standard DEC terminals

Compact reentrant code for core savings

Efficient set of user program commands initiate COMTEX-11 functions

Modular and expandable program modules for easy adaptation to user re-
quirements

Defines programming conventions for communication tasks

4.1 COMTEX-11 APPLICATIONS

COMTEX is intended for use in any system connected to communication lines or
servicing muttiple data terminals. Applications are:

Remote Batch
Store and Forward
Front Ends
Satellite Processors
Concentrators
Message Switching
Telemetry

4,2 COMTEX-11 DESCRIPTION

COMTEX is a medular, reentrant software package for servicing of commu-
nication line interfaces and communication terminals. Ta contral the line inter-
faces and control or transmit to the terminals, the co-resident user program need
only make executive catls to the monitor {(SCIF). COMTEX, via the SCIP, returns

status information to the user program by placing this data into a circular gueue
accessible via a COMTEX executive command.

171

The madular nature of COMTEX allows the user to easily replace, add to or modify
the terminal-dependent code in COMTEX. The terminal-griented routines known
as TAP's (Terminal Application Programs) are completely transparent to the type
of line controller. TAP's perform functions such as special character detection,
terminal control and code conversion. TAPs are reentrant and table-oriented;
thus, one TAP can service multiple terminals of the same type.

The routines performing line control functions, called ISRs (Interrupt Service Rou-
tines), are transparent to all functions not related to line control. The ISRs per-
form functions such as modemn control, and the mechanics of data input and
transmission. One copy of an ISR can service multiple line contreollers of the same
type.

All COMTEX internal operations are scheduled on a priority basis so that time-
critical functions are performed at high priority levels. Functions requiring fast
service are character-buffer-unloading or end-of-block detection. These tasks
must be serviced quickly to prevent data overrun. Jobs such as code conversion
can be performed at lower priority levels.

COMTEX-11 system-building uses the PDP-11 assembler (PAL11-5). System build
parameters consist of the type of terminals, type of {ine control units, and num-
ber of lines. These factors determine which TAPs, ISRs and line tables are re-
quired by the systermn. User programs to be co-resident with COMTEX may be writ-
ten for assembly using any of the PDP-11 assemblers.

Assemblers are available for host machines such as PDP-10, CDC 6000 and IBM
360 systems from the DEC User's Society (DECUS).

‘4.3 COMTEX-11 DISTRIBUTION
Technical information on all DIGITAL Communication products may be obtained -
from the engineering and programming teams resident in DHGITAL sales offices.

The COMTEX-11 software package including manuals, detailed flow charts, tim-
ing information, source and binary tapes, listings and training may be ordered
through any DIGITAL office.

Table 4-1 COMTEX-11 Commands

LINIT (Line IN{Tialization) Associates logical line number with physi-
cal characteristics of the line.
PUTMC (PUT Modem Control) Contrel functions to modem

PUTTC (PUT Terminal Control) Contral functions to terminal
ASRBUF (ASsign Receive Buffer) Assign a buffer for input and allow input

to commence

PUTD (PUT Data) . tnitiate data transmission

GETS (Get Status) Return status information ta the user pro-
gram.

PUTTM (PUT TiMer) Provides user program with time and time-

out information

172

INTERFACE SERVICE ROUTINES (ISR) TEAMINAL DEPENDENT ROUTIMES (TAF)

SYNCHROWOLS
LINE

ASYNCHRONOUS
LIN

ASYNCHROMOUS
LIMWE

BISYNC
TAP

DATA FLOW
FROM [5R

TasSK
SCHEDLRLING

[omtexy mawivor |
[SCIF}

PRICRITY
SCHEDULER

————————
l
|

Figure 4-1 COMTEX Block Diagram

4.4 CORE REGUIREMENTS
Core requirements for COMTEX-11 are:

System Control Interface Package (SCIP) 1300
KL11 Interrupt Service Routine (ISR) 250
DC11{ISR) 440
Interactive Teletype (TAP) 1000
SCIP Table Space 16/tine
TAP Table Space 22/line
ISR Table Space 9/line

173

174

PART Nl
CHAPTER 5

REAL TIME EXECUTIVE
RSX-11C

RSX-11C (Real Time Executive) is a software package that provides for task
scheduling, input-output, operator communication and other functions required
for real time multiprogrammed operation.

User tasks can be written to operate under the control of RSX-11C using either
assembly language or FORTRAN V.

The handling of program scheduling and input-output by the real-time monitor
makes the use of a high-level language such as FORTRAN possible, FORTRAN 1V
programs including real-time cails are supported by RSX-11C. The use of FOR-
TRAN with a general purpose reai-time executive provides a software environment
which makes the reai-time computer a practical operation tool for the process en-
gineer, test engineer or researcher. This means that with only a knowledge of
FORTRAN he can get his PDP-11 system producing results in a matter of days,
and can take advantage of FORTRAN code written for other systems.

FORTRAN programs must be compiled on a PDP-11 system under the Disk Oper-
ating System (DOS) control. Machine Janguage programs can be assembiled on-
line if sufficient care is available. RSX minimum requirements are 12K, a KWI11L
. real-time clock, ASR Teletype and high speed reader/punch.

5.1 LANGUAGES SUPPORTED

The user can write all of his tasks in FORTRAN; not only the arithmetic, togic and
control functions of standard FORTRAN but also functions of task starting, se-
quencing and input-output.

RSX-11C suppbrts. FORTRAN calis for real time functions.

A relocatable assembler and linkage editor can alse be used to build user
tasks.

5.2 SCHEDULING STRATEGY

When a user loads a task in the system he must specify one of three levels of pri-
ority. These three software or user levels are all below the four system levels of
priority which are entered due to an 1/0 interrupt or due to instruction trap inter-
rrupts.

The three software (user) interrupt levels are true priority levels. For instance, if
an interrupt occurs indicating it is time for a new task to begin, and the new task
is of higher pricrity than the task interrupted, the fow priority task is suspended

175

and the higher level task activated. If the higher level task gets suspended, the
lower level task is continued until the higher level task can resume operation.

5.2.1 System Response Time - User Levels

Systern response time for user tasks depends mainly on whether another user
level task is running at this or a Hlfigher level. A task that runs too long at a high
pricrity level can therefore destroy the response time of other tasks. To avoid this
an important design feature of RSX-11C is a software Task Watch Dog Timer.
This timer is set at the start of each task with the maximum duration a task may
run, at a particular level, before suspending or exiting. This time lirmit is a system
parameter for each priority level. Typical values may be 100 milliseconds for the -
highest level, one second for the intermediate level and unlimited time for the
lowest level. If this time limit is exceeded the task is reduced in priority and must
campete for maching time with other tasks at the next lower level. If it moves to
the lowest level, it is then allocated time slices on a round robin basis with other
tasks running at this level. At the end of each time slice, a check is made to see if
it has exceeded a maximum run time defined for this task. If this time has been
exceeded, an error report is generated. '

A fourth level of priority is available and used by the system tasks. This level is
higher than the three user levels and is used for functions of very short duration,
No watch dog time is set for this level. User tasks of very short duration may also
be loaded into this fourth level if they require exceptionally fast response times.

5.2.2 System Response Time - System (Interrupt) Levels

Normally, executive functions (scheduling, 1/0, etc.) are active on the four hard-
ware priority levels. However, special user code can be placed also at these levels.
Programs at these levels are entered due to a hardware interrupt and may be
stopped by higher priority programs.

5.3 MEMORY EFFICIENCY

Commonly used subroutines, such as the FORTRAN arithmetic library, formatter,
etc. can be lpaded as part of the RSX-11C package and shared by all user pro-
grams, This can be done because these subroutines are reentrant, i.e., they can
be interrupted while being used by one task and then re-entered for use by other
tasks. .

5.4 MULTIPROGRAMMING CAPABILITY

RSX-11C can handle many concurrent real-time tasks and a single background
task. The number is limited by the memory capacity of the computer, and is typi-
cally less than 123

5.5 INPUT /OUTPUT

RSX-11C controls and executes alt input and output operations. This is one of the
areas of maost concern to real-time users, because most real-time applications are
characterized by a large amount af input and output.

All output transfers from the program to 1/0 devices are buffered. Programs are
not suspended if room exists in an output buffer for characters being output.

With this feature the engineer does not have to worry about machine language
1/Q programming, since all 1/0 requests are performed by the executive in re-
sponse to simple § /G commands. Executive calls of this type are identical to those
used in the {(DOS) Disk Operating System used for data processing in the PDP-11.
Programs may be easily transferred between this operating system and RSK-11C.

176

5.6 OPERATOR COMMUNICATION

Simple aperator commands are provided to load, start, stop and delete a particu-
lar program. Commands are also provided to set the time-of-day, and to inter-
rogate system status.

5.7 PROGRAM DEVELOPMENT
Program development can be done on-line or off line using the PAL-11R assemb-
ler and LINK-11. Object modules produced by the assembler must be processed

by the linker to produce a binary load module which can then be loaded via the
On-Line Loader Task.

If required, the assembler, linker and symbolic editor can be operated as back-
ground tasks. The On-Line Loader Task loads modules generated by the Linker.
The joader checks modules being loaded against a memory map for proper fit.
The On-Line Loader operation does not interfere with the operation of the real
time system.

177

178

oArt 3

SYS S

180

PART lIi
CHAPTER 1

TIMESHARING SYSTEM
RSTS-11

RSTS-11is a timesharing system developed for the PDP-11. “RSTS " stands for
Rescurce Time Sharing System to reflect the capability of allowing terminal users
to access high-speed input foutput peripheral devices within their application pro-
grams.

Other distinguishing characteristics of RSTS-11 include:

applications program development in a greatly extended version of the
Dartmouth BASIC programming language.

sequential and random access to on-line disk files with a total capacity as
large as 32 million characters.

support for both iocal and remote interactive terminals operating at up to
1200 Baud transmission speed.

up to 16 simuitaneous terminal users.

1.1 PROGRAMMING LANGUAGE

RS5TS-11 applications programs are wriiten in a greatly extended version of Dar-
tmouth BASIC, named BASIC-Ptus. Because of the popularity BASIC now enjoys
as an educational tool, a large body of teaching materials, both textbooks and
programs, have been developed which further enhance the value the language.
One of the benefits of the language extension is that students are less likely to
“outgrow" the language as they become mare experienced in programming tech-
" rHgues.

BASIC is widely used in industry for computational prablem-solving via time-
sharing service bureau terminals. It is important that the language features have
sufficient scope so that the difficulty of conversion of programs written in any of
the large number of versions of BASIC be minimized.

The more significant features of BASIC-PIus include:
extensive set of character string manipulation operators ang functions

an integer data type for more efficient computation (e.g., counting) oper-
ations

programmed format control for print files

programméd sensing and recovery from computational and input /ouiput
errors at the user level

access to sequential and random-access disk files

extensions to the syntax of Dartmouth BASIC to permit more concise pro-
grams and more efficient execution.

