P&T-488 INTERFACE
INSTRUCTION MANUAL

MSOFT Software Package

(805) 685-4641

P. 0. BOX 1206
GOLETA, CA 93116

P&T-488

P&T-488 INTERFACE
INSTRUCTION MANUAL

copyright (¢} 1982 by

Pickles & Trout
P.0. Box 1206
Goleta, CA 23116
All Rights Reserved

WARRANTY

This Pickles & Trout product is warranted against defects in materials and workmanship for 90
days from the date of shipment. Pickles & Trout will, at its option, repair or replace
products which prove to be defective within the warranty period provided they are returned to
Pickles & Trout. Repairs necessitated by modification, alteration or misuse of this product
are not covered by this warranty.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PARTICULAR PURPOSE,. PICKLES & TROUT {5 NOT LIABLE FOR
CONSEQUENTIAL DAMAGES.

rev 4-15-82 17:43 - -

P&T-488 Foreword

FOREWORD

This manual contains the information necessary to understand and use the P&T-488
interface as well as provide instruction in the basic concepts of the IEEE488 bus.

Those who are already familiar with the IEEE-488 bus {also known as the HP-IB, GPIB and
ASCIl bus) and the concepts of a Talker, Listener and Controller may skip to page MSOFT-1.

It is recommended that those who are not acquainted with Talkers, Listeners and Controllers
read the chapter "The IEEE-488 Bus" first.

The P&T-488 interface consists of two major components: the P&T—488 interface board and
the P&T-488 to Microsoft Basic interface software package. The software package is actually
two programs: MSOFT.COM and MSOFT.REL. MSOFT.COM is an object code program to be
used with interpreter Basic, and MSOFT.REL is a linkable module to be used with compiler
Basic. Also included is an object code program (488TST81) which performs a2 complete functional
test of the P&T-488 interface board. Additional programs are provided as examples of how one
can use the P&T-488 interface to communicate with 488 devices. Several utility programs have
also been provided. One which is especially useful is called BUSMON. 1t displays all IEEE-488
bus transactions on the console and can also be used to send data or commands aver the bus.
All programs are provided on a single density, non-system disketts recorded in CP/M} format.

Even though MSOFT is designed to be used with Microsoft Basic, other languages can also
successfully use MSOFT, Included in this manual and on the disk are sample programs written
in assembler, Fortran, Pascal and C.

+ CP/M is a trademark of Digital Research

- ji - rev 4-15-82 17:43

Table of Contents P&T-488

Page

12

MSOFT-1

MSOFT-2

MSOFT-4

MSOFT-5

MSOFT-7

MSOFT-8

MSOFT-9

MSOFT-12

rev 4-15-82

Table of Contents

Title Description

IEEE-488 Bus
An introduction to the three primary occupants of the IEEE 488 bus: the
Talker, Listener and Controller.

Hardware Description
A brief description of the P&T-488 interface board. Instructions are included

for changing the 1/O port addresses used. The significance of each port is also
explained.

Fumctional Test
Instructions on the use of the Functional test routine (488TST81), This
routine performs a complete check of the operation of the P&T-488 interface
board and its 488 cable.

PE&T-488 to Microsoft Basic Interface Software

Introduction
Unpacking, Installation and Testing the P&T—488 card.

Programs
List of programs supplied with the P&T-488.

MSOFT — How It Works
Instructions on the use of the P&T—488 to Microsoft Basic interface software
package (MSOFT).

Communication Functions
The thirtesn communication functions are described. They are CNTL, CNTLC,
TALK, TALKC, LSTN, LSTNC, SPOLL, PPOLL, DREN, REN, STATUS, IFC
and BRSET.

Setup Functions
The four setup functions are described. They are SETUP, 10SET, PROTCL and
ECHO.

Configuration Function
The configuration function !OPORT is described.

Communication Variables

The communication variables are described. The names used in the sample
programs for these variables are ERCODE%, TIME%, POLL%, BUS%, EOT%,
EOS%, LENGTH%, ECHOIN% and ECHOOUT%.

Quirks, Oddities and Strange Behavior

A summary of characteristics of MSOFT, Basic and the TEEE-488 bus which may
give rise to unexpected resuits.

17:43 - ili -

P &T-488

MSOFT-14

MSOFT-16

MSOFT-16

MSOFT~17

MSOFT-18

MSOFT-18

MSOFT-22

MSOFT-27

MSOFT-27

MSOFT-32

MSOFT-33

MSOFT-35

MSOFT-36

MSOFT-41

Table of Contents

Gotchyas
A capsule summary of the problems (and their solutions) the user is likely to
encounter while using the P&T-488.

How to Use MSOFT with Interpreter Basic
How to use MSOFT with Compiling Basic

Example of how to Compile an MSOFT Program
A step-by-step dialog showing how to compile and link an MSOFT program.

Comments on BISAMPL.BAS and BCSAMPL.BAS
An overview of the purpose and operation of a sample Basic program. The
program allows the operator to exercise most of the functions of MSOFT,

HPF 59309A Dialog

The dialog needed to reset, set and read a Hewlett-Packard 59309A Digital Clock
while running the program 815AMPL.

BISAMPL.BAS Listing
The source listing of a program written in interpreter Basic which allows the
operator to exercise most of the functions of MSOFT,

BCSAMPL .BAS
A summary of the changes needed to change the interpreter Basic program
BISAMPL.BAS into a program whick can be used with compiling Basic.

BCSAMPL.BAS Listing -
The source listing of a program which performs the same functions as
BISAMPL.BAS but which is written for compiler Basic.

B48BINIT.BAS
The source listing of a program fragment that you will find useful to include in
each of your programs for MSOFT., This program fragment is also on the disk.
Its primary utility is that it bypasses errors which may be introduced by
typos, stc.

BICLOCK.BAS
The source listing of a program written in interpreter Basic which initializes
the 488 bus and then reads the date and time from an HP 359309A clock.

Parameter Passing
An explanation of how MSOFT expects parameters to be passed. This
information is useful whem MSOFT is to be used with some language other than
Microsoft Basic.

CLOCK .MAC
The source listing of a program written in B080 assembler which initializes the
488 bus and then reads the date and time from an HP 59309%A clock. This
program performs the same function as BICLOCK.BAS, but shows how to write
assembler programs that use MSOFT.

MTSAMPL.PAS
The source listing of a program writtenr in Pascal/MT+ which allows the operator
to exercise most of the functions of MSOFT. This program performs the same
function as BISAMPL.BAS, but is written in Pascal/MT+ to demonstrate how
MSOFT can be used with Pascal,

- v - rev 4-15-82 17:43

Table of Contents P&T-488

MSOFT-50

MSOFT-53

MSOFT-56

MSOFT-63

MSOFT-67

MSOFT-74

rev 4-15-82

MT488.MAC

The source listing of an assembler program which performs the parameter passing
conversions necessary to make MSOFT wotk with Pascal/MT+.

MTCLOCK.PAS
The source listing of a program written in Pascal/MT+ which initializes the 488
bus and then reads the date and time from an HP 59309A clock. This program
performs the same function as BICLOCK,BAS, but shows how to write
Pascal/MT+ programs that use MSOFT,

FSAMPL.FOR
The source listing of a program written in Microsoft Fortran which allows the
operator to exercise most of the functions of MSOFT,

STRIN.MAC

The source listing of an assembler-program which collects strings from the
console for FSAMPL.FOR.

FCLOCK.FOR
The source listing of a program written in Fortran which initializes the 488 bus
and then reads the date and time from an HP 59309A clock. This program
performs the same function as BICLOCK.BAS.

QCCLOCK.C
The source listing of a program written in C which initializes the 488 bus and
then reads the date and time from an HP 59309A clock. This program performs

the same function as BICLOCK.BAS, but shows how to write C programs that
use MSOFT. -

17:43 -v -

P&T-488

Al

B1

AUX-1

AUX-3

AUX-4

AUX-5

AUX-6

AUX-10

Table of Contents

Appendices

Unofficial Phrasebook
A dictionary which expands the IEEE 488 standard mnemonics fnto English,
There are also some definitions, and many of the mnemonics are cross—referenced

to the page(s) in the IEEE Standard document which define their meaning and
use.

Multiline Interface Messages {Command Codes)

A table showing the ASCIll {or 1SO-7) character codes which correspond to
messages sent by the Centroller. This table includes the aifowed Listen and
Talk addresses.

Auxiliary Programs

BUSMON

Description of the program BUSMON which monitors and reports all transactions
occurring on the IEEE-488 bus.,

483TODSX

Description of the utility program which will record all IEEE-488 data
transactions in a disk file.

DSKTO488

Description of the utility program which sends the contents of a disk file over
the IEEE-488 bus as data.

HANDSHAK

Comments about the source code listing of the source and acceptor handshake
subroutines.

HANDSHAK
Source code listing of source and acceptor handshake subroutines.

SAMPLHS

The source listing of a simple program which makes use of the subroutines in
HANDSHAK to get data from the |EEE-488 bus and display it on the console,

- vi - rey 4-15-82 17:43

P&T -438 The IEEE -488 Bus

— CAST OF CHARACTERS -

The 483 bus is populated by three major types of devices. One is the Controller,
which sends commands over the bus to other devices. Another js the Talker, which sends
data over the bus to ome or more devices of the third kind: the Listeners. The Listeners
and Talker communicate with a handshake on each data transfer, and the communication
proceeds at the maximum rate allowed by the Talker and the siowest Listener. This
communication is completely asynchronous and may be interrupted at specific points in the
handshake cycle without causing any loss of data.

1t can be useful to liken the bus to 2 meeting which has a chairman (Controller), a
recognized speaker {Talker) and an audience (Listeners)s As is true of most meetings,
some of the audience is paying no attention whatever to the proceedings (some of the
devices on the bus may be ldle), while some of those that are listening want to interrupt
the Talker. Sometimes a member of the audience is audacious enocugh to indicate that it
should be the chairman. The 488 bus specification allows the Controiler to designate
another device as his successor.

it is the Controller's responsibility to make sure that communication takes place in an
orderly manner: it is he that says who can talk and who should listen at any given time.
It is also the Controller that takes care of such matters as telling everyone to shut up
{Universal Untalk UNT c¢ommand), everyone to go back to their desks ({Interface Clear
IFC), or listen to someone trying to gain the floor (Service Request SRQ). Even though
the Controiler has (in theory) complete command over everyone else, problems can arise.
One possible problem is that the Controller has made the unwise choice of telling more than
one device that it can be a Talker, which results in sheer bedlam. Another way for the
Controiler to lose control of the situation is if a2 Talk Only {ton) device is placed on the
bus. Some Talk Only devices are notoriously deaf and don't pay any attention to
anybody, even the Controller!

A Talker, on the other hand, leads a simple life. It does not concern itself with
disputes over whe has the right to be heard, and when. 1t only puts data on the bus,
waits until the slowest listener indicates it is ready for data, says the data is valid, waits
until the siowest Listener says it has accepted the data, then says that it is removing the
dzta and follows up on its threat. About the only thing that bothers a Tatker is to find
that no one is listening to him. Mast get really upset and let the Controller know about
this impolite state of affairs. Talkers that don't complain have a tendency to sit there
with their mouths open, caught in mid-word. Either way, no communication is taking place
and this is not considered a desirable state of affairs.

Listeners can be a little more complicated. They let the Talker know when they are
ready for another word and when they have received it. Some also let the Controller
know that they want some special attention. The Controiler waits until the Talker can be
interrupted so0 that no Listener is deprived of the latest bit of wisdom imparted by the
Taiker. Then the Controller tries to find out which device wants the attention. Two
ways to do this are Serial Poll, in which each device is allowed to speak {one at a time)
and Parailel Poll, which allows several devices to simultaneocusly inform the Controller of
their need by a bit patiern each puts onto the egight data lines.

P&T-488 The 1EEE-488 Bus

- HARDWARE OVERVIEW -

The 488 bus is made up of 16 signal lines: eight are used for data, three are
needed for the interlocking handshake used to communicate the data, and the remaining
five are used for bus management. Since there are eight data lines, a full eight bit
byte can be communicated in each handshake cycie. This is what is meant by the
phrase "bit parallel — byte serial" transmission. It is an alternative to the
slower RS 232C standard, in which only one data line is used {and which is referred
to as being a "bit serial" interface standard).

Data Bus Data Byte General
(& lLines) Transfer Interfaca
Contral . Management
<= 010 1euss
! —
- ”" DAV
4 NRFD
¢ & NDAC
N
< IFC
"""' - ATN
L d 3RO
-— 4 REN
+—i T - EOI
Device A Device 8 Device C Device D |
Able to Talk, Listan Able +o Taik and Cnly Able to Onty Able %o Talk
and Control Listen (@sge, Listen (e.g., (8.g., counter)
{@.g., PLT-488) digita!l multimeter) signal generator) b

There are three basic concepts which are important to an understanding of how
the hardware of the 488 bus works. The first is that only one of two voltages is
allowed on each line, and the lower ailowed voltage is ground. The second is that
the 488 bus uses negative true logic, which means that the lower of the two voitage
leveis has the value TRUE, while the higher voltage has the value FALSE. The third
is that the bus uses open-—collector drivers. An open—collector driver c¢an be thought
of as a switch with one terminal connected to the line and the other to ground. When
the driver is ON, it is as if the switch is closed, and s0 connects the line to
ground. If the driver is OFF, it is as if the switch is open, so0 no c¢onnection is
made between the line and ground. There is a resistor connecting the line to a
voltage supply, so the voitage on the line rises to the higher of the two allowed
levels if the line is not grounded. Since the 488 uses negative true logic, a line
is given the value TRUE by turning the open-collector driver CN, or the value
FALSE by turning the driver OFF. The phrases "active true® and Tpassive
false" are used to describe this system; active true because the line must be
actively connected to ground to impress a.value of true on it, passive false because
ne action is needed (no connection is made) to make the value of the line false.

-2-

P&T -488 The IEEE -488 Bus

Each 488 device has one open-—coliector driver for each 488 line that it uses. More
than one open-collector driver (that is, more than one 488 device) can be connected to
each line. If all drivers are off the voitage on the line will be high, which means it has
the value false. However, if one or more open-collector drivers are on, the line's
voltage will be low, and it will have the value true. This is called 2 "wire-or® system
because the logical value of the line is the logical OR of the logical values impressed on it
by the several open-collector drivers connected to it. Thus each 483 device sends a true
to the line by turning on its driver, or a false by turning the driver off. MNote that if
any device asserts a particular line true, that line will have the value true. However, if
a device asserts a false {high) signal, it will be overridden by any device which asserts a
frue.

The eight data lines are named DIO1 through DIO8 (DIO stands for Data
Input/Qutput). The least significant bit appears on DIO1, the most significant on DIOS.
One point of possible confusion is that the data bits in an S-10@ system are numbered @
through 7, while the 488 data lines are numbered 1 through 8. Another is that 5-10¢
systems assume positive true logic (high means TRUE, low means FALSE), Just remember
that S-10¢ data bit 7 appears on DIOB, etc. and a 488 byte is the one's complement of
an S-10¢ byte and everything should be all right.

The proper IEEE title for the three handshake lines is "Data Byte Transfer Control*
lines, They are individually known as follows:
DAV (Data Valid) - when true the dataz on the eight data lines is valid.
NRFD (Mot Ready For Data) - when true the 488 devices are not ready to accept data.
NDAC (Not Data Accepted) - when true the devices have not yet accepted the data.

The remaining five lines are known as the "General Interface Management" lines.
They are as follows:

IFC (Interface Clear) -~ place all 488 devices in their defauit state.
ATN (Attention) - used to distinguish between 2 Controller and a Talker.
SRQ (Service Request) - indicates that a device needs attention.

REN (Remote Enable}) - allows 488 devices to be programmed either by their local
controls {front panel switches, etc.), or by information sent over the 488 bus.

EOl (End or Identify) ~ indicates the end of a string if ATN is false, otherwise it
indicates a Parallel Poll is in progress.

— BYTE COMMUNICATION -

Byte communication requires that there be a device which is generating the byte to
be communicated (the "source®) and one or more devices which receive the byte (the
"acceptors"). The Source and Acceptors communicate by use of an interlocking handshake
using the three Data Byte Transfer Control lines {DAY, NRFD and NDAC). The byte
itself is sent on the eight data lines (DIOC1 through DIO8). The handshake is schematized
in the following flow chart.

P&T-488

SOURCE
(SH)

(g}

Set DAV high {false)

T
Are NRFD and NDAC both
high (false)?

YES - error: no Acceptors
on bus
NO - place the byte on
DIOI-DIOS
B

The |IEEE-488 Bus

ACCEPTORS
(AH)

Initialize handshake
Set NRFD, NDAC low (true}

(ls NRFD false (high)? |

NO - goto B

YES - continue

C K

Has it been at least 2
microseconds since the
byte was placed on the
data bus?

NGO - goto C

YES - assert DAV true
(data available)

D ra

lIs NDAC false (high)}? |
NO - goto D

YES - data has been accepted,
50 prepare to send next byte.

T

Each Acceptor passively asserts
NRFD false (high) as it becomes

ready for data. The NRFD line
goes high (false) when all are

ready.

{1s DAV true {low)? 1

NO - goto U
YES ~

as each Acceptor finishes
getting the byte it passively
asserts NDAC false and actively
asserts NRFD true {low}. When
alt have accepted the byte, NDAC
finally goes false (high}.

v

{Vs DAV fatse (high)? |

iMore data to send? J
YES - goto A
NO - continue
¥
Warn that data will change

Assert DAV false [high)

Remove data
Assert DIOT through DIOS
false (high)

END

NO - goto V
YES - actively assert NDAC true
(low), because the new byte which
has not yet been sent is not
accepted vet

goto T

P&T 488 The IEEE -488 Bus

~ A More Detailed Look at the 488 Inhabitants —

A TALKER is a device which sends data over the 488 interface to other devices.
There are two major types and various subtypes. One major type is the Talk Only (ton},
which may be used in a 488 system which has no Controller. This device always talks,
and so it must be the only device which can talk. The other major type must be told
when to talk ("addressed to talk"}. A Controller is needed because it is the only kind of
488 device that is allowed to address Talkers and Listeners. All Talkers use the Source
Handshake (5H) function to send a message over the 488 bus.

A LISTENER is a device which receives data over the 488 interface. As with the
Talker, there are two major types: Listen Only (lon) and addressed Listener. A Listen
Only device always listens to the 488 bus, while an addressed Listener listens oniy when
the Controlier tells it to. The Listen Only device can operate in a 488 system which does
not have a Controller since it does not need to be told what to do and when to do it. All
Listeners use the Acceptor Handshake (AH) function to receive messages on the 488 bus.

A CONTROLLER is a device which issues commands on the 488 bus. These include
commands which are used to reset ail devices on the bus Interface Clear {IFC), indicate
which device is to Talk (when the Controller relinquishes the bus) and which devices are to
Listen {i.e. it sends the Talk and Listen addresses of those devices over the bus),
perform a Poll of 483 devices {Serial Poll and Parallel Poll), and a myriad of other special
functions. The commands fall inte two general classifications: Uniline and Multiline.
Each uniline c¢ommand uses only one line out of the five General Interface Management
lines. Examples of uniline messages are Remote Enable (REN), Interface Clear (IFC) and
Parallel Poll. Multiline messages use the eight data {DIOT-DIO8) lines to issue the
command. Examples of nmultiline messages include performing a Serial Poll and commanding
488 devices to Talk or Listen. Multiline messages are sent using the Source Handshake
(SH) function, just like a Talker. The way that a device determines whether it is hearing
a Talker or the Controller is that the ATN (Attention) line is true (low) when the
Controller is issuing a message, but false (high) when a Talker is saying something. The
Controller is the device which controls the ATN line. Whenever ATN is true, ali
addressed Tatkers shut up so that the Controller can say its piece. However, some Talk
Only devices don't, and so they garble commands issued by the Controller, Generally
speaking, a Talk Only device should be used only in a 488 system which has no Controller.
Whenever the Controiler passively asserts ATN false (lets it go high), the Talker (if any)
begins to send its message.

—~ MULTILINE COMMANDS -

Tetling 2 488 device to Listen is one example of a multiline command. The
Controller piaces the Listen address of the selected device on the data lines (DIO1 through
DI08) and then performs the Source Handshake (SH) function. In other words, it "speaks"
the address while ATN is true (low). Whenever the Controller is active {that is, whenever
ATN is truej, all devices on the 488 bus interpret whatever is said (via the data lines and
the Source Handshake function) as a command rather than data. ALL devices hear what is
said by the Controller. They ALL execute the Acceptor Handshake function, without
regard to whether they are normally a Talker, Listener or whatever.,

P&T -488 The IEEE -488 Bus

Another example of a muitiline command is the Serial Poll. The order of events is
that the Controller sends out the Serial Poll Enable (SPE) command, which tells each
device that when it is addressed as a Talker that it is to say either SBN (Status Byte -
service Not requested) or SBA (Status Byte - service request Acknowledged). Those are
the only two messages that are allowed. Then the Coniroller addresses each device as a
Talker in turn and Listens to the response of each. To conclude a Serial Poll, the
Controller sends the Serial Poll Disable (SPD) command so that any device later addressed
as a Talker can speak data (instead of S8N or SBA). Finally, the Controlier performs
whatever service is needed, which is device dependent.

— UNILINE COMMANDS -

An example of a uniline command is Parallel Poll. Parallel Pol is both simpler and
more complicated than Serial Poll. It is simpler because only one command is given
(Identify IDY: the logical AND of ATN and EOH} and all devices respond at once. [t is
possibly more complicated in that it may be more difficult to sort out which device wants
service. Whenever a 488 device receives the IDY message, it immediately places its
Parallel Poll Response byte on the eight data lines. For systems of eight devices or less,
it is common for each device to be assigned a unique bit which it asserts true when it
needs service. For example, one device would have a2 Paraflel Poll response byte in which
bit 1 is true if it needs service, otherwise hit 1 is false, and bits 2 through 8 are aiways
faise. Another device would use bit 2 to indicate its need for service and all other bits
would always be false in its response byte. A third device would use bit 3. When a
Parallel Poll is performed, the response sensed by the Controller will be the logical OR of
all the Parallel Poll Response bytes {due to the fact that the 488 bus is a wire-or
system). If the response has bits 1 and 3 true, and all other bits falss, it means that
the first and third devices need service, while the second does not.

If the 488 system uses more than eight devices, some alternate scheme must be used.
One would be to have only eight devices respond to a Parallel Poll, and use Serial Poll on
the remaining devices. Another scheme would be to have several devices share the same
Parallel Poll Response byte. [f the response to a Parallel Poll shows that at least one of
the devices that shares a common response needs service, a Serial Poll can be used to
find which ones they are.

-6

P&T -488 ' Hardware Description

— OVERVIEW -

The P&T-488 has four read/write registers which appear as four input/output {1/0)
ports to the S-10Q host machine. The ports are addressed as four consecutive /O ports
with the first port address an integral multiple of 4 (@, 4, 8, 8C, ..., N*4, ..., FC).
For ease of description these registers will be referred to as registers @ through 3, even
though what is called register § may be Port ¢, 4, 8, ..., N¥4, ..., FC,

The addresses used by the P&T-488 are set by means of a DIP switch on the upper
left corner of the interface board. All boards are set at the factory for 1/O ports 7C
through 7F Hex, and all software supplied by Pickles & Trout assumes these addresses.
The address used by both the board and the software can be changed by the user. The
addresses used by the software and the board must be the same. To change the addresses
assumed by the software, refer to the instructions given with the program.

To change the addresses used by the board, first note that the labels "A7"Y through

WA2Y appear to the left of the switch, Switches A2 through A7 are set according to the
following table:

Address Al Ab AS Ad A3 A2

{Hex)

00-903 ON ON ON ON ON ON
¢4-07 ON ON ON ON ON OFF
@8-0B ON ON ON - ON OFF ON
GC-oF ON ON ON ON OFF OFF
1$-13 ON ON ON OFF ON ON
14-17 ON ON ON OFF ON OFF
18-1B ON ON ON OQFF OFF ON
1C-1F ON ON ON OFF OFF OFF
2¢6-23 ON ON OFF ON ON ON
24-27 ON ON OFF ON - ON OFF
28-28B ON ON OFF ON OFF ON
2C-2F ON ON OFF ON OFF OFF
3p-33 ON ON OFF OFF ON ON
34-37 ON ON OFF OFF ON OFF
38-3B ON ON OFF OFF OFF ON
3C-3F ON ON OFF OFF OFF OFF
4¢-43 ON OFF ON ON ON ON
44-47 ON OFF ON ON ON OFF
48-4B ON OFF ON ON OFF ON
4C-4F ON OFF ON ON OFF OFF
59-53 ON OFF ON OFF ON ON
54-57 OM OFF ON OFF ON OFF
58-5B ON OFF ON OFF OFF ON
5C-5F ON OFF ON OFF OFF OFF
69-613 ON OFF OFF ON ON ON
64-67 ON OFF OFF ON ON OFF
683-6B ON OFF OFF ON OFF ON

P&T-488 Hardware Description

Address AT Ab A5 Ad A3 A2

(Hex)

6C-6F ON OFF QOFF ON OFF OFF
T9-73 ON OFF OFF OFF ON ON
74-377 ON OFF OFF OFF ON OFF
7T8-7B ON OFF OFF OFF OFF ON
7C-7F ON OFF OFF OFF OFF OFF

89-83 OFF ON ON ON ON ON
84-87 OFF ON ON ON ON OFF
88-88 OFF ON ON ON OFF ON
8C-8F OFF ON ON ON OFF OFF
9¢-93 OFF ON ON OFF ON ON
94-97 OFF ON ON OFF ON OFF
98-98B OFF ON ON OFF OFF ON
9C-9F OFF ON ON OFF OFF OFF
Ap-A3 OFF ON OFF ON ON ON
A4-A7 OFF ON OFF ON ON OFF
A8-AB OFF ON OFF ON OFF ON
AC-AF OFF ON OFF ON OFF OFF
B@-B3 OFF ON OFF OFF ON ON
B4-B7 OFF ON OFF OFF ON OFF
BS-BB OFF ON OFF OFF OFF ON
BC-BF OFF ON OFF OFF OFF OFF
Cg-C3 OFF OFF ON ON ON ON
C4-C7 OFF OFF ON- ON ON OFF
C8-CB OFF OFF ON ON OFF ON
CC-CF OFF OFF ON ON OFF OFF
D$-D3 OFF OFF ON OFF ON ON
D4-D7 OFF OFF ON OFF ON OFF
D8-DB OFF OFF ON OFF OFF ON
DC-DF OFF OFF ON OFF OFF OFF
Ep-E3 OFF OFF OFF ON ON ON
E4-E7 OFF OFF OFF ON ON OFF
E8-EB OFF OFF OFF ON OFF ON
EC-EF OFF OFF OFF ON OFF OFF
FP-F3 OFF OFF OFF OFF ON ON
F4-F7 OFF OFF OFF OFF ON OFF
F8-FB OFF OFF OFF OFF OFF ON
FC-FF OFF OFF OFF OFF OFF OFF

For example, to address the P&T-488 interface board to use [f/O ports 7C through
7F Hex, A7 must be ON and A2 through A& OFF.

The P&T -488 allows direct access to the 8 signal lines of the IEEE 488-1978
(hereafter called 488) data bus (Register 2) and the B lines of the 488 Data Byte Transfer
Control Bus and General Interface Management Bus (Register 1). In addition, a register is
provided to allow a software settable response to a Parallel Poll (Register 3). Finally, 2
register is provided which indicates transitions occurring on the various 488 Control Bus
and Management Bus lines {Register @#). Additional features of the P&T 488 include
software disable of interrupts from the P&T-488 (without having to disable all interrupts
of the 5-10¢ system} and immediate response of the interface to Attention (ATN),
Interface Clear (IFC} and Parallel Poll without intervention of the S-109 system's CPU,

P&T-483 Hardware Description

The data transfer rate is highly dependent on the software, CPU and system memory
of the 5-130 system, but with the supplied software, an 2089 running at 2.8 MHz and no
memory wait states, the transfer rate is about 3 KBytes/sec. Far applications requiring
higher rates, the same S5-19% system ¢an get data rates of over 9 KBytes/sec in the Talk
Only mode.

REGISTER FUNCTIONS
No. FUNCTION

1) Interrupt Status (read only)
1] Interrupt Reset (write only)

1 Command Line Register (read and write)
2 Data Line Register (read and write)

3 Parallei Poll Response (write only}

REGISTER BIT MAP

Ne. /O D7 D6 D35 D4 D3 D2 D1 Do
g IN DAV NRFD NDAC XI1FC XATN SRQ REN POC
+ - + + - +- - + -
¢ ouT DAV NRFD NDAC XIFC XATN SRQ TALK/ DI/
EI1STN El
1 1/0 DAV NRFD NDAC IFC ATN S5RQ REN EQI
2 /0 DIOS8 D107 D106 D105 DI04 D103 D102 D101
3 ouT D108 D107 D106 DIQS5 D104 D103 D102 C101
NOTES:

+ means the bit goes low on a LOW to HIGH transition
— means the bit goes low on a HIGH to LOW transition

Dl means 488 interface interrupts are disabled
El means 488 interface interrupts are enabled

The 488 data lines are numbered from 1 to 8, while the
data lines on the S-100 system are numbered ¢ to 7

X as in XATN, XIFC signifies that some device other than

the P&T -488 has made the level on the line (ATN or IFC)
active true (low}.

-9~

P&T -488 Hardware Description

— REGISTER 3 -

This register holds the Parallel Poll Response byte. Whatever has been output to
Register 3 will appear on the 488 data lines in response to a Paraliel Poll (ATN and EOQI},

— REGISTER 2 -

This register is connected to the 488 data lines through bus transceivers. The state
of the data lines can be sensed by reading Register 2, and the P&T-488 will assert on the
data lines whatever was last written into Register 2. However, if either the XATN flag
or XIFC flag in Register @ is set, the output buffers to the 488 bus are disabled which
precludes assertion of what was last written into Register 2. Remember that the 488 bus
uses negative logic so that any bit that is low is asserted (or logically true). Also the 488
bus is a wire-or system, so if any piece of equipment is asserting a particular line true,
that line will be a logical true. But if a device asserts a false (high) signal, it is
overridden by any device that asserts a true. Hence the terminclogy of active true and
passive false, Thus if the P&T-488 is being used as a Listemer all bits of Register 2
should be written high (logic false) so that the data asserted by the Talker can be properly
read.

- REGISTER 1 ~

This register allows direct setting and sensing of the 488 Control and Management
bus lines. |If the XIFC flag is set in Register ¢, the interface will not assert any of the
lines, regardless of what was last written into Register 1. Similarly, if XATN flag is set
in Register @, the interface will not assert any line except Not Ready For Data {NRFD)
and Service Request (SRQ). SRQ will be asserted active true (low) only if the SRQ bit
{bit D2) of Register 1 was written low. NRFD will always be asserted active true (low).
The reason that NRFD is asserted true is so that the System Controller will not send any
commands until the S-1§% CPU is ready to accept them. Note that XATN has precedence
over XIFC, so an externally applied [FC followed by an externally applied ATN will cause
NRFD to be active true, SRQ to be true if the SRQ bit in Register 1 was written low,
and all other 488 lines will be passive false.

— REGISTER ¢ -

This is the Interrupt Status/Reset Register. Since the P&T-488 uses only one
interrupt vector, one needs to be able to determine which condition caused the interrupt.
Each bit of this register is associated with an interrupt-causing condition. By writing 2
low in the corresponding bits, one can individually reset the status bits associated with
Data Valid (DAV), Not Ready For Data (NRFD), Not Data Accepted (NDAC), External
Interface Clear (XIFC}, External Attention {XATN} and Service Request (SRQ). If Bit 1 is
set low status bit 7 will ignore any activity on the DAV line. This is useful when the
interface is used as a Talker or Controller. |If Bit 1 is set high, Bits 5 and 6 will ignore
any activity on the NDAC and NRFD lines, which is useful when the interface is used as a
Listener. If Bit @ is set low, status Bits § (POC/RESET) and 1 (REN) will be cleared and
the P&T-488 will be prevented from interrupting the S$-100 system (but the interrupt
status bits will continue to respond to 488 Control and Management line activity). |[f Bit §

-10-

P&T ~-488 Hardware Description

is set high the interface can interrupt the $-108 system.

If Bit 4 (IFC) of Register 1 is asserted there is no way of determining if an external
Controller is also asserting IFC, so interrupt status bit 4 [XIFC) will ighore any activity
due to an external Controller. A similar argument is true for ATN and XATN (Bit 3 of
Registers 1 and). This is not a problem because the IEEE standard allows only the
System Controller to assert IFC, and only the Controfler—in—Charge may assert ATN.
The standard further specifies that there may be no more than one System Controller and
no more than one Controller-in-Charge.

-11=

P&T -488 Func¢tional Test
P&T-488 Functional Test

The program 488TST81 performs seven different kinds of tests on the P&T-488
interface board and its 488 cable. The first group of four are done with no 488 device
or test plug connected to the P&T-488. The last three are made with the special test
plug connected to the P&T-488,

The program starts by printing a2 message to the operater to disconnect all 488
devices from the P&T-488. The operator signifies this has been done by pressing any key
on the keyboard. After a key has been pressed the program begins its tests.

