
MICROPOLIS

1040/1050 5-100

FLOPPY DISK SUBSYSTEMS

USER'S MANUAL

/'1oPSL- ,,(0,

DOCUMENT NUMBER 100089-01

REVISION 1Q - APRIL 1979

PROPRIETARY NOTICE

Re-order No. 1084-01

Information contained in this manual may not be duplicated in full or
in part by any person without prior written consent of Micropolis
Corporation. The sole purpose of this manual is to provide the user
with adequately detailed documentation to efficiently install and operate
the equipment supplied by Micropolis and to write programs using
Micropolis Software. The use of this document for all other purposes
is prohibited.

MICROPOLIS CORPORATION, 7959 DEERING AVENUE, CANOGA PARK, CALIFORNIA 91304

MICROPOLIS™
COPYRIGHT 1979

FOREWORD

This manual provides operating and programing instructions for the
Micropolis 1040/1050 S-lOO Series Floppy Disk SUb-systems. The first
three chapters provide a detailed description of the physical
integration process from unpacking the system components to defining
system configurations, The fourth chapter deals with the Micropolis
Diskette Operating System. The fifth chapter deals with Micropolis
Disk Extended BASIC. Chapter six indicates disk access techniques
independent of BASIC or DOS.

This manual does not deal with maintenance. See 1040/1050 S-100
Series Floppy Disk Sub-systems Maintenance Manual, document number

The latest revision of each page has been included with this manual.
The individual pages of this manual are subject to replacement under
new releases or versions of the software. Such replacement or
additional changes are given the date of the change.

'The initial release of a Micropolis software product is given the number
1.0, meaning release 1, version O. Any corrections and amplifications
to the software are accumulated and issued under a new version number;
thus, the first revision version number is 1.1. When a major group of
new features is added, plus the accumulated corrections Of earlier
versions, a new release number is assigned, such as 2.0.

Please read this manual thoroughly as to installation and
Should you require additional assistance in servicing this equipment,
please contact your dealer who sold it (or MICROPOLIS in the case of
direct purchase).

Rev. 8 9/78 i

LIMITED 90 DAY WARRANTY

Micropolis Corporation, 7959 Deering Avenue, Canoga Park, California
91304, telephone (213) 703-1121., warrants the electrical and mechanical
parts of its products to be free from defects in design, materials and
workmanship for a period of ninety (90) days from date of delivery to
the original end user. Should a product prove defective during the
warranty period, it will be repaired or replaced free of charge.

Software supplied with the product is warranted to conform to Micropolis'
software product description applicable at the time of order. Micropolis'
sole obligation with respect to the warranty of its software is to remedy
any nonconformance.

In order to validate this warranty, the warranty registration form found
in the front of the user's manual must be completed and returned to
Micropolis within ten (10) days from date of purchase.

If the product was purchased from a computer store, it must be returned
to such store for repair, along with the original shipping carton, if
possible.

If, and only if, the product was purchased directly from Micropolis, in
'order to obtain repairs, the product should be carefully packaged in the
original shipping carton and sent (preferably by United Parcel Service)
to Micropolis at the above address, attention: Customer Service. Prior
to shipment Return Authorization Number should be obtained from Micropolis
Customer Service. You should include a note in the package giving your
name, address, proof of purchase and delivery date and a brief description
of the problem experienced. Micropolis recommends that you insure the
package for the full value of the product. The product will be repaired
as soon as possible, but, in any event, within thirty (30) days.

This warranty shall be null and void should the product be damaged,
subjected to misuse, improper maintenance, negligence, accident or should
its serial number or any part thereof be altered, defaced or removed.
Further, this warranty will be null and void should the product's design
be altered or should repairs be attempted by one not authorized by
Micropolis to make repairs.

Micropolis shall not be responsible for any incidental or consequential
damages. Some states do not allow the exclusion or limitation of
incidental or consequential damages, so this limitation or exclusion
may not apply to you.

This warranty limits any implied warranty to ninety (90) days from date
of delivery to the original end user. Some states do not allow limita-
tions on how long an implied warranty lasts, so this limitation may not
apply to you.

This warranty gives you specific legal rights and you may also have
other rights which vary from state to state.

Rev. 7 3/78 ii

TABLE OF CONTENTS

SECTION I GENERAL INFORMATION PAGE

1.0 INTRODUCTION 1-1

1.1 IDENTIFICATION PLATE 1-1
1.2 OVERVIEW OF SUBSYSTEMS 1-1

1.2.1 FUNCTION DESCRIPTION 1-1
1.2.2 MODEL VERSIONS 1-2
1.2.3 MEDIA 1-3

1.3 PHYSICAL DESCRIPTION AND DIMENSIONS 1-8

1.3.1 1053/1033 DUAL DISK DRIVE MODULE 1-8
1.3.2 1043/1023 AND 1042/1022 SINGLE DISK DRIVE MODULE 1-8
1.3.3 1041/1021 SINGLE DISK DRIVE MODULE WITHOUT POWER SUPPLY 1-8
1.3.4 1071 CONTROLLER 1-8
1.3.5 INTERFACE CABLES 1-9

1.4 SPECIFICATIONS 1-9

1.4.1 DRIVE PERFORMANCE 1-9
, 1.4.2 ENVIRONMENTAL 1-10

1.4.3 DRIVE RELIABILITY 1-10

1.5 SUMMARY OF MICROPOLIS PROGRAM DEVELOPMENT SOFTWARE 1-10

1.5.1 ELEMENTS OF MOOS 1-12
1.5.2 ELEMENTS OF MICROPOLIS DISK EXTENDED BASIC 1-13

SECTION II INSTALLATION

2.0 INTRODUCTION

2.1 HARDWARE INSTALLATION

2.1.1 UNPACKING THE EQUIPMENT
2.1.2 INITIAL CHECKOUT
2.1.3 CONTROLLER HARDWARE REQUIREMENTS
2.1.4 CONTROLLER CONFIGURATION

2.1.4.1 CHANGING THE CONTROLLER BASE ADDRESS
2.1.4.2 REJUMPERING FOR 3 MHZ OR 4 MHZ OPERATION

2.1.5 INSTALLING THE CONTROLLER AND INTERFACE CABLE
2.1.6 DAISY CHAINING MULTIPLE DISK DRIVES
2.1.7 APPLYING DC POWER - MODEL 1041/1021 ONLY

2.1.7.1 REGULATED DC
2.1.7.2 UNREGULATED DC

2.1.8 CUSTOM MOUNTING OF THE 1041/1021 DRIVES
2.1.9 LOADING AND UNLOADING

0-1

Rev. 7 3/78

2-1

2-1

2-1
2-3
2-3
2-3

2-4
2-4

2-4
2-9
2-9

2-11
2-11

2-12
2-14

2.2 SYSTEM SOFTWARE INSTALLATION

2.2.1 PROGRAM DEVELOPMENT MEMORY REQUIREMENTS
2.2.2 SUPPORTED I/O DEVICES
2.2.3 LOADING THE PDS MDOS SYSTEM INTO MEMORY FROt,1 THE

MASTER DISKETTE
2.2.4 THE PDS SYSTEMS FOR YOUR

2.2.4.1 CONFIGURING A STANDARD TERMINAL
2.2.4.2 CONFIGURING A -MODIFIED STANDARD TERMINAL
2.2.4.3 NON-STANDARD CONFIGURATION

2.2.4.3.1 THE CONSOLE I/O TABLE
2.2.4.3.2 LOGICAL CONSOLE I/O
2.2.4.3.3 PHYSICAL CONSOLE DEVICE INPUT
2.2.4.3.4 PHYSICAL CONSOLE DEVICE OUTPUT
2.2.4.3.5.PHYSICAL CONSOLE DEVICE BREAK CHECK ROUTINE
2.2.4.3.6 PHYSICAL CONSOLE DEVICE INITIALIZE
2.2.4.3.7 STARTING YOUR SYSTEM

2.2.5 SYSTEM PRINTER CONFIGURATION

2.2.5.1 CONFIGURING THE SUPPLIED PRINTER HANDLER
2.2.5.2 PRINTER INTERFACE EXAMPLE
2.2.5.3 CONFIGURING SPECIAL PRINTER HANDLERS

2.2.5.3.1 THE LIST I/O TABLE
2.2.5.3.2 LOGICAL' LIST I/O
2.2.5.3.3 PHYSICAL LIST DEVICE OUTPUT
2.2.5.3.4 PHYSICAL LIST DEVICE ATTENTION ROUTINE
2.2.5.3.5 PHYSICAL LIST DEVICE INITIALIZE

2.2.6 CREATING YOUR SYSTEM DISKETTE
2.2.7 CREATING A BASIC ONLY SYSTEM DISKETTE
2.2.8 MAKING ADDITIONAL COPIES OF YOUR SYSTEM DISKETTE

USING A SINGLE DRIVE

SECTION III NORMAL OPERATION

3.0 INTRODUCTION
3. 1 BOOTSTRAP PROCEDURE
3.2 OPERATING HINTS

CONCEPT OF B,ACKUP
SECTION IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MDOS
4. 1 THE MDOS EXECUTIVE

4.1.1 ENTERING EXECUTIVE COMMANDS
4.1.2 EXECUTIVE STATEMENT
4.1.3 CANCELING AN OPERATION
4.1.4 DISPLAY CONTROL

0-2

Rev. 7 3/78

PAGE

2-15

2-15
2 ... 15

2-15
2-19

2-19
2-21
2-22

2-22
2-24
2-24
2-24
2-24
2 ... 25
2-25

2-25

2-26
2-28
2-31

2-31
2-31
2-31
2-32
2 ... 32

2-33
2-34

2-35

3-1
3-1
3-3
3 .. 4

4-1
4-2

4-2
4-2
4-3
4-4

4.1.5 EXPLICIT .EXECUTIVE COMMANDS

4.1.5.1 THE COMP COMMAND
4.1.5.2 THE DUMP COMMAND
4.1.5.3 THE ENTR COMMAND
4.1.5.4.THE FILL COMMAND
4.1.5.5 THE MOVE COMMAND
4.1.5.6 THE SEAR COMMAND
4.1.5.7 THE SEARN COMMAND
4.1.5.8 THE CREATE COMMAND
4.1.5.9 THE DISP COMMAND
4.1.5.10 THE FILES COMMAND
4.1.5.11 THE FREE COMMAND
4.1.5.12 THE SCRATCH COMMAND
4. 1 .5. 13 THE. LOAD COMMAND
4.1.5.14 THE SAVE COMMAND
4.1.5.15 THE RENAME COMMAND
4.1.5.16 TYPE COMMAND