181

Example :
if X =¥ THEN A{1l) =X ELSE GOTO 550G LET Bl =R5 IF RE=4)

1.1.1 Character String Processing
The design of the BASIC-Plus language gives particular emphasis to flexible and
efficient manipulation of alphanumeric character string data. Computer Aided In-
struction applications consist largely of the input and output of large quantities
of text data. The ability to handle aiphanumeric records and fields is essential in
business information processing.

The character string manipulation features permit the programmer to define an
internal character string variable of indefinite Jength, concatenate strings (ap-
pend strings end-to-end to form a new string), extract a substring of arbitrary
length from any part of 2 string variable, and search for a string within a string.
Character string records up to 512 records long may be stored in disk files. String
functions permit the conversion of numeric values to strings and vice versa.

1.1.2 Integer Data Type

BASIC-Plus includes the definition of integers in addition to strings and floating
point numbers. Integers are whole numbers in the range of -32,767 to + 32,767,
The use of integers often increases the execution efficiency of programs. The
most common uses of integers are in counting and indexing operations.

1.1.3 Print Formatting

Many applications, such as business data processing, require more flexible con-
trol of the printing format than Dartmouth BASIC allows. BASIC-PLUS includes a
PRINT USING statement which may be used to acheive precise definition of
printed data format. PRINT USING aliows character, decimal, and exponential
data field lengths and positions to be defined, and mixed, for a print line. tn addi-
tion, leading dollar or asterisk symbols may be “floated” to automatically pre-
cede the most significant digit of decimal fields. Traiting minus signs for data
figlds may be specified for compatibifity with accounting report standards.

1.1.4 Programmed Error Recovery

One of the more frustrating situations for a timesharing terminal user occurs
when a program is cancelled because an input/output error condition occurs
{perhaps temporarily) and causes all results created {in a file, for example} to that
point to be lost. This problem can be particularly serious in an administrative ap-
plication which is processing files. This situation can be controlled by the applica-
tions programrer by use of the ON ERROR GOTO statement. This subroutine call
statement is triggered by a variety of input-output and computa- tional errors.
The called subroutine is passed, a value which identifies the error type, and at-
temnpts to recover from the error condition. If the subroutine is successful, normal
execution of the application program resumes. Thus, in effect, the programmer
can de5|gn an executive system within his own application which supplements the
services provided by the RSTS-11 system monitor.

1.1.5 Disk File Access

RSTS-11 users may create and have high-speed access to program and data files
stored on disk units with tetal file space of up to 32,000,000 bytes. Files may be
created for either sequentials or random access processing, depending upon the
requirements of a user's application. Up to 12 files may be open and accessible
from a single program at any one time. The number of files a user may have
stored in the disk library is bounded only by the total system disk capacity and
the library demands of other users.

182

An on-line file library system means that RSTS-11 terminal users have the con-
venience of almost instant access to any desired fite or file item, Terminal users
are spared the problems and frustrations of handling paper tape each time a pro-
gram is 10 be executed. Many applications such as on-line customer inguiry-re-
sponse are possible with the large-scale file library system of RSTS-11.

Each terminal user has full control on the degree of privacy he desires for each
file he creates. The disk library file directory system, which provides efficient ac-
cess to files, includes a privacy-protection level which may be set only by the ter-
minal user responsible for creation of the file. Personnel records, for example,
can be given absolute protection from all other users. Other levels of protection
include access limited to a particular group of users, read only, write only, and
public. Files may be stored on-line on DECpack removable disk cartridge drives,
DECdisk fast-access fixed-head disk units, and removable disk packs with a capa-
bility of 32 million bytes, total, for on-line storage of frequently used files.

1.1.6 Extended BASIC Language Features

The effectiveness of RSTS-11 in solving problems in a broad variety of application
areas is significantly increased with the addition of numercus extensions to the
structure {syntax) of the BASIC program statements. These highly flexible pro-
gram statements permit more concise expression of complex program steps.

Some examples are:
LET A1=P1*R1 IF R1=500R R1=0.0
GOTO 5530 UNLESS X1$=Y1$ AND 73
LET X(¥1,Z1)=Z1"3FOR Z1=1TO L
FOR | =X(J) STEP 3 WHILE L¥1}=L%(t +1) AND J 4| =12
ON X(2,5) GOTO 100, 150, 200, 250, 300

1.2 PROGRAM DEVELOPMENT FACILITIES

A relatively high percentage of timesharing systems used in both schools and in-
dustrial organizations is either developing or modifying applications programs.
This is because problems in these environments are often of a “one-shot* nature.
Students have project assignments and engineers have computational problems
requiring special programs.

RSTS-11 provides a number of features which assist terminal users in developing,
modifying, and debugging BASIC-Plus programs. The following features are avai-
lable:

1. Each program statement is checked for errors in syntax and format. If an er-
ror is found, a diagnostic message is reported immediately.

2. Program statements may be entered in any line-number order, so that if a
user discovers that he omitted a line, he may enter it immediately without hav-
ing to type any special commands.

3. Once all program statements are entered, the program may be executed im-
mediately without having to type any special commands.

183

4. Program statements may be changed by simply retyping the line number and
statement. (To delete a statement the line number is followed by a carriage re-
turn key).

5. For debugging purposes, STOP statements may be temporarily inserted in a

- program, When a STOP statement is encountered during execution, a mes-

sage is typed indicating the line number of the STOP statement which inter-

rupted execution. Like-wise a program may be interrupted “at random''by typ-

ing the CTRL/C key combination. The terminal user may then use immediate

mode statements to print the values of an variables in his program, modify
values of variables, and resume the execution of the program.

6. Statements in a program may be added, modified, or deleted, and the pro-
gram rerun without a waiting time for recompilation of the entire program.

7. All debugging is performed at the source program level rather than requiring
knowledge of_ PDP-11 machine level instructions.

These features permit a programming session to be carried out in a highly conver-
sational manner, thus minimizing the user's time in developing or modifying a
program.

To support the previously-listed programming facilities, RSTS-11 utilizes an in-
cremental cornpiter. The compiler is core-resident, reentrant, and can be shared
by all terminal users. The incremental compiler generates a highly efficient inter-
mediate language code which allows application programs to be executed with a
high degree of efficiency.

1.2.1 Desk Calculator Mode

The facilities of the incremental compiler also provide a “'desk calculator” service
to terminal users. BASIC-Plus statements which are entered without a preceding
line number are compiled and executed immediately. in a sequence of ane or
more statements entered in immediate mode, a terminal user may assign values
to variable, perferm operations upon them, and print out results of camput-
ational operations Thus, the statement: PRINT A(l). SQR <A< FOR |=1TO
100 will print out a square root table.

1.3 INPUT/OUTPUT PERIPHERAL ACCESS .

An important feature of RSTS-11, distinguishing it from most small-computer
timesharing systems, is that a terminal user may *“‘configure™ a collection of in-
put /output devices needed to execute his application with high efficiency. The ob-
jective of this resource sharing concept is to overcome the input-output bot-
tleneck associated with the use of interactive terminals alone - whether they be
used with an in-use computer or on a timesharing bureau. For example, an RSTS-
11 terminal applicaticn program might use a punched-card reader for input of
transaction records, a magnetic tape file for updating a sequential file which is a
log of alf transactions, and a high-speed line printer for printing a transaction re-
port.

Another benefit of the resource sharing concept for organizations which cannot
afford an R$TS-11 configuration with extensive on-line disk storage capacity is
that infrequently used prograrns and data files may be stored on reels of DEC.
tape. Two inexpensive DECtape transports are included in the RSTS-11 con-
figuration. Because files may be transferred between reels of DECtape and on-line

184

disk storage quickly and conveniently, the demand for on-line disk space may be
effectively controlled.

Access to high speed peripherals is assigned by the RSTS-11 system monitor
upon user request on a first-come, first-served basis. When a user no longer
needs access to a particular peripheral device, he may type a command {c the sys-
tern to free the device for use by other terminal users.

1.4 RSTS-11 INTERNAL SYSTEM

RSTS-11 timesharing service is supported by a software system composed of: a
maonitor, a compiler /editor, and a runtime system. The software runs on a stan-
dard PDP-11 with a minimum of 24K words of 16-bit core memory. a 256K word
fixed-head disk, a duai-transport DECtape unit, real-time clock, bootstrap loader,
user terminal interfaces and power supplies and mounting hardware. The con-
figuration may be optionally extended with aditional disk units, magnetic tape
transports, line printer, high-speed paper tape reader/punch, card reader, and
additional core memory.

1.5 MONITOR FUNCTIONS

The purpose of the menitor is to control and allocate computer resources to
RSTS-11 terminal users. A major postion of the moniter is core resident to min-
imize terminal response time.

. The monitor uses a .core-disk swapping strategy to allow terminal users a large
amount of core memeory space {up to 8K words) while a round-robin scheduling
algorithm is used to determine which user should next be allocated 2 slice of pro-
cessor time. if the next user-program in the round robin queue is waiting for pro-
cessor time, the program is swapped from a higii-speed systems disk to an avai-
lable core memory area. The user's program is executed for a time-slice of either
approximately 100 millisecaonds or until the program requests input/output ser-
vice, whichever is shorter.

1.6 SYSTEM ACCESS

Users are authorized terminal access to RSTS-11 via a user identification code.
The code is composed of three parts: a project number, a programmer number
and password. Up to 120 discrete users may have accounts.

RSTS-11 terminals may operate either local to the system (hard-wired) or remo-
tely via communications lines. A wide variety of terminals operating at speeds
from 10 to 120 characters per second may be used. Teletypes, cathode ray tube
displays and the new DECwriter (a 30- character-per-second hardcopy terminal)
are currently supported.

185

1R6

PART ill
CHAPTER 2

COMMUNICATIONS

Because of its UNIBUS architecture and other advanced features, the PDP-11is a
natural communications processor. The PDP-11's adaptability to commu-
nications environments is further enhanced by DEC's advanced general purpose
communications oriented software executive (COMTEX-11) and by extensive corn-
munications hardware. By combining the PDP-11 with COMTEX-11 modules and
DEC's communications hardware, many systems can be configured for remote
terminal, data concentration, message switching and front end preprocessing ap-
plications.

2.1 PDP-11 ARCHITECTURE
The PDP-11 provides the following advantages for communications applications:

The UNIBUS asynchronous data bus behaves like a multiplexer. Multiple
single-line communications interfaces can be added to the PDP-11 without
special multiplexing hardware.

The physical modularity of the PDP-11 makes it easy to reconfigure. PDP-
11 system units connect directly to the UNIBUS and allow easy expansion
of memory or communications line interfaces. Processors, memories and
communications interfaces can be easily replaced in the event of failure or
as more powerful units become available.