NOTE: Any time a Control C is pressed, the program is aborted and control is returned to
the monitor (operating system).

The first test checks the data register (Register 2) by outputting a byte to the 488
data lines then reading the datz lines to see if their state corresponds to the byte output
to them. Each of the 256 possible bytes is tried in turn., If any errors occur, a
message "DATA ERROR - bits in error are ..." with the bit names is printed. [If there
are no errors, no message is printed.

In a similar manner, the second test checks the command line register (Register 1).
1f there are any errors, the message "COMMAND LINE ERROR - bits in error are ..." is
printed. Again, if there is no error, no message is printed.

The third test checks the Parallel Poll Response register (Register 3) by first making
ATN and EO! true. Thus anything output to the Parallel Poll Response Register should
appear on the 488 data lines, |[f the Command Line test failed with bits @ andfor 3 in
error, the results of this third test are meaningless. As with the first two tests, each of
the 256 possible byte values is tried and any errors are reporied: this time the error
message is "PARALLEL POLL ERROR - bits in error are ...".

The fourth test checks the Interrupt Service Register {Register $#). [f the second
test failed, this one will probably fail also. Errors are reported with the message
"INTERRUPT SERVICE REGISTER ERROR - bits in error are ...".

After these four tests have been made, (they take less than a tenth of a second),
the operator is told to attach the special test plug and then press any key on the keyboard
to continue the tests. The plug connects the eight data lines to the eight 488 command
lines, so that the 488 cable can be tested for continuity, shorts or incorrect wiring. It
also allows testing the response of the P&T-488 board to ATN and IFC asserted true by
an external Controller.

The fifth test checks the 488 cable and reports any bits in error. 1f either the
first {data line) or second (command line) tests failed, the results of this test will be
meaningless. If the first four tests were passed without error, but this one shows errors,
it means either the cable and/or test plug is open, shorted, miswired or improperly
plugged. 1f all bits are in error, the 488 cable is either not connected to the P&T -488
interface board or the special test plug is not plugged into the cable.

-12-

P&T -488 Functional Test

The sixth test checks the respanse of the P&T -488 to an IFC (Interface Clear)
presented by an external Controller. What is really done, of course, is to use the data
port to assert a true om the IFC line through the special shorting plug, but the P&T -488
can't tell the difference between this and an external Controller making (FC true. The
results are meaningful only if the first five tests passed with no errors.

The seventh test checks the response of the P&T -488 to an ATN {[Attention)
presented by an external Controller. The technique is the same as used in the sixth test.
Again, the results are meaningful only if the first five tests were passed without any
errors.

After the seventh test has been completed, the message NO ERRORS is printed if
atl tests were passed without error. Then the message "P&T 488 functional test complete!

is printed and the program jumps back to the monitor.

WHAT TO DO IN CASE OF ERROR -
If any of the first four tests fail, check the following:

1. The P&T-488 interface board must be addressed to the same ports that the test
routine tests. The base address {lowest address of the four) used by the P&T -438
must be in location 103 Hex for CP/M systems, 3003 Hex for North Star. The
program is supplied with the base address set to 7C Hex.

2. All 488 devices must be disconnected from the P&T-438.

3. Make sure you are using the correct test routine. 488TST81 is to be used on
ONLY Revision 81A boards (serial number 5098 and up). 48BTEST is to be used on
ONLY boards with serial numbers under 5000.

If any of the first four tests fail, try disconnecting the 488 cable from the
P&T-488 interface board. If they STILL fail, the P&T-488 is faulty and should be
returned to Picklies & Trout for repair or replacement. Be sure to include a printout of
the test results., |If the first four tests are passed without error after the cable has been
disconnected, the cable is defective {a short between lines or a short to ground).

If no error message is printed before the "Attach test plug..." message to the
operator, the first four tests were passed without error. If the error message
TEXTERNAL ATN ERROR - bhits in error are 2" is displayed, it is likely that you are
using the wrong test routine., 488TEST is to be used on only boards with serial numbers
under 5309; 488TST81 is to be used only on boards with serial numbers over 499%, USE
THE CORRECT TEST. |If the error message "EXTERNAL INTERFACE CLEAR ERROR
— «sa' is printed with no error message preceding it, the P&T-488 is faulty. if the
error message "EXTERNAL ATN ERROR - ..." is printed, and either there is no other
error message of only the EXTERNAL INTERFACE CLEAR ERROR message, the P&T-488
is faulty and should be returned for repair or replacement.

RETURN POLICY -
The P&T-488 interface board, its 438 connecting cable and the special test piug are

warranted to be free of defects in materials and workmanship for 90 days from the date
of sale. |If they should be found faulty within the warranty period, Pickies & Trout will

-13-

P&T -488 Functionat Test

(at its option) repair or replace them upon receipt of the defective pieces. Repairs
necessitated by alteration, modification or misuse of these products are not covered by
this warranty. Out of warranty interface boards which have not been modified or
otherwise tampered with will be repaired or replaced for a flat fee. As of January,
1981, the fee is 345.00.

NOTICE - A handling fee of $45.00 will be charged for any board that is returned for
repair because the wrong test routine was used. THIS INCLUDES BOARDS STILL IN
WARRANTY.

When returning equipment to Pickles & Trout, be sure to include the following
information:

1 NAME and ADDRESS of the owner.
2 NAME and PHONE NUMBER of the person who is using the P&T-488.

3+ Description of the failure and how it was found., PRINTOUT OF THE TEST
RESULTS I5 REQUIRED,

4 Description of the 5-100 machine and operating system. Inc¢lude manufacturer and
model name of the CPU board, system clock rate, and the name of the organization
that authored the operating system, as well as any information on systemic
modifications made to it.

For example: IMSA] 8080 with Ithaca Audic Z-80 CPU board with a system clock of 4
MHz, North 5tar single density 5.25" floppy disk drive and controller, Digital
Research CP/M as meodified by Lifeboat Associates for North Star disks.

5 If the equipment is still in warranty, enclose a copy of the bill of sale, Otherwise
enclose a check for the repair and shipping and handling fees. The shipping and
handling fee is $5.00 for addresses within the contiguous US, $7.50 for Alaska and
Hawaii. There is no shipping fee for foreign addresses because the equipment will be
returned freight collect.

The repairs/replacements will be made within five business days and the equipment returned
postage paid to US addresses, freight collect to foreign addreses.

~14-

P&T-488 MSOFT User's Manual Introduction
*54% |ntroduction *%&&
The sequence that most people follow is
1. Unpack the P&T-488
2. Install it in an 5-10C system
3. Test the P&T-488B to make sure it is operating properly
4, Write programs
The MSOFT portion of the P&T-488 manual will follow this sequence.
**2% Unpacking the P&T-488 s+

The package contains the following items:

1. P&T-488 interface card 5. floppy disk
2, 18 inch cable 6. manual
3. metric mounting hardware 7. registration card

4, P&T-488 test plug

The 18 inch cable is designed to go from the P&T-488 card to the back panel of your S-100
computer. The 488 receptacle should be mounted with the metric mounting hardware provided:
it is designed to mate with the jackscrews of standard 488 cables.

The floppy disk contzins the MSOFT driver program, the P&T-488 functional self test program,
some sample programs (50 you can see real live examples of programs written for the MSOFT
driver) and several utility programs.,

The P&T-488 test piug is needed to perform the functional self test.

The registration card is very important! Please fill it out and mail it to us. It is our only
means of getting your mame and address so we can tell you of any bug fixes that we have come
up with, inform you of new application programs and other things which will save you time and
effort. Most of our orders come from purchasing departments, and they really are not interested
in being notified about such things.

*22% Installation *%%+

The P&T-488 interface card uses four contiguous !/O ports and is supplied configured to use
ports 7C through 7F Hex (124 through 127 decimal). Be sure there is no port address conflict
with other 1/O boards in your $-100 system before installing the P&T—488. Refer to the
chapter "Hardware Description” for instructions if it is necessary to change the 1/O ports that
the P&T-488 uses.

When you are satisfied that there is no 1/O port address conflict between the P&T-488
interface and other devices in your 5-100 system, turn off the power to the S-100 system and
wait at least twenty seconds {to allow sufficient time for the 5-100 power supply to discharge)
before installing the P&T-488 card. Attach the cable te the back panel of the 5-100 system
using the metric hardware supplied with the cable {this hardware mates with the standard
lockscrews used on 488 cables supplied by Hewlett—Packard, Beldon and others) and plug the
cable onto the top connector of the P&T-488 interface card. Note that the plug and connector
are keyed.

It will be necessary to modify 488TSTB1 if the 1/O port addresses of the board have been
changed from 7C through 7F Hex. The fourth byte in this program contains the lowest address
of the four that is used by the P&T-488 interface card., If, for example, the card has been

addressed to use ports 60 through 63 Hex you could change 488TST81 by following this
procedure:

rev 4-14-82 13:49 MSOFT-1

Introduction P&T-488 MSOFT User's Manual

1. Load the program using the utility routine DDT (key "DDT 438TST81.COM"). Note that
you are supposed to key what is in between the quote marks, but not the quote marks
themselves. The mnemonic <CR> means to press the carriage return key. DO NOT type
the four individual characters <, C, R and >,

2, Change the byte in location 103 Hex. (Key "S103<CR>", DDT will respond by displaying
MO03 7C" which is the address and the contents at that address. Then key the new base
address: in this example it would be "80<CR>", DDT will then display the next memory
location.)

3. Return te CP/M monitor. (Press and hold the Control key then press the letter C, Then
release both keys.)

4, Put the modified file back on disk (key "SAVE 5 488TST60.COM<CR>"). Be sure not to
use the file name 488TSTE8I.COM.

As an example, assume that the port addresses used in 4BBTST8] are to be changed from 7C -
7F Hex to 60 - 63 Hex. Assume further that DDT is on disk drive A and 488TST8] is on
drive B. Finally, assume that the new file is to be stored on drive B and its name is to be
488TST60 {the 60 is a reminder that this program is for the P&T—488 addressed to ports 60 —
63 Hex). The keys typed by the operator are underlined in the following dialog.

A>B:<CR>

BrA:DDT 488T7ST81.COM<CR>
DDT VERS 1.4

NEXT PC

0600 0100

=S103<«CR>

0103 7C 60<CR>

0104 00 1C

B>SAVE 5 48BTST60.COM<CR>
B>

Note that the characters <CR> mean that the carriage return key is pressed not that the four
characters <, C, R and > are typed. Also, the two character string +C means that the
operator issued a Controt C, not that the two keys + and C were typed.

s53% Test the P&T-488 *o*+
Next the P&T-488 should be tested for proper operation. Run the program named 488TST81 and
refer to the chapter "Functional Test"™ for instructions. After the test has been completed

with no errors the 488 interface is ready for use.

MSOFT,REL P&T-488 driver for compiler Basic
MSOFT.COM P&T-488 driver for interpreter Basic
BCSAMPL.BAS Compiler Basic program to exercise MSOFT
BISAMPL .BAS Interpreter Basic program to exercise MSOFT
B488INIT.BAS
BICLOCK.BAS interpreter Basic program to read an HP 59309 clock
CLOCK.MAC Assembler program to read an HP 59309 clock
MTSAMPL .PAS Pascal MT+ program to exercise MSOFT
MTCLOCK.PAS Pascat MT+ program to read an HP 59309 clock
FSAMPL.FOR Microsoft Fortran program to exercise MSOFT
FCLOCK.FOR Microsoft Fortran program to read an MHP 59309 cfock
QCCLOCK.,C C program to read an HP 359309 clock

MSOFT-2 ray 4-14-82

13:49

P&T-488 MSOFT User's Manual Introduction

BUSMON,COM IEEE-488 interactive bus monitor
488TODSK.COM Put ail 488 bus data into a disk file
DSKTO488.COM Send contents of disk file as 488 data
HANDSHAK.ASM Sample program for source and acceptor handshake

SAMPLHS . ASM Sample program showing the use of HANDSHAK

Even though MSOFT is designed to work with Microsoft Basic, it can be used with some other
languages as well. Programs written in assembler, C, Microsoft Fortran and Pascal MT+ are
included to demonstrate how MSOFT can be used with these languages.

*s** JEEE-488 Bus Monitor *%*»

A utility program named BUSMON is included on the software disk. This program is especially
useful for experimenting and gaining familiarity with the 488 bus and the devices connected to
it. The program is interactive and allows the user to send data as a Talker, commands as 2
Controller as well as send the various uniline messages {SRQ, REN, etc). The program is
always a Listener and reports immediately any data, commands or uniline messages which appear
on the 488 bus. BUSMON and the other utility programs are described in detail in the chapter
"pP&T-488 Auxiliary Programs for CP/MM, This chapter appears at the end of the manual.

3¢ Sample Basic Programs %*

The Basic programs BISAMPL and BCSAMPL are also useful for dinking around and gaining
familiarity with the 438 bus, the P&T-488 interface and whatever instruments are connected to
the 488 bus. BISAMPL is a version written for the Microsoft Basic interpreter (MBASIC) and
BCSAMPL is the same program written for Microsoft's Basic compiler (BASCOM). BUSMON has
more capability and is more useful for actually debugging 488 bus operation, while BISAMPL and
BCSAMPL are written in Basic and can serve as examples of how to write programs which use
MSOFT.

The general form of the command line to load and run Basic programs which use the P&T-488
and interpreter Basic is the following:
x:MSOFT y:filenaml z:filenam2<CR>
where x is the drive on which the program MSOFT is mounted

y is the drive on which the file filenaml is mounted

z is the drive on which file filenam2 is mounted

filenaml is the name of the Basic interpreter/run time package

filenam2 is the name of the Basic program itself.

For example, if MSOFT is on drive A, MBASIC is on drive C and BISAMPL is on drive B, the
command line would be

AMSOFT C:MBASIC B:BISAMPL <CR>

As is normal with CP/M, you do not need to specify the drive name if it is the current
default drive.

*x68 MSOFT: The P&T-488 Driver Program **%*
There are two versions of MSCFT on your disk: MSOFT.COM and MSOFT.REL. MSOFT.COM
is the version to be used with the interpreter Basic, and MSOFT.REL is to be used with

compiling Basic.

The program MSOFT is an interface between Microsoft Basic Rev 5.00 (and later) and the

rev 4-14-82 13:49 MSOFT=3

Introduction P&T-488 MSOFT User's Manual

I[EEE-488 bus, You can use MSOFT to perform the following functions:

488 Bus Control Remote Enable Parallel Poll
Talk Local Serial Poll
Listen 488 interface Clear (IFC)

MSOFT is designed to allow you to easily access the IEEE-488 bus from either the compiler or
interpreter version of Microsoft Basic. It uses a calling convention which is easy to understand
and use, and which also provides the 488 functions commoniy needed in a laboratory or
aytomated test facility.

A typical application program consists of two parts: a Basic program and MSOFT (a machine
language program). Thirteen communication functions are available to allow the Basic program
to be a Controller, Talker or Listener on the 488 bus, as well as perform other 488 operations.
These functions use eleven variables to control communication between the Basic program and
MSOFT. These variables may assume any legal Basic variable name. MSOFT functions are
executed by using Basic CALL statements and passing the appropriate parameters.

s3x2 How It Works #ee*
The key to the operation of MSOFT is the CALL statement. CALL statements are of the form
CALL <variable name> { <parameter 1>, <parameter 2>, ... ,<parameter N>)

where <variable name> is the name of the variable which contains the address of the machine
language routine you want to call, and <parameterl>, <parameter2>, etc., are the parameters
you want to pass to the subroutine., You may pass any number of parameters, but the
number and type of parameters passed must match the number and type of parameters expected
by the machine language subroutine. Note that a passed parameter cannot be a constant or a
string literal (e.g. 27.5 or "hello thereM),

When Basic passes a variable via the CALL statement it doesn't actually pass the variable
itself, but only a pointer to the variable. [f the variable is an integer the pointer points to
the number itself. |Integers, which is the only type of numeric variable that MSOFT uses, are
stored as two byte—two's complement numbers, low order byte first. |If the variable is a string
the pointer peints to that string's string descriptor. String descriptors consist of two parts:
the string length (one byte), and the address in memory where the string is stored {two bytes,
low order byte first).

When one of the MSOFT setup routines is called Basic passes the appropriate pointers to
MSOFT. MSOFT then transfers these pointers to a table so it can remember which variable
names you are using for the various communication variables. In this way MSOFT can
automatically read {or write to} the variables used for Basic-MSOFT communication. If you
need to change some communication parameter all you have to do is assign the parameter a
different value and MSOFT will automatically note the change.

Example: Suppose you want to turn the input eche function on and off. If you named the
variables for input and cutput echo ECHOIN% and ECHOOUT% respectively, you would say

100 CALL ECHO(ECHOIN%,ECHOOUT%)
to tell MSOFT the names of the input and output echo variables. Since Basic always
initializes variables to zero, both the input and output echo functions are initially off, When
you want to turn on the input echo you need only make ECHOIN% non-zero, as is shown by
the following program line:

135 ECHOIN%=

MS0FT-4 rev 41482 13:49

P&T-488 MSOFT User's Manual Introduction

In this example we have shown the two basic units needed to communicate with MSOFT, One
is the "Communication Function™ (in this case ECHO) and the other is the "Communication
Variable? (ECHOIN% and ECHOOUT%).

s#2¢ (Communication Functions *%**

There are thirteen communication functions, four setup functions and one configuration function
available to the user in the MSOFT program. The communication functions — as their name
implies — control data transfer and housekeeping on the 488 bus. The setup functions are
used to inform MSOFT what variables to use to communicate with a Basic program. These
functions are invoked by using a Basic call to the setup function SETUP%. You may use
different names for the communication functions in a program which is to be used with the
interpreter version of Basic, but you must use the names shown below if you use the compiler
version. The names shown here are the ones used in the sample programs and in the file
INIT.BAS, which has all the code required to set up communication between MSOFT and your
Basic program. The configuration function is used to tell MSOFT what [/O ports the P&T-438
board is using.

The parameters which are used by the communication and setup functions fall inte two general
categories: output variables and input variables. Output variables are values you send to
MSOFT. Input variables are values that MSOFT sends to you. Each of these categories is
broken down into two subcategories according to the type of variabie used: integers and strings.
The communication functions use only strings while the setup functions use only integers.

The communication functions are:

T« CNTL% { <output string>)
Example: 100 CALL CNTL% (A$)

Become the 488 Controller and send the output string as a command string over the 488
bus. The error code is updated by this function.
2. CNTLC% (<output string>)

Works like CNTL%, but the error code is set equal to zero {cleared) before transmitting
the command string.
3. TALK% (<output string>)
Example: 100 CALL TALK% {A$)
Become a Talker and tramsmit the cutput string over the 488 bus. All 488 data lines are
left passive FALSE after the last byte has been sent. NOTE: see EOT switch and EOS
value. The error code is updated by this function.
4. TALKC% { <output string>)
Works like TALK%, but the error code is cleared before the output string is transmitted.
5. LSTN% { <imput string>)
Example: 100 CALL LSTN% (A$)
Become a Listener and receive an input string over the 488 bus, The NRFD line is left

true after receiving the last byte. NOTE: see EOT switch and EOS valye. The error
code is updated by this function.

rev 4-14-82 13:49 MSOFT-5

Communication Functions P&T-488 MSOFT User's Manual

8.

9.

LSTNC% (<imput string>)

Works like LSTN%, but the error code is cleared before receiving the input string.

SPOLL% { <output string>, <input string>)
Example: 100 CALL SPOLL% {A$,B$)

Perform a Serial Poll by sending the Serial Poll Enable (SPE) message as a Controller, then
sending UNTALK followed by the first Talk Address in the output string. SPOLL% then
gets a single byte from the newly addressed Talker and checks it to see if that Talker is
requesting service. |If that Talker was not requesting service, SPOLL% sends UNTALK
followed by the next Talk address in the output string and gets that Talker's response
byte, It continues doing so until it either finds a device requesting service, encounters
an invalid Talk Address, has tried all addresses in the output string, or encounters a bus
error. If it finds the device requesting service it puts the poll response byte in POLL%
and the device's Talk Address in the input string, sends UNTALK followed by Serial Poll
Disable (SPD) as a Controller, then returns to Basic. If it encounters an invalid Talk
Address or tries afl addresses but does not find the device requesting service, it makes
the input string 2 null string, sends UNTALK followed by Serial Poll Disable {SPD) as a
Controller, then returns to Basic. |If it encounters a bus error (timeout, IFC, etc.), it
puts the error code in the error code byte, makes the input string a null string and
returns to Basic. NOTE THAT IT DOES NOT SEND UNTALK OR SERIAL POLL
DISABLE!! It cannot because of the bus error, and the other devices on the bus may
wel! be left in the Serial Poll mode instead of the Data mode of operation. It is up to
your program to take whatever action is appropriate in case of error. (One possibility is
to send an IFC, which resets all 488 devices to their initial state. However, in some
cases this may not be appropriate.)

Note that the output string should contain only the Talk addresses of the devices to be
polled, If the Talk Address of some device which 15 not connected to the bus is in the
output string, SPOLL% will address it to talk and wait for its response, None is
forthcoming, since the device is not connected! The result will be either a timeout
error, or, if the timeout function has been disabled {by setting the time value to 255},
the 488 bus and your 5-100 system will lock up. The only recovery to such a lock-up is
for you to reboot your S5-100 system.

Note also that the poll response variable is updated only when the device requesting
service is found. If no such device is found POLL% contains whatever garbage it had
when SPOLL% was called. You can tell whether the contents of POLL% are meaningful
by looking at the input string: it is a null string (has a length of zero} if the device
requesting service was not found. Otherwise it is a non-null string which is the Talk
Address of the device requesting service.

PPOLL% Example: 100 CALL PPOLL%
Performs a Parallel Poll of the 488 devices (by making the 488 ATN and EOI lines true}.

The respanse is placed in the poll response variable. Note that no arguments are used
with the PPOLL% call. This function does not affect the error code.

DREN% Exampie: 100 CALL DREN%
Make the REN (Remote Enable) line of the 488 bus false, which places all devices in

their LOCAL mode. This function does not affect the error code.

MSOFT-6 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual Communication Functions

10,

11.

12,

13.

REN% Example: 100 CALL REN%

Make the REN line of the 488 bus true. Once the REN line goes true any device
addressed as a Listener by the Controller will enter the remote mode. This function does
not affect the error code.

STATUS% Example: 100 CALL STATUS%

Calling this function updates the bus status variable. STATUS% allows the user to
determine the bus status without becoming a Controller, Talker or Listener. It is
primarily used to determine if some special condition is occurring on the 488 bus (another
Controller issuing an [FC, etc)s The way it waorks is that it checks for XATN, XIFC,
POC and SRQ. It then sets the appropriate bits of the error code and then copies the
five most significant bits of the error code into the bus status variable. The three
least significant bits of the bus status varfable are set to zero. Notice that since
STATUS% does not reset the error code before checking the 488 bus, the error code and
the bus status variable may show a condition which occurred before STATUS% was called.
The error code is updated by this function.

IFC% Example: 100 CALL IFC%

Initialize the bus. This function resets the P&T 488 and then issues an IFC (Interface
Clear), which puts all 488 devices in their default state. It terminates with the NRFD
line true, which prevents any communication from taking place on the 488 bus until the
MSOFT system is ready to participate. This function does not affect the error code.

BRSET% Example: 100 CALL BRSET%

Resets the P&T 488, Unlike the IFC% command, it does not send an IFC nor does it
make NRFD true. Thus if it is desired to allow communication to take place on the
488 bus without the participation of the Basic program, one can use the BRSET% call.
This function doss not affect the error code.

#ss% Setup Functions ¥*¥*

Since you are allowed to choose the names you want for the variables used to communicate
with MSOFT, you must tell it the names of the variables. There are four setup functions
that are used for this purpose:

T.

SETUP% (<CNTL%>, <CNTLC%>, <TALK%>, <TALKC%>, <LSTN%>, <LSTNC%>,
<SPOLL%>, <PPOLL%>, <DREN%>, <REN%>, <STATUS%>, <IFC%>, <BRSET%>, <IOSET%>,
<PROTCL%>, <ECHO%>, <IOPORT%>)

This function is needed only for a program which is to be run with the interpreter
version of Basic. You do not need to use this function if the program is to be run
with the complling version of Basic because the compiler already "knows" the names of
the communication functions. In fact, you cannot use this function since the compiler
affows a maximum of ten parameters toc be passed through a CALL.

This function sets up the variable names that MSOFT is to use for all the 4388 bus
functions and the following three setup functions. Note that the value of SETUP% must
be calculated. The calculation can be performed by the following three lines of code:

rev 4~14-82 13:49 MSOFT-7

Setup Functions P&T-488 MSOFT Userts Manual

100 TEMP = 256*PEEK(7}+PEEK (6)+9
110 IF TEMP > 32767 THEN TEMP = TEMP-65536!
120 SETUP% = CINT(TEMP)

Line 100 calculates the address of the setup function in MSOFT. Line 110 ensures that
the value of TEMP is in the range of -32768 to 32767 (which is the range of an integer}.
Line 120 sets SETUP% to the integer value of TEMP.

NOTE: You must call SETUP% BEFORE you make use of any other MSOFT function if
you are using interpreter Basic., SETUP% is the function that establishes all the
"hooks" needed by MSOFT to communicate with your basic program.

2. 10SET% ([<error code>, <timeout value>, <poll result>, <bus status>)

This function sets up the variable names that MSOFT is to use for the error code,
timeout value, poll result, and the bus status. It sets a default timeout value of 254
each time it is called. This fumction must be called before using any of the function
calls.

Example: 100 CALL IOSET% {ERCODE%, TIME%, POLL%, BUS%)

3. PROTCL% (<EOT switch>, <EOS value>, <string length>)

This function sets uvp the variables for the data transfer protocal. It sets the default
string length to 254 each time it is called. This function must be called before using
any of the function calls.

Example: 100 CALL PROTCL% (EOT%, EOS%, LENGTH%)

4. ECHO% { <input echo flzg>, <output echo flag>)

This function sets up the variables for the input and output echo flags. This function
call is optional. If it's not called before using any of the communication function calls,
the default value is no input or output echo.

Example: 100 CALL ECHO% (ECHOIN%, ECHOOUT%)
Lo b L] NOTE #‘*#'

Basic does not have any mechanism to check that the correct number and type of variables are
passed by a CALL function, so MSOFT cannot determine whether the arguments are valid.
Thus it is extremely important that when you call one of the MSOFT functions that you use
the right number of arguments, and the right type of arguments. Never, NEVER do a call
with the wrong number of arguments, or with arguments of the wrong type. If you do, your
program will most likely fail and give unpredictable results. The best thing to do is to be
extra careful when typing in statements involving MSOFT function calls.

*s2¢ Configuration Function **%¢

The P&T-488 board is shipped from the factory set up to use 5-100 1/O ports 7C through 7F
Hex {124 through 127 decimal). If your 5-100 system already uses these ports for some other
function, the P&T-488 must be re-addressed to some other set of ports. The section of the
manual titled "Hardware Description" tells you how to change the address of the P&T—488 board.
You will also have to tell MSOFT what the new address is. MSOFT assumes that the P&T-488
board uses addresses 7C through 7F. By calling IOPORT you can tell MSOFT the lowest
address used by the P&T-488 board.

MSOFT-8 rev 4-14-82 13:49

P&T-482 MSOFT User's Manual Configuration Function

For example, assume that you change the P&T-488 board so it uses ports 38 through 3B Hex.
The following program line will tell MSOFT this new address:

100 PORT%=56 : CALL IOPORT%{PORT%)

PORTY® was set to 56 decimal, which is the equivalent of 38 Hex (the lowest address used by
the P&T-488 In this example). Note that PORT% must be set before calling IOQPORT!
ICPORT is not like the communication functicns {IOSET, PROTCL, etc) because it passes to
MSOFT the value of the parameter, while the communication functions pass te MSOFT the
names of the parameters. You can change the timeout value at any time without having to
calf IOSET again, but you cannot change the port numbers without calling IOPORT again.

This was done on purpose. Your program should call IOPORT no more than once since you will
not be changing the port numbers used by the P&T-488 while the program is running. If
ICPORT told MSOFT the name of the parameter, and you used that parameter again fater on in
the program for something else, MSOFT would then try to communicate with the P&T-488 using
incorrect port numbers.

The rutes for the use of IOPORT are simple but important. You need to use it only if you
have re-addressed the P&T-488 to some address other than 7C through 7F Hex. |If the P&T-438
has been readdressed, you must use it after you call SETUP but before you use any
communication function (CNTL, TALK, etc).

**** (Communication Variables #*%%*

The variables used fall into two categories: output variables and input variables. Output
variables are values you send to MSOFT. |Input variables are values that MSOFT sends to you.
The purpose and type of each of these variables is listed below. In each case a variable name
is also shown. You do not have to use this variable name, but it is the one used in the
sample programs and in the file INIT.BAS, which has all the code required to set up
communication between MSOFT and your Basic program.

i. ERROR CODE ERCODE% ({integer, input variable)
This variable indicates what errors (if any) occurred while using the 483 bus functions.
It is sometimes called the RETURN CODE. The variable is a sixteen bit integer, while
the error code is only eight bits. The error code is contained in the lower eight bits of
the error code variable. Each bit is associated with a particular error condition. If the
bit has the value "I" the corresponding error has occurred.

0000 0000 Normal return - the function has been successfully completed. (Notice that
no bit is set to "1,

leee tsue The S-100 RESET line is/has been true.

sles sees The IFC line on the 488 bus has been true. Re—initialize the P&T 488,

eele wees The ATN line on the 438 bus is/has been trus. An external 488 Controller is
trying to issue a command. (MSOFT will not work with 488 systems which

have another Controller on the 488 bus.)

eeel +ees Bus timeout error. No handshake has taken place in the allotted amount of
time.

sees less The SRQ line on the 488 bus is true., Some 488 device wants service.
Refer to the manufacturer's manual to determine what action is necessary.

rev 4-14-82 13:49 MSOFT-9

Communication Variables ' P&T-488 MSOFT User's Manual

3.

4.

esss o1a. Serial Poll address error. An invalid Talk address is in the string of devices
to be polled.

aven +ols No Acceptors on the 488 bus. If this error occurs while performing a Controf
function, it means that there are no 488 devices on the bus which are
capable of being addressed or programmed by the Controller, If this error
occurs during a Talk function, it means that there are no 488 devices on the
bus which are listening.

vees seel Either I10SET% or PROTCLY% was not called before trying to use one of the
MSOFT communication functions. This error code will not tell you if the
wrong number of arguments was passed to either IOSET% or PROTCL%, it
will only tell you if one of them wasn't called prior to calling an MSOFT
communication function,

Example: If the value of the error variable is found to be 192 (1100 0000 binary), it
means that BOTH the 488 IFC line AND the S5-100 RESET are or have been
true.

Functions CNTLC%, TALKC% and LSTNC% reset the error code before they begin 488 bus
communication. They then set the appropriate bits (if any) before returning to the Basic
program, Functions CNTL%, TALK%, LSTN%, SPOLL% and STATUS% do not reset the
error code before they begin 488 bus communication. They do set the appropriate bits (if
any) befere returning to Basic. Thus the error code may show errors which have occurred
before these functions were called.

The eight functions CNTL%, CNTLC%, TALK%, TALKC%, LSTN%, LSTNC%, SPOLL% and
STATUS% are the only functions which affect the error code.

TIMEOUT VALUE TIME% (integer, output variable)

This variable sets the amount of time within which a 488 handshake cycle must occur or
else a bus timeout error will occur. As with the error code, MSOFT only uses the lower
eight bits of this wvarlable: the actual value used is the timeout value modulo 256, If
it is set to 255 Decimal, no timeout check is made; that is, even if a handshake cycle
is never completed, a timeout error is not generated. For a value of 0 through 254
Decimal, the value is used to indicate the amount of time that the handshake may take
before a timeout error is generated. The amount of time that the timing loop takes
varies with the processor (8080 or Z-80), system clock rate, etc. On an 8080 system
running at 2 MHz a value of 200 corresponds roughly to 5 seconds or a value of 4
corresponds to about 100 milliseconds.

NOTE: The TIMEOUT value is set to 254 each time you CALL I0SET%.

POLL RESPONSE POLL% (integer, input variable)

The lower eight bits of the poll response variable contain the response to the most recent
Serial or Parallel Poll,

BUS STATUS BUS% (integer, input variable)

The bus status tells the user the current bus state. Note: to save time, the bus
status is not automatically updated as the bus state changes. The bus status function
must be called each time the bus status is desired. The coding used is exactly the
same as that used for the error code except that only the five most significant bits are
used. The three least significant bits are always set to zero.