17 THE APP COMMAND
4.1.5.18 THE ASSIGN COMMAND
4.1.5.19 THE EXEC COMMAND
4.1.5.20 THE HATH COMMAND
4.1.5.21 THE PROMPT COMMAND

. 4. l. 5.22 THE IN IT

4.2 MOOS DISK FILE I/O

4.2.1 TRACK INDEXED FILE STORAGE
FILE NAMES

4.2.3 FILE PROTECTION AND TYPE DEFINITION
4.2.4 FILE AND RECORD STRUCTURE
4.2.5 FILE ACCESS METHODS
4.2.6 COMPATIBILITY BETWEEN MOOS AND BASIC

4.3 MOOS SHARED SUBROUTINES

4.3.1 CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES
4.3.1.1 @CIN - CONSOLE INPUT
4.3.1.2 @COUT - CONSOLE OUTPUT
4.3.1.3 @CBRK - CONSOLE BREAK CHECK
4.3.1.4 @CDIN - CONSOLE DEVICE INPUT
4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT
4.1.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK
4.3.1.7 @CDINIT - CONSOLE DEVICE INITIALIZATION
4.3.1.8 @LOUT - LIST OUTPUT
4.3.1.9 @LATN - LIST ATTENTION
4.3.1.10 @LDOUT - LIST DEVICE OUTPUT
4.3.1.11 @LDATN - LIST DEVICE ATTENTION
4.3.1.12 @LDINIT - LIST DEVICE INITIALIZATION
4.3.1.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN
4.3.1.14 @LCRLF - LIST LINE FEED CARRIAGE RETURN'
4.3.1.15 @ASSIGN - ASSIGN

0-3

Rev. 10 4/79

PAGE

4-4

4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7
4-7
4-8
4-8,2
4-9
4-9
4-9
4 ... 11
4-11
4-11
4-12

4-13

4-13
4-13
4-14
4-15
4-16
4-17

4-18

4-18

4-18
4-18
4-19
4-19
4-19
4-19
4-19
4-19
4-20
4-20
4-20
4-20
4-20
4-20
4-20

4.3.1.16 @CILINE - CONSOLE INPUT LINE
4.3.1.17 @HEXOUT - HEXADECIMAL OUTPUT
4.3.1.18 @HEXADDOUT - ADDRESS OUTPUT
4.3.1.19 @HEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE
4.3.1.20 @SPACEOUT - SPACE OUT
4.3.1.21 @NLINEOUT - NEW LINE OUTPUT
4.3.1.22 @LINEOUT - LINE OUTPUT

4.3.2 TEXT LINE PARSING SUBROUTINES

4.3.2.1 @PARAM - PARAMETER
4.3.2.2 @SKIPSPACE - SKIP SPACES
4.3.2.3 @SCAN - SCAN
4.3.2.4 @SEAR - SEARCH
4.3.2.5 @AHEXTBIN - ASCII HEX TO BINARY

4.3.3 THE FILE ACCESS ROUTINES

4.3.3.1 @CREATE - CREATE
4.3.3.2 @GFILESTAT - GET FILE STATUS
4.3.3.3 @DIRSEARCH - DIRECTORY SEARCH
4.3.3.4 @OPENFILE - OPEN A FILE
4.1.3.5 @CLOSEFILE - CLOSE A FILE
4.3.3.6 @RFILEINF - READ FILE INFORMATION
4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START
4.3.3.8 @RRECORDLEN ... READ RECORD LENGTH
4.3.3.9 @RINXPOS - READ INDEX POSITION
4.3.3.10 @SINXPOS - SET INDEX POSITION
4.3.3.11 @INCINX - INCREMENi INDEX POSITION
4.3.3.12 @RFINXPOS - READ FROM INDEX POSITION
4.3.3.13 @RFINXPOSI READ FROM INDEX POSITION AND,

INCREMENT INDEX'
4.3.3.14 @WTINXPOS - WRITE TO INDEX POSITION
4.3.3.15 @WTINXPOSI - WRITE TO INDEX POSITION AND

INCREMENT INDEX
4.3.3.16 @LOADDATA - tOAD 'DATA
4.3.3.17 @SAVEDATA - SAVE DATA
4.3.3.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION 10

END OF RECORD
4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF

FILE
4.3.3.20 @INCRECPOS -INCREMENT RECORD POSITION

4.3.4 FILE MANAGEMENT SUBROUTINES

4.3.4.1 @FREE - FREE
4.3.4.2 @RENAME - RENAME
4.3.4.3 @TYPE - FILE TYPE
4.3.4.4 @SCRATCH - SCRATCH A FILE

, '.:

0-4

Rev. 9 1/79

PAGE
4",,21
4-21
4-21
4 ... 21
4-21
4-22
4 .. 22

4 .. 22

4-22
4 .. 23
4-23
4-23
4 ... 24

4-24

4-26
4-26
4-27
4-27
4-27
4-27
4 .. 28
4-28
4 ... 28
4-29
4:'29
4-29

4-30
4-30

4-30
4-31
4-31

4-31.1

4-32
4-32

4-32

.4-32
4-32
4-33
4-33

PAGE

4.3.5 PHYSICAL DISK ACCESS ROUTINES 4-33

4.3.5.1 @GETASEC - GET A SECTOR 4-34
4.3.5.2 @PUTASEC - PUT A SECTOR 4-34
4.3.5.3'@WRITESECTOR - WRITE A SECTOR 4-35
4.3.5.4 @VERIFYSECTOR - VERIFY A SECTOR 4-35
4.3.5.5 @SEEKTRACK - SEEK TO A TRACK 4-35
4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD 4-35

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES 4-36

4.3.6.1 @HLADDA - ADD A TO HL 4-36
4.3.6.2 @INXM - INCREMENT 4-36
4.3.6.3 @LHLINDEXED - LOAD HL INDIRECT INDEXED 4-36
4.3.6.4 @LHLI - LOAD HL INDIRECT 4-37
4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C 4-37
4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF Be 4-37
4.3.6.7 @TRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF

BC REVERSE 4-37
4.3.6.8 @TRANSFILENAME - TRANSFER A FILENAME 4-38
4.3.6.9 @FILLZER - FILL ZEROES 4-38
4.3.6.10 @FILLSPC - FILL SPACES 4-38
4.3".6. 11 @FILLA - FILL FROM THE A REGISTER 4-38
4.3.6.12 @COMPARE - COMPARE HL TO DE 4-38

4.3.7 EXTENDED 8080 INTEGER ARITHMETIC (16 BITS) 4-39
4.3.7.1 @DEADDHL - BC=DE+HL 4-39
4.3.7.2 @DESUBHL - BC=DE-HL 4-39
4.3.7.3 @DEMULHL - BC=DE*HL 4-39
4.3.7.4 @DEDIVHL - BC=DE/HL 4-40
4.3.7.5 @DEMODHL - BC=DE%HL 4-40

4.3.8 MESSAGE OUTPUT SUBROUTINES 4-40

4.3.8.1 @DISKERROR - DISK ERROR MESSAGES 4-40
4.3.8.2 @CLOSEFILES - CLOSE ALL FILES 4-41
4.3.8.3 @ERRORMES - ERROR MESSAGES 4-41
4.3.8.4 @MESSAGEOUT - MESSAGE OUTPUT 4-41

4.3.9 SYSTEM BUFFERS AND ENTRY POINTS 4-41

4.4 LINEEDIT - THE MDOS LINE EDITOR 4-43

4.4.1 ENTERING LINES TO LINEEDIT 4-43
4.4.2 KEYING IN A NEW TEXT FILE 4-44
4.4.3 ENTERING LINEEDIT COMMANDS 4-44 ,
4.4.4 THE CLEAR COMMAND 4-45
4.4.5 THE NAME COMMAND 4-45
4.4.6 THE FILE COMMAND 4-45
4.4.7 THE AUTO COMMAND 4-45

0-5

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND
4.4.9 THE LOAD COMMAND
4.4.10 THE APPEND COMMAND
4.4.11 THE SAVE COMMAND
4.4.12 THE RESAVE COMMAND
4.4.13 THE LIST COMMAND

·4.4.14 THE LISTP COMMAND
4.4.15 THE PRINT COMMAND
4.4.16 THE PRINTP COMMAND
4.4.17 THE TAB COMMAND
4.4.18 THE DELT COMMAND
4.4.19 THE RENUM COMMAND
4.4.20 THE SEARCH COMMAND
4.4.21 THE SEARCHALL COMMAND
4.4.22 THE CHANGE COMMAND
4.4.23 THE CHANGEALL COMMAND
4.4.24 THE EDIT COMMAND

4.4.24.1 ADVANCING THE EDIT POINTER
4.4.24.2 CHANGING THE NEXT CHARACTER - C
4.4.24.3 DELETING THE NEXT CHARACTER - D
4.4 .. 24.4 INSERT ING CHARACTERS - I
4.4.24.5 LISTING THE LINE IN THE EDIT BUFFER - L
4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S
4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K
4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q

COMPLETING THE EDIT COMMAND

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT
4.4.26 LINEEDIT FILE STRUCTURE

4.5 ASSM - THE MICROPOLIS 8080/8085 DISK ASSEMBLER

4.5.1 HOW TO INVOKE ASSM
4.5.2 LANGUAGE ELEMENTS

4.5.2.1 LITERALS
4.5.2.2 SYMBOLIC NAMES
4.5.2.3 OPERATORS
4.5.2.4 OPCODE MNEMONICS

4.5.3 OPERANDS
4.5.4 ASSEMBLER DIRECTIVES

4.5.4.1 ORG - ORIGIN
4.5.4.2 LINK - LIND TO A FILE
4.5.4.3 END - END OF ASSEMBLY
4.5.4.4 EQU - EQUATE
4.5.4.5 INP - INPUT
4.5.4.6 PRT - PRINT
4.5.4.7 TAB - TAB SETTINGS

