- E070020 P# d N
hndpb@?@k

W)

uonipa puodes 3ooqpuoy udpd

L OO R (R _[!lll]llilllllljé s

£ o BHEL LLLL e LI Er

L.
T
3
-
1
=
-
("\
¢
T
S_.I
a
cr
Q
.
a;
3

P

dilgiltial
~ digital equipment corporation

Copyright 1969 by
Digital Equipment Corporaticn

PDP is a registered trademark
of Digital Equipment Corporatian

The material in this handbook is for information pur-
poses only and is subject to change without notice.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

PDP-11 SYSTEMS OO

UNIBUS

KAll PROCESSOR
Priority Interrupis
Reentrant Code
Genera! Registers
Instruction Set s
Addressing
Asynchronous Operallun .

PACKAGING

SOFTWARE

CHAPTER 2 SYSTEM INTRODUCTION

SYSTEM DEFINITION e e e

SYSTEM COMPONENTS .

UNIBUS
Single Bus
Bidirectional Lines ... e
Master-Slave Relationo
interlocked Communication
Dynamic Master-Slave Relation

. KA1l CENTRAL PROCESSORccoeee
General Registers
Central Pracessor Status Reglsler

CORE MEMORYc..ociciiii e

PERIPHERAL DEVICES

SYSTEM INTERACTION

TRANSFER OF BUS MASTER ...

PRIORITY STRUCTURE
MPR Requests ...
Interrupt ReqUests ... e

CHAPTER 3 ADDRESSING MODES

INTRCDUCTION ...

SINGLE OPERAND ADDRESSING
General Register Addressmg __
Deferred Addressing ... T,
Indexed Addressingoce
Autoincrement Mode Addressing ...
Autodecrement Addressing

STACK PROCESSING ...,

USE OF THE PC AS A GENERAL REGISTER
Immediate Addressing .
Absolute Addressing:
Relative Addressing :
Deferred Relative Addressing

USE OF THE SP AS A GENERAL REGISTER

DOUBLE OPERAND ADDRESSING

CHAPTER 4 INSTRUCTION SET

INSTRUCTION TIMING ... e eere e ereaae

LR B PO R DO R et et e i

ONSNNSNOOO OB M oOg

DOUBLE OPERAND INSTRUCTIONS e
Arithmetic Operations

Boolean Instructions

BRANCHES .

Uncondltronal Branl::h
Simple Conditional Branches

Signed Conditional Branches
Unsigned Conditional Branches
JUMP e

SUBROUTINES ...,
Examples ...

SINGLE OPERAND INSTRUCTIONS TSR
Multiple Precision Operations
Rotates ...
Exarmples ...

BYTE OPERATIONS . .
Double Operand Byte Instruchons ,,,,,,,,,,,,,,,,,,
Example .o
Single Operand Instructions

CONDITION CODE OPERATORS,

MISCELLANEQUS CONTROL INSTRUCTIONS

PROCESSOR TRAPS ...,
Trap Instructionscciin i,
Stack Querflow Trapeee e,
Bus Errer Traps ...
TrACE TrADS .o e e e e e eea e e

CHAPTER 5 ADDRESS ALLOCATION

ADDRESS MAP . .

interrupt and Trap Vector
Processor Stack and Generai Storage
Peripheral Registersciiciien e e

CORE MEMORY .. .
Read-Write Core Memory e e —
Read-Cnly Core Memory
Wordlet Memory ..

. CHAPTER 6 PROGRAMMING OF PERIPHERALS

DEVICE REGISTERS .

CONTROL & STATUS REG!STERS
Device Function Bits
Memory Extension ...
Done Enable and Interrupt Enable .
Condition Bits ...
URIt BItS ... e v e
Error Bits

DATA BUFFER REGISTERS ..

PROGRAMMING EXAMPLES—NON INTERRUPT

INTERRUPT STRUCTURE ... irnivrecceeecvreneeeangiees

PROGRAMMING EXAMPLE e e

CHAPTER 7 PERIPHERAL BULLETINS

TELETYPE {MODEL ET33 DC;’DD)
Size . .
Power Requlrement

TELETYPE CONTROL (MODEL KL11)
Teletype Control . TP TP PRRRRTOO
Keyboard/ Reader Operatron y
Registers (TKS, TKB} .
Teleprinter/PUNChl ... e
Registers (TPS, TPB)
Programming Example_...........
Peripheral Address Assignments
Mounting ..
HIGH-SPEED PERFORATED TAPE READER (MODEL PCll)
Tape Reader
Registers (PRS, PRB)
Programming Example
Peripheral Address Assignments
Tape Punch .

Regmters (PPS PPB)

Programming Example

Perlpheral Address Asmgnments
Mounting ..
ENVIFOMIMENERL .- oo oo oeoreeree e
Line Frequency Clock (Model Kw11- L)
Register .. -
Perlpheral Address Asmgnments
Mounting

Vector Address ...
Priority Level .
CHAPTER 8 DESCRIPTION OF THE UNIBUS

GENERAL CONCEPTS OF THE UNIBUS ...,
Single BUScoooooiiiiicen e
Bidirectional BUs ...
Master-Slave Relation ._.......... ...
Interlocked Communication
Dynamic Master-Slave Relaticn

UNIBUS SIGNALS |

NON-INTERRUPT SIGNALS
Data Lines . PP
Address Lines
Controt Linesccoecieen.
Master Sync & Slave Sync ..
Parity Available & Panty Bit . -

-Initialization PR
Spare 1 & Spare 2

INTERRUPT SIGMNALS .

Bus Request Lines .

Bus Grant Lines
Non-Processar Request
MNon-Processar Grant
Selection Acknowledge
Interrupt {and) Bus Busy SRUTTTRUR

UNIBUS DATA TRANSFER OPERATIONS ...
DATO and DATOBcoooo e
DAT: and DATIP ...
Exampies of Data Transfers . et taneeree et
Signal Description of Data Transfers ________________________________

v

53
53
53
54
54
55
55
55
55
55
55
56
56
56
56
57
57
57
57
58
58
58
58
58
58
58

59
59
59
59
60
60
60
60
60
60
61
61
61
61
6l
61
61
61
61
61
61
61
61
62
62
62
63

UNIBUS CONTROL ..o e,
Priority Arbitration ..
Sedection of Next Bus Master
Interrupt Sequence ...

Example of Interrupt, etc. ...
Example of NPR Qperationcoooe e

CHAPTER 9 INTERFACING

REGISTERS ... e e
BUS DRIVERS AND RECEIVERS ..
ADDRESS SELECTOR ...

INTERRUPT CONTROL
DEVICE CONTROL LOGIC ... e
CHAPTER 10 CONFIGURATION AND INSTALLATION PLANNING
MODULAR CONSTRUCTION ...
MOUNTING BOXES AND CABINETS ...
PDP-11 Tabletop Box for 11/20, Etc.
PDP-11 Basic Mounting Box

PDP-11 Tabletop Extension Mounting Box
PDP-11 Freestanding Base Cabinet
Freestanding Programmer's Table ...
SYSTEM UNITS AND CABLES,
Peripheral Mounting Unit ...
Blank System Unit ...
Unibus Module ...
“Unibus Cable e
CABLE REQUIREMENTS ..
PDP-11/20 POWER REQUIREMENTS
TELETYPE REQUIREMENTS
ENVIRONMENTAL REQUIREMENTS
INSTALLATION PROCEDURE .

CHAPTER 11 PAPER TAPE SOFTWARE SYSTEM

PTS FEATURES . .
PAL-11A Assembler
EDI1 Editor
QDT On-Line Debugging
10X Input/Qutput, etc.

Math Package .
Loaders .. _........ .
Core Dump Routlnes

CHAPTER 12 THE OPERATOR'S CONSOLE

CONSOLE ELEMENTS .
indicator Lights
Register Displays ...
Switch Register
Control Switches

CONTROL SWITCH OPERATION .

APPENDIX A—PDP-11 INSTRUCTION REPERTOIRE ...,
APPENDIX B—ADDRESSING SUMMARY
ADDRESSING MODES

General Register Addressmg
PC Register Addressing .

vl

64
64
65
65
66
66

69
69
71
74
76

77
77
77
78
80

81
81
81
81
82
82
82 .
82
82
82
83

85
85
85
85
86
86
86
86

87
87
a7
87
87
89

g1

95
95
95
95

INSTRUCTION FORMATS i, 95
APPENDIX C—ADDRESS MAP e 97

APPENDIX D—UNIBUS OPERATIONS 99
DATA-TRANSFERS .. P OO 99

DATI and DATIP . 99

DATC and DATOB, 100
PTR-PRICRITY TRANSFER 101
INTR—INTerRupt .. 102
GENERAL NOTES ON THE BUS OPERATIONS 102

vil

The PDP-11 is available in two versions—PDP-11/10 and PDP-
11/20. The basic PDP-11/10 contains 1,024 words of read only
memory in conjunction with 128 words of read/write memory and
the basic PDP-11/20 includes 4,096 words of read/write memory.

Vil

CHAPTER 1
INTRODUCTION

This publication is a2 handbook for Digital Equipment Corporation’s PDP-11.
It provides a comprehensive overview of the system structure, the instruction
repertoire, input/output prograrnming, peripherals, general interfacing, soft-
ware, and console operation. .

PDP-11 is Digitai's answer to the demand for a modular system for real-time
data acquisition, analysis and cantrol. PDP-11 systems can handle a wide
variety of real-time control applications—each system being individually
tailored from a comprehensive array of modular building blocks. Digital is
unique ameng manufacturers of smail-scale computers in its ability to pro-
vide not only fast and efficient processing units, but also a large family of its
own compatible I/O devices including A/D and D/A converters, magnetic
tape, disk storage, paper tape, and displays, as well as a wide ranpe of
general-purpose modules. This capabitity offers the user a new, more efficient
approach to real-time systems,

The following paragraphs introduce the new PDP-11 Ly way of highlighting
several of the important design features that set it apart from other machines
in its class. Subsequent chapters of this manual place these features in their
proper context and provide detailed descriptions of each.

PDP-11 SYSTEMS

The PDP-11 is available in two versions designated as PDP-11/10 and PDP-
11/20. The PDP-11/10 contains a KAll processor, 1,024 wards of 16-bit
read-only memory, and 256 16-bit words of read-write memory. The basic
PDP-11/20 contains a KAll precessor and 4,096 words of 16-bit read-write
core memory, a programmer's console, and an ASR-33 Teletype. Both ver-
sions can be similarly expanded with either read-write or read-only memory
and peripheral devices.,

UNIBUS

Unibus is the name given to the single bus structure of ihe PDP-11. The
processar, memory and all peripherai devices share the same high-speed
bus. The Unibus enables the processor to view peripheral devices as active
memory locations which perform special functions. Peripherals can thus be
addressed as memory. In other words, memory reference instructions can
cperate directly on control, status, or data registers in peripheral devices.
Data transfers from input to output devices can bypass the processor com-
pletely.

KAll PROCESSOR

The KA1l processor incorporates a unique combination of powerful features
not previously available in 16-bit computers.

Priority Interrupts—A four-level automatic priority interrupt system permits
the processor to respond automatically to conditions outside the system, or
in the processor itself. Any number of separate devices can be attached to
each level.

Each peripheral device in a PDP-11 system has a hardware pointer to its own
unique pair of memory words which, in turn, point to the device's service

routine. This unique identification eliminates the need for polling of devices

to identify an interrupt, since the interrupt servicing hardware selects and
begins executing the appropriate setvice routine.

The device’s interrupt priority and service routine priority are independent.
This allows dynamic adjustment of system behavior in response to realtime
conditions, .

The interrupt systern alfows the processor continually to compare its own
priarity levels with the levels of any interrupting devices and to acknowledge
the device with the highest level above the processor's priority level. Servic-
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower pricrity device can be resumed ‘automatically
upon completion of the higher level servicing. Such a process, called nested
interrupt servicing, can be carried out to any level.

Reentrant Code—Both the interrupt handling hardware and the subroutine
call hardware are designed to facilitate writing reentrant code for the
PDP-11. This type of code ailows use of a single copy of a given subroutine
or program to be shared by more than one process or task, This reduces the.
amount of core needed for multi-task applications such as the concurrent
servicing of many peripheral devices.

General Registers—The PDP-11 is equipped with eight general registers, All
are program-accessible and can be used as accumulators, as pointers to
memory locations, or as full-word index registers. Six registers are used for
general-purpose access while the seventh and eighth registers are used as
a stack pointer and program counter respectively.

Instruction Set—An important feature of the PDP-11 instruction set is the
availability of double operand instructions. These instructions allow memory-
to-memory processing and eliminate the need to use registers for storage of
intermediate results. By using double cperand instructions, every memory
location can be treated as an accumulator. This significantly reduces the
length of programs by eliminating load and store operations. associated with
single operand machines.

Addressing—Much of the power of the PDP-11 is derived from its wide range
of addressing capabilities, PDP-11 addressing modes include list sequential
addressing, full address indexing, full 16-bit word addressing, 8-bit byte
addressing, stack addressing, and direct addressing to 32K words.

Variable length instruction formatting allows 2 minimum number of bits to
be used for each addressing mode. This results in efficient use of program
storage space. '

Asynchronous Operation—The PDP-11’s memory and processor operations
are asynchronous. As a result, I{O devices transferring directly to or from
memory may steal memory cycles during instruction operation.

PACKAGING

The PDP-11 has adopted 'a modular approach to allow custom configuring of
systems, easy expansion, and easy servicing. Systems are composed of basic
building blocks, called System Units, which are completely independent sub-
systems connected only by pluggable Unibus and power connections.
There is no fixed wiring between them, An example of this type of subsystem
is a 4,096-word memory module,

System Units can be mounted in many combinations within the PDP-11
hardware, since there are no fixed positions for memory or |/O device can-
trollers. Additional units can be mounted easily and connected to the system

in the field. in case maintenance is required, defective System Units can be
replaced with spares and operation resumed within a few minutes.

SOFTWARE

A complete package of user-oriented software includes:

Absolute assembler providing object and source listings

String-oriented editor

Debugging routines capable of operating in a priority interrupt environ-
ment

Input/output handlers for standard peripherals

Relocatable integer and floating point math fibrary

All PDP-11 processors, memories and peripherals are electrically
and mechanically modular subsystems supported in System Units
which are simply plugged together to form a computer tailored to
user needs.

CHAPTER 2

SYSTEM INTRODUCTION
SYSTEM DEFINITION

Digitai Equipment Corparation’s PDP-11 is a 16-bit, general-purpase, parallel-
logic computer using two's complement arithmetic. The PDP-11 is a variable
word length processor which directly addresses 32,768 16-hit words or
65,536 8-bit bytes. All communication between system components is done
on a single high-speed bus called a Unibus. Standard features of the system
inciude eight general-purpose registers which can be used as accumulators,
index registers, or address pointers, and a multi-level autornatic priority in-
terrupt system,

SYSTEM COMPONENTS

LUNIBUS—There are five concepts that are very important for understanding
hoth 1he hardware and software implications of the Unibus.

Single Bus—The Unibus is a single, common path that connects the cent;al
processor memory, and all peripherals. Addresses, data, and control informa-
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the Unibus. The
processor uses the same set of signals to communicate with memory as with
peripheral devices. Peripheral devices ajso use this set of signals when com-
municating with the processor, memory, or other peripheral devices.

Peripheral device registers may be manipulated as flexibly as core memory
by the central processor. All the instructions that can be applied to data in
core memory can be applied equally well to data in peripheral device regis-
ters. This is an especially powerful feature, considering the special capabhility
of PDP-11 instructions to process data in any memory location as though it
were an accumulator.

Bidirectional Lines—Unibus lines are bidirectional, so that the same signals
which are received as input can be driven as output. This means that a
peripheral device register can be either read or set by the central processor
or other peripheral devices; thus, the same register ¢can be used for both
input and output functions.

Master-Slave Relation—Communication between two devices on the bus is
in the form of a master-slave relationship. At any point in time, there is one
device that has control of the bus, This controlling device is termed the
“hus master.'” The master device controls the bus when communicating with
another device on the bus, termed the “slave.” A typical example of this
relationship is the processor, as master, fetching an instruction from mem-
ory (which is always a slave). Another example is the disk, as master, trans-
ferring data to memory, as slave.

Interlocked Communication—Communication on the Unibus is interlocked
so that for each control signal issued by the master device, there must be a
response from the slave in order to coinplete the transfer. Therefore, com-
munication is independent of the physical bus length and the response time
of the master and slave devices. The maximum transfer rate on the Unibus
is one l6-bit word every 750 nanoseconds, or 1.3 million 16-bit words per
second.

Dynamic Master-Stave Relation—Master-slave relationships are dynamic. The
processor, for example, may pass bus control to a disk. The disk, as master,
© could then communicate with a slave memary bank.

Since the Unibus is used by the processor and ali 1/ 0 devices, there is a
priority structure to determine which device gets control of the bus. There-
fore, every device on the Unibus which is capable of becoming bus master
has a priority assigned to it. When two devices which are capabie of becom-
ing a bus master request use of the bus simultaneously, the device with the
higher priority wiil receive controt first. Details of what conditions must be
satisfied before a device will get control of the bus are given in the section
on System Interaction,

KAll CENTRAL PROCESSOR—There are four major features which are of
particular interest to the programmer: 1}, the General Registers; 2), the
Processor Status Word; (3), the Addressing Modes; and 4), the Instruction
Set, The addressing modes and the instruction set of the PDP-11 processor
will be discussed in detail in Chapters 3 and 4.

General Registers—The KAll processor contains eight 16-bit general regis-
ters. These eight general registers (referred to as RO, R1, R7) may
be used as accumulators, as index registers, or as stack pointers. One of
these registers, R7, is reserved as a program counter {(FC}. Generally, the
PC holds the address of the next instruction, but it may point to data or
to an address of data. The register R6 has the special function of processor
stack pointer.

Central Processor Status Register—The Central Processor Status Register
(PS) contains information on the current priority of the processor, the result
of previous cperations, and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The priority of the
central processar can be set under program controb to any one of eight
levals, This information is held in bits 5, 6, and 7 of the PS.
Four bits of the PS are assigned to mcmtormg different results of prewcuus
instructions. These bits are set as follows:

Z—if the result was zero

N—if the result was negative

C—if the operation resulted in a carry from the most significant bit

V—if the operation resulted in an arithmetic overflow

The T bit is used in program debugging and can be set or cleared under pro-
gram control. If this bit is set, when an instruction is fetched from memory
a processor trap will be caused by the completion of the instruction's

execution.

Central Processar Status Register (PS)
CORE MEMORY—The PDP-11 allows both 16-bit word and 8-bit byte ad
dressing. The address space may be filled by corg memory and peripheral
device registers. The top 4,096 words generally are reserved for peripheral
device registers. The remainder of address space can be used for read-write
core memory or read-only coré memaory.

~ Read-write core memory is currently available in 4,096 16-bit word segments.
This memory has a cycle time of 1.2 ricroseconds and an access time of
500 nanoseconds. It is a standard part of a PDP-11/20 system.

T - T

T | T T T | T PRGCESSUR | .
PRIGRITY

I | | | L | 1

¥ [E

Read-only core memory (ROM) is available in 1,024 16 bit-word segments.
The access time of the ROM is 500nanoseconds, Memory is also available in
256 16-bit word segments with a 2.0 microsecond cycle time. 1,024 words
of read-only memory as well as 256 words of read-write memory mount in
a single System Unit and are a standard part of the PDP-11{10 systern,

PERIPHERAL DEVICES—The ASR-33 Teletype with low-speed paper tape
reader and punch is provided in the basic PDP-11{20 system. Options for the
PDP-11 include a paper tape reader capable of reading 300 characters per
second, a paper tape punch with an output capacity of 50 characters per
second, and additional Teletype units. Provision is made for the addition
of numerous peripheral devices. These include standard DEC peripherals as
well as other devices which will be unigue to the PDP-11,

SYSTEM INTERACTION

At any point in time only one device can be in control of the bus, or be bus
master. The master communicates with another device on the bus which is
called the slave. Usually, the established master will communicate with the
slave in the form of data transfers.

Full 16-bit words or 8-bit bytes of information ¢an be transferred on the bus
between the master and the slave. The information can be instructions, ad-
dresses, or data. This type of operation occurs when the processor, -as
master, is fetching instructions, operands, and data from memory, and re-
storing the results into memory after execution of instructions. Direct data
transfers occur between a disk control and memory.

TRANSFER OF BUS MASTER—When a device (other than the central pro-
cessor) is capable of becoming bus master and requests use of the bus, it is
generally for one of two purposes: 1) to make a non-processor transfer of
data directly to or from memory, or 2) to interrupt program execution and
force the processor to branch to a specific address wheie an interrupt
service routine s located.

PRIORITY STRUCTURE—When a device capable of becoming bus master
requests use of the bus, the handling of that request depends on the loca-
tion of that device in the priority structure. These factors must be considered
to determineg the priority of the request:

1. The processor's priority can be set under program control to one of
eight levels using bits 7, 6, and 5 in the processor status register.
These three bits set a priority level that inhibits granting of bus re-
quests on lower levels.

2. Bus requests from external devices can be made an ane of five re-
quest lines. A non-praocessor request (NPR) has the highest priarity,
and its request is honored by the processor between bus cycles of
an instruction execution. Bus request 7 (BR7) is the next highest
priority, and BR4 is the lowest. The four lower level priority requests
are honored by the processor between instructions. When the pro-
cessor's priority is set to a level, for example 6, ail bus reguests on
BRE and below are ignored.

3. When more than one device is connected to the same bus request
{BR) line, a device nearer the central processor has a higher priority
than a device farther away. Any number of devices can be connected
to a given BR or NPR line.

COnce a device other than the processor has control of the bus, it may do
cne of two types of operations: 1) data transfers, 2) Interrupt operations.

Pl L

NPR Data Transfers—NPR data transfers can be made between any two
peripheral devices without the supervision of the processor. Normally, NPR
transfers are between a mass storage device, such as a disk, and core mem-
ory. The structure of the bus also permits device-to-device transfers, allowing
customer-designed peripheral controllers to access other devices such as
disks directly.

An NPR device has very fast access to the bus and can transfer at high data
rates once it has control. The processor state is not affected by the transfer;
therefore the processor can relinquish control while an instruction is in
progress. This can occur at the end of any bus cycle except in between a
read-modify-write sequence. (See Chapter B for details). In the PDP-11, an
NPR device can gain bus control in 3.5 microseconds or less, An NPR device
in control of the bus may transfer 16-bit words from memory at memory
speed or every 1.2 microseconds in the PDP-11/20 or every 1.0 microseconds
in the PDP-11/10.

Interrupt Operations—Devices that request interrupts after getting bus con-
trol on the bus request lines (BR7, BR6, BRS, BR4) can take advantage of
the power and flexibility of the processor. The entire instruction set is avail-
abte for manipulating data and status registers. When a device servicing
program must be run, the task cuarrently under way in the central processor
is interrupted amd the device service routine is initiated. Once the device
request has been satisfied, the processor returps to the interrupted task.

In the PDP-11, the return address for the interrupted routine and the proces-
sor status word are held in a “stack. A stack is a dynamic sequential
list of data with special provision for access from one end. A stack is also
called a “push down" or "LIFQ" (Last-ln First-Out) list. Storage and re-
trieval from stacks is called “pushing'” and “popping’ respectively. These
operations are illustrated in Figure 2-1.

In the PDP-11, a stack is automatically maintained by the hardware for inter-
rupt processing. Thus, higher fevel requests can interrupt the prospssing of
lower level interrupt service, and automatically return contrel to the lower
l[evel interrupt service routines when the higher level servicing is completed.

Here is an example of this procedure, A peripheral requires service and
requests use of the bus at one of the BR levels (BR7, BRG, BR5, BR4). The
operations undertaken to “service” the device are as follows:

o / -
MEMORY E:l EQ

1 AN EMRTY 2. PUSHING A 3. PUSHING ANOTHER
STACK : DATUM_ONTO DATUM ONTOQ THE
: - THE STACK STACKS -
’/EE /EE ’/EB . /53
Ed EY E{ E1
EQ EQ EQ 13
4. ANOTHER 5 FOP 6, PUSH 7. FoP
PUSH

Fig 2-1 lllustration of Push and Pop Operations

1. Priorities permitting, the processor relinquishes the hus to t!
device.

2. When the device has control of the bus, it sends the processor
interrupt command with the address of the words in memory ot
taining the address and status of the appropriate device serv
routine.

3. The processor then "pushes”—first, the cutrent central process
status {P3)} and then, the r:urrent program counter (PC) onto t
- processor stack.

4, The new PC and PS5 (the "interrupt vector'’) are taken from the o
tion specified by the device and the next location, and the devi

[} . a
1 PROCESS 015 RUNNING 4. PROCESS 1 INTEFRUPTED
STACK POINTER (SPH ape b—e—e——— WITH BC=PL| AND sae
FOINTING TO LOCETION STATUS & PEy
P PROCESS 2 IS STAATED
$P—PE; e
PROGRAM . Y]
PS5t
TE1
TEQ
PLa
P5@
P PROGRIM
2 WTERRUPT STORS a
PRICESS @ WITH
PCrRCp AND STATUS a0
Fag STARTS PROCESS 1
S — PLCO a
5 PROCESS 2 COMPLETES
. PER WITH & ATL INSTRUCTION | op
FaL (CISMISSES INTERRUPT)
PRLGRAK Fi: 15 RESET 10 POy AND
STATUS IS AESET TO PS5y
M
FROCESS 1 RESUMES s Tea
TE®
LB
L1
Po PROGRAM
1 PROCESS 1 USES STACK L3 -
FOR TEMPORARY aQa
STORAGE [TEp TEy)
& PROCESS 1 RELE»‘SES 2
THE TEMPCRAR' prr
I TE1 STDRAGE, MOLEING -
TE® AND TE1
TE@
4" B PCR
e50 P52
ra
. PROGRAM [PROGRAM
T.PROCESS { COMPLETES ¢

lTS QPERATICHN WITH oM a8

P*“ |s RESET TO PLQ
SN STATUS 16 RESET
TO Phg P —=Pp
PRQCESS B RESUMES PROGRAM

Figure 2-2 Nested Device Servicing

service routine is begun. Note that those operations all occur auto-.
matically and that no device-polling is required to determine which
service routine to execute.