MSOFT-10 rev 4-14-82 13:49

P&T-483 MSOFT User's Manual Communication Variables

0000 0000 Normal return — the function has been successfully completed. (Notice that
no bit is set to M),

lesse oseer The S-100 RESET line is/has been true.
elee eeee The IFC line on the 488 bus has been true. Re—initialize the P&T 488,

eele «esa The ATN line on the 488 bus is/has been true. An external 488 Controller is
trying to issue a command. (MSOFT will not work with 488 systems which
have another Controller on the 488 bus.)

seel seue Bus timeout error. No handshake took place in the allotted amount of time
during the previous TALK%, TALKC%, LSTN%, LSTNC%, CNTL%, CNTLC%
or SPOLL% function.

eess loue The SRQ line on the 488 bus is true. Some 488 device wants service.
Refer to the manufacturer's manual to determine what action is necessary,

5. EOT SWITCH EOT% (integer, output variable)

This variable tells MSOFT how to recognize the end of a data transmission (if it's a
Listener), or what to send at the end of its data transmission (if it's a Talker). There
are three ways to specify the end of a data transmission: 1) The data transmission is
assumed to be finished after a certain number of characters. 2) The data transmission
is assumed to end with an END message. 3) The data transmission is assumed to end
with a special end-of-string (EOS) character. The EOT switch can be greater than zero,
Zero, or less than zero.

LISTEN MODE;
EOT > 0 Terminate string collection upon receipt of an EOS character, END or if the
LENGTH is matched.
EOT = 0 Terminate string collection upon receipt of END or if the LENGTH is
matched.
EQT < 0 Terminate string coflection upon receipt of END or if the LENGTH is
matched. {Same as EOT = 0,)

TALK MODE:
EOT > 0 Append the EOQS character to the end of the string.
EOT = 0 Send string as—is.
EOT < 0 Send the END message with the last byte of the string.

6. EOS VALUE EOS% (integer, output variable)
If the value of the EOT switch is greater than zero MSOFT looks for {or sends) this
value as the end of a data transmission., Since there are only eight bits of data on the
IEEE-488 bus, MSOFT only uses the lower eight bits of the EQS value.

7. STRING LENGTH LENGTH% {integer, output variable)
This is used only in the LISTEN mode (that is, when you CALL LSTN% or CALL
LSTNC%). MSQFT uses this variable to determine the length of incoming messages. For
instance, if the string length was set to 25 Decimal, then MSOFT would assume a data
transmission was over after receiving 25 characters.

NOTE: The string length is set to a default value of 254 each time you CALL
PROTCL%.

rev 4-14-82 13:49 MSOFT-11

Communication Variables P&T-488 MSOFT Userls Manual

8. INPUT ECHO FLAG ECHCIN% (integer, output variable)
If the input echo flag is non-zero, then characters received by MSOFT are echoed to the
console, otherwise they're mot., The default value is zero.

9. OUTPUT ECHO FLAG ECHOOUTY% (integer, output variable)
If the output echo flag is non-zero, them characters sent by MSOFT are echoed to the
console, otherwise they're not. The default value is zero.

10. OQUTPUT STRING (string, cutput variable)
The output string is the string of characters or commands that you wish to send over
the 488 bus. Remember, you don't need an EOS character in your output string.
MSOFT wilt automatically generate an EOS character, an END message, or nothing at all,
depending on how the EOT switch is set.

11. INPUT STRING (string, input variable)
The input string is the string most recently received by MSOFT. If the EOT switch is
positive (EQS selected), then MSOFT will automatically remove the EOS character from
the end of the string.

Note: the input string variable and the output string variable may have the same name.

As you may have noticed, the input and output string variables are not passed to MSOFT
through the setup functions. There is a method to the madness, however. While the values
of MSOFT numeric variables might change frequently, it shouidn't be necessary to change the
names of these variables very often, if at all. For instance, if you called the timeout variable
TIME%, you may change its value many times, but there is little need to change its name to
something efse. However, when using the MSOFT string variazbles, thers are many occasions
where it would be nice to change the names of the variables used. You could just change the
contents of a string variable (by using an assignment statement like 100 A$ = B§)), but string

assignments take a comparitively long time, and it's faster just to pass the desired string
variable (B$ in this case).

For example, if you have a standard programming string for each instrument on the bus, it s
simpler to say

100 CALL TALK%({HP3455%)
110 CALL TALK%{HP9876$)

than it is to say

100 A$=HP3455$
110 CALL TALK%({A$)
120 A$=HP9BT6S
130 CALL TALK%(A$)

*23% (Quirks, Oddities and Strange Behavior ****
The following characteristics of MSOFT may give rise to unexpected results. The user should
be aware of these characteristics so that they may be used to aid, rather than hinder, program
development.
1. The CONTROLLER functions CNTL and CNTLC return to Basic with ATN true. The reason

is that in some cases the user may want to send out several different strings and not have -
ATN go false in between them. For instance, the user can write

MSOFT-12 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual Quirks

310 CALL CNTL%{A$)
320 CALL CNTL%({B$)
330 CALL CNTL%({C$)

and have all three strings be sent as a Controller without ATN going false in between them. A
case in which this might be desirable is shown in the following program fragment:

310 DVMTLK$="T

320 LCRTLK$="wn

330 L9876A$=N3N

340 L2631%=16"

350 UNT$=CHR$(95)

360 UNL4$=CHRS$(63)

370 PRINT "CODE INSTRUMENT"

380 PRINT ™ 1 HP 3455A DVM

390 PRINT & 2 HP 4275 LCR METER

400 INPUT "What instrument do you want to TALK (1 or 2)%TLKNO%
410 PRINT ®"CODE INSTRUMENT™®

420 PRINT " 1 HP 9876A PRINTER

430 PRINT * 2 HP 2631 PRINTER

440 INPUT "What instrument do you want to LISTEN {1 or 2)MLSNO%
450 CALL CNTLCH%{UNTS$)

450 CALL CNTL%(UNL$)

470 IF TLKNO%=1 THEN CALL CNTL%(DVMTLK$) ELSE CALL CNTL%{LCRTLKS$)
480 IF LSNO%=1 THEN CALL CNTL%(L9876A$) ELSE CALL CNTL%({L26313)

If CNTL and CNTLC made ATN false before returning to Basic the selected Talker would try to
send data over the bus as soon as line 470 is executed. Since the Listener had not been
designated yet the Talker would abort with a "No Listener® error. ATN will be made faise
when LSTN%, LSTNC%, IFC% or BRSET% is called.

2. A related topic involves the PARALLEL POLL function PPOLL. It also leaves ATN true
when it returns to Basic. The idea is that after a parallel pell the user usually wants to
become a Contreller and issue some commands which are based on the resuits of the parallel poll.
Thus the way it is set up now ATN remains true between the time of the paraliel poll and the
use of the Controller functions. If ATN were made false by the parallel poll function before it
returns to the Basic program, there would be a period between the poll and the beginning of
the Controller function during which 488 data communication can proceed,

3, The STATUS function updates the error code and then copies the appropriate bits into the
bus status variable. :

4. The way the error code is presently set up Is that the bus communication functions (TALK,
TALKC, LSTN, LSTNC, CNTL, CNTLC, SPOLL and STATUS) can set error bits, but only
TALKC, LSTNC, CNTLC, BRSET and the user can clear error bits. The reasoning is that you
may want to do a series of bus functions and check for error only after they are all donme {which
considerably speeds up bus commurication). If the error code showed only what (if any) errors
occurred during the most recent bus communication function, you would have to keep and
update your own cumulative error flag, which would completely nagate any speed improvement.

5. 10SET always sets a default timeout of 254 and PROTCL always sets a default string length
of 254, They do this so that the system will work even if the user forgets to initiatize
TIME% and LENGTH%. (Remember that Basic always initializes integer variables to 0, so if
IOSET and PROTCL did not set default values and the user forgot to set the timeout or string
length he would almost always get timeout errors, and never get a listen string because the
string length indicated that zero characters are to be gathered from the bus.)

6. One problem that often rears its ugly head has to do with how 488 devices terminate a

rev 4-14-32 13:49 MSOFT-13

Quirks P&T-488 MSOFT User's Manual

message, Some uyse the END message (EO! true on the last byte), some use a fixed length
message and some use a single End-Of-String (EOS) character. All of these techniques are
easily handled by MSOFT. However, there are some devices which use more than one character
to indicate the end of a2 message: the usual multiple character end of string message is a
carriage return followed by a line feed. The "correct" way to set up MSOFT in this case is
to tell it to lock for an EOS character, and tell it that the EOS character is a line feed.
The problem is that the string you get back from MSOFT contains a carriage return as the last
character. At times this can be a real bother. One way of dezaling with the problem is to
copy all but the last character of the string into another string with the statement

100 NEW$=LEFT${OLD$,LEN(OLD$}1)

7. MSOFT does not automatically start up in the RESET state. You must do a CALL BRSET
in your application programs before you try to do any other bus function.

8. SPOLL will leave the bus in the Serial Poll mode instead of the Data mode If it encounters
a bus error {handshake timeout, IFC, etc.). Thus if SPOLL is interrupted by a2 bus efror you
must restore the bus to data mode. This c¢an be done by issuing an Interface Clear (IFC), or
by clearing the bus error then sending out Serial Poll Disable (SPD) as a controller.

R Ey Gotchyas ki

Gotchyas (sometimes called "features" by advertising types) are characteristics of a product
which are almost certain to bite the user in a most tender, if not vital, spot. Gotchyas are
usually the result of either a lack of care in the design of the product, or are due to
limitations over which the manufacturer has no controi. MSOFT's known gotchyas fall into the
latter category. We have done what we can to limit their number and effect, but the ones we
know about are either unavoidable, or the result of avoiding them is to create even more of
them. !f you find more gotchyas, please let us know so that we can warn others of their
existence and possibly get rid of them,

Gotchya Number 1

Basic does not have any mechanism to check that the correct number and type of variables are
passed by a CALL function, so MSOFT cannot determine whether the arguments are valid.
Thus it is extremely important that when you call one of the MSOFT functions that you use
the right number of arguments, and the right type of arguments. Never, NEVER do a call
with the wrong number of arguments, or with arguments of the wrong type. |If you do, your
program will most likely fail and give unpredictable results, The best thing to do is to be
extra careful when typing in statements involving MSOFT function calls.

Gotchya Number 2

MSOFT does not perform an automatic reset when it starts uwp. You must do a CALL
BRSET% or a CALL IFC% before you perform any other 488 bus function which looks at the
error code (TALK, TALKC, LSTN, LSTNC, CNTL, CNTLC or S5POLL). You need to do this
only once (it is a bus initialization step). If you neglect to do a CALL BRSET% or a CALL
IFC% before the first time you call TALK, TALKC, etc, you will most likely get an S-100
RESET error, as well as several others.

Gotchya Number 3 (Occurs only with LSTN and LSTNC)

The way that MSOFT passes a string back to Basic is by dinking with the string address in
the string descriptor area. MSOFT has its own 256 byte buffer to hold any string heard on the
488 bus, and it changes Basic's descriptor area to point to this buffer. Everything is OK
until you go to get the next string by LSTN or LSTNC. If that string has a different name,
what you wind up with Is two different string names both pointing to the MSOFT string
buffer, so the contents of both strings will be the same.

MSOFT-14 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual Gotchyas

For example, if you have a program that looks like this

100 CALL LSTN%(A$) iaxe THIS CODE WILL NOT WORK ##as
110 CALL LSTN%(B$) iexkk THIS CODE WILL NOT WORK »*s»

both A$ and B$ will point to the MSOFT string buffer and will both contain the string heard
with the second LSTN command. The string heard by the first LSTN command will be lost. If
you want to get two or more strings from the bus as a Listener without losing the contents
of the earlier strings, you can write your program like this:

100 CALL LSTN%(DUMMY$) v THIS CODE WILL WORK *=s=
105 A$=DUMMY§ sxeer THIS CODE WILL WORK #e==
110 CALL LSTN%(DUMMY$) ik THIS CODE WILL WORK e
115 B$=DUMMYS sxekr THIS CODE WILL WORK %%%»

Statements 105 and 115 cause Basic to copy the contents of DUMMY$ (which happens to be
the string buffer in MSOFT) into strings A$ and Bj, respectively. Since A$ is a copy of what
was heard on the bus statement 110 will not destroy it.

If you do not need to preserve the previous message, and, in fact, use the same string
variable over and over, you do not need to worry about this problem. For instance, if you are
waiting for a 488 device to send the string "QUIT" and you want to ignore all others, the
following program segment will work just fine.

100 CALL LSTN%({A$) ixx . THIS CODE WILL WORK ¥
110 IF A$0"QUITM THEN 100 sierdx THIS CODE WILL WORK #»=*

The time you have to really watch for this preblem is when you want to remember previous
messages, If you are trying to get a set of readings from an instrument and you want to
keep them in an array, the following code will not work.

100 FOR 1%=0 TO 35
110 CALL LSTN%(A$(1%)) seaek THIS CODE WILL NOT WORK ~#+#s
120 NEXT %

What will happen is that A${0), A$(1), «... will all point to the buffer in MSOFT, and it will
hold only the last reading, The following code will work.

100 FOR %0 TO 35

110 CALL LSTN%{DUMMY$) stesek THIS CODE WILL WORK #ee»
120 A${1 =DUMMY$ iexxx THIS CODE WILL WORK »»==
130 NEXT 1%

Gotchya Number 4

The Serial Poll function SPOLL can leave the bus in a state where the Talker will send only its
serial poll response byte instead of data. This occurs only if a bus error {timeout, IFC, etc.)
occurs while it is doing a serial poll. Since it already encountered one bus error it assumes
that it camnot send the Serial Poll Disable (SPD) command. One rather common way of getting
a bus error during a serial poll s to try to poll a device which is not connected to the bus.
SPOLL will send out its talk address and wait for the response. None is forthcoming since
the device isn't even there. Eventually a bus timeout error will occur (if the timeout value
had been set to something other than 255) and SPOLL will return to your Basic program. But
note that the devices on the 488 bus still think that a serial poll is in progress, and any
device which is later addressed as a Talker will send its serial poll response byte instead of
data. You can tell if this has occurred by checking the error code variable after the serial
poll. 1If it shows a bus timeout error occurred the other devices on the bus think a serial poll

rev 4-14-82 13:49 MSOFT-15

Gotchyas P&T-488 MSOFT User's Manual

is still in progress. Your program will have to tell them that it is not. One way is to
become a Controller and send Untalk {UNT is 5F Hex) followed by Serial Poll Disable (SPD is 19
Hex). Another way would be to send IFC (by calling function IFC), but this method may not
be appropriate at times, because it resets all devices to their power-on state. You may not
want to reprogram them.

*##¢ How to Use MSOFT with Interpreter Basic *¢**

MSQOFT.COM is comprised of two parts: one of which is temporary and is used for
initialization, the second of which remains resident in your system until you exit from Basic
{via the SYSTEM command). You must use a command line of the following form in order to
bring in both MSOFT and Basic:

MSOFT MBASIC [fltename options]

Notice that you may {but do not have to) specify the name of the Basic program which you
want to run and you may alse specify the normal Basic options, such as memory size, number
of disk file buffers, etc. For example, if you want to run the Basic program BISAMPL.BAS
and you also want to set the memory size option to limit Basic to only the first 32 Kbytes of
memory, the command line would look like this:

MSOFT MBASIC BISAMPL [M:32767
Note that one and only one space must separate each of the commands on the command line.

sekn NOTE #%%=
If you have renamed your copy of MBASIC to some new name, substitute the new name
wherever "MBASIC! appears in these command line examples.

What MSOFT actually dees is that it first relocates the resident module so that it lies Just
below the operating system (BDOS for CP/M). It then takes the rest of the command tine and
Rsubmits" it to the operating system, just as if it were typed in by the user directly. This
is the reason that you must give the name of your Basic interpreter on the command line. If
you only type MSOFT on the command line MSOFT will relocate its resident module to lie just
below the operating system and then return to the operating system. CP/M will then reload the
CCP {Console Command Processor) to get your next command. However, the CCP also lies just
below the operating system and destroys the resident module of MSOFT.

MSOFT also changes the JMP BDOS in Jocation O005H to a JMP to its own beginning address.
That address contains a JMP BDOS so the BDOS calls {that is, CALL 0005H) work normally.
MSOFT does all this to protect itself from the self—sizing feature of Basic.

**** How to Use MSOFT with Compiling Basic *%**

The generzl scheme of operation is very similar to that used for the interpreter version of
Basic, but there are a few differences. First and foremost is that the argument to a CALL in
the interpreter must be an integer or integer variable. This is why each name ended with a
percent sign (%). The compiler does NOT call an integer. Instead, the argument to its CALL
is what is known as a PUBLIC LABEL., There are only two poaints that you really need to
concern yoursslf with: (1} the name of each 488 function MUST BE the names shown earlier and
{2) each mame does NOT end with a percent sign. This means that while you may call the
Serial Poll function any integer name you like in an interpreter program (SPOLL%, SP%, 1%,
etc.), you must call it SPOLL in a program to be compiled.

Since the argument of each CALL is a public label in compiling Basic, you do not have to tell
MSOFT what variables to use (as is done in MBASINIT.BAS)., Nor do you have to calculate
SETUP%, It will not hurt anything if you do, but it is not necessary in a program which will
be compiled. You cannoct do a CALL SETUP (CNTL%, CNTLC%, ...) because the compiler will

MSOFT-16 rev 4-14-82 13:49

P &T-488 MSOFT User's Manual MSOFT and Compiling Basic

not allow more than ten parameters to be passed through a CALL. There is no problem,
because SETUP is not needed for the compiler anyway.

You do have to define ail the communication variables (ERCODE%, TIME%, etc.) and CALL the
functions IOSET and PROTCL. As in the interpreter version, you need to CALL ECHO only if
you want to enable the input and/or output echo.

The program BCSAMPL.BAS is exactly the same as BISAMPL.BAS EXCEPT that the modifications
necessary to make it compile have been made. Note that each 488 function name has had the
ending percent sign (%) stripped off of it, since each is now a public label instead of an
integer variable. Lines 1160 through 1300 have been removed.

The following dialog shows how the program BCSAMPL.BAS was compiled with Microsoft's version
5.30 Basic compiler and then linked to the MSOFT,.REL file to generate the executable
BCSAMPL.COM file. Note that BCSAMPL.COM stands alone: you need only type

BCSAMPL
to run it. This is in marked contrast to the interpreter version in which you have to type

MSOFT MBASIC BISAMPL

*ss2 Example of how to Compile an MSOFT Program %%+

NOTE: In the following dizlog these conventions have been wused:
1. Everything typed by the operator is shown underscored.
2, The character sequence <CR> means that the CARRIAGE RETURN key was typed.
{Sometimes this key is labeled RETURN or ENTER,)
3. Version 5.30 of Micresoft's Basic compiler was used,
4, The "/O" switch was used so that BCSAMPL.COM will run without the BRUN.COM
runtime package.

B>BASCOM<CR>
*=BCSAMPL JO<CR>

00000 Fatal Errors
14101 Bytes Free

B>LBO<CR>
Link-80 3.43 14-Apr-81 Copyright (c} 1981 Microsoft

*BCSAMPL /E,BCSAMPL /N, MSOF T<CR>

Data 0103 4639 <17 8>

18563 Bytes Free
[062 4639 0]

B>

rev 4-14-82 13:49 MSOFT-17

~I1SAMPL and BCSAMPL P&T-488 MSOFT User's Manual

339333235>> NOTE €CCLLLLLLCLL

The following source-code programs are included for illustrative purposes., Permission is granted
to the reader to reproduce or abstract from these programs. These programs are the ONLY
portion of this manual that may be reproduced without the prior written permission of

Pickies & Trout, P.O. Box 1206, Goleta, CA 93116

Comments on BISAMPL.BAS and BCSAMPL.BAS

These programs can be used to experiment with how MSOFT works, as well as experiment with
how any device attached to the 488 bus responds to various commands. The programs differ
only in that BISAMPL is the version that is for the interpreter version of Basic, while
BCSAMPL is the version for the Basic compiler. They differ in that the arguments of all the
CALLs in BISAMPL are integers {end with a % sign}, while in BCSAMPL they are public labels,
Also, BCSAMPL does not do a CALL SETUP(...).

These programs request the user to specify what function is to be performed by MSOFT, and
whatever other information is needed in order to perform it. For instance, if the user
indicates that the TALK functier is to be used, the programs ask for the string that is to be
sent over the 488 bus by the P&T—488 as a talker. After all necessary Information has been
entered the programs perform the function and report the value of the error code, what function
was performed and any appropriate error message.

The programs have a special string collection routine (lines 3160 through 3410). Basic does not
normally allow characters such as line feed and carriage return to be included in a string
gathered from the console keyboard. However, it is often necessary to include these and other
control characters in strings which ars to be sent over the 488 bus while the P&T488 is a
talker or a controller. These control characters can be entered into the talk and control strings
by preceding them with an ESCAPE character. For example, to get the string

1234<ESCAPE>$%<RETURN><LINE FEED>
you would type
1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>

Notice that each control code [<ESCAPE>, <RETURN> and <LINE FEED?>) is preceded by an
<ESCAPE>. The very last <RETURN?> is not preceded by an <ESCAPE> because it is the
delimiter telling Basic that the string is complete., The BACKSPACE key can be used to
correct errors. BACKSPACE can be put into the string by preceding it (like the other control
characters) with an <ESCAPE>, The only character that cannot be put into a string is Control
C (ETX) because Basic recognizes it as an abort.

As an illustration of how to use these programs, assume you have a Hewlett—Packard 59309A
Digital Clack. The programming codes for this clock are the following:

Reset the clock to 01:01:00:00:00

Stop the clock

Start the clock

Add one second to the time displayed by the clock
Add one minute to the time displayed by the clock
Add one hour

Add one day

DoIXIZT -0

MSOFT-18 rev 4-14-82 12:49

P&T-488 MSOFT User's Manual BISAMPL and BCSAMPL
NOTE: When the front panel display is the following:

Month Day Hour Minute Second
12 28 " 23 14

The output to the 488 bus (when addressed to talk and with colon format)} is in the following
format:

(2 or <SP> <SP>) : 12 ; 28 : 1 : 3 : 14 <«CR> 4APF>
Status Space Month Day Hour Minute Second

The status character "?" means that there is an error. The status character
<SP> means that there is no efror.

The following example shows how to reset, set and read the time. It is assumed that the
Tatk address of the clock is "E" and the Listen address is "%". Underlined sections in the
example are what the operator typed on the console: the rest is the computer's response. Note
that the mnemonic <CR> means that the Carriage Return key Is pressed, NOT that the four
individual characters <, C, R, and > were pressed. To save paper [MENU] is shown in
ptace of the menu that will actually appear on your console. The marginal comments indicate
what it was that | was trying to accomplish at each step.

A>MSOFT MBASIC BISAMPL<CR>

PAT 488 - MBasic Interface Software Revision 0,63
Copyright 1981,82 by Plckles & Trout

BASIC-80 Rev, 5.2t

(CP/M Yerslon]

Copyright 1977-81 (C} by Mlcrosoft
Croated: 28-Jul-81

24967 Bytes froee

i« CONTROL Become the Controller and ocutput a command string

2., TALK Become a Talker and send a string

3. LISTEN Become a Listener and receive a string

4. REMOTE Make the REN {Remote EMabla) line frue

5. LOCAL Make the REN |ine false

6, IFC Issue an IFC (InterFace Clear) command

7. RESET Resat the P&T 488 interface

B. STATUS Display the current 488 bus status

9. SPOLL Perform a Serlal Poll of the 488 bus

10, PPOLL Perform a Parallel Poll of the 488 bus

11. Change the communlcation protocol (EQT switch, EOS, and string length)
12, Change input echo, output echo and timeout vaiues

13. Change $-100 port numbers (DIP switch on PAT-488 card must agree)

Which would you like to do? 6<CR> sond Interface Clear to 488 devices
Function = INTERFACE CLEAR Error Code = 0§

NORMAL RETURN no errors have occurred

{ MENU)

which would you |ike to do? 4<CR> make REN |ine true

Functlon = REMOTE ENABLE Error Code = 0

NORMAL RETURN

rev 4-14-82 12:49 MSOFT-19

BISAMPL and BCSAMPL P&T-488 MSOFT User's Manual

[MENU]

Which would you like to do? 1<CR> address the clock as a Listener

Please enter the Control string

STRING: $<CR>

Functlon = CONTROLLER Error Code = 2

NG LISTENERS - | cannot talk to myself! Oh dear, | forgot to connect the 488 cable

[MENU]

Which would you like to do? G<CR> connected . the cable, let's try agaln
Function = INTERFACE CLEAR Error Code = O
NORMAL RETURN

t MENU |

Which would you |ike to do? 4<CR> make REN |ine true
Function = REMOTE ENABLE Error Code = Q
NORMAL RETURN

[MENU |
Which would you |ike to do? 1<CR> address the clock as a Listener

Pleasa enter the Control string
STRING: %<CR>

Function = CONTROLLER Error Code = 0

NORMAL RETURN and the clock!s Indicator shows that i+ is addressad
[MENU |

Which would you |Tke to do? 2<CR> set the clock to Jan 5, 8:10 AM and 15 seconds

Piease enter the Talk string

STRING: RPDDODHHHHHHHHMMMMMMMMMMS SSSS55555555555<CR>

Function = TALKER Error Code = 0

NORMAL. RETURN and tha clock displays 01:05:08:10:15

[MENU]

Which would you [ike to do? 2<CR> start the clock when the time Is 8:10:15
Please enter the Talk string
STRING: T<CR>

Function = TALKER Error Code = 0
NORMAL RETURN the clock is now ruaning

[MENU |

Which would you |lke to do?! 11<CR> make |1ne feed the EQS byte
The current communication protocol setup is:

EOT switch = 0

EOS value = 0

String length = 254
What is the nmew EOT switch? 1<CR> tarminate |isten upon recelpt of EQS
What is the new EQS value (0.,255)7 10<CR> make £OS a line feed

What is the new String Length (0,,255)1 25<CR> make maximum s¥ring 25 bytes

MSQFT-20 rav 4-14-82 12:49

PA&T-488 MSOFT User's Manual BISAMPL and BCSAMPL
[MENU |

Which would you |Tke to do? 1<CR> unaddress clock as Listener, address as Talker
Please enter the Control string
STRING: TE<CR>

Function = CONTROLLER Error Code = Q
NORMAL RETURN

[MENU |

Which would you |lke to do? 3<CR> ITsten to tha clock
String heard on thae 488 bus is:

31:05:08:16:01 thatts the timel
Function = LJSTENER Errar Code = Q
NORMAL RETURN

[MENU |

Wnich would you like fo do? 1C press Control C to abort
8reak in 1510

Ok

SYSTEM axit Baslc

B>

rav 4-14-82 12:49 MSOFT-21

BI1SAMPL .BAS

20!

40
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
14560
1470
1480
1450

RREE D|SAMPL.BAS Listing ®Ee

BISAMPL as of 9:54 4-3-82

' Let the operator test each functlion and observe the
' response :

]
' Control characters {such as |Ine feed and carriage return) can

' be entered Into the TALK and CONTROL strings by preceding the

' control character with an ESCAPE. For exampie, to get the string
' 1234<ESCAPE>$Z<RETURN><LINE FEED> you would type

! 1234<ESCAPE><ESCAPE>$E<ESCAPE><RETURN><ESCAPE><L INE FEED><RETURN>,
'

' Inltlatization Routines

' The purpose of these routines is to inltlalize the MSOFT function
f addresses and the communicatlion varlables.

' Calculate the address of the SETUP functlion

TEMP = 236*PEEK(7)+PEEK(6}+9
IF¥ TEMP>32767 THEN TEMP = TEMP-65536!
SETUPE = CINT(TEMP) :' convert 1t to an integer

1

' Sat up function call addrass variables
]

CALL SETUPE (CNTLE, CNTLCE ,TALKS, TALKCE, LSTNE, LSTNCE, SPOLLY, PPOLLYE,

DRENE, RENK, STATUSE, IFC$, BRSETS, IOSETY, PROTCLE, ECHOR,
10PORTE)

* Call the setup routines to let MSOFT know what variables to use
t

CALL I0SET¥ (ERCODE®, TIMEE, POLLE, BUSE)

CALL PROTCLY (£0T%, EOSEZ, LENGTHE)

CALL ECHO® (ECHOIN$, ECHOOUTE®)

!

'

' Maln Menu

]

PRINT : PRINT

PRINT "1, CONTROL Become tha Controller and output a command string®
PRINT "2, TALK Become a Talker and send a string”

PRINT "3, LISTEN Become a Listener and recaive a string®

PRINT "4, REMOTE Make the REN {Remote ENable) Ilne true"

PRINT "5, LOCAL Make the REN line false"

PREINT "5, IFC Issua an IFC (Interface Clear) command®

PRINT "7, RESET Raset the P&T 488 Interfacaeh

PRINT "8, STATUS Display the current 488 bus statush

PRINT "9, SPOLL Perform a Serial Poll of the 488 bus"

PRINT ™0, PPOLL Perform a Parallel Poll of the 488 bus"

PRINT ™11, Change the communication protocel (EQT switch, EOS, and stiring length)™
PRINT 112, Change input echo, output echo and timeout values"

PRINT "13, Change $-100 port numbers (DIP switch on PAT-488 card must agree)"

MSOFT-22 rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual

1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1750
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

PRINT

INPUT "Which would you like to do";F§ : ' get function code
IF FE<1 OR F¥>13 THEN PRINT CHR${7):60TO 1360

PRINT
ERCODE$=0

IF F§<>1 THEN 1630

- T

clear tha error code

PRINT "Please enter the Control string®

GOsSUB 3200
FC$="CONTROLLER"
CALL CNTLE (A1S)
GOTO 2730

IF F§<>2 THEN 1700

« 1

L

get string to send as a controller

send out the command string

PRINT "Please enter the Talk string"

GOsus 3200
FC$="TALKER"

CALL TALKE (A1$)
GOTO 2730

L}

IF Ff<>3 THEN 1780
Al $=ml
FG3="LISTENERY

CALL LSTNE(A1S)
PRINT "String heard on 433
PRINT A1S

GOTO 2730

L

IF F3<>4 THEN 1830
FC$=rPREMOTE ENABLE"™
CALL RENE

BOTO 2730

'

IF F%<>5 THEN 1880
FC$="REMOTE D|SABLE"
CALL DRENE

GOTO 2730

1

iF F3<>6 THEN 1930
FC$=* |NTERFACE CLEAR™
CALL IFCE

GOTO 2730

L

IF F$<>7 THEN 1980
FC$=rRESET PAT 488"
CALL BRSET%

G0TO 2730

t

IF F<>8 THEN 2040
CALL STATUSE

= 1

bus

e
-

PRINT "Bus Status is: ";BuUS%

FC$="STATUSH
GOTQ 2730

IF F$<>9 THEN 2140

get string to send as a talker

send out a data string

get string from the 488
Tg:"

make REM 1Tne true

make REN 1ina false

[ssue an IFC command

raeset the PAT 488

PRINT "Please enter Talk addresses to polln

GOSUB 3200
PRINT

rev 4-14-82 12:49

= 1
H

get string of talk addresses

MSOFT=-23

BISAMPL,BAS

BISAMPL.BAS

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
221G
2220
2230
2240

2250°

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
242G
2430
2440
2450
2460
2470
2480
2450
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650

FC$="SERIAL POLLY
CALL SPOLLE(A1$,B1%} : ' perform Serial Poll

PRINT “Talk address of responding device is ";B1$§
PRINT "Pol] response = ";POLLE

GOTO 2730

L}

IF F$<>10 THEN 2200

FC$="PARALLEL POLL"™

CALL PPOLLE : ' perform parallel poll
PRINT "Poll rasponse = ";POLLE

GOTO 2730

1

IF F§<>11 THEN 2400

PRINT:PRINT

PRINT "The current communication protocol setup is:o
PREINT

PRINT » EQT switch = M EQTE

PRINT " EOS value = ":E0S%

PRINT ® String tength = ™;LENGTH%

PRINT

INPUT "What 1s the new EOT switch value";E0TE

INPUT “What is the new EOS value (0,,255)}%;EQS%

IF EOSE>=0 AND EQS$<=255 THEN 2330

PRINT "The E€0S vaiue must be between 0 and 255!"