Rev. 8 9/78

0-6

PAGE

4-46
4-46
4-46
4-47
4-47
4-48
4-48
4-49
4-49
4-49
4-49
4-49
4-50
4.,.50
4-51
4-5?
4-52

4-52.1
4-52.1
4-52.1
4 52.1
4-52.1
4-53
4-53
4-53
4-53

4-53
4-54

4-55

4-55
4-57

4-58
4-58
4-59
4-60

4-60
4-61

/

4 .. 61
4-61
4-62.1
4-63
4-63
4-63
4-64

4.5.4.8 NLIST - NO LIST TO PRINTER
4.5.4.9 LIST - LIST TO PRINTER
4.5.4.10 FORM - FORM FEED
4.5.4.11 DB - DEFINE BYTE
4.5.4.12 DW - DEFINE WORD
4.5.4.13 DD - DEFINE DATA
4.5.4.14 DT - DEFINE TEXT
4.5.4.15 DTZ - DEFINE TEXT TERMINATED WITH ZERO
4.5.4.16 DTH - DEFINE TEXT TERMINATED WITH BIT 8 HIGH
4.5.4.17 DS - DEFINE STORAGE
4.5.4.18 FILL - FILL STORAGE
4.5.4.19 IFF - IF FALSE
4.5.4.20 1FT - 1FT TRUE
4.5.4.21 ENDIF - END OF IFF

4.5.5 ASSEMBLER ERRORS

4.6 SYMSAVE UTILITY
4.7 FILECOPY UTILITY
4.8 DISKCOPY UTILITY
4.9 MDOS ERROR MESSAGES
4.10 COPYFILE UTILITY FOR SINGLE DISK
4.11 MICROPOLIS DEBUG
4.12 DEBUG-GEN UTILITY

SECTION V MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCT ION
5.1 ENTERING LINES TO THE BASIC INTERPRETER
5.2 ENTERING A PROGRAM
5.3 IMMEDIATELY EXECUTED LINES

5.3.1 THE EDIT COMMAND
5.3.2 THE RENUM COMMAND
5.3.3 THE COMMAND

5.4 DELETE COMMAND
5.5 LIST COMMAND
5.6 SAVE COMMAND
5.7 LOAD COMMAND
5.8 DISPLAY COMMAND
5.9 SCRATCH COMMAND
5.10 RUN COMMAND
5.11 INTERRUPTING A RUNNING
5.12 CONTINUING AN INTERRUPTED PROGRAM
5.13 PROGRAM TRACING COMMANDS
5.14 BASIC SYSTEM ERROR HANDLING
5.15 BASIC CHARACTER SET
5. 16 DATA

5.16.1 CONSTANTS
5.16.2 VARIABLES
5.16.3 OUTPUT FORMATS

Rev. 8 9/78
0-7

PAGE
4-64
4-64
4-64
4-64
4-65
4-65
4-65
4-65
4-65
4-66
4-66
4-66
4-66
4-66

4-67

4-68
4-69
4-69
4-71
4-74
4-75
4-92

5-1
5-1
5-2
5-3

5-3
5-4.1
5-4.3

5-3
5-4
5-4
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-8
5-9
5-9

5-9
5-10
5-12

5. 17 OPERATORS

5.17.1 NUMERIC OPERATORS
5.17.2 STRING OPERATORS
5.17.3 RELATIONAL OPERATORS
5.17.4 LOGICAL OPERATORS

5.1B FUNCTIONS

5.18.1 INTRINSIC FUNCTIONS

5.1B.l.1 NUMERIC FUNCTIONS

ABS
ATN
COS
EXP
FIX
FRAC
INT
LN
LOG
MAX
MIN
MOD
RND
SGN
SIN·
SQR
TAN

5.1B.l.2 STRING FUNCTIONS

ASC
CHAR$
FMT
INDEX
LEFT$
LEN

MIN
REPEAT$
RIGHT$
STR$
VAL
VERIFY

5.1B.l.3 SPECIAL FUNCTIONS
IN
PEEK
PGMSIZE
SPACELEFT

5.18.2 USER DEFINED FUNCTIONS

Rev. 8 9/78
O-B

PAGE

5-14

5-14
5-14
5-15
5-16

5-17

5-17

5-18
5-1B
5-1B
5-1B
5-18
5-18
5-1B
5-18
5-18
5-1B
5-18
5-1B
5-19
5-19
5-19
5-19
5-19

5-20
5-20
5-20
5-21
5-21
5-21
5-21
5-21
5-21
5-21
5-21
5-21
5-21
5-21

5-22
5-22
5-22
5-22

5-22

5.19 Expressions

5.19.1 Evaluation of Expressions
5.19.2 Numeric Expressions
5.19.3 String Expressions
5.19.4 Logical Expressions

5.20 BASIC Statements

5.20.1 DATA
5.20.2 DEF FN
5.20.3 DEF FA
5.20.4 DIM
5.20.5 END
5.20.6 EXEC
5.20.7 FLOW
5.20.8 FOR
5.20.9 GOSUB
5.20.10 GOTO
5.20.11 IF •• THEN
5.20.12 INPUT
5.20.13 LET
5.20. MEMEND
5' • 20. 15 NEXT
5.20.16 NOFLOW
5.20.170N •• GOTO
5.20.180N •• GOSUB
5.20.19 OUT

POKE
5.20.21 PRINT
5.20.22 READ
5.20.23 REM
5.20.24 RESTORE
5.20.25 RETURN
5.20.26 SIZES
5.20.27 STOP
5.20.28 STRING

5.21 BASIC DISK FILE I/O

5.21.1 Disk Files
5.21.2 Disk File Commands

5.21.2.1 DISPLAY
5.21.2.2 LOAD
5.21.2.3 PLOADG
5.21.2.4 SAVE
5.21.2.5 SCRATCH
5.21.2.6 CHAIN
5.21.2.7 LINK

Rev. 7 3/78

5-33

5 ... 33
5-33
5-34
5-35

5-36

5-36
5-37
5-37

. 5-38
5-38
5-39
5-39
5-40
5-42
5-43
5-43
5-44
5-44
5-45

\ 5-45
5-45
5-45
5-46
5-46
5-46
5-47
5-49
5-49
5-49
5-49
5-50
5-50
5-50

5-51

5-51
5-52

5-53
5-53
5-53
5-54
5-54.1
5-54. 1
5-54. 1

0-9

5.21.3 Disk I/O Statements

5.21.3.1 OPEN
5.21.3.2 PUT
5.21.3.3 GET
5.21.3.4 CLOSE
5.21.3.5 ATTRS
5.21.3.6 EOF
5.21.3.7' FREESPACE
5.21.3.8 GETSEEK
5.21.3.9 PUTSEEK
5.21.3.10 RENAME

5.21.4 Disk I/O Functions

ATTR
ERR
ERR$
NANE
RECGET
RECPUT
SIZE
TRACKS
FREETR

5 ... 54. 1

5-55
5 57
5-60
5 ... 60
5 ... 61
5 .. 61
5-62
5-62
5-62
5-63

5-63

5",,64
5-64
5 ... 64
5-64
5-64
5-64
5 ... 64
5-64
5-64

5.22 BASIC PRINT FILE OUTPUT 5-65

5-65

5",,65
5-66
5-66
5-67

Rev. 7 3/78

5.22.1 Printer Related Language Features

5.22.1.1 OPEN
5.22.1.2 PUT
5.22.1.3 CLOSE
5.22.1.4 ENDPAGE
5.22.1.5 ASSIGN
5.22.1.6 LISTP
5.22.1.7 PAGESIZE

5.22.2 Notes on Printer Related
Programming

5 ... 67
5 ... 69
5-69

5-70

5.22.2.1 Separating Print Files 5-70
and Interactive Messages

5.22.2.2 Paginating Print Files 5-73
5.22.2.3 Spooling Print Files to 5-76

Disk for Later Output
5.22.2.4 Draining File Output ,to A 5-76

Null Device
5.22.2.5 Echoing of Terminal 5-77

Output to Printer

0-10

SECTION VI DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

6.0 INTRODUCTION
6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA
6.2 HARDWARE FUNDAMENTALS '
6.3 CONTROLLER REGISTERS
6.4 DISK OPERATIONS
6.5 ERROR HANDLING
6.6 DISK DRIVER
APPENDIX A ... BASIC ERROR MESSAGES
APPENDIX B - BASIC UTILITY PROGRAM
APPENDIX C ... ACCESSING DISKCOPY FROM BASIC
APPENDIX D - SUMMARY OF MDOS ERROR MESSAGES
APPENDIX E - SYSTEM I/O LISTINGS
APPENDIX F - MICROPOLIS DISK BOOTSTRAP
APPENDIX G - FEATURES PROGRAM TO SHORTEN BASIC

0-11

Rev. 8 9/78

PAGE

6-3
6-3
6 ... 7
6-9
6 ... 13
6-20

A-1
B ... 1
C-1
0-1
E"':'l
F-1

1

I GENERAL INFORMATION AND SPECIFICATIONS

1 .0 INTROOUCT ION

This sectio'n provides general irlformati-on, and specifications of Micropol is
Floppy Disk storage subsystems Model Numbers 1021 through 1053.

li.l IDENTIFICATION PLATE

An identification plate is located on the base chassis (bottom of unit).
It shows model number, serial number, line voltage and fuse rating. Both
model number and serial number should always be quoted in warranty
correspondence.

WARNING - When replacing the fuse always use a fuse of the same type and
rating. These are:

OPERATING VOLTAGE FUSE TYPE AMPERE VOLTAGE
RANGE VAC RMS RATING RATING

100 to 125 3AG SLO-BLO 1.0 250
200 to 240 3AG SLO-BLO 0.5 250

LITTELFUSE
PART NUMBER

313001
313.500

MICROPOLIS
PART NUMBER

626-0002 ... 8
626-0001-0

WARNING - This equipment is provided with a 3 pin power plug. The plug
must be inserted in a 3 pin receptable with the third pin connected
to· earth ground.