The PDP-11 handles bytes easily and efficiently. Byte handling is the crux
of communications applications; and each 8-bit byte is directly addres-
sable with a full set of byte instructions.

The PDP-11 handles large core systems easily. The UNIBUS uses 18 ad-
dress bits and allows 262K bytes or 131K words to be addresses.

Eight general registers combine with addressing modes to offer very ef-
ficient string or list processing operations. General registers are used as
full 16-bit index registers; this allows code conversions to be performed
easily. .

For example:
MOV TPB.RS ;get the EBCD code from Reve Buffer
MOVB BASE(RS) :convert to equivalent ASCI Code

Nate that 1/0 device registers are accessed ‘with standard instructions,
This brings the full power of the PDP-11 instruction set to bear on 1/0 pro-
gramming.

The dynamic stack capabiltiy associated with subroutine call and interrupt
processing permits reentrant coding and fully nested interrupts. Reentrant
code lets multiple devices share the same service routines. Nested inter-

187

rupts atlow higher-priority service routines to interrupt lower-priority rou-
tines.

Vectored interrupts reduce the overhead associated with an interrupt. The
PDP-11 branches directly to each interrupt service routine thus saving the
time usually required 1o identify the interrupt. This increases the number
of lines 2 communications systern can handle.

Flexible interrupt priority structure provides the system designer with full
contral over the hardware and software priority assignments.

UNIBUS design atlows easy and inexpensive use of direct memory access
devices. The single-bus system reduces the cost of cabling and electronics
associated with DMA devices.

2.2 COMMUNICATIONS HARDWARE
DEC communications equipment is summarized below and explained in greater
detail in the PDP-11 Peripherals and Interfacing Handbook.

Asynchronous Line interface (DC11)
Full- or Half-Duplex Operation
Programmable Line Speed (4 speeds)
input and Output Speed Independent
Programmable Character Size (5,6,7, or 8 bits)
Parity Check on Incomming Characters
Interfaces to Bell 103, 202, or Equivalent Modemns
Aute Answering Capability
Reverse Channel for Bell 202 Operation

Asynchronous 16-Line Single Spead Multiplexer (DM11})
Full- or Half-Duplex Operation
DMA Character Assembly in Core Memory
DMA Message Transmission from Core Memory
Rates up to 1200 Baud
Character Size Jumper Selectable (5,6,7,8 bits)
Parity Check ont Incoming Characters
Break Detection
Reverse Break Generation
64 Character Tumble Table for Buffering Incoming Characters
Transmitter and Receiver Priority Independent
Up to 16 DM11's per PDP-11 System

Synchronous Line Interface (DP11)
Double-Buffered Program Interrupt Character Service
Full- of Half-Duplex Qperation .
Programmable Sync Character
Programmable Character Size (6,7, or 8 bits)
Receiving Sync Character Stripping Program Selectable
Speeds up to 50,000 Baud
Interfaces to Bell 201 and 303 or Equivalent Modems
Auto Answering Capability
Internal Clocking Source (optional)

188

Automatic Calling Unit Interface (DN11)
Digit-Buffered Interface
Interfaces with Bell 801A or 801C or Equivalent Units.
Program Access to all Bits of the BO1.

2.3 COMMUNICATIONS SOFTWARE

COMTEX-11, a communications oriented multi-task executive, provides extensive
interrupt and data handling capability for 2 wide range of communications appli-
cations. Major features are:

Modularity and Expandibility

Low overhead priority task scheduling for maximum system performance
Interrupt service routines for ail standard communications hardware
Terminal applications package for many common terminals
Transparent data communications front end to user's application program

COMTEX-11 is explained in more detail in PART I, Chapter 4.

2.4 COMMUNICATIONS APPLICATIONS

2.4.1 Front End Preprocessors

The PDP-11 offers a powerful, law-cost alternative to hardwired communications
controlters an the front end of large computer systems. As a front end, the PDP-
11 handles net only low- and medium-speed terminals such as Teletypes and
CRT's but also remote-terminal controllers and remote-data concentrators. Func-

tions performed by this type of systern are similar to those of a terminal controller
or a data concentrator.

A F Y
$ s >
I L
WTERFACE
| CORE | IDP‘fDI\ l |w||0n—l DC1taB
LARGE
PROCESSOR. g g
1 1
FDP-11 E g
PREPROCESSOR

#—— PHONE LINES —an

fn] [l
103 202
MOCE S MODEM

FHONE LiNES—=
REWOTE
TERMINAL
CONTROLLER _— o2
REMOTE
TERMINAL
CONTROLLER
Low
SPEED AT
TERMINAL

Figure 2-1 Front End Processor

189

2.4.2 Store and Forward Message Switchers

This type of system has a number of data terminals connected locally or via com-
munications lines 1o a central computer. Any terminal can originate a message
and transmit it to the central computer. Here the message is stored until it can be
forwarded to the destination terminal. Typical functions performed by a store and
forward message switcher are: .

Assembly/disassembly of messages
Polling and addressing of terminals
Line control
Error control
. Code and speed conversion
Message header analysis
Sequence number of messages
Time and date stamping of messages

Message routing

A
< UNIBUS >
e v
I THSK MAG. TAPE
RF1 1 /RS T TUNY
POR-11

| CORE | DM 144 DM 144

: of |e ol o

| [w il |w

1 1 1 1

1 L 1 1

ol |o oi fo

alla 6] {8

Irenm'- |T5nmum.| lm‘%u 193
I I

Figure 2-2 Store and Forward Message Switcher

2.4.3 Remote Terminal Controllers

This atiows remote access to a batch processing facility. Information to be pro-
cessed is stored on punched paper tape, punched cards or magnetic tape. Cutput
can be displayed on-a CRT, stored on magnetic tape, paper tape or printed on a
line printer. Generally, the controller is transparent to the data being transmitted;
but, it can be used to perform functions such as:

Code and speed conversion
Data compression

180

Line control
Error control

Message formatting

A 9
4 UNIBUS >
' l 1 I | d

DEC CARD HIGH SPEED
TAPE READER READE R /P1LINCH]
TCAY A TLISE CAT (5
POE-11
| I TTY OR LiNE
CORE CRT PRINTER
L1132 Len
of
vT08
FHONE LINE
BELL #(H
MODEM
LaRGE
BATCH
PROCESSOR

Figure 2-3 Remote Terminat Controlter

2.4.4 Data Concentrators

A cluster of remcte low-speed data terminals can often be interfaced more eco-
nemically to a remote interactive computer via a data concentrator than by using
a separate line per terminal. Communication line costs can be reduced by con-
centrating several low-speed terminals into a single medium-speed commu-
nication line using a data concentrator. Typically, a data concentrator performs
the following functions:

Character-ta-message assembly/disassembly
Communication Line control

Message buffering

Error control

Code conversion

Automatic answering

Automatic identification of the terminal type

191

N
UNIBUS)
'
PD®-11
(Lo RF.T.] DCi 1AM DC 1AL
R D f D o | o
AHER A L
! 1 1 -] 1 1
0| oD Do B 1D
a a a a hn a
lma”m] ll ”1034 1o| 201
uonzu Looe EM|
PHUNE LINES
l‘°‘uH'°’H‘°’~H »-ll“"wH 2o
Laati] MO MOCEW

I
e e i T

LARGE

INTERACTIVE
COMPUTER

Figure 2-4 Remote Data Concentrator

192

PART 1l
CHAPTER 3

INDUSTRIAL DATA ACQUISITION AND CONTROL
SYSTEMS

Modular process interfaces, special state-of-the-art software (RSX-11C real-time
executive) and the PDP-11 combine to provide efficient, low-cost and refiable sys-
tems for industrial data acquisition and contral applications. IDACS-11 systems
can serve either as on-the-floor satellite computers, or as stand-alone devel-
opment/process control systems. These systems can provide flexible hier-
archichal computer configurations with computer-to-process or computer-to-com-
puter communication capabilities.

IDACS-11, a total system for real time data acquisition and control, consists of:
PDP-11 computer and peripheral devices
Truly industrial process interfaces

Real time operating software

3.1 PROCESS INTERFACES

The modular and reliable process interfaces are available for a wide variety of pro-
cess signals. These industrial interfaces make possible the communications be-
tween a real live process and the PDP-11 computer. The following process 170 de-
vices are offered for IDACS-11 systems:

flying capacitor scanner (AFC11) for low-level differential analog inputs. It
is expandable to 1024 channels and is truly an industrial subsystem with
high noise rejection.

universal digital controller (UDC-11) for discrete process input/output
such as:

contacts, relays, switches, pushbuttons drivers for lamps or solencids
counters and analog outputs :

analog-to-digital caonversion subsystern (ADO1-D) for single-ended high-
level analog inputs. It has optiona! bipolar feature with autormatic sign op-
tion, and it provides 10-bit precision, 14-bit resolution.

digital-to-analog converter (AA11-D) tor analog outputs with 11-bit pre-
cision plus sign and bipolar output

3.2 REAL-TIME OPERATING SYSTEM

A realtime executive system (RSX-11C) is offered on 1DACS-11 systems. It is a
software package for coordinating the execution of user tasks in a multipro-
gramming mode. With it a test or process engineer can code tasks in FORTRAN

193

language, compite them using PDP-11 disk operating software and then execute
them. Communications to a higher level supervisory computer can be achieved
with RSX-11C. RSX-11C is discussed in more detail in Chapter 5, Part II.

- 3.3 IDACS-11 APPLICATIONS

The modular structure and reliability of an IDACS-11 system makes it possible to
implement the systern on the the plant floor where the process is located. A small
IDACS-11 satellite systemcan be used for:

Data acquisition from a live process

Menitoring and controlling a process or a production unit
Automated testing and quality control of components
Sequence control of a batch or an aperation

Cantrolling 2 complex machine

An IDACS-11 systern can be expanded to be a development and process control
systern, Working in this type of supervisory mode, an IDACS-11 system can be
usect for:

A process control system performing direct digital control, set point con-
trol, data gathering and record-keeping functions

A supervisory system communicating with in-plant satellite IDACS-11 sys-
tems or with a large central computer

A program development system for various IDACS-11 systems in a dis-
tributed network. This ensures the maximum system availabilty for new
program development and debugging.