GOTO 2290

INPUT "What is the new String Length {0,.255)";LENGTH3
1F LENGTHE>=0 AND LENGTHE<256 THEN 2370

PRINT "The LENGTH must be between O and 255In

GOTO 2330 '

PRINT

GOTO 1360

T

{F F3<>12 THEN 2640

PRINT:PRINT

PRINT "The Input Echo, Output Echo, and Timeout ars currently set fo:n
PRINT

PS=UN": |F ECHOINZ<>0 THEN P$=ryn
PRINT * Input Echo ".P$
PS=ANT; |F ECHOOUTE<>0 THEN P§='rn
PRINT " OQutput Echo .04
PRINT * Timeout Value '";TIMES
PRINT

PRINT PEcho Input (Y/N}";

INPUT A1S : ATS=LEFTI{Al1$,1}

IF A13<>uyr AND A1S<>UN" AND A15<My'" AND Al13<>'"n® THEN 2500
ECHOIN$=Q: IF Al$=rym OR At$=mty? THEN ECHQOINZ=1

PRINT "Echo Qutput (Y/N)T;

INPUT A1% : AIS=LEFTS{AIS, 1}

IF A1STYT AND AIS<>ON" AND Al$<>Py™ AND Al$<>Wn® THEN 2540
ECHOOUTZ=0: IF AiS="yY® QR Al$=ry" THEN ECHOQUT%=1

INPUT "What Is the naw TIMEQUT value (0..255)1":TIMEE

IF TIME$>=0 AND TIMEZ<=255 THEN 2620

PRINT "The TIMEOUT value must be between O and 255in
G0TO 2580

PRINT

GOTO 1360

IF FZ<>13 THEN 2730

INPUT "What is the new 5100 port number (0,.255)";PORTE

MSOFT-24 rev 4-14-82

P&T-488 MSOFT User's Manual

12:49

P&T-488 MSOFT User's Manual

2680
2570
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2540
2950
2960
2970
2980
29%0
3000
3010
3020
3030
30640
3050
060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3260
3210
3220
3230

PRINT

CALL IOPORTH(PORT%)

GOTO 1360

L}

t

't Display function and error code, then return to main menu
1

PRINT

GOsuB 2770 : ' print function and error message
GOTO 1360 : ' go back to maln manu

L}

L

' Report 488 Functlon Errors

L}

PRINT "Functlon = ";FC$; TAB(40);"Error Code = ":;ERCODEX

! Interpret Error codes and print error messages
t

IF ERCODEZ<0 THEN 3140
IF ERCODEL=0 THEN PRINT PNORMAL RETURM" : RETURN
IF ERCODE$>255 THEN 3140

FOR 1=7 TO O STEP =1

10=2€{

RI=ERCODE%~10 : IF R$ < O THEN 3120

ERCODE%=RY

ON 1+1 GOTO 2930,2960,2980,3010,3030,3060,3080,3100

]

PRINT "SETUP ERROR - either I0SETS or PROTCLE wasn't called before®
PRINT ® using one of the MSOFT communication functions"
60TO 3120

PRINT "NO LISTENERS - | cannct talk to mysal 1%

GOTO 3120

PRINT ®"SER{AL POLL ADDRESS ERROR - no more than one secondary address"
PRINT * may follow a primary address"

GOTO 3120

PRINT "SERYICE REQUEST - a2 488 device is requesting service"

GOTO 3120

PRINT "TIMEGUT ERROR - the specified amount of time has elapsed without"
PRINT ¥ complating a 488 handshake cycla"

GOTO 3120

PRINT "ATN TRUE -~ an external controller 1s trying to issue a command®

GOTO 3120

PRINT WIFC TRUE - reset 488 interface®

GOTO 3120

PRENT "5-100 RESET - reset Interface (use functlon 6 or 7)1
GOTO 3120

NEXT |

RETURN

PRINT "“SYSTEM ERROR - an 11legal error code has been encoutarad"
RETURN

S$tring Input Routline
Get the string. Gather control codes [f pracedad by <ESCAPE>,

]
T
T
1
r
]

Alg=nn
PRINT “STRING: ™;

rev 4-14-82 12:49 MSOFT-25

BISAMPL,BAS

BISAMPL ,BAS

3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3310
3380
3390
3400
3410
3420

ABS=INPUTS(T)

IF ASC{AS%)<>13 THEN 3280 : ' <RETURN> terminates Input

PREINT

RETURN

' Use backspace key for character at a time deletion

IF ASC{AB$)=8 THEN IF LEN(AI$)>0 THEN 3310 ELSE 3240

GOTO 33710

A9S=RIGHTS(AIS, 1) : ' keep deleted char
ALS=LEFTS{AIS,LEN(AIS)=1) : ' remove deleted char from string
PRINT CHR${8};" ":CHR${8); ; ' delete char from CRT

' If deleted char Is a control char must also delete leading caret
IF ASC(A9$)<32 THEN PRINT CHRE(8);" ";CHR$(B);

GOTO 3240

IF ASC(AB$)=27 THEN AB3=INPUT$(1) : ' <ESCAPE> means get next char
! Show the control character, I(f not a space preceed character with
' a caret. Change the control character into a printing character,
IF Ag$>=" » THEN PRINT AB$;: ELSE PRINT "On4CHRI(64+ASC(ABS));
A1$=A1%+A8% : ' Append ‘the character to the string

GOTO 3240

MSOFT-26 rev 4-14-82

PLT-488 MSOFT User's Manual

12:49

PAT-488 MSOFT User's Manual BCSAMPL .BAS

##8% BCSAMPL.BAS %%

BCSAMPL performs the same function as BISAMPL, but is written for the Baslc compliier, The
differences between the two programs is a consequence of tha difference batween the interpreter
and compllier versions of Microsoft Basic. You wlll notice that all arguments of CALLs in BCSAMPL
are public labels, while in BISAMPL they are Integers (end with a $ sign}. Also, lines 1170
through 1260 of BISAMPL are superfluous when the compiler is uwused, so They do not appear in
BCSAMPL,

#HEES BCSAMPLLBAS Listing W#%%%

20 ' BCSAMPL as of 10:32 4-8-82
30!
40 1
1000 7
1010 1
1020 ' Let the operator test each function and observe the

1030 ' response

1040 !

1050 ¥ Control characters (such as |lIne feed and carrlage return) can
1060 ' be entered into the TALK and CONTROL strings by preceding the

1070 ' control character with an ESCAPE, For example, to get the string
1080 ' 1234<ESCAPE>$Z<RETURN><LINE FEED> you would type

1090 1 1234<ESCAPE><ESCAPE>$$<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>.
1100 ! :
1110 ¢
1120 * Initialization Routines

1130 !

1140 ' The purpose of these routines s to inftiallze the MSOFT function
1150 ' addresses and the communication variables.

1160 ?

1270 ' Call the setup routines to let MSOFT know what varlables to use
1280 1

1290 CALL |0SET {(ERCODEX, TIME®, POLLE, BUSE)

1300 CALL PROTCL (EOTE, EO0S%, LENGTHE)

1310 CALL ECHO (ECHOIN$, ECHOOUTX)

1320 ¢
1330 ¢
1240 ' Maln Menu

1350 '

1360 PRINT : PRINT

1370 PRINT "1. CONTRQL Become the Controller and output a command string®

1380 PRINT "2, TALK Becoms a Talker and send a string"

1390 PRINT "3, LISTEN Become a LIstener and receive a string"

1400 PRINT "4, REMOTE Make the REN {Remote ENable} lTne true®

1410 PRINT "5, LOCAL Make the REN |lne falsa"

1420 PRINT "6, |IFC Issue an IFC {InterFace Clear) command®

1430 PRINT "®7. RESET Reset the PAT 488 Interface"

1440 PRINT "8, STATUS Display the curreant 488 bus status"

1450 PRINT "9, SPOLL Perform a Serial Poll of the 488 bus"

1460 PRINT "10, PPOLL Parform a Parallal Pell of tha 488 bus®

1470 PRINT "11, Change the communication proftocol (EOT swltch, EOQS, and string length)™
1480 PRINT ™12, Change input echo, output echo and timeout valyes?

1490 PRINT "13, Changs 5~100 port numbers (DIP switch on P&T-488 card must agreal}"

1500 PRENT

rav 4-14-82 12:49 MSOFT-27

8CSAMPL . BAS

1510
1520
153¢
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1630
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
187¢
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080

INPUT "Which would you tike to do¥;F% : ' get function code
IF FE<1 OR FE¥>13 THEN PRINT CHR$(7):G0TO 1360

PRINT

ERCODE%=0

'

IF Fi<>1 THEN 1630
PRINT "Plsase entar the Control string"

GOSUB 3200 : ' get string fto send as a controller
FCS="*CONTROLLER"

CALL CNTL (A1S) : ' send out the command string

GOTO 2730

]

IF F$<>2 THEN 1700

PRINT "Please enter the Talk string"

GOSUB 3200 : ' get string to send as a talker
FC$="TALKER"

CALL TALK {A1$} : ' send out a data string

B80TO 2730

T

IF F$<>3 THEN 1780

Alg=nw

FC3$="L | STENER"

CALL LSTN(ALS) : ' get string from the 488

PRINT "String heard on 488 bus is:V

PRINT A1

GOTO 2730

]

IF F%<>4 THEN 183¢
FCS="REMOTE ENABLE"
CALL REN

GOTO 2730

]

IF F§<>5 THEN 1880
FC$="REMOTE DI SABLE™
CALL DREN : ' make REN |Ine false
GOTO 2730

'

IF F§<>6 THEN 1930
FC$=" INTERFACE CLEAR"
CALL IFC

GOTO 2730

1

IF FE<>7 THEN 198C
FC$="RESET PA&T 488"
CALL BRSET

GOTO 2730

1

|F F¥<>8 THEN 2040
CALL STATUS

PRINT "Bus Status is: ";BUSE

FC$="STATUS™

GOTO 2730

]

IF F¥<>2 THEN 2140

PRINT "Ploase enter Talk addresses ‘o poliM

GOosuB 3200 s+ ! get string of talk addresses .
PRINT

FC$="SERIAL POLL"

' clear the error code

a

' make REN 1Ine frue

-

' Issus an IFC command

TS

' reset the PAT 488

.

MSOFT-28

rev 4-14-82

P&T-488 MSOFT Usar's Manual

12:49

PAT-488 MSOFT Usar's Manual

2090
2100
ztio
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660

CALL SPOLL{A1%$,B1%) : ' perform Serial Poll
PRINT "Talk address of responding device Is ";B1§
PRINT "Poll response = ";POLL%

GOTO 2730

1

IF F§<>10 THEN 2200

FC$="PARALLEL POLL™

CALL PPOLL : ' perform parallel poll
PRINT "Pol| response = w;POLLE

GOTO 2730

]

IF F%<>11 THEN 2400

PRINT:PRINT

PRINT "The current communlcatlon protocol setup Is:™
PRINT

PRINT * EOT switch = ;EQT%

PRINT * EOS value = m;E0S%

PRINT ® String length = ";LENGTH3

PRINT

INPUT "What is the new EQOT switch value":EQTE

INPUT "What is the new EOS value {0..255)";E0S%
IF EOSE>=0 AND EQSE<=235 THEN 2330

PRINT "The EQS value must be between O and 2551%
GOTO 2290

INPUT "What is the new 5trling Length (0Q,,255)";LENGTHE
IF LENGTHE>=0 AND LEMGTHE<2S6 THEN 2370

PRINT "The LENGTH must be between O and 255!"
GATO 2330

PRINT

BOTO 13860

1

IF F¥<>12 THEN 2640

PRINT:PRINT

PRINT "The Input Echo, Qutput Echo, and Timeout ars currently set to:n

PRINT

PE="N": |F ECHOINS<>0 THEN P$=myn
PRINT ™ Input Echo Py
P$=N": IF ECHOOUTZ<>0 THEN PS=ryw
PRINT ® Output Echo LH S 4
PRINT ® Timeout Yalue ';TIME%
PRINT

PRINT ®Echo Input (Y/N)";

INPUT A1S : AIS=LEFTS(A1$,1)

IF A{$HYU AND A15<>9NT AND A15<>"y" AND Al3<>Tn® THEN 2500
ECHOINS=0: iF Al$='yn QR Al$='yt THEN ECHOIN$=1

PRINT "Echo Qutput (Y/N)T;

INFUT A1$: A1SalLEFTH{A15,1)

IF AISONYN AND ATS<>UN® AND A1S<>Ty AND A1$<>™n" THEN 2540
ECHOOUTE=0: IF A1$="Y" OR Al$=iy" THEN ECHOOUTZ=t

INPUT "What is the new TIMEOUT value (0..255}";TIMES

IF TIMEZ>=(Q AND TIMEZ<=255 THEN 2620

PRINT "The TIMEOUT valus must be between Q and 2551w

G0TO 2580

PRANT

GOTO 1360

IF FE<>13 THEN 2730

INPUT "What is the new $5-100 port number (Q..235)";PORTE
PRINT

rav 4-14-82 12:49 MSOFT=29

BCSAMPL.BAS

BCSAMPL .BAS

2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2830
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3o
3020
3030
3040
3050
3060
3070
3080
3090
3100
30
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240

CALL I10PORT(PORTE)

GOTO 1360

1

T

' Dispiay function and error code, then return to maln menu
1

PRENT

GOsUs 2770 : ' print function and error message
GOTO 1360 : ' go back to maln menu

'

¥

t Report 488 Functlion Errors

1

PRINT "Functlon = ";FC$;TAB(40);"Error Code = ";ERCODEX

1

' Interpret Error codes and print error messages
1

IF ERCODE%<0 THEN 3140

I¥ ERCODE#=0 THEN PRINT "NORMAL RETURN™ : RETURN
IF ERCODEZ>255 THEN 3140

FOR 127 TO O STEP -1

10=28|

R9=ERCODE®-10 : IF R9 < 0 THEN 3120

ERCODE%=R9

ON 1+1 GOTO 2930,2960,2980,3010,3030,3060,3080,3100

L]

PRINT "SETUP ERROR - either I0SETS or PROTCLY wasn't called befora®
PRINT ® using one of the MSOFT communicatlon functionsh
GOTO 3120

PRINT "NQ LISTENERS = | cannot talk To myselfl"

GOTO 3120

PRINT *SERIAL POLL ADDRESS ERRCR - a0 more than one secondary addraess®
PRINT ® may follow a primary address®
GOTO 3120

PRINT "SERYICE REQUEST - a 488 device is requesting service"

GOTC 3120

PRINT "TIMEQUT ERROR - the spacified amount of time has elapsed wilthout™
PRINT ™ completing a 488 handshake cycle"

GOTO 3120

PRINT "ATN TRUE - an external controllier is trylng to Issue a command“

GOTO 3120

PRINT *|FC TRUE - raset 488 [nterface”

GOTO 3120

PRINT "*$=-100 RESET -~ reset interface (usea function 6 or 7)1
GOTO 3120

NEXT 1

RETURN

PRINT #SYSTEM ERROR - an illegal error code has bsen encoutered”

RETURN

T

1

' S5tring Input Routine

I

* Get the string., Gather control codes 1f preceded by <ESCAPE>.
1

a|$=rm

PRINT "STRING: *;

AB3=INPUTS(1}

MSCFT=30 rav 4-14-82

P&T-488 MSOFT Usert's Manual

12:49

P&T-488 MSOFT User's Manual BCSAMPL . BAS

3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420

IF ASC(ABS)<>13 THEN 3280 : ' <RETURN> terminates input

PRINT

RETURN

1 Use backspace key for character at a +ime deletion

IF ASC(AS$)=8 THEN IF LEN({A1$)>0 THEN 3310 ELSE 3240

GOTO 3370

A93=RIGHTS${A1S,1) 3 ' keep deleted char
A13=LEFTS{A1S,LEN(AIS)~1) : 7 remove deleted char from string
PRINT CHR$(8);" ";CHR$(8); : ' dalete char from CRT

* If deleted char is a control char must also delete leading caret
IF ASC(A9%$)<32 THEN PRINT CHR$(8);" *;CHRS$(B);

GOTO 3240

iF ASC{A8%$)=27 THEN ASS=INPUT${1} : ' <ESCAPE> means get next char
t Show the control character. |f not a space preceed character with
! a caret, Change the control character Tnte a printing character,
IF A8$>=% ® THEN PRINT AB%; ELSE PRINT "ONHCHRS(64+ASC{ABS)});
A1S=A1%+A8% : ' Append the character to the siring

GOTO 3240

rev 4-14-82 12:49 MSOFT-31

B488INIT.BAS PAT-488 MSOFT User's Manual

%R BASBINIT.BAS HEEd

This program fragment Is included on your disk as an ald In writing programs for MSOFT., All of
the setup c¢alls are included, Its primary utlllity is that all the varlables are called in the
correct order in the setup routines, Remember that Baslc does not check to make sura that the
right number of parameters are passed, nor does it check tTo make sure they are of the correct
type. Since B48BINIT,BAS has all of the setup calls in it, if you copy it to your program you
are sure that the right number and type of parameters are used, Also, you ara spared the
frustration of spending hours trying to get a program to work only to find out that you have
mispelled a function name, or have accidently changed the order of the parameters,

EAER BABBINIT.BAS Listing HExk

100 ¢
110 ' Initlalization Routines

120 ¢

130 ' The purposa of these routines is to initialize the MBAS488 function
140 * addresses and the communication variables.

150 ¢

160 * Calculate the address of the SETUP functlon

10

180 TEMP = 256*PEEK(7}+PEEK(6)+9

190 IF TEMP>32767 THEN TEMP = TEMP-65536!

200 SETUPE = CINT({TEMP) st convert (T Yo an integer
210 7

220 * Set up function call addraess varlables

230 ¢

240 CALL SETUPEZ (CNTLZ, CNTLCE ,TALKE, TALKCE, LSTNZ, LSTNCE, SPOLLZ, PPOLLZ,
DRENS, RENE, STATUSE, IFCE, BRSETE, IOSET¥, PROTCLE, ECHOE,

IOPORT%)
250 *
250 ' Call the setup routines to let MBAS488 know what variables to use
270 '

280 CALL I0SET$ (ERCODES, TIMEZ, POLLE, BUSE)
290 CALL PROTCLX (EOT%®, EOSE, LENGTHE)

300 CALL ECHOZ (ECHOINZ, ECHOOUTY)

310 ¢
320 ¢

MS0OFT-32 rev 4-14-82 12:49

P&T-488 MSOFT User's Manual BICLOCK.BAS
a% BICLOCK.BAS s¥s

This program demonstrates how simple an interpreter Basic program can be. The first part is a
copy of B48SINIT, and the error-reporting subroutine was lifted from BISAMPL. Thus only lines
1340 through 1650 are unique to this program. This program initializes the 488 bus (by sending
an Interface Clear), puts an HP 59309 clock into the Remote mode (by making the REN line
true and then sending the clock's Listen Address). It then addresses the clock as a Talker and
listens to the data (status, date and time) that the clack sends over the bus. It displays the
date and time each time the minutes change. It also displays the data each time the status
character indicates a clock error.

101

20 T BICLOCK as of 14:30 4-09-82
30
40 1
1000 *
1010 !
1020 * This Is an Interpreter Basic program which addresses an
§030 ¥ HP 59309A clock as a talker and then reads the time and
1040 ' date. It continually rereads the time and displays the
1050 * +time and dats on the console each minute,

1060 '

1070 * The program assumes that the bus output format of the
1080 ' 59309A s set o SPACE, CAL and COLON. It also assumes
1090 ' that the TALK address of the clock 1s ®E" and the

1100 ' LISTEN address of the clock is ",
1110 Y

1120 1

1130 ' Initiallzation Routines

1140 !

1150 ' The purpose of these routines fs to inltlalize the MSOFT functlion

1160 ' addresses and the communication variables.
1170 f
1180 * Calculate the address of the SETUP function
1190 1

1200 TEMP = 256*PEEK(7)+PEEK(6)+9
1210 IF TEMP>32767 THEN TEMP = TEMP-635361

1220 SETUPE = CINT(TEMP) :1 convert It to an integer
1230 ¢

1240 ' Set up function c¢all address varlables

1250

1260 CALL SETUPE (CNTL%, CNTLCZ ,TALKE, TALKCE, LSTNE, LSTNCE, SPOLLE, PPOLLE,
DREN$, REME, STATUSE, IFCE, BRSETZ, 10SETY, PROTCLE, ECHOE,

10PORTY)
1210
1280 * Call the setup routines to let MSOFT know what variables to usa
1290 !

1300 CALL I0SETE (ERCODEX, TIME%, POLLE, BUSE)
1310 CALL PROTCLE (EOTX, E0S¥, LENGTHS)
1320 CALL ECHO%Z (ECHOIN¥, ECHOOUTE)

1330 1

1340 CALL {FC¥ ¢! Do an Interface Clear ({FC}

1350 CALL RENZ st Make the REN line true

1360 A1S=YTR4CHRS(95)+nEN :* Unlisten, Untalk, Listen Address "g"

1370 CALL CNTLCE(A1$) :' Become the Controller and output AlS

1380 ! {This puts the clock into the REMOTE mode)
13590 IF ERCODEZ<>0 THEN 1640 :' Raport any errors

1400 !

rav 4=-14=-82 12:54 MSOFT =33

BICLOCK.BAS

1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1540
1950
1960
1970
1980

TIME$=255 :' Do not time handshake

EOT%=1 ¢ Stop on End-0f~-STring (EQS) byte
EOS%=10 :¥ Make |line feed the EOS byte

OLDM INF=—~1 :' Make OLDMIN some value which cannot
! match a clock readling

1

AlS=N7UHCHRE (95)+ g™ Uniisten, Untalk, Talk Address "E"

CALL CNTLCZ(A1$)

:' Bacome the Controller and output AlS
IF ERCODEZ<>0 THEN 1640 3

Report any errors

CALL LSTNCE(AZ2S) Read the clock

IF ERCODEZ<>Q THEN 1640 Raport any errors

' | the first character Is a "?" then the clock is in error
iF MID${AZ2$,1,1)=" ¥ THEN 1580

PRINT "CLOCK ERROR ";AZ}

PRINT "Reaset clock" 1 Tall oparator clock neads resatting
END :' Then exit program

' Make MINZ the value of the unit minutes character
MINE=ASC(MID${A2%,13,1})

* Show the time if the minutes have changed

- m = m -

IF MINZ<>QLDMINE THEN PRINT A2$

OLDMINE=MINE 1 Update OLOMINE

GOTO 1460 :' Read the clock agaln

1

GOSUB 1670 ;! Report the error

GOTO 1340 :' go back to IFC, REN, etc

r

r

' Report 488 Functlon Errors

t

' Interpret Error codes and print error messages

1

IF ERCODE¥<0 THEN 2020

IF ERCODEf=0 THEN RETURN

|F ERCODE$>255 THEN 2020

FOR =7 TO O STEP -1

10=20]

RO=ERCODEL-10 : IF R? < O THEN 2000

ERCODE §=R9

ON I+1 GOTO 1810,1840,1860,1890, 1910,1940, 1960, 1980

]

PRINT "SETUP ERROR - elther 10SET® or PROTCLE wasn't called befors"
PRINT ® using one of the MSOFT communlcation functions®
GOTO 2000

PRINT “NO LISTENERS - | cannot talk to mysel fI¥

G0TO 2000

PRINT “SERIAL POLL ADDRESS ERROR - no more than ora secondary address!
PRINT ® may follow a primary addressh
GOTO 2000

PRINT PSERVICE REQUEST - a 488 device is requesting service"

GOTO 2000

PRINT "TIMEOUT ERROR - the specified amount of t+Ime has elapsed without"
PRINT ¥ completing a 488 handshake cycle"

GOTO 2000

PRINT "ATN TRUE - an sexternal controller is frying to Issue a command”

GOTO 2000

PRINT "{FC TRUE - reset 488 intaerface™
GOTO 2000

PRINT "5-100 RESET"

MSOFT-34 rov 4-14-82

P&T-488 MSOFT User's Manual

12:54

P&T=-488 MSOFT User!'s Manual BICLOCK,BAS

1990 GOTO 2000

2000 NEXT |

2010 RETURN

2020 PRINT "SYSTEM ERROR - an illegal error ccde has been encountoredt
2030 RETURN

#24% Parameter Passing ®EWE

Even though MSOFT is dasigned To work with Microsceft Basle, [t can be used with some other
{anguages as well, Programs written in assembler, C, Microsoft Fortran and Pascal MT+ are shown
In the following pages to demonstrate how MSOFT can be used with these languages.

Most languages require some assembler code in order to convert the Microsoft Basic parameter
passing convention into whatever the language requires. For Iinstence, C passes parameters on the
stack but the called routine must not remove them from the stack, Pascai MT+ passes parameters
on the stack and requires that the called routine remove them from the stack, [n general, each
language is slightiy differant and will require different parameter-passing converslon programs.

MSOFT 1s designed to interface with Microsoft Baslc, so it uses exactly the same method of
passing paramaters as Microsoft Baslc. The [nstructlon

CALL PGM{paraml, param2, param3, parami)
passes the four parameters paraml, paramZ, param3 and param4 to PGM. Unllke most modern
languages, Baslc passes parameters by reference instead of by value, What this means Is that
Baslc passes the address of the parameter to the cailed program.

MSOFT uses only two kinds of parameters: Intagers and strings. Baslc stores Integers as 16 bit
(two byte} quantitles, with the low order byte stored at the address, and the high order byte at
location address+1, Basle stores strings in fwo parts: one Is the string itself, and the other
part 1s the string descriptor (sometimes cailed a dope vector), The string i+self is stored in
contliguous memory locatlons, with the {eftmost character stored in the lowest address. The
string descriptor is a three-byte block. The first byte contalns the number of characters In the
string (0..255), and the remaining two bytes contain the address of the first character of the
string. As usual, Baslc stores the address low order byte first.

When Baslc passes an inteqer parameter, 1+ actually passes the 16 bit address where that Integer
is stored. And when Basic passes a string, [T actually passes the address of the descriptor
block of that string. The called program has to look in that descriptor block to find the actual
address of the string.

Basic does not indlcate in any manner whatsoever the number or type of arguments passed, This is
why it Is so important that you make sure that the number and type are correct when you write a
program. There is no way for the called programs to check for correctness of number and type,

Bagic passes the parameters in the 16 bit reglsters of the 8080)/Z-80, and, [f there are more than
three parameters, [n a parameter table, The address of the first parameter Is passed in register
pair HL. The address of the second parameter (if any) is passed In register palr DE, |f there
are three parameters, the address of the third parameter [s passed Tn register pair BC., If thers
are more than three parameters, the third through last parameters are put Into a table and
ragister pair BC contains the beginning address of that table., The table Is organized as low
byte of parameter 3, high byte of parameter 3, low byte of parameter 4, efc.

Let us iook at a few examples,
CALL ECHO(ECHOINE, ECHOUTZ}

HL = address of ECHOIN%
DE = address of ECHOUTYZ

rev 4-14-82 12:54 MSOFT-35

Paramater Passing

CALL TALK (A3)
HL = address of descripfor block for A$
A$ descriptor block:
Byte 0 = string length
Byte 1 = low byte of string address
Byte 2 = high byte of string address

CALL IOSET (ERCODE$, TIMEF, POLLX, BUSH)
HL = address of ERCODE%
DE = address of TIME%
BC = address of parameter table
parameter table:
Byte 0 = low byte of address of POLLE

Byte 1 = high byte of address of POLL%
Byte 2 = low byte of address of BUSY
Byte 3 = high byte of address of BUS%

E284% CLOCK.MAC *es#

P&T-488 MSOFT User's Manual

This program performs the same function as the Basic program BICLOCK, but this one is wriltten in

8080 assembler.

the MSOFT functlons are called.

The following dialog shows how to assemble and link this program with MSOFT.REL.
an executable flle named CLOCK.COM.

We WA MuE wa WA T We We WE OWE W WA Wa e e

B>MB0 =CLOCK<CR>
No Fatal error{s)

B>L80 CLOCK/E,CLOCK/N,MSOFT<CR>

Link 80 3.42 19-Feb=81 Copyright (<) 1981 Mlcrosoft
Data 0103 O0B2B < 2600>

38769 Bytes free
10000 082B 1]

B>

CLOCK MAC 4-12-82 15:32

This assembly program is designed to be used with tha MSOFT interface
softwara for the P&T-488, The primary purpose of this program is to
i1 lustrate how one can usa MSOFT from an assembly program.

This program first Initlallizes the 488 bus by sending an Interface Clear.
{t Then puts an HP 59309A clock into the remote mode by makling the REN
line frue and then addressing the clock as a Listener. This program
then addraesses the clock as a Talker and |istens to the data (status,
date and time) that the clock sends over the bus, T displays the date
and time each time the minutes change. It also displays the data each
time the status character Indicates a clock error,

The program assumes that the bus output format of the 5930%A Is set

Notlce how the addresses of the parameters are placed In the registers before

The result Is

MSOFT-36 rav 4-j4-82 12:54

PAT-488 MSOFT User!s Manual

v wa W me e

to SPACE, CAL and COLON. It also assumes that the TALK address of the
clock Is "E" and the LISTEN address Is “iv,

Declara MSOFT routlnes as EXTernal referances

EXT CNTL, CNTLC, TALK, TALKC, LSTN, LSTNC
EXT SPOLL, PPOLL, DREN, REN, STATUS, IFC
EXT BRSET, I0SET, PROTCL, ECHQ, IOPORT
£l
CR EQU 13 ;ASCI| carrlage return
LF EQU 10 ;ASCHI line feed
ES EQU g 3CP/M ond of string character
BOOT EQU 0 ;:CP/M reboot entry
BDOS EQU 5 ;standard CP/M entry
JMP CLOCK ;jump to beglnning of the program
ERCODE: DW 0 ;storage area for 488 error code
TIME: DW 0 ;storage area for 488 timeout
EOT: Dw 0 ;storage area for 488 EOT switch
EOS: Dw)] ;storage area for 488 EOS byte
LENGTH: DW 0 ;storage area for 488 listen string length
POLL: OW 0 ;storage area for 488 poll response
ECHOIN: DW 0 ;storage aroa for 488 Input echo switch
ECHOUT: DW 0 ;jstorage area for 488 output acho switch
BUS: DW 1] ;storage area for 488 bus status varlable
; B register buffer
BBFRI: DW 0
BBFRZ: OW 0
OLDMIN: DB 0 ;brevious minutes reading
STRVCR: DS 3 istring vector (count followed by address)
STRBFR: D5 64 ;a string buffer
0s 32 ;stack area
STAK:
CLKMSG: DB CR,LF, *CLOCK ERROR tES
R5STMSG: DB 'Raset clock',CR,LF,ES
ERMSG1: DB CR,LF,*SETUP ERROR ~ elther [OSET or PROTCL was not !
()] ‘callad bafore using!
D8 CR,LF,'one of the MSOFT communication functions' ,CR,LF,ES
ERMSGZ: DB CR,LF,TNO LISTENERS - | caanot talk to myself!*,CR,LF,ES
ERMSG3: DB CR,LF,'SERI1AL POLL ADDRESS ERROR - no more than one secondary'
DB CR,LF,Taddress may follow a primary addrass! ,CR,LF,ES
ERMSG4: DB CR,LF,'SERVICE REQUEST - a 488 davice is requasting service!
DB CR,LF,ES
ERMSGS: 08 CR,LF,"TIMEQUT ERROR -~ the speclifiad amount of ftime has alapsed'
08 CR,LF,"without completing a 488 handshake cycle! ,CR,LF,ES
ERMSGG: DB CR,LF,'ATN TRUE - an external controller Is trying to Issue!
OB f a command! ,CR,LF,ES
ERMSGT: DB CR,LF,'"IFC TRUE - reset 488 interface',CR,LF,ES
ERMSGS: DB CR,LF,'S~100 RESET',CR,LF,ES
CLOCK: LXi H,BUS
SHLD BBFRZ ;save address In second entry of B reg buffer
LXx1 H,POLL
SHLD BBFR1
rov 4-14-82 12:54 MSOFT-37

CLOCK.MAC

CLOCK.MAC

-

. W

LRI .- wr

. e

- we ws

e W e

e

.
L4

H

Lxi B8,B8FR1 ;point BC to B reglster buffer

LXI D,TIME ;pofnt DE Yo address of word holding TIME
Lxy H, ERCODE

CALL 10SET

LXI B, LENGTH

L D,EQS

LxlI H,EOT

CALL PROTCL

X! D, ECHOUT
i H, ECHQIN
CALL ECHO

Issue an IFC command
CALL IFC

Make REN |Ine frue
CALL REN

TIME contalns the amount of time to allow for handshake,
I+ TIME=255, then the handshake Is not itmed.

LXl H,255

SHLD TIME

Turn off input and output echo
LXl H,Q
SHLD ECHOIN
SHLD ECHOUT

Set up MSOFT so that it will stop on EOS (End-0f-5tring) byte,
sot the EQS byte to be a line feed.