. 7.2 microseconds is the time interval between the central processor’s
receiving the interrupt command and the fetching of the first instruc-
tion. This assumes there were no NPR transfers during this time.
. The device service routine can resume the interrupted process by
executing the RTI {Return from Interrupt) instruction which “pops”
the processor stack back inte the PC and PS. This requires 4.5
microseconds if there are no intervening NPR’s.

. A device service routine can be interrupted in turn by a sufficiently
high priarity bus request any time after completion of its first in-
struction.

. If such an interrupt occurs, the PC and PS of the device service
routine are automatically pushed into the stack and the new device
routine initiated as above. This “nesting’’ of priority interrupts can
go on to any level, limited only by the core available for the stack.
Mecre commoenly, this process will nest only four levels deep since
there are four levels of BR signals. An example of nested device
servicing is shaown in Figure 2-2. A rough core map is given for each
step of the process. The SP points to the top word of the stack as
shown.

10

CHAPTER 3
ADDRESSING MODES

Most data in a program is structured in some way—-in a table, in a stack, in
a table of addresses, or perhaps in a small set of frequently-used variables
iocal to a limited region of a program. The PDP-11 handles these common
data structures with addressing modes specifically designed for each %kind
of access. In addition, addressing for unstructured data is general enough
to permit direct randorn access to all of core.

Addressing in the PDP-11 is done through the general registers. Programs
requiring several stacks can use the general registers for stack pointers.
Those requiring many local variables can use general registers as accumu-
lators. The general registers can be used interchangeably as index registers
or as sequential list pointers to access tabular data. Address arithmetic may
be done directly in the general registers.

SINGLE OPERAND ADDRESSING

PDP-11 instruction words contain a 6-bit address field divided into two sub-
fields selecting the general register and the mode of generating the effective
address.

OF FIELD ADDRESS FIELD
|1|1||J|fj]“°”‘]““'m"|

ANSTAUCTION WORD 110 BITSE

The register subfietd specifies which of the eight general registers is to be
used in the address calculation. The mode subfield indicates how this register
is to be used in determining the operand. These modes will be described
in the following paragraphs.

GENERAL REGISTER ADDRESSING—The general registers can be used as
simple accumulators for operating on frequently-accessed variables. In this
mode, the operand is held directly in the general register. The general reg-
isters are in fast memory, resulting in a speed improvement for operations
on these variahles.

PAL-11, the PDP-11 assembler, interprets instructions of the form

OFR R

as general register operations. R has been defined as a register name and
OPR is used to represent a general instruction mnemonic. The address field
for general register operations is

ADDRESS FIELD - GEMERAL REGISTER
. MOCE
MODE 15 INDICATED AS AN OCTAL DIGIT:

DEFERRED ADDRESSING

Operands that are pointed to by addresses (indirect or deferred) are ‘de-
noted to the assembler by the @ symbol. Thus, instructions of the form

OPR @R or OPR (R) _
specify deferred register addressing and have the foliowing address field.

ADERESS FIELD -DEFERRED REGISTER
ME0E

11

INDEXED AND DEFERRED INDEXED ADDRESSING—The general registers
may be used as index registers to permit random access of items in tables or
stacks of data. Instructions of the form

OPR X(R}

specify indexed mode addressing. The effective address is the sum of X
and the contents of the specified general register R.

The index word containing X follows the instruction word.

AQDRESS FIELD= IR NED MOIDE
T ——

| Pasy [sm |
HETRUCTION 11 i
HORD -

x |
INDEY, WORD [
INDE®ED ADDRESSING

Index mode addressing can he deferred to permit access of data elements
through tables or stacks of their addresses. The address field for index de-
ferred mode is

ADDRESS FIEL - GEFEFRED INDEAED
MODE

It is specified by instructions of the form
OPR @X(R)

AUTOINCREMENT AND DEFERRED AUTOINCREMENT ADDRESSING—Auto-
increment addressing provides for automatic stepping of a pointer through
sequential elements of a table of operands. In this mode, the address of
the cperand is taken from the general register and then the contents of the
register are stepped (incremented by one or two) te address the next word or
byte depending upon whether the instruction operates on byte or word data.
Instructions of the form .

OPR (R)+
specify autoincrement addressing. The address field for autoincrement ad-

dressing is

AODRESS FIELD- AUTDINCREMENT

This mode may also be deferred. Instructions of the form

OPR @(R)--
specify deferred autoincrement addressing and assemble with the following

address field. (n this case, the register points to a location which contains
the effective address of the operand.

’

AHFESS FIELD = AUTCHNCREMENT
DEFERRED MODE

AUTODECREMENT AND DEFERRED AUTODECREMENT ADDRESSING—
Autodecrement addressing steps the specified general register to the next

12

(decrement by two) address and uses the new contents of the general reg-
ister as the operand address. Instructions of the form

QPR —({R)
specify autodecrement addressing. The address field for autodecrement ad-

dressing is
[t [g7y |

ADOAESS FIELD~ AUTOINCREMENT
WODE

This mode also may be deferred and specified by instructions of the form
OPR @ —(R)}. When deferred the address field is

ADORESS FIELD- ALTOINCRE MENT
DEFERRED MODE

STACK PROCESSING

The combination of autoincrement addressing in which the general register is
stepped forward after the operand address is determined and autodecrement
addressing in which the general register is stepped backward before the
operand address is determined is the basic requirement for convenient low
overhead stack operations.

The PDP-11 has extensive stack processing capabilities. The stack pointer
8P (R6), maintains a stack for the nested handling of interrupts and sub-
routine calls, All of the general registers can maintain stacks under program
control. Elernents in the middle of stacks may be accessed through indexed
addressing. This provides for convenient access of dynamically assigned
temporary storage, especially useful in nested procedures.

USE OF THE PC AS A -GENERAL REGISTER

There are special implications in the use of the addressing modes already
described when applied to the PC (that is, to R7). The use of the PC with
the addressing modes described above generates immediate, direct, relative,
and deferred relative addressing.

IMMEDIATE ADDRESSING—Immediate addressing provides time and space
improvement for access of constant operands by including the constant in
the instruction. The instruction word referencing an immediate operand
specifies autoincrement addressing through the program counter. The ad-
dress field would be

AOLRESS FIELO-TMMEDIATE MODE

The program counter points tc the word after the instruction word following
the instruction fetch. The contents of this word are therefore used as the
operand and the program counter is advanced to the next word. PAL-11
recognizes address expressions of the form “#n' as immediate operands
and codes them with the address field shown above followed by a word
of data.

A full word is assembled for immediate operands even in byte instructions
so that instruction words are always fetched from even locations.

ABSOLUTE ADDRESSING—The contents of the location following the instruc-

13

tion word may be taken as the address of an operand by specifying deferral
in immediate mode addressing. That s, instructions of the form

OPR @ #A

refer to the operand at address A. The assembler places address expressions
of this form into an instruction with address field

[o [17 |

ADDAESS FIELD- AASOLUTE MODE
followed by a word containing the operand address.

RELATIVE ADDRESSING—Relative addressing specifies an operand address
relating the program counter to the referenced instruction location. This is
done by using the PC as a base register. The offset, which js calculated by
subtracting the program counter's contents from the address of the refer-
enced location, is retained in the index word of the instruction. The as-
sembler aperates on instructions of the form:

OPR A

{where A has not been assigned as a name of a general register} as an
instruction word with the address field

ADORESS FIELO-RELATIVE MO[E

followed by an index word of the form

4-200RESS OF THIS WORD: 2

DEFERRED RELATIVE ADDRESSING—Deferral of relative addressing permits
access to data through memory locations holding operand addresses. The
"@" character specifies deferred addressing; i.e., OPR @A. The address field
for deferred relative addressing is

T 7

ADORESS FIELGFDEFERRED
RELATIVE WODE

USE OF THE SP AS A GENERAL REGISTER

The processor stack pointer will in most cases be the general register used
for PDP-11 stack operations. Note that —(SP) will push data onto the stack,
that (SP)4+ will pop data off the stack, and that X(SP} will permit random
access of items on the stack. Since the SP is used by the processor for inter-
rupt handling, it has a special attribute: autoincrements and autodecrements
are always done in steps of two, Byte operations using the SP in this way
will simply leave odd addresses unmodified.

simply leave odd addresses unmodified.

DOUBLE OPERAND ADDRESSING.

Operations which imply two operands such as add, subtract and compare
are presented in the PDP-11 by instructions which specify two addresses. The
instruction word for such operations is of the form

T T T T T T I 1 I | T i J
OP FIELD S0URCE ACCRESS FIELD CESTINATION AJORESS FIELD
| ! i | I 1 1 } ! 1 I

INSTAMTION WORD— COLBLE QPERAND INSTRUCTHNS

Instruction Word—Double Operand Instructions

14

and is followed by index words and immediate operands for the source and
destination address fields as appropriate. Source address calculations are
performed before destination address calculations. The addressing modes are
as for single operand instructions, and are described below, Addressing
modes can be mixed in the same instruction. The source address and des-
tination address can be any combination of modes. Since each operand may
he anywhere in core storage or in the general registers, each mernory location
is thus effectively provided with the arithmetic capabilities of an accumulator,
Further, since peripheral device registers and memory location are addressed
in the same way, the contents of peripheral data buffers can be stored or
loaded directly to and from memory without use of any general register. This
means that interrupt routines can be executed without saving and restoring
any of the general registers.

GENERAL REGISTER ADDRESSING
GPR RX,RY

is interpreted by the assembler as a register mode, and signifies that the
source address is a general register, as is the destination address,

DEFERRED ADDRESSING

OPR @RX, @RY
or
OPR (RX), {RY)

-specifies that the source register contains the effective address of the source
~ operand, and the destination register contains the effective address of the
destination operand.

INDEXED AND DEFERRED INDEXED ADDRESSING
OPR A(RX), B(RY) ' S

specifies that the effective address of the source operand is given by logicafly
adding (in 2's complement) the value of A to register RX. The destination
address is defined by the sum of the value of B and the cantents of register

RY.
When the instruction is of the form

OPR @A(RX), @B(RY)

then the above operations define the address of the location which in turn
contains the effective address, rather than being the effective address.

AUTOINCREMENT AND DEFERRED AUTOINCREMENT ADDRESSING
OPR {RX) +, (RY) 4

implies that the effective address of the source operand is in register RX
and the effective address of the destination operand is in register RY. After
the addresses have been fetched from the registers, the registers are incre-
mented automatically by two (or by one for byte instructions).

OPR @(RX) +. @{RY) +

implies the same as above, except that the addresses in the registers are the
addresses of locations which in turn contain the addresses of the operands.

15

AUTODECREMENT AND DEFERRED AUTODECREMENT ADDRESSING
OFR - (RX), — (RY)

uses the registers as in autoincrement mode except that the contents are
decremented by two {(or one for byte instructions) before the contents of
the registers are used as operand addresses,

OPR @—(RX), @—(RY).

uses the registers as in autodecrement mode except that the contents of
the register is a pointer to the address of the operand rather than to the
operand itself.

IMMEDIATE ADDRESSING

OPR #C, DEST ADDRESS
is a special case of

OPR (RX)4-, DEST ADDRESS

where RX is Register 7 (the PC). In this case, the source address is the
memory location followmg the |n5truct|0n and the constant “C” is the
aperand.

ABSOLUTE ADDRESSING

OPR @ # A, DEST ADDRESS
is a special case of

OPR @ (RX}+, DEST ADDRESS

where RX is Register 7. The memory location following the instruction con-
tains the effective address (points to the operand).

RELATIVE AND DEFERRED RELATIVE ADDRESSING
OPR A, DEST ADDRESS

is a special case of
OPR X{RX), DEST ADDRESS

where RX is Register 7 and X is an offset which, when logically added to
the PC (which does not change the contents of the PC}, results in the ef-
fective address. This mode aids the generation of relocatable programs.

OPR @A, DEST ADDRESS
is the equivalent of
OPR @X(RX}, DEST ADDRESS

which differs from relative addressing in that the offset from the PC points
at a location contamlng the address of the operand rather than the operand
itself.

Deferred register addressing may also be selected in PAL-11 by the form
OPR (R).

16

CHAPTER 4
INSTRUCTION SET

This chapter presents the order code for the PDP-11. Each PDP-11 instruc-
tion is described in terms of five parameters: operation, effect on condition
cades, base timing, assambler mnemaonics, and octal representation. Special
comments are included where appropriate.

NOTATION
The following notations will be used in this section:
{XXX) : The contents of XXX

SIC : The Source Address
dst 1 The Destination Address

A . : Boolean “AND" Function

vV . : Boolean "OR" Function

¥ : Boolean “Exclusive OR" Function

— . Boolean ‘NOT" Function (Complement)
— : “becomes’”

T : "is popped from the stack”

+ . "is pushed onto the stack’

INSTRUCTION TIMING

The PDP-11 is an asynchronous processor in which, in many cases, memory
and processor operations are overlapped. The execution time for an instruc-
tion is the sum of a basic instruction time and the time to determine and
fetch the source and/or destination operands. The following table shows the
addressing times required for the various modes of addressing source and
destination operands. The instruction time for each operation is given
(throughout this chapter) for the 11/20 configuration. All times stated are
subject to =209 variation.

ADDRESSING FORM TIMING
(src or dst) src (us)i dst {(us)t

R 0 0

(R) or @R 1.5 1.4%
(R) + L5 1.4+
—(R} 1.5 1.4%
@(R) + 2.7 2.6%
@—(R) 2.7 2.6%
BASE(R) 2. . 267
@BASE(R} or @ (R) 39 3.8%

* dst time is 0.5 ps. less than listed time if instruction was a

CoMPare, CoMPare Byte

Bii Test, Bit Test Byte

TeST. or TeST Byte

none of which ever modify the destination word.
T referencing byles at odd addresses adds 0.8us to sre and dst tim_es.
DOUBLE QOPERAND INSTRUCTIONS—Double Operand Instructions are repre-
sented in assembly language as:
OPR src, dst

where sr¢ and dst are the addresses of the source and destination operands
respectively. The execution time for these operations is comprised of the
source time, the destination time, and the instruction time. The source and
destination times depend on addressing modes and are described in the pre-

ceding table.

17

Arithmetic Operations—
MOVe MOV sro, dst 23us

MOV]jI I_‘I 1 | I |src| L1] |d511 —_ J
15

2 1 1] 5 o

Operation: (sr¢) — (dst)

Condition Codes:
Z: set if (src}) = 0; cleared otherwise
N: set if (sre) < O; cleared otherwise
C: not affected

V: cleared

Description; Moves the source operand to the destination location. The pre-
vicus contents of the destination are iost, The contents of the source are
not affected,

The MOV instruction is a generalization of ‘load,” ‘“*store,”” ‘‘setup,” 'push,”
“pop,” and interregister transfer operations.

Genera) registers may be loaded with the contents of memeory addresses with
instructions of the form:

MOV src, R

Registers may be loaded with a counter, and pointer values with MOV in-
structions: .

MOV #n, R
{which loads the number n into register R)
Operands may be pushed onto a stack by:
MOV src, -(R)

and may be popped off a stack by:
MOV (R)4, dst

Interregister transfers are simply:

MCV RA, RB
{RA and RB are general registers)

Memory-to-memory transfers may be done with the MOV instruction in the
general form:

MOV src, dst
ABD ADD src, dst 23us
o -] srC dst
ADD | L] | \
15 12 N & 5 s}

Cperation: {src) - (dst) - (dst)

Candition Codes: Z: set if result = 0; cleared otherwise

N: set if result < Q; cleared otherwise

C: set if there was a carry from the most significant bit
of the result; cleared cotherwise)

V. set if there was arithmetic overflow as a result of the
operation, that is, if both operands were of the same
sign and the result was of the opposite sign; cleared
otherwise :

18

Description. Adds the source operand to the destination operand and stores
the result at the destination address. The original contents of the destination
are lost. The contents of the source are not affected. Two's complement addi-
tion is performed.

The ADD instruction includes as special cases the "add-to-register,” "add-to-
memory,' and “add-register-to-register’” functions:

Add-to-Register ADD sre, R

Add-to-Memaory ADD R, dst

Add Register-to-Register ADD RA, RB

Arithmetic may also be done directly in memary by the general form ADD
instruction

ADD src, dst
Use of this form saves considerable loading and storing of accumulators.

Two special cases of the ADD instruction are particularly useful in compilers,
interpreters, and other stack arithmetic processes:
ADD (R}, (R)
(where R is the stack pointer)
which replaces the top two elements of the stack with their sum; and ADD
src, {R), which increases the top element of the stack by the contents of
the source address.

The “Add Immediate” operaticn is yet another special case of this general-
ized ADD instruction:

ADD #n, dst

Immediate operations arg useful in dealing with constant operands. Note
that:

ADD #n, R
steps the register R (which may be an index register) through n addresses
aliminating the need for a special “add-to-index- register” instroction.

All these special cases of the ADD instruction apply equally well to the other
double operand instructions that follow.

SUBtract SUB src, dst 2lus]
1 5 sre 9st] SUB
1 L i 1 1 I 1 L 1 1

15 12 1 & 5 a

Operation: (dst) — (src) — {dst) [in detail, {dst) + ~ (src} + 1 = (dst)]
Condition Codes: Z: set if result = 0; cleared otherwise
N: set if result < O; cleared otherwise
C: cleared if there was a carry from the most significant
bit of the resuit; set otherwise
V: set if there was arithmetic overflow as a result of the
operation, that is, if the operands were of opposite
signs and the sign of scurce was the same as the
sign of the result; cleared otherwise.

Description: Subtracts the source operand from the destination operand and

leaves the result at the destination address. The original contents of the
destination are lost. The contents of the source are not affected.

19

CoMPars CMP sre, dst 23ns"

cMPIj.I. .I_ZJ_ 1 Isr'cl 1 1 l 1 ldStl'l 1
15

2 n 8 5 Q

Operation: {src) — {(dst) [in detail, (src) 4 ~ (dst) -+ 1]
Condition Codes: Z: set if result = O; cleared otherwise
N: set if result <7 0; cleared otharwise
C: cleared if there was a carry from the most significant
hit of the result; set otherwise
V. set if there was arithmetic overflow; that is, operands
were of opposite signs and the sign of the destination
was the same as the sign of the result; cleared
otherwise,

Description: Arithmetically compares the source and destination operands.
Affects neither operand. The only action is to set the condition codes
appropriately.

Boolean Instructions—These instructions have the same format as the
double operand arithmetic group. They permit operations on data at the
bit level.

Bit Set Bi% src,dsl 23us
BIS [o) ,°, T B N R
15 12]] 0

Operation: (sre) V (dst} — (dst)

Condition Codes: Z: set if result = O; cleared otherwise
N: set if high-crder bit of result set; cleared otherwise
C: not affected .
V. cleared

Description: Performs “Inclusive OR" transfer between the source and des-
tination operands and leaves the result at the destination addrass; that is,
corresponding bits set in the source are set in the destination. The original
contents of the destination are lost. The source is not affected.

B Clear BIC sre, dst 2.9us5
o 4 dst) J
BIC Il ", P i N [I S

15 12 n a6 5 O

Operation: ~ (src) A (dst) —» (dst)

Z: set if result = 0; cleared otherwise

N: set if high-order bit of result set; cleared otherwise
C: not affected

V: cleared

Conditions Codes:

Description: The BIC instruction clears gach bit in the destination that cor-
responds to a set bit in the source. The original contents of the destination
are lost. The contents of the sources are unaffected.

*There is no read/modify/write cycle in the CMP and BIT operations. This saves 0.5
ks in all destination address modes except address mode &,

20

Blt Tast BIT src,dsi z9us*

o 20 b ooy o | %, BT

15 ’ 1z n 6 5 Q

Operation: (sr¢) /A (dst)

: set if result = O; cleared otherwise

Condition Codes; z
N: set if high-order bit of result set; cleared ctherwise
C: not affected

A

. cleared

Cescription: Performs logical “and' comparison of the source and destination
cperands and modifies condition codes accordingly. Neither the sodrce nor
destination operands are affected.

The BIT instruction may be used to test whether any of the corresponding
bits that are set in the destination are also set in the source or whether
all corresponding bits set in the destination are clear in the source.

Note that the operations of BIS, BIC, and BIT are paraliel in that the same
mask may be used to set, clear and test the state of particuiar bits in a word.

BRANCHES—Branches have the instruction format

Operation Bxa loc . Insiructlon Tima
oparation tode ctfsat I
] 1 1 | 1 1 | 1 L 1 1 l 1 1 BXX
15 8 T o]

The offset is treated as a signed two's complement displacement to be mul-
tiplied by 2 and added to the program counter. The program counter points
te tha next word in sequence. The effect is to cause the next instruction to
be taken fram an address, ‘loc", located up to 127 words back (— 254
bytes) or 128 words ahead (- 256 hytes) of the branch instruction. PAL-11
gives an error indication in the instruction if “loc’ is outside this range.

The PDP-11 assembler handles address arithmetic for the user and com-
putes and assembles the proper offset field for branch instructions in the
form

Bxx loc

where loc is the address to which the branch is to be made. The branch
instructions have no effect on condition codes.

Unconditional Branch-—

BRansh {Unconditlanal} BR loc 2.6us

Iollollloll“lu{ljlulBR
5

a T bl

Operation: loc — (PC}

Description: Provides a way of transferring program control within a limited
range with a one word instruction. The execution time is equal to the in-
struction time {2.6ps) for the operation.

21

Simple Conditional Branches—Conditioned branches combine in one instruc-
tion a conditional skip, unconditional branch sequence.

Timing for the conditional branches is shown as execution time if the con-
dition is not met, followed by the execution time if the condition is met (and
a program branch occurs),

Branch on EGual{Zero} BEG lac : 15us,2.6us
offsel
BEQ|°| LTI LI I U I I
15 8 7 0

Operation: loc —» {(PCYifZ =1

Description: Tests the state of the Z-bit and causes a branch if Z is set. It
is used to test equality following a. CMP operation, to test that no bits set
in the destination were also set in the source following a BIT operation, and
generally, to test that the result of the previous operation was zero.

Thus the seguence

CMP AB : compare A and B
BEQ C : branch if they are equal

willbranchto CifA=B A—B=0
and the sequence

ADD AB ; add Ato B
BEQ C ; branch if the resut =0
will branchto CifA4+ B=0.
. Branch on Noi EqualiZero) BNE Ioc 1.5us, 2.5 us
. offset
BNEL°| AT BRI [ol I T S |I
15 g 7 o

Operation: loc — (PCYIfZ =0

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear. BNE is the complementary operation to BEQ. [t is used to test in-
equality following a CMP, to test that some bits set in the destination were
also set in the source, following a BIT and, generally, to test that the result
of the previous operation was not zero.

Branch on Minus BMI 1oc 15us,2.6us
offsat
BMI [! I] 0] | i e B I 4 1 l 1 1 I 1 1 I
15 ;] 7 o]

Operation: loc = (PCY)if N =1

Description: Tests the state of the N-bit and causes a branch if N is set. It
is used to test the sign (most significant bit) of the result of the previous
operation.

Branch oo FLus BEPL loc 1545, 26us
) | oftset
BPL |2 R E D ST | O—I P T T T R T T
15 8 T o

22

Operation: lac = (PCYif N = 0.

Description: Tests the state of the N-bit and causes a branch if N is clear.
BPL is the complementary operation to BMI.

Branch on Carry Sat " BCS loc 1505, 2,605
B
r‘l A TR]4J TR IOV TNO N I W cs
15 B T o]

Operation: loc - (PC}ifC =1

Description: Tests the state of the C-bit and causes a branch if C is set. It
is used to test for a carry in the result of a previous operation.

Branch on Corry Claar BLC Inc 1.5 18, 2.6us

offset
T A I
15 a T o]

Operation: loc = (PCYIfC =0

Description: Tests the stafe of the C-bit and causes a branch if C is clear.
BCC is the complermentary operation to BCS.

Branch on overflow Set BvsS loc 15us,26us8
offset BVS
[' | % 1 .2, 12 l P I R T N S
15 ;] T Q

Operation; loc— (PCYifV=1

Description: Tests the state of the V-bit (overflow) and causes a branch if
the V-hit is set. BVS is used to detect arithmetic overflow in the previous
operation.

Bronch on oWerflow Clear BVEC loe 1.5u5,2.6us

oftsal
| A TN T ML S P I W T B T BVC
15 5] 7 4]

Cperation: loc - (PC)ifV =0

Description: Tests the state of the V-bit and causes a branch if the V-bit is
clear, BYC is the complementary cperation ta BVS.

Signed Conditional Branches—Particular combinations of the condition code
bits are tested with the signed conditioned branches. These instructions are
used to test the results of instructions in which the ¢perands were consid-
ered as signed (two's complement) values,

Note that the sense of signed comparisans differs from that of unsigned
comparisons in that in signed 16&-bit, two's complement arithmetic the
sequence of values is as follows: ’

23

largest ..o, D7F777

077776
positive .
000001
000000
177777
177776
negative
100001
smallest 100000
whereas in unsigned 16-bit arithmetic the sequence is considerad to be
highest 177777
000002
000001
lowest ... 000000
Branch onLess Than{Zera} BLT lec 15us,2.6us
' oftset
TN N
15 a 7 0

Operation: loc > {(PC) ifN ¥V =1

Description: Causes a branch if the “Exclusive OR" of the N- and V-hits are
1. Thus BLT will aiways branch following an operation that added two neg-
ative nwmbers, even if overflow occurred.