194

APPENDIX A—PDP-11 INSTRUCTION REPERTOIRE

Mnemonic

Instruction
Operation

DOUBLE OPERAND GROUP: OPR scr, dst

MOV(B)
CMP(B)
BIT(B)
BIC(B)
BIS(B)
ADD
SUB

MOVe (Byte)

(src) » (dst)

CoMPare (Byte)

(src) — (dst)
Bit Test (Byte)

(srey A (dst)
BIt Clear (Byte)

~ {src} A (dst} - (dst)

Bit Set (Byte)

(src) v
ADD

(src) + (dst) - {dst)
SUBtract

{dst) — {src) — (dst)

CONDITIONAL BRANCHES: Bxx 1oc

ER
ENE
BEQ
BGE
BLT
BGT
BLE
BPL
BM?
BHI
BLOS
8vC
BVS
BCC
{or BHIS)

BCS
{or BLO)

BRanch {unconditionally)
loc -» {PC)
Branch if Not Equal (Zera)
loc—» {PCYIFZ =0
Branch if Equal (Zero)
. e (POYIfZ=1
Branch if Greater or Equal (Zero)
loc > {(PCYIfNVYV=0)
Branch if Less Than (Zero)
joc > (PCYiIfNY¥V =1
Branch if Greater Than (Zero)
loc— (POYIFZv (N¥V =0)
Branch if Less Than or Equal {(Zero)
loe > (PCYZVvINVYVI=1
Branch if PLus
loc=» {(PCYifN=0
Branch if MInus
loc = (PCYiFN=1
Branch if Higher
loc» (PCYIfCvZI=0
Branch if LOwer or Same
loc» (PC)ifCvZ=1
Branch if oVerflow Clear
loc—» (PCYiftV=0
Branch if oVerflow Set
loc—» (PCYifv=—1
Branch if Carry Clear
loc—» (PC}IfC =0
Branch if Carry Set
loc—» (PCYfC =1

195

OP Code

-18SDD
25SDD
-355DD
455DD
55500
06SSDD
16S5DD

0004XX
0010XX
0014XX
0020%X
0024XX
0030XX
0034XX
1000XX%
1004 XX
1010XX
1014XX
1020XX
1024XX
1030%X
1034XX

Condition
Codes

ZNCY Timing

vy —0
Y vy
vv—0
vy —0
vVy—0
vy
Yvvy

2.3
2.3*
2.9*%
28
2.3
2.3

2.3

2.6
26—
26—
26—
2.6—
2.6~
26—
26—
26—
2.6—
26—
26—
26—
26—
26—

SUBROUTINE CALL: JSR reg, dst
JSR Jump to SubRoutine 004RDD e—ne 44
(dst}> (tmp), (reg) |

(PC) — (reg), (tmp) > (PC)

SUBROUTINE RETURN: RTS reg

RTS " ReTurn from Subroutine 00020R —— 38
(reg) > PC, 1 (reg} '

SINGLE OPERAND GROUP: OPR dst .

CLR{(B) CleaR (Byte) Q500D 1000 2.3

0 — (dst)

COM(B) COMplerment (Byte) O51DD ¢y 0D 232
~ (dst) —» {dst)

INC(B) INCrement (Byte) 05200 ¢y—y 23
{dst) + 1 - (dst)

DEC(B) DECrement (Byte) 0530D ¢Yy—y 23
(dst) — 1-» (dst) _

NEG(B) NEGate (Byte) 05400 VY y ¢y 2.3
~(dst) + 1 - (dst)

ADC(B} ADd Carry (Byte) O55DD Y yY 23
{dst) + (C)-» {dst)

SBC(B) SuBtract Carry {Byte) Q560D vy vy 23
(dst) — (C)Y > (dst) :

TST(B) TeST (Byte) 05700 ¢ ¢y OO 2.3+
0 — (dst)

ROR(B) ROtate Right (Byte) 060DD ¢y y¥y/y¥Y 2.3°
rotate right 1 place with C

ROL(B) ROtate Left {Byte) 061DD yyyy 23°
rotate left 1 place with C

ASR(B) Arithmetic Shift Right (Byte) 062D0 VY y 23°
shift right with sign extension

ASL(B) Arithmetic Shift Left (Byte) 06300 Yy VY o 2.3°
shift left with Jo-order zero

JMP JUuMP 0001D0 — 1.2
(dst) » (PC)

SWAB SWAp Bytes 0003DB ¢ Y00 2.3
bytes of a word are exchanged

CONDITION CODE OPERATORS: OPR 15

Condition Code Operators set or clear combinations of condition code bits.
Selected bits are set if S =1 and cleared otherwise. Condition code bits cor-
responding to bits set as marked in the word below are set or cleared,

CONDITION CODE OPERATORS:
© 6, . © 2 4suzlvlcl
ey oo o vz eI

15 s 4 3 2 1 0

Thus SEC = 000261 sets the C bit and has no effect on the other condition
code bits (CLC = 000241 clears the C Bit)

OPERATE GROUP: OPR

HALT HALT Q00000 —_— 1.8
processar stops; (RO) and the HALT address. in lights
WAIT WAIT 000001 — 1.8

processor releases bus, waits for interrupt

196

RTI
107
RESET
EMT
TRAP

NOTATION:

ReTurn from Interrupt 000002 ¥¥vyYy ag

1 (PC), 1 (PS)

input{ Output Trap 000004 Yvv v 93
(PS) 1, (PCY], (20) = (PC), (22) » (PS}

RESET . 000005 —_— 20 ms.
an INIT pulse is issued by the CP

EMulator Trap 104000—104377 J /¢y 93
(PS) |, (FC)Y . (30} = (PC), (32) - (PS)

TRAP 104400—104777 ¢V ¢y 9.3

(P} §, (PCY |, (34) —» (PC), (36) — (PS)

1. for order codes

. = word/byte bit, set for byte {4 100000}
SS—source field,
DDb—destination fietd

X¥-—offset (8 bit)
2. for operations
A and,
v o,
~ not,
{) contents of,
¥ XOR
1 'is pushed onto the processor stack”
1 “‘the contents of the top of the processar stack is
popped and becomes”
- “becomes" .
3. for timing
[

0.4 us less if not register mode

— 0.9 usless if conditions for branch not met

® 1.2 us more if addressing odd byte

(0.6 us additional in addressing odd bytes otherwise)}

4. for condition codes

set conditionally
not affected
cleared

set

HO!‘

197

198

APPENDIX B MEMORY MAP

PDP 11 DEVICE REGISTERS AND INTERRUPT VECTORS.

VECTORS
000 RESERVED
004 TIME QUT, BUS ERROR
010 RESERVED INSTRUCTION
0l4 DEBUGGING TRAP VECTOR
020 10T TRAP VECTOR
024 POWER FAIL TRAP VECTCR
030 EMT TRAF VECTOR
034 “TRAP"' TRAP YECTOR
040 SYSTEM SOFTWARE
044 SYSTEM SQFTWARE .
050 SYSTEM SOFTWARE } COMMUNICATION WORDS
054 SYSTEM SOFTWARE
057
060 TTY IN-BR4
064 TTY OUT-BR4
070 PC1l HIGH SPEED READER-BR4
074 PC11 HIGH SPEED PUNCH
100 KWI11L - LINE CLOCK BRG
i04 KWI11P - PROGRAMMER REAL TIME CLOCK BR6
110
114
120 XY PLOTTER
124 DR11B-(BR5 HARDWIRED)
130 ADO1 BR5-(BR7 HARDWIRED)
134 AFCL11 FLYING CAP MULTIPLEXER BR4
140 AAl1-A.B.C SCOPE BR4
144 AAll L/GHT PIN BR5
150 :
154
160
164 :
170 USER RESERVED
174 USER RESERVED
. 200 LP11 LINE PRINTER CTRL-BR4
204 RF11 DISK CTRL-BRS
210 RC11 DISK CTRL-BRS
214 TC11 DEC TAPE CTRL-BR6
220 RK11 DISK CTRL-BR5
224 TM11 COMPATIBLE MAG TAPE CTRL-BRS
230 CR11/CMI1 CARD READER CTRL-BR&
234 uDC11 (BR4, BRS HARDWIRED)
240 11745 PIRG
244 FPU ERROR
250
254 RP11 DISK PACK CTRL-BR5

199

270
274

DEYICE

NOTE:

777776
777774
777772
777716
777676
777656
777646
777636
777626
777616
777606
777576
777574

USER RESERVED
USER RESERVED

START OF FLOATING VECTORS--BRS

STARTING AT 300 ALL DC11'S (BR5), THEN ALL KL11'S (BR4), THEN
DP11'S (BR5)

THEN DM11 (BR5), DN1I (BRS), AND DM11BB, DR11A, TYPE SET
READERS, TYPE

SET PUNCHES, DT11 (BR7) (DS11 VECTOR i3 AT 1000)

FACTORY BUS TESTERS

ADDRESS
XX MEANS A RESERVED ADDRESS FOR THAT OP-
TICN. OPTION MAY NOT USE IT BUT IT WILL RE-
SPOND TO BUS ADDRESS.
CPU STATUS

11/45 STACK LIMIT REGISTER
11/45 PIRQ REGISTER

TO 777700 CPU REGISTERS
TQ 777600 11/45 SEGMENTATION REGISTER
TO 777650 MX11 #6

TO 777640 MX11 #5 .

TO 777630 MX11 #4

TO 777620 MX11 #3

TO 777610 MX11 #2

TO 777600 MX11 #1
11/4558R2

11,45 SSR1

200

777572 11/45 SSRO

777570 CONSOLE SWITCH REGISTER
777566 KL11 TTY.QUT DBR
777564 KL11 TTY IN CSR
777562 KL11 TTY IN DBR
777560 KL11 TTY OUT CSR
777556 PC11 HSP DBR

777554 PC11 HSP CSR

777552 PC11 HSR DBR

777550 PC11 HSR CSR

777546 LKS LINE CLOCK KW11-L

777526 DR11A-XX--
777524 SEE 767776
777522 DRI1A DBR
777520 DR11A CSR
7775186 LP11 DBR
777514 LP11 CSR
777912 LP11 XX
777510 LP1]1 XX
777506

777504

777502

777500

777476 RF11 DISK RFLA LOOK AHEAD
777474 RF11 DISK RFMR MAINTENANCE
777472 RF11 DISK RFDBR :
777470 RF11 DISK RFDAE

777466 RF11 DISK RFDAR

777464 RF11 DISK RFCAR

777462 RF11 DISK RFWC

777460 RF11 DISK RFDSC

777456 RC11 DiSK RCDBR
777454 RC11 REMAINTENANCE
777452 RC11 RCCAR

777450 RC11 RCWC

777446 RC11 RCCSR1

777444 RC11 RCCSR1

777442 RC11 RCDAR

777440 RC11 RCLA

777434 DT11 BUS SWITCH #7
777432 BUS SWITCH #6
777430 BUS SWITCH #5
777426 BUS SWITCH #4
777424 BUS SWITCH #3
777422 BUS SWITCH #2
777420 BUS SWITCH #1