1.2 OVERVIEW OF SUBSYSTEMS

1.2.1 FUNCTION DESCRIPTION

Each subsystem comprises:

o A storage module consisting of an enclosurei drive electronics and
one (or two disk drives) on model. Power supplies may
or may not be provided depending on model number.

o A single printed circuit board designed to be physically and
electrically compatible with S-lOO bus and 80BO/ZBO based micro-
computers.

o A software package together with documentation is provided, which
allows the subsystem to be used effectively by both end users and
system designers having varying levels of experience.

The subsystems are fully automatic and require no operator intervention during
normal operation. Applications include random access mass data storage, data
entry, data output and program storage.

1-1

Rev. 7 3/78

1.2.2 MODEL VERSIONS

Each model number is followed by either the notation Mod I or Mod II. These
notations indicate whether,the system o'perates at a track density of 48 TPI
(35 tracks total) or 100 TPI (77 tracks total). Mod I storage modules have
a black disk 'load actuator and II modules have a blue disk load actuator.

The models described in this document are:

II:

1053 Mod I:

1043 Mod II:

1042 Mod I:

1041 Mod II:

Complete'Metaf1oppytm dual-disk subsystem with a total of
630 kilobytes of formatted on-line storage. Includes two
disk drives, S-100/8080/Z-80 compatible controller (Model
1071), drive enclosure, A and power supply.

Complete Macrof1oppytm dual-disk subsystem similar to the
1053 Mod II except with a total of 287 kilobytes of formatted
on-line storage.

single-disk subsystem with a total of
315 kilobytes of formatted storage. Includes one
disk drive, compatible controller (Model
1071), drive enclosure, interface cable A and power supply.

Complete Macrof1oppytm single-disk subsystem similar to 1043
Mod II except with a total of 143 kilobytes of formatted
on-line storage.

Complete Metafloppytm single-disk subsystem with 315 kilobytes
of on-line storage. Similar to 1043 except drive is enclosed
in a protective sleeve which does not include a power supply
or regulator/heat sink package, but includes a power cable A
for connection to an external regulated power supply. The
1041 Mod II can be used in a desk-top mode, or the rubber feet
can be removed and the unit mounted in the customer's chassis.

1041 Mod I: Complete Macrofloppytm single-disk subsystem with a total of
143 kilobytes of formatted on-line storage. Similar to 1041
Mod II except for storage capacity.

1-2

Rev. 10 4/79

1033 Mod II: Add-on dual-disk storage module with a total of 630 kilobytes
of formatted on-line storage. Includes two disk-drives, drive
enclosure and power supply. Attaches to a 1053 Mod II using
a Daisy Chain

1033 Mod I: Add-on dual-disk storage module similar to the 1033 Mod II
except with a total kilobytes of formatted on-line
storage. Attaches to a 1053 Mod I using a Daisy Chain cable.

1023 Mod II: Add-on single disk storage module with a total of 315 kilobytes
of formatted on-line storage. Includes one disk drive, drive
enclosure and power supply. Attaches to a 1043/1053 Mod II
using a Daisy Chain cable.

1022 t·1od I: Add-on single disk storage module similar to the 1023 Mod II
except with a total of 287 kilobytes of formatted
storage. Attaches to a 1043/1053 Mod I using a Daisy Chain
cable.

1021 Mod II: Add-on single disk storage module with a total of 315 kilobytes
of formatted on-line storage. Similar to 1023 Mod II except
drive is enclosed in a protective sleeve which does not include
a power supply or regulator/heat sink package. Attaches to a
1043/1053 Mod II using a Daisy Chain cable and includes a power
cable for connection to an external regulated power supply.

1021 ModI: Add-on single disk storage module similar to the 1021 Mod II
except with a formatted on-line storage of 143 kilobytes.
Attaches to a 1043/1053 Mod I using a Daisy Chain cable.

1091-01: Regulator kit. Includes heat sink, regulator IC's, cables
and mounting hardware. Provides regulators to convert S-100
bus unregulated voltages to the voltages required to operate
1041/1021 drives and includes a power cable B for connection
to 5-100 bus unregulated voltages via a socket on the subsystem
controller.

MEDIA (DISKETTES)

The recording medium used with is storage subsystems is an industry-
standard 5 1/4-inch diskette (Figure 1.1) in its hard-sectored version with
16 sectors, each defined by a sector hole. Thus, it has one index hole and
16 sector holes. Diskettes of this type are available from Micropo1is or
from many local sources, such as computer stores.

NOTE: Do NOT use diskettes with other than 16 hard sectors, or those which
are soft-sectored (no sector holes). They will not work.

1-3

DO\J 7 ?/7P.

51/4"

Rev. 7 3/78

LABEL

DISKETTE NO.

MICROPOLIS'

READ/WRITE HEAD ACCESS
HOLE (BOTH SIDES)

STRESS RELIEF NOTCHES

Figure 1.1 5 1/4 inch Diskette

1-4

WRITE PROTECT
CUTOUT

DRIVE SPINDLE HOLE

SECTOR/INDEX HOLE
(BOTH SIDES)

New diskettes must be initialized (formatted) before being used for the first
time. See Appendix B for the initialization procedure.

The sUb-systems equipped with a File Protect Protect) feature
which protects a suitab1y treated diskette from inadvertent erasure or over-
writing of important files. File Protect tabs are provided with each package
of diskettes from Micropolis. Installation of these File Protect tabs is
shown in Figure 1.2.

The nature of in-contact recording as used in magnetic tape and floppy disk
drives requires that the medium be replaced from time to time. The intervals
naturally depend on the kind of usage. Continual loading of the head on a
single track will naturally result in its deterioration before that of the
remainder of the diskette. Your diskette is protected as far as possible by
the smooth characteristics of the Micropolis ceramic head and by the automatic
head unload feature which raises the head load pad from the surface of the
diskette if no activity has occurred for 5 seconds.

When a diskette is loaded--that is, when a diskette is inserted and the manual
load actuator is depressed--it begins and continues to rotate inside the jacket.
The user can extend the life of a diskette by unloading the actuator during
periods in which the disk is not in use; this raises the head load pad and
discontinues rotation.

1-5

Rev. 7 3/78

WRITE ENABLE NOTCH

o
o

WRITE PROTECT TAB
FOLD OVER SIDE OF DISK

INDEX AND
SECTOR HOLE

WRITE PROTECT TAB IN PLACE

Figure 1.2 How To Mount Write Protect Tab

NOTE: Micropolis 1021 through 1053 Series Systems use standard 5 1/4-inch
diskettes with 16 hard sectors ONLY I I Do NOT attempt to use
diskettes with other, non-standard number of sectors or diskettes
which are soft-sectored. They will not work.

1-6

Rev. 7 3/78

CAUTION: The diskette must be treated with care to ensure
good reliability. Figure 1.3 summarizes the DO's
and DON'Ts.

Rev. 7 3/78

PI,)ted Prote<JCf
Schutzen

i¥

No No
Non Falsch

;f fi.
Insert Carefully Insertar
Inseler avec SOIf) Sorofallio tinsetzen

lfh A ,i
Never Nunca
JarT>ois Nie

xi 11

lOC -52 C
50F-125f-

Never Nunca
Nie

,Ff:/t ': It

Figure 1.3

1-7

1.3 PHYSICAL DESCRIPTION AND DIMENSIONS

1 .3.1 1053/1033 DUAL DISK DRIVE MODULE

Height B.O" 20.3 cm.
Width 9.2" 23.4 cm.
Depth 13.0" 33.0 cm.
Weight 1B 1 bs. B.2 Kg.

Input Power requirements: 115/230 VAC, 50/60 Hz.
Standby 60 VA; Operating 78 VA.

1.3.2 1043/1023 and 1042/1022 SINGLE DISK DRIVE MODULE

Height 4.0" 10.2 cm.
Width 5.9 11 15.0 cm.
Depth 12.2" 31.0 cm.
Weight 9.0 1bs. 4.1 Kg.

Input Power requirements: 115/230 VAC, 50/60 Hz.
Standby 30 VA; Operating 45 VA.

1.3.3 1041/1021 SINGLE DISK DRIVE MODULE (WITHOUT POWER SUPPLY)

Height 4.0" 10.2 cm.
Width 5.9" 15.0 cm.
Depth 9.6" 24.3 cm.
Weight 5.0 lbs. 2.3 Kg.

Input Power requirements: +5V ±5% regulated .5A
+12V ±5% regulated 1.15A

1.3.4 1071 CONTROLLER

The controller is a single printed circuit board, physically and electrically
compatible with 5-100 bus and B080/Z80 microcomputers.

Height (not including the edge connector to the motherboard):
5.0" 12.7 cm.

Width 10.0" 25.4 cm.

The edge connector for the interface cable is recessed to keep the over-
all height at 5.0 11 when the cable is connected.

1-B

Rev. 7 3/78

1.3.5 INTERFACE CABLES

The standard Interface Cable A (1083-01) is 54 11 (137 cm.) long. It uses
34-wire flat cable with card edge connectors at each end. Pin 1 is indicated
by a contrasting wire color along the appropriate edge. This cable is
used to connect the controller directly to any single storage module (which
can in turn contain one or two disk drives). When two or more storage modules
are to be connected to the controller, the appropriate Daisy Chain cable
must be used in place of the standard Cable A.

Daisy Chain Model Total Total
Type Connectors Storage Modules

B 1083-02 3 2
C 1083-03 4 3
D 1083-04 5 4

The maximum number of storage modules that can be daisy chained to a single
controller is four. This can be any combination of single and dual modules
with the limitation that the total number of drives that can be daisy chained
is four.