LX1 H, 1
SHLD EOT
LX1 H,10
SHLD EOS

Set up a string for the Control function, We wi!l make the string
three bytes long: UNLISTEN, UNTALK and LAD (Listen Address of the clock)

LXI H,STRVCR ;polnt HL to the string descriptor vector
LXI 0,5TRBFR ;point DE to the stiring buffer
MYl M,3 ;put the count in the first byte of the vector
INX H
MOV M,E ;put the address of fthe string in the next word
INX H ; of the vector
MOV M,D
Now put the characters Into the string
MY AT sUNLISTEN
STAX D
INX D
MV1 At T UNTALK
STAX D
INX o
MY | A, tEr ;LAD (Listen Address of the clock)
STAX D

Now send the sfring over the 488 bus as a controller
LX1 H, STRYCR

MSOFT-38 rov 4-14-82

P&T-488 MSOFT User?s Manual

12:54

P4T-488 MSOFT User's Manual CLOCK MAC

- wr LTI TS

LT

LT T

TR T

CALL CNTLC

Check error code and report any arrors
CALL ERRCHK

If there Is a bus error start the program agaln
LDA ERCODE

ORA A
JNZ CLOCK
Set up a string for the Control functlon. We will make the string
three bytes long: UNLISTEN, UNTALK and TAD (Talk Address of the clock)
EDT IM: LXI H,STRVCR ;polnt HL to tha string descriptor vector
LX1 D,STRBFR ;polnt DE to the string buffer
M¥1 M3 ;put the count in the flrst byte of the vector
I NX H
MOV M,E ;put the address of the string in the next werd
INX H ; of the vector
MOV M,D
Now put the characters into the string
My! A,'?Y UNLISTEN
STAX D
INX D
MV AT Y GUNTALK
STAX D
INX o
MV A,'E' ;TAD (Talk Address of the clock)
STAX D

Now send the string over the 488 bus as a controller
LXI H, STRYCR
CALL CNTLC

Check error code and report any errors
CALL ERRCHK

If there is a bus error start the program again
LDA ERCODE
ORA A
JNZ CLOCK

Now become a |istener and read the +Ime from the clack
LX§ H,5TRYCR ;tol| LSTNC where the string vector 135 kept
CALL LSTNC ;11sten to the clock

Chack error code and report any errors
CALL ERRCHK

If there is a bus error start the program agaln
LDA ERCOCE
ORA A
JNZ CLOCK

No 488 bus error, so look at the sfring we got from the clock

Lx H,STRYCR ;point HL to the string vector agaln
Moy CiM ;C=count (length of string}

I NX H ;point to the address of the string
MOV E,M

rav 4-14-82 12:54 M3OFT-3%

CLOCK.MAC P&T-488 MSOFT User's Manual

INX H
MOV o,M ;DE=address of string heard on the 488 bus

Look at <lock status byte to see if there is a problem

LDAX D
CPI A
JZ CEKERR ;e..clock error, so report It
; See if the mlInutes have changed since the last time the clock was read
LXI H,12 ;units digit of minutes is the 13+h byte of
; the string
DAD D ;HL now points to the units digit of the mlnutes
LDA OLDMIN ;get old value of unlts diglt of minutes
CMP M ;compare it To the new value
MOV A M ;update the old value for the next tima
STA OLDMEN

CNZ SHOTIM ;..dlsplay the time [f units digit has changed
JMP REDTIM ;read the +ime agaln

; This subroutine reaports any MSOFT errors on the console
ERRCHK: LDA ERCODE ;get the error code
RAR jrotate right
LXl D,ERMSG1 ;DE polnts to appropriate error message
cC SHOERR ;if carry set, display the error message
RAR ;jrotate right
LxI D,ERMSG2 ;DE points to appropriate error message
cc SHOERR ;if carry set, display the error message
RAR ;roftate right
Lxi D,ERMSG3 ;DE polints to appropriate error message
cc SHOERR ;if carry set, display the error message
RAR jrotate right
LXI O,ERMSG4 ;DE polnts to appropriate error message
cc SHOERR ;1f carry set, display the error message
RAR ;rotate right
LxI D,ERMSGS ;DE points to appropriate srror message
cc SHOERR ;if carry set, display the error message
RAR ;jrotate right
LXI D,ERMS5GA ;DE points to approprliate error maessage
cC SHOERR ;if carry set, display the error message
RAR ;rotate right
LX1 0,ERMSGT ;DE polnts to appropriate error message
cc SHOERR ;1f carry sef, display the error message
RAR jrotate right
Ly D,ERMSG8 ;DE points 1o appropriate error message
cC SHOERR ;1§ carry set, display the error message
RET
H
; This subroutine displays the clock error message and the time
; read from the clock on the console, |11 then jumps back to the
; read time routine,
CLKERR: PUSH B ;sava string length counter
PUSH D ;save pointer to listen string
LX§ D,CLEMSG ;point to clock error message
CALL SHOERR ;display 11 on the console
POP D ;DE points to beginning of tisten string again
POP B ;C contains the string length
CALL SHOTIM ;dlsplay the string we got from the clock
Lxi 0,RSTMSG ;point to reset message

MSOFT~40 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual CLOCK.MAC

CALL SHOERR ;and display it on the console
Jug BOOT ;and go to operating system

; This subroutine displays the message polnted to by DE on the consele
SHOERR: PUSH PSW ;preseve flags and reg A

MV c,9 ;select print string function

CALL BOOS

POP PSwW ;restore flags and reg A

RET
H
;3 This subroutine displays the time on the system console. It uses the
: unbuffered CP/M console cutput function.
SHOT IM: SUB A ;clear reg A

ORA c ;sea [f count Is zero

RZ ssecount Is zero, so do not print anything
SHOT1: LDAX 0 ;get the charactar

INX D ;point o next

PUSH D ;preserve pointer from damage by CP/M

PUSH 8 ;presarve counter from damage by CP/M

MoV E,A ;put the character In rag E as neaded by CP/M

My { c,2 ;select console output functlion

CALL BDOS

PoF B ;get character counter again

POP 0 ;uet character pointer again

DCR c ;decrement the count

JINZ SHOT1 ;es«loop untll al! characters printed

MV E,LF sfinlsh with a line feed

My c,2

CALL BDOS

RET

END

#ERE MTSAMPL,PAS *W&#

This program performs the same functlons as BISAMPL.BAS and BCSAMPL.BAS, I+ is written in Pascal
MT+ (a product of MT Microsystems, iInc,), It requires the program MT488,MAC, which is an
assambler program which performs the necessary parameter passing conversions, The [Tsting of
MT488 ,MAC fol lows MTSAMPL,.PAS,

The major differenca between MTSAMPL and BISAMPL 1s that MTSAMPL has a 14th menu item, namely,
the option of returning to the oparating system, This option was not needed in BISAMPL or
BCSAMPL since Microsoft Basic will abort a program when it detects a Control C typed on the
console,

One pelnt that you should notlce is that all of the formal parameters of the MSOFT functlons
{axternal procedures pcatl through pioprt) are variable parameters (denoted by var). Pascal
passes variable parameters by reference Instead of by value. This means that Pascal wlil pass to
MT488 {and thence *to MSOFT)} the addressas of the parameters lastead of the values, MSOFT
requires the addresses, so remember that you must declare the parameters of the MSOFT functions
to be varlable parameters,

The foliowing dlalog shows how to compile the program MTSAMPL.PAS, assemble MT485,MAC, and link
these programs with MSOFT.REL. The result is an executable flle named MTSAMPL.COM. Since
Pascal /MT+ uses the extanslion ERL to denote relocatable {linkable} flles, we rename MT488.REL
and MSOFT,REL to MT488,.ERL and MSOFT.ERL, respectively.

rev 4-14-82 12:54 MSOFT-41

MTSAMPL .PAS

B>MTPLUS MTSAMPL<CR>
Pascal /MT+ Release 5,2
{c) 1980 MT MicroSYSTEMS

8080/Z80 Target CPU
e
Source Illnes; 396
Avallable Memory: 12743
User Table Space: 8747
¥5.2 Phase t
VEERERERREA

Remaining Memory: 6942
¥5.2 Phase 2

8080

INITYAR 39
ERRREFPOR 99
GETCMD 1145
GETKEY 2317
PUTCHR 2362
APND 2392
CHARDEL 2446
GETSTR 2474
RESULTS 2790
GETPROTO 2937
PRNYN 3653
GETECHO 3722
SAMPLE

LTnes : 396
Errors: 0
Code 5564
Data : 472

Compilation Complete

B>M80 =MT488<CR>

No Fatal error(s)

B>REN MT488,ERL=MT488.RELZCR>

B>REN MSOFT,ERL=MSOFT.REL<CR>
B>LINKMT MTSAMPLaMTSAMPL ,MT488,MSOFT ,PASL]B/$<CR>

LInk/MT+ 5.2b

Processing flie— MTSAMPL .ERL

Processing flle= MT488 ERL

Processing file- MSOFT LERL

Processing file— PASLIB .ERL

Undeflned Symbols:

No Undeflned Symbols

0%15 (decimal) records written to .COM file
Tota!l Data: 06F5H bytes

Tota!l Code: 3216H bytes
Remaining : 7165H bytes

MSOFT-42

rev 4-14-82

P&T-488 MSOFT User's Manual

12:54

P&T-488 MSOFT User's Manual MTSAMPL . PAS

Link/MT+ processing completed
B>
HEEE MTSAMPL.PAS Listing HuEX
program sample;

const
SEQMUM = 0019; {*aditing sequence number*)
TITLE = 0; {(*last edited (4/09/82-12:50)*)
maxstr = 71; (*maximum tength of Input string*)

(* Let the operator test each function and observe the response

Control characters (such as 1lne feed and carriage return) can

be entered into the TALK and CONTROL strings by preceding the
contral character with an ESCAPE., For sxamplsa, to get the string
1234<ESCAPE>SZ<RETURN><LINE FEED> you would typa

1234<ESCAPE><ESCAPE>$ S<ESCAPE><RETURN><ESCAPE><L INE FEED><RETURN>
*}

var er_code, time, poll, bus : Integer;
eot, eos, len : knteger;
echo In, acho out : integer;

stop flag : boolean; (*determines 1t fhg'usar wants to abort¥)
emd : integer; (*holds number of command to exacute¥*)

bell : char; {(*nholds ASCI| BEL code*)
bs : char; {*holds ASCi| back space code®)

str : stringl255); (*string for general usage¥}

funct : stringl20]; {*holds typa of functfon for result raport®*)

presp : string; (*used for serial poll to return address of*)
(¥ the device responding to the poll¥)

port : integer; (*used when setting the PAT-488 port number¥*)

(* The following are the declarations for the external proceduras that
are used to communicate to the 483 bus, MNote that not all of them
are used by this program. *)

external procedure pcatl (var s;string);
extarnal procedure pentic (var s:string);
extornal procedure ptalk {var s:string);
sxternal procedure ptalkc (var s;siring);
extornal procedure plstn (var s:string);
external procedure plstnc (var s:string);
external procedure pspoll (var os,is : string);
exteornal procedure pppoll;

extarnal procedure pdren;

axternal procedure pren;

external procedure pstat;

external procedure plfc;

axternal procedure pbrsat;

rev 4-14-82 12:54 MSOFT-43

MTSAMPL .PAS P&T-488 MSOFT User's Manual

extarnal procedura ploset (var ec,¥v,pr,bs : integer);
external procedure pprot (var eot,eos,sl : integer);
external procedure pecho (var ei,so : integer};
extarnal procedurs ploprt (var port:integer);

(* Tha foilowing external functlon alfows direct access to BDOS functlons*}
extarnal function @BDOS (f:integer ; p:word) : in¥eger;

(* INITYAR *)

procedure initvar;

(" Procedure to call the setup routines to tell MSOFT where the control
variables ars, *)

begin

pioset (er code, time, poll, bus);
pprot (eof? eos, len);

pecho (acho in, echo out);
bell:-chr(fse -

bs:=chr(8);

end;

(" ERR REPORT--#*}
procedure err report;

(* Procedure to report the meaning of the error code, *}

begin

tf er code<>0 then
Hf (er _code<O) or {er_code>253) then
writeln({'SYSTEM ERROR - an i!legal error code has been encountered?)
eolsa begln

it tstbit(er _code,?) then
writeln{!'5-100 RESET - reset interface (Use Function 6 or 7)');

Tt tstbit{er_code,6) then
writaln{'1FC TRUE -~ resat 488 Interface'};

it tstblt(er_code,5) then
writeln{TATN TRUE - an external controller Is trying to issue a command');

1f ¥stbit(er_code,4) then begln
writeln{'TIMEOUT ERROR - the specified amount of time has elapsed without!);
writeln{? completing a 488 handshake cycle');
and;

it tstblt{er code,3) then
wr [+eln(*SERVICE REQUEST - a 488 device Is reguesting service');

If tsthit{er code,2) then begin
writaln{'SERIAL POLL ADDRESS ERROR -~ no more than one secondary address');
writeln(® may follow a primary address’};
and;

1f fs?bi?{eq_gode,l) then
writelin{'NO LISTENERS ~ | cannot talk to myself'};

If tstbit(er_code,0) then begin
writeln{'SETUP ERROR ~ ejther IQSET or PROTCL wasn''t callied before!);

writeln(?! using one of the MSOFT communlcatlon functionst');
end;
end;
and;
(* GET CMD= *}

function get_amd : Integer;

MSOFT-44 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

(*

To perform.
var T:Integer;
beg in

repoat

and:

(I

Fuaction to present menu and input the code for the bus function

*)

{(*varlable for entry of functlon code¥*)

writain; writein;

writeln{'1,
writeln{'2,
writelin{'3.
writeln('4,
writeln(*5,
writeln{'6.
writeln(*7,
writeln{'8,
writeln{'9,
writeln{*10,
writein(Tit,
writeln(*12,
writaln{'13,
writeln(’14,
writaln;
write('Which
readin(]);

CONTROL Become the Control ler and output a command string'};
TALK Bacome a Talker and send a string');

LISTEN Becoms a Listenar and receive a string');

REMOTE Make the REN (Remote ENable) line true');

LOCAL Make the REN line faise');

IFC Issue an IFC (InterFace Clear) command!};

RESET Reset the PAT 488 Interface'};

STATUS Display the currenst 488 bus status');

SPOLL Perform a Serlal Poll of fhe 488 bus');

PPOLL Perform a Parallel Poll of the 488 bust!);

MTSAMPL .PAS

Change the communicatlon protocol {EOT switch, EQS, and string length}t);

Change input acho, output echo, and timsout values'};

Changa 5-100 port numbers (DIP switch on P&T-488 card must agree)'};

Ex[t to operating system!};

would you like to do? '};

if (1<1) or (i>14) then writel{ball);
untll (1>0) and (i<15);
get _cmd:=i;

*)

GET KEY

function get key : char;

{ »*
var
bagi

This functlon returns the next character from the
integer;

<ch 3
n

repeat
ch:=@bdos{6,wrd{(255));
unti) ch<>»0;
get_key:=chr{ch};

end;

console Tnput.®)

(-l-

PUT;FHR----*)

procedura put_phr {chichar);

{*

var
beg |

This procedure puts a character out to the conscle
console 1/0.

using direct
*)

dumy : integer;

n

dumy :=8bdos{6,wrd(ch));

and;

(-l-

*)

GET_STR

procedure get str {var st : string);

(* This procedure collects a string from the console with simpla back
space adlting., Control codes may be entered by preceding them by
an aescapea, *y
var strlen : integer; (*varlable Yo track string length*)
ch : char; {(*vartable for Input character®)
rov 4-14-82 12:54 MSOFT-45

MTSAMPL.PAS PAT-488 MSOFT User's Manual

(*O-COOOQI-.U.....I.'....U....U.I(GET_STR)0.II.‘...lU..lI.....-U.mNDUOOOQCCI*)

procedura apnd;

(* This procedure Is called to append a character onto the end of the
string being collected. It adfusts the string length and ¢Ings the
bell it the string Is already at i+s maximum fength. *)

begin

if strien<maxstr then begin
strien:asucc(strien);
stlstrlenl :=ch;
end
el se
put_chribeil);
end;

(*...IIUl.....u..n.l.-n-.ot....--(GET_STR)InlIt...I.loooo.o.-loooCHmELooot.*,

procedure chardel;

(% This procedure i1s called to delete a character. |t outputs <space>
<back space><space>. *3)
begin
put chri{bs); put chr(* '); put chr{bs);
end; - - -
begin (*GET STR*}
strien:=0; T (*get length to O%)
chi=t t; (*init ch to a non-carriage raturn®)

wirite{'STRING: '};

whila ord{ch)<»13 do begin {*collect untll a carriage return®)

ch:=get key; {%*get a character from the console®)
T¢ (ch>a’ 1) and (ch<=1™') then begin
apnd; {(*append character onto string*}
put chr{ch}; (*also acho 1t to the screen™}
end
alse {(*parform various control character fcns*)
case ord{ch} of
8: if strien>0 then begin (*back space => delete char¥*)
if stistrlen]<® * then chardel; (*nged to delete 2 1f cti chr¥)
chardsl;
strlen:=pred{strien); {*adjust string length¥*)
end;
27; bagin
chi=get key; (*get character after ESC to¥)
apnd; (* put into string®

(*acho as printing char preceeded by ©%)
put chr{'®); put chrichr{ord{ch)+64));

che=t ', (*make sure ch is not a carrlage ret*)
end;
13: H
alse put chribell); (*ring bell for invalid chars*)
end;
and;
stl0l:=chr{strien); {*set length byte of the returned str¥*)
and;

MSOFT-46 rov 4-14-82 12:54

P&T~488 MSOFT User's Manual MTSAMPL.PAS

o RESULTS *)
procedure results;
(* This procedure reports the results of a function, *)
bagin
writeln;
writeln{'Function = ',funct,! Error Code = ',e(_Fode);

1 a(_pode=0 then welteln{tNORMAL RETURN'}
alse arq_repor*;

and;
(* GETPRQTO *y
procedure getproto; .
(¥ Thils procadure al lows tha user to set the EOT switch, EOS value,
and the string length, *)
bagin

writeln;writeln;
writaln{'The currant communication protocol setup Is:');

writein;
writeln{? EQT switch = t,e0t);
writeln(? EQS value = t,805);
writeln{!' $tring length = *,len);
writein;

write{'What s the new EOT switch value? '); readin{eot);

repeat
writa(tWhat is the new EOS value (0..255)7 '); readinf{eos);
if (00s5<0) or (e0s>255) then
writein('The EQS value must be between {0 and 255!');
until (aos>=() and {eos<=255);

repeat

wrlte{tWhat 1s +he new 5tring Length {0,,255)1 '); readin{len);

1f {len<0} or (len>255) then wrlteln{TLENGTH must be betwsen 0 and 2551'};
untll {fen>=0) and {len<=255);

writalng
and;
(* GETECHO *)
procedura getecho;
(* This procedure allows the user o respecity the input and output
echo switches and the timeout. *)

var Yomp : stringl10l;

(*.II..I-I...l....I-!.I!.I....I..(GETEC["O’..U..UU.OU.00‘.-toooootmNYN.lt...l*}
procedure proyn (viintegaer);
(* This procedure prints IN' if the passed parameter Is 0 and fY?
otherwisa®*)
beglin
[f v=0 then writeln{*N'} else writaln('Y');
end;

begin {*GETECHO*)

writaln; writeln;
writeln({'The Input Echo, Output Echo, and Timeout are currently set to:!};

rav 4-14-82 12:54 MSOFT-47

MTSAMPL.PAS P&T-488 MSOFT User's Manual

writein;
write (? Input Echo *); prnyn{echo in);
write (! Qutput Echo LB H prnyn(eché_hufl;
writeln(! Timeout Value ',tIme); -
writeln;
rapeat

temp:=* ¥;

write{'Echo Input {Y/N} : *}; readin{temp);
untll tempEl] in [TY',Ty! ,'NY,'n%];
1f toempl[1] in ['Y','y'] %hen echq“jn:=| alse echQ_In:=0;

rapaat
temp:=t I;
write{'Echo Qutput (Y/N) : '}; read(temp);
untll templ1] In [1Y? Yyt tNY , 'nl];
Bf templ1] 'In {'Y','y"] then echo out:=1 else echo out:=0;

repeat
write{*What is the new TIMEOUT value (0,,.,255)? '}; readln(time);
if (time<0) or (tIme>255) +hen
writalin{'The TIMEQUT value must be between Q and 255!');
untll (time>=0) and (time<=255);
writeln;
ond;

begin (*main program*)

Initvar; (*initiallze varlables for control of MSOFTH*)
repaat’
cmd :=get cmd; {*get the function to partform*)
er codag;h; {*clear error code*}
case and of
1: begin

writeln{'Please enter the Control string'l;
get_stristr);
funct:='CONTROLLER';
pentl{str);
and;

2: bagin
writeln{'Pleass enter the Talk string'};
get stristr);
funct:='TALKER" ;
pralkistr);
and;

3z begin
funct:='L| STENER';
plsta(str);
writeln{'String heard on 4838 bus is:');
writaln{str);
ond;

4: begin
funct:='REMOTE ENABLE';
pren;
end;

MSOFT-48 rev 4-14-82

P&T-488 MSOFT

14;
end;

Userts Manual

begin
funct:='REMOTE DISABLE';
pdren;

ond;

begin
funet:=! INTERFACE CLEAR';
plfc;

and;

begin
funct:='RESET PAT 4881;
pbrset;

and;

baqin

funct:='STATUSY;

pstat;

wirltein('Bus Status is: f,bus};
and;

begin
funct:='Sarial Poll?;
writeln{'Piease enter Talk addresses to poll!);
get _stristr};
writeln;
pspel | (str,prasp);
writeln({'Talk address of responding device is ',presp);
writein('Pol| response = 1,poll);
ond;

begln

funct:='Paralle! Pollt;

pppol |l ;

writeIn({'Poli response = 1,poil};
and;

getproto;

getecho;

bagin
writa('What Is the new $-100 port number (0-255)7 ');
readln(port);
pioprtiport);

ond;

stopfiag:=true;

If emd<11 then results;

untll stopflag;

end.

rev 4-14-82 12:54

MSOFT-49

MTSAMPL ., PAS

MT488 ,MAC P&T-488 MSOFT Yser's Manual
REEE MT48S MAC HEae

The program MT488,MAL performs all the parameter passing conversions necessary for a program
written in Pascal MT+ to work with MSOFT,REL. Pascal MT+ passes parameters on the stack and
expects the called routine to remove them from the stack before returning, MT488,MAC takes the
paramsters from the stack and puts them Into the appropriate reglsters and tables for MSOFT.

tltle tInterface routinas from Pascal/MT+ to MSOFT!

SEQNUM EQU 0009

The following are the entry polnts Into MSOFT
extrn c¢ntl,cntic,talk,talke,istn

extrn | stne,spol |, ppol f dren,ren

extrn status,lfec,brset,ioset,protel

axtrn aecho,ioport

the following are the names used by MT+ programs to call the

H , MSOFT routines
entry pentl, pentle, ptalk, ptalkec, plstn
entry plstnc, pspoll, pppoll, pdren, pren
entry pstat, plfec, pbrset, ploset, pprot
entry pacho, ploprt
; General routine to call an MSOFT routine that has 1 string passed
; to [t
H on entry: OE => address of MSCOFT routine to call
strl: pop b ;get return address
pop h ;get address of string
mov a,m ;got length of string
sta dumyt
inx h ;save address of string
shid dumyla
Ixi h,dumy1 ;get address of string pointer block
push b ;put return address back on stack
push d ; Jump to target routline
rat
pentl: ixI d,cnt! ;get address of MSOFT routine
Jmp stri
peatlic: Ixi d,cntlc
Jjmp stri
ptalk: Ixt d,talk
Jmp stri
ptalke: Ixi d,talke
Jmp stril
pistn: pop h ;get return address
xthl ;swap it with addrass of MT+ string on stack

MSCFT=-50 rev 4-14-82 12:54

PAT-488 MSOFT User's Manual

{ scomn:

islup:

plstne:

pspoll:

raev 4-14-82

shid

Ix1
push
cail

pop
| dax
Ihid

ora
rz

fnx
| dax

I'nx
| dax

Inx

| dax
mory
inx
[nx
der
Jnz
ret

pop
xthl

shid

Ixi
push
call
Jmp

pop
pop
shid

pep

sta
Tnx
shid
push
Ixi
Ixi
push
call
Jmp

12:54

mtstr

h,dumy1
h
Istn

-
]

-
0

F o oo 60a o

- g Qo 3 o
-
o

slup

mtstr
h,dumyl

lstnc
I scomn

mtstr
a,m
dumy1
dumyla

h,dumyl
d,dumy2

spol |
| scomn

;5ave address where it won't be harmed

;polnt to place for dope vector
:save address on stack
scall [Isten routine

;get dope vector address Into OE
;get length of returned string
;get address of MT+ string

;sat length of returned string
;just return on O length

;save length in b

:point to addr field of dope vector
;get low byte of address

;save [t

shigh byte of addr field

;get Tt

;DE holds address of MSOFT string
;sklp over count field of MT+ string

;transfer a character
sincrement polinters

sdecrement count
sloop THII done

;get return address
;swap it with address of MT+ string on stack

:save address where it won't be harmed
;point to place for dopa vactor

:save address on stack
;calf ITsten routine

;5ave return addrass
;get address of string 2
;save It In a safe place

;get address of string 1
;set up dummy dope vector

srestore return address

;put address of dummy dope vector on stack
;call serial poll routine
;Jjump fto routine to pass string back to MT+

MSOFT-51

MT488.MAC

MT488 . MAC

pppolfs
pdren:
pren:
pstat:
pifc:
pbrset:

pioset:

pprot:

pioprt:

dumyl:
dumyla:

dumy2:
dumy2a

e

dumy3;
dumyéd:

mtstr:

Jmp
Jmp
Jmp
Jmp
Jmp
Jmp

pop
pop
shid
pop
shid
pop
pop
push
Ixi

Jmp

pop
pop
pop
xthi

Jmp

pop
pop
pop
push

Jmp
pop
pop

push
Jmp

db
dw

db
dw

dw
dw

dw

and

ppol!
dren
ren

status
ffc

brset

dumyd

dumy3

b,dumy3
Toset

=]

=]

P&T-488 MSOFT Usarts Manual

;save return address
;get address of bus status varlable

;jget address of poll result variable

;got address of timeout value variable
;get address of error code variable
;restore return address

;point fo additional parameters

;Jump To MSOFT routiae

;save return address

;get address of string length variable
;get address of EQS variable

;hl = address of EOT switch variable
;tos = return address

;jump to MSOFT routine

;save return address

;get address of echoout varlable
;get addrass of echoin varisble
jrastora return address

;jump 1o MSOFT routine

;save return address

;get address of port variable
jrestors return address

MSOFT-52

rev 4-14-82

12:54

P&T~488 MSOFT User's Manual MTCLOCK.PAS
#3#8 MTCLOCK.PAS ###%

This program performs the same function as the Basic program BICLOCK, but this one [s written in
Pascal MT+, ULike BICLOCK, MTCLOCK initiallzes the 488 bus with an iIntertface Clear, puts the
HP59309 clock Into the Remote state by making the REN Vine frue and sending the clock'!s listen
address. |t then addresses the clock as a Taiker and Ilstens to the data {status, date and time)
that the clock sends over the bus, MTCLOCK displays the date and time on the consale each time
the minutes change. It also displays the data each time the status character indicates a clock
error,

program mtelock;

const
SEQNUM = 0012; (*aditing sequance number¥)

(¥ This is a Pascal/MT+ program which addresses an HP 59309A clock
as a talker and then reads the time and date. It continually
reraads tha time and displays the time and date on the console
each minuta,

The program assumes that the bus output format of the 533094 is
set to SPACE, CAL and COLON, It also assumes that the talk address
of the clock Is "E" and the 1Isten address is "gm, -~ *)

var er _code, time, poll, bus : Integer;
act, e0s, len : Integer;
echa In, echq_puf ¢ Integer;
oldmin : char; (*holds the previous valus of minutes*)

(* The following are the declarations for the external procedures that
are used to communlicate to the 488 bus, Hote that not all of them
are used by this program. *)

extornal procedura pcentl (var s:string);

extarnal procedure pentle (var s:string);

extorpal procedure ptalk (var s:string);

external procedura pralkce (var s:string);

external procedure plstn {var s:string);

external procedure pistnc (var s:;string);

external procedure pspoll (var os,is : string);
extarnal procedure pppoll;

extarnal procedure pdran;

oxtarnal procedure pren;

external procedure pstat;

extarnal procedure pifc;

axternal procedure pbrset;

axternal procedure pioset (var ec,tv,pr,bs : Integer);
external procedure pprot (var eot,eos,sl : integer);
axternal procedure pache (var el,eo ; Integer);

(* The following external functlion allows direct access to BDOS functions*)

external function 8BDOS (f:integer ; p:iword) : integer;

(% INITVAR===== *)
procedure inltvar;

rav 4-14-82 12:54 MSOFT-53

MTCLOCK PAS P&T-488 MSOFT User's Manual

(* Procedure to call the setup routines to tell MSOFT where the control
varlables are, *)
bagin
plosat (er code, time, pall, bus);
pprot (eot, eos, len);
pecho {(echo_in, echo out);

end;

* ERR_REPORT--*)
procedure err_report;

(* Procedurs to report the meaning of the error code, *)

begin

¥ or coda<»0 then
if (or code<0) or {er code>255) then
wrIteln(' SYSTEM ERROR - an [llegal error code has baen encountered')
elsa begin

[+ +stbit{er code,7) then
writelnt15-100 RESET - reset Interface {use function IFC or BRSET}!');

1f tstblt{er code,6) then
writeln(*{FC TRUE - reset 488 Interface');

If tstbit(er code,3) then
writeln(*ATN TRUE - an external controller is frying to issue a command');

If tstbit{er code,4) then begin
writeln(*TIMEOUT ERROR - the specified amount of time has elapsed without'};
writeln(? completing a 488 handshake cycle'};
and;

Tf tstbit(er code,3) then
writeln{'SERVICE REQUEST - a 488 device is requesting service!);

I¥ tstbit(er code,2) then beglin
writeln{'SERIAL POLL ADDRESS ERROR - no more than one sacondary address');
writeln(? may follow a primary address!);
end;

Tf tsthit{ear coda,1} then
welteln('NO LISTENERS - | cannot talk to mysel f1);

1f tstbit(er coda,0)} then begin
wrlfeln('éE%UP ERROR - aelther [QSET or PROTCL wasn''t called before');

writeln(" using one of the MSOFT communication functions');
ond;
end;
and;
(* INITBUS *3
procedura inltbus;
(* Procedure to Initlalize the bus and set various control varlables, *)
var ctistr : stringl10];
begin
plfc; (*do an Interface clear®*)
pren; (*make the REN |Tne true¥*)
cTisfr:='2_§'; {(®*Unllsten, Untalk, |isten address %}
pentic{etistr); (*become the controller and output CTLSTR*)
(* This puts the clock into the REMOTE mode*}
If er_code<>0 then err report; {*raport any bus errors®)
time:=255; {*do not time handshake*)
sot:=1; {*stop on End-0f-String byte*)
eas:=10; (*make |fine feed the EOQS byte*)
oldmin:=*x'; (*set oldmin to some value which cannot match a clock®)

MSOFT-54 rev 4-14-82 12:54

PAT=-488 MSOFT User's Manual

(* readling™)

and;

(* READ TIME-——%)

function read time : boolean;

(* Function to read the clock and display results on the consola,
Doas not return until elther the user aborts operation or a bus error
occurs. Returns ftrue if the user aborts or a clock srror occurs,
Returns false If a bus error occurred, ¥*)

var reading : stringl128]; {(®*string to read clock Into*)
chack : integer; (*usad for abort checking™)
etistr : stringl10l; (*ysed to sand control string*)

begln

repeat
ctistr:=t? EY; {(*set control string for Unlisten, Untalk, Talk addr E¥}
pentic{ctistr); (*send control string*}
it er_code<>0 then err_report (*report any errors®*)
olse begln
plstncireading}; {*read The clock*)
if ar_code<>0 then err_report (*roport any errors¥*)
eise bagin -
{(*if the first character is a 7 then the clock Is in errort)
if reading[(1]='?' then begln
writein{'Clock error ',reading);
writeln{'Reset claock'};
end
alse (*show the time {f the minutes have changed*}
if readingl131<>oldmin then writein{reading);
oldmin:=readingl[13};
end;
chack:=@bdos{5,wrd(255)); (*check for character at keyboard¥)
end;
untll (er_code<>Q) or (readingl1]='?') or {(check=3);
reaq_jlme:=(check=3) or (readlingl1]='2t); (*set returned valus*)
end;

begin (*maln program*)

Initvar; (*inTtlalize varlables for control of MSOFT*)
rapeat
Initbus; {(*inTtialize bus*)
untl raaq_jlme or (@bdos{6,wrd(255})=3);
ond,

rov 4-14-82 12:54 MSOFT-55

MTCLOCK.PAS

FSAMPL,FOR

PAT-488 MS0FT User's Manual

SEER FSAMPL,FOR ®ws

This program performs the same function as the Baslic program BISAMPL, but this one is written in
Microsoft Fortran.