777416 RKDB RK11 DISK
777414 RKMR
777412 RKDA

201

777410
777406
777404
777402
777400

777356
777354
777352

777350
777346
777344
777342
777340

777336
777334
777332
777330
777326
777324
777322
777300

777316
777314
777312
777310
777306
777304
777302
777300

777166
777164
777162
777160

776776
776774
776772
776770

776766
776764
776762
776760
776756
776754
776752
776750

RKBA
REKWC
RKCS
RKER
RKDS

TCXX
TCXX
TCXX

TCOT DEC TAPE (TC11)
TCBA

TCWC

TCCW

TCST

ASH EAE (KE11-A)#2
LSH

NOR

sC

MUL

MQ

AC

Div

ASH EAE (KE11-A)#1
LSH

NOR

sC

MUL

MQ

AC

Div

CR11 XX

CRDBR2 CR11/CM11 CARD READER
CRDBR1

CRCSR

ADO1-D XX

ADO1-D XX

ADDBR A/D CONVERTER ADO1-D
ADCSR

DAC3 DAC AAlL
DAC2

DAC1

DACO

SCOPE CONTROL - CSR
AALL XX

AA1l1 XX

AALL XX

202

776740
776736
776734
776732
776730
776726
776724
776222
776720
776716
776714
776712
776710

RPBR3 RP11 DISK
RPBR2

RPBR1
MAINTENANCE #3
MAINTENANCE #2
MAINTENANCE #1
RFDA

RPCA

RPBA

RPWC

RPCS

RPER

"RPDS

776676 TO 776500 MULT! TTY FIRST STARTS AT 776500

776476
776476
776456
776436
776416

TO 776406 MULTIPLE AA11l'S SECOND STARTS @ 776760
TO 776460 5TH AAll
TO 776440 4TH AAlL
TO 776420 3RD AALL
TO 776400 2ND AAlL

NOTE 15T AALL IS AT 776750

776377 TO 776200 DX11

775600 DS11 AUXILIARY LOCATION
775577 TO 775540 D311 MUX3
775537 TO 775500 DS11 MUX2
775477 YO 775440 DS11 MUX1
775436 TO 775400 DS11 MUXO
775377 TO 775200 DN11

775177 TO 775000 DM11

774777 TO 774400 DP11/DCLY
774377 TO 774000 DC11/DPL1

773777 TO 773000 DIODE MEMORY MATRIX

773000 BM792-YA PAPER TAPE BOOTSTRAP
773100 BM792-YB RC,RK.RP.RF AND TC11 - BOOTSTRAP

773200
773300
773400
773500
773600

773700 RESERVED FOR MAINTENANGCE LOADER

772776 TO 772700 TYPESET PUNCH
772676 TO 772600 TYPESET READER

772576
772574
772592
772570

AFC-MAINTENANCE
AFC-MUX ADDRESS
AFC-DBR
AFC-CSR

203

772546

KW11P XX

772544 KWL1P COUNTER
772542 KWL11P COUNT SET BUFFER
772540 KWI1P CSR
772536 TM11 XX

772534 TMI1 XX

772532 TMI11 LRC

772530 TM11 DBR

772526 TM11 BUS ADDRESS
772524 TM11 BYTE COUNT
772522 TM11 CONTROL
772520 TM11 STATUS
772512 OST CSR

772510 OST EADRS],2
772506 OST ADRS2
772504 OST ADRS1

772502 OST MASK2
772500 OST MASKL
772476 DR11B DER4
772474 DR11B CSR4
772472 DR11E BA4
772470 DR11B WC4
772466

772462

772460 -

772456 DR118 DBR3
772454 DR11B CSR3
772450 DR118 BA3

772450 DR11B WC3
772446

772444

772442

772440

772436 DR11B DBR2
7724384 DR11B CSR2
772432 DR11B BA2
772430 DR11B WC2
772426

772424

772422

772420

772416 DR11B/DATA
772414 DR11B/STATUS
772412 DR11B/BA

772410 DR11B/WC
772146 TO 772110 MEMORY PARITY CSR
772146 i5

772120 4

772116 3

772114 2

772112 1

772110 0 :
771776 UDCS - CONTROL AND STATUS REGISTER

204

771774
771772
771766
771000

UDSR - SCAN REGISTER

UDCM - MAINTENANCE REGISTER
UDC FUNCTIONAL /0 MODULES
UDC FUNCTIONAL /0 MODULES

770776 TO 770700 KG11 CRC OPTION

770776
770774
770772
770770
770716
770714
770712
770710
770706
770704
770702
770700

KG11A KGNU7Z
KGBCC?7
KGDBR?7
KGCSR7
KGNU4
KGBCC3
KGDBRZ
KGCSR1
KGNUO
KGBCCO
KGDBRO
KG11A KGCSRO

770676 TO 770500 16 LINE FOR DM11BB

770676
770674
770672
770670
770666
770664
770662
770660
770656
770654
770652
770650
770646
770644
770642
770640
770636
770634
770632
770630
770626
770624
770622
770620
770616
770614
770612
770610
770606
770604
770602
770600
770076
770074
770072

DM11BB #16
DMI11BB # 15
DM11BB #714
DMIIBB #13
DM11BB #12
DMI1BB #11
DMIIBB #10
DM11BB #9
DMllBB.#B
LATENCY TESTER

LATENCY TESTER
LATENCY TESTER

205

770070 LATENCY TESTER

770056 TO 770000 SPECIAL FACTORY BUS TESTERS

767776 TO 764000 FOR USER and SPECIAL SYSTEMS--DR11A ASSIGNED IN

USER .
AREA-STARTING AT HIGHEST ADDRESS WORKING DOWN

767776 DR11A #0O

767774

767772

767770

767766 DR11A #1

767764

767762

767760

767756 DR11A #2

767754

767752

767780

764000 START NORMAL USER ADDRESSES HERE AND ASSIGN UPWARD.
760004 TO 760000 RESERVED FOR DIAGNOSTIC - SHOULD NOT BE ASSIGNED

206

APPENDIX C - INSTRUCTION SET PROCESSOR

& DESCRIPTION OF THE FDP-11 1
USING THE INSTRUCTION SET PROGESSOR (ISP} HOTATION

I5F iz a language {or notacion} which can be used to define che action of a
computer's ingtruction set. It defines a computar, including chnsole and periph-
erals, Bs seen by a programmer, It has twp goaly: o be precise encugh to con-
stitute the complere specificarion for a computer amd ro still be highly readable
By a human vuser for purposes of reference, such #s this manual. The main part of
the manual contained an English language descriprion of the PDP-11, using ISP ex-
pressions as support in definifg each instrustion. This appendix contains an ISP
description of the FDP-1I, using a few English language comments as support,

The f[ollowing brief intreduction to the noration is given using examples from
the PDP-11 Model 20 ISP description. The ¢omplete POP-11 description follows the
introduction,

& processor is completely defined ar che programming level by giving its
instruction set and its interpretar in terms of basic eperetions, datae types ard
the gystem's mgmory, For clarity the ISP description is ususally given in a fixed
order:

Declare the system's memory:

Procassor state {(the information necessary Lo restdrt the processer
if stopped berween instructions, e.g., general registers, PC, index
reglsters)

Timary memory state (the memory directly addressabls Erom the
PTOCES30T)}

Consale state {&ny external keys, switches, lighte, ete., that
affect the interpretation proceas}

Secondary memory (the disks, drums, dectapes, magneric tdpes, atc,)

Transducer stare (memory available in sny peripheral devices thar
ig aggumed in the instructipna of the proceszsor)

Declere the inscruecion formae

Define the operand address calcularien process

Declare the data types

Declare the operetions on the data Lypes

Define the instruction interprecation process including interrupts, traps, acc,

Define the instructiocn set and the ilnscrdecion axecution procesa (provides an
ISP expression for each instruction}

Thuz, the compubter systsm is desecibed by first declarving memory, data-types and
primitive dare operations, The instruction interpreter and the instructlom-sac
is then defined in terms of thesa entities.

The ISP notation is similar to that used in higher level programming langusges.
Its statements deflne entities by means of expressiocns lovolving other entities in
the pystem, For erdmple, 8n instruction to inerement {add-one) ro memary would be

Ilncrement = (M[x] — H[x} * 1}; acd onte do memory, =

This defines an operation, called "inerement', thar takes the contents of memory
¥ at an address, x, and replaces it wicth & value one higher. The ;= symbol simply
assigns & name {on the left} te stand for the expression {on the Tighr), English
langwage comments are given in icalice. Table 1 gives a reference lisc of nora-
tlons, which are {llustrated helow,

ISF expressions are inhéreatly interpreced in parallel, reflecting the under-
lying paraliel nature of hardware operations, This is an important difference
betwesn ISF and standard progremning laoguages, Which are inherently serial. For
oxample, in

The notarion devived and used in the book, Computer Structures: Readings and
Exampleg, HeGraw-Hill, 1971 by C. Gordon Bell and Allen Newell. The bBook contefing
ISF's of 14 computers.

207

Z o= (K[x] = §TH0'; MIy] - MIxD);

both righthand sides of the dara trapsmigsion operator {+) are evaluated in the
current memory state in parsllel and then transmissioen occurs. Thus the old
valué of M[®] would go into M[y]. Serial ordering of processing is indicared by
using the term "next". For example,

Z = (M[x] - S'+D'; nexc Mfy] = Mfx]);

performs the Tighthand data rransmigzion after the lefthand one. Thus, the new
value of M[x] would be used for M[y] in this latcer case.
Memory Declarations
Hemory is defined by giving a memory decilaration as shown in Table 1. For
agmple, ’
wpro-2® - 131500
declares A memory named, Mp, af 2k words (uherE k has been given a value}, The

addresias of the words in memory are ¢,1,.,.,2 -1, Eszch word has 16 bits and the
bits are labeled 15,14,...,0. Some orher cxemples of memory declarations are:

Boundary-error M bhoolean memppies; sealar Bit alternatives
Boundary -erroxr

Activity ey digit, holding value 0,2, or £

W/ Negative aligs, N aud Negaiive are sSyRoncmous
Cou3= bt Zofa iater

K[0:218-1)<7: 0 veator of 278 8-bit words

M[0:15][0: 4095]<7: (0> array of 16 A 4096 f-bit words

bropel: > o alternative woys of defining a register
brap<7: 0>, using base 18 end base 2

Benawing and Restructuring of Previously Defined Registers

Registers can be dafiowd in terms of extscing registers. In effeck, each
time the néme co the left of the := symbol is encountersd, the value 1 computed |
according to the expression to the right of :=. A process can be evgked to form
the valoe sl side-effects are possible when rhe value is computed.

Extoples of simple renaming in par:t or whole of existing wemory

NfWegative := CC<H N ig name of bit 3 o_f’_registsr oe
SRS 0n = R[6]<15: 0 SP i3 the same ae register R[E)

Ex#mples of regisrer formed by concatenstion
LACCL,0:11» = LoACSD: 11

CARCO: 47> cm Al 2X=0B0: 23
HWword[(]<15: 0> := Mbyte[d])<7:0>Mbyre[L]<F 0=

Exawples of values and registers formed by evaluatien of & progess
ai/address -increment<l: 0= ;= { vales af af ig 2 {f - byte op,

— byte-op = 23 eloe value 18 1
byte-pp = 1) L
Rup := {Activity = 0} Run=1 op 0 depending om value of Actividy

Iostruction Format betng ¢ or not &

Inetruction formacs are declared in the same fazhiom as memory and are not
distinguishable &3 special non-memory entities. The instructions are carried in
& ragiscer; thus it 1s natural to declare them by giving rames te the various
parvts of the inatruction register. Uswally only 8 single declaration is made,
the instruction/j, followed by the declarations of the parts of the ingtruction;
the gperation code, the aeddress fields, indirvect bit, ete.