1.4 SPECIFICATIONS

1.4.1 DRIVE PERFORMANCE

* Capacity per drive, Mod II: 315K bytes, formatted
Mod I : 143K bytes, formatted

* Transfer rate: 250K bits/second

* Average rotational latency time: 100 milliseconds (ms)

* Access time - track-to-track: 30 ms
settling time: 10 ms

* Head load time: 75 ms

* Head positioner: stepper motor with lead-screw drive

* Drive motor start time: 1 second

* Rotational speed: 300 RPM

* Recording density: 5248 bits per inch (BPI) Mod II
5162 bits per inch (BPI) Mod I

* Recording mode: MFM

* Track density, Mod II: 100 tracks per inch (TPI)
Mod I : 48 tracks per inch (TPI)

* Surfaces used per diskette: 1

1-9

Rpv. 7 3/7B

1.4.2 ENVIRONMENTAL

Operating temperature: 50°-104°F, 10°-40°C

Relative Humidity: 20%-80% (without condensation)

1.4.3 DRIVE RELIABILITY

MTBF 8000 hrs.
MTTR 0.5 hrs.
Media Life 3 X 106 passes on single track
Head Life 10,000 hrs.
Soft Error Rate 1 in 109

Hard Error Rate 1 in 1012

Seek Error Rate 1 in 106

1.5 SUMMARY OFMICROPOL IS PROGRAM

Micropo1is Program Development Software (PDS) consists of two systems:

1) The Micropo1is Diskette Operating System (MOOS)

2) Micropolis Disk Extended BASIC

Both PDS systems are included on the POS MASTER diskette that goes with
each Micropo1is disk subsystem. Figure 1.4 pictures the relationship
between the two PDS systems.

A Program Development Software system is a group of programs that aid
the programmer in developing, maintaining, and executing application
programs. MOOS and BASIC provide this aid for assembly language programs
and BASIC programs, respectively. TheY,are both written in the instruction
set of the 8080 microcomputer. They can be run on 8080/8085/Z80 micro-
computer systems that utilize the S-100 bus and a Micropolis disk subsystem
as the primary fi 1 e devi ceo

MOOS and BASIC share a common program module called RES. This module
contains the system console, system printer, and diskette I/O routines.
These routines are always resident in the computer system memory when
either MOOS or BASIC is running.

As a consequence of the shared RES module both MOOS and BASIC offer the
same console and printer I/O support capabilities and it is only necessary
to configure (personalize) the RES module one time for the hardware I/O
interfaces of a particular system. Additionally, both MOOS and BASIC .
utilize the same diskette organization and file structure so that files
created under MOOS and files created under BASIC can each be processed
by either system. In particular, BASIC can access assembly language
functions created by the MOOS assembler provided that the functions meet
BASIC's memory requirements and DO NOT call MOOS subroutines; and applica-
tion programs can be written in assembly language to run under MOOS and
process data files created by BASIC.

1-10

R2V. 7 3/78

FIGURE 1.4 MICROPOLIS SOFTWARE (PDS) SYSTEMS

MOOS
EXECUTIVE

. ASSEMBLY
LANGUAGE
APPLICATIO
PROGRAMS

N

-,-

-, ...

- -

"'-.'-"""

\
\

FILECOPY

SYMSAVE
Rev. 7 3/78

RES MODULE

COt4MON CONSOLE
AND PRINTER I/O

COt4MON DI SK --- ---
FILE STRUCTURES

--

1-11

DISK
EXTENDED
BASIC
INTERPRETER

BASIC
PROGRAMS

--

All parts of the MOOS and BASIC systems other than the RES module are
completely separate. MDOS consists of the RES module, the MDOS module,
and the applications program area which extends into high memo'ry. BASIC
consists of the RES module, the BASIC interpreter module, and the BASIC
program buffer.which extends into high memory. Memory maps of the MOOS
and BASIC systems are shown in Chapter II, Figures 2.6 and 2.7.

Also provided is a BASIC UTILITY program that provides for formatting a
disk and examining and changing memory.

Control of the computer system is easily transferred from the MOOS system
to the BASIC system and vice versa. The MOOS executive responds to the
command BASIC. It reads the BASIC interpreter from a specified disk unit,
loads it into memory after the RES module and transfers control to BASIC.
The BASIC command interpreter responds to the command LINK "MOOS". It
reads the MOOS module from a specified disk unit, loads it into memory
after the RES module and transfers control to the MOOS executive.

1.5.1 ELEMENTS OF MOOS

The Micropolis Diskette Operating System (MOOS) consists of an executive
program, a group of shared subroutines available ,to user programs, and an
assembly language program development package.

The MOOS executive program implements an interactive command language
that allows the user to control computer system operations from the system
console. It provides commands for memory management, file management,
I/O control and program control.

MOOS contains a very large group of subroutines which can be called from
a user's application program. These subroutines provide for console and
printer character I/O, buffered line I/O, text line parameter parsing,
sequential and random file access, file management, physical diskette
access, and 16 bit integer arithmetic. There are also a number of processor
oriented utility subroutines.

The MOOS application programs that are supplied by Micropo1is to support
assembly language program development include:

ASSM - a two pass, 8080/8085, disk to disk assembler program.

LINEEOIT - a line number oriented assembly language text editor with
character within line editing and global search and change
capabilities.

FILECOPY - a utility that copies disk files.

OISKCOPY - a utility that makes a binary copy of an entire diskette.

SYMSAVE - a utility that creates a source file of symbol equate statements
from the symbol table left in memory immediately after an assembly.

DEBUG - a utility that facilitates checkout and debugginq of 8080/8085
machine language programs.

1-12

Rev. 8 9/78

J." , _

1.5.2 ELEMENTS OF MICROPOLIS DISK EXTENDED BASIC

Micropolis Disk Extended BASIC is a complete, self-contained software
package that provides total support for BASIC programming. When BASIC
is loaded have at hand a powerful set of tools for developing,
testing, executing and maintaining BASIC programs.

Program lines may be as long as 250 characters in length and may include
multiple statements. The maximum line number is 65529.

BASIC has 12 immediate mode commands; including: SAVE a file, LOAD a
file, DISPLAY the file directory, SCRATCH a file, LIST a program, DELETE
lines from a program, RUN a program, CNTL/C to interrupt a running program,
CaNT to continue an interrupted program, CNTL/X to cancel an input line,
FLOW and NOFLOW to enable and disable the flow trace debuging aid.

BASIC supports 6 distinct data types, including integers, integer arrays,
floating point numbers in the range 1E-61 to lE62-1, string arrays, floating
point arrays, and character strings up to 250 characters long. Integer aAd
floating point arrays may have up to 4 dimensions. String arrays may have
up to 3 dimensions plus a length parameter.

A unique SIZES statement enables you to select the precision of numeric
variables up to 60 digits for simple arithmetic and 20 digits for
transcendental functions. The system defaults to 8 digits for real
numbers and 6 for integers.

BASIC supports numeric operators for addition, subtraction, multiplication,
division, integer division, and exponentiation. There are relational
operators to compare numbers or strings and the logical operators AND, OR,
and NOT. String concatenation is also available.

Numeric functions include ABS, ATN, COS, EXP, FIX, FRAC, INT, LN, LOG,
MAX, MIN, MOD, RND, SGN, SQR, and TAN.

String functions include ASC, CHAR$, FMT, INDEX, LEFT$, LEN, MID$,
MIN, REPEAT$, RIGHT$, STR$, VAL, VERIFY.

The unique FMT(X,Y$) function ;s the key to a powerful formatted output
capability. It returns a string which is the value of X formatted per
the image defined by format string Y$.

The DEF FN statement is provided to allow construction of user defined
functions. An assembly language function may be linked to using the DEF
FA construction.

Standard statements in BASIC include CHAIN, DATA, DEF, DIM, EDIT, END, EXEC,
FOR-NEXT-STEP, GOSUB, GOTO, IF-THEN, INPUT, LET, LINK, MEMEND, MERGE,
FLOW, ON-GOTO, ON-GOSUB, OUT, PLOADG, POKE, PRINT, READ, REM, RENUM, RESTORE,
RETURN, SIZES, STOP, and STRING.

1-13

Rev. 8 9/78

j

The CHAIN is a true chain that passes variables from the current program
segment to next one loaded from disk.

EXEC is a unique that allows a string variable or constant to be
executed as ifit were a predefined.program line.

Data file programming in Micropolis Disk Extended BASIC is simple. Files
can be opened simultaneously for both sequential and direct (random) access
in both 'read and write modes. Up to 10 files can be open at one time. A
CLEAR option allows a file to be opened for rewrite instead of append. An
END option provides an on-endfile-goto capability. An ERROR option provides an
on error-goto capabi 1 i ty.

Data Js written to and read from files using GET and PUT statements with
variable lists that allow a mixture of numeric and string variables.

Files must be CLOSEd after use.

The file I/O structure also extends to printer and console output files
to afford a high degree of device independence. Additional options on
the OPEN statement facilitate the pagination of output reports.

1-14

Rev. 7 3/78

II INSTALLATION

2.0 INTRODUCTION

This chapter describes how to install your Micropolis disk subsystem
hardware in a computer system and how 'to configure the
Micropo1is system software for that computer. The computer must be an
S-100 bus system using an 8080, 8085, or Z80 processor. A keyboard
display conso1edeyice is 'required. Figure 2.1 illustrates a typical
installation. '.

2.1 HARDWARE INSTALLATION

The disk subsystem hardware 'consists of 1 to 4 disk storage modules,
an associated interface cable and a controller printed circuit board.
Installing the is accomplished by unpacking and visually in-
specting the equipment; configuring the contro.ller as necessary for
your particular computer system; installing the controller in the S-lOO
bus and connecting the storage modules to the controller. A diskette
may then be loaded into the disk drive. Hardware installation must
be complete before system software configuration can begin.

2. 1 . 1 UNPACKING THE EQUIPMENT

'The sub-systems are shipped in a protective container which meets the
National Safe Transit Specification (Project lA, Category 1). The con-
tainer is designed to minimize the possibility of damage during shipment.

The following procedure describes the recommended method for unpacking
the elements of the sub-system.

1) Place the shipping container on a flat work surface.

2) Cut the sealing tape on the container top carefully; open
the top flaps.

3) Remove the User's Manual shipping box (12 11 X 12'" X 2") and the
controller box (12" X 611 X 1") and set aside.

4) For a Dual Disk Module shipment, slide the Disk Module still
supported by the 3" foam end pieces carefully out of the
container. It will be necessary for the container to be held
while this takes place.

For a Single Disk Module shipment, remove the module box from
the outer shipping container. Cut open the tape sealing the
top of the box, npen the top flaps and carefully remove the
Disk Module. For 1041/1021 Modules, the interface cable,
power cable and optional regulator kit will be packed in the
module box.