In particular, BLT will always cause a branch if jt follows a CMP instruction
operating on a negative source and a positive destination {even if overflow
occurred). Further, BLT will never cause a branch when it follows a CMP
instruction operating on a positive source and negative destination, BLT
will not cause a branch if the result of the previous operation was zero
{without overflow).

Branch on Graater than or Equal {Zero) BGE loc : 1.5u8,2 608
oftsat J
l 9) 4%, 1 ,*, 1° N AR T T BGE
15 a 7 Q

Operation: loc > (PCY if N¥ v =10

Description: Causes a branch if N and V are either both clear or both set.
BGE is the complementary operation to BLT. Thus BGE will always cause
a branch when it follows an operation that caused addition to two positive
numbers. BGE will also cause a branch con a zero result.

24

Branch on Less than ar Equal{Zare) BLE loc 16 us, 2.60s

log ,ou | .3, g , g ™ |, | BLE

15 8 T Q

. Operation: loc = (PCYiIf Zv {(N¥ V) =1

Description: Operation of BLE is similar to that of BLT but in addition will
cause a branch if the result of the previous operation was zero.

Branch on Grealer Than{Zergl - BGT loc 15us,26us
l o o 3 o—l affsat BGT
| | 1] ! 1 | 1 1 | 1 1
15 8 T 4]

Operation: loc— (PC) if Zv (N¥ V) =0

Description: Operation of BGT is similar to BGE, except that BGT will not
cause a branch on a zero result,

Unsigned Conditional Branches—The Unsigned Conditional Branches pro-
vide a means of testing the result of comparison operations in which the
operands are considered as unsigned values.

Bronch on Highar BHI 15us,2. 6us

TR BHI
8 T

L i L [
o

15
Operation: loc = (PC) ifboth Cand Z =10

- Description: Causes a branch if the previous operation caused neither a carry
nor a zero result, This will happen in comparison {CMP} operations as long
as the source has a higher unsigned value than the destination.

Bronch an LDwer or Same BLOS Ioc) 15ns,2.60s
olfsal BLOS
l' 1y 4ty 4 4 17 l [T RN T N B
15 8 T o

Operation: loc = {(PCYIfCvZ =1

Description: Causes a branch if the previous operation caused either a carry
or a zero result. BLOS is the complementary operation to BHI. The branch
will occur in comparison operations as long as the source is equatl to, or has
a lower unsigned value than, the destination.

Comparison of unsigned values with the CMP instruction can be tested for
“higher or same"™ and "'higher’’ by a simple test of the C-bit. For convenience,
the mnemonics BHIS (Branch on Higher or Same) and BLOS (Branch on
Lower Cr Same) have been defined such that BHIS = BCC and BLO = BCS.

Branch on Highes or Some EBHIS loc 1.5us, 2.6u8

. offsat] BHIS
F] 1 9,] 1) l © 1 | 1 1 | 1 1

15 8 T O

Operation: loc—= (PCYITC =0

Description: BHIS is the same instruction as BCC

25

Branch on LOwer BLO ot _ 15us,2.6us

offset
BLO [y ,o, § ,3, ol , 1 ™ 1
15 ;] T [a]

Cperation: loc - (PC)iIfC =1
Description: BLO is the same instruction as BCS

The following example illustrates the use of some of the instructions and
addressing modes described thus far. Two pew instructions are used: INC
(INCrement) and ASL (Arithmetic Shift Left) which respectively, add 1 (INC)
and multiply an operand by 2 (ASL). Their operatlon is fully described later
in this chapter.

This example demonstrates the generation of a table (histogram) that shows
the frequency of occurrence of each value in another table (within a range

of values 1-100).

Histogram generation (including initialization) requires

22 words. Values outside the range 1-100 are ignored.

HIST: MOV #OTABLE, RO
MOV #-—100., R1
CLR (RO)--

INC R1

BNE CLOOP

MOV # ITABLE, RO
MOV # —1000., R1
MOV #100., R2
MOV (RO)+, R4
BLE NOCOUNT
CMP R4, R2

BGT NOCOUNT
ASL R4

INC OTABLE (R4)
INC R1

BNE HLOOP

HALT

CLOOP:

HLOGCP:

NOCOUNT:

;set up to clear output table
;100 entries in output table
;clear next entry

icheck if done

#f not, continue clearing
rset up input pointer
slength of table

;max input value

;get next input value
signore if less than or equal zero
icheck against max value
signore if greater

:2 bytes per table entry
sincrement proper element
;input done?

;if not, continue scanning
;histogram complete

The JuMP Instruction—JMP (JuMP) provides more flexible program branch-
ing then is provided with the branch instructions, Control may be transferred
to any location in memory (no range limitation) and can be accomplished
with the full flexibility of the PDP-11 addressing modes.

JuMP JMP g5t 1.2us
dst
JMP e | 1 ° L I 1 o 1 I | ! 1 1 1 I 1 1 J
15 6 5) 0

_ P
Operation; dst -+ (PC)
Conditioned Codes: not affected

Description: Register mode is illegal in JMP instructions and will cause an
“illegal instruction" condition. (Program control cannot be transferred to a
register.} Register deferred mode is legal and will cause program control to
be transferred to the address held in the specified register. Note that instruc-
tions are word data and must therefore be fetched from an even-numbered

* See footnote, P. 46,

26

address. A “boundary error” cendition will result when the processor af-
tempts to fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of control to the
address contained in a selectable element of a table of dispatch vectors.

SUBROUTINES—The subroutine call in the PDP-11 provides for automatic
nesting of subroutines, reentrancy, and multiple entry points. Subroutines
may call other subroutines (or indeed themselves) to any level of nesting
without making special provision for storage of return addresses at each
tevel of subroutine call. The subroutine calling mechanism modifies no fixed
location in memory and thus also provides for reentrancy. This allows cne
copy of a subroutine to be shared among several interrupting processes.

Jump to SubRouline JSR, reg, dst 4.4 1ns
reg dsi
I ° I 1 s 1 I 1 4 | J | I | L 1 1 l 1 1 JSR
15 5 8 € 5 o
Operatioril: dst -» (tmp) (tmp is an internal processor register)
(reg) | (push reg conlenis onto processor stack)
{PCY = (reg) {PC holds location following ISR; this address
{tmp) - {PC) now put in reg)

Condition Codes: not affected

Description: Execution time for JSR is the sum of instruction and destination
times. In execution of the ISR, the old contents of the specified register,
(the “linkage pointer’), are automaticalliy pushed onto the processor stack
and new linkage information placed in the register. Thus subroutines nested
within subrouiines to any depth smay all be called with the same linkage
register. There is no need either to plan the maximum depth at which any
particular subrouting will be called or to inctude instructions in each routine
to save and restore the linkage pointer. Further, since a!l linkages are saved
in a reentrant manner—an the processor stack—execution of a subroutine
may be interrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine can then be
resumed when other requests are satisfied. This process (called nesting) can
proceed to any level, i

A subroutine calied with a JSR reg, dst instruction can access the arugments
following the call with either autoincrement addressing, (reg) 4, (if argu-
ments are accessed sequentially) or by indexed addressing, X(reg), (if ac-
cessed in random order). These addressing modes may also be deferred,
@(reg)+ and @X{reg) if the parameters are operand addresses rather-than
the operands themselves,

JSR PC, dst is a special case of the PDP-11 subroutine call suitable for
subroutine calls that transmit parameters through the general registers. No
register except the program counter is modified by this call.

Another special case of the JSR instruction is JSR PC, (SP)+ which ex-
changes the top element of the processor stack and the contents of the
program counter. Use of this instruction ailows two routines o swap pro-
gram control and resume operation when recalled where they left off. Such
routines are called “‘co-routines.”

Return from a subroutine is done by the RTS instruction. RTS reg loads the
contents of the reg into the PC and pops the top element of the processor
stack inte the specified register.

* See footnote, P. 46.

27

ReTurn from Subrouline RTS reg 3 5us .
RTS I : . i . L teq l
il L ° i I_ L ° 1 [1 2 | 1 1 1
15 . 3 2 (4]

Operation: (reg) » (PC)
) - 1 (re@
Condition Codes: not affected

Description: Loads content of reg into PC and pops the top element of the -
processor stack into the specified register. Execution time for RTS is equal
to the bkasic instruction time.

Return from a subroutine is typically made through the same register that
was used in its call. Thus, a subroutine called with a JSR PC, dst exists
with a RTS PC and a subroutine called with a JSR RB5, dst, picks up param-
eters with addressing modes (R5)+4, X(R5), or @X(R5) and finaily exists
with a RTS R5.

Programming Examples of the Use of Subroutines—

1. Passing arguments in subroutine calls—The subroutine TOLER
checks each element in an array of unsigned integers to determine
whether any elements are outside specified limits, If all are within
tolerance, the value 0 is returned in the register RO. If TOLER find
an element out of tolerance, it returns the address of the bad
element 4+ 2 in RD. The calling sequence for TOLER is;

JSR RS, TOLER

address of array to be
jchecked (‘WORD expres-
;sion—defines a word equal
;to the value of the expres-
;sion)

;minus # of items in array
supper limit of toierance
Jlower limit of tolerance
;subroutine returns here

- WORD ARRAY

. WORD —LENGTH
. WORD HILIM
. WORD LOLIM

;Tolerance Check-Array Elements Within Limits?

TOLER: MOV (R5)+, RO ;get array address
MOV (R5)+, RI ;get minus the fength
MOV (R5)+, R2 :get high tolerance limit
MOV (R5)+, R3 :get low tolerance limit -
TLOOP: MOV (RO)4, R4 ;get next element of array
CMP R4, R2 : :check it against high limit
8HI TEXIT :leave routine if higher
CMP R4, R3 ;check it against low limit
BLO TEXIT Jleave routine if lower
INC R - jincrement count, check
:whether at end of array
) BNE TLOOP scontinye if not at end yet
CLR RO sexit with RO = 0 if all ok
TEXIT: . RTS RS :return, RO holds pointer
yor

28

The instruction INC R1 increases the contents of R1 by 1 and the instruction
CLR RO zerges the register RO

2. Saving and restoring registers on the stack—This subroutine pushes
RO-R5 anto the stack, It is called by:)

JSR R5, SAVE JSR, X(PC)
SAVE: MOV R4, —{SP) iR5 was pushed by the JSR
MOV R3, —(SP) ;RS will be at the bottom
:of the stack
MOV R2, —(SP) ;R4, R3, R2, R1, and RO
iin order
MOV R1, —(SP) ywill be above it
MOV RO, —(SP) ‘RO is at the top of the
istack
JMP @R5 ;RS holds the return ad-
«dress

The following example illustrates a subroutine to restore RO-RS from the
stack,

REST: TST (5P 4+) ;this increments the SP by 2
; MOV {SPy+4, RO the registers are restored
MOV (SP)4, R1 ;in reverse order to that in
MOV (SP)+, R2 which :
MOV (SP)4, R3 ;they were put on the stack
MOV (SP)4, R4 'R5 is loaded into the PC
RTS R& and the old R5 restored

The TST operation is equivalent to comparing theloperand with 0, i.e.,
TST opr = CMP opr, #0
The only effect is to set the appropriate condition codes.

The operation TST {(SP)-+ removes the top element on the stack. At the time
it is used, the top element holds the contents of RS that were saved by the
call to REST. Since R5 is to be loaded with the value saved on the stack
by SAVE, this information is not needed.

3. Stacks, recursion, and nesting—The following subroutine converts
an unsigned binary integer to a string of typed ASCIl characters. In
the routine, the remainders of successive divisions by 10 are saved
and then typed in reverse order.

The operation of the subroutine is to call a part of itself (begin-
ning with DECREM) repeatedly until a zero quotient is calculated
by an integer divide subroutine, 1DIVR. At each iteration, the dividend
is divided by 10, the resulting quotient replaces the dividend, and
the remainder is pushed onto the processor stack. The processor
stack thus holds interleaved data {remainders) and control informa-
tion {return addresses from calls to DECPNT and DECREM) when
the quotient finally comes up as Q and the branch is made to
DECTTY. The portion of the routine beginning at DECTTY then pops
a remainder from the stack, converts it to an ASCII character, types
it and then returns control to DECTTY (with RTS PC) until the stack
is reduced finally o its state immediately after the call to DECPNT.

29

A{ this point execufion of RTS PC returns control to the main
program.

A character is typed in DECTY by loading the teleprinter buffer
(TPB} and waiting far the teleprinter READY flag, the most significant
bit of the low-order byte of the teleprinter status word (TPS),

to be set,

The symbols CR and LF are assumed egual to the ASCIl repre-

sentations for carriage return and line feed respectively.

This subroutine types the unsigned integer in RO. It illustrates recursion and

the use of stacks.

DECPNT: MOV #10., R2 iset up divisor of 10
DECREM: JSR PC, IDIVR isubroutine divides (RO) by
((R2)
MOV R1l, —{SP) ;quatient is in RO, remain-
;deris in R1
TST RO ;after pushing remainder
;onto stack test quotient
BEQ DECTTY ;if the ‘quotient is 0, we'‘re
;done petting remainders
JSR PC, DECREM ;if not try again
DECTTY: MOV (SP)+4, RO get next remainder
ADD #60, RO ;make an ASCII character
TTYOUT: MOV RO, TPB - ;type the ASCII character in
JRO
TTYLUP: TST TPS ;wait for the teleprinter to
;be done
BPL. TTYLUP ;TPS is negative when the
;TP is done
CMP #CR, RO :was the character of a car-
;riage return
BEQ TTYLF ;if not: return, if so; get a
line feed
RTS PC rreturns either to DECTTY
] . ;or main program
TTYLF: MOV #LF, TPB ;type a line feed

BR TTYLUF

;and wait for it to be com-
ipletad

. Multiple entry points—in the example that follows, the subroutines
described above are used to type out all the enfries in a table of
unsigned integers that are not within specified tolerance.

The subroutine TOLER is entered at TOLER for initialization and at
TLOOP to pick up each bad entry of the array after the first one.

The subroutine DECPNT is entered at DECPNT to print the value of
the unsigned binary number held in RO and at TTYOUT to print the
ASCII character held in RQ. TTYOUT prints the carriage return, line
feed sequence when it sees the carriage return character.

This routine types all out-of-telerance elements of an'integer array.
The program starts at TYPOUT.

30

TYPFIN:

TYPOUT:

TYPCHHK:

HALT
JSR RS, TOLER

- WORD ARRAY

- WORD —LENGTH
+ WORD HILIM

- WORD LOCLIM
BEQ TYPFIN

ISR RS, SAVE
MOV —(RO), RO
JSR PC, DECPNT
MOV #CR, RO
JSR PC, TTYOUT

JSR RE, REST
JSR R5, TLOOP

;suspend processor opera-
stion, wait for key continue
;get address of bad item;
;initialization entry

;address of array

;-length of array

Jhigh limit

Jlow Jimit

;Z-bit is set if no more out
;of limits

;an element is out of limits,
(save registers

;RO holds address + 2, get
;operand into RO

:print out number

type CR, LF

note use of second entry
;point

restore registeis

;continue searching array,
;alternate entry

BR TYPCHK ;another bad element?
SINGLE OPERAND INSTRUCTIONS-Single Cperand Instructions are repre-
sented as:
OFaRation OPR g5l Instruclion Time
cperation code dst
| | S i 1 1] S —I OPR
15 [a

The execution time for single operand instructions is the surm of the basic
instruction time and destination address time for the operation.

General Operations—

CLeaR CLR dst 23us
dst
Lol o 1,5, L0 y "1, , |CIR
15 6 [
Operation: 0 - (dst)
Condition Codes: Z: set
M: cleared
C: cleared
V: cleared
Description: Zeroes the specified destination.
INCremenl INC dst 23%us
dst
I£||°||r5|||2| ' AR B I INC
15 [a

Operation: (dst) 4+ 1 — {dst)

set if the result is 0; cleared otherwise
set if the result is <7 O; cleared otherwise

Condition Codes:

Z:
N:
C:
Ve

not affected

set if (dst) held Q77777 cleared otherwise
Description: Adds 1 to the contents of the destination.

31

DECrement : DEC dst 2.3us

DECFUI L BT B L rl' ldﬂ| P

15 1 = o

Operation: (dst) — 1 » (dst}

Condition Codes Z: set if the result is 0; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: not affected
v: set if (dst) was 100000; cleared otherwise

Description: Subtracts 1 from the contents of the destination,

NEGate NEG dst 2.3.us
dst
NEG [o) Lo, | ,s, { e |, My
15 6 5 al

Operation: - {dst) — (dst)

Condition Codes: as in SUB dst, #0
Z: set if the result is O; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: cleared if the result is 0; set otherwise
V. set if the result is 100000; cleared otherwise

Description: Replaces the contents of the destination address by their two's
complement. {However, 100000, is replaced by itsel~—in two's complement
notation the most negative number has no positive counterpart.)

TeST TST dst . 23us

TST o] Lo, [.5, 4 .74 N

Operation: (dst) — O

Condition Codes: as in CMP dst, #0
Z: setif the result is 0; cleared otherwise
N: set if the result is < 0; cleared otherwise
C: cleared
V. cleared

Description: Sets the condition codes £ and N accordmg to the contents of
the destination address.

COMglement COM dsi 23us
ast
COM LD | 1 © L I 1 5 1 H 1 ' 1 r | 1 1]
15 & 5 Q

Operation: ~ (dst) - (dst)

Condition Codes: Z: set if result is O; cleared otherwise
N: set if most significant bit of result set; cleared ather-

wise
C: set
V. cleared
Description: Replaces the contents of the destination address by their
legical complement (each bit equal to O is set and each bit equal to 1 is
cleared). .
* No.read/modify/write cycle occurs. Subtract 0.5 wsec except for address mode 0.

3z

Multiple Precision Operations—It is sometimes convenient to do arithmetic
on operands considered as multiple words. The PDP-11 makes special pro-
vision for such operations with the instructions ADC (ADd Carry) and SBC
{SuBtract Carry).

add Carry Aot dst " .23us
dst
°© I_ | o L] I 1 5 1 i 1 5 1 1 | i 1 1 ADC
15 & -5 o

Cperation: {dst) 3+ (C) — (dst)

Condition Codes: Z: setif result = O; cleared otherwise
: N: set if result <7 0; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared other-
wise
V: set if (dst) was 077777 and {C) was 1; cleared other-
wise,

Description: Adds the contents of the C-bit into the destination. This permits

the carry from the addition of the two low-order words to be carried into the
high-arder result.

Double precision addition may be done with the following instruction se-
quence:

ADD AQ, BO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al, B1 ; add high-order parts
SuBtract Carry SBC dst 23us
dst
°l 4%y L oy, 48, t a1 IJSBC
15 & & o

Operation: (dst) — (C) » (dst)

Condition Codes: Z: set if the result O; cleared otherwise
N: set if the result < O; cleared otherwise
C: cleared if the resuli is 0 and C — 1; set otherwise
V: set if the result is 100000; cleared otherwise

Description: Subtracts the contents of the C-bit from the destination. This
permits the carry from the subtraction of two low-order words to be sub-
tracted from the high-order part of the result.

Double precision subtraction is done by:

SUE A0, BO
.SBC Bl
SUB Al Bl

Daouble precision negation is accomplished with:
NEG BO ;negate low-order part; sets C unless BO =0
SBC Bl imakes “NEG B1” == “COMB B1"' unless B =@
NEG B1 inegate high-order part

Rotates—Testing of sequential bits of a word and detailed bit manipulation
are aided with rotate operations. The instructions ROR (ROiate Right) and
ROL {ROtate Left) cause the C-bit of the status register to he effectively
appended to the destination operand in circular bit shifting,

33

ROl ROR
dst .
i} T S R S R T | [T N T |

15 o
ROlate Right ROR dat 23us
- “dst —|
ROR r°I 1 % | | 19 | 1] {
15 : § 5 Q

Z: set if all bits of result = 0; cleared otherwise,

N: set if the high-order bit of the result is set: cleared
otherwise ' .

C: "loaded with the low-order bit of the destination

V: loaded with the Exclusive OR of the N-bit and C-bit
(as set by the completion of the rotate operation).

Condition Cades:

Description: Rotates all bits of the destination right one place. Bit O is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into bit 15 of the destination.

ROtata Left ROL dst 2.3us
N-11]
ROL |oy o0 | &, 1 4", M B
15 & 5 0

Z: set if all bits of the result word = 0; cleared other-
wise

N. set if the high-order bit of the result word is set;
cleared otherwise

C: loaded with the high-order bit of the destination

V: loaded with the Exclusive OR of the N-bit and C-bit
(as set by the completion of the rotate operation}

Condition Codes:

Desc'ription: Rotatés all bits of the destination left one place. Bit 15 is loaded
into the C-bit of the status word and the previous contents of the C-bit are
Icaded into bit ¢ of the destination.

SWAp Byles SWAD ds1 23us
dst
SWAB o1 L 9 I 1 % | L 3 1 1]) 1
15 6 5 o

Condition Codes: Z: set if low-order byte of result = 0; cleared otherwise
N: set if high-order bit of low-crder byte (bit 7) of result
is set; cleared otherwise
C: cleared

V. cleared

Description: Exchanges high-order byte and low-order byte of the destination
word {dst must be a word address).

Shifts—Scaling data by factars of 2 is accomplished by the shift instructions:
ASR—Arithmetic Shift Right
ASL—-Arithmetic Shift Left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The
low-order bit is filled with O in shifts to the left. Bits shifted out of the C-bit
are lost.

34

Arithmetic Shift Right ASR dst 2.3us

Lot oy 1 we, g2, |, &y | |ASR

15 & 5 a

Z: set if the result = O; cleared otherwise

N: set if the high-order bit of the result is set; cleared
otherwise

C: loaded from the low-order bit of the destination

V: loaded from the Exclusive OR of the N-bit and C-hit
(as set by the completion of the shift operation)

Condition Codes:

Description: Shifts ali bits of the destination right one place, Bit 15 is repli-
cated. The C-bit is loaded from hit O of the destination. ASR performs signed
division of the destination by 2,

Arithmetic Shift Lefl ASL dst 23.us
dst
LA IOTATIONN W R C oo, [ASL
15 & 5]

‘Condition Codes: Z: set if the result = 0; cleared otherwise

N: set if the high-order bit of the result is set; cleared
otherwise

C: loaded with the high-order bit of the destination

V. loaded with the Exclusive OR of the N-hit and C-bit

(2s set by the completion of the shift operation)

Description: Shifts all bits of the destination leff one place. Bit O is loaded
with a 0. The C-bit of the status word is loaded from the most significant bit
of the destination. ASL performs a signed multiplication of the destination
by 2.

Multiple precision shifting is done with a seguence of shifts and rotates.

Double Precision Right Shift:
ASR Al; low-order bit of Al to C-hit
ROR AO; C-bit ta high-order bit of AQ

Double Precision Left Shift:

ASL AQ; high-order bit of AQ to C-bit
ROL Al; C-bit to low-crder bit of Al

Normalization of operands (scaling of the operand until the operand taken
as a 15-bit fraction with s1gn is in the range — 14 < operand < 14) pro-
ceeds as Tollows:

NORM: © ASL A ; shift O°s into low-order bit
BEQ NFIN ;if the result is 0, the operation is
) ; complete
BVC NORM ; if the sign did not change, continue
ROR A . ;restore the sign
BR NDONE ; normalization complete
NFIM: ROR A ; restore the sign: 000000 or 100000
ASR A ; and replicate it: 000000 or 140000
NDONE:

35

The following example illustrates the use of shifts and rotates in a 16-bit un-
signed integer multiply subroutine. Access of operands through address
parameters following the subroutine is also shown. The multiplication takes
115-170 ps in in-line code, The entire subrouting as shown below takes
approximately 200 xs and requires 16 words. The calling sequence is:

JSR R5, MULT
« WORD MCAND ; address of multiplicand
- WORD MPLIER ; address of multiplier
- WORD PRCD ; address of product

MULT: CiR RO
MOV @ (R5) 4+, R1 ; get multiplier into R1
MOV @ (R5) 4. R2 ; get multiplicand intc R2

MOV #—16., R3 ; set counter
MLOOP: ASL RO ; double prec shift
ROL R1 : shift and add multiply
BCC NOADD ; most significant bit governs add
ADD R2, RO ; if set add in multiplicand
ADCR1 : keep 32-hit product
NOADD: INC R3 ; done?
BNE MLOOP ; if not continue
MOV (R5) 4, R2 ; get address to store prod.
MOV RO, (R2) 4+ ; put low-order away, move to high
MOV R1, (R2) ; put high-order away
RTS R5 ; return to calling program

BYTE OPERATIONS—The PDP-11 processeor includes a fulk complement of
instructions that manipulate hyte operands. Addressing is byte-criented so
that instructions for byte manipuilation are straightforward. In addition, byte
instructions with autoincrement or autodecrement direct addressing cause
the specified register to be stepped by cne to point to the next byte of data.
Byte operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 ta perform as either a word or
byte processor. The numbering scheme for word and byte addresses in core
memaory is:

| eyrer | eE o | woro o

[evres | sv1e2 | woro 2
L]

| ertena | evie v | WORD W

Timing of byte instructions is the same as for word instructions except that
an additional 0.6 us is required for access of bytes at odd addresses,

36

Operation: {src) — (dst}
Condition Codes: Set on the byte result as in MOV

Description: Same as MOV instruction. The MOVB instruction in register mode
{unique among byte operations) extends the most significant bit of the byte
register {sign extension). Otherwise MOVE operates on bytes exactly as MOV
operates on words.