Example

This declaration would corraspond te che usual box diagram:

208

Table 1. 15F Character-Set and Expression Forme

L T T L T R PP

Mla:ib} vua [viw <x:3f>='

a := [iexpression)

bit,,..,e8) = E{expression}
name' = h(expreésion}

c 4+ [{expression)
f{exprassion) - &

[date-typel

boolean = expression;

boulaan = {exprassion-1 else
expredgion-2);

; oext

K(:= boolean) = expression:

name #lphaber, This checacter &t 13 uwsed For
names

comments, Ltalies are used for comments.

memory declaration, An n-dimensional memory
array of words whare a:b ,.. v:w are the range
of values for the first and laat dimenzions.
The values of the Eirst dimension are, for
exsmple, a, a+l, ..., b for a £ b (or
a,a-1,,..,b for a > b}. The word length base,
z, is normelly 2 if oot specified, The digits
of the word are X,x+4l,...v.

definition, The eperator, :=, defines memory,
némes, process, or opeardtions in rerms of
existing memory and eperations. Each occur-
rence of "a" causes the in place substitution
by f{expression).

‘The dafinition b, may have dumoy paramecers,

Crevesl, Which are used in glexpression).

side effecte paming convention, In this
deseriprion we have used ' ro indicate that
a veference tg this nsme will cauae othsr
reglsrers to change.

transmisaion operator. The contents in
reglster a mare replaced by the value of
the funcrion.

parentheses, Defines precedance and range
of various operations and dafinitions
{roughly equivalent to begin, #nd end).

operacor and data-cype medifier

conditional axprezaion; equivalent to ALGOL
if boolean then expression

equivalent to Algel if boolean then exprassion-1
elge expression-2

sequential delimiter interpretation ls to seeur

concatenstion, Conaider the registers to the
leftc apd right of O to be one.

sratewent delimirer. Separates statemencs.
item delimiter. Saparcates liszts of variablas,

division and synonym. Used in two conmtexts:
for divislon apd for defining the nkow, B8,
te be &n alias (synonym} of che naws, b,

unknown or unspecified valua

set value, Takes on all values for a digit
of the given base, w.g., ”2 specifies eicher
102 or ‘J.12

instruction velué dafinitien, The neme X 1s
defined to have the value of the boolean,
When the boolesn ia crus, the axprasaion
will be evalvaced.

209

Table 1. cont'd.

Common Arithmeric, Topical and Relational Dperators

Arithmeric Logical Relsrignai

+ add = not = identical

« gubtTéct, alse negative A and # nat identical

X multiply v ooT = equal

/ divide ® axclucive-ot # oot equal

wol moduls (remainder) = gquivalence > greater than

{ ¥ squared = graater than or equal
{3y expotantiation < less Cthan

{)ta exponenciation % lasd than or equal
() bage

{ 3ib basa

agrel) oquare Toot
abs()} abeolute value
sign-extend(}

P sf dF
i/ instrucelomis: 0 the ingirustion
bop<3:O» := §<15:12» specifies binary (dyadie) operations
EYo-1y S R ok By -3 speaifies source (firet! cperand
dE<5: 0= a £S5 specifies gecond operand and destination

Operand Address Calewlation Process

In Rl processora, instructiens make use of operandes. In most comventicnal
[5, the op is usyvally in wemory or in the processor, defiped am M[z],
whare o is the effective address, In PGP-1l, a dearinétion address, Daddresa, ia
ueed ip this fashipn for oniy two Lnetructions. It ie defined in ISP by giving
tha process thac calculaces it. This procesa may involva anly accassem to primary
aemnry (possibly indexed), bub Lt may alsg involve aide effects, i.e., the modifica-
tion ef either of primary memery or processor memory (&.g., by incrementing & reg-
iarar), Note that the effective address is calculaced whenever ita came 1E en-
countered In evaluating an ISP expresalon (aither in an fnatructioh or in the Intar-
pretacion axpression}. That ia, ir is evaluated on demamd. Consequently, any elde
effects way be executed more than once,

Dperation Determination Processen

Inateed of effeccive-addresa, the operands are uwsually determined directly.
For ¢xomple, the lé-bit destination regleter is just the reglster selectad by tha
¢r field of an imnstruction, f.e.,

Bd = R[dr] the destingiion ragister

In one other caae, rthe operand is Just the pext word following ao instruction,
This pext word can be defined,

me"15: B/ next word s (Me[PCl; FC ~ BC + 2} the next word 42 selectad and FC iz moved

Here, the ' shows that & reference to mw will cause side effects, in this case,
PG+~ PC + 2. PFor caleulutipg the source oparand, 5, the proceas is;

§'al5ilr = vatue for sourge gperand
(pu=0) = Rier]; if mode=0 then 5' is the Register addreceed
by inetructiom field ap
(amwl) = Mw[R[sr]] 1if modeal the 5 iz indircot via R ar
(am=2) A (5T=7} = nw; if mode=? ond sourve regioter=F" then the

next wond i the operand; thie can be
sean by subatituting the expreaalon for m't

210

Ap expression is also needad for the operand, 5, which does not cauge the side
effects, &nd sssuming the ¢Efects have tdken placeé, counteracts them. Thus, §

would be:

5<15: 0> cm f
(ei=0) = B[sr];
(em1) = Mw[R[sr]];
{sn-?) A {ar=7) = Mw[P(-2]

no aide effects
no gide effects
sounteratt previous aide effeats

In the ISP description & genmeral process ia given which determinea operands for
Source-Destination, word-byte, and with-without side-effects. Io order to clarify
what really happens, the source sperand calculation, for words, with side effects,

is given below,

SE5: 0= w f<lliEx
my = sf<i: 3
ad = gfc¥e

8Ty i= gf<2: T

<1510 o= (Mw[BC]; PG+ PCH2)
Re<l5: 0= = Rfsr]

5715 0 Bouree 1w (f

{smuf) = Ko,

(om=2} A (scf?) = (Mw[ERs]
Ry = Bs + 2);

(gmm2} A (Sr=7) = nw;

(awmb) = {Re = R - 2; next
MwiBs]);

(sm=6) A (8rd) o Mw[ma' + Rel;

(mr6) A (sr=7) = Mw[me' + BC);

{swl) = HulRal;

(gmm3} A {ord?) » u[Me[Rs]];
Rs - Ru + 2};

{o=3) A (s7=7) » M[ow'];

(gw=3) = {Ra » Rs - 2; next
Mw[MulBs]]}:

(sw=?) A {srf7) = MwDM[ow' + Ral];
(#mm7Y A (8r=7} = MeMw[ow' + PC1]
%

(ar=g) A ({smmi} ¥ (=mm5)) A
[sMOﬂal = (frack ovarflow ~ 1)

mtﬂ‘ml’ !

source field (8-Bits) af instruction
gourge mode somtrol field

deferred adiress comtrol

regigter specification for source

nawt wend; wsed a8 operand
sourse regigter epecifieation

valne for the sowres--direct addressing
uge the pegister Rz ap operand

dipget mute—t t (inor 17

Rel; wusai’y used as FOT

direct; az «lly immedizie opsrand
direct; aut. -decrement (decrement

Ral; wuewally :eed ap PUSH

direct; indexea ia Ra-—-wdse next-word

direct; relative . FO; uwace nert-word
value for the eour e-defined addresaing

defer throuyh Rs

defer through stask; auto

Tnarement

defor via next werd; pheolute qddvessing

defer through stack after aute

decrement

defer, tndered via Ra

defer pelative to B°

end calonlation prosess;

checke if staok overflouved for several
5

end sonree ealoulation

A data-type gpecifies the ancoding of & wesning lote an inforwation medium,
The meaning of the data-type {(what it designates or refers to} iz called its
refavear {or value}). The referent may be anycthing ranging from highly abstract
(the uninterpreted bit) to highly concrete {the payroll account for a apecifie

cype of amplovee).

Every date-type hag a cerrler, inte which all ite component data-types can
be mapped, The carrier ia used in atoring the daté-type in memories and is usually
a word or multiple thereof. It must be extensive enough co hold all cthe component
data-types, bur may be a larger (having arror checkiog aod correcting bies, or

even vpused bits). The oapping of the component datz-types inta the carrier is
eelled the format. It ie giveo a5 4 list which associates to eAch componEnt &n
wxpraskion involving the carrier {e.g., 84 in the instrucrion former}.

ISP provides » way of osming dace-types, vhich also aerves oé B basis for
abbreviations, Sowe data-types aimply have convearignsl némes (e.g., charactet/ch,
floating point mmbers/f); others are named by their velee (e.g., integer/i}. Data-
typas which brw itarates of 8 béaic component ven be nemead by the compooent auffixed
by a lengch-type., The length-type can.be nrray/a, impiying 4 sulti«dimensional
array of fixed, but unspecified dimenslons; & string/sc, implying & single seguence,
of variable length (on wach occurrence); or & vocr.or/v, implying & one dimanaional
arvay of a fixed bur unapacified number of componente. The length-type need not
exist, apd then this form of the name 15 not appliceble, Thus, lv is the abbrevi-
ation for an integer vector. It is alsc posslbla to neme & data-type by simply
listing ite componacts.

Data-types arve often of a glven precision apd it haz become customAry Lo
measure this io terme of che number of components that are used, a,z., triple
precipion integars, In ISP this is indicated by prefixing che precision symbol
to the bsaic data-type nsme, @.§., di For double précision lnteger. Hote that a
double precision integer, while teking two words, is oor the same thing as 8 two
integer vector, go that the precision wnd the length-type, though both implying
aomething about the size of the carrier, do not express the séme thing.

A liat of common dete-types &nd their abbreviations it given in Table 2,

Qgera:ions on Data-cypes

Operacions produce results of specific data-types from operands of specific
data-cypes, Tha date-types themselves detarming by and large the possible gpera-
rions that apply te them, Ho atiempt will be made to definc the vérigus opera-
tions here, 4s they are all familiar. A reasonably comprehensive 1isc is given in
Table 1. An operation-modifier, enclosed in braces, [}, can be used o disringuish
rariant gperations. The oparation-mpdifier is upually the name of a data-type, e.g.,
AtB{t} is & floaring point addition. Madifiers can alsc be a description name ap-
plying te the cperation, e,8., a X2 {[rotete].