2-1

Rev. 7 3/78

Rev. 7 3/78

. DUAL(OR SINGLE)
FLOPPY DISC DRIVE

.. ---.--._--_. __

Figure 2.1 Typical Installation

2-2

5) RETAIN THE PACKING MATERIALS IN CASE IT IS NECESSARY TO RETURN
THE EQUIPMENT TO THE SOURCE OR SUPPLIER. DO NOT ATTEMPT TO
SHIP THE EQUIPMENT EXCEPT IN THE ORIGINAL

2.1.2 INITIAL CHECKOUT

Open the plastic bag enclosing the Disk Module and the controller box
and inspect for shipping damage. If shipping damage is evident, call the
origin of the shipment: typically, the dealer from whom the equipment was
purchased or shipped (or Micropolis in the case of a direct factory sale).

DO NOT RETURN THE DAMAGED EQUIPMENT UNTIL THE SHIPPING COMPANY INSPECTOR
HAS REVIEWED THE DAMAGE, SINCE AN INSURANCE CLAIM WILL BE MADE.

Ensure that the model number on the identification plate is as ordered.
If a Mod II (high capacity) drive was ordered check that the disk load
actuator on the front of the drive is blue; for a ModI the actuator
is black.

2.1.3 CONTROLLER HARDWARE REQUIREMENTS

The disk controller board is accessed as a lK block of memory using
memory-mapped I/O. This addressing scheme leaves the full 256 standard
I/O addresses for user devices. The controller is implemented as a
"software controller"; most of the work required to access the disk is
performed in software. The operation of the primitive read/write and
timing loops depends upon instruction timing, which places the following
restrictions on the system environment:

1) RAM memory must be fast enough to operate without wait states.
This implies 450 nsec or less access time with a 2 MHz system
clock.

2) If dynamic RAM is used, the overhead for refresh must not be
more than 1 CPU clock cycle per 32 usecond period. The refresh
logic must operate properly with approximately 18 usec/32 usec
period spent in wait states. (The controller synchronizes disk
transfers by asserting the PRDY line.)

3) Interrupts are disabled during disk I/O operations.

4) No cycle-stealing DMA devices may be in operation during disk
I/O operations.

5) The first 512 bytes of the 1K controller address space are
allocated to the bootstrap, which is implemented in a 70 nsec
ROM. The controller is mapped into the last 512 bytes.

2.1.4 CONTROLLER CONFIGURATION

The Micropolis disk controller is normally configured to operate at a
base address of F400H with a 2 MHz processor. You must ensure that there
is no other memory in your system that conflicts with the lK space

2-3

Rev. 7 3/78

beginning at F400H. If a conflict exists follow the procedure in 2.1.4.1
to resolve the conflict. If you want to operate with a3 MHz or 4 MHz
processor follow the procedure in 2.1.4.2.

2.1.4.1 CHANGING THE CONTROLLER BASE ADDRESS 'TO
The controller may be jumpered for a base address at any lK boundary
from C000H to FC00H by performing the following procedure.

1) Referring to Figure address jumpers Wl through
W4. (The controller is shipped with W3 only installed.)

2) Referring to Figure 2.3, determine the jumpers required for the
desired base address'., Install the required jumpers using a short
length of insulated wire.

3) Solder in the new jumper(s) using a 25-30 watt soldering iron
and resin-core solder.

2.1.4.2 REJUMPERING FOR 3 MHz OR:4 MHz OPERATION

To operate the disk subsystem at processor speeds greater than 2 MHz, a
jumper must be installed on the controller as follows.

1) Referring to Figure 2.4 locate the ribbon cable edge connector
and the resistors R25, R6 and R7.

2) Between R25 and R6 is a jumper location, W9. Install jumper
W9 using a small length of insulated wire and solder in place
using a 25-30 watt soldering iron and resin-core solder.

A significant throughput advantage may be realized by operating the disk
subsystem with a 3 MHz 8085 or4 MHz Z80 processor. However, two
important notes apply to this type of operation.

1) System integrity is critical at higher rates, particularly
4 MHz. Buss noise in an S-lOO buss system which is not specifically
designed for 4 MHz operation may reach unacceptable levels when
a 4 MHz ZPU is used. To obtain best performance, it is suggested
that the user place the Micropolis disk controller as close as
possible to the CPU board, preferably the next slot.

2) Memory speed is extremely critical. Some 11250 nsec" memories
may not operate at 4 MHz because of logic delays which degrade
the theoretical access time such that the access requirements
of Ml cycles are not met. These marginal memory boards may be
used if your processor is capable of inserting a wait state in
an Ml cycle.

2.1.5 INSTALLING THE CONTROLLER AND INTERFACE CABLE

There are five steps involved in installing the controller and connecting
the disk drive(s) to it. Figure 2.1 illustrates a typical installation.

2-4

Rev. 7 3/78

c

o

Address Jumpers WI
tilt-- r"::·

J

Figure 2.2 Locating The Controller Address Jumpers

2-5

7 "'/7P.

ADDRESS BIT
JUMPER

A15 A14 A13 A12 All A10 A9 A8 JUMPER INSTAll
BASE ADDRESS N/A W1W2 W3 W4 -- N/A Wl W2 W3

I

: CO 00 - C3FF 0 0 0 0 0 0 - y y y VS I C4 00 - C7FF 0 0 0 1 0 0 y y y CtttrO C8 00 - CBFF 0 0 0 0 0 y y N
CC 00 - CFFF 0 0 1 0 0 y y N
DO t 00 - D3FF 0 1 0 0 0 0 y N Y
04 00 - D7FF '1 0 1 0 0 0 y N Y
08 00 - DBFF 0 1 1 0 0 0 y N N
DC 00 - DFFF 0 1 1 0 0 y N N
EO 00 - E3FF 1 1 0 0 0 0 0 N Y y

-E4 00 - E7FF 1 1 0 0 1 a a N y y
E8 00 - EBFF 1 1 0 1 0 a 0 N y N
EC 00 - EFFF 1 0 0 0 N Y N
FO 00 - F3FF 1 1 a 0 a 0 N N y

ADORES 1
00 - F7FF 1 0 a 0 N N ¥

: Fa 00 ... FBFF 1 1 1 0 a 0 N N N
1

: FC : 00 - FFFF 1 1 1 0 0 N N N
I ____ I

As an example,
W2 and W3.

if you wish to use base address E400, install jumpers at

Figure 2.3 Controller Base Address Jumper Configurations

2-6

Rev. 7 3/78

1041 Power Connector
Speed Jumper

,', ".;. ;.... '... " ,

Figure 2.4 Locating the controller processor speed jumper and the 1041
power connector

2-7

Rev. 7 3/78

1) Remove the cover from your microcomputer, exposing the
printed circuit board assemblies.

2) The Micropolis Controller is designed to be inserted at
any position on the 5-100 Choose a position on the bus
which is most convenient for dressing the interface cable
from the back or side of the computer chassis.

3) Insert the Controller with its side facing thi
same direction as the component side of the already installed
boards.

4) Install the interface connector by inserting it onto the
34-pin etched connector on the top edge of the Controller
board. Take care to align the contrasting colored wire
in the Interface Cable itself with pin 1 on the Controller
board. The connection ;s keyed and can be inserted one way
only, so do not force it hard if there is resistance; instead,
remove the connector and recheck the alignment before reinserting.

5) Connect the other end of the Interface Cable to the Disk
Module.

For the Dual Disk Module, the etched interface connector is
located at the rear of the unit. The connector should be
installed ensuring that the contrasting cable color indicating
pin 1 is located at the top of the flat cable.

For the Single Disk Module except 1041/1021, the Interface
Cable is shipped already installed in the module itself. If
it becomes necessary to remove the Interface Cable, the following
procedure should be followed:

a) Remove the screws on each side and the single
screw at the top-rear of the cover. Slide the cover
back about one quarter of an inch to disengage it from
the front bezel and raise it carefully to avoid damage
to leads.

b) Unplug the connector from the circuit board and fold
it through the slot in the base of the module.

c) Replace the cover by reversing the process in a) above,
taking particular care to avoid trapping the head leads
at the of the module.

For 1041/1021 modules, install the connector on the circuit
board edge connector accessable through the opening at the
rear of the protective sleeve.

2-8

Rev. 7 3/78

2.1.6 DAISY CHAINING MULTIPLE DISK DRIVES

Up to four disk drives (four Single or two Dual modules or two Singles
plus one Dual) may be connected to the Controller. Accessory cables
(daisy chain cables) which allow. connection of two or three or four
modules are available. These consist of lengths of flat cable with
connectors on each end and one or more connectors spliced at appropriate
points down the cable. The method of installation is identical to that
in 2.1.5 above.

Normally, a Single Disk Module shipped as part of a 1043/1042 or 1041
subsystem has line terminators in place and disk address 0 (determined
by jumper positions on the printed circuit board in the module). Unless
otherwise notified, Micropolis ships an "add-on" model of a single disk
module (1023/1022/1021) assigned as address "l" without interface line
terminators.

Normally, a Dual Disk Module shipped as part of a 1053 subsystem has line
terminators in place and disk addresses set at 0 and 1. Note that the slide
switch located (from the rear of the unit) on the printed circuit board
just above the interface connector may be used to reverse the address assign-
ments within the dual module, so that the drive formerly addressed as 0
is now 1, and vice versa. This is particularly useful, for example, when
a disk·on which data files can only be accessed through programs written
for disk 0 can be mounted on disk drive address 1, and by toggling the
switch the necessity for swapping disks or changing software is removed.
An "add-on" Dual Disk Module (1033) is assigned addresses "2" and "3" and
has no interface line terminators. .

In any multiple disk module system implementation, it is mandatory that:

1) Only one drive module contain line terminators.

2) That module containing the line terminator (usually module 0
for Single Disk Modules or module 0/1 for Dual Disk Modules)
should be physically connected to the last connector on the
daisy chain interface cable, i.e. the furthest from the
Controller end of the cable.

2.1.7 APPLYING DC POWER (MODEL 1041/1021 ONLY)

Model 1041/1021 modules do not include power supplies thereby requiring
the user to supply DC power. The user may provide regulated power
directly or may provide unregulated voltages to modules equipped with
the optional regulator kit, Model 1091-01.

2-9

Rev. 7 3/78

J2

Rev. 7 3/78

0·'------------..

0-

Figure 2.5 Model lQ41/1021 Power Connectors

2-10

. DRIVE
ELECTRONICS
P.C.B.A.