CoMParg Byte CMPB srg dst 23us™
sTC dst
1 B l [P A I [I B B CMPB
15 12 on € 5 0
Operation: (src) — {dst) ; in detail (src) 4 — (dst) + 1

Condition Codes: Set on the byte result as in CMP

Description: Same as CMP instruction,

Bit Set Byle BISB src,dst 23us

STC . gst
i ||||rl||||1JBISB

| 1
15 12 i 6 5 o]

Operation: (src) V (dst) — (dst)

Condition Codes: Set on the byte result as in BIS
Description: Same as BIS.

BIt Cleas Byte BICH src, dst 2.3us

Iy T] s

1 1 1 1 1 | I—
15 12 n 6 5 Q

Qperation: ~ {src) A (dst) = (dst}
Condition Codes: set on the byte resuit as in BIC

Description: Same as BIC.

Bt Test Byte BITE src, dst 23us%
sre ot |
I A\l R [IR T T Lo by BITB
15 121 6 5 o

Operation: {src) A (dst)
Condition Codes: Set on the byte resuit as in BIT
Description: Same as BIT.

The following subroutine scans a packed character string of variable length
lines, removes blanks and unpacks the string to left-justified length lines.
. INSTRING is the address of the INput STRING, QUTSTRING is the address
of the OUTput String. EOLCHAR, SPCHAR, and EORCHAR are the End Of
Line CHARacter, SPace CHARacter, and End of Record CHARacter respec-
tively.

* These instructions have no read/modify/write cycle, and save 0.5 psec.

37

Double Operand Byte Instructions—

MOVe Byte . MOVB srr:..dsl 2.3us
e dst
MOVB_ b [I B B l PR N R
15 12 . & 3 . o

LNLINE is the Length of uNpacked LINES. The routine .requires 24 words.

EDIT: MOV #INSTRING, RO ; set up input byte pointer
MOV #OUTSTRING, R1 ; set up output byte pointer
MOV #EOLCHAR, R2 ; put high use constant in reg.
MOV £ SPCHAR, R3 ; o save time in loop
NULINE: MOV # LNLINE, R4 : R4 holds # char left in line
NXTCHR: MOVB (RO} 4 ,R5 ; get next byte
CMP R5, R2 ; end of line?
BEQ FILINE ; if yes, fill line
CMP R5, R3 : blank?
BE{Q) NXTCHR ; if yes, skip character
DEC R4 _ ; decrement # of characters left in {ine
MOVB RS, (RI1} + ; move byte to output string
BR NXTCHR ; continue
FILINE: CLRB {R1) 4 ; put a blank byte in output
DEC R4 ; decrement #t char left
BNE FILINE ; continue if not end '
CHKEND: CMPEB (R0O), # EQRCHAR ; end of record?
BNE NULINE ; if not EOR, start next line

Single Operand Byte Instructions—
CLeaR Byts CLRB dst 2.3us

dst
CLRB[\) o, | ,5,) ,o0, L .

156 & 5 : 0
Operation: 0 —» (dst)

Condition Codes: Set on the byte result as in CLR

Description: Same as CLR

INCrement Byta INCB dsi 23us
dst
INGB LJ 191] 15 4 l L2 4 1 1 | 1 1
15 6§ 5 Q

Operation: (dst) 4 1 2 {dst)
Condition Codes: Set on the byte result as in ING

Description: Same as ING. The carry from a byte does not affect any other
byte.

DECrement Byle DECE dst 2343
dst J
DECBhJ L TS B BT l PR S B
15 6] . ¢]

Operation: {dst}) — 1 - (dst)
Condition Codes: Set en the byte result as in DEC
Description: Same as DEC.

38

NEGata Byle NEGH dst 23.us

dst
L T T U IE W N T S I NEGB
15 & 5 0
Operation: —(dst) - (dst) v indetail, — {dst) 4+ 1 — (dst)
Condition Codes; Set on the hyte result as NEG
Description: Same as NEG.
TeST Byte TSTB dst- 2 3us™
dst
[1_1 i %) | 151 i L7 l 1 1 i 1 IJTSTB
15 & 5 o
Operation. {dsty — O '
Condition Cades: Set on the byte result as TST
Description: Same as TST.
COMplement Byte COMB dst 2.3us
asi
ILI N SR U BT P |—IC0MB
15 & 5 o
Operation: —~ (dst} = (dst)
Condition Codes: Set on the byte result as COM
Description: Same as COM.
ADd Corry Byle ADCE dst 2.3us
dst
Ly veo 00y v ysy 4 1, , |ADcB
15 : 6 5 o}
Operation: (dst) 4- (C) - (dst)
Condition Codes: Set on the byte result as ADC
Description: Same as ABC.
SuBtrgct Corry Byte SBCHB dst 2.3ns8
dsl)
|'| T T LA T R Ll o 1 SBCB
15 & & G
QOperation: {dst) — (C) = (dst)
Condition Codes: Set on the byte result as SBC-
Description: Same as SBC.
ROtate Righl Byle RORE dst 23u5"
dst
11 49, 1 48, 1 4,9, T T |R0RB
15 - 6 5 o

Operation: as in ROR on byte operands
Condition Codes: Set an the byte result as ROR

Description: Same as ROR
* Subtract 0.5 ps in aill destination address modes except register mode 9, as in CMPE.

39

RClate Left Byte ROLE dst 2lus*

ROLB L'.l L9 | 8 [43 ds'l i

1,] 1 L1
15 & 5 Q

Operation: as in ROL on byte operands
Condition Codes: set on the byte results as ROL

Description: Same as ROL

Arithmetic Shift Righl Byta ASREB ost 23us™

ASRB L A l 1% | £ 2 LJ_ st'JJJJ

15 & 5 o

Operation: as in ASR on byte operands
Condition Codes: set an the byte result as ASR
Description: Same as ASR _
" Arilhmatic Shift Left Byta ASLA dst 23usw

ASLBI‘||°| [.6, 1 43, f ldSilJ_jl

15 6 T 2]

Operation: as in ASL on byte operands
Condition, Codes: set on the byte results as ASL
Description: Same as ASL

CONDITION CODE OPERATORS—Condition code operators set and clear con-
dition code bits. Selectable combinations of these bits may be cleared .or set
together in one instruction.

Conditlon Code Uperators 1.5us
SET
o] ;9, | 40, | 42, g laed W] Z]v]C

15 _ s a4 3 2 1 0

Condition code bits corresponding to bits in the condition code operator
(bits 3-0; N, Z, V, C) are modified according to the sense of bit 4, the setf
clear bit of the operator. The following mnemonics are permanent symbois
in the assembler:

Mremonic Operation Op Code Mnemonic Operation Op Code”

CLC Clear C 000241 SEC Set C 000261
CLv Clear vV 000242 SEvV . Set V 000262
CLZ Clear Z 000244 SEZ Set Z 000264
CLN Clear N = 000250 SEN Set N 000270

Timing for all condition code operators is the basic instruction time (1.5us)
for the operators. (The codes 000240 and 000260 are the shortest “no-opera-
tion™ instructions,)
Shlft and rotate operatlons require an additional 0.6 ps to access by‘tas at odd
addresses.

Ty

40

Combinations of the above set or clear operations may be ORed together to
form new instruction mnemonics. For example: CLCY = CLC ! CLV. The new
instruction clears C and ¥V bits. (*'I"' signifies “inclusive or’ in PAL-11.)

MISCELLANEOUS CONTROL INSTRUCTIONS
RESel ExTernol bug RESET 20 mg

r0| PRI N N T RN T SR IR S BT S RESEI
15 e

Condition Codes: not affected

Description: Sends an INIT puise on the Unibus. All devices on the bus are
reset to their state at power-up.

Waiy for IinterrupT WAIT 1.5 s
Lol 1o, 4 40, 1 o | qo, | 1, |WAT
15 o]

Condition Codes: not affected

Description: Provides a way for the processor to refinquish use of the bus
while it waits for an external interrupt. Having heen given a WAIT command,
the processor will not compete for bus use by fetching instructions or
operands from memeory. This permits higher transfer rates between a device
and memary, since no processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions, the PC points
to the next instruction following the WAIT operation.

Thus when an interrupt catses the PC and PS to be pushed onto the proces-
sor stack, the address of the next instruction following the WAIT is saved.
The exit from the interrupt routine (i.e. execution of an RTI instruction) will
cause resumption of the interrupted process at the instruction following the
WAIT.

HALT HaLT 4.8us]
I o I 1 % I P9 H 1 9 1_ 4.5 | 1 9 I HALT
15 Q

Condition Codes: not affected

Description: Causes the processor operation to cease. The conscle is given
control of the bus. The console data lights display the contents of RO; the
conscle address lights display the address of the halt instruction. Transfers
on the Unibus are terminated immediately. The PC points to the next in-
struction to be executed. Pressing the continue key on the console causes
processor operation to resume. No INIT signal is given,

Processor Traps. —Processor Traps are internally generated interrupts.
Error conditions, completion of an instruction in trace mode (i.e. T-bit of
status word set), and certain instructions cause traps. As in interrupts, the
current PC and PS are saved on the processor stack and a new PC and PS
are loaded from the appropriate trap (interrupt) vector. See Appendix C for
a summary of Trap Vector Addresses,

Trap Instructions—Trap Instructions provide for calls to emulators, /O
"~ monitors, debugging packages, and user-defined interpreters.

41

EMulaior Trops EMT xxx S3us

EMTl'l N L [01 ' |x“| L

15 8 T .0

Operation: (PS) | SP
(PC) | SP
(30) > PC
(32) » PS

Condition Codes: loaded from trap vector.

Description: Performs a trap sequence with a trap vector address of 30.
All aperation codes from 104000 to 104377 are EMT calls. The low-order
byte, bits 0-7 of the EMT instructions, may be used to transmit information
to the emulating routine {e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word at address 30;
the new central processor status {PS) is taken from the word at address 32.

TRAaf TRAF xxx FIus
XXX
TRAPI‘l LA B l“l ' T T
15 8 7 o

Operation: as in EMT except the trap vector is located at 34.

Condition Codes: loaded from trap vector,

Description: Performs a trap seguence with a trap vector address of 34,
Operation cades from 104400 to 104777 are TRAP instructions, TRAPs and

EMTs are identical in operation, except that the trap vector for TRAP is at
address 34.

140 Trap 107 93.us

IOT. o) 4o, | 4o, | yo3 1 4o, |_|_4|J
15 - 0

Cperation: as EMT except the trap vector is Iocated at address 20 and no
informaticn is transmitted in the low byte.

Condition Codes: loaded from trap vector.

Description: Used to call the 1JO executive routine 10X,

Mo defined mnemonic Q00C03 2.3 us
C dio] ,0, | AT BT LT LN
15 o

Operation: Same as 10T except that trap vector is located at address 14.
Condition Codes: loaded from trap vector.)

Description: Used' to call debugging aids, The user is cautioned against
employing code 000003 in programs run under lhese debugging aids.

42

ReTurn from Interrupt RTI 4.Bus

lo; ,o, | 4o, | ,o, t 4o, ,2, [RW

1 I
15 Q

Operation: SP | (PC), SP | (PS).

GCondition Codes: loaded from processor stack.

Description: Used to exit from an interrupt or TRAP service routine. The PC
and PS are restored {popped} from the processor stack.

Reserved Instruction Traps—These are caused by attempts to execute in-
struction codes reserved for future processor expansion (reserved instrue-
tions) or instructions with illegal addressing modes (illega!l instructions).
Order codes not corresponding to any of the instructions described above
are considered to be reserved instructions. lllegal instructions are JMP and
JSR with register mode destinations. Reserved and illegal instruction traps
occur as described under EMT, but trap through wvectors at addresses 10
and 04 respectively.

Stack Overflow Trap—Stack Overflow Trap is a processor trap through the
vector at address 4. It is caused by referencing addresses below 400, through
the processor stack pointer R6 (SP) in aviodecrement or autodecrement de-
ferred addressing. The instruction causing the averflow is completed before
the trap is made.

Bus Error Traps—Bus Error Traps are:

1. Boundary Errors—attempts to reference word operands at odd ad;
dresses.

2, Time-Out Errors—attempts to reference addresses on the bus that
made no response within 10 gs. In general, these are caused by at-
ternpts to reference nonexistenit memory, and attempts to referepce
nonexistent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap—Trace Trap enables bit 4 of the PS word and causes processor
traps at the end of instruction executions. The instruction that is executed
after the instruction that set the T-bit will proceed to completion and then
cause a processor trap through the trap vector at address 14.

The following are special cases and are detailed in subseguent paragraphs:

1. The traced instruction cleared the T-bit.

2. The traced instruction set the T-bit.

3. The traced instruction caused an instruction trap.

4. The traced instruction caused a bus error trap.

5. The traced instruction caused a stack overfiow trap.

6. The process was inferrupted between the time the T-bit was set and
the fetching of the instruction that was to be traced.

7. The traced instruction was a WAIT.

8. The traced instruction was a HALT.

An instruction that cleared the T-bit—Upaon-fetching the traced instruction
an internal flag, the trace flag, was set. The trap will still occur at the end
of execution of this instruction. The stacked status word, however, will have
a ciear T-bit. :

43

An instruction that set the T-bit—S5Since the T-bit was already set, setting it
again has no effect.

An instruction that caused an Instruction Trap—The instruction trap is
sprung and the entire routine for the service trap is executed. If the service
routine exists with an RT{ or in any other way restores the stacked status
word, the T-bit is set again, the instruction following the traced instruction
is executed and, unless it is one of the special cases noted above, a trace
trap occurs.

An instruction that caused é Bus Error—This is treated as in an Instruction
Trap. The only difference is that the error service is not as likely to exit
with an RT), so that the trace trap may not occur.

An instruction that caused a stack overflow—The instruction completes
execution as usual—the Stack Overflow does not cause a trap. The Trace
Trap Vector is loaded into the PC and PS, and the old PC and P5 are pushed
onto the stack. Stack Overflow occurs again, and this time the trap is made.

An interrupt between setting of the T-bit and fetch of the traced instruction—
The entire interrupt service routine is executed and then the T-bit is set again
by the exiting RTl. The traced instruction is executed (if there have been no
other interrupts) and, unless it is a special case noted above, causes a trace
trap.

Note that no interrupts are acknowledged between the time of fetching any
trapped instruction (inciuding one that is trapped by reason of the T-bit being
set)} and completing execution of the first instruction of the trap service.

A WAIT—The trap occurred |mmedlate]y The address af the next instruction
is saved on the stack.

A HALT—The processor halts. When the continue key on the conscle is
pressed, the instruction following the HALT is fetched and executed. Linless
it is one of the exceptions noted above, the trap occurs immediately follow-
ing execution.

Power Failure Trap—is a standard PDP-11 feature. Trap occurs whenever
the AC power drops below 105 volts or outside 47 to 63 Hertz. Two milli-
seconds are then allowed for power down processing. Trap vector for puwer
tailure is at locations 24 and 26.

Trap priorities—In case multiple processor trap conditions occur simultane-
ously the following order of priorities is observed (from high to low);

Bus Errors
Instruction Traps
Trace Trap

Stack Overflow Trap
Power Failure Trap

SRSl o

The details on the trace trap process have been described in the trace trap
operational description which includes cases in which an instruction being
traced causes a bus error, instruction trap, or a stack overfiow trap.

If a bus error is caused by the trap process handling instruction traps, trace
traps, stack overflow traps, or a previous bus error, the processor is halted.

If a stack overﬂow-is.caused by the trap process in handling bus errors, in-
struction traps, or trace traps, the process is completed and then the stack
overflow trap is sprung.

44

CHAPTER 5

ADDRESS ALLOCATION

The PDP-11 provides for a very flexible addressing structure. Both 16-bit
words and 8-bit bytes can be directly addressed. Addresses are 16-bits long
allowing for direct addressing of 32,768 words or 65,536 hytes.

ADDRESS MAP

¢

As a result of the organization of the PDP-11, bus addresses serve several
functions., A map of possible PDP-11 bus address allocation is shown

'BUS ADDRESS
0

400,

160000,
-\

177777,

. $ Space For Device Registers

CONTENT
. Processor
Program Counter Trap Vectors
and Device
Processor Status Word Interrupt
Vectors
\- .
Stack Pointer Overflow Limit
Stacks, Program and Data Storage
Typical
Registers for
Programmed
Status Register and Transfer
Data Buffer Register _ Device
Typiéal
Device Address Register - Additional
Word Count Register Registers
Memory Address Register for a
Control and Status Registers Block
Transfer
Device

Figure 5-1

Simplified Address Allocation Map

45

‘in Figure 5-1. Three areas of addresses of particular interest to the pro-
grammers are: 1} Interrupt and Trap Vectors; 2) Processor Stack and General
Storage; and 3) Peripheral Device Registers.

INTERRUPT AND TRAP VECTORS —Addresses between location zere and
location 400, are generally reserved for interrupt and trap vectors.

PROCESSOR STACK AND GENERAL STORAGE—Addresses between 400,
and the limit of implemented core are available for the processor stack or
other programs and data. The highest address in this region is 157777,

PERIPHERAL DEVICE REGISTERS—Addresses above 160000, generally are
reserved for peripheral device status, control, and data registers. The general
registers and the processor status can be addressed from the program
console using addresses in this area. '

A more _detaiied address ailocation rhap can be found in Appendix C.

CORE MEMORY |
The three types of core memory that can be used in a PDP-11 systern are;
1)} Read-Write Core Memaory; 2) Read-Only Core Memory, and 3} Wordlet
Memory. These memories can be located anywhere in address space provided
they do not overlap. They do not have toc be in continuous address locations,

MM11-E READ WRITE CORE MEMORY—The MM11-E has the following
specifications:

Capacity: 4,096 16-bit words or 8,192 8-bit bytas

Cycle Tima: 1.2 microseconds

Access Time: 500 nanoseconds :

Configuration: Planar 3-wire, 3-D using 22 mil cores

Packaging: One standard PDP-11 System Unit

Interface: Designed to work with PDP-11 bus, TTL-compatible

MR11-A READ-ONLY CORE MEMORY (ROM)—The ROM has the fallowing
specifications:

Capacity: 1,024 16-bit words or 2,048 8-hit bytes

Access Time: 500 nanoseconds

Configuration: 2-piece core with wire braid, 256 wires, 64 cores

Packaging: 3/4 of one standard PDP-11 System Unit

Interface: Designed to work with PDP-11 bus, TTL-compatible

MWI11l-A WORDLET MEMORY—The wordiet memory is used with ROM sys-

tems and provides read-write memory capacity for temporary data and in-

struction storage.

Capacity: 256 16-bit words or 512 B-bit bytes

Cycte Time: 2.0 microseconds .

Access Time: 1.0 microsecond

Configuration: 3-Wire, 3D

Packaging: 1/4 standard PDP-11 single System Unit

Interface: The wordlet memary will work with the ROM and interfaces
through the ROM System Unit to the PDP-11 bus.

Both JMP and iSR, used in Address mode 2 (auteincrement), increment the register
_beftoretpsmg it as an address. This is & special case, and is not true of any other
msructign.

46

CHAPTER 6
PROGRAMMING OF PERIPHERALS

Programming of peripherals is extremely simple in the PDP-11—a special
class of instructions to deal with input/output operations is unnecessary.
The Unibus permits a unified addressing structure in which control, status,
and data registers for peripheral devices are directly addressed as memory
locations. Therefore all operations on these registers, such as transferring
information into or out of them ar manpulating data within them, are per-
formed by normal memory reference instructions.

The ability to use all memory reference instructions on peripheral device
registers greatly increases the flexibility of input/output programming. In-
formation in a device register can be compared dlrectly with a value and a
branch made on the result.

CMP #101, PRB
BEQ SERVICE

In this case the program looks for 101, from the paper tape reader daia
buffer, and branches if it finds it. There is no need to transfer the informa-
tion into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can trans-
fer the character into a user buffer in core or in another peripheral device.

MOV PRB, 10C

This instruction transfers a character from the paper tape reader buffer into
a user-defined location,

All arithmetic operations can be performed on a peripheral device register.

: ADD #10, DSX
This instruction will add 10, to a display’'s x-deflection register.

All peripheral device registers can be ‘{reated as accumulators. There is no
. need to funnel all data transfers, arithmetic operations, and comparisons
through a single or small number of accumulator registers.

DEVICE REGISTERS

All peripheral devices are specified by a set of registers which are addressed
as core memory and manipulated as flexibly as an accurmnulator, There are
two types of registers associated with each device: 1) Control and Status Reg-
isters (C5R); and 2} Data Registers.

CONTROL AND STATUS REGISTERS (CSR)—Each peripheral has one or more
control and status registers which contain all the information necessary to
communicate with that device. The general form of a control and status
register is shown below.

EXPAND: -+ E:mu}s —— EAPANDS
1 I I ERR | 1
WEMGRY
| EH'RF)RB BusY um'r oowe | Snn | En6 ExTension iuncwln
I [] 2 [)

General Control and Status Register
This general form does not necessarily apply to any device, but is presented
as a format which could he used as a guideline for designing peripheral

47

devices. Many devices will require less than sixteen status bits, Other devices
wiil require more than sixteen bits and therefore will require additional status
and control registers.

Device Function Bits—These three bits specify operations that a device is
to perform. An example of one operation for a paper tape reader is read
one character. For a disk one operation would be read a block of words from
memory and store them on the disk.

Memory Exterision Bits—These two bits are reserved for future expansion.
They will allow devices to use a full 18 bits to specify addresses on the bus,

Done Enable and Error Enable Bits-—These two bits are independentiy pro-
grammable.. if bit6is set, an interrupt will occur as a result of a function
deone condition. If bit 5 is set, an interrupt will occur as the resulf of an
error condition, This occurs when one or more of the error bits is set to a
one. To initiate an interrupt routine to read from the paper tape reader,
tha instruction ’

MOV #101, PRS
could be used. This sets bit 0 and bit 6 of the paper tape reader control and
status register. Setting bit O starts the read operation and setting bit 6
enables an interrupt to cccur when the read operation is complete.

Condition Bits—The CSR contains a DONE bit, a READY bit, or a DONE-
BUSY pair of bits, depending on the device. These bits are set and cleared
by the hardware, but may be queried by the program to determine the
availability of the device. For example, the teleprinter status register (TPS}
has a READY bit {7) that is cleared on request for output and then set when
output is compiete. The keyboard status register (TKS) has a DONE-BUSY
pair (Bits 7 and 11) that distinguishes between no input {DONE — BUSY
=0), input under way (DONE = 0, BUSY = 1), and input complete (DONE
=1, BUSY =0).

The DONE bit could be used to control an input loop for reading from the
paper tape reader as foliows:;

LOOP: TSTB PRS » test low byte of paper tape status register
BPL LOOP : branch back if DONE bit (bit 7) is not set

Unit Bits—Some peripheral systems have more than one device per control.
-For example, a disk system can have multiple surfaces per control and an
analog-to-digita! converter can have multiple channe!s. The unit bits select
the proper surface or channel.

Error Bits—Generally there is an individual bit associated with a specific
error, When more bits are required for errors, they can be obtained by ex-
panding the error section in the word or by using another status word.

Example of Control and Status Register-—The high-speed paper tape reader
control and status register (PRS) is as follows:
| READ \

ouT e 3
oF BusY DONE
E’PE I I I I I ENE
. " 7 € G

13

These bits may be read or set by instructions which use the appropriate
effective address. Bit 0 of the PRS is the function bit for reading one char-

48

acter. incrementing the PRS will set bit 0 and cause one character to be
read. The instruction

INC PRS

performs that function. MOV #1, PRS does the same thing but takes one
more ward.

DATA BUFFER REGISTERS—Each device has at least one huffer register
for temporarily storing data to be transfer into or out of the computer. The
number and type of data registers is a function of the device. The paper
tape reader and punch use single 8-bit data buffer registers. A disk would
use 16-bit data registers and some devices may use two 16-hit registers for
data buffers.

PROGRAMMING EXAMPLES

PROGRAM CONTROLLED DATA TRANSFER WiTH THE INTERRUPT DHSABLED
~—Single character IO devices (teletype, paper tape reader/punch) have an
addressable register buffer through which data is transferred. For input, the
data buffer register is the source operand of the instruction used {o get the
data; for output, it is the destination cperand. For example assuming the
paper tape reader interrupt is not enabled, character input could proceed
as follows:

MOV R, —(SP)
MOV #BUFFER, R

START: INC PRS

LOOP; BIT PRS, #100200 test DONE and ERROR bits
8EQ LOOP hranch back if none on yet

+ save R on the stack
BMI ERROR 3 branch to error routine if minus

pointer to input buffer into register R
start up reader

MOVB PRB, (R)+ move byte from device buffer reg-
ister to user's buffer and increment
pointer

check for end of buifer

get next character

restore R

CMP #LIMIT, R
BGE START
MOV (SP)+, R

Character output to the paper tape punch might be executed as follows:
MOV RO, —(SP) save RO
MOV R1, —(5P) save R1 _
MOV NCHAR, RO number of characters info RO
MOV BUFFER, Rl user buffer address into R1
LOOP: BIT PPS, #100200 test device ready and error bits

BEQ LOOP 7 fall through if on

BMI ERROR ; branch on error

MOVEB (R1)4, PPB ; output character, increment pointer

DEC RO ; decrement character counter (and
7 set condition codes)

BGT LCOOP i repeat if greater than zero

MOV (5P)4, RO + restore RO

MOV (SP)4, Rl ; restore R1

BLOCK TRANSFER WITH THE INTERRUPT DISABLED—High-speed block
transfer devices use the Unibus to make data transfers between the device
and core memory. These devices are provided with addressible registers
that control the flow of data.

19

A typical set might be:
1. Control and status register
2. Memory address register
3. Word count register
4. Device address register

Loading the device address register would in general initiate the transfer,
which then proceeds without. processor intervention. The device issues non-
processor requests for the Unibus that, when granted, allow direct data
transfer between the device and memory. These requests are interleaved
with processor requests for the bus. If very fast transfer is required, the
processor may execute a WAIT instruction after starting the block transfer.