New operations car be defined by means of forms. For example, -the various
ad¢ operations on differing data-types are epecified by writing {daca-typel afrer
the gperation,

Ingtruction Intwrpretition Fracess

The instruction lntarpretation expreasion and the instruction sar constitute
a single ISP expression that defines the processor's action, In effect, this
aingle axpression is evaluated and all the other parts of the ISP description of
4 procesdor are evoked ms indirect consequencas of this evaluation, Simple inter-
preter without incerrupt facilities ahow the femiliar cycle of fetch-the-instruction
aod execute-the instruction,

Example;
Run = {instruction + M[PC); PC ~ PC + 1; next Thir is o simple
Instructlon-execution; naxc) interpreter, not the
rre for the FOP-11

In more complex processers the conditions for trapping and interrupting wuac
algo be dexcribed. The effective address calculation mey also be carried cut in
the interpreter, prior to axecuring the instruction, especially 1f it ls to bhe
calculaced only once and will have » fixed value indepandent of anyrhing rhar
happens while mxecucing Iinstructions, Conaola activity cao also be described in
the intarpreter, €.g., the effect of a gwitch that permits stepping through the
program under mamual control, or interrogating and changing oemory.

The rormal stAcement for FDF-11 interpretation is jusc:
= Interrupt-rq A Run = {instructlon +~ Mw[P{]; PC ~ PC + 2. next fatah

Inscruction-execution; naxt eracute
T-flag = (Scate-change(ldy); T-flag - 0}) trace mode

212

Table 2, Common Data-Types Abbrevistions

Primitive String and Vector
B bit or boolean by bit,vactor
by byte by.at byte,string
ch charscter ch.st character.string

¢ complex

df dooble pracision floating
dw double word

d digic id J-digit pumber
f floating

fr fracrien

hw half word

i integer

mx mired numbar

g quadruple lengrh word

tw triple length word

W word

Ingtyuction-Set and Insrruction Execurion Process

The instruction aet and rhe precesa by which each ingcruction is executed
are useally given together in a single definiticn; this process 1s called
Instruction-exacution Ln nost ISP descriptiena. Thie uacally includes the defini-
tion of the conditions for execution, i.e., the operation code, value, the name
of the ingtruction, & mnemonic alias, and the procees for it¥ execution, Thus,
an individusl instrection typically has the form;

HOV (:= bop = 00012) = { move word
r +=5"; next move gourde to intermediate register
K- r<lSs; nagative?
(r<15;0> = 0) =» {2+~ 1 glae Z =~ 0}; zero?
¥+~ 0; ovarfiow clearsd
- xdy trananit result to destination

With this formar for the inatruction, rhe encire lnetructicn set 1s simply
& list of all the imatructions. Om sny particular execetion, as svoked by the
interpratation expreasion, typically oae aod oaly obe operation code correlation
- will he satizfied, hence one apd only ome imstruction will be axecuted.

In the case of PPP-]11l, the text carrigs the definition of the Individual
inatructiong, hence they are not redefined in the appendiz. Iastesd, the appendix
dufipes the conditfon for wxecuting the fnstructiona. For example,

MOV ;= (bop = 00012)

i# given in the apperdix, and the action of MOV is dafined (fo ISP} in the taxt.

213

THE PDP-11 ISP

POP-11Te Primary (Progpeam) Memory ond Processor State
The deolaration of this memory ineludes all the arate (Bits, words, sta.) that a progream

(programmer) hae aoeesa to in thie part of the somputer.
memaries (e.q., disks, tapee! and {nput-output device state dealantiions are

varions sec
included in g following zection.

Primary (program) Manory
Mp[0:2 «1}15: 0

W word [x<15; B=T<15: 0 1= (
- il = Mp[a<l5:1n];
x> m {Tuglue ; Boundary-error «~ 1))

Mb/Mbyte [=<l5: 0]ad: 0 2w {
— wl = Mp (x5 1)< e
<05 > Mp[x<15:1>}<15:82)

’ Prosessor State
R[0:7]<15: 0

SP15: 0 /Scack -Pointer = R[§)
PC<15: b=/ Program-Counter := R[7)

P5<15: 0>/ Procassor-State-Hord
Unused=<7: 0>/ Undefined := P8<15:8

P2 - fPricricy ci= PGS

T/ Trace i= PS>

£0cd: 0/ Condiedon-Codaa := PS<I: 0>
H Nagativa o Coed>
2/ 2ero . OOk
v/ Overflow FLRrcd o
¢/ carry = QO

e oomsole g not included. The

aotual physical, I6-bit memory of a particular
ayatemy R = 12, ..., I7

wordegesssgad wemory
word on even byte bowndary, @il right
word on odd byte boundary, trap

byte-gocesaed memory
take Low-order bite iF even
take hi-drder bite 1f odd

efght, 18-bit General-Regiaters, used for
aomenlators, indering and staoks

speetal stack, eontrolled by RES]
location next inatruction, alse #{?]

Ig-bit register giving reat cof state
mapping of bits inte FS
interrupt level econtrol of prosessor

denotes whether trap f{a fo ocour after each
inatruction

set ap @ flmetiom of imatruction and resulis
if reauli = -

if result = ¢

if result ovenflows

if result carried into/borrouwed from most
signiffeant bit

Proeaspor-Controlled Error Flags (resulting from instructiom-exscution)

Boundary-Error
Srack-Overflow
Time~ut-Ezror

Tilegal-Instruccion

Processor-activity
Activ ity3

Bun
Waic
DEE

:= (Actlviey = D}
im {Activiey = 1)
o= {hetivicy = 2}

get £f word {2 gesessed on odd byte boundary
sat {f word aseessed, via 5P < 4003
et Lf non-existent memory or derice iz
referenced

et if adpar‘tiauidr olasa of instruciions ie
exacute.

termary, specifying stats of proceasor
sormal Drgtruction thterpretation
watting for interrupt

off, dormant

Error-Flags (resuliing from without the procegsor)

Power-Fall-Flag
Power-Up -Flag

eet if power {g low
set wien power comes on

214

Ingtrustion format fleld declarations
1<15: 0>/ instruceion

bop<d: & 1= L215: 18 binaey opcode format
sf<5: O = 1165 souras fleld

sy 1= gt i source mods - I bite

md FLAY -4 sourgs defer bit

stg im gfc? gource regicter - ¥ bits

Af<S: 0 iw LS 0 destination Field
9 :m dfC5: 3 destination mode - 3 Fits
dd = i3> degtination defer bit

drg cm A2 0> deetination registar - 2 bits
uop-<3:ll>a rm <156 unary op gode (arith., logical, shifts)
dr gee binaory op format
jop<y: - = 1159 . Jer format

er; df see bingry op format
brop<1:0>16 ta [15: 8> bremeh format
offset<t: 0> := sigr-exteod (<7 0=} affaet value
tropli O o= 415 8> trap format
u:llmeni-tl'::pﬂ'.C':v!‘6 EL I Lo Y1 =3
eopb: 0> iz 11509 exrtended opeode format
er<d: 0 1= <86 extendsd register
esf5: 0> IR S extended powrce field

esmy i= eaf<d:I> mode

asd = esfcke defer "

esry = asfe2:0x register
Fop<?: 0> 1w i<l5iB> floating op format
f17: 0> w176 regiater destination
fafaS: 0= ELIE 1o Bouree
15 [
l bop ! of] ag l binary operand (2 operands) format

' i L i L I 1 L .1 1 L

it | ST dm | dr
ad dd

E Loy S 1‘ Idlf .] unary operand (1 operand), JMP format
Looodsoe, 1,85 [SR fomac
1 s onpl i [Lt o.lff_slet_l | I branch Fformat

value ;= sign-extend {(offset)

ll .I ltrlopl 1} _!Z umused //] trap format

| aop l . | asf l axtanded operation fovmat

] Fop [fr | £sf | floatiog op former

215

atfaddrass-increment<l: = ;= {
— kyta—op = 2;
Byterop w 1)
Byte-op := {MOVE v BICB v BISE ¥ BITR V¥ CLRE ¥
CME v INCB ¥ DECE ¥ NEGB V ADCE v
SBCB v TSTE ¥ RORB v ROLB v ASRR v
ASLE v SWAB)
Reserved-inatruction := ((L=) ¥ (L=) Vo..w(i= }) umuped tnetructions

Regiaters and Data Addressed via Instructiont Formal Speoifications

ovf next-word<15: 0= := Me{PC] used in orerand determination
aw! foext word <15 0= (Mw[PCl; PC ~ PC + 2) with side effects

1w/ last-word<ls: i = MWw[PC - 2] undpes eide affects

Re<15:0> ;= R[er]<li:0- the source regiater

Rd<15: 0> = R[dr}l5:0- thae destination register

Operand Determingtion for Source and Destination

Moo types .of operands are usedr $', Df, Sb' and D¥ - for operands that cause side-effec
(t.8., other pegisters are changed; and 5, B, 5b and Db for speranda that do net ouuse adde
effects. Twe general procedures Wo' and WNo are used to determineg theas operande for side ef-
fects ond no side effects, respectively

S'415:0= = Oprd'<15: 00w, 2,sm,6T) souree vord operand side-;ffects
5C15:0 :m OprdclS:o(Mw, 2,8m,8V) sourcs word operands no side-effects
sb'<7:0> = Oprd'<7:0:(Mb, 1, sm,97} mouras byte

Sl = Oprd<7; - (Mb, l,Em,eT)

D'<15: 0 = Oprd'<15: = {Hw, 2,dm,dr) Destination operands

iSOl 1= Oprd<ls:O=(Mw, 2,dm,dr)
e b = 0?;6'47:0}{!111, 1, dm,dr)
Db<7: 0> = Oprde?:O-(Mb, 1, do,dr}

Generial Operand Caloulation Progess {with Side Effects)

Oprd"«wl: 0-{H,ai m, rg) ;= ({ ’ value for word or byte operand; dim
addvegstng: wl indieqtes length;
-mode, and rg regieter

Rr<lS: i = Rlrg) secondavy dafinition for regieter
(0} © Redwl:Q>; 0, uze the registar, Frn, as opered
(w=2) A (r@f?} = (M[Rr); next 2, direst quio-fnovement (increment
Rr =~ Rr + s1); Ryl uaml&y uged in pop etgck
(mm2) A (rg=7) = qu'<wl;0>; 2, direct; next-word is immediate
cpertd
(=4} » (Rr + Br - 4i; next £, direct; after aute decremertt
M[Bxr]y; uskally used as PUSE staok
(wm6) A {raf?) = Hfme' + Rel; &, ﬁm”; indexed via Rr uses nest
e i
(x=6) A {rge?) = M[ow' + PC); 8, direct; relative to PC; uper near
vord value for word opergnd dafer
addvesatng
{o=1) = M[Rr]; 1, defer through Bn
(=3} A (rap?) = (N{e[Re]]); next 2, defer through Mo[RY) (usually at
Rt = Er + 21); auto-ingpemertt
(w3} A {zg=?) » H[ow']; 5, defer vig naxt-word; absolute
addregating
{w=5) = (Rr + Br - wi; puxt 5, defer through stack after awtio
M{MeIRE)D); ’ decrement