2.1.7.1 REGULATED DC

Regulated DC voltages are applied to J5 of the drive electronics board
(refer to Figure 2.5 for location of J5) as fo11Qws:

J5 VOLTAGE CURRENT WIRE
PIN REQUIREMENTS COLOR*

7 +5VDC ± 5% .5 AMP VIOLET

6 +5V RETURN BLUE

4 +12VDC ± 5% 1 .15 AMP YELLOW

3 + 12V RETURN ORANGE

*Wire color refers to power cable A supplied with 1041/1021 drive.

+5 Return and +12 Return must be connected together at the power supply.
The drive chassis must be connected to the computer chassis or directly
to earth ground.

2.1.7.2 UNREGULATED DC

Unregulated DC power may be applied to modules equipped with the optional
regulator kit Model 1091-1. Each regulator kit provides regulated DC
power for one 1041 or 1021 module. Install the kit as follows:

Install the heatsink assembly on the rear of the protective sleeve using
the hardware provided. Plug the connector from the heatsink onto J5 of
the drive electronics board (see Figure 2.5 for location of J5).

Unregulated DC power is applied to J2 of the drive electronics board
(see Figure 2.5 for location of J2) as follows:

J2 VOLTAGE CURRENT
PIN REQUIREMENTS COLOR*

1 +16V UNREGULATED 1 . 15 AMP BROWN (+15 to +17)

2 KEY

3 +16V RETURN ORANGE

+8V UNREGULATED .5 AMP YELLOH 4 (+8 to +10)

5 +8 RETURN GREEN

*Wire color refers to the 4 wire power cable B supplied with the regulator

2-11

Rev. 7 3/78

kit.

Unregulated DC may be obtained from an S-lOO bus computer by connecting
the 4 wire power cable Bsupplied with the regulator kit between J2 of
the drive electronics board and J3 on the Controller B board. A maximum
of one drive may be powered by the controller in this manner. It is
suggested that multi-drive systems be powered directly by a separate
power supply. Dual power supplies providing +5 and +12 regulated are
commercially available from several manufacturers.

2.1.8 CUSTOM MOUNTING OF THE 1041/1021 DRIVES

The 1041/1021 disk drive is enclosed in a protective sleeve with four
rubber feet installed for desk-top use. The rubber feet may be peeled
off for custom mounting, such as in the front panel of "a computer main
frame.

The following guide lines are recommended.

Refer to Figure 2.5-B.

a) The drive may be mounted in any orientation except up-side down.
If the drive is to be mounted vertically, it should be ordered
as such so that the disk eject system can be suitably adjusted.

b} Use the recommended panel opening and insert the drive through the
panel opening from the front so that the drives are restrained from
rotating.

c) On no account should the mounting scheme rely on anj restraint
to drive motion being applied through the plastic bezel.

d) When mounting the drive with the width dimension (5.9 11
) vertical,

use the outside two screws indicated in Figure 2.5-B on the appropriate
side and two spacers to secure the drive to the base chassis.

Spacers should be at least 0.5" outside diameter.

The should be of such a length as to not protrude more
than 0.2" into the inside of the drive.

The holes in the base chassis should have adequate clearance to
take up tolerances. This precludes the use of flat head screws.

e) When mounting the drive with the width dimension (5.9") horizontal,
use brackets made of .060 min. steel mounted to the base chassis
to secure the drive in four places using the outside two screws
on both sides.

Holes in the brackets should have adequate clearance so that when
all screws are tightt stress is not communicated to the drive.

2-12

Rev. 8 9/78

D

-

c

B

-

A

4
9.57

I: (2.<\.30)

I ,
5.88 TOP I 5.&0

(' 73)

I

(IL"U--______ ----'-__ -
R.E<:aUL",TOR. KIT (OPTION"'-)

n at
3.38 (&.33)
(e. 58) .- , ,

I MJI (t -o-i\ i .ee

...,t'.Sb
(3.%) ... \ ,

\7·g1.109 r--L G.-32. HOL..E. 3 PER 5\OE.
.... -----:(\l. S\OE. 8E REMO"ED HOLE&

. MOUNTlN'='.
aDS ftCIFD: CONTRACT NO . .-.-----+-------1 DIMENSIONS AM IN INCHES.

TOlERANCES ON:

\NC.HEc:.
(eM)

TWO CE:><:" R EW OW E..t\c. H
BE. USED FOR.

...

FRAC· DECIMALS
1. 5UGGE S TE 0 PAoNE L OPEN' N : ± DR BY

BY IN<:,\-\E& CHKBY

• 7ez, 5 6-Y 8.3 95 c.. M FINISH ______ t----APPROVE-t--D-BY---t

I
NO T E APPLICATION DO NOT SCALE DRAWING I

DIETERICH-POST CL."" NT '.J"'. t Figur2 2.5 - B OUTLINE DRAHING
2-13

Rev. 8 9/78

D

-

c

B

A

f) When mounting the drive vertically, the drive mounting should not
allow stress to be placed on the plastic bezel.

2.1.9 DISK LOADING AND UNLOADING

The flexible disk is loaded with the load actuator in the "Up" position.
Push the disk "home" until an audible click occurs. This means the disk
is properly located in the receiver. Load the disk"by pushing down on
the load actuator, as far as it will go. Move the actuator firmly and
slowly to ensure proper seating of the disk on the locating cone. The
actuator remains in the "down" position indicating that the disk is loaded.

If the disk is absent or if it is not properly "home" it is not possible
to depress the load actuator. This feature protects the disk from damage
if not located properly.

To unload the disk, depress the load actuator as far as it will go, and
allow it to rise to the "up" position. In order to eject the disk, place
the tip of the forefinger under the load surface of the actuator and tilt
the actuator upwards. This action unlatches interlock and pushes the
disk into your hand.

2-14

Rev. 7 3/78

2.2 SYSTEM SOFTWARE INSTALLATION

Each Micropo1is disk subsystem includes a MASTER diskette which contains
the Program Development Software (PDS) systems. Software installation
consists of building a SYSTEM diskette configured for your I/O devices
from the unconfiguredMASTER diskette.

2.2.1 PROGRAM DEVELOPMENT SOFTWARE MEMORY

The Micropo1is Diskette Operating System (MOOS) requires a minimum of
16 kbytes of contiguous RAM starting at 0000. Figure 2.6 illustrates
these memory requirements.

The Micropo1is disk extended BASIC system requires a minimum of 24 kbytes
of contiguous RAM, starting at location 0000. BASIC automatically sizes
RAM memory when it is started. If you have additional RAM which you desire
BASIC to use, this memory must be strapped to be contiguous with this
first 24K. Figure 2.7 illustrates these memory requirements.

2.2.2 SUPPORTED I/O DEVICES

The PDS MOOS and the PDS BASIC system support the same I/O devices through
the common RES module.

1) Micropolis flexible disk subsystems

2) Terminal - (See Figure 2.8)

3) Line Printer

2.2.3 LOADING THE PDS MOOS SYSTEM INTO MEMORY FROM THE MASTER DISKETTE

The first procedure in the sequence leading to a configured SYSTEM disk
is to load the POS MOOS System from the unconfigured MASTER disk into
memory and determine that the load was successful.

1) Ensure that the Micropo1is controller and disk drive ftre
properly connected to your system. Apply power to your system.

2) Insert the PDS MASTER diskette into your drive (unit 0 on multiple
drive systems) and load the diskette by depressing the actuator
1 ever.

3) Activate the bootstrap ROM on the controller. For A1tair/Imsai
type computers with a front panel, this is done by setting the
address switches to the bootstrap address un1 ess the C 0 H
controller base address has been changed), reset, examine, and
run. For computers under control of a resident ROM monitor,
follow the manufacturers instructions on starting program
execution at a given address. Use the address of the bootstrap
ROM unless the controller base address has been changed).

(! itft() 11

2-15

Rev. 7 3/78

FIGURE 2.6 MOOS MEMORY MAP - Release

006AH

01A0H

1598H

F600H

F800H

Rev. 10 4/79

Not used by Micropo1is hardware/software

Initially used by bootstrap loader. After the
system is loaded, this space is used for the
system stack.

The RES module contains all permanently resident
I/O and Disk Control Routines and associated
buffers.

The MOOS module contains the command executive
and all user callable routines not in RES.

The Applications program area extends from here to the
end of contiguous memory.

BOOTSTRAP ROM as supplied by Micropolis

Micropo1is Disk Controller

2-16

FIGURE 2.7 BASIC SYSTEM MEMORY MAP- Release 4.0

0000H

006AH

01A0H

l598H

5700H

C tt (}()
F600H

F800H

Rev. 8 9/78

Not used by Micropolis hardware/software

Initially used by bootstrap loader. After the
system is loaded, this space is used for the
system stack.

The RES module contains all permanently resident
I/O and Disk Control Routines and associated
buffers.

The BASIC Interpreter

The BASIC current program buffer extends
from here to the end of contiguous memory.

BOOTSTRAP ROM as supplied by Micropolis

Micropolis Disk Controller

2-17

When. the boot program is started, the unit select indicator-on
the drive will illuminate and the disk head will load with an
audible "click". Computer front panel address lights will flash
while reading is taking

After about 10 seconds'- the unit select indicator should go out
and the head will unload with an audible "click". If this has
not occurred within about 20 seconds then the boot program has
been unable to read the system loader into RAM properly. Reset
the system and try again. If a retry is unsuccessful, then remove
the diskette and re-load it into the drive; the diskette may not
have seated properly the first time.

4) When the unit select indicator goes out, press stop and observe
the address indicators. The halt address should be one of the
following.

- Loader error

04CDH - Good load

To determine if the load was successful in systems without a
front panel, or to ascertain the cause of a loader error,
examine the contents of location (Loader termination
status). The status code should be one of the following.

47H (ASCII"G") - GOOD LOAD - the RES and MDOS modules are now
in RAM.

55H (ASCIIIIU") - UNRECOVERABLE DISK ERROR - the loader was
unable to read the system into memory.

Probable causes:

*Diskette is not seated properly.
*Drive did not step properly - remove and reinsert diskette and
retry boot process.