The DONE or appropriaté error bits are set in the CS5R with completion of
the transfer or when an errar occurs. These may be enabled to cause an
interrupt or may be tested to determine when the device needs assistance.

A block transfer could be executed as follows:

MOV #401, DKS, read block of data (function 1)
from unit 1

buffer address to memory ad-
dress register

word count to word count register
block number to device address
register, which starts the trans-

MOV #BUFADR, DKMA

MOV #BUFCNT, DKWC
MOV #BLKNO, DKDA

fer
; whe'n data is needed,
LOOP: BIT #DKMSK, DKS ; test done bit and error bits
BEQ LOGP * ;3 branch back if none on
BIT #DKEMSK, DKS ; test for any error bits
BNE ERROR ; branch if any on

: data is now in buffer at BUFADR
INTERRUPT STRUCTURE

If the appropriate interrupt enable bit is on, in the control and status register
of a device, transition from 0 to 1 of the DONE or ‘READY bit causes an
interrupt request to be issued to the processor. Also if DONE or READY is a
1 when the interrupt enable is turned on, an interrupt request is made. |f
the device makes the request at a priority greater than that at which the
processor is running and no other conflicts exist, the request is granted and
the interrupt sequence takes place:

a. the current program counter and processor status are pushed onto
the processor stack;

b. the new PC and PS are loaded from a pair of locations (the interrupt
vector) in low core unique to the interrupting device.

Since each device has a unique interrupt vector which dispatches control to
the appropriate interrupt handling routine immediately, no device polling is
required. Furthermore, since the PS contains the processor priority, the
priority at which an interrupt request is serviced can be set under program
control and is independent of the priority of the interrupt request. The

50

ReTurn from Interrupt instruction is used to reverse the action of the
interrupt sequence. The top two words on the stack are popped into the PC
and PS, returning control to the interrupted sequence.,

PROGRAMMING EXAMPLE

A paper tape reader interrupt service could appear as follows:

First the user must initialize the service routine by specifying an address
pointer and a word count

read a character with interrupt
; enabled.

MOV #£101, PRS

INIT: MOV #BUFADR, #0 ; set up address pointer
POINTR=.—-2 3 in third word of MOV instruction.
MOV #CNTR, #0 ; set up character count in
CRCNT =.-—-2 . third word of MOV instruction.

When the interrupt reguest occurs and is acknowiedged, the processor stores
the current PC and PS on the stack. Next it picks up the interrupt vector or
new PC and PS beginning at {ocation 70.. The next instruction executed is
the first instruction of the device service routine at PRSER.
PRSER: TST PRS ; test for error

8| ERROR ; branch to error routine if
; bit 15 of PRS is set.
;. move character (byte)
; from reader to buffer
INC POINTR + increment pointer

MOVB PRB, @POINTR ;
DEC CRCNT : decrement character count

BEQ DONE ; branch when input done
© INC PR3 start reader for next character
DONE: RTI

return from interrupt

51

The DIGITAL M225 module contains multiple high speed general-
purpose registers. The M225 general registers provide program
flexibility when used as accumulators, index registers, and pointers

to data words.

52

CHAPTER 7

PERIPHERAL BULLETINS

TELETYPE (MODEL LT33-DC/DD)

The standard Teletype Model 33 ASR {Automatic Send-Receive) can be used
to type in or print out information at a rate of up to ten characters per sec-
ond, or to read in or punch out perforated paper tape at a ten characters
per second rate. Signals transferred between the 33 ASR and the control
logic are standard serial, 11-unit code Teletype signals. The signals consist
of “marks’ and ‘“‘spaces’ which correspond to hias and idle current in the
Teletype serial line, and to 1's and 0's in the controi and computer. The
start space and subsequent eight bits are each one unit of time duration and
are followed by the stop mark which is two units.

The 8-bit code used by the Model 33 ASR Teletype unit is the Americal
Standard Code for Information Interchange (ASCI) modified. To convert the
ASCIl code to Teletype code, add 200 octal (ASCH 4 200, = Teletype).

The Model 33 ASR can generate all assigned codes except 340 through
374 and 376. The hodel 33 ASR can detect all characters, but does not
interpret all codes that it can generate as commands, The standard number
of characters printed per line is 72. The saquence for proceeding to the next
line is a carriage return followed by a line feed. Punched tape format is as
follows:

Tape Channel a7 654 S 321
Binary Code 0 110 100
(Punch = 1)

Octal Code 2 6 4

(5 = Sprocket)

SIZE~—— Floor space approximately 221/ ” wide, 1814 deep
Cable length 8 feet

MODEL POWER REQUIREMENTS
LT33-DC 115 ¥ =10% 60 =*=0.45 Hz
LT33-DD 230 V +10% 50 =075 Hz

TELETYPE CONTROL (MODEL KL11)

TELETYPE CONTROL—Serial information read or writien by a Teletype unit
is assembled or disassembled by the control for parallel transfer on the
Unibus. The control also provides the flags which cause a priority interrupt
and indicate the availakility of the teletype.

KEYBOARD/READER—The Teletype control contains an 8-bit buffer (TKB)
which assembles and holds the code for the last character struck on the
keyboard or read from the tape. Teletype characters from the keyboard/
reader are received serially by the 8-bit shift register TKB. The code of a
Teletype character is loaded into the TKB so that “spaces’ correspond to
binary O's and holes, "“marks," correspond to binary 1l's. Upon program
command, the contents of the TKB may be transferred in parallel to a
memory location or a general register.

A character is read from the low-speed reader by setting the Teletype reader
enable bit, (RDR ENB), to a 1. This sets the busy bit (BUSY) to a 1, When a
Telétype character starts to enter, the control de-energizes a relay in the

53

Teletype unit to release the tape feed iatch. When released, the tatch
mechanism stops tape motion only when a complete character has been
sensed, and before sensing of the next character is started. When the charac-
ter is available in buffer (TKB), the busy bit (BUSY) is cleared and the done
flag (DONE) is set. If the interrupt is enabled, a request is made for the bus
at level 4 (BR4). The interrupt vector is at location 60.. The DONE bit is
cleared by any instruction which reads the contents of the buffer (TKB) into
the processor. If the DONE flag is cleared before the interrupt is granted, no
interrupt will occur. The keyboard must be read within 18 mllllseconds of
DONE to ensure no loss of information..

Registers! _
Teletype Keyboard Status (TKS)

15 " 7 0
- L3
T LI []
BUSY l_ INTR ENB ERE
Bit.
o] RDR ENB Requests that one character be read from the

reader; set from the bus: (Note: Setting RDR
ENB causes tape to advance by one character
which is shifted intc TKB if DONE is cleared.)
Receipt of START bit on the serial input line sets
BUSY, clears RDOR ENB and clears TKB. .

6 INTR ENB 0—No interrupt; 1—Attach the keyboard and
reader to the priority interrupt system at bus
request level 4.

7 . DONE Character available; cleared by reading the buf-
' fer {TKB).
11 BUSY Character is being read; set by RDR ENB gomg

to a 1. Cleared by DONE going to a 1.

1 The following notation will be used throughout this chapter for describing registers.
— A power clear sets this bit to 0.
1 — A power ¢lear s&ts this bit to 1.
* — This bit can only be read from the bus.
1 — This bit can only be set from the bus. H it is. read, it will always appear
as zero.

Teletype Keyboard Buffer (TKB)

[8-BIT CHARACTER »

15 B~ 7 [+]

- TELEPRINTER/PUNCH-—On program command, a character is sent in parel-
lel from a memaory location (or a general register) to the TPB shift register
for transmission to the teleprinter/punch unit. The control generates the
start ‘‘space,’”’ then shifts the eight bits serially into the Teletype unit, and

_ then generates the stop “marks.” This transfer of information from the TPB
into the teleprinter/punch unit is accomplished at the normal Teletype rate
and requires 100 milliseconds for completion.. The READY flag in the tele-
printer/punch indicates that the TPB is ready to receive a new character. A
maintenance mode is provided which connects the TPB output to the TKB
input so that the parallel serial and serial paratlel shifting may be verified.

54

Registers
Teleprinter Status Word (TPS)

7 & 2

- .
Lo | o |
L wre ENB LMAINTEN&NCE
READY CONTROL
Bit
2 MAINT Maintenance function which connects TPB serial
output to TKB serial input.
6 INTR ENB 0—No interrupi; 1—attaches the Teleprinter to
the priority interrupt system at BR4.
7 READY Set by punch/printer DONE; cleared by loading

the teleprinter buffer {TPB).
Teleprinter Buffer (TPB)

l 8-DIT CHARACTER DATA ¥

15 8 7 Q

PROGRAMMING EXAMPLE—To read a character from tape and echo it on

the printer: _ !
ECHO: INC TKS ; set RDR ENB
TSTB TKS ; test for DONE set
BPL~—4 ; test again if not set
TSTB TPS : test for printer READY set
BPL—4 : test again if not set
MOVB TKB, TPB v put input character into output
buffer to be printed
BR ECHO ; return for another character
PERIPHERAL ADDRESS ASSIGNMENTS
TKS 177560
TKB 177562
TPS 177564
TPB . 177566
YECTOR ADDRESS Keyhoard/ Reader 60
Teleprinter/Punch 64

PRIORITY LEVEL set to BR4—Teletype printer is lower than the Teletype
kevboard

MOUNTING—Requires one small peripheral controller mounting space (14
of a DD11 or one of two such spaces in KALl)

HIGH-SPEED PERFORATED TAPE READER PUNCH AND
CONTROL (TYPE PC11)

TAPE READER—This device senses 8-hoie perforated paper or Mylar tape
photo-etectrically at 300 characters per second. The reader control requests

reader movement, transfers data frormn the reader into the reader huffer
{PRB), and signals the computer when incoming data is present, It does this

55

by setting a DONE bit. If the interrupt is enabled and the interrupt is granted,
the pracessor traps to location 70, and may immediately begin executing the
service routine for the paper tape reader.

Registers

Paper Tape Reader Status Word (PRS)

-8 " 7 8 Q-
® = * i *
Lo’ o] o o 5
L ermor L susy Lintr ene Lror
DONE ENB
Bit
Q RDR ENB ‘Requests read of next character; can be set from
bus only if ERROR = 0. Clears PRB, sets BUSY.
) INTR ENB O—No interrupt; 1—attached to priority interrupt
system at BR4. (Note: Interrupt occurs when INT
ENB is a 1 and either the error flag, ERROR, or
the done flag, DONE, becomes a 1.}
7 DONE Set by character available; cleared by reading the
paper tape reader buffer {PRB).
11 BUSY Set by RDR ENB going to a 1; cleared by DONE
goingtoa l.
15 ERROR " Error Flag — Set or cleared by out-of-tape sensar

or off line switch.

Paper Tape Reader Buffer (PRB)

B-BIT CHARACTER

PROGRAMMING EXAMPLE-—Tape reading subroutine (not using interrupt):

READ: INCB PRS . enable reader
TEST: BIT #100200, PRS ; testfor error or done
BEQ TEST + branch back if not done
BMI ERROR ; branchif error = 1
MOVB PRB, RO ; get character from buffer
RTS & ; return to caller
ERROR: {message type out routine)
HALT ; wait for operator intervention
JMP READ ; try again when continue switch is hit.

TAPE PUNCH-—This option consists of a Royal McBee paper tape punch that
perforates 8-hole tape at a rate of 50 characters per second. Information to
be punched on a line of tape is loaded in an 8-bit punch buffer (PPB) from a
memory location or one of the general registers. The punch flag, READY,
becomes a 1 at the completion of punching action, signaling new mformatlon
may be transferred into the punch huffer and punching initiated.

56

Registers
Paper Tape Punch Status Word {PPS)

15 T 6 0
* b . .
| [°] ‘ I 1 IO l J
[E—— |_ L—inTR ENE
DONE
Bit
6 INTR ENB 0—No Interrupt; 1—Attached to priority interrupt
systemn. (Note: An interrupt occurs when INT ENB
is a 1 and either the ERROR ftag or the READY flag .
becomes a 1.}
7 READY Set by punch done: cleared by loading the paper
tape punch buffer (PPB).
15 ERROR Errar Flag—Set by out-of-tape sensor, or unit power
off switch.

Paper Tape Punch Buffer (PPB}

I 6-8iT CHARACTER DATA "J

\3 R 7 . o

Loading the buffer initiates punching.
PROGRAMMING EXAMPLE

PUNCH: BIT #100200, PPS : test for ready or error
BEQ PUNCH
BMI ERROR
MOV RO, PPB H
RTS R5 H
ERROR: (message type out)
HALT ; wait for operator to fix punch
JMP PUNCH : try again when Continue is hit.
PERIPHERAL ADDRESS ASSIGNMENTS
PRS 177550
PRB 177552
PPS 177554
PPB 177556

VECTOR ADDRESSES—Reader 70
Punch 74

PRIORITY LEVEL—Set to BR4. Punch is lower than reader.

MOUNTING—Electromechanical assembly—EIA Standard 19 rack, 1014*
vertical mounting space, by 17145 deep.

PC11-M Controller—One small peripheral controlier mounting space (14
of DD11 or ane of two such places in KA11).

57

ENVIRONMENTAL.

55°—I100°F

209% —559%, RH (without condensation}
MODEL DESCRIPTION POWER REQUIREMENTS
PC11 - Reader, Punch & Control 115+10%, 60 Hz
PC11A Reader, Punch & Control 116+109% 50 Hz
PR11 Reader & Control 115+10% 50-60 Hz

LINE FREQUENCY CLOCK (TYPE KW11.L)

The KW1EFL real time clock provides a methbod of measuring time intervals
at line frequency. This clock consists of a frequency source and control logic.
When enabled the clock causes an interrupt every 16.6 or 20 milfiseconds,
depending upon line frequency.

Register
Line Time Clock Status Register {LKS)

L Lo o]]
. |_|-—INTR'ENB '

CLOCK -

Bit
6 INTR ENB When set, an interrupt will occur every time CLOCK goes true.
Cleared by program or reset or start sequence.

7 CLOCK Set to } every 16.6 milliseconds (60 Hz} or 20 milliseconds (50
: Hz). Cleared by reading LKS, RESET or press:ng the START

- switch,
PERIPHERAL ADDRESS ASSIGNMENTS
. LKS . 177546
VECTOR ADDRESS 100
PRIORITY LEVEL BR6&

MOUNT!NG—Th:s optlon plugs mto the KALl processor. o

58

CHAPTER 8
DESCRIPTION OF THE UNIBUS

Communication between all system units in a PDP-11 configuration is done
by a single common bus: the Unibus. All communication—both instructions
and logical operations—is.defined by a set of 56 signals. This set of 56 sig-
nals is used for program controlled data transfers, direct memory data trans-
fers, priority bus control, and program interrupt.

This chapter presents the concepts of the Unibus and how they affect pro-
gram software and interfacing hardware. The use of the 56 bus signals to
effect data transfers and to control bus use is also described.

GENERAL CONCEPTS OF THE UNIBUS

There are five mator aspects of the Unibus that affect both software and
hardware considerations in the PDP-11.

SINGLE BUS—The set of 56 signals that comprise the Unibus is the one
and only bus connecting all peripheral devices, memories, and the central
processor. Thus, to every device there exists a single set of signals by which
it can be interrogated by the processor or other devices, or be used by the
device itself to transfer data to and from memory.

The processor uses this same set of signals to communicate with ail mem-
ories and devices. The important point here is that the form of the com-
munication used by processor and peripheral devices is identical. Conse-
quently, the same set of program instructions used to reference memory
is used to reference peripheral devices. {A look at the PDP-11 instruction
set will reveal that there are no explicit IfO instructions.) -

Peripheral devices in 2 PDP-11 system are designed to respond to the Unibus
in the same manner as memory. Device status registers, device con-
trol registers, and device data registers are each assigned unique “memory’”
addresses, For example, the instruction MOVB RO, PUNCH would load the
punch buffer register with an B8-bit character contained in RO, Other in-
structions would monitor the punch status and the program could deter-
mine when the punching operation was comnplete.

BIDIRECTIONAL BUS—Unibus bus signals are bidirectional—the signal re-
ceived as an input can be driven as an output, as shown in Figure 8-1.

[: RECEIVE BUS SIGNAL
i IDHIVE BUS SIGNAL

L DEVICE 1LOGIC J

&

BUS SIGNAL

Y
Figure 8-1 Bidirectional Nature of the Bus

MASTER-SLAVE RELATION--Af any one point in time, there is one device,
called the master, that has control of the bus. The master device controls

59

the bus to communicate with other devices, called slaves, on the bus. An
exampte of this refationship is the processor {master) fetching an instruction
from memory (which is always a slave).

INTERLOCKED COMMUNICATION-—For each control signal issued by the
master device, there is a response from the slave; thus bus communication
is independent of the physical bus tength and the response time of the mas-
ter and slave devices. Also, master-slave relationships can exist in nearly
any combination between fast-responding and slow-responding devices.

DYNAMIC MASTER-SLAVE RELATION—Master-siave relationships are dy-
namic. The processor, for example, can pass bus control to a disk. The disk,
as master, could then communicate with a siave memory bank.

UNIBUS SIGNALS:

The 56 Unibus signals can be divided into two major groups—the interrupt
group and the non-interrupt group. The inferrupt group can then be sub-
divided into two classes—the request and control class and the grant class.
All bus signals except the grant class are bidirectional in nature and are
connected to every device (though they may nct be used by every device).
The grant signals, because of their special nature in priority bus control
{to be explained Iater), are bussed through each device and are unidirectional
in nature.

DATA TRANSFER SIGNALS

. Data Lines (D < 15.00 >)—(Note that the notation A <a:b> specifies
b—a + 1 signal lines which are named Aa through Ab.) The 16 data lines
are used to transfer information between master and slave. This is the hit
format:

[HIGH BYTE LOW BYTE

Address Lines (A < 17:00 >)—The 18 address lines are used by the master
device to select the slave (@ unigue core memory or device register address)
with which it will be communicating. This is the bit format of the 18 signals: -

17 16 15 .

g ' II[
|

’ [. ‘ BYTE POINTER —I
EXT - FROGRAM ADDRESS

|

A < 15:01 > are used to specify a unique 16-bit word group. In byte opera-
tions, ADQ is used to specify the byte being referenced. If a word is refer-
enced at X (X must be even, since words can be addressed on even bound-
aries only), the low byte can be referenced at X and the high byte at X + 1.

A < 15:00 > are supplied by the software as memory reference addresses.
Al7 and Al6 are used as extended memory bits for relocation and as pro-
tection schemes in future systems. In the PDP-11/20 and the PDP-11/10,
Al7 and- AlG are asserted or forced to 1! whenever an aftempt is made to
reference a memory location where AlS = Al4 = Al13 = 1. Thus the hard-
ware converts the 16-bit software address to a full 18-bit bus address.

An address map is shown in Figure 8-2.

60

SOFTWARE ADDRESS HARDWARE ADDRESS

CO0000-M7 177 QOO0Q0-MTTFT
1st K
MEMDRY BANK
020000-037777 020000-037777
2nd 4K
MEMORY BANK
| (
! |
140000-457777 140000157777
Tih 4K
MEMORY BANK
160000-47777T TeOOQO-T?T?TIT
PERIPHERAL
BANK

Figure 8-2 Address Map
The peripheral bank is composed of the processor's fast memory, status
register, console switch register, and all device registers.

Control Lines (C < 1:0 > »—These two bus signals are coded by the master
device to indicate to the slave one of four possikle data transfer operations.

Master Synchronization and Slave Synchronization (MSYN, SSYN)—MYSN
is a control signal used by the master to indicate to the slave that address
and control information is present. SSYN is the slave's response to MSYN

Initialization ({INIT)—This signal is a power clear signal asserted by the con-
sole and the processor which is used to reset peripheral devices.

PA, PB, 5P1, SP2—These lines are not implemented on the PDP-11/10 or
PDP-11/20.

CONTROL TRANSFER SIGNALS

Bus Request Lines (BR < 7:4 >)—These four bus signals are used by
peripheral devices to request control of the bus.

Bus Grant Lines (BG < 7:4 > }—These signals are the processor's response
to a BR. They will be asserted only at the end of instrugtion execution.

Non-Processor Request (NPR)_This is a maximumn priority bus request from
a peripheral device to the processor.

Non-Processor Grant {NPG}—This is the processor's response to an NPR. 1t
occurs at the end of bus cycles within the instriction execution.

Sefection Acknowledge (SACK)—SACK is asserted by a bus-requesting device
that has received a bus grant. Bus control willi pass to this device when the
current master of the bus completes its operations.

Interrupt (INTR)—This signal is asserted by the master to start program
interruption in the processor.

Bus Busy (BBSY)—This signal depotes bus in use by a master device.

UNIBUS DATA TRANSFER OPERATIONS

Direction of data transfers on the Unibus is defined in relation to the master

61

device. A data transfer from processor to memory (always a slave) is "data
out," and a transfer fromm memory to processor is “‘data in.'

TYPES OF DATA TRANSFERS—The type of data transfer being made between
master and slave is determined by the C lines coded as follows:

1 Co .

o O |'DATI- DATa In

o] 1 DATIF-DATa In, Pause

1 G | DATC - DATg Out

1 1 | DATQOB-DATa Dut, Byte

DATO AND DATOB—The DATO and DATOB operations are used to transfer
data out of the master to the slave. DATO is used to transfer a word to the
address specified by A < 17:01 ». The slave ignores AOO and the data ap-
pears onD < 15:00>>. DATGB is used to transfer a byte of data to the ad-
dress specified by A < 17:00 . ADO = 0 indicates the low byte, and data
appears on D < 07:00 >»; ACD = 1 indicates the high byte, and data appears
on D < 15:08 .

DATI AND DATIP—The DATI and DATIP operations transfer data from a slave
whose address is specified on A < 17:01 > into the master. Both transfers
are made in words on D « 15:00 >. In destructive read-out devices, DATI
commands a read-write operation, while a DATIP commands a read operation
only and sets a pause flag. When the device receives the subsequent DATO
or DATOR and its pause flag is set, the usual read cycle is skipped and an
immediate write cycle is initiated. Thus, DATIPs are immediately followed
by a DATO or DATOB to effect a read-modify-write data exchange. In non-
destructive read-out devices, DAT! and DATIP are treated identically.

This diagram illustrates the data flow in the four data transfers:
DATI OR DATIP

DATA= D5:00>
: 15 8|7 "]
SLAVE REGISTER
HIGH BYTE | LOW BYTE
MASTER ‘ J_J
[
DATOBAADO v DATOBAADD
DATA=D <15:08 > DAII'O DATA=D <07.00 >
un‘rn:ofts;ow

Figure 8-3 Data Flow

.

Note that all-transfers into the master are word operations; it is up to the
master to accept the appropriate byte. On a DATOB, the master must place
the byte on the appropriate data lines; the slave must accept the proper byte.

DATA TRANSFER EXAMPLES—The bus operations used by the processor for
a typical instruction sequence illustrates how the data transfer operations
are used. The “program” starts at location 1000:
1C00: INCB @RO
. ADD #3. @RQ

where RO contains 500 and location 500 contains 10023. The result of this

62

instruction sequence will leave 10027 in location 500. In binary form, this
coding appears as: -

1000: 105210 : iIINCB @RO
1002: 062710 ;ADD (PC)+, @RO
-1004: 000003 3

The following table lists the bus operations that result as a consequence
of these two instructions:

Processor Cycle Bus Operation Bus Address Data Transferred
1. Fetch DATI {PC) = 001000 105210
2. Destination DATIP ({RO) = 000500 010023
3. Execute DATOR {R0O) = 000500 000024
4, Fetch DATI (PC) == 001002 062710
5, Source DATI (PC) = 001004 000003
6. Destination DATIP {R0O) = DOG500 010024
7. Execute DATQ (RO) = 000500 010027

Mote that in step 3, it is inconsequential what data appears on D < 15:08 ~;
the slave accepts only the modified low byte.

A second example of bus operation compares the contents of the Teletype
keyboard data buffer whose address is 177560 with the ASCIl value for the
letter “A.")

200: CMPB @ #177560, #301

This instruction is assembled in three words as follows:

200:. 123727 {CMPB @{(R7)4-, (R7)+
202: 177560 ;Address of data buffer
204: 000301 1301
The processor will execute this instruction with these cycles:
Processor Cycle Bus Operation Bus Address Data Transferred
1. Fetch DATI (PC) = 200 123727
2. Source DATI (PC) = 202 177560
3. Source DATI 777560 ASClI
4. Destination DATI {(PC} = 204 000301
5. Execute none — condition codes set internally.

Note that in step 3, the software specified address 177560 was converted to
the bus address 777560.)

SIGNAL DESCRIPTION OF DATA TRANSFERS—Figure 8.4(a) shows the sig-
nal flow betwean master and slave during a DATO operation. (The sequence
is similar for DATOB except that only a byte of information is transferred.)
The master sets Control for DATO, sets Address for the unique slave address,
and sets Data for the information to be transferred. The master then asserts
MSYN. This signal is received by the slave that recognizes its address; it
responds by accepting the data anid asserting SSYN. SSYN is received by the
master which then negates Contro), Address, Data, and MSYN. The slave
sees MSYN negated and negates SSYN. The master device continues its
operation when it sees SSYN negated.

63

MASTER SLAVE
OPERATION: DATO

A,G,0

MSYN l
‘ SSYN
MSVN

AL,D l
l SEYN

Figure 8-4(a)

The flow of signals for DATI is shown in Figure 8.4(h). (DATIP is similar
except that the internal operation of the slave device is modified.) The master
sets Control for DATI, sets Address for the slave to be selected, and asserts
MSYN. The selected slave responds by setting Data for the information re-
quested and asserts SSYN. The master sees S5YN, accepts the data, and
then negates Control, Address, and MSYN. The slave sees MSYN negated
and negates SSYN. The master continues when it sees SSYN negated.