The following diaiog shows how to compile the Fortran program FSAMPL.FOR, assemblie the assembler

program STRIN,MAC, and thea |Ink these two programs with MSOFT.REL.

file named CLOCK.COM,

OCOO0OO000O00000 00000000

B>F80 =FSAMPL<CR>
SMAIN

ERRMSS

STRAFR

IUNSGN

B>M80 =STRIN<CR>
No Fatal error(s)

B>LBO FSAMPL/E,FSAMPL/N,MSOFT, STRIN<CR>

Link 80 3.42 19-Feb-81 Copyright (c) 1981 Microsoft
Data 0103 3DAD <15530>

23862 Bytes Free
{Q09BF 3DAD 51]

B>

FORTRAN driver for MSOFT
FSAMPL.FOR revised 4/68/82 by J. Tlinsman

MNOTE:

The name that MBASIC uses for the echo out varlable

Is ECHOOUT, but the longest variable name FORTRAN will
accept is ECHOUT (6 characters}., This program uses the
substtute name ECHOUT,

Let the operator test each function and observe the response

Control characters {such as line feed and carrlage return) can

ba enterad Tnto the TALK and CONTROL strings by preceeding the
control character with an ESCAPE, For example, to get the string
1234<ESCAPE>SE<RETURN><L INE FEED> you would type
1234<ESCAPE><ESCAPE>$Z<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>,

INTEGER ERCODE, TIME,EQT ,EQS, LENGTH,POLL, ECHO [N, ECHOUT ,BUS
INTEGER 1,4,P,F,BELL,BUFLEN

BYTE BUFFER(255),TKADDR(5}

DOUBLE PRECISION FCL,FCH,FCNS(2,12)

DATA FCNS /'CONTROLL','ER','TALKER',* ','LISTENER',' *,'REMOTE E',

_"NABLE' ,'REMOTE D',"ISABLE’," INTERFAC' ,'E CLEAR','RESET P&',1T’,
_'STATUS',' 1,"SERIAL P','0LL",'PARALLEL!," POLLY," 1,0 1,1 v 1 1/

MSOFT-56 rev 4~14-82

The result 1s an executable

12:54

P&T-488 MSOFT User's Manual

o000

DATA ERCQOE,TiME,EQT,EQS, LENGTH,POLL ,ECHOIN, ECHOUT ,BUS /9%0/

BELL=7
BUFLEN=255

Pass variable names that FSAMPL will be using to MSOFT

CALL [OSET {(ERCODE,TIME,POLL,BUS)}
CALL PROTCL (EOT,EQS,LENGTH)
CALL ECHO (ECHOQIN,ECHQUT)

OO0

530
531

541

551

561

57

581

59

601

611

621

631

641

651

61

673
680

681

690
691

rev 4-14-82

Main Manu

WRITE (1,531)
FORMAT ('0*')
WRITE (1,541}
FORMAT(1,
string®)
WRITE (1,551}
FORMAT (' 2.
WRITE (1,561}
FORMAT (* 3,
WRITE (1,571)
FORMAT (' 4,
WRITE {1,581)
FORMAT (' 5,
WRITE (1,591}
FORMAT (' 6.
WRITE {1,601)
FORMAT (' 7.
WRITE {1,611)
FORMAT (' 8,
WRITE (1,621)
FORMAT (' 9,
WRITE (1,631}
FORMAT (' 10.
WRITE (1,641)
FORMAT (' 11,

WRITE (1,651}

CONTROL

TALK

LISTEN

REMOTE

LOCAL

IFC

RESET

STATUS

SPOLL

PPOLL

Become the Controller and output a command

Become a Talker and send a string')
Become a Listener and receive a string')
Make the REM {Remote ENable) [Ine true')
Make the REN line false'}

Issua an IFC (Interface Clear) command!)
Reset the PAT 488 interface!}

Display the current 488 bus status')
Parform a Serial Poll of the 488 bus')}

Perform a Parallsf Poll of the 488 bus')

Change the communication protocel (EOT switch, EOS,
_and string length)')

FORMAT (' 12, Change Input echo, output echo and timeout valuas'}

WRITE (1,671}

FORMAT { '07,"Which would you |ike to do? ')
READ (3,673) F

FORMAT {13)

I¥ (F.GT,0.AND,F,LT,13) GOTO 690

WRITE (1,681)

BELL

FORMAT (' ! A1}

GOTO 530
WRITE (1,691}
FORMAT (* '}

ERCODE=0

FCH=FCNS{1,F}
FCL=FCN5(2,F}

12:54

MSOFT=57

FSAMPL.FOR

FSAMPL.FOR PAT-488 MSCOFT User!s Manual

c
720 IF {F.NE.1) GOTO 790
WRITE (1,731}
731 FORMAT (' Pleasa enter the Contral string?!)
C Get string to send as a controller
CALL STRIN {BUFFER,BUFLEN)
C Send out the command string
CALL CNTL (BUFFER)
GOTO 1790
c
c
790 IF (F.NE.2) GOTO 860
WRITE (1,801)
801 FORMAT (! Please enter the Talk string')
C Get string to send as a talker
CALL STRIN {(BUFFER,BUFLEN)
C Send out the talk string
CALL TALK (BUFFER}

GOTO 1790
c
c
860 IF (F.NE.3) GOTO 940
c

C Read string off bus into PAT 488 buffer and make string descr!ptor
C in the first three elements of array BUFFER
CALL LSTN (BUFFER)
C Transfer contents of PAT 488 buffer Into array BUFFER
CALL STRXFR (BUFFER,BUFLEN)
WRITE {1,901}
901 FORMAT (' 5fring heard on 488 bus Is: ')
JEIUNSGN{BUFFER(1))+3
WRITE {1,911) (BUFFER(I),I=4,J)
911 FORMAT (' 1,255A1)

GOTO 1790
c
c
940 IF {F.NE.4) GOTO 990
c
C Make REN line true
CALL REN
GOTO 1790
c
c
990 IF {F.NE.5) GOTO 1040
c
C Make REN line false
CALL DREN
GOTO 1790
c
c
1040 IF (F,NE.B6) GOTO 1090
c
C Issue an |FC command
CALL IFGC
GOTO 1790
c
c

1090 IF {F.NE.7) GOTO 1140

MSOFT-58 rev 4-14-82 12:54

PAT-488 MSOFT User's Manual

c

C ReseT the PAT 488

o0

1140

1161

c
c

1200

121
c

CALL BRSET
GOTO 1790

IF {F,NE,B) GOTO 1200

CALL STATUS

WRITE (1,1161) BUS

FORMAT (' Bus status is: ',13)
GOTO 1790

IF {F.NE.9} GOTO 1300
WRITE (1,1211)
FORMAT (' Please enter Talk addrass to poall')

C Get talk address string

123

OO0 00

CALL STRIN {(BUFFER,BUFLEN)
WRITE (1,1231)
FORMAT (' '}

Send out Talk string and put response [n PAT 488 string buffer,
Then put string descriptor for response in the flrst thraee
alemants of TKADDR.

CALL SPOLL (BUFFER,TKADOR{1}}
{F {TKADDR(3).NE,.O) GOTO 1260
|=t 1

TRKADDR (4)={

TKADOR(5)=1

C Transfer response from PAT 488 buffer to array TKADDR

126G
1261
1271

c
c

CALL STRXFR (TKAODDR,5)

WRITE (1,1261) TKADOR(4},TKADDR(5)

FORMAT (' Talk address of device rasponding is ',2A1)
WRITE ¢1,1271) POLL

FORMAT (' Poll reaponse = 1,13)

GOTO 1790

1300 IF (F.NE.103) GOTQ 1360

c

C Perform paralial poll

1331

1360

1371

1381

1401

1411

rev 4~14-82

CALL PPOLL
WRITE (1,133%) POLL

FORMAT (' Pell responsa = ', (3}
GOTO 1790

{F {F.NE.11) GOTQ 1560

WRITE (1,1371)

FORMAT (' 1)

WRITE (1,1381)

FORMAT ('0','The current communlication protocol setup I1s:t)
WRITE (1,1371)

WRITE (1,1401) EOT

FORMAT (' ', 10%,'EQT switch = 1,13)
WRITE {1,%411} EOQS
FORMAT (' ',10X,'EQS switch = 1,13}

12:54 MSOFT-59

FSAMPL, FOR

FSAMPL , FOR

1421
1441
1445

1450
1451

147

1490
1491

1511

1530
1531

c
c
1560

157
1581

PLT=-488 MSOFT User's Manual

WRITE (1,1421} LENGTH

FORMAT (' ' ,10X,'String length =t 13)

WRITE (1,1441)

FORMAT ('QF, 'What is the new EOT switch value: ')
READ (3,1445) EOT

FORMAT {14)

WRITE {1,1451)

FORMAT (' What 15 the new EOS value: ')

READ (3,1445) EOS

IF (EQS.GE.0.AND.EDS.LT,256) GOTO 1430

WRITE (1,1471)

FORMAT (* The EQS value must be between O and 25511!1)
GOTO 1450

WRITE (1,1491)

FORMAT (' What is the new string length: ')

READ {3,1445) LENGTH

IF (LENGTH.GE.Q.AND.LENGTH,.LT.256) GOTO 1530

WRITE {1,1511}

FORMAT (' The LENGTH must be batween 0 and 255111t}
GOTO 1480

WRITE (1,1531)

FORMAT (' ')

GOTO 530

IF {F.NE, 12} GOTO 1790

WRITE (1,1571)

FORMAT (101') .

FORMAT (' Tha Input Echo, Output Echo, and Timeout values are cu

_rrently set to: ')

1611

1621
1641
1660
1661

1671

17110
174

1721-

1750
1763

1™

P=tN?

IF {ECHOIN.NE,O) P=tYT

WRITE (1,1611) P

FORMAT (* ',10X,'input Echo ',A1)
P=IN?

IF (ECHOUT.NE.Q) P=fY?

WRITE (1,1621} P

FORMAT (' ' ,10X,fCutput Echo VLA
WRITE (1,1641) TIME
FORMAT (t T,10X,'Timsout Value 1,13}

WRITE (1,1661)

FORMAT (t0f,'Echo Input {¥/N) : 1)

READ (3,1671} P

FORMAT (A1)

IF {(P,NE,TY' AND.P.NE.'N' ,AND.P.NE.8313,AND.P,NE.8302) GOTO 1660
ECHO{N=0

IF (PLEQ.'Y' ,OR.P,EQ.B8313) ECHGIN=!

WRITE {1,1711)

FORMAT (10F *Echo OQutput {Y/N} : '}

READ (3,1721) P

FORMAT (A1)

{F (PLNE.'Y' ,AND.P.NE, TN ,ANO P NE . B313.AND.P.NE,.8302) GOTG 1710
ECHOUT=0)

{F (PLEQ.'Y',0R,P.EQ.8313) ECHOUTa1

WRITE (1,1761)

FORMAT (' What Is the new TIMEOUT valua: 1)

READ (3,1771) TIME

FORMAT (14)

MSOFT-60 rev 4-14-82

12:54

PA&T=488 MSOFT User's Manual FSAMPL,.FOR

IF (TIME.GE.Q.AND.TIME.LT.256) GOTO 530
WRITE (1,1781)

1781 FORMAT (' The TIMEOUT value must be betwean 0 and 2551!1')
GOTQ 1750

1790 WRITE (1,1791)
1791 FORMAT (' ')
CALL ERRMSG{ERCODE,FCH,FCL)

GOTO 530
END
c
[
SUBROUT INE ERRMSG {ERCODE, FCH,FCL)
C
INTEGER ERCODE,!,J,K,I|0,R9
DOUBLE PRECISION FCH,FCL
c
c Report 488 Functlon Errors
C

WRITE (1,9031} FCH,FCL,ERCODE
9031 FORMAT (' Function = ',A8,A8,14X,'Error Code = ',{3)

c
C Interpret Error codes and print srror messages
c
IF (ERCODE.LT.0) GOTC 9370
{f (ERCODE.NE.0) GOTO 9050
WRITE (1,9085)
9085 FORMAT (' NORMAL RETURN')

RETURN
9050 IF (ERCODE.GT.255) GOTO 9370
Do 9350 K=0,7
[=a7=K
1g=2%%|
R9=ERCODE~-10
IF (R9,LT.0) GOTO 9350
ERCODE=R9
J=1+1
GOTO (9160,9190,9210,9240,9260,9290,9310,9330),4
c
91560 WRITE (1,9161}
2161 FORMAT {* SETUP ERROR - alther |QSET or PROTCL was not called be
_foret)
c
9170 WRITE (1,2171)
9171 FORMAT (! using one of the MSOFT communlcatlon fun
ctlions')
~ GOTO 9350
c
9150 WRITE (1,9191)
9191 FORMAT {' NO LISTENERS - | cannot talk to myselfl')
GOTO 9350
C
9210 WRITE {1,9211}
9211 FORMAT (' SERIAL POLL ADDRESS ERROR ~ no more than one secondary
address?)
9220 WRITE (1,9221)

rev 4-14-82 12:54 MSOFT-6}

FSAMPL

«FOR

9221

c

P&T-488 MSOFT User's Manual

FORMAT (! may follow a primary addre
s51)

GOTO 9350

9240 WRITE (1,9241)
9241

c

FORMAT (' SERVICE REQUEST - a 488 device is requesting service'}
GOTO 9350

9260 WRITE (1,9261})
9261

FORMAT (T TIMEQUT ERROR - the specifled amount of time has alaps
ed without!)

9270 WRITE {1,9271}
an

c

FORMAT (! completing a 488 handshake cycla')
GOTO 9350

9290 WRITE (1,9291)
9291

FORMAT (* ATN TRUE - an external controller ls trying Yo issue a
command?)

9310
931

9330
9331

c

9350
9360

¢

9370
9N

oo 0

GOTO 9350

WRITE (1,9311)
FORMAT (' IFC TRUE - reset 488 interface'}
GOTO 9350

WRITE {1,9331)
FORMAT (' S=100 RESET - reset interface {use function | or R)!)
GOTO 9350

CONT INUE
RETURN

WRITE (1,9371)
FORMAT (* SYSTEM ERROR - an (ilegal error code has been encounte
red?)

9380 RETURN

END

STRING TRANSFER ROUTINE

9505

9506

SUBROUT INE STRXFR (ARRAY,SIZE)

INTEGER 1,J,SI1ZE,STRLEN, ADOR
BYTE ARRAY
DIMENSION ARRAY(SIZE)

STRLEN=UNSGN{ARRAY{1})
ADDR=256% | UNSGN (ARRAY (3})+ | UNSGN (ARRAY (2))}

J=STRLEN+3

IF (S1ZE.GE,J) GOTO 9600

WRITE (1,9505)

FORMAT {' THE STRING RECEIVED {5 BIGGER THAN THE ARRAY GIVEN!!!)
WRITE (1,9506) S1ZE

FORMAT (' Only the first ',13,!' characters were transferred,')

DO 9520 1=4,51ZE"
ARRAY (1 }=PEEK(ADDR}

MSQFT-62 rev 4-+14-82

12:54

P&T-488 MSOFT User's Manual

ADOR=ADDR+1
9520 CONTINUE
RETURN
c
c

9600 DO 9610 1=4,J
ARRAY (| }=PEEK {ADDR)
ADDR=ADOR+1

9610 CONTINUE

c
J=J+1
DO 9620 I=J,SIZE
ARRAY(| =0
9620 CONTINUE
RETURN
END
¢
¢
C FUNCTION |UNSGN
c ,_
INTEGER FUNCTION JUNSGN (M)
c
BYTE M
INTEGER IUNSGN
c
[UNSGN=M
IF (1UNSGN.LT,0) 1UNSGN={UNSGN+256
RETURN
END

Thls assembly program is used by FSAMPL.FOR to collect sirings from the keyboard.

ERERE STRIN.MAC ik

FSAMPL,FOR

it Is the

rourlne responsible for the capabillity of entaring a control character (such as 1lne feed or

carriage return) In the string by preceding the control character with an ESCAPE,

It Is also

responsible for displaying the string on the consols, and allowing the operator to delete
characters by pressing backspace.

This routine was written in assembly language Instead of Fortran because Fortran doas not have
manipulation capabitity, This program could be written In Fortran but the code would be

string
aven m

W WP Wr WY Wr ME we

W We WE WP WD We ws

rey 4-

ora difficult to understand,
STRIN (bufname,buflen) 4/8/82

STRING INPUT ROUTINE FOR USE WITH MICROSOFT FORTRAN

THIS ROUTINE EXPECTS TWO PARAMETERS TO BE PASSED TO IT:
THE NAME OF THE BUFFER THE STRING IS TO BE PUT IN
AND THE LENGTH OF THE BUFFER (UP TO 255)

THE BUFFER ARRAY VARIABLE MUST BE OF BYTE TYPE. THE BUFFER LENGTH
VARIABLE MUST BE OF INTEGER TYPE, THIS ROUTINE ONLY LOOKS AT THE

LOW ORDER BYTE OF THE INTEGER VARIABLE.

NOTE THAT THE ACTUAL USABLE BUFFER SIZE {5 THE LENGTH PASSED-3, THIS IS
BECAUSE THE FIRST THREE BYTES OF THE BUFFER ARE USED TO CREATE THE STRING

14-82 12:54 MSOFT-63

STRINJMAC

wr we we W

BDOS
DRCTIO
YERNUM
STROUT
BELL
BS

CR
CARET
ESC

LF
SPACE

STRIN:

-

STRINT:

STRINZ:

PUBLIC STRIN

EQU 0005

EQU 06H

£QU OCH

EQU 09H

EQU 07H

EQU 08H

EQU DD

EQU 0SEH

EQU 01BH

EQU 0AH

EQU 020H

MY M, 00
SHLD LENPT
INX H

MOV B H

MOV c,L

INX B

INX B

MOV M,C

INX H

MOV M,B

ENX H

SHLD BUFPT
XCHG

MOV AM

3TA BUFMAX
MY C, VERNUM
CALL BDOS

MOV AH

ORA L

INZ STRINY
MVI c, STROUT
LX! D, YERERR
P BOOS

Mv1 ¢, STROUT
LX! 0, PROMPT
CALL BDOS

sus A

STA BUFCT
CALL GETCHR
CP1 CR

INZ STRIN3
LDA BUFCT
LHLD ELENPT
MOV M, A

LDA R

PAT-488 MSOFT User's Manual

DESCRIPTOR THAT MSOFT NEEDS TO SEND QUT STRINGS, THE FIRST BYTE OF THE
DESCRIPTOR GIYES THE STRING LENGTH; THE SECOND AND THIRD BYTES GIVE THE
STRING'S STARTING ADDRESS.

;BDOS JUMP VECTOR

sBDOS FUNCTICN FOR UNBUFFERED 1/0
;BDOS FUNCTION FOR CP/M YERSION NUMBER
;BD0S FUNCTION FOR STRING QUTPUT

;BELL

;BACKSPACE
sCARRIAGE RETURM
sCARET

;ESCAPE

:LINE FEED

: SPAGE

;INIT STRING LENGTH TO ZERO AND SAVE IN BUFFER
$SAVE POINTER TO LENGTH COUNT [N LENPT

;POINT HL TO WHERE STRING START ADDRESS WILL GO
COPY HL INTO BC

INCREMENT IT TWO TIMES TO GET

ACTUAL STRING STARTING ADDRESS

SAVE STRING STARTING ADDRESS

; INTO STRING DESCRIPTOR PART OF BUFFER

sPOINT HL TO START OF STRING IN BUFFER
3;SAYE STRING POINTER

H
H
a
’
.
»
.
*

;GET MAX BUFFER LENGTH FROM LOW ORDER BYTE
;OF BUFLEN VARIABLE AND SAVE IT

;CHECK FOR CP/M VERSION NUMBER
sRESULT 1S RETURNED IN H,L
;#F EITHER H OR L <>0Q, THEN THE

s:CP/M 1S VYERSION 2.0 OR LATER
; IF BOTH ARE ZERO, PRINT ERROR MESSAGE

sPRINT PROMPT

; INIT BUFFER COUNT

;6ET A CHARACTER FROM CONSOLE
;CHECK FOR CARRIAGE RETURN

;GET STRING LENGTH

;GET POINTER TO LENGTH DEST, IN BUFFER
$SAVE STRING LENGTH IN BUFFER

;SEND QUT CARRIAGE RETURN

MSOFT=-64 rev 4-14-82

12:54

P&T-488 MSOFT User's Manual

STRIN3:

STRIN4:

STRINS:

;

BUFFUL:

3

GETCHR:

PUTCHR:

CHROUT :

BAKSPC:

rev 4-14-32

JMP

cPi
JZ
CPI
JNZ
CALL
JMP
CP1
JC

S5TA
LDA
s
MOV
LDA
CMP
JZ
INR
STA
LHLD
LDA

INX
SHLD
CALL
JMP

MvI
CALL
JMP

MV
M¥I
CALL
ANI
JZ
RET

STA
CPI
JNC
MY
CALL
LDA
AD}
MY
MOV
JNR

LDA
=l
JZ

STA
CALL
LHLD
DCX

12:54

CHROUT

BS
BAKSPC
ESC
STRIN4
GETCHR
STRINS
SPACE
STRINZ

KEYBUF
BUFMAX
03

B,A
BUFGT
B
BUFFUL
A
BUFCT
BUFPT
KEYBUF
M, A

H
BUFPT
PUTCHR
STRINZ

A,BELL
CHROUT
STRIN2

C,DRCTIO
E,OFFH
B0OS
07FH
GETCHR

PUTBUF
SPACE
CHRQUT
A,CARET
CHROUT
PUTBUF
0404
C,DRCTIO
E,A
BDOS

BUFCT
o0
STRINZ
A
BUFCT
BACKUP
8UFPT
H

;CHECK FOR BACKSPACE

;CHECK FOR ESCAPE KEY

;IF NOT, THEN SKIP QVER ESCAPE HANDLER
;GET KEY FOLLOWING ESC

;SKIP CONTROL CHARACTER CHECK

;CHECK FOR CONTROL CHARACTER

;IF 50, IGNORE

3 SAVE KEY
3GET MAX BUFFER SIZE
; SUBTRACT THREE TO GET TRUE BUFFER USAGE

;BET CURRENT BUFFER USAGE

;1F TWO ARE THE SAME, THEN BUFFER IS FULL
;JUMP TO BUFFER ERROR HANDLER
; INCREMENT COUNT

sSAVE 1T

;GET BUFFER PDINTER

;GET KEY BACK

;SAVE CHARACTER IN BUFFER

; INCREMENT BUFFER POINTER
;SAVE IT

;ECHO CHARACTER TO CONSOLE

; LOOP BACK

35ET UP TO RING BELL
sSEND T
;LOOP BACK (IGNORING LAST CHARACTER TYPED)

;SET UP FOR KEY FETCH

;GET KEY
;STRIP OFF PARLTY
;1F RESULT ZERQ, NO KEY WAS PRESSED

;SAVE CHARACTER TO 8E PRINTED

;COMPARE TO SPACE

; IF KO CARRY, PRINT CHARACTER
;OTHERWISE, IT'S A CONTROL CHARACTER
;50 PRINT CARET FIRST

sGET SAVED CHARACTER

;ADD 64 TO CONVERT TGO PRINTING CHARCTER
sSET UP FOR SINGLE CHARACTER PRINT
;MOYE CHARACTER TO BE SENT INTO E

;SEND CHARACTER

3GET STRING LENGTH

;I1F LENGTH IS ZERO, THEN NO BACKSPACE
;DECREMENT LENGTH

SAVE T

;DELETE CHARACTER FROM CONSOLE

3GET BUFFER PQINTER

;DECREMENT IT

MSOFT-65

STRIN.MAC

STRiN.MAC

BACKUP ;

BUFCT:
BUFPT:
BUFMAX ;
KEYBUF;
LENPT:
PUTBUF :
PROMPT :
VERERR:

-

SHLD
oY
CPl
cc
JMF

My
CALL
My
CALL
MY
Jvp

DS
ps
D3
0s
Ds
Ds

T8

END

BUFPT
AM
SPACE
BACKUP
STRINZ

A,BS
CHROUT
A, SPACE
CHROUT
A,BS
CHROUT

-) s s M) o=

PLT-488 MSOFT User's Manual

;SAVE 1T
sGET LAST CHARACTER

;CHECK FOR CONTROL CHARACTER

;IF $0, ERASE PRECEDING CARET FROM CONSOLE
;LOOP BACK

3SEND OUT BACKSPACE ,SPACE,BACKSPACE

;CURRENT STRING LENGTH

;POINTER TO NEXT AVAILABLE SUFFER LOCATION
;BUFFER LENGTH

sONE CHARACTER KEY BUFFER

;POINTER TO LENGTH LOCATION IN BUFFER

CR,LF,'STRING: 3'
CR,'STRING INPUT ROUTINE REQUIRES CP/M VERSION 2,0 ¢
YOR LATER!',CR,'$?

MSOFT-56

rev 4-14-82

12:54

P&T-488 MSOFT User's Manual FCLOCK.FOR
23+ FCLOCK.FOR *#*»

Like all the other clock programs, this one performs the same function but is written in
Microsoft Fortram. It initializes the 488 bus by sending an Interface Clear {IFC), outs the
clock into the remote mode by making the REN line true and then addressing the clock as a
listener., It then addresses the clock as a talker and listens to the data (status, date and
time) that the clock sends over the bus, It displays the date and time each time the minutes
c¢hange, |t also displays the data each time the status character indicates a clock error.

A few differences will be seen when FCLOCK is compared to BICLOCK, Fortran does not have
much ability te manipulate strings, so a special array is created to hold the data string read
from the clock. This array is called BUFFER. The first three bytes of the array are used to
emulate Basic's string descriptor block. Remember that the first byte of the string descriptor
block holds the length of the string, and the remaining two bytes hold the address of the
string. Similar arrays are set up for the two strings TAD and LAD.

A routine that you will find useful if you write Fortran programs for MSOFT is STRXFR. It
transfers (copies) strings from MSOFT's input string buffer ints the specified array. Another
useful routine is STRSET, which generates a string descriptor block in the first three bytes of
an array.

FCLOCK,.FOR is compiled and linked in just the same way that FSAMPL.FOR is. If you
follow the dialog shown for FSAMPL, subsituting FCLOCK each place FSAMPL appears, and
IVARPT each place STRIN appears, vou will get an execuatble file nmamed FCLOCK,COM,

FCLOCK, FOR
Revised for MSOFT.REL by John Tinsman 4-15-82

This is a Microsoft FORTRAN program which addresses an
an HP 59309A clock as a talker and then reads the Time and
date. [t continually reresads the time and displays the
time and date on the censole each minute,

The program assumes that the bus output format of the 59309A
is set to SPACE, CAL, and COLOM. If also assumes that the
TALK address of the clock is “E" and the |1sten address is "3n,

ODOO0O0O0O00CO0O000a00O00000 00

INTEGER ERCODE, TIME, EOT, EOS, LENGTH, POLL, ECHOIN, ECHOUT, BUS
INTEGER STATUS, MIN, CLDMIN
BYTE BUFFER(23),TAD(6),LAD{(6)

The byte array TAD contains an Unlisten and an Untalk command
followed by the clock's talk address in the last three byftes. The
first three bytes are used to store the string descriptor for the
last three bytes. The byte array LAD 1s aimost the same, but the
last byte of the string is -- instead of being the clock's talk
address =~ the clock's tisten address. In both cases, the first 3
bytes {which form the string descriptor) are initialty set to O,
and then later set to the proper values by using the subroutines
5TRSET to do the string descriptor set ups.

QOO0 O00000

DATA TAD /0,0,0,77',' ', 'E"/

rev 4-15-82 16:13 MSOFT=-67

FCLOCK. FOR

e N v

OO0 O 00

o

30

Q0

lw] QOO0

Qo

Q000

QO 0G o O o000

QOO0 o0

o Q

DATA LAD 70,0,0,17%,!' 1,08/

Pass variable names that FCLOCK wlli be using to MSOFT

CALL J0SET (ERCODE,TiME,POLL,BUS)

CALL PROTCL (EOT,EQS,LENGTH}

CALL ECHO (ECHOIN,ECHOUT)
Intialize OLDMIN to some value which c¢annot match the first reading
from the c¢locks This wiil insure that the time and date will be
displayed the first time through,

OLAMIN = i
Issue an |FC command

CALL (FC
Make REN Yine true

CALL REN

TIME contains the amount of tIime to allow for handshake
I¥ TIME=2553, then the handshake is not timed

TIME = 255
Turn off Input and output echo

ECHOIN
ECHOUT

¥
\)

Set up the Listen string. [t contalns the string descriptor (3 bytes),
the UNLISTEN byte, the UNTALK byte and the Listen Address of +he ciock.

CALL STRSET(LAD,6,3)
Become the 488 controller and Issua UNLISTEN, UNTALK and then
address the clock as a listener,
This puts the clock in the REMOTE mode.
CALL CNTLC{LAD)
IF (ERCODE,.NE.O) GOTO 200
Set up MSCFT so it will stop on EOS (End-of=-String) byte, set the EOS

to be a line feed,

EOT =t
EOS = 10

Set up the Talk string., It contains the string descriptor {3 bytes),
the UNLISTEN byte, the UNTALK byte and the Talk Address of the clock,

CALL STRSET(TAD,6,3}
Become The 488 controller and Tssue UNLISTEN, UNTALK and then

address the c¢lock as a tal ker,

MSOFT-68

rev 4=15-82

P&T-488 MSOFT User's Manual

16:13

PA&T=488 MSOFT User's Manual FCLOCK . FOR

c
40 CALL CNTLC (TAD}
c
C Report any 488 ervors That may have occurred
c
IF {ERCODE.NE.O} GOTO 200
c
C Become a |istener and read the time from the clock
c
50 CALL LSTNC(BUFFER)
c
C Report any 488 errors that may have occurred
c
IF (ERCODE .NE,Q} GOTO 209
c
C Transfer clock response from 488 buffer into array BUFFER
c
CALL STRXFR{BUFFER,23)
c
C The clock's response is now stored In elements 4-23 of the byte array
C BUFFER in the following form:
c
C 1?7 or <sp>¥<sp>1<: >IMIMI< - > IDND T > HTHT< : > IMEMT< : > T39S T<cr>3< | >4
c
C Put BUFFER(4) into S5TATUS, and put the string length + 3 into J
c
STATUS = BUFFER{4)
J = JUNSGN{BUFFER(1]}+3
c
€ Put the least signlficant digit of the minutes into MIN
c
MIN = BUFFER{16}
c
C Check the clock status, |If it's not OK thepn print message and hait
c

IF (STATUS.EQ.32) GOTO 100
WRITE (1,55) (BUFFER(I},1=4,J}
WRITE (1,60)

55 FORMAT (T ', 20A1)

60 FORMAT (' Reset clock')
WRITE (1,5%5)
STOP

c

C Show the time f the minutes have changed

c
100 IF (MIN,NE.OLDMIN) WRITE (1,110} (BUFFER(1)},=4,J}
110 FORMAT (' t,20A1)
c
C Update OLDMIN and read clock again
c
OLDMIN = MIN
GOTO 40
c
G Error handling routine
C If an error occurs, print error message and go back to
€ IFC, REN, etc.
c

rev 4-15-82 16:13 MSOFT-69

FCLOCK. FOR

200

o]

P&T-488 MSOFT User's Manuat

CALL ERRMSG(ERCCDE)
GOTO 30

END

L]

c

9031
c

ERRMSG —mmmmmem

488 interface error reporting routine

SUBRQUT [NE ERRMSG (ERCCOE)
{NTEGER ERCCDE,{,J,K,10,R9

WRITE (1,9031) ERCCDE
FORMAT (" Error Coda = ',13}

C tnterpret Error codes and print error messages

c

9090

c
2160
9161

IF (ERCODE.LT.0) GOTO 9370

IF (ERCODE.NE.0) GOTO 9090
RETURN

(F {ERCODE.GT,255} GOTO 9370

DO 9350 K=0,7

t=7-K

1 0=2% %

R9=ERCODE=~| 0

IF (R9.LT.0) GOTO 9350

ERCODE=R9

J=1+1

6OTO (9160,9190,9210,9240,9260,9290,9310,9330),J

WRITE (11,9161}
FORMAT (' SETUP ERROR - elther 10SET or PROTCL was not called ba
fore'}

c
9170
9171

WRITE (1,9171)
FORMAT (! using one of the MSOFT communication fun
ctlons')

c
3190
9191

c
9210
9211

GOTO 9350

WRITE {1,9i21)
FORMAT (' NO LISTENERS - | canpot talk to mysel f11)
GOTO 9350

WRITE (11,9211}
FORMAT (' SERIAL POLL ADDRESS ERROR - no more than one secondary
address! }

9220 WRITE (1,9221)

9221

FORMAT (' may follow a primary addre
ssh)

c
9240
a2z

c
9260
9261

GOTO 9350

WRITE (1,9241}
FORMAT {' SERVICE REQUEST - a 488 device is requesting service')
GOTO 9350

WRITE {1,9261)
* FORMAT (' TIMEQOUT ERROR - the specified amount of time has olaps
ed without!)