216

(@1} A (rgf?) = M[Hw[sw' + Re]]; ?, defer indezed via Rr

{@=7) A (Tg=7) = M[Mw[m' + PC]]: ?, defer relative to PO
X end ealeulation prosess
(rgm6) A ({o=4) v (@=5)) A cheek if stack overflows
(8P < ‘Wﬂa)i = (Stack-overflow ~ 1}
] end cperand aaloulation process

General Operand Caloulation Procese (without Side Fffectel)
Oprdawl: (> (M,a1 o, rg) ™ (

Rr<15.0- :m R{rg]

(a0} w Rr<wl:l>;

(m=2)} A (rgf?) = Mw[Rr - all; wundo previcus slde—effenta
{a=2) A (rg=7) = Lwowl: D> undo previous aide-effects
{wmh) = M[Er];

{w=6) A (rgh7) = M[Iv + Rr); wnde previows aide-effects
{m=G) A (rgm7) = M[lw + PC); unde previoug side-gffects-

(mml) = M[Rr];

(w33 A (eghT) = Wisw[Rr - 217; unde previous side-effects
(3 A (zg=?) = H[IW]; wido previoue side-efferts
(w=3}) = M[H@(Rr])];

@=7) A (rgh?) @ MDW[1lv + kr]]; undo previous side-effects
(=7} A {rg¥?) = M[Mw[lw + PC1]) wndo previous side-effecta

Degcipacion addregees for JMP and .JSR

Da<15: 0 1= {{ directs:
(dom0} » {?; Illagal-ipscruction - 1); illagal regieter aldreas
{dwmZ} A {drd7) = (Rd; B4 ~ Bd + 2); auto-inorement
{dmm2} A (dr=?) = (FC; BC+~ PC + 2); il
{dw=i} = (B4 ~ Rd = 2; pext Rd); aqutow Earement
(dare6} A (drf7} = (&' + RA); indezed
(dmmf) A {dr=7) = {aw' + PC); relztive

dafers:

{derl} = Mw(Rd]; via regloter
(dr=3) A (drf7) = (Mw[Rd]; Rd « RA + 2); via auto-inorement
Ghre3) A (Ar=7) = @', abeolute gddvess
{(dem=5) w (Bd = Rd - 2; nexr Mw[Rd]}; awto-decrement
(de=7) A (drd7) = Hwlmww + Rdl; via index
(dam7) A (dr=T) » Mw{mw' + BC]); nexe relative to AU

(dr=6) A - ((du=D) V @hom3) v (dm=T)) A (5P < 4005) = (check for atack cverflow
atack-overflow = 1)}

Data Type Formate
byfbyrec?: >

wiword<ls: -

wifword. integer<l5: 0
bybvfby:o.booleln—vact [S Y <
why/word.bookean-vector<ls; 0>
1/d.wfdosble.ward<dl: 0>

217

£/d. £fdouble, word. Floating=31. 0>
faf floaring.aign = E3 1>
fe/ floating. exponent<7: B> 1= £<30:2%>
fuf floaring.nantiesa<22: 0 = £<22:0
t,’cri.ple.vord(ﬁ?: =]
qf quadrupla, word<63: (-
qf/ uadruple,word. floating-point<63: 0>
qfs ;= gF6d-
qfe = qf<62:55>
qf c= gf<is: i

I/0 Devicea and Imterrupts, State nformation
Deyica[0;N-1]
Device«name[J}<13: 6> = J

Device-intarrupt-location[J)<15: 0= 1= K

dobfdevice-cutput-butfer[J]1<15: &

dib/device-inpuc-butfer[13<15: 0> -

dofdevice-status [J1<15: 0
derrfdevice-error—flags[J}3:0> = ds[T}13:12-
dbusy/device-busy[1] .= d3[I1L=

N /0 devioes - gegtme device J

abar to which device responses and
is addreseed

egeh device has a value, K, which i+
uses as an address to {nferrupt proces

program controlled devies data

o regiater with deuise oomtrol state
[alrlc | anyd
atatuy

duni.I:fdevice-unit-nlectiun{.l]d:lb = da[J]<1l0: 8 asaignments

ddonelJ] := ds[Ik7>
denb/device-done-intarruptvenabla := ds[J}<6>
derrenb/device-error-intarrupt-enabla = dg[3]<5>
toefdevice-memory-extanclon[JI1<h: 3 o= dg[T]%: 3
dinc/device-funceion[JJ2: 0> = de[J3<2: 0
dlotrgfdevice-intersupt-request[1] 1= {
{ddome(J] A denb{J] v {{derc[J] ¥ 0} A derrech(J]})
dil/device-interrupt-level [J}<7: 4>

each deviee is assigned to I of ¢ fevel

Mapping of Devices into M. Fach device’s registers are mopped into primavy wvord memory, e.g.,

Teletype
MT[177560,] 1= tks/ds[TTY-keyboard]
¥'[177562,) 1= tkb/dib(TTY-keyboerd]
' [1775645] = tps,/de [TTT-printer]
H'[1775665] += tpb/dob[TTY-printer]

Interrupt Requeate
br}'bus-requeut-fnr-i.nterruplﬂ?:4) LU |
(dincrq[0) = dLL[G]} ¥
(dinteq[l] = dil[1]} V...
(dintrq{J] = dil(J]} V...
{dintrq[R] = dil[H])}

Interrupt-rq := (intrql = p}

intrgl/intertupt frequest-leval<?: 0> := (
T = ¥;
- br<Tr A brab> = 6
= brats A = brbs A = braS> A brad & §)

218

keybosrd status

kepboard input data
teleprinter status
telgprinter data to print

OR of all davice requsata

interrupt if a request ia ¥ priority/P

Instruction Interpretation Proeess
Interrupt-rq A Fun = (Mormal-interpretation);
Normal -interpretation := (I + Mw[PC]; P +~ PC + 2 next fetelr
Instruct ion-execution; next execuie
T-flag = (State—changeilés); T-flag « 0)) Traos
Interrupt-rq A — 0ff = |
state-change({pevice-interrupt-lecation(J]); agaume deniee J interrupts
P - intrql);
off = { },;
— Interrupe-rq A Wait = 4 J;
State-change{x) = { for etacking state and reators
SF = SP . 2: pext
Mu[SF] +~ PS;
SP ~ SF - 2; next
Mw[EF] ~ EBC;
PC = Mw[x];
BS ~ Mu[u+2]
Bounddry-Errer = (3tate-changel4g}; Brundary-error = §)

Time-Tut-Ercor -+ (S:ar_e-chan,ge{f»s); Tima-mt=-grror ~ {1}
Power-Fpil-Flag = (s:a:e—change(24a); Power-Fail-Flag «~ 0;} progrom mest turn off oorputer
Power-Up-Flag = (PC ~ 248; Power-Up-Flag = 0; Activity = 0) Jtart Up or power—up

Instructicn-Szt Definition
Eaeh ingtruction ic defined in ISP in the tert, thercfore, it wiil aot be repeated here,

*a 17 bit resule, r, used only for descriprlve purposes -

24 prime is vsed in § (e.g., 5') wrd b {e.g., D'} to indicire that when a word i{s accesssd in
this fashion, side affects o4y pocur., That is, ragieters of R may bu changed.

:‘E all 16 bits of rveaclc, T = &, chets Z 18 pec to 1 else Z 18 sac to 0.

*The § jeasc aignificant bire are used to form & 16-bir positive or negArive tumbar by excend-
ing bir 7 iaro 15:8.

Fa = b ceans: if boolean & is tzue then b Le axecuced.

Sjw means the memory téken as a work-organized memary.

219

220

INDEX

AdAressingcovencciiiiiinere s 5,19-34
Addressing SUMmary ...t 34
ArchiteCtUre. ... e 9

Assembly Language...... e 155,165
Automatic Priority Interrupts...‘.‘....4,15. 117

Basic 8,160,181
Bus.. . {4
BYEBS covreveerrrearre e rensarss s srver s s enenne s 40
Central Processor. .3,10
Co-Routines.......... N ¥
Communications8,171,187
Comtex..ccccceeioranns ORI ¥ 3 |
CONSOIR .o vrerraesrrrinsrarsrre e eans 136,137
Core MemMOrYvveviorsreonsnsenn 6,13,199
Data Acquisition And Control.......8,175,193
DebUgEINgveveieeeccvsr i nireenns 159,166

Device Registers wrreeneee- 198
Direct Memory Access ... —
Disk Operating Systern ... e d 187
DIMA L cocrremieemraes e rers e s ran e s genes 5
DOS... ...7,187
EAE .o e eenrrnrr e vere e e 143
Editor ..o 156,166
Electrical 128,135
Enviro nmental 131,133
Extended Arithmetic Elementccovre 143
File Utility Package........ccoeeree i vemecrnecnnens 166
Floating Pointo 157
FORTRAN ...t 8,169
Front Panel.....cccecvv e iieien. 136,137
170 DEVICES..coiotiiiinian e s rissiasssnssirastioeanes 6
IDACS... 8,175,193
Industrnal Data Acquusntaon And

Controb ... e 8,175,193
Input /Output Executive........ccveeeeecennes 159
INStructions.......occoinervrcnsccsnrn 3,37-108,195
INSErUCtion TIMINE...c..cccoe v rvrrer e e 3B
Instruction Set Processorevreeur 40,207
Interleaving verveeevrernr e 15
Interrupt Nesting.........ccccco e . 118
Interrupt Vectors199
Interruptsc.e.....c.. 15
11 OO 40,207
Loaders; DUMPS viivivecrnesnsrmnieneennas 156
¥ T T 65,13,199
MemOFy Map ..o 199

221 .

Mounting Box... 127-132
Nesting... e 118
Non- Processor Request 5
NPR... R
Operator s Console ...136, 137
Options.... S TR -
Packagmg 5,125-135
Paper Tape Software ..o 7.181
PC .. erreseeeenre et raeraere 30
Perlpherals RPN -
Physical Reqwrements . ..125-136
Position Independent Code . e 123
Power Fail/Restart......ccco oo 5 12
Power128,13%
Priority Interrupbs ..4,15,117
Processor Status 10,107
Program COUNer ... 30
Programming 109
Real Time Executiva.... ...175
Recursionc........ ...113
Reentrancy...4,121
RSTS-11 cocirccciniinicciinns s srinaeas 8,181
RSX-11C....... e 175
Rugged 11.... w132
Software.......... 7,151-178
Specifications125-136
Stacks5,34,109
Subroutings ...veecmesnren e 91,113
Timesharing ... oo 8,181
Timing.......... e 38
Traps........ .12,93-100
Two's Complement 145
UNIBUS... 2,10

222

	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222