A more detailed signal sequence for the DATI, DATIP, DATO, and DATOB bus
operations can be found in Appendix D.

MASTER SLAVE
OPERATION: DATT

AL
MSYN ‘

4 - SSYN,D
MSTN

8,C *

l SSYN, B

Figure 8-4(b)

UNIBUS CONTROL OPERATIONS

The faollowing section will deal with how a device becomes master of the bus
and how contral of the bus is transferred from one device to angther. Two
additional bus operations will be presented—the PTR (Priority Transfer) and
INTR (Interrupt).

In normal operation, the processor is bus master, fetching instructions and
operands from memory. Other devices on the bus have the capability of
becoming bus master, and use the bus for one of two purpeses: 1), to gain
direct memory access or 2), to interrupt program execution and force the
processor to branch to a specific address.

PRIORITY ARBITRATION—Transfer of bus control from one device to another
. is determined by a priority scheme in which three factors must be considered.

First, the processor's priority is determined by bits 7, €, and 5 in the pro-

64

cessor status register. These three bLits set a priority level that inhibits
granting of bus requests on lower levels.

Second, bus requests from external devices can be made on one of five
request lines. NPR has the highest priority, and its request is honored by the
. processor between bus cycles of an instruction execution, BR7 is the next
highest; BR4 is the lowest. These four lower level requests are honored by
the processor between instructions, except when the instruction currentiy
being executed causes an internal trap (either an error or trap instruction).
In this case, BR requests will not be heonored until completion of the first
instruction after the trap sequence. Thus if two requests are made to the
processar for bus controd, the higher of the two requests will be honored first,

Third, in response to a hus request, the processor may honor the request by
asserting a bus grant (BG) corresponding to the line on which the bus re-
quest was made. This signal is passed serially through each device in the
system. If a device had made a request, it would block the grant signal
and prevent it from reaching the following devices. Thus, in this ‘“pass-the-
pulse”™ chain, the device that is closest to the processor has the highest
priority on that request level.

This table lists device priorities:

Highest: Davices on NPR
Pracessor when priority = 111
Devices on BR7 ~
Processor when priority = 110
Devices on BRE
Processor when priority = 101
Devices on BRS
Processar when priority = 100
Devices on BR4
Pracessor when priority = 011
Internal options
Processor when priority = 010
Internal opticns
Processor when priority = 001
Internal options

Lowest: Processor when priority = 000

When the processor's priority is set at N, all requests for bus control at
level N and below are ignored,

SELECTION OF NEXT BUS MASTER—The signal sequence by which a device
becomes selected as next bus master is the PTR (Pricrity Transfer) bus
operation. Note that this operation does not actually transfer bus control;
it only selects a device as next bus master. It takes one additional condition
to complete the transfer: the current bus master must complete its bus
operations, The signal that indicates this is BBSY. Thus, when a device makes
an NPR or BR request to the pracessor for bus control, it waits until it first
becomes selected as next bus master by the PTR operation and second, it
no longer senses BBSY. The negation of the BBSY signal indicates that
the current master has completed its bus operation. The selected device
now becornes bus master and asserts BBSY itself, -

INTERRUPT SEQUENCE—Once the device has bus control and is asserting
BBSY itself, it is sole user of the bus uatil it releases its control. This release
of control can be made either actively or passively. Passive release is realized

65

by negating BBSY. Bus control will then pass to either a device that was
selected in the meantime by another PTR sequence or back to the processor,
which will continue where it was interrupted. Active rejease of bus control
is realized through the INTR bus sequence.

. The INTR (interrupt) operation is used by the bus master to transfer to the
processor a memory address (called the interrupt vector). Two consecutive
words, the starting address of an interrupt service routine and a new pro-
cessor status word, are stored at the interrupt vector address. After the
INTR operation is complete, the processor automatically becomes bus master
and begins a trap sequence in which it stores the current value of the PC
and PS on the stack and fetches a new PC and PS from the location pointed
to by the interrupt vector. Thus, the next instruction executed is the start
of the interrupt service routine,

It is illegal to issue an INTR command after gaining control of the bus by
requesting on an NPR line. NPR reguests are granted during instruction
execution and external bus masters must restrict their bus use to nonpro-
cessor activities,

Interrupt Servicing Sequente Example—The following is an example of the
INTR sequence.

-When a peripheral requires service and requests control of the bus with a
BR signal, the operations undertaken to "service” the device are as follows:

@ Gain Contraol of the Bus—When the processor has no higher priority tasks
to complete, it relinquishes the bus to that device. Higher priority items are
(in order of priority):

. Acknowledging an NPR request

- Handling a processar error (illegal instructions, requirements for non-
existent memory, etc.)

. Completing the current instruction

. Acknowledging a trace trap

. Continuing a higher pricrity process

. Acknowledging a higher level BR signal

Acknowledging same level BR signals for devices closer to the processor

NOOhWw e

® Do INTR Sequence—when the device has control of the bus, it initiates
an INTR sequence, transferring to the processor the interrupt vector address
which specifies two words in memory containing the address and status of
the appropriate device service routine. .

@ Push Ofd Interrupt Vector Onto Stack—The processor then “pushes’’—
first, the current central processor status (PS) and then the current program
counter (PC) onto the processor stack.

® Fetch New Interrupt Vector—The new PC and PS (the “interrupt vector”)
are taken from the address specified by the device, and the device service
routine is begun. Note that those operations all occur automatically and that
no device polling is required to determine which service routine to execute,

Example of NPR Operation—Disk operation gives an example of a device
which uses the bus for direct memory access. Under program control, the
processor would initialize registers in the disk controi that specify word count
{WC, number of words in klock of data to be transferred), memory address
{MA, the address at which the bock of data is found or is loaded}, and Track
Address (TA, the paoint on the disk where the block of data starts). Also, the

66

program would set certain function bits in the disk's command and status
register that specify a read or write function. For this example, assume the
disk was set to read.

Once the disk's controt registers are initialized, the disk control logic starts
a search for the requested data. (The processor in the meantime has con-
tinved in its program execution.) When the disk has found the data, it
assembles the first 16-bit word from the disk surface into its data register.
The disk now requests bus control via the NPR request line. The processor,
when it has completed its current bus cycle of the current instruction and
no higher NPR requests exist, grants control of the bus to the disk. The dislk,
as bus master, effects a DATO bus cperation, transferring the contents to
its data buffer to the core address held in its MA, The MA is now incremented
and the WC is decremented. When the DATO operation is complete, the disk
passively reteases control of the bus,

When the second word has been assembled, the disk again requests bus
control, does a data transfer, and then releases bus contral. This cycle is
repeated until the WC reaches zero. At this point, the disk has completed
the transfer that was requested.

To notify the program that the transfer is finished, the disk initiates a request
for bus control at the BR level, gains control when higher priority requests
are satisfied, and does an immediate INTR to the processor and causes the
program to branch to a specific service program (as described in the previous
example).

Details of the INTR and PTR bus operaticns can be found in Appendix D.

&7

The plug-in console board with modular construction is supplied
in the basic 11/20 configuration. In addition to aiding program-
ming, the console contributes to ease of maintenance on the
PDP-11.

CHAPTER 9
Interfacing

A typical device bus interface as shown in Figure 9-1 is composed of five
majar components: 1), Registers; 2), Bus Drivers and Receivers; 3), Address
Selector; 4), Interrupt Control; and 5), Device Contyol Logic.

REGISTERS

Each device is assigned bus addresses at which the program can inter-
rogate and/or load the device status, control, and data registers, The stan-
dardized mapping for these registers and the bit assignments of the com-
mand/status register (C5R) were given in Chapters 5 and &.

As shown in Figure 9-1, all information flow between the device logic and
the Unibus is done through the registers. In general, registers are designed
to be both loadable and readable from the bus. This allows the program to
vse such instructions as ADD RO, REG, or INC REG. However, registers can
be ‘“one-sided,” either '“read-aonly” or *write-only.” Examples of read-only
bits are the DONE and BLUSY flags in the device's CSR. These bits are de-
rived from the internal state of the device logic and are not under direct
pregram control. Write-only registers are used when it is unnecessary to
read back information. Attempting to read such a register would resuit in an
all-zero transfer. The instructions effective with this type of register are then
limited to those which load the register such as MOV RO, REG, or CLR REG
{as opposed to ADD REG, R0, or INC REG).

A

D€3-3a>

EEE" Iél;g i I] I
LI .‘ I -1 I
W— MTaz BUS GRIVERS —D'BIJS DFIWERSI BUS ORIVERS Aus DRIVERS

(L — 1 CTT
CONTROL

.
-2 1,

CEWVILE
LIKC

UNIBUS

ADGRESS

SELECTDR RE(ES;IER I
MICS . I_FEG‘E;ER

ACIT AR

Celas
MSTH

[-E4 LT)
]

Figure 9.1 Typical Peripheral Device Interface

BUS DRIVERS AND RECEIVERS

To maintain the transmission-line characteristics of the Unibus, special cir-
cuits are required to pass signals to and from the bus. The rmajority of bus
signals (afl except the five grant lines) are received, driven and terminated
as shown in Figure 9-2.

69

— = —————n"
| +5 I I +5 |
I - { [az |
| i i |
| }] [
| s] RECEIVER | g f
R
| | i |
p——0]
| ! I [
| = | I = |
| M530 i , | Maze I
[| T |
DRIVER

R1, R2:-1BOM 5% 1/4W
R3, R4 =330JL 5% 1/4W

Figure 9.2 Typlcal Unibus Line

Information is received from the bus using gates which have a high mput
impedance and proper logic thresholds, High input levels must be greater
than 2.5 ¥ with an input current fess than 160 pa. Low level input must be
tess than 1.4 V with an input current greater than 0 ua.

Information transmitted on the bus must be driven with open collector drivers
capable of sinking 50 ma with a collector voltage of less than .8 V. Output
leakage current must be less than 25 ja.

in PDP-11 systems, the bus signals are terminated at both ends by resistor
dividers provided on the M930 module. Physicaily, an M930 is located in
the processor; another is located at the last unit on the bus. A bus signal
sits at logical 0" (inactive, or negated state) at a voltage of 3.4 V. A bus
line is at logicat "1°'* (active, or asserted) when it is pulled to ground.

Drivers and receivers meeting these specifications are avaitable on the
M783, M784 and M785 modules as shown in Figures 9-3, 9-4 and $-5.

70

+ 3 0]

Al a1
Bz b LT 2 Ez o wl
o Wl EBEI - v o 2 p:L:L L > -
'_n.ﬁII‘D
. 11} o o 12 wr
o [TCT I O " LTI - 0
}—4 oumen
4] =1
o T2
e))
O e
m w2
a— w2 o A Fz
a L BEEY
L1} A
o N w1
e o 'al O =3y
o
o L
P2
Bt D o
Rl .z
Bag -
a3
o i3
Lam - e}
5 o
o f = g o2
45 LA 3)
A2])

F2

T

2

Mz

N2

T

RZ

)
O

EL

T

T

T

wE

i

CEC ARG 45 RECEIVER

Figure 9.4 M784 Unibus Receivers

M105 ADDRESS SELECTOR

The M105 Address Selecter as shown in Figure 9-6 is used to provide gating
signals for up to four device registers. The selector decodes the 18-bit bus
address on A < 17:00 > as follows:

71

+5 NG

M MFO
LA MFD
O MFD
4 WFD

AVNFD

B8 MFD

[

F2

a7

(%]

0
]

N2

Az

12

BAET

o
M
.
[X4
L=y
o
.
o HE
oL —
LLII
p—
o L1
o o
.
oMz
o Ml .
BaO D
o P2
L1
o
s8B1 |D
ot2 -
Ll
[
'
o 2
o2t
--

1DEC 2B3 15 RECEWER
DEC 8841 IS CRIVER})

Figure 9.5 M785 Unibus Drivers and-Receivers

ADC is used for byte control. A0l and AD2 are decoded to provide one of
four addresses. A < 12:03 > are determined by jumpers on the card. When
the jumper is in, the selector will look for a 0 on that address line-
A < 17:13 > must all be 1's—(this defines the external bank). Other bus
inputs to the selector are C < 1:0 > and MSYN. The single bus ocutput is
S8YN. The user signals are SELECT O, 2, 4, and & {corresponding to the
decoding of AD2 and AQL, one of which is asserted when A <7 17:13 > are all
1's and A < 12:03 > compare with the state of the jumpers. Other user sig-
nals are OUT HIGH (gate data into high byte), OUT LOW {gate data into low
byte), and .IN {gate data onto the bus). The equations for these last three

signals are as follows:

OUT HIGH

where “v'" means a logical or and “A'"' means a logical and.
Use of the MIO5, drivers, receivers and a flip-flop register is shown in Fig-

ure 9-7.

OUT LOW =
IN =

DATO V DATOBQAOD
DATO v DATOBA00

DATI - ¥V DATIP

The signal SSYN INH L may be used to delay the MI10O5 assertion of SSYN.
This may be done by adding external capacitance (2200 pf gives about 1 »5),
or by gating with an open colfector device (M783, M624). This line may not
be driven from a standard TTL device.

H
xgy SSYNNHL
£t aus SSYN L
MSYN L CONTROL o
AlTL CAT
E2 SELECT @ H
D2 A sz
KA g
KE_E E
Y= SELECT 2 H
—-q—012 0— & = _
— 9o o 5
——_RTdC__O‘O 0“— (1]
—Ne 09 o— & SELECT 4 H
TRy 08% 0 ¢ Re
—‘—0-.—0 70— E
—-a—06 O0-—f
—z 05 00— SELECT & H
e 9% 0 el
AQIL ——S O —03 00—
AGZL :‘;—c l
AL 3
ARGL :: - Nf‘ OUT HIGH H
Py GATING OUT LOW H
coL 12 CONTROL ML MK
MIOS ADDAESS
SELECTOR

% NORMALLY LEFT QPEN
SEE TEXT

Figure 9.6 M105 Address Selector
M782 INTERRUPT CONTROL

The M782 Interrupt Contro! module contains the necessary logic circuits to
allow a peripheral device to gain bus control and perform a program inter-
rupt. The three circuits on this card are block diagrammed in Figure 9-8.
Note that only signals relevant to the user's interface are shown; bus
signals SSYN, BBSY and SACK have been omitted for clarity.

The Master Control circuit is used to gain bus control. When INT and INT
ENB are asserted, a bus request is made on the request line to which BR
is jumpered. When the processor issues the corresponding grant and other
bus conditions are met, the MASTER signal is asserted, indicating that this
device now has bus control. Note that this circuit also can be used to gain
bus control on an NPR line for a device which requests the bus for direct
Mmemory access.

73

ve

19151838y anna |esayduad 1eoidAl Z'6 94n3i4

|

[wes

ACOAESS
I SELECTOR | anm BaGH aam agel L Qam
SELECT REG e L
. L
INH W ’ . ’ ’
[a i) 1 [@] ' =)
REGS REG 3 REG B REG T REG | HEG O
& £ £ < ¢
| T, I |
T HiEH b ¥
| L it
OUT LOW L i_ : i
[Ly L1l kL] 384 380 80
P
= = = =
L = | 10
5. OTHER
“——l——-"m REirE REGISTERS
SELECT RES +4
SELECT REG + 6 BUS M50 — — — BUS D99— — — BUS DBAL— — - BUS DOFL— — - BUS 0BIL— — - BUS @8- — —

]

In addition to two Master Control circuits, a third logic network provides the
necessary signals and gating to perform the INTR bus operation. When either
of the START INTR signals is asserted, the INTR bus signal is asserted
along with a vector address on D < 07:02 . Bits 07:03 are determined by
jumpers on the card. A jumper “in" forces a 0 in that bit. Bit 2 is controlled
by Vector Bit 2, When the processor responds to the INTR signal by asserting
SSYN, the INTR DONE signal is asserted. This line is used to clear the
condition which asserted INTR START.

uy =N A)
. B &
, _TEMR ' Uz
v Y
MASTER
o _2EM A b cowtRoL oo T,
& X
A1 LLEAR & b Hl:TEP i
np START TR & o :' ous oo7
Sack START INTH_B o o—pfi—aus oes
T P2 <] D"'Diz'"— BUS DS
0 OGP 5 0es
0 ol —os o
eosy o o O_DT'_ BUS D@2
] g YECTOR BIY 2 R D-&_?nu'?nt:rur;n
ke j‘m B : : SONTROL B2 tuwm pomE B
BR & e]
INT END p—r pr—=——— 557N
H2
a
OND: T2, TH, 42
BE W B MASTER 56 oUT ST
El —————] :on;nm. == +5¥ AZ
SLEAR B MISTER
B] pP—g 32

Figure 9.8 M782 Interrupt Control

Figure 29 shows a possible interconnection of the M782 to provide inde-
pendent interrupts for two possible conditions in a device: ERROR and DONE.
The ERROR and DONE signals shown in Figure 9-9 are signals from bits 15
and 7 in a device’s CSR. Likewise ERROR INT ENB and DONE INT ENB are
derived from the CSR. Both interrupts in this example are tied to the BR4
level; the corresponding grant line BG4 enters the ERROR Master Control and
is passed on to the DONE Master Control. Thus, ERRCR has a slightly higher
priority interrupt level than DONE.

Both MASTER signals are tied to the INTR control. Thus, whenever either
ERROR or DONE gains bus control, an INTR aperation is initiated. Note
that Vector Bit 2is a 1l or O as a function of which master conirol
is interrupting. Also, INTR DONE is tied to MASTER CLEAR to clear the
master conditiomn.

75

DEVICE CONTROL LOGIC
The type of control logic for a peripheral depends on the nature of the
device. Digital offers a wide line of general-purpose logic modules for im-
plementing control logic. These modules. are described in detail in another
Digital publication: The Logic Handbook.

ERACA INT EME A e,
h

STERT TR 8 L

BUS BR4 L
EmRoA ——
WASTER Boa T
Bus BEEW A conTROL M
LY
MASTER TLhT WTH A
CLEAR W N MASTER AL STARTNTRAL
i_ =
CONE INT
EHE H
DONE M o
MASTER BUS BG4 DUT H
CONTROL [~

BEAINBH

MASTER CLESA
B H

MASTER 8 L

-

YECTOA BIT 2 H

e

1 B REDUEST 15 MAOE OM LEVEL #

Z. "ERROR" MTERAUPTS TO 104

3 TDOWE" NTERRUPTS TO 100

RROA" HAS HIGNER PRIOAITY THAN
E” BECAUSE "EAROA™ RECENES

Bo4 FIRST

Figure 8.9 Typical Interconnection of M782 Interrupt Control

76

CHAPTER 10
CONFIGURATION AND INSTALLATION PLANNING

MODULAR CONSTRUCTION -

Physically, the PDP-11 is composed of a number of System Units. Each
Systemn Unit is composed of three 8-slot connector blocks mounted end-to-
end as shown in Figure 10-1. The Unibus connects to the System Unit at
the lower left and at the upper left. Power also connects to the unit in the
lefomost black. A System Unit is connected to other System Units only via
the Unibus.

UNIBUS CONNECTION
",

POWER|

N

N
@ O5IC @

— | —

NS
UNIBUS CONNECTIGN

iz
e
1]

~ Figure 10.1 System Unit

The remainder of the Systerm Unit contains logic for the processor, memory
or an /0 device interface. This logic is composed of single height, double
‘height, or quad height modules which are 8.5 deep.

The use of System Units aliows the PDP-11 to be coptimailly packaged for
each individual application. Up to six System Units can ke mounted into a
single mounting box. For a basic PDP-11/20 system, the processor/console
would fili 215 System Unit spaces and 4096 words of core memory would
fill one System Unit space. This leaves 215 spaces for user-designaied op-
ticns. This would allow the user to add 8,192 words of additional core
memory, a Teletype control, and a High-Speed Paper Tape Control, or 4,096
words of core memory and six Teletype interfaces. Larger systems will
require a BAL1-EC or BA11-ES Extension Mounting Box which contains space
for six additional System Units.

The use of System Units also facilitates expansion of systems in the field
and service. To add an additional option to a PDP-11 system, the proper
System Unit is mounted in the Basic or Extension Mounting Box and the
Unibus is extended. Servicing of the PDP-11 can be done by swapping
modules or by swapping System Units.

MOUNTING BOXES AND CABINETS

The PDP-11 is available as either a tabletop or rack-mounted configura-
tion. The rack-mounted configuration may be installed in a DEC cabinet or
mounted in a customer cabinet. The PDP-11 mounts in an EIA standard 19-
inch cabinet. The rack-mounted PDP-11 has tilt-slides as standard mount-
ing hardware.

The following mounting units and cabinets are available for PDP-11 systems.
FDP-11 TABLETOP BOX AND POWER SUPPLY FOR 11/20, 11/10 SYSTEMS

{BA11-CC AND H720)—This cover and hox may be specified with a basic
11/20 and 11/10 system and includes:

1. H720 Power Supply
2. 157 of power cord with ground wire

77

- For 115 V standard, parallel blade, U-ground, 15 ampere connectors
{NEMA 5-15P) o '

— For 230 V 3 prong U-ground {NEMA 6-15F)

3. Cooling Fans

4. Filter

5. Programmers Console with 11/20 or Turn-Key Console with 11/10

Approximate Size—11" high, 20" wide, 2554 deep. Figure 10-2 shows the
layout of this unit. ' '

Figure 10,2 Table Top PDP-11 Dimensions

Approximate Weight—100 ibs. {including CP, console and 4K core)

Power—I120V =+ 109, 47-63 Hz 6 amps. single phase
{BAlI1-CC and H720-A)
230V % 109, 47-63 Hz 3 amps. single phase -
{BAl1-CC and H720-B)

PDP-11 BASIC MOUNTING BOX AND POWER SUPPLY (BAl11-CS AND H720)
—This basic mounting box may be specified with a basic 11/20 or a 11/10
system and includes:

1. Tilt and Lock Chasis Slides

2. H720 Power Supply

3. 15" of power cord with ground wire

— For 115V standard, parallel-blade, U-ground, 15-ampere connector,

(NEMA 5-15P) -

= For 230 V 3-prong, U-ground, NEMA Na. 6-15P

4, Cooling Fans

5. Filter

6. Programmers Console with 11/20 or Turn-Key Conscle with 11/10

Approximate Size—10L%" high, 19" wide, 23" deep. Figures 10-3, 10-4 and
10-5 show the layout of this unit and give slide dimensions.

78

- Approximate Weight—90 ibs. (including CP, console and 4K core)

Power-—120 V = 10%,, 47-63 Hz

6 amps. single phase
(BA11-C5 and H720-A)

230V *£109%,, 47-63 Hz 3 amps.
{BAI1-C5 and H720-B)

single phase

Figure 10.3 Rack Mountable PDP-11 Dimensions
& FRONT PaNEL tHassIs
Pl N
_L] . AT
& OF SLIDE
T T

LYE)

14478 T/
SLOT TYR

¥

ol
i

Figure 10.4 Rear View of Mounting Hardware

e
‘ :_ m — = . - : - - - ‘ "1I
P | . 1[P | ' P
eSS il Efreear—] |
T 3R " S imwoanar = T T T . _______."
P s e RN el o _at
SIOE WEw OF OUNE kG HARDreRE

Figure 10.5 Side View of Mounting Hardware

79

PDP-11 TABLETOP EXTENSION MOUNTING BOX (BA1l-EC)—The tabletop
Extension Box is supplied, when ordered, for mounting of up to & additicnal
System Units which can not be contained in the Basic Mounting Box. This
unit is supplied with:

1. 15’ of power cord with ground wire

- For 115 V standard, parallel blade, U-ground, 15-ampere connector
{NEMA 5-15F) '
For 230 V 3-prong, U-ground, NEM* 6-15P
. Cooling Fans
. Filter
. Front Panel
. Unibus Cable from Basic Mounting Box, 8'6" long

I3 ENIRY NN

Approximate Size—11" high, 20" wide, 24" deep

Power—120 V = 109%,, 47-63 Hz 6 amps. single phase
(when H720-A is added)

230V £109%,, 47-63 Hz 3 amps. single phase
{when H720-B is added)

PDP-11 EXTENSION MOUNTING BOX (BA11-ES)—-The Extension Box is sup-
plied, when ordered, for mounting of up to 6 additional System Units which
can not be contained in the Basic Mounting Box. This unit contains:
1. Tilt and Lock chassis slides
2. 15 of power cord with ground wire
- For 115 V standard, parailel-blade, U-ground, 15-ampere connector
{NEMA 5-15P)
For 230 V 3-prong, U-ground {NEMA &-15P)
. Cooling Fans
. Filter
. Front Panel
. Bus Cable from Basic Box, 8 &” long
Approxlmate size—10145" high, 19" wide, 23" deep

Power—120 V * 109, 47-63 Hz 6 amps. single phase
. (when H720-A is added)

- 230V =109, 47-63 Hz 3 amps. single phase
{when H720-B is added)

. PDP-11 FREESTANDING BASE CABINET (H960-CA)—This optional cabinet
cabinet can be used to mount the BAI1l-CS Basic Mounting Box and a
BA11-ES Extension Mounting Box supplied with Tilt and Lock chassis slides
in addition to other POP-11 equiprnent.