9270 WRITE (1,9271)

MSOFT-70

rev 4=15=82

16:13

P&T-488 MSOFT User's Manual FCLOCK . FOR

9271 FORMAT (! completing & 488 handshaka cycle')
GOTO 9350
c
9290 WRITE (1,9291}
9291 FORMAT (' ATN TRUE - an externa! contreoller is trying to issue a
__command')
GOTO 9350
c
9310 WRITE {1,9311)
9311 FORMAT (' IFC TRUE - resetf 488 interface’)
GOTO 9350
c
9330 WRITE (1,9331}
9331 FORMAT (' S=-100 RESET')
GOTO 9350
c
9350 CONTINUE
9360 RETURN
c
9370 WRITE (1,9371)
937 FORMAT (' SYSTEM ERRCR - an illegal error code has been encounte
_red")
9380 RETURN
END

STRXFR =—mmm——
$tring Transfer Routine

OO0 0

SUBROUTINE STRXFR (ARRAY,SIZE)

INTEGER 1,J,S1ZE,STRLEN, ADDR
BYTE ARRAY
DIMENSION ARRAY(SIZE}

STRLEN=[UNSGN{ARRAY (1))
ADDR=256% l UNSGN { ARRAY (3})+ UNSGN (ARRAY(2))

J=STRLEN+3
IF {SIZE.GE. 3} GOTC 9600
WRITE (1,9505})
9505 FORMAT (' THE STRING RECEIVED 15 BIGGER THAN THE ARRAY GIVEN!!')
WRITE (1,9506) SIZE
9506 FORMAT (' Oniy the first ',13,' characters were transferred.')

c
D0 9520 (=4,S|ZE
ARRAY(|)=PEEK (ADDR)
ADOR=ADDR+1
9520 CONTINUE
RETURN
c
c

9600 DC 9610 1=4,J
ARRAY({1)=PEEK(ADDR)
ADDR=ADDR+1

9610 CONTINUE

J=J+}
DO 9620 (=J,51ZE

rev 4~15-82 16:13 MSOFT-71

FCLOCK. FOR P&T-488 MSOFT Usert!s Manual

ARRAY(1)=0
9620 CONTINUE
RETURN
END

[UNSGN ~———mmmmr
Signed Byte to Unsigned Integer Converter

O 000

INTEGER FUNCTION [UNSGN (M}

BYTE M
INTEGER {UNSGN

FUNSGN=M

IF (FUNSGN,LT.0) TUNSGN=]UNSGN+256
RETURN

END

3111y (——

String Dascriptor Setup Routine

Q000

SUBROUT INE STRSET{ARRAY,S!ZE,STRLEN)

[]

INTEGER 1,¥,S1ZE,STRLEN
BYTE ARRAY

DIMENS ION ARRAY(SIZE}

Set up string descriptor: length, address low, -high
in the first three bytes of the array

o0 oOo0

ARRAY (1 }=STRLEN

Get *he array address and add an offset to point arcund
the string descriptor

O o 0O0

|=1 VARPT {ARRAY) +3

J=1/256
ARRAY(2)=)-256%)
ARRAY (3)=d
RETURN

END

The following assembler program is used by FCLOCK.FOR to get the address of a variable,
Mlcrosoft Fortran is simllar to Baslc in that it passes the addresses of parameters, and |ike
Basic, it passes the address of the first parameter in reglster palr HL. Values returned by
functions are put Into register pair HL before the function returns to the calling program.
Since the address of the parameter of IVARPT is pliaced in HL by the calling program, and |VARFT
immed iately returns to the calling program, the value that is returned is the address of the
parameter of IVARPT.

; PROGRAM |VARPT
TH1S PROGRAM (S DESIGNEC TO BE USED AS A

; FORTRAN FUNCTION CALL SIMILAR TO MICROSOFT
; VYARPTR FUNCTION IN THE!R BASIC.

MS0FT=-72 rev 4-15-82 16:13

P&T-488 MS0FT User's Manuzl FCLOCK.FOR

WHEN THE ROUTINE 1S CALLED, FORTRAN WILL
PASS THE POINTER TG THE ARGUMENT VARIABLE
IN THE HL REGISTER PAIR, SINCE FORTRAN
EXPECTS INTEGER FUNCTIONS TO PLACE THE
RETURN ARGUMENTS IN THE HL PAIR, ALL THAT
NEED BE DONE 15 A RET,

- we

ws we wE Wi wa

PUBLIC [YARFT

IYARPT: RET

1]

END

rev 4-15-82 16:13 MSOFT-73

QCCLOCK.C PAT-488 MSOFT Usert's Manual
t 2 21 4 QCCLOCK.C E¥ AN

This program illustrates how MSOFT can be used with a program written in C, The particular
compiler used in this example is Q/C written by Quality Computer Systems, It has the advantage
of being inexpensive (under $100), readily avaiiable, and it can be used with a {inker {such as
Microsoft's L80).

Like all the other clock programs, this one performs the same function but is written in a
different {anguage., It initializes the 488 bus by sending an Interface Clear {IFC}, puts the
clock into the remote mods by making the REN line true and then addressing the clock as a
listener, |t then addresses the clock as a tatker and listens to the data {status, date and
time) that the clock sends over the bus, [+ displays the date and time each time the minutes
change. It also displays the data each time the status character indicates a clock error,

There ara a few points you should keep in mind if you use this program as a guide for writing a
program for some other C compiler, One is that even though all pass the parameters on tha stack,
some reverse the order, Q/C places the leftmost parameter on the stack first and fthe rightmost
last, so that the first parameter popped off of the stack is the rightmost one., Some other
compilers put the rightmost parameter on the stack first, so that the first parameter poppead off
of the stack is the leftmost one,

Another potential source of difficulty is that Q/C passes an argument back to the calling
procedure in register pair H.. | have no idea of whether other compiiers do also, | made use of
Q/C!'s convention in the procedure scntic,

The following dialog shows how to compile this program and link It with MSOFT.REL. The result Is
an executable file named QCCLOCK.COM.

B>CC QCCLOCK.C -M<CR>

QC Compiler ¥1,01 Copyright {(c} 1981 Quality Computer Systems
0 error{s) found

8>M80 =QCCLOCK<CR>

No Fatal error(s}

B>L80 QCCLOCK,CRUNL)B,MS0FT, QCCLOCK/N/E<CR>

Link-80 3,42 19-Feb-81 Copyright (c) 1981 Microsoft
Data 0103 2A08 <10501>

29959 Bytes Frea
[0103 2A08 421

B>

MSOFT-T4 rev 4+15.82 16:13

P&T-U4B88 MSOFT User's Manual

QCCLOCK.C

/I**i**ii**ii!li*‘*!**l!ii**i!!ilI*i**l*ii*iii**ii!ii*i**i****!ii/

/#

/* QCCLOCK.C 4-14-82

/ for Q/C Compiler Version 1,01
/%

/ This is a C program which addresses an HP 593094 c¢lock as

/% a talker and then reads the time and date. It continually
/¥* rereads the time and displays the time and date on the

/% console each minute.
/l

%/

*y

/% The program assumes that the bus output format of the 533004 */
/% is set to SPACE, CAL, and COLON. It also assumes that the
/* TALK address of the clock is "E",

J#

/% The Q/C Compiler is distributed by
/4 The Code Works

/4 Box 550

/# Goleta, CA 93116

/* (805) 683-1585

*/
%/
*/
*/
%/
*/
*/
*/

JRAARRAARERRR RSB RRRRD R R BB ARRRBER AR FRRRERARR AR RAER XA AR ER SRR RAE R R/

extern CNTL, CNTLC, TALK, TALKC, L3TN, LSTNC, SPOLL;
extern PPOLL, DREN, REN, STATU3, IFC, BRSET;
extern IOSET, PROTCL, ECHO, IOPORT;

#ineclude "qstdio.h"

maximum input line size */
ASCII code for line feed */

#define LINLEN 132 /®
#define LF 10 /¥
/¥ e _——
main()

{

/% Make all the communication variables static because Q/C

accesses static variables more rapidly and with less object

code than it accesses automatic variables

static ercode,
time,
eot,
eos,
length,
poll,
echoin,
echout,
bus;

/*
J*
Vi
/H
/¥
S
J
Ji
Vi

error code ¥/

timeout */

EOT switch #*/

EQOS byte ¥/

listen string length */
poll response %/

input echo switeh %/
output echo switch */
488 status */

int status; /¥ HP clock status */
int umin; /% units digit of minutes */
int oldmin; /* previous units digit of minutes %/

char line[LINLEN];

/%

listen input line #*/

/* Pass variable names that CCLOCK will be using to MSOFT
sioset{&ercode, &time, &poll, &bus);
sprotel(&eot, &eos, &length);
secho{&echoin, &echout);

rev 4-15-82 16:13

M3OFT-75

*/

®/

QCCLOCK.C P&T-488 MSOFT User's Manual

/* TIME contains the amount of time to allow for handshake */
/% 1If TIME=255, then the handshake is not timed *y
time=255;
achoin=0; /* turn off input echo ¥/
echout=0; /% turn off output echo ¥/

/% Set up MSOFT so it will stop on EO0S (End-of-String) byte, */

/% set the EOS byte to be a line feed. */
eot=1;
eosz=LF;
for (;;) §
ife(); /% initialize the 488 bus */
ren(); /% make REN true ¥/

/* Become the 4B8 controller and issue UNLISTEN, UNTALK and #/
/% then address the clock as a listener */
sentle("7_37");

/% Report any 488 errors that may have occurred */
errmsg(ercode);
/% Intialize OLDMIN to some value which cannot match the ®y

/% first reading from the clock. This will insure that the #*/
/¥ time and date will be displayed the Ffirst time through. */

oldmin = =13
for (;;) § -
/% Become the 488 controller and issue UNLISTEN, UNTALK and
*/
/% then address the c¢lock as a talker
*/
scntle("?_E");
/% Report any 488 errors that may have occurred */
errmsg{ercode);
if (ercode 1= 0) break; /¥ break out of loop if bus error
*/
/% Become a listener and read the clock's status and time
*/
slstne(line);
/* Report any 488 errors that may have occurred */
errmsg(ercode);
if (ercode != Q) break; /¥ break out of loop if bus error
*/

/% Check for ¢lock error and report any other errors */

/*¥ {(Remember that the first character of the line is #/

A a "?" if the clock is in error.) */
if (1linef0} == '?') {elkerr(); puts{line); break;!}

/% Show the time if the minutes have changed */
if (1line[12] '= oldmin) puts(line};
oldmin = line[12]: /*% update oldmin ¥/

}

/% Check for clock error. Exit to operating system #*/

MSOFT-T76 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual QCCLOCK.C

/% on a clock error because the clock must be reset, */

if (1line[0] == *?') {puts{"Reset clock"); break;}
1
/% end main */ }
/ -— mem= CLKERR —me—cmmmmeemmam */
/4 Clock error report routine */
clkerr()
{
fputs("CLOCK ERRCR ",stdout);
}
/* — caee ERRMSG comcaec—meeea—— */
/% 488 interface error reporting routine */
errmag(code)
int code;

£
if (code 1= 0) printf("Error Code = %d\n",code,2);

/% Interpret Error codes and print error messages */

if (code & 1) |
puts("SETUP ERROR - either IOSET or PROTCL was not called before");
puts(" using one of the MSOFT communication functions®);

}
if (code & 2)
puts("NO LISTENERS - I cannot talk to myself!");

if (code & 4) {
puts("™SERIAL POLL ADDRESS ERROR - no more than one secondary address");
puts{" may follow a primary address");

}
if (code & 8)
puts("SERVICE REQUEST -~ a U488 device is requesting service™};

if (code & 16} {
puts("TIMEQUT ERROR - the specified amount of time has elapsed
without");

puta(" completing a 488 handshake cycle’);

}
if (code & 32)
puts("ATN TRUE - an external controller is trying to issue a command™};

if (code & 64)
puts("IFC TRUE - reset 488 interface");

if (code & 128)
puts(*3-100 RESET");

/% end errmsg %/ }

/% —————emanm SCNTLC =mmmmmmammemm——— */
/* Send a string as a controller */
sentle(string)

char string(];

{

makedope{string); /% HL = dope vector address */

entle(): /% clear the error code and send the string */

rev §.15.82 16:13 MSOFT-T7

QCCLOCK.C P&T-488 MSOFT User's Manual

}

/¥ e SLSTNC wmm—mmm e %/
/% Get a string as a listener *®/
slstne(string)
char stringl];
{
f#asm
POP B ;remove return address
POP H ;jget addr of beginning of string area
PIISH H
PUSH B
PUSH H ;addr of beginning of atring area

LXI H,DOPVTR ;HL points to the dope vector for MSOFT
CALL LSTNC ;clear the error code and get the string

-

; Copy MSOFT string into the C string. Remove all carriage returns,

LXI H,DOPVTR ;HL points to the dope vector

PCP ;DE points to C string area

Mov ;C = MSOFT string length

INX

MOV

INX

MOV

MOV
CPYSTR: DCR

JM

MOV

INX .

CP1 jearriage return?

JZ CPYSTR ;..yes, so do not copy into C string

STAX D ;..00, s0 copy into C string

INX D

JMP CPYSTR

' =

B

sHL, = MSOFT string address

-~ -

N

o

STR ;..no more characters to copy

— MmO aGronmEeE o oOu
=

LS

END3TR: SUB A ;jterminate € string with a null
STAX D
RET

#endasm

/% end slstnc */}

F R - ——————————— MAKEDQPE w-ewemmmcme——aee */

/* Make a Microsoft type of string dope vector */
makedope(string)

char string;

£

f#asm

C stores a string as a sequence of characters terminated by a NULL.
We have to generate a string in the form that MSOFT expects, This
involves two steps. The first is to generate a "dope vector" which
consists of three bytes, The first is the length of the string, and
the second and third are a word which contains the address of the
string itself, 3ince C passed the address of the string to this
routine, all that we really need to do is generate a dope vector.

bk waE A MR e e b W

PQP B ;Eet return address out of the way
POP H s1get the address of the string

MSOFT-T8 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual QCCLOCK.C

PUSH H

PUSH B sput return address on stack

SHLD DOPYTR+1 iput string address in the dope vector

MVI C,=1 ;jpreset the string length counter
SLEN: INR c

SUB A ;Zero reg A

ORA M ;see if the byte is NULL (zero)

INX H ;point to the next byte

JNZ SLEN 3« try next byte

MOV A,C ;Zet the atring length

3TA DOPVTR ;put it in the dope vector

LXI H,DOPVTR ;HL = dope vector

RET sreturn dope vector address
DOPVTR: DB 0 ;count byte

DW 0 ;address of string

#endasn
/% end makedope */ }

/¥ amea - - - - SI0SET ---m—mememmme - */
/% Set up communication variables */
sioset(ercode,time,poll,bus)
int *ercode, *time, #poll, #bus;
{
#asm
Call IOSET with

HL = address of ercode

DE = address of time -

BC = address of a table (B reg buffer)
The table must contain the following entries:
1. *¥poll
2. ‘*bus
Set DE to point to last parameter passed

LXI dq,2 ;skip over the return address

DAD SP ;HL = stack pointer upon entry

MOV E,M

INX H

MoV D,M

INX H
XCHG ;BL = address of bus variable
SHLD BBFR2 ;save it in second entry of B reg buffer
XCHG '
MOV E
INX H
[[037) D,M
INX H
XCHG ;HL = addreas of poll variable
SHLD it in first entry of B reg buffer
XCHG
MOV
INX
MOV
INX
MOV
INX
MOV
MOV
LXI

N I LTI TR T

&
= 1
=«
—
w
ot
<
0]

=

3DE = address of time

=0 i~ vl o o - SR a v v B o R 5]
=

M

¥

yA ;HL = address of ercode

+BBFR'Y ;point BC to B register buffer

rev 4-15-82 16:13 MSOFT-T9

QCCLOCK.C

JMP I0SET
EBFR1: DW 0 ;B register buffer
BBFR2: DW 0

#endasm
/* end sioset #/ }

E SPROTCL —————mmmmmmeme */
/% Set up more communication variables */
sprotel(length,eos,eot)
int #*length, *ecsz, ¥eot;

{

#azm

; Call PROTCL with

; HL = address of length

H DE = address of eos

H BC = address of eot

; Set HL to point to last parameter passed
LXI H,2 sskip over the return address
DAD SP sHL = stack pointer upon entry
MOV C,M ;get address of eot switch
INX H
MOV B,M ;BC = address of eot switch
INX H
MOV E,M
INX H
MOV D,M ;DE = address of ecs byte
INX H :
MOV AM
INX H
MOV H,M
MOV L,A sHL = address of listen string length
JMP PROTCL

#endasm

/* end sprotcl #/ }

/* - - SECHO - -/
/* Set up echo switches */
secho{echoin,echout)
int *echoin, #*echout;

{

f#asm

3 Call ECHO with

H HL = addresas of echoin

H DE = address of echout
FOF B ;hang on to return address
POP D ;DE = address of echout switch
POP H ;HL = address of echin switch
PUSH H ;restore stack
PUSH D
PUSH B
JMP ECHO

f#endasm

/% end secho */ }

MSOFT-80 rev 4-15-82

P&T-488 MSOFT User's Manual

16:13

P&T -488 488 PHRASEBOOK

UNOFFICIAL PHRASEBOOK
IEEE 488 to ENGLISH

IEEE wused the following conventions when they assigned the names wused in

the standard:

Lower Case names are associated with focal messages (messages between a
device and its interface; they MIGHT NOT appear on the 488 bus),

Upper Case names are divided into three groups:

One or two letters name interface functions,

Three letter mnemonics are remote messages {(communications over the
488 bus from one interface to another) and

Four letter names ending in "S" jdentify the state of an interface
function.

The numbers follewing an entry are the pages of the IEEE Standard (Apr 4, 1975)
which give further information.

ACDS ACcept Data State
21,22

ACG Addressed Command Group - multifine messages (@@-0F Hex) which affect
only addressed devices. The messages GTL {(Ge To Local), SDC (Selective
Device Clear), PPC (Parallel Poll Configure) and GET (Group Execute
Trigger) operate only on devices in the LADS (Listener Addressed) state.
TCT (Take Control) operates on the device in the TADS (Talk Addressed)
state.
48,77

ACRS ACceptor Ready ‘State
21,22

Addressed Commands - Commands belonging to the Addressed Command Group (See
ACG)
43

AH Acceptor Handshake - the device function which allows proper reception of

data and commands appearing on the eight data lines of the 488 bus (i.e.,
multiline messages). The DAV (Data Available) line is sensed to determine
when the multiline message is valid, and the AH function indicates its
readiness for data by asserting a passive false on the NRFD (Not Ready For
Data) line, and that it has received the message by asserting a passive
false on the NDAC (Not Data Accepted) line. Note that it is illegal for the
AH to assert both NDAC and NRFD passive false simultaneousty.

20

P&T -488 488 PHRASEBOOK

Active False - an active false message asserted on the 488 bus is one in which it
is guaranteed that a false wvaiue is received. it overrides a passive true.
The standard is constructed so that it is not possible for an active true and
an active false message to be asserted on the bus at the same time.
16

Active True - a2 message which when asserted on the 488 bus is guaranteed to be
received as true. [t overrides a passive false. The standard is
constructed so that it is not possible for an active true and an active false
message to be asserted on the bus at the same time.

16

AlIDS ACceptor Idie Siate
20, 21

ANRS Acceptor Not Ready State
20,21

APRS Affirmative Poll Response State
32

ATN ATtentioN - a uniline remote message Iindicating that a Ceontroller is sending
commands (as contrasted to a Talker sending data) over the eight data (DIO)
lines.

19,21,24,29,35,41,48,75-76

AWNS Acceptor Wait for New cycle State
21,22

. C Controller interface function - the interface function which allows 2 device
to send device addresses, universal commands and addressed commands over
the 488 bus. It also allows the device to conduct a Parallel Peoll to
determine which device needs service.

41

CACS Controller ACtive State
41,42

CADS Controller ADdressed State
41,42

CAWS Controller Active Wait State
41,43

CIDs Controller IDle State
41

CPPS Controller Parallel Poll State
41,43

CPWS Controller Parallel poll Wait State
41,43

P&T ~488 488 PHRASEBQOK
CSBS Controller StandBy State
41,43

CS5NS Controller Seryice Not requested State
41,44

CS5RS Controlier Service Requested State
41,44

CS5WS Controller Synchronous Wait State
41,43

CTRS Controller TRansfer State

41,44

DAB DAta Byte - a multiline sent by the Source Handshake (S5H) over the eight
data (DIQ) lines
25,48,75-76

DAC Data ACcepted - the complerﬁent appears on the NDAC tline. See AH, SH
for further information.
19,22,48,75-76

Data Byte Transfer Control [lines - the three lines (DAV, NRFD and NDAC) that
are used by the Source and Acceptor functions to perform the handshake
cycle.
12,18-22,67

Av DAta Valid - a uniline message sent by the Source Handshake (SH) function
over the DAV line. 5See SH,
48,75-76

DC Device Clear interface function - the interface function which allows a
device to be cleared {initialized} either individually or as part of 2 group.
The group may be either part or all of the addressed devices in one
system.
37-38

DCAS Device Clear Active State
38

DCIS Device Clear Ildle State
37,38

OCL Device Clear - a multiline message {14 Hex) sent by the Controller over the
eight data lines indicating that all devices are to go into the Clear state.
The details are device dependent, but usualiy the device is left in the same
state as when its power is first turned on.
38,43,48,75-71

Dense Subset - A subset of the Primary Command Group, consisting of only the
Listen Address Group {(LAG) and Talk Address Group (TAG). 150 codes
Space through Undertine, inciusive. ({Values 20 Hex through 5F Hex).
77

PET -488 488 PHRASEBOOK

DiOn Data Input/Output line n (n goes from 1 through 8)
54 ‘

DT Device Trigger interface function - the interface function which allows a
device to start its basic operation started either individually or as part of a
Eroup. This function may be used to start several devices simultaneously.
38-39

DTAS Device Trigger Active State
39

DTIS Device Trigger Idle State
39

END END - a uniline message sent by a Talker (EOCI| line active true) at the
same time a data byte is sent on the data (DIO) lines. The message
indicates that this is the last data byte to be sent. (S5ee EOS for an
alternate way of terminating a string sent by a Talker}.
23,48,75-76

E Ol End Or ldentify - a uniline message which serves two purposes: if asserted
true by a Talker it indicates that the last byte of a string is being sent,
If asserted true by a Controller it initiates a Parallel Poll.

EOS End Of String - a multiline message sent by a Talker to indicate that the
last byte of a string has been sent. lts value (ISO code) is determined by
what the Listener(s) recognize.

48

General Interface Management lines - the five lines used to perform system
operations, such as Parallel Poll, Interface Clear, etc. Several of the
lines are also used in data transactions: an example is EOI, which may be
used to signal the end of a multibyte transaction. The five lines are ATN,
EOQI, IFC, REN and SRQ.

12

GET Group Execute Trigger - a multiline message {8 Hex) sent by the
Controller indicating that all devices addressed as Listeners are to start
performing their respective functions. This command is often used to start
several pieces of equipment in synchronism.
39,43,48,75-77

GTL Go To Local - a wmultiline message (§1 Hex) sent by the Contreoller
indicating that aill devices addressed as Listeners are to go to the Local
state: i.e., local controls on the front or back panel (instead of device
dependent messages on the 488 bus) control device operation. (See Local
Control)
33,43,48,75-77

gts B¢ to standby - a locazl message sent by a device to its Controller interface

function telling it that it is finished sending commands. The response is
that the Controller function releases the bus so that other operations {e.g.,
2 Talker sending data to Listeners) may proceed.

41,75

P&T -488 488 PHRASEBOOK

10Y IDentifY - a uniline message sent by the Controller during a Parallel Poll
telling the other devices to assert their Parallel Poll responses on the data
bus.
35,48,75-76

IFC InterFace Clear — a uniline message sent by the System Controller telling
all other devices on the bus to go toa the I|dle state. This message is used
to place all devices in a known state, It should be used sparingly because
any bus transaction is terminated by this function.
24,29,41-42,48,75-76

IS0 Code - a seven bit code equivalent te the American National Code for
information Interchange, ANS| X3.4-1968 [often called ASCII).
46,50,77

isr individual service request - a local message sent by a device to its Parallel
Poll interface function. If the individual status {see "ist") message is equal
to the 5 (Sense) bit received as part of the most recently received PPE
(Parallel Poll Enable) command, the PPR (Parallel Poll Response) byte
specified by the three hits P1-P3 of the most recent PPE command must be
sent true upon receipt of an IDY (ldentify) command from the Controller.
Alternately, if subset PP2 (Parallel Poll function cannot be configured by
the Controller) is used, local messages are substituted for 5, F1-P3.
35-37,75

ist individual status - a local message used by the Paraliel Poll function to
determine the proper response to an IDY {ldentify) command from the
Controller. See Misr",
35-36

L Listen interface function - the function which allows a device to receive
data from the 488 bus.
28

LACS Listener ACtive State
29-3¢

(LADY the listen address of .a spécific device (received as MLA), See "™MLA®,
43

LADS Listener ADdressed State
28-29

LAG Listen Address Group -~ a subset of the |15S0-7 codes, being characters
SPACE through ? (2¢ Hex through 3F Hex).
48, 77

LE Listen Extended interface function - similar to the Listen function except
that a Secondary Address must be used as well as the Primary Address used
for the lListen function.
30 ,

LIDS Listener IDle State

28-29

P&T -488 488 PHRASEBOOK

LLO Local LockOut - a multiline command (11 Hex} sent by the Controller which
tells all devices with the RL (Remote Local) interface function to obey
device dependent messages sent over the 488 bus instead of their local
controls (e.g., front panell.
33,43,48,75-77

LOCS LOCal State
33

local control - the device is programmed by its controls instead of by the 488
interface. An example is a digital multimeter; the range, function, sample
rate, etc. are set by front panel controls if it is under local control.

33

local message - a message sent between a device function and an interface
function. It may cause a remote message to be sent from the interface
function over the 488 bus.
15

lon listen only - 2 local message which causes the Listen function of the device
to act as if it had been addressed by the Controller.
29,75

LPAS Listener Primary Addressed State
29,30

ipe local poll enable -~ a local message which causes the Parallel Poll fumction

of the device to act as if it has received a PPE (Parallel Poll Enable) from
the Controller, When Ipe is false, the device is to act as if it has
received a PPD (Paraliel Poli Disable} while in the PACS (Parallel Poll
Addressed to Configure state) or a PPU (Parallel Poll Uncoenfigure) command
from the Controller. '

35,75
LPIS Listener Primary Idle State
29-30
Itn listen — a local message which when true and the Controller is in the active

state causes the L (Listen) or LE (Listen Extended) function to go from the
Idle {LIDS) to the Addressed (LADS) state.
29,75

lun focal unlisten - a local message which when true and the Ceontroller is in
the active state (CACS) causes the L (Listen} or LE ({Listen Extended)
function to go from the Addressed (LADS) to the Ildle (LIDS) state.
29,75

LWLS Local With Lockout State
33-34

P&T -488 488 PHRASEBOOK

MLA My Listen Address - the address which the L (Listen) or LE (Listen
Extended} function will respond to. Note that the standard does not allow a
488 bus system ta have both an L and an LE interface function which
respond to the same primary address. MLA must belong to the LAG (Listen
Address Group).
48,75-76

MSA My Secondary Address = the secondary address which the TE (Talk
Extended) or LE (Listen Extended) functions will respond to if they are in
the Primary Addressed state {TPAS or LPAS, respectively). MS5A must
belong to the SCG (Secondary Command Group).
24,48,75-76

MTA My Talk Address - the primary address which the T {(Talk) or TE (Talk
Extended) function will respond to., Note that the stapdard does not allow a
488 bus system to have both a T and TE interface function simultaneaously
with the same primary address. MTA must befong to the TAG ({Talk Address
Group).
24,29,48,75-176

multiline message — a message that is sent over two or more lines of the 488 bus.
An example is Device Clear (DCL) (14 Hex sent out on the data (DIO1-DI0O8)
lines by the Controller).
45

nba new byte available - a local message sent by a device to its Source
Handshake (SH) function to inform it that another byte is available for it to
place on the bus data (DIO1-DIOS) lines.
19,75

NDAC Not Data ACcepted - one line of the 488 bus which carries the complement
of the Data ACcepted (DAC) message. It is one of the three Data Byte
Transfer Control lines. (See DAC).

NPRS Negative Poll Response State
32

NRFD Not Ready For Data - one line of the 488 bus. It carries the complement
of the Ready For Data (RFD) message, and is one of the three Data Byte
Transfer Control lines. (See RFD).

NUL null byte: all eight bits are false.
23,42,48

OSA Other Secondary Address - a secondary address which is not the same as

the secondary address of the TE (Talk Extended) function while it is in the
TPAS (Talk Primary Addressed state), aor of the LE (Listen Extended)
function while it is in the LPAS (Listen Primary Addressed state). OS5A
must beloeng to the 5CG {(Secondary Command Group).

48,75-76

P&T -488 438 PHRASEBOOK

OTA

PACS

Passive

Passive

PCG

pon

PP

PPAS

PPC

PPD

PPE

Qther Talk Address - an address other than a device's own talk address.
Some devices which are capable of talking unaddress themselves if they
sense that the Controller is addressing another Talker. This feature can be
convenient because an UNTalk (UNT) command is not needed. OTA must
belong to the TAG (Talk Address Group).

24,48,75-~76

Parallel poll Addressed to Configure State

35-36

False - a message which when asserted on the 488 bus is NOT guaranteed
to be received as false. It is overridden by an active true message.
16

True - a message which when asserted on the 488 bus is NOT guaranteed
to be received as irue. It is overridden by an active false message.
16

Primary Command Group - a subset of the 1SO-7 code. It consists of all

characters NUL through UNDERLINE (0@ Hex through 5F Hex). It inciudes
all of the ACG (Addressed Command Group), UCG (Universal Command
Group), LAG (Listen Address Group) and TAG (Talk Address Group).
35,49,75-77

power on - a local message sent by the device to its own interface to
inform it that power has just been applied. The interface should reset ali
functions (e.g., Listen, AH, Talk, etc.) to their idle states.

75

Parallel Poll interface function ~ the function which allows a device to
respond to a Parafiel Poll from the Controller.

35

Parallel Poll Active State

35-36

Paratlel Poll Configure -~ a multiline message (@5 Hex) sent by the

Controller which causes the device presently addressed as a Listener (e.g.,
in the LADS state} to go inte the PACS {Parallel Poll Addressed to
Configure) state. While in the PACS, the PP (Parallel Polt} function is to
obey the PPE {Paraliel Poll Enable) and PPD (Paraliel Poll Disable) messages
sent by the Controller.

35,43,75-77

Parallel Poll Disable - a multiline message (79 Hex) sent by the Controller
which will place all devices in the PACS (Parallel Poll Addressed to
Configure) state into the PPIS (Parallel Poll ldie) state.

35,43,49,75-76

Paralle! Pall Enable - a multiline message (6@—-6F Hex) sent by the
Controller which will change all devices in the PPIS (Paralle]l Poll ldle) state
to the PPSS (Parallel Poll Standby} state. It also specifies the PPRn
(Parallel Pol! Response byte) to be used and the S (Sense) of the PPR.
The form of the message is (from most significant bit to least)

A-B

P&T -488 488 PHRASEBOOK

PPIS

PPRn

PPSS

PPU

PUCS

rdy

remote

REMS

REN

RFD

RL

X 1 1 9§ § P3P2PM
where X means don't care (may be either high or low), and the binary value
formed by P3-P1 indicates which PPRn is to be used. Note that n of PPRn
indicates which data line is to be made active true {i.e., DIO3 will be made
active true when PPR3 is placed on the bus).
35,43,49,75-76

Parallel Poll Idle State

35-36

Parallel Poll Response n (Sees PPE)

35,49,75-76

Parallel Pall Standby State

35-346

Parallel Poll Unconfigure - a multiline message {15 Hex} sent by the

Controller which takes all devices in the PPSS (Parallel Poll Standby) state
and puts them into the PPIS (Parallel Poll Idle) state.
35,43,49,75-77

Paraliel peoll Unaddressed to Configure State
35-136

ready for next message - a Jocal message sent by a device to its AH
(Acceptor Handshake) interface function to indicate it is ready for another
message byte from the 488 bus (i.e, another multiline remote message).
21,75

control - a device is programmed by its 488 interface instead of by local
controls. An example is a DMM whose function, range selection, etc are
selected by messages sent to it over the 438 bus. See local contral for
contrast.

33

REMote State

33-34

Remote ENable - one of the five General Interface Management lines.

Also, a wuniline message sent by the Controller to put devices addressed as
Listeners into the REMS (Remote) state. When the Controiler makes the
REN message false, all devices are to go to the LOCS (Local) state.
33,42,49,75-76

Ready For Data - the complement appears on the NRFD line. This unifine
message is used by the AH (Acceptor Handshake) function te indicate that it
is ready to accept the next byte {multiline message). See AH for further
information.

19,22,49,75-76

Remote Local interface function - if present it allows a device to be
switched from local to remote control and vice versa.
33

P&T -488 4838 PHRASEBOOK

rpg

RQS

rtl

RWLS
S5ACS

(SAD)

(SBA)

(SBN)

5CG

request parallel pell - a local message sent to the Controlier interface
function when the device wants a Parallel Poll performed.

41,75

ReQuest Service - the byte sent by the c¢urrent Talker in response to a

Serial Poll. Data bit 7 (DIO7) is true.
23,49,75-76

request system control - a Jocal message sent to the Controller interface
function by the device when it wants to go to the SACS (System Control
Active) state.

41,75

request service - a local message sent by a device to its Service Request
interface function to cause it to go to the 3RQS (Service Request] state.
As a consequence, the uniline message SRQ is sent active true until either
rsv is sent false, or the Contreller performs a Serial Poll of this device.
32,75

return to local - a local message sent by a device to its Remote/Local
interface function. The LOCS (Local) state is entered if neither LLO
{Local Lockout} nor ACDS (Accept Data State) are true.

33,75

Remote With Lockout State

33,34

System Control Active State

41,44

Secondary ADdress - the seconday address of a specific device, and is

received as either My Seconday Address (MS5A) or Qther Secondary Address

(OSA). its value must lie in the range 6@-7E Hex. (See SCG).
43

Status Byte, service request Acknowledged. A message sent over the 488
bus by the current Talker in response to a Serial Poll. This message
indicates that this device was requesting service. Data bit 7 (DIOT7) is
true. {See RQS)

62

Status Byte, service MNot requested. Same as SBA but indicates that this
device does not need service. Data bit 7 {DI0O7) is false.
62

Secondary Command Group. A subset of the 150-7 code c¢onsisting of
characters ACCENT GRAVE through TILDE (60 Hex through 7E Hex}.
Secondary Talk aznd Listen addresses must be selected from this group.
(Note that DEL is not allowed as a secondary address).

49, 77

A-10

P&T -488 488 PHRASEBOOK

5DC Selected Device Clear - a multiline message (#4 Hex) sent by the Controller
indicating that all devices addressed as Listeners are to go into the DCAS
(Device Clear Active) state. The details are device dependent, but usually
the device is left in the same state as when its power is first turned on.
38,43,49,75-77

SDYS Source DelaY State

18-19
Secondary Commands - the commands PPE, PPD znd (SAD).
43
SGNS Source GeMerate State
18-19
SH Source Handshake interface function. The function used by a Talker or

Controller to insure proper communication of multiline messages. The NRFD
and NDAC lines are sensed to determine whether the AH (Acceptor
Handshake} function of some -device is active (if both NRFD and NDAC are
false simultaneously, there is no AH function on the bus, which is an
error). The muitiline message is placed on the eight data lines (DIO1-DIO8)
and a 2 microsecond timeout |5 started. When NRFD is sensed false and
the timeout has been completed {to insure the data lines have settied) DAV
is asserted true {to show that the data is available and settled). Upon
sensing NDAC false the SH asserts DAV false {to indicate that the data
may no longer be valid) then removes the data. The whole cycle is
repeated for subsequent bytes of data. (See AH for the other half of the
handshake cycle).

18
S51AS System control Interface clear Active State
41,44
sic send interface clear -~ a local message which causes the devices' Controller

interface function to enter the SIAS (System Control Interface Clear Active)
state if it is the System Controlier (i.e., it is in the SACS (System Control
Active) state}. As a consequence, the IFC (Inteface Clear) signal is sent
active true. (IFC is a uniline message sent on the IFC line).

41,75

SIDS Source IDie State
18-19

s1S System control Interface clear lIdie State
41,44

SINS System control Interface clear Not active State
41,44

SIWS Source ldle Wait State
19-20

S5NAS System control Not Active State
" 41,44

P&T -488 488 PHRASEBOOK

SPAS

SPFD

SPE

SPIS

SPMS

SR

5RAS

5RIS

S5RNS

SRQ

SRQS

5TB

Serial Polf Active State
24,26

Serial Poll Disable - a multiline message {19 Hex} sent by the Controlier.
It informs all devices capable of being Tailkers that they are to speak data
when they are addressed to talk. (See SPE for contrast).

43,49,75-77

Serial Poll Enable - a mulitline message (18 Hex) sent by the Controlier. It
informs all devices capable of being Talkers that they are to speak their
Serial Poll Status Byte ([instead of data) when they are addressed to talk.
See SBA, SBN, STB for further information about the status byte.
43,49,75-77

Serial Poll ldle State
24,26

Serial Poll Mode State
24,26

Service Request interface function. This function allows a device to
asynchronously request service from the Controller-In-Charge.
31

System control Remote enable Active State
41,45 :

send remote enable -~ a local message sent by a device to its Control
interface function. It causes the function to enter the SRAS [System
Control Remote Enable Active) state only if it was already in the SACS
(System Control Active) state. The uniline message REN is sent active true
as long as the Controller remains in the SRAS state.

41,75

System control Remote enable Ildle State

41,44

System control Remote enable Not active State

41,45

Service ReQuest - a uniline message sent on the SRQ line by the SR
(Service Regquest) interface function, It is the duty of the Controlier to
provide the service needed.

49,75-76

Service ReQuest State
32

STatus Byte. Data bits 1 through 6 and bit 8 {(DIOT-DIO6, DIOB) sent in
response to a Serial Poll. STB is combined with RQS to form the complete
byte. (See SBA, SBN).

25,49,75-76

P&T ~488 488 PHRASEBOOK

STRS

SWNS

TACS

(TAD)

TADS

TAG

tca

tcs

TCT

Source TRansfer State
18-19

Source Wait for New cycie State
18-19

Talk interface function. This function allows a device to send information
to other devices on the 488 bus. Only one byte {selected from the Talker

Address Group) need be sent to address the Talker.
23

Talker ACtive State
24,26

the Talk ADdress of a specific device. It is received as either My Talk
Address (MTA) or Other Talk Address {OTA). It must be a member of the
TAG (Talk Address Group).

43

Tatker ADdressed State
23-24

Talker Address Group. A subset of the 150-7 code consisting of all
characters from @ through UNDERLINE (4¢ Hex through 3F Hex). The
address of a Talker (or the primary address of an Extended Talker) must be
selected from this group. Note that UNDERLINE cannot be used as an
address, for it is reserved as the Urpiversal Untalk command.

49, 77

take control asynchronous]ly - a local message sent by a device to its
Controller interface function. It causes the function to go from the CSBS
(Controlier Standby) state to the C5WS (Controller Synchronous Wait) state,
where it waits for at least 500 nsec (to allow the other devices on the 488
bus to respond to the active true assertion of the uniline message ATN},
then proceed to the CAWS (Contreller Active Wait) state. ATN is active
true in both CSWS and CAWS.

41,75
take control synchronously - a lecal message sent by a device to its
Controller interface function. It operates the same as tca EXCEFT that

the function goes frem CSBS to CSWS only when the AH (Acceptor
Handshake) function is in the ANRS {Acceptor Not Ready) state. The
effect is to insure that a message sent by 2 Talker is not garbled or
misinterpreted as a message sent by the Controller; ATN will not become
active true until the Source Handshake is complete (i.e., DAV is false,
showing that the message is no longer valid).

21,41,75

Take ConTrol - a multitline message (§9 Hex} sent by the Controller to
inform the device currently addressed as a Talker that it is to become the
Controller—in—-Charge.

41,43,49,75-77

P&T -488 488 PHRASEBOOK

TE Talker Extended interface function. Similar to the Talker {T) function
except that this one is addressed by two bytes. The first must be selected
from the Talker Address Group (TAG) and the second from the Secondary
Command Group (SCG).

23

TIDS Talker 1Dle State
23-24

ton talk only — a local message sent by a device to its Talk interface function.
If IFC {interface Clear) is false, the Talker function enters the TADS
(Talker Addressed) state. Remember that only onhe Talker may be addressed
at a time, so as long as ton is true no other device may have ton true or
be addressed as a Talker by the Controller.

24,75

TPAS Talker Primary Addressed State
24,26

TPIS Talker Primary Idle State
24,26

UCG Universal Command Group - A subset of the 150-7 code consisting of all
characters from DLE through US (1@ Hex through TF Hex). These commands
operate upon all devices which are capable of responding te a Controller;
the devices are not individuzlly addressed. ¥Foar contrast see Addressed
Command Group (ACG).

43,49,77
uniline message - a message that uses only one line of the 488 bus. An exampie is

Service ReQuest (SRQ]J.

Universal Command Group - S5ee UCG

UNL

UNT

UNListen - a multiline message (3F Hex or the character "1¥) sent by the
Controller which forces the Listen function of all devices into the LIDS
(Listen Idie) state. :

29,43,49,75-77

UNTalk ~ a multiline message (5F Hex or the character " ") sent by the
Controller which forces the Talk function of all devices into the TIDS (Talk
Idle} state.

49,77

A-14

Code Assignments for “"Command Mode” of Operation.
(SENT AND RECEIVED WITH ATN FTRUE)

) ®} 4 0 o 1 1 1 1
0 MSG o | msa 1 MSG 1 MSG o | mse o | msc 1 MSG 1 MSG
0 1 a 1) 0 1
ba[b3)bs b, | COLMN =
1818 i rows | o 1 2 3 4 5 6 ?
olololol o NUL DLE SP 3 0 !) @ r 3 P)) S r 3
oflofol+] 1 soH |Gt |bcr |LLo 1 A a a] a w
aloli|ol 2 5TX 6c2 - 2 M B A - b u ' §:
ojof1|1} 3 ETX oc3 # w 3 Q c w s 2 < 3 s o —]
o[jo]o] 4 €07 |soc |ocs Joc] s s 4 & D 5 T i d g t o |
o[1]ol1] s Ena_ | prc(D)| Nak [pPu % 8 5 o € a U o . & " iy
ol 1ol & ACK SYN & o 6 - F o v - f X v :
BB BEL ETB ' o 7 2 G a w 2) a w W]
1|{ofofo| & BS GET | CAN | SPE { w 8 z H L X 5 h z x |
1[ofjo|1] s HT | TeT | em | sPo) 2 9 2 1 2 Y g i I y 6|
1v{oj1lo] 10 LF SUB . 9 : <) 9 z : i g : o
1ol 11 vT ESC + 9 ; 2 K < ! £ k z t =
£ z ; T
1|lr}ojo 12 FF FS , - < L = A\ 1 4 ! w
i[vfojif 13 CA G5 — = M 1 ¢ 3 =]
1]al1jo} 14 s0 AS . > v N - v n l ~ v
[] s Y us / v ? UnL o v | — [unt w | DEL
v T M @ I }
v v v Vv
ADDRESSED UNIVERSAL LISTEN TALK
COMMAND COMMAND ADDRESS ADDRESS
GROUP GROUP GROUP GROUF
IACG) UCG) LAG) {TAG)
PRIMARY COMMAND GROUP (PCG) SECONDARY
COMMAND
NOTES: (1) MSG = INTEARFACE MESSAGE SRouP

b, = DIO1...by = DIO?
REQUIRES SECONDARY COMMAND

DENSE SUBSET (COLUMN 2 THROUGH 5). ALL CHARACTERS USED IN 80TH COMMAND & DATA MODES.

Caurtesy of Hewtett-Packard Co.

P&T -488 Auxijlliary Programs for CP/M 1

The program BUSMON monitors and reports all transactions on the |EEE -488 bus,
4B8TODSK records data sent over the 488 bus into a disk file. DSKTOQ488 sends the
contents of a disk file over the bus as data, HANDSHAK.ASM contains the socurce code
for routines which perform the Source and Acceptor Handshake functions. An example
of how to use HANDSHAX.ASM is given in the program SAMPLHS.ASM,

BUSMON

The pregram BUSMON monitors and reports all transactiens which occur on the
IEEE-488 bus, The operator can choose two different forms for the report. The
normal form displays the transactions without any special handling. The other form is
expanded, which means that non-printing characters are replaced with strings of printable
characters. This form is especially useful for those cases where one is trying to
distinguish between tabs and spaces, or determine whether line feed precedes carriage
return, etc. The form of the report can be selected by typing a character on the
console keyboard while the program is running. Once the form has been selected, its
action may be repeated by typing any key on the keyboard.

The operator can set BUSMON to stop on one of three different conditions: on
each carriage return, line feed, or each character. The condition is selected by using
one of the four stop code keys., The stop code can be changed at any time by typing
the appropriate stop code key. The stop code keys and the corresponding stop conditions
are shown in the following table. Note that typing a stop code key will NOT cause a
repeat of the previous stop condition, but will inveke a new stop condition. The program
starts in the Carriage Return mode.

Expand/Narmal Option

N er n Show characters normally

X or x Expand the non-printing characters. Space (20 Hex), Horizontal Tab (9} and
‘Line Feed (0A Hex) are replaced by the strings <SPACE>, <HT> and <LF>
respectively. The non—printing character Carriage Return (0D Hex) causes the
message <CR> to be printed followed by a carriage return and a line feed, All
other non-printing characters are replaced with the two character string of an
up arrow followed by a capital letter., Thus the non-printing character 91 Hex
is replaced by the string %A, while the character 1A Hex. is printed as tZ.

Stop Codes
Carriage Return Display all tramsactions up to and including the next carriage return.
Line Feed Display all transactions up to and including the next line feed.
Space Display the next transaction {allows stepping one byte at a time).
Gorg Go. Display all transactions continuously without stopping on Line

Feed, Carriage Return or next byte.

+ CP/M is a trademark of Digital Research

CP/IM AUX-1

P&T -488 CP/M Auxilliary Software

Abort
Control C Abort. Go back to the CP/M command mode.

Consolef/Printer Switch
@ Direct all output to the console.
1-9 Direct all output to the system printer.

NOTE: to direct output to both the console and printer, select the console and then
press Control P,
IEEE 488 Functions

|l or i Assert IFC (perform an Interface Clear).

R or r Make REN true (assert Remote Enable}.
L or | Make REN false (all instruments will go to Local mode).

Q or g Make SRQ true (request service).
W or w Make SRQ false {cease requesting service).

P or p Perform a Parallel Poll and report the results.
S or s Show the state of the IEEE—~488 lines,

T ort Talk — collect a string of characters from the operator then send it over the
bus as a Talker.

C or ¢ Control — collect a string and send it over the bus as a Controller.
NOTE: While collecting a string for Talk or Control the following keys have special
meaning:

Control X Delete the string and restart collection. This allows erroers to be corrected.

RETURN Terminate the collection of the string, The carriage return is not included
in the string.

ESCAPE Put the next character into the string. This allows ESCAPE, RETURN and
Control X to be put into the string. For instance, to get the string
?A<ESCAPE>12<RETURN><LINE FEED>, you would type
TA<KESCAPE><ESCAPE>12<ESCAPE><RETURN><LINE FEED><RETURN>. In
this example, the string <ESCAPE> means that the ESCAPE key is pressed,
not that the 8 keys <, E, S, C, A, P, E and > are pressed. Similarly,
<RETURN> and <LINE FEED> mean that the RETURN and LINE FEED keys
are used.

Each time the Controtler becomes active {asserts ATN active true), a carriage
return-line feed is sent to the console, followed by the string COMMAND:, followed by
another carriage return-line feed pair. Similarly, each time the Controller becomes
inactive (ATN is false), a carriage return, line feed, the string DATA:, carriage return
and a line feed is sent to the console. Thus all characters printed after COMMAND:
and before DATA: are instructions sent by the Contreller, (for example, "™ means

CPfM AUX-2

P&T -488 CP/M Auxilliary Software

UNLISTEN). All characters printed after DATA: and before COMMAND: are data
(otherwise known as device-dependant messages}. Examples are readings from a DVM
which has been commanded to be a Talker, etc.

Messages are also printed on the console to indicate occurances of IFC (Interface
Clear), indicate a change of the state of the REN {(Remote Enable) line, and of the SRQ
{Service Request) line. The message >> 5-1900 POC/RESET TRUE <<< is printed
whenever the Power On Clear or the RESET line of the S$-100 system becomes true.

Whenever the Controller is active, a descriptive string is substituted for special
non-printing messages. For example, > GO TO LOCAL << is printed when @1 Hex is
received and ATN is true. The list of messages and the corresponding non-printing
characters is as follows:

Character Message
Hex
o >» GO TO LOCAL <<
(4 »> SELECTIVE DEVICE CLEAR <<
g5 >> PARALLEL POLL CONFIGURE <<
@8 > GROUP EXECUTE TRIGGER <<
03] »> TAKE CONTROL <«
11 >> LOCAL LOCKOUT <<
14 >> UNIVERSAL DEVICE CLEAR <«
15 >> PARALLEL POLL UNCONFIGURE <<
18 >> SERIAL POLL ENABLE <<

19 >> SERIAL POLL DISABLE <<

The results of this program can be misleading for the following reasons:

1. This program functions as a lListener on the 488 bus. |If there were no Listeners
on the bus before this routine was run, any Talker would have been unable to say
2 thing. However, when this routine is run, the Talker has someone to taik to.
Thus the operation of the 488 system may be changed by the fact that the Bus
Moniter routine is run.

2, This routine is slow compared to the speed that communication on the 488 bus is
capable of attaining. Thus 488 throughput may be drastically slowed by using the
bus monitor.

3. This routine is incapable of sensing a Paralle]l Poll issued by another controller, or
the response to that Parallel Poll, If it happens that this routine tests the EOI
line at the time of a Parallel Poll, it will show the message <END>, even though
ATN is true.

488TODSK

The program 488TODSK is used to record all data transactions directly into a
CP/M disk file. To use the program type
438TODSK filename.ext x<CR>
where filename.ext is the file name and extension of the file into which the data is to
be recorded, and x is the option code. Note that there must be one and only one space

CP/M AUX-3

P&T-488 CP/M Auxilliary Software

between 488TODSK and the file name, and also one and only one space between the file
name and the option code. The characters <CR> mean that the Carriage Return key is
pressed, mot that the four keys <, C, R and > are pressed,

Three different options are available: none, Z and E. The option E means that
the file will be closed and control passed back to the console upon receipt of the 4388
END message. The option Z means that the file will be closed and control passed back
to the console upon receipt of a Control Z in the data stream (the Ceontrol Z is also
placed in the file), This option can be useful because CP/M text files are terminated by
a Control Z. If no option is selected {that is, a Carriage Return follows the file name),
the file can be closed only by pressing Contrel C on the console. Note that Centrol C
¢an be used at any time to abort the program: all data received up to the time the
Control C was pressed is saved in the file. Some garbage will also appear at the end of
the file because the whole buffer is saved in the disk file, and the buffer probably was
not filled at the time Control C is pressed.

Error messages are printed on the console if the disk directory is full, the data
area is full, or any other disk write error occurs. In each case the function is aborted.
If the name of the file is the same as one which is already on the disk, the operator is
asked if it is OK to replace the old file. |If the operator responds by typing any
character other than "Y" or "y" the functiom is aborted and the ofd file is left
untouched., 1f the operator responds with either "w" or "yt the old file is erased and
the new one takes its place.

DSKT Q488

The program DSKTO488 sends the contents of 2 CP/M disk file over the 488 bus.
The program is called by the string
DSKT(C488 filename.ext x
where filemame.ext is the name of the file that is to be sent and x is the option code.
Only two options are available: none and Z. The Z option causes the Control Z to be
sent with the 488 END message when a Control Z is found in the file, then the program
returns control to the console. This can be useful for text files that are terminated by
a Control Z. I[f no option code is selected, the entire file is sent followed by 2 null
with the 488 END message, then contrel is returned to the console., The program may
be aborted at any time by typing Control C on the censole.

Error messages are printed on the console if there is no Listener on the bus, if
the file is not on the disk, or if an invalid option code is selected. In each case the
program is aborted and control is returned to the console.

If you have two systems and want to send a file from one to the other via the

488 bus, you would type

48BTODSK filename.ext E<XCR>
on the system which is to receive the file, and

DSKTO488 filename.cxt<CR>
on the one which is sending the file. (It is not necessary te use the same file name or
extension.}) Note that the system receiving the file must be started first, otherwise the
first byte of the file will be lost or the sending system will complain that there are no
listeners.

CP/M AUX-4

P&T-488 CP/M Auxilliary Software

HANDSHAK

The source file HANDSHAK.ASM is actually two subroutines: a routine for Source
handshake and a routine for Acceptor handshake. These routines can be useful in special
applications where it is desired to use the $-10¢ system as a Talk Only or Listen Only
device, or where increased data rate on the 488 bus is needed. These routines are
capable of running much faster than the larger Custom System, CPMJ488 or 488BAS
routines because the larger routines check for the existance of another Ceontroller on the
bus, check for excessive time in the handshake cycle, and many other things.

Refer to the chapter titled Hardware Description in the P&T-488 manual for
information about the bit mapping of the ports and the 483 bus lines,.
SAMPLHS

This fite contains the source code for a routine which uses the Source, Acceptor

and Initialization subroutines in HANDSHAK to take data from the IEEE-488 bus and
display it on the console.

CP/M AUX-5

P&T-488 CP/M Auxilliary Software

hkdkhkkhhhkkhhkrbhAdhhdhdd A A A IA AR ER A AR A AL A TR TRk

Source and Acceptor Handshake listings

LT T

B A LSS R R LRSS SRR EESR Rt RER RS EEERESEE RS S S

-

ISRPT EQU 7CH

CMDPT EQU ISRPT+1

DATPT EQ0 ISRPT+2

PPORT EQU ISRPT+3

MONITR SET a ;CP/M warmstart entry

CPMIO SET 5 ;1CP/M I/0 entry point

CR SET @DH ;ASCII carriage return

LF SET 9AH ;ASCII line feed

ES SET g ;CP/M buffered print string terminator

BUFPRN SET 9 ;CP/M fcn. number for buffered print

; TALK

H

TLKT: L.DA GIMTC ;get the image of the byte last sent

: to the command line port

ORI 8 ;make sure that ATN is false (high)
STA GIMTC : when do source handshake

kA kRAEAAKXI IR AR A kA kb bk kkhrhhhhbhohkhkdhbhhhbbhrhhhdhbhkhhiir

SOURCE HANDSHAKE

This routine takes the byte in memory location CHAR and says
it on the 488 bus as a Talker. If either the S-180 RESET

or Power On Clear line is or has been true, or if the

488 ATN or IFC lines are or have been true, then an error
message is printed and the routine jumps to the system
monitor.

LA R E LR SRR EEEEEEE LRSS E S A LRSS LR AR SRS L EEESEERE LR LS LRSS

[f} =% =a =e me w3 e e mE we W wa WE wy W

RCHS: LDA GIMTC ;get 488 command line image
ORI 60H ;set NRFD, NDAC high (false)
CALL COMND

SRC1: CALL INTRPT ;check for POC, ATN or IFC

JNZ BYE ;..abort if POC, ATN or IFC true
IN CMDPT ;see if there are any listeners
CMA
ANT 60H ;check only NRFD, NDAC
JZ NOLSN ;..no listeners error
ANI 40H ;swait until NRFD is high (false)
JNZ SRC1
LDA CHAR ;get the data byte
CMA ;488 uses negative logic

CP/M AUX-6

P&T-488

ouT
LDA
ANI
CALL
SRC2: CALL
JNZ
IN
ANT
JZ
LDA
ORI
CALL
MVI
QuT
RET

DATPT
GIMTC
7FH
COMND
INTRPT
EBYE
CMDPT
208
SRC2
GIMTC
81H
COMND
A,BFFH
DATPT

CP/M Auxilliary Software

imake DAV true (low)

scheck for POC, ATN or IFC
:..abort if POC, ATN or IFC true

;look at NDAC line
t1...data not accepted yet

;smake DAV & EOI false (high)

;make all data lines passive false

X E RS SRR RS SRR RS SRR R E LR R SRR SRS ERE SRR SRR EEEEESESESERSS]

ACCEPTOR HANDSHAKE

This routine gets one byte from the 488 bus and returns with
it in register A.

If either the S5-100 RESET or Power On

Clear line is or has been true, or if the 488 ATN or IFC

and the routine jumps to the system monitor.

**

CEPTR: LDA GIMTC
ORI 8
ANI SFH
CALL COMND
LDA GIMTC
ORI 444
CALL COMND
ACEPT1: CALL INTRPT
JINZ BYE
IN CMDPT
ANI 861
JNZ ACEPT1
IN DATPT
CMA
MOV D,A
LDA GIMTC
ORI 204
ANI @BFH
CALL COMND
ACEPT2:; CALL INTRPT
JNZ BYE
IN CMDPT
ANT 884
JZ ACEPT2
LDA GIMTC
ANT 9FH

]
H
;
H
H
H
H
;
: lines are or have been true, then an error message is printed
:
;
H
H
A

imake ATN false

: and NRFD true, NDAC true
;now make NRFD false

:1see if received POC, ATN or IFC
r..abort

:look at DAV

;-.DAV still false

sget the data

1488 uses negative logic
skeep the data in register D
;NDAC false

:NRFD true

:..abort

swalt for DAV false

f...DAV still true

: NRFD true, NDAC true

CP/M AUX-7

P&T~488 CP/M Auxilliary Software

CALL COMND
MOV A,D sput the data back in register A
RET :

Initialize 488 board

This routine should be called after every S5-188 RESET or
Power On (Clear

fre e ma my mE e wa

NIT: MVI A,QFFH
QuT PPORT ;clear parallel poll response port
ouT DATPT + and 488 data port
CALL COMND ; and 488 control lines and image byte
SUB A
ourT ISRPT ;clear Interrupt Service Register
sSTA RETCOD : clear return code
STA CHAR ; and (CHAR
RET

; COMND keeps track of the last byte that was ocutput to the
: command port. It is necessary to keep track of what the
: P&T-488 interface board is asserting on the bus because

: the 488 bus is an open-collector wire-or system, so it is
; not possible to determine what the P&T-488 1is asserting

; on the 488 bus by merely sensing the 488 lines.

'

C

OMND: STA GIMTC supdate the 488 command line image
ouT CMDPT ;put it on the command lines
RET

Check for interrupt due to ATN, IFC or POC

NOTE: This function does not reset the interrupts in the
Interrupt Service Register (ISR)

I LR T P TR I

NTRPT: IN ISRPT ;look at the interrupt service register
RAR ;put POC bit in carry
CNC IPOC ;..8et POC bit in return code byte if
s no carry
RAR :REN > CARRY
RAR ;SRQ > CARRY
RAR ;ATN > CARRY
CNC TATN ;..5et the XATN bit
RAR :IFC > CARRY
CNC IIFC 1. .8et the XIFC bit
LDA RETCOD
ANI AFAH ;look at only PQC, IFC and ATN
RET
IPOC: PUSH A
LDA RETCOD
ORI 804
ICOM: STA RETCOD
POP A srestore reg A and carry

CP/M AUX-8

P&T-488

[D =e = =
|.<
m

QLSN:

[RIEETEL T TRETEETIRS

2

L v Bl L L

RINT:

=
I

H
GIMTC:
CHAR:
RETCOD:

MS1:
M52:
MS3:
MS4:

RET

PUSH
LDA
ORI
JMP

PUSH
LDa
ORI
JMP

CP/M Buxilliary Software

A
RETCCD
28H
ICOM

A
RETCOD
40H
ICOM

Print the reason for aborting then jump to the monitor

PUSH
LXI
ANI
CNZ
POP
PUSH
LXT
ANI
CNZ
POP
LXI
ANI
CNZ
JMP

PSW :save the error code
D,M52 ipower on clear

80H

PRINT

PSW ;get the error code again
PowW

D,MS3 1 XIFC

4@H

PRINT

PSW

D,MS4 s XATN

29H

PRINT

MONITR

No listeners present - print error message then
jump to the monitor

LXI

b,MS1 ;print no listener msg

Print error message and return to monitor

CALL
JMP

PRINT
MONITR

print the line pointed to by DE

MVI
CALL
RET

DB
DB
DB

DB
DB
DB
DB

C ,BUFPRN

CPMIO

@ ;image of last byte sent to CMDPT
@

@ ;a byte containing the error code

'No listeners on the bus',CR,LF,ES

'5-19¢ POWER ON CLEAR or RESET',CR,LF,ES

'another 488 Controller is asserting IFC true',CR,LF,ES
'Another 488 Comntroller is asserting ATN true',CR,LF,ES

Cp/M AUX-9

PsT-488

CP/M Buxilliary Software

R IR AR A TR ANE AR AR R AR AARARAANRIAAR R AR kA AR A I TR A A b kAR b bk kkdkdkdkdkk

™y mE mm e M e WA mg W

ORG

MONITR SET
CPMIC SET

GETCHR SET
PUTCHR SET
CONSTAT SET

LXI
CALL
LOOP: CALL
MOV
MVI
CALL
MVI
CALL
ANT
JZ
MVI
CALIL
CPI
JNZ

JMP

LT T

- mE wa

END

SAMPLHS . ASM

1ge8

ol 2

1

Sp,20098
INIT
ACEPTR
E,A
C,PUTCHR
CPMIO

1CP/M
:CP/M

;CP/M
1CP/M
1CP/M

C,CONSTAT

CPMIO

1

LOOP

C ,GETCHR
CPMIO

3

LOOP

MONITR

This program uses the Acceptor handsahke routine to get a
data byte from the IEEE-488 bus and display it on the
system console,.

L EEEE LS LI EEEEER RS S SRS LRSI E LR LSRR SRR ES A SRR SRR E RS EEEEESE]

warmstart entry point
I1/0 routine entry

function code
function code
function code

;initialize
sinitialize
rget a byte

for
for
for

point

console input
console output
console status

stack pointer

the

P&T-488 card

from the 488 bus
;put it in register E for CP/M
;function to print on console
:CP/M I/C routine entry point
1100k to see if a key is pressed

:..N0 key pressed

1get the key

;CONTROL C?

;+.00, 80 continue getting data
:+ from the bus
1..¥eS, so do a warmstart

Insert the Handshake routines here

CP/M AUX-18

IS 2L SRS SR ERELESEREESEEEESIESESSEIELEES LRSS EEEESEEELERES SRS

ARKA Ak kkkkhkkhkhbkhbkdhbhbhdhkhhhhbhbdhhhhhbbohhbhhhhhdhhkhkhdhkdikkkdtikk

L A L L

B Redsnan
[—)
lv——u
VRI|—
Clﬂﬂl

P & T 488 REV. 8IlA

8v0C UNREG

o 5y
18 CARARLITORS l cal
0,iuF EACH Ouf

a

I [N-=] T
MEO D AL >TEO0000
Th@E o SE QA = -
madnm=ZZToWoOOOD
12]
249 13

488 DaTa 488 BUS
184 8 ipk2 2 k81 a4l -
3 o1
DO7 G s z 512 el ey heln e
DOE[4 52> Dls
<5 Ha 3 13 il ﬂl.2) Y 5 _@ D15
| S
DO a4 03 j“ PARALLEL e 4 LY 2)3 B> ola
2 &4y 3 rolL -L?E z e o4l &> 013
DO He 7 1a 5 {mz & M2 7 g |7 fr> 0i2
002188 s 7 owr e L e o THE g] 55> ol
DOl 4 T4 @ i B (- _KME 15 12 AM4) 1 - _@ 0@
Do e oL oE MZ hd INTERAUPT STATUS READ
I ig-a4 12 wi| w| o L s
L it.“ Il®
]
8 9 P 7 11 BN e 3
i a 7| 6 e 4
< 4 12,8THRU 24 |1 [z i3 |4 fi3[14)is)ie 4 5
5 4 13 2 I DZ D3 4 D5 06 D7 D& 2|2 el=i&
2 . & 4| apm 5 HBEE g 19,
[o 3 opata |2 488 BUS _ g <
. \ i a is wzozol8x :2:5;‘;3‘ iz
WRITE F] O we =-ud ki b\) 5l x,
—_—] 2 - 2 y 17 L3 L WEh as EES 6
PWR [T 1I> El 3 8 9 R 3 i Gl ERCH W o Erﬂ‘r_"ﬁﬁ'ﬁ =
5 OUT@ [13 10 4. k] EMEBEB g
cL UE 8 F4
) NE) :| T 5 F! v—@m 1 >—
J D_g;‘ ‘2\ T 2. & , TYPiCAL i;
74L5T4
gl . g 9 Dav 5 lx2 g K2 7] g ¢ 3| E4 [g 2 a
2 gl 7 | ~eFp Brdke oy 215] -
HEERE 13 12 NDAC 34k 2 r K
APPREE q_:’_"g § 4l g8 [50F y) = 10 _fd2
R - EEEE g [g 2 3] COMMAND [2 ATN D 3 4R 2 pd? 1
7 B>) A2l = " 5] {sea 13 .\EJ 2| 19215
A 2> Y E g 2 7l k3] [ren 5 19 6 r 2 T
€ H S 18 ig| |eor T & 10_K2 9
w d -
w fL_ OE o
Kz-4
A5 B>— z M X K24
" i 2 12 ey
a4 BO> 2 e 1)F?
£l
Ay RO 12,13
Az B o] u]iz]ialis
& C F 5
E 5 4321 b3
*ATH Lo 3
A B> e 3
Ao > 12p I }
+5 o
e 3 s g o2 $= ce
3 (o]] E) 2] 11
By I5 ‘—T—'
& E“” 13
. ba? (T
L
RESET [Tice s D06 15 o dlo s
Foe 005
oC poa REN i Fe |a s
‘_t 12
(] 3 5_/_‘5- E
vie [>o0 002 -_”f_p] E2
g1 2 b 3
i [E>o 0og o
a|Fe |s POG/ RESET E
viz s] z
vis [0 ‘N;ﬁ::” INTERRUPT STATUS READ 45 %
— iNT. LATCHES RESET STROBE
vi4 AREA INTERRUPT W
ViR o
vie [@»—0 RESET + POC
vir & DENOTES QOPEN GOLLECTOR I:KLE
— e
NMl [0 $ 0 S
[X>> DENOTES 5100 BUS CONNECTOR PICKLES & TROUT
PINT ||D—O
© 1975, 82 PICKLES A TROUT TRoUle ro BOX 1206, GOLETA, CA 931 16, (805) 6854641
P l - I 6 5 + 4 3 2

| 1