Panel capacity is six 104" high maunting spaces, each of which is covered
with black plastic panels if equipment is not mounted—(5 panels, maximum,
supplied).

mmhm¢

[tems supplied with the cabinet include:

H950-A Frame

H3952-E Coasters

H-952-F Levelers

H-952-C Fan Assembly {in top of cabmet)
H-850-8 Filter

PDP-11 Logo

H-950-B Rear Door

1034 " Plastic Bezels, maximum of 5 supplied
Two HS52-A End Panels

LENHBRWOE

80

10. H950-D Mounting Panel Doors

11. H952-B Stabilizer Feet

12. #7406782 Kick Plate

13. #7005906 Power Distribution Panel {ac and dc, mounted on upper
left side) -

Approximate Size——22" wide, 39” deep (including stabilizer feet), 7114 high
Approximate Weight—130 Ibs. {without computer)

Voltage—115 V 60 Hz (for fans)
230 ¥ 50 Hz (for fans)

PDP-11 POWER SUPPLY SUBSYSTEM H720—This Power supply is used in
the Basic and Extension Mounting boxes and supplies power to all devices
mounted in one of these boxes. It is included in basic PDP-11 systems,
but must be ordered separately with a BA11ES or BA11EC Extension Mount-
ing Box.

Approximate Size—1614" wide, 8" high, 6 deep
Approximate Weight—25 |bs.

Voltages—(specify input voltage)

IN 120V +10%, 47-63 Hz 6 amps (H720A)
218V =109, 47-63 Hz 6 amps {H720A)
225V +10%, 47-63 Hz 3 amps {H720B)
233V *10%, 47-63 Hz 3 amps {H720B)
240V *£109%, 4763 Hz 3 amps (H7Z20B)

ouT 45V =59, 12 amps
—15V 150 10 amps

+8RMS (unregulated) 1.5 amps
—22v {unregulated) 1.0 amps

FREESTANDING PROGRAMMER’'S TABLE (H952-HA)—This freestanding table
fits directly below the programmer's console in the Freestanding Base
Cabinet and extends into the cabinet approximately 1. The surface plate is
supported by its own adjustable height legs.

Approximate Size—20" extension from cabinet, 19¢ wide, 27" above floor

SYSTEM UNITS AND CABLES

The following items are available for mounting standard and special periph-
eral device logic into a PDP-11 system.

PERIPHERAL MOUNTING UNIT (DD11-A)—The DD11 is a prewired System
Unit which alfows standard small peripheral interfaces to be mounted in a
PDP-11 system. Wt accepts standard small peripheral interfaces {up to 4)
such as the KL1l Teletype Contro! or the controller portion (PC11-M) of the
High Speed Reader/Punch. For mountmg, it requires one-sixth (1/6) of a
BAll Mounting Box.

BLANK SYSTEM UNIT {BB]I)—The BB11l consists of three 288-pin con-
nector blocks connected end-to-end. This upit is unwired except for Unibus
and power connections and allows customer-built interfaces to be integrated
easily into a PDP-11 system. For mounting it requires one-sixth (1/6) of a
BAll Mounting Box.

81

UNIBUS MODULE (M920)—The M%20 is a double module which connects
the Unibus from one Systern Unit to the next within a Mounting Box. The
printed circuit cards are separated by 1“ for this purpose, A single M920
will carry all 56 Unibus signals arld 14 grounds.

UNIBUS CABLE (BCllA)—The BCIlA is a 120- conductor ﬂexprmt cable used
to connect System Units in different mounting boxes or a peripheral device
which is removed from the mounting boxes.

The 120 signals consist of the 56 Unibus Jines plus 64 grounds. Signals and
grounds alternate to minimize cross talk.

Type JLength
BCl1A-2 2!
BCl1lA-5 5
BC11A-8A g6
BC11A-10 10
BC1l1lA-15 15¢
BC1l1A-25 25

CABLE REQUIREMENTS

When an Extension Mounting Box is used, an external cable, the BC11A, is
the only signal connection between mounting boxes. This external bus cable
may also he used to connect other peripherals to the PDP-11. The maximum
combined, internal and external, bus cable length is 50,

PDP-11/20 POWER REQUIREMENTS

input Voltage and Current—105-125 Vac, 6 amperes, 210-260 Vac 3 am-
peres, (single phase) .

Line Frequency—47-63 Hz
Power Dissipation—400 watts

A standard 15-foot, 3-prong, U-ground, 15-ampere, line cord is provided on
the rear of the PDP-11 for connection to the power source on 120 Vac
meodels. On 230 Vac models, a 15-foot, 3-conductor cable with pigtails is
provided.

TELETYPE REQUIREMENTS

The standard Teletype requires a floor space approximately 2214 inches
wide by 1814 inches deep. The Teletype cable length restricts its location to
within 8 feet of the side of the computer.

Input VYoltage—115 Vac *10%, 60 Hz *0.45 Hz, 230 Vac £109%, 50 Hz
+0.75 Hz

Line Current Drain—2.0 amperes
Power Dissipation—150 watts

The Teletype plugs into the rear of the PDP-11 Basic Mountlng Box and is
turned ON and OFF by the power switch on the front panel of the PDP-11.

ENVIRONMENTAL REQUIREMENTS

The PDP-11 is designed to operate from +10 to +50°C and with a relative
humidity of from 20 to 959 {without condensation).

82

INSTALLATION PROCEDURE

The PDP-11 is crated for shipment to the customer site to ﬁrevent damage.
Installation is provided by DEC personnel at the customers site.

Computer customers may send personnel to instruction courses on computer
operation, programming, and maintenance conducted regularly in Maynard,
Massachusetts, Palo Alto, California, and Reading, England.

83

il

The PDP-11 has adopted a modular packaging approach to allow
custom configuring of systems, easy expansion and easy servicing.

CHAPTER 11

PAPER TAPE SOFTWARE SYSTEM
PAPER TAPE SOFTWARE SYSTEM (PTS)

PTS is a compatibie group of software packages designed to aid development
of PDP-11 application programs. A brief description of each item with its
maior features is offered below with detailed programming information avail-
-able in corresponding software user's manuals.

PTS FEATURES

® 4K Absolute Assembler .
® Symbolic Program Editor for edmng of paper tape which is string oriented

® On-Line Debugging Aid allowing rapid and accurate modification of assem-
bhled programs

@ |/O Driver Routine allowing subroutine level communication with periph-
eral devices and doubie buffered input/output operation concurrent with
running programs

® Floating Point Math Package using both reentrant and relocatable code
@ General Utilities including loaders and dump routines

PAL-11A ASSEMBLER—This two- or three-pass assembler runs on a PDP-11
with 4K words of core memory and an ASR-33. It will also accommaodate a
high-speed reader/punch. Optional outputs include the absolute object code,
an assembly listing containing each source statement, and an indication of
any errors detected in the statement. A symbol table may be alphabetically
listed.

ED11 EDITOR—The PDP-11 Editor (ED11) allows the user to type identified
portions of source program on the teleprinter and to make corrections or
additions. This is accomplished hy typing simple commands that cause the
Editor to read, print, punch out on paper tape, search, delete and/or add to
the text of the program.

Use of the ED11 presupposes no special knowledge or technical skil} beyond
that of the operation of explicitly defined one-character commands., The
commands are grouped according to function: input, positioning of the
current-character |ocation pointer, output, search {which is done by charac-
ter string), insert, delete, and exchange of text portions.

ED11 uses 2,000 words of core and requires an ASR-33 unit which includes
a printer, keyboard, paper tape reader and paper tape punch. Alternatively,
a KSR-33 may be used in conjunction with the high- speed paper tape reader
and punch.

ODT-11 ON-LINE DEBUGGING TECHNIQUE—ODT-11 is a core resident pro-
gram which allows the user to debug his binary programs at the console by
running them in specific segrments and checking for expected results at vari-
ous points, |f modification of the program is needed, the user can alter the
contents of the appropriate location by "opening” it and typing in new data.

Two versions of ODT are available, one being a subset of the other, The
larger system uses 750 words of core and utilizes an ASR-33, or 2 KSR-33
and a high-speed paper tape punch and reader. The smaller version uses the
same peripherals and 500 words of core. Up to eight breakpoints can be set
using the larger version of QDT, while one breakpomt is allowed in the
stmaller version.

85

Debugging operations alternate between commands to ODT and the running
of the program to be debugged. Breakpoints are set in the user's program by
ODT commands, and a command to run starts execution of the program.
When a breakpoint is encountered, the program run is suspended, and the
progress of its execution can be monitored and altered. This is accomplished
by using commanrds to open memory locations of interest, as well as special
registers. .

An operator may examine and change the operating priority of both ODT
and the user's program, the mask and address range for searches, results
of logical and arithmetic operations, the SP and PC, and the general registers.
Cther commands will search for values of specified bits of a word, or for
references to an address within an address range, calculate 16-bit and 8-hit
offsets to an address and restart the running of the user's program at any
address.

10X 1nput/Output Utility Peripheral Driver—IOX is a set of service routines
allowing single or double buffered 1/Q processing on an ASR-33 and/or a high-
speed paper tape reader and punch. This routine allows the user to make
-simple assembly language calls-specifying devices and data forms to accom-
plish interrupt-controlied data transfer concurrent with execution of the run-
ning program. Multiple devices can be run simultanecusly.

10X frees _the user from the details of dealing directly with the device and
allows development of programs which may be run under the direction of a
monitor with minimwm medification.

10X also provides some degree of reaf-time control by allowing user programs'
to be executed at priority levels at the completion of some device action or
data transfer.

MATH PACKAGE—A number of commaonly used subroutines are available to
simplify programming. These routines are reentrant and relocatable to pro-
vide maximum flexibility. Arguments are treated as floating point numbers
with a signed 31-bit fraction and a mgned 15-bit exponent. Subroutines sup-
plied include:

ADD

MULtiply

SUBtract

Divide

SIN

COs

ATAN

FIX—FLOAT

FLOAT—FIX

NORmalize

{Integer MULtiply and DIVide are alsc supplied}

LOADERS—Two loaders are used: -
® A Bootstrap loader loads the ABSolute loader and jumps to it.

& ABSolute Ipader loads PAL-11A output, checks for checksum errors and
jumps to a user program or halts when done.

CORE DUMP ROUTINES—Routines are provided which dump specified
ranges of core locations on paper tape in absolute format or on the tele-

printer in octal.

86

CHAPTER 12

THE OPERATOR'S CONSOLE

The PDP-11 Operator's Console has been configured to achieve convenient
control of the system. Through switches and keys on the console, programs
or information can be manually inserted or modified. Also indicator famps an
the console face display the status of the machine, the contents of the Bus
Address Register and the data at the output of the data paths.

The console is shown in Figure 12-1.

—

ilgliltlall ol

<l
kol P A, SOMPR T FERF 2T T kP sl

SOCAESS ANGLSTLR
I

L) [13] TETCH ENES
s s |

| e— —— |

pata

spuect oEcumafion appmiss

ZAITER ALEIGTER

o v s u]elufnfw][s[a][]s

Ll

e
Aom

= 3uir

Figure 12:1

CONSOLE ELEMENTS

The console has the following indicators and switches:

1. A bank of 8 indicators, indicating the following conditions or oper-
ations: Fetch, Execute, Bus, Run, Source, Destination and Address

(2 bits).

. A 16-bit Data display
An 18-bit Switch Register
Contro! Switches:

e

EXAM (Examine)}
CONT (Continue)
. ENABLEfHALT -

START
. DEP {Deposit)

(LSRRl RN =

. An 18-bit Address Register display

. LOAD ADDR (Load Address)

. S/INST—S/CYCLE (Single Instruction/Single Cycle)

INBICATOR LIGHTS—The indicators signify specific machine {functions,.

operations, or states. Each is defined below,

1. Fetch—indicates that the central processor is fetching an instruction.
2. Execute—indicates that the central processor is in the state of

executing an instruction, -

87

3. Bus—indicates that a peripheral is controlling the bus. It is lit when
BBSY (Bus Busy) is asserted, unless the processor (whlch includes
the console) is asserting BBSY.

4. Run—indicates that the processor is running. It monitors the contrel
flip-flop for the internal clock.

5, Source—indicates that the central processor is obtaining source
data (except fromi an internal register).

6. Destination—indicates that the central processor is obtaining des-
tination data (except from an internal register).

7. Address—identifies the source or destination address cycle of the
central processor, using two lights that are decoded zero, cne, two,
or three. When references are made via the Unibus to the addresses,
the lights tell the machine's source or destination cycle. For an in-
ternal register reference, there is a ‘“'zeroth' addressing operation.

REGISTER DISPLAYS-—The Operator’'s Console has an 18-bit Address Regis-
ter display and a 16-hit Data display. The Address Register display is tied
directly to the output of an 18-bit flip-flop register called the Bus Address
Register. This register displays the address of data examined or deposited.”
deposited.

The 16-bit data register is divided on the face of the console by a line into
two 8-bit bytes. This register is tied to the output of the processor data paths
and will reflect the output of the processor adder. After execution of a HALT
instruction, the Data display will show the content of the RO register. It
also will show data aither examined or deposited when doing these control
functions.

SWITCH REGISTER—The PDP-11/10 and PDP-11/20 can reference 21% hyte
addresses. However, the Unibus has expansion capability for 218 byte ad-
dresses. In order that the console can access the entire 18-bit address
scheme, the switch register is 18 bits wide. These bits are assigned as O
threugh 17. The highest two are used only as addresses. A switch in the
"up” position is considered to have a 1" value and in the “down" position
to have a “0" value. The condition of the 18 switches can be loaded into the
Bus Address Register or any memory location by using the appropriate con-
trol switches which are described below.

CONTROL SWITCHES—The switches listed in item 5 of the “Console
Elernents’ have these specific control functions:

1. LOAD ADDR—transfers the contents of the 18-bit switch register
into the bus address register.

2, EXAM—displays the contents of the location specified by the bus
address register.

3. DEP—deposits the contents of the low 16 bits of the switch register
into the address then displayed in the address register. (This switch
is actuated by raising it.)

4, ENABLE{HALT—allows or prevents running of programs. For a pro-
gram to run, the switch must be in the ENABLE position (up). Placing
the switch in the HALT position (down) will halt the system,

5. START—starts executing a program when the ENABLE/HALT switch
is in the ENABLE position. When the START switch is depressed, it
asserts a system initialization signal; the system actually starts when
the switch is released. The processor will start executing at the
address which was last loaded by the LOAD ADDR key, provided
no other key operations have been performed. In HALT mode, de-
pressing START effectively resets the entire system, thus acting as
a manual I/ 0 reset. .

88

6. CONT—allows the machine to continue without initialization from
whatever state it was in when halted, provided no other key opera-
tions have been performed.

7. S/INST-$/CYCLE—determines whether a single instruction or a

" single bus cycle is performed when the CONT switch is depressed
while the machipg is in the halt mode.

When the system is running a program, the LOAD ADDR, EXAM, and DE-
POSIT functions are disabled to prevent disrupting the program. When the
machine is to be halted, the ENABLE/HALT switch is thrown to the bhalt
pasition. The machine will halt either at the end of the current instruction,
or at the end of the current bus cycle, depending upon the position of the
S/INST-S{CYCLE switch. But for EXAM, DEPOSIT and LOAD ADDR to func-
tion, the machine must stop in “Service™ {(all state indicators off). To assure
this condition, halt the machine in SINGLE INSTRUCTION mode.

OPERATING THE CONTROL SWITCHES

When the PDP-11 has been halted, it is possible to examine and update bus
locations. To examine a specific location, the operator sets the switches of
the switch register to correspond fo the location's address. The operator then
presses LOAD ADDR, which will transfer the contents of the switch register
into the bus address register. The location of the address to be examined is
then displayed in-the address register display. The operator then depresses
EXAM. The data in that location will appear in the data register display.

If the operator then depresses EXAM again, the bus address register will be
incremented by 2 to the next word address and the new location will be
examined. In the PDP-11, the bus address register will always be poiniing to
the data currently dispiayed in the data register. The incrementation occurs
when the EXAM switch is depressed, and then the jocation is examined.

The examine function has been designed so that if LOAD ADDR and then
EXAM are depressed, the address register will not be incremented. in this
case, the location reflected in the address register display is examined
directly. However, on the second (and successive) depressings of EXAM, the
bus address register is incremented. This will continue for successive de-
pressings as long as another control switch is not depressed.

if the operator finds an incorrect entry in the data register, he can enter new
data there by putting it in the switch register and raising the DEP key. The
address register will not increment when this data is depasited. Therefore,
when the operator presses the EXAM key, he can examine the data he just
deposited. However, when he presses EXAM again, the system wil! increment.

If the operator attempts to examine data from, or deposit data into, a non-
existent memory location, the “time out” feature will cause an error flag. The
data register will then reflect location 4, -the trap location, for references to
nonexistent locations. To verify this condition, the operator should try to
deposit some number other than four in the location causing the error; if
four is still indicated, this would indicate that either nothing is assigned
to that location, or that whatever is assigned to that location is not working

properly.
When doing consecutive examines or consecutive deposits, the address will

increment by 2, to successive word locations, However, if the programmer is
examining the fast registers (the ‘scratch pad” memory), the system only

89

increments by 1. The reason for this is that once the switch register is set
properly, the programmer can then use the four least significant bits of the
switch register in examining fast memory registers from the front panel.

To start a PDP-11 program, the programmer loads the starting address of
the program in the switch register, depresses LOAD ADDR, and after ensur-
ing that the ENABLE/HALT switch is in the ENABLE position, depresses
START. The program will start to run as soon as the START switch is re-
leased.

The Run indicator lamp is driven off the flip-flop that contrels the clock.
Norrmally, when the system is running, not only will this light be on, but the
other lights (Fetch, Execute, Scurce, Destination, the Address lights, and the
Address and Data registers) will be flickering. If the run light is on, and none
of the other indicators are flickering, the system could be executing a "wait"
instruction which waits for an interrupt. in this case, a 1" will appear in the
Data display.

While in the halt mode, if the operator wishes to do a single instruction, he
places the S/INST-S/CYCLE switch in the S/INST position and depresses
CONT. When CONT is depressed, the console momentarily passes control to
the processor, allowing the machine to execute one instruction before regain-
ing control. Each time the CONT switch is depressed, the machine will
execute one instruction. The Bus Address Register wiil then show the last
address referenced by the imstruction (not necessarily the address of the
instruction itself) and the Data display will reflect the data acted upon
at that address.

Similarly, if the operator wishes to have the machine perform a single bus
cycle, he places the S/INST-S/CYCLE switch in the S/CYCLE position and
" presses CONT. The machine will then perform one complete bus cycle and
halt. The operator cannot do an examine or deposit function at the end of a
single bus cycle. This prevents altering machine flow. Only when the machine
is at the end of an instruction and in the balt mode can the examine or
deposit functions cperate.

To start the machine running its program again, the operator places the

ENABLE/HALT switch in the ENABLE position, and depresses the CONT
switch. .

90

APPENDIX A—PDP-11 INSTRUCTION REPERTOIRE

Mnemonic

instruction
Operation

DOUBLE OPERAND GROUP: OPR scr, dst

MOV(B)
CMP(B)
BIT(B)
BIC(B})
BIS(B)
ADD
SUB

MOVe (Byte)

(src) - (dst)
CoMPare (Byte)

(srcy — (dst)
BIt Test {Byte)}

{src) A (dst)
Blt Ciear {Byte) -

~ (src) A (dst) > (dst)

BIt Set (Byte)

(sreyv
ADD

(src) + (dst) - (dst)
SUBtract

(dst} — (src) —» (dst)

CONDITIONAL BRANCHES: Bxx loc

BR
BNE
BEQ
BGE
BLT
BGT
BLE
BPL
BMI
BHI
BLOS
BVC
BVS
BCC
{or BHIS)

BCS
{or BLO)

BRanch (unconditionally}
toc = (PC)
Branch if Not Equal (Zero)
loc> (PCYHZ=0
Branch if Equal (Zero)
loc— (PCYIfZ=1
Branch if Greater or Equal (Zero)
loc—= (PCHifNY¥V=0)
Branch if Less Than (Zero)
loc=> (PCYifN¥V =1
Branch if Greater Than (Zerg)
loc—» (POYIfZv (N¥V=0)
Branch if Less Than or Equal {Zero)
lcc» (PCYHZv(NVV)=1
Branch if PLus
loc = (PCYifN=0
Branch if Minus
loc— (PCYifN=1
Branch if Higher
loc > (PCYIfCvZ=0
Branch if LOwer or Same
loc=> (PCYifCvZi=1
Branch if oVerfiow Clear
loc = (PCYif V=10
Branch if oVerflow Set
loc - (PC) V=1
Branch if Carry Clear
foc— (PCYITC =0
Branch if Carry Set
loc = (PC)ifC =1

g1

OP Cade

-155DD
28800
-355DD
-A453DD
-558DD
065SDD
1688DD

0004XX

0010XX
0014XX
0020XX

Q024XX -

0030XX
0034XX
1000XX
1004XX
1010XX
1014XX
1020XX

©1024XX

1030XX

1034XX

Condition

Codes
ZNCY

V=0
vy
vy—0
¥v—0

Y V—0

VY
VYV

Timing

2.3
2.3*
2.9
29
2.3
2.3
23

26—
26—
26—
26—
26—
26—
26—
26—
26—
26—
26—
2.6—
2.6_—
26—

26—

SUBROUTINE CALL: JSR reg, dst

JSR

Jump to SubRoutine
(dst)»> (tmp), (reg) |
- (PC) > (reg), (tmp)— (PC)

SUBROUTINE RETURN: RTS reg

RTS .

ReTurn from Subroutine
(reg} = PC, 1 (reg)

SINGLE OPERAND GROUP: OPR dst

CLR(B)
COM(B)
INC(B)
DEC(B)
NEG(B)
ADC(B)
SBC(B)
TST(B)
ROR(B)
ROL(B)
ASR(B)
ASL(B)
JMP
SWAB

CleaR {Byte)

0 - (dst)
COMpiement (Byte)

~ (dst) = (dst)
INCrement {Byte)

(dst) + 1 —» (dst)
DECrement (Byte)

{dst} — 1 - (dst}
NEGate (Byte)

~ (dst) + 1 — (dst)
ADd Carry (Byte)

(dst) £ (C) = (dsb)
SuBtract Carry (Byte)

(dst) — (C) - (dst)
TeST (Byte)

0 — (dst)
ROtate Right {(Byte)

rotate right 1 place with C
ROtate Left (Byte)

rotate left 1 place with C
Arithmetic Shift Right {Byte)

shift right with sign extension
Arithmetic Shift Left (Byte)

shift left with lo-order zero
JuMP

{dst) » (PC)
SWAp Bytes

bytes of a word are exchanged

CONDITION CODE OPERATORS: OPR

Condition Code Operators set aor clear combinations of condition code hits.
Selected bits are set if § = 1 and cleared otherwise. Condition code bits cor-
responding to bits set as marked in the word below are set or cleared.

CONQITION CODE OPERATORS:

004RDD

00020R

-050DD
-051DD
05200
«053DD
054DD
-055DD
-0536DD
05700
060DD
061DD
Q620D
-063DD
Q001DD
000300

1000
v v 00
Vv—v
Vv—v

V’p/l/n/_

Vvvy
VY
v v 00
Vv vy
Yvvy
Vvvy
Vv vy

v v 00

o
|

Q o 2
1 1 [1|

TR]Zl <]

15

Thus SEC = 000261 sets the C bit and has no effect on the other condition

code bits (CLC = 000241 clears the C Bit)

OPERATE GROUP; OPR :
HALT 000000

HALT

WAIT

WAIT 000001

92

processor releases bus, waits for interrupt

- processor stops; (RO) and the HALT address in lights

4.4

3.5

2.3
2.3
2.3
2.3
2.3

2.3

2.3
2.3%
2.3°
2.3°
2,3°
2.3°
1.2
2.3

1.5

1.8
1.8

.

RTI ReTurn from Interrupt 000002 V¥ VyY ag

1 (PC), 1 (PS)

107 Input/Output Trap Q00004 VYV Y 9.3
{(PS) L. (PC) . (20} — (PC), (22) » (PS)

RESET RESET 000005 e 20 ms.
an INIT pulse is issued by the CP

EMT EMulator Trap 104000—104377 ¢y 9.3
(P3} |, (PO) |, (30) s (PC} {(32) » (PS)

TRAP TRAP 4400—104777 VY Y Y 9.3

{PSy [, (POY | . (34) -» (PC), {36) » (PS5}

NOTATION:
1. for order codes
— word/byte bit, set for byte (100000}
$5—source field,
DD—destination field
XX—ofifset (8 bit)
2, for operations
A and,
v oar,
~ not,
) contents of,
XOR
“is pushed onto the processor stack”
‘“the contents of the top of the _processor stack is
poppad and becomes”
“becomes”

(

4 e &

3. far tlmi

3

E

14

0.4 us less if not register mode

— 0.9 ps less if conditions for branch not met

° 1.2 ps more if addressing odd byte

(0.6 us additional in addressing odd bytes otherwise)

4, for condition codes

set conditionally
not affected
cleared

set

r-lO[:\

93

The PDP-11 derives speed and memory efficiency from its wide
range of addressing capabilities.

94

APPENDIX B—ADDRESSING SUMMARY

ADDRESSING MODES

[MODE lneclsranl
§ ']

sre or det

GENERAL REGISTER ADDRESSING

1.4

Timing (us)
Mode Description Symbolic src dst
0 register R Q0 00
1 register deferred @ R or (R) 15 14
2 auto increment {R) - 1.5 1.4
3 auta increment deferred @ {R} + 2.7 2.6
4 auto decrerment — (R) 15 14
5 auto decrement deferred @ — (R) 2.7 26
6 indexed X (R 2.7 26
7 indexed deferred @ X (R)or @ (R) 39 38
l MODE | 7 j
src or det
PC REGISTER ADDRESSING
Timing {us}
Mode Description Symbolic sre dst
2 immediate #n = 1.5
3 absolute @ F#FA 2.7 2.6
6 relative A 2.7 2.6
7 relative deferred @A 3.9 3.8
INSTRUCTION FORMATS
DOUBLE OPERAND GROUP: OFR src,dst
[?P ?0051 [1 1 ”cl 1 1 I L ldﬁl 1 1 l
15 7ot & 5 0

95

SUBROUTINE CALL: JSR reg,ds?

o) 4 req ost
log vop gt b b
15 3 B 6 5 o
SUBROUTINE RETURN: RTS regq
reg
Iol T LA T SIS T B 1 L
15 3 oz o
SINGLE OPERAND GROUP: OFR dst
[' OP CODE dst
L 5 b v by P e I
15 - 6 5 0
CONDITION CODE OPERATORS:
[o 0 e 2 4rslulz[vlc|
| T Y T T T
15 5 4 3 2 41 O

96

L6

M7
324

[
oag

57
o077
100

ur
120

137
140

157

fead

=l

T
Tir

TIT

7T

7Y

T
00

krad
000

T
L]

I

BASIC K (WORDE
MEMORT BLOLK

4K MEMIRY

4K MEMORYT

4K MEMORY

4K WMEMORY

4K MEMORY

4K MEMORT
e ___ |

4K CEVILE
REGISTER

ADDRESSES

T00 000

TRAF YECTORS

000 g4
Qo0 a5y

STSTEM SOFTWARE
COMMUNICATION 'WORDS

00D 060
BOD 477

TTY AND FarER TAPE
INTERRUFT VECTCRS

O 130

Q0 170

INTERRURT VELTORS

oo 177

[elelugdein)

INTERRUFT VELTORS

oo 277,

o000 30

o000 37T

INTERRUFT YECTORS

TeD Q00

eI 77

LINASSIGNELD

Teq FIT

w7 PP

RESERVED FOR
USER DEVICES

770 OUD

73T

RESERVED POR
DEC DEVICES

T4 000
TTT 550

RESERVED FOR |

DL OEVICES

4 ERROR

10 RESERVED INSTR
14 TRACE

ag 18T

4 PWR FAIL

N EMT

34 TRAP

&0 TELETYPE KETYBOARD
64 TELETTFE PRINTER
0 PAPER TAPE READER
T4 PAPER TAPE PUNCH

RESERVED FOR CUSTUMER
DEVICES

OO0 0 0001T4)
D00 270 000 2T4H

HOT FROTECTED
ABAINST
STACK OWERFLOW

777 580 PRS
777 ams prg TAPER TAPE READER
77 559 FES
777 856 ppa CPPER TAPEPUNCH
TTT SEO TKS
777 sgp Tre TEVETYPE WEYBOARD
777 550 | TELETYPE AND PARER TT? 564 TPS
777 g7 |TSPE OEWVICE ADDRESSES 777 %65 TP TELETYFE PRINTER
——| 777 570 G7I7ST1 ARE SWITCH REGISTER
?TT 5T -
177 00 ey
RO-R7 FROCESSOR FAST STORAGE ~THESE 16 LOCATIONS ARE
A T erT—— EACH1 FULL WORD
777 TeD RE 1S STACH FOINTER
’ R7 IS PROGROM COUNTER
77;_2 ;;? |——— 777 ?P6 B TTT ITR ARE STATUS REGISTER

98

APPENDIX D—UNIBUS OPERATIONS

There are six bus operations: four to effect data transfers, one to transfer
bus control, and cne to effect a program interrupt. This appendix describes
the signal interaction on the Unibus to perform these six operations.

DATA TRANSFERS

The four data transfers use the C lines coded as follows:

cl co

0 0 DATI-DATa In

0 1 DATIP-DATa In, Pause

1 Q DATO-DATa Out

1. 1 DATOB-DATa Qut, Byte

DATI AND DATIP—These two bus operations transfer data from a slave
whose address is specified by A < 17:01 > into the master. Both transfers
are made in words on D < 15:00 . In destructive read-out devices,
DATI commands a read-restore operation, while DATIP commands a read-
pause operation and the setting of a pause flag. DATIPs are to be followed
by a DATO or DATOB to effect a read-modify-write data exchange. In non
destructive read-out devices, DATE and DATLIP are treated identically. The
sequence of operations is as follows:
1. Master puis address on A, O or I on C, and waits 150 nanoseconds
{75 nanoseconds for deskewmg address - 75 nanoseconds for ad-
dress decoding).
2. Master asserts MSYN.
3. Slave decodes address, sees 0 or 1 on G, and MSYN and begins read
cycle (flip-flop register would simply gate flop outputs to bus).
4. Slave completes read cycle, outputs data to D lines, and asseris
SSYNM. If the slave is a destructive read-out device, it now restores
data on a DATI: it sets a pause flag on a DATIP.

Figure D-1 shows the signals for a DATI operation.

DATI
SIGNALS AT MASTER
ADORESS-CONTROL ——3 1
oaTA P L.
MSYHN ""———l T
5SYN Jr L
SIGNALS AT SLAVE
ADDRESS-CONTROL ——— T ® 1
paTa T L
L
MEYN _I—R
| I
SSTM It

READ : RESTORE |

MEMORY CYCLE

T= 51IGNAL AS TRANSMITTED
R = SIGNAL AS RECEIVED

Figure D-1DATI Operation

g9

w

Master sees SSYN and waits 75 nanoseconds, minimum (data des-
kewing 4 internal gating deskewing).

6. Master strobes data, drops MSYN, and waits 75 nanoseconds min-
imum (deskew address).

7. Master drops A and C and waits for S5YN to fall.

8. Slave sees MSYN fall and drops SSYN and D lines.

9. Master sees SSYN fall, signaling end of bus. operaticn.

NOTES:

1. Step 1 of the next data transfer may begin at step 7 of the current DAT! or
DATIP.

2. Step 2 of the next data transfer may begin at step 9 of the current DATE or
DATIP.

DATO AND DATOB—These two bus operations transfer data out of the mas-
ter to the slave. DATO is used to transfer a word to the address specified
by A < 17:01 >=_ The slave ignores AQQ and the data appears on D < 15:00 .
DATCB is used to transfer a byte to the address specified by A < 17:00 .
ADO = O indicates the low byte and data appears on D < 07:00 >, AOO =1
indicates high byte and data appears on D < 15:08 . The sequence of op-
eration is as follows:

1. Master puts address on A, data on D, 2 or 3 an C, and waits 150
nanoseconds {75 nanoseconds for deskewing address + 75 nano-
seconds for address decoding).

2. Master asserts MSYN,

3. Slave decodes address, sees 2 or 3 on C and MSYN and strobes in
word or byte, When slave has taken data, it asserts SSYN. If the slave
is a destructive read-out device and its pause flag is set (by DATIP),
slave begins write cycle; if not, slave must first do a read cycle to
¢clear the memory cell and then a write.

4, Master sees SSYN and drops MSYN and waits 75 nanoseconds (des-
kew address).

5. Master drops A, D, and C, and waits for SSYN to fall.

6. Slave sees MSYN fall and drops S5YN.

7. Master sees SSYN fall, signaling end of bus operation.

Figure D-2 shows the signals for a DATO operation.
DATC
SIGNALS AT MASTER

ADDRESS-CONTROL —T

DATA — T L
. e pve—

SSYN - ® T —

SIGNALS AT SLAVE .
PN | |

ADDRESS- CONTROL R

oatg — R)

—])
MSYN R
S5YN T L

WMEMORY CYCLE [CLEAR [wRTE]

Figure D-2 DATO Operation

100

MNOTES:
1.

2.

Step 1 of the next data transfer may begin at step 5 of the current DATO or
DATOB.
Step 2 of the next data transfer may begin at step 7 of the current DATO or
DATOB.

PTR-PRIORITY TRANSFER
This bus operation is used to pass control of the bus from one master to
another. The steps which follow are performed simultaneously with the data

transfers:

0. Current master device always has BBSY asserted.

1. Requesting device asserts its assigned BR line.

2. Processor sees BR asserted, determines which BR is highest, and
asserts the corresponding BG line if the processor's current priority
level allow that level of bus request.

3. Each device that receives the BG passes it on to the next device
unless it itself is requesting.

4. A device becomes selected as next bus master. when it sees the
leading edge of the grant signai corresponding to the line on which
the bus request was made.

5. The selected device asserts SACK and drops its BR, and waits for
BBSY, BG, and 3SYN to drop.

6. The processor sees SACK and drops BG.

7. The device which is current master compietes its data transfers,

drops BBSY, and ceases to be bus master.

. The selected device sees BG, BBSY, and SSYN drop, becomes bus

master, asserts BBSY, drops SACK, and begins data transfers.

. New master relinquishes bus control, either to the processor or to a

requesting device, by dropping BBSY at the end of its last bus op-
eration. This is termed a passive release of hus control.

. NFR bus requests are handfed as abaove, .
. Processor defers action on BR <?:4> untit last bus ecycle of an instruction

execution or interrupt seguence, MPR is acted upon immedizately,

. Processor becaomes bus master and asserts BBSY whenever it sees BBSY =D
and no other device has been selected or is being selected as next hus mastar.
. Processor will not execute step 2 if SACK is asserted, See note 2 under INTR.

Figure D-3 shows the signals for a PTR operation.

FTR
SIGNALS AT DEVICE

R —IT 1
SACK Ir '
SIGNALS AT PROCESSOR
aR - R T T
G — e ——JT 1

SACK Jr-

T SIGNAL AS TRANSMITTED
R = SIGNAL AS RECEIVED

Figure D-3 PTR Operation

101

INTR—INTerRupt

This bus operation is initiated by a master immediatély after receiving bus
control to effect a program interrupt in the processor. It proceeds as follows:

Q.

BN

NOTES:

Device has become bus master via PTR, and BBSY is asserted and
S5YN negated,

. Master puts interrupt vector address on D and asserts INTR.

. Processor sees INTR and waits 75 nanoseconds (deskew data).

. Processor strobes data and asserts SSYN.

. Master sees SSYN, drops INTR, D, and BBSY. The master has now

relinquised bus control directly to the processor. The INTR sequence
is terrmed an active release of bus control,

. Processor sees INTR drop and drops SSYN and enters interrupt

sequence to update PC and PS.

1. Step 1 must be made simultaneously with step B of PTR; that is, SACK cannot

be dropped until INTR is asserted.

2. When the processor sees SACK drop, it waits 75 nanoseconds (deskew). M, at
that time, INTR = 1, the processor issues no BG' s. until the interrupt sequence

is camplete,

- Figure D-4 shows the signals for the INTR operation.

INTR

SIGNALS AT MASTER
BesY — | —
DATA ———IT L
_ome ——1I7 t
$5YN . e
SIGNALS AT PROCESSOR
88SY "o Lir
pars ———— IR |
L —] L —
s5YN T e—

T SIGNAL AS TRANSMITTED
R * SIGNAL AS RECEIVED

Figure D-4 INTR Ogeration

GENERAL NOTES ON THE BUS OPERATIONS

1.

A master device doing a read-modify-write operation must keep bus
control BBSY asserted for both bus transactions (both the DATIP
and the DATO or DATOB}. This is the one case where an NPR request
will net be honered between bus transactions.,

. A device becomes master by the PTR operation. !f the request for

bus control was made on the MPR ling, bus control must be released
passively (by dropping BBSY). Bus contro is then passed either back
to the processor to execute the next bus cycle of the instruction or
to another device requesting on the NPR line. If a device becomes
-master via a BR request line, control may be passed actively back
to the processor by using the INTR operation or passively (by drop-

102

ping BBSY). If control is given up actively, only NPR requests will be
honored during the interrupt sequence of updating the PC and PS,
I control is given up passively, control may pass either to the
processor to fetch the next instruction or to an MNPR requesting
device.

. A device other than the processor which uses the bus to execute

more than one bus operation hefore reteasing control (rather than
executing just one operation each time it gains control) must keep
SACK asserted (rather than dropping SACK after it becomes hus
master) until the beginning of the last operation in its string of bus
transactions. (Step 1 of data transfer or INTR sequence).

. GRANT CHAIN

The Master Controls in the M 782 treat the grant signals in the
following manner: BG IN has a 390 ohm resistor to ground; BG
QUT has a 180 chm resistor ta 45. Thus a typical grant chain lagks
as follows:

MS30
BUS TERMINATORS M930

r——=-9 rF==="
] 1 1 +5 t
i ' | !
I 150! i Fiwso !
1 I | f
| | GRANT SKnAL o 1 !
!] +5 +5 ! .
[o —

I—l 180 180

KA | : _
PROCESSOR I 1 _
390 390

MASTER CONTROL MASTER CONTROL OF

OF THE M7g2 THE mM7TB2
(13T DEWVICE) {LAST CEVICE)

103

UNIBUS Pin Assignments

Signal PFin Signal Pin Signal Pin Signal Pin
ADD L BH2 BBSY L APZ Doy L AH2 Ground BC2
A0l L BH1 BG4 BEZ? Dog AH1 Ground BD1
AQ2Z L B2 BG5S H BB1 DO9 L A2 Ground BE1
A0S L BJL BG5 H BAL Dl L All Ground BTL
ADd 1. BK2 BGY H AV1 pil L AKZ Ground V2
ADS L BKlL BR4 L BD2 D12 L AK1 INIT E Adl
ADE L BL2 BR5 L BC1 D13 L AL2 INTR L ABL
AD7 L BL1 BR6 L AUz D14 b ALL MSYN L BVl
ADB |. BMZ BR7 L ATZ D15 L AM2 NPG L AUL
AG3 L BM1 coL BUL2 Ground AB2 NPR L AS2
AlD L BN2 cl L BT2 Ground AC2 PA L AM1
All L BH1 DOO L ACL Ground AN PB L ANZ
AlZ L BP:2 201 L AD2 Ground APL +5V ARZ
Al3 | BFl Doz L AD1 Ground AR1 5V A2
Ald L BRZ DO3 L AEZ Ground AS1 SACK L AR2
Ala L BRI D34 L AE1 Ground ATL P BF2
Al6 L BS52 DOS L AF2 Ground AVZ 5P 2 BF1
Al7 L BS1 Do6 L AF1 Ground BB2Z2 SSYN L BUl

Each bi-directional signal line on the Unibus is terminated at both ends by
a resistive divider network to hold the inactive line at 4+3.4 volts. This net-
work consists of a 180-ohm pulf-up resistor connected to a 5-volt supply,
and a 390-ohm resistor connected to ground. The uni-directional grant lines
us a different terminating scheme—a 180-ohm pull-up resistor on each grant
line output, and a 390-ohm pull-down resistor on each device input. Logic
power of 45 volts is available on pins AA2, BAZ, but is not carried on the
bus and should only be used to supply power for terminating the bus. The
MB3Q Terminator module provides standard terminations,

104

DIGITAL EQUIPMENT CORPORATION Eﬂannan WORLD-WIDE SALES AND SERVICE

143 Metin Srreat, Maynard, [GH= R T ki

MAIN OFFICE AND PLANT

Frem

MNORTHEAST

NORTHEAST CEFICE:

15 Lunda Sireel. Walinor. Massackusetts 22154
Telephana: (517)-E31-1020 B 1w

WALTHARM CfIGE.

15 Lunca Sircat, Waltham Maagachusetls 02154
Telephars (BFT)REDL-IGED A 1033
CAMBRIDGE/BOSTON OFFICE-

154 Maln Straat, Cambridge, Masaachusetts (RLIG
Tolephana: (HI-E130 TV 71 1-320-10E67
ROCHESTER DFFICE:

130 Allens Cresk ficad, Aochestnr, New Vork 18513
Telephune: (FIGH-461-0700 T'Wx: G00-253-3074
CONNECTICLT OFFICE:

1 Fresmgs Duive. Mutiden. Canneclecut Coaih
Tolophine: [MIF2ITEH1 T T10.461.0064

MID-ATLANTIC—EOLUTHEAST
MIDWATLANTIC CFFICE:

LS. Nawe 1, Princetan. Hew lersay 06540
Telephone: [BX-452-2150 Twart- 510-EES-2333
HWEW YORE OFFICE:

7 Cedar Lana, Englivocd Mo lersey 07610
Telaghang - (213AT1-4664, [212) 500 G455, (2130726 nda7
Tk 71093 8521

NEWY JERTEY OFFICE:

1253 Naute 6. Parsippany, Maw laraey 07054
Felephone: (211}135-300 TV 7108976015
PRINGETON OFFICE:

Rauts Cne and Emmong Drive,

Bringaton. New lersey DEE4T

Telgphons; (G00)-452-2340 TWK: 510.60. 207
LEWG 1SLAND QOFFICE:

18 Middiag Cowtry Aoad

Crntrraach, L., Mew Yok 11720

Talophons: (SISFEESEHD TV S 2206505
PHILAGELPHIA OFFICE:
11D Wesl Yallsy Rgad. Viagne, Py

UNITED STATES

MID-ATLANTIC—SOUTHEAST (sonl}
CHAPREL HILL OFFICE:

174 Chapel Hil Goutevard

Durham, HMorth Carclina 3727

Telophone: (HI0) 42307 T S0 0270612
HUNTSWILLE FF{CE:

SHylty 41 — Haollday (s Center

A7 Mamarial Parkway 504, Hurtsol i, Alg. 3000
Telgphara: (205)681-752) TWY: JI0-7126-2128
DRLANDOO OFFICE-

Swite 232 655 Lake Ellencr Drive, Orlandz. Fla. 5508
Telephone: LAEN-4150 ToWA: TI0E50-01B)
ATLANTA OFFICE:

Sulic 1B, 1700 Cammerce Orive, By,

Aftarda, Geargla I8

Telephone: (MpaSHDEE TWOE 10513551
HKNOXVILLE GFFICE.

513 Lyuaa View Dr | 504, Kanomlle, Tenn, 3713
Telephars - (§ISFEE6-571 TWH- BIO-SB3-00ZS

CENTRAL

CEMTRAL GFFICE:
1850 Frontupe I'io.ld l\.lrllnhruuk IIIInuls rﬂ:ﬁz

Oaston: B46-8500 * Elsewnerg: [B17] 657-5130 + TWX: Fro-347-0077 Caobla. Digital Mayn. Teles: 3-3457

CENTRAL (cont)

ST, LOUIS CRFICE:

Suale 130, 115 Progres s Py , Baryland Hebghta,
Minganrl G308

Tulaphame: (IFLFRTEM Twol- 107640401
DAYTON OFFICE:

1Ml Esttering Bled., Dayton, Dhia 4
Telephane: (1342807377 TWH: S10-458-1876
DALLAS QFFICE:

1625 W. Mogckighird Lone, Suito 383

Dl oz, Tenas 55735

Telo phareg : {214) R0

HOUSTON QFFICE:

317 Mulam Sirect, Sulte &, Hauslen. Tessy 773002
Telephane: (TINFS24081 TWH: 9102211651
WEST

WEETERM DFFICE:

S0 S on Anlonlo Rood. Pary Aha, Saliforna SA3E
Telephone: (05580300 i 910008 1965
AMAHEIM QFFICE:

&1 E. Ball Fgan, &nahaim, Califarnia B2605

Telephare |
PITTEBURGH DFFICE

40 Pena Center Bowlewvard,

Puitsbuegh, Pernsylvania 15235

Telophone: (41201433300 TAX: 0 970657
CHICAGE QFFICE:

150 Franlags Rand Morlhbeock, linels E0CED
Teleahone: [(M2)43E-2300 TWX- HIGEED655

AWM ARGOR OFFICE:

230 Huran vaew Baulevard. £nn febor, Michipan 4E00G
Telaphone. (MITE1-9050 T 0102238053
INDANAPGLE OFFICE

21 Baagkway Orvn — Sule G

Indignanolis, Indlana 64
Tolephone: {317)-263-0341
MINNEAFOLIS OFFICE:
SN E Minnctarka Irdustrial Mazd

TAM: B340

Telephora [ZIS]E3-1415 TWx StO-G62-4461
WASHINGTON OFFICE:

Esccutiva Dutlding

Ty Datumgra Ave., Celtege Perk, Maryland 20740
Talephona: (3105590100 TWx: 710-326-5662

CANADA

CAMADIAN OFFICE:

Digital Equipment of Coroda, Lid.

11 Ansamand Street, Carleton Plage, Omarlg.
Telaphong: {5L3.25-0915 Twal: §10.563.1651
OTTAWA OFFICE:

gl Equigmant of Canadn, L,

130 Holland Streel. Ctlawa 3, Onterla
Teleghone: (613-725-2193 TWX d13-562-E807
TORONTO OFFICE:

O el B progar of Canads, 15,

230 Loheshuse Ausd Egat, Purt Credit, Ontarla
Teleglvone: GHEFEIBEIT TWX: 6L0-480-4303
MONTREAL OFFICE:

Ougital Equipment of Canada, Ltd.

EdD Cathcart Steaet, Sulta K15, Monlmal, Duebes
Telephone: (RI4)EM 84 T GI0421-3630
EDMONTON GFF{GE;

Digital Equipnent o Cemada, Erd.

BEI-F0T Sireer

Edronion. Albema. Canada

Toleplsone: {A031-434-0333 TW: 6a0-E31 2248

EUROPEAN HEADOU#RTERS

Digotal Lurapa

Tolephara: (B2 6061744 TWA: S10.576:2818
CLEVELAND OFFICE:

Pork Hel| Bldy., 35104 Euclid dwn.

Willlaughby, Obla 48054

Telepharm: (LB} B4E-B484 TWIK: G10427:2600

INTERNATIONAL

EHGLAND

READNNG GFFICE!

Eigital Eqaipment Ca. Lid.

Arhwright Fcad, Reading, Beekehies, Lagland
Telophors: Apading BS1H Takex: 3azT
MANCHESTER QFFICE:

Digiiat Equipmant Co. Ltd.

TEA15 Wpger Pracines. Walkdan

Marclmater, Englord mas Saz
Telephong- 061-7H0-31 /2
LOnDON QFFICE:

D gitz| Conpment Ca. Lee.
Billan Havse, Usbridge ficuc'. Evling, London W5,
Telephane=. Bl-573-2781 Telea: BA327

FRANGE

Tedan: GEASH

Telephane 344—70—07 WX 2138

BENELUX
THE HAGLE CFFICE:
{Berving Balglum, L

q ond Tha

hang: (A14]-776.6902 or (21346257663
Th: SLO-SH-IE

WEST LOS ANGELES QFFICE:

B2 Corer Avenua. Log Angelea, Galifarnia K124
Telephone: (213]-479-32H Tl GLi-3a i
5AN FRANCISCO OFFICE:

34 Ean Antanla Faad. Palo Al
Telephane: (15]-39E640 TV
ALBLIQUERQUE QFFICE:

313 Iraflgn Sehool Road, NE.
Alburuergua, MK B
Tatephans: {55)-HH-5411
CENVER OFFICE:

235 South Caloredo Bled.. Sulte ¥5

Denver, Calcrade Bi222

Telephone: 3.757-3322 Twi: 910031 78
SEATTLE QFFICE:

1521 13nh ME.. BEallawe, Washington S0
Telaghona: (MEpA5-mEs TW Ul 413200
SALT LAKE CITY OFAICE:

431 Scath Ird East. SalL Lake City. Uteh 24111
Telephons {B01)-328-3335 T : A0SR

TWE. BI0-235 0514

ITALY

nLan OFFICE;

Digal Eauipment 5. p.

feran Ganbaldi, #5, 2|JI3| Kalana, Italy
Tolaphars- 372 744, 222 64, 872 3x Teles 33015

AUSTRALIA

SYONEY OFFICE:

Blgilat Equipmisni Ausiralle Pry. Ltd,

75 Alexinder Street Crowa Mezl, HAW. 2065, Suskralla
Telephane: 439-2568 Felex: AAOTAD

Cable: Digital, Sydnay

MELENJUIRNE OFFICE:

Dugltal Equlpment Australla Ply. Lid,

60 Park Streel Sah Melbeurnd, Victorts, 06
Talphara: 63618 Telea: AA30700
WESTERM ALIETRALLA QFFICE:

DhqiLsb Equipment Sostrzha Ply Ll

E43 Muiray Sirest

West Fareh, Wigtarn Awslralla 5005
Talaphang; 214966 Talex: atindd

BRISBANE CFFICE:

CHglyal Equlprnent MW,
E5, Tha Hagua. Netharlands

Bl Moule De L ,\llr:
1237 Carouge f Geneva. Swilzerland
Telephone. €2 73 50 Teles, 221548

GERMANY

COLOGME QFFICE:

Digitol Equipment OmbH

5 Koaln, Blamarckeiragse T, West Germany
Telophona- 52 21 81 Tales: B41-333-2280
Telearan: Filp Chlp Kosln

MUMNICH OFFICE;

Dugital Equipment CmbH

#10 Musnchen 13, Leonrodgteazse 58
Tolaphorg: 416 30 54 TELEY B4 5240705

Tolephone: 635360 Telex- 3533
SWEDEM

STOCRHOLM OFFICE:

Digatat Equipment Aktlebaleg
Wicienvagzn 2, 8-171 54 Sulra. Swa
BE3 I3 W TELEX lm 50 Digital 5
I Slgckboim
SWITZERLAND

EWITZERLAND OFFICE:

[igital Equipment Corparatien 5 &,
Bl Moute Dre L'Aire

VE1? Carouge / Seneva, Switzerland
Telephane: 42 7950 Teles: 22 633

Tigital Australes Fry. L1,
1% Meravale Streer, Sauth Brlsbane
Quzensiand, Aumtalia 4101

Telephone: 4447 Telew: SASKH1E

JAFAN

TOKTC DFFICE:

Aikel Trading Co., Ltd. (=afea snly)
Korato-Ealkan ‘90

B 13-14, lehlahlmbas’“ I-ghome
Minato-Ku, Takya, lapa

Telophooe; 581508 Telnx A 4208

Chgital Equipment Carpocstlun [aternatiang]
{engincertng med cenaces:

Fukuyoshichs Buitding, No. 2.6, Rapparg: 2-Chama.
Minsli-Ku, Tohya

Telephone Mo, 555{&4 Talex M. (042.2650

112X 01269 AJO F 11 50 Printed in U.S.A

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106