4DH (ASCII"M") - BAD MEMORY - The loader tried to write into
memory and was unable to read back the same data. Probable
causes are:

*Insufficient contiguous memory - 16K bytes from address 0
are required.
*Memory is write protected.
*Defective memory.

contain the RAM address at which the error occurred.

If the status code is not one of the above, the memory into which
the loader was read may be defective or nonexistent.

2-18

Rev. 8 9/78

2.2.4 CONFIGURING THE PDS SYSTEMS FOR YOUR TERMINAL

The Micropolis disk subsystem and the PDS systems are designed to run
in an S-lOO bus - 8080 compatible microcomputer. S-lOO bus compatibility
does not define the device addresses or I/O protocol used in communicating
with the various interface boards which may be used to connect a terminal
keyboard/printer to your computer. Therefore, it is necessary to customize
the terminal input-output routines in the RES module to accommodate your
precise equipment configuration. ..

The MOOS system loaded per Section 2.2.3 contains a special configurator
program which is provided to simplify the terminal configuration task
for specific II standard ll terminal interface boards. These boards are
standard in the sense that the port addresses and flag bit assignments
conform to what is used by the. manufacturers in their stand-alone software.
Figure 2.8 is a list of computers and interface boards and "standard" ports
and logic. To determine which terminal configuration procedure applies
to your equipment refer to Figure 2.8 and follow these steps.

1) If your equipment is listed in the DEVICE column and your port
addresses and flag bit assignments match the ones listed, then
configure your terminal by following the procedure in Section
2.2.4.1.

2) If your equipment is listed in the DEVICE column but you have
used different port addresses or flag bit assignments, then
configure your terminal by following the procedure in Section
2.2.4.2.

3) If your equipment is not listed in Figure 2.8, then configure
your terminal by following the procedure in Section 2.2.4.3.

2.2.4.1 CONFIGURING A STANDARD TERMINAL

1) In A1tair/lmsai front panel type systems, set the address
switches to 04D1H and examine. Set the program input (sense) switches
to the configuration number corresponding to your configuration
in Figure 2.8 and press run. This activates the configurator
program.

In systems without a front panel, set the desired configuration
number into location 04D0H and start program execution at
location.0406H. This activates the configurator program.

2) Once started, the configurator program will build the terminal
handler corresponding to the configuration number and will start
MOOS which should output the sign-on message:

MICROPOLIS MOOS VS X.X - COPYRIGHT 1978

3) Continue the SYSTEM disk building process with Section 2.2.5.

2-19

Rev. 7 3/78

FIGURE 2.8 STANDARD TERMINAL CONFIGURATIONS

Port Assisnments (HEX) FlaS Bits
Config Input Output Data Data Input Output

NBR Device Status Status In Out Ready Level -- ,Ready Level Device

0 Altair 88-2S10 1-0 10 11 11 0 HIGH 1 HIGH SERIAL

1 IMSAI Sl02 3 3 2 2 1 HIGH 0 HIGH SERIAL

2 Altair SIO A,B,C (not rev 0) 0 0 1 1 0 LOW 7 LOW SERIAL

3 Altair SIO A,B,C (rev 0) 0 0 1 1 5 HIGH 1 HIGH SERIAL

4 PTC 3P+S 0 0 1 1 6 HIGH 7 HIGH SERIAL

5 IMSAI MIO 43 43 42 42 1 HIGH 0 HIGH SERIAL

6 Al tair 88-4PIO 10 12 11 13 7 HIGH 7 HIGH PARALLEL

The above configurations aSSume a terminal outnut line width of 72 characters and
output stream following a carriage return. append 2 nulls to the
See ASSIGN command in MOOS or BASIC for instructions for changing width or number of null s .

80H COMPAL - 80 Terminal I/O is performed through the COMPAL monitor

81H PTC SOL - 20 WITH SOLOS 1.3 - Terminal I/O is performed through SOLOS pseudo port 0.

2-20

Rev. 7 3/78

2.2.4.2 CONFIGURING A MODIFIED STANDARD TERMINAL

To modify one of the standard terminal handlers to accommodate different
port addresses or flag bit assignments proceed as follows.

1) Refer to the listing of the I/O handler and configurator
program in Appendix E. The listing is structured as follows:

E.l Logical input/output routines
E.2 General terminal handler
E.3 Line printer handler
E.4 Configurator (starting with label "CNFIG")
E.5 Blocks of configuration parameters corresponding

to the configurations listed in Figure 2.8, labelled
CNFG0, CNFG1 CNFGn

2) Locate the parameter block which corresponds to your I/O board.

The parameter block is organized as follows:

ADDRESS

CNFG +0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+A
+B
+C
+0

+E+(n-l}

CONTENTS/DESCRIPTION

Terminal Input Status Port
Terminal Input Status Port
Terminal Output Status Port
Terminal Data Input Port
Terminal Data Input Port
Terminal Data Output Port
Data Input Ready Flag
Data Input Ready Mask
Data Input Ready Flag
Data Input Ready Mask
Data Output Ready Flag"
Data Output Ready Mask
Bytecount For Init Logic = n

Initialize Logic

3) Modify the parameter block for the port addresses and/or flag
bit assignments used by your interface card (donlt overlook
changing the addresses in the initialize code as well).

4) The flags and masks are created as follows:

Rev. 7 3/78

a) Data input/output ready flag byte is ANDed with
the appropriate status byte to extract the desired
status bit. The result is then exclusive - DRied
with the associated mask byte.

2-21

b) If the status bit is high true, = condition
true, then the mask associated with the flag byte =
flag byte.

c) If the status pit is low true, i.e., (0) = condition
true, then the mask = 0

5) In Altair./Imsai front panel type systems, set the address switches
to 04D1H and examine. Set the program input (sense) switches to the
configuration number corresponding to your configuration in Figure
2.8 and press run. This activates the configurator program.

In systems without a front panel, set the desired configuration
number into location 04D0H and start program execution at location
04D6H. This activates the configurator program.

6) Once started, the configurator program will build the modified
terminal handler and will start MOOS which should output the
sign-on message:

MICROPOLIS MOOS VS X.X - COPYRIGHT 1978

7) Continue the SYSTEM disk building process with Section 2.2.5.

2.2.4.3 NON-STANDARD TERMINAL CONFIGURATION

If your terminal/interface device cannot be found in Figure 2.8, this
section describes the I/O requirements of the POS systems so that you
can write your own terminal handler.

When you boot the MASTER diskette a set of generalized I/O handlers are
loaded into memory within the RES module. Figure 2.9 is a map of this
area.

2.2.4.3.1 THE CONSOLE I/O TABLE

The @CIOTABLE has the following form:

WRAPFLAG
NULLS
WIDTH

ORG @CIOTABLE
OW CIN
OW COUT
OW CBRK
OW COIN
OW CDOUT
DW CDBRK
DW CDINIT
DB 0
DB 3
DB 3FH
DS 1

Rev. 7 3/78

address of logical console input
address of logical console output
address of logical console break check
address of physical console device input
address of physical console device output
address of physical console device break check
address of physical console device initialize
enable (0) or disable (1) console wrap logic
console null count + 1
console carriage width
must be provided for internal system use

2-22

FIGURE 2.9 I/O DRIVER AREA IN RES MODULE

01A'/JH

Rev. 7 3/78

@INBUFF - system input buffer

4 bytes which hold the addresses of @CIOTABLE
and @LIOTABLE

@CIOTABLE - vectors to
console driver routines

@LIOTABLE - vectors to
list device driver
routines

Logical console input
and output routines

reserve space

Logical printer output
routines

reserve space

@PCON
Physical console input
and output routines

reserve space

@PLIST
Physical list device
output routines

reserve space

2-23

All of this area is
space for logical and
physical I/O drivers.

It is organized as
shown to the left when
the system is first
loaded from the MASTER
disk.

2.2.4.3.2 CONSOLE I/O (CIN, COUT, CBRK)

The logical input, output and check break should not have to be
changed. They are tailored to support all MOOS and BASIC requirements.

2.2.4.3.3 PHYSICAL CONSOLEOEVICE INPUT (COIN)

The console physical input routine must have the following characteristics:

1) It must return all registers except A & B unchanged.

2) It can use the A register (destroy it).

3) It must return an ASCII character including the parity bit if any,
in the B register.

4) It must return the carry flag clear (NC). The other status flags
can be in any state.

If the physical character input routine is rewritten, its entry address
must be put into the @CIOTABLE at OW COIN.

2.2.4.3.4 PHYSICAL CONSOLE OEVICE OUTPUT (COOUT)
\.

The console physical output routine must have the following characteristics:

1) It must take an ASCII character in the B register.

2) It must return all registers except A unchanged.

3) It can use the A register (destroy it).

4) It must return the carry flag clear (NC). The other status flags
can be in any state.

If the physical character output routine is rewritten, its entry address
must be put into the @CIOTABLE at OW COOUT.

2.2.4.3.5 PHYSICAL CONSOLE OEVICE BREAK CHECK ROUTINE (CDBRK)

The cons,ole physical check break routine must have the following
cha racteris tics:

1) It must check the console input status port to determine if a
key has been pressed. .

2) If no key has been pressed it must return all registers except A
unchanged and the zero flag clear .(NZ).

3) If a key has been pressed return the byte including the parity bit
if any, in the B register.

2-24

Rev. 7 3/78

The A regi ster can be used (destroyed). All other regi
must be unchanged. The zero flag must be set .

4) The status flags other zero can be in any

If the physical check break routine is rewritten, its entry address must , ' .. ; , . . ; , be put into the @CIOTABLE at DW CDBRK.

2.2.4.3.6 PHYSICAL CONSOLE DEVICE INITIALIZE (CDINIT)

This routine initializes the input/output interface. Some devices are not
programable and cannot be software initialized, while
INTEL 8251, or the Motorola 6850 must be software initia1'i'zed. '.i

t '.

If your equipment needs software initialization, the routine must have the
following characteristics: . .' "

1) It must return all the registers except A unchanged.

2) It can use the A register (destroy it).

3) It must return the carry flag clear (NC). The
can be in any state.

If your equipment does not need to be software initialized
only needs to clear carry (NC) and return. '

"

If you rewrite the initial ization routine, you must put its":en'tr.faddress
into the @CIOTABLE at DW CDINIT.

2.2.4.3.7 STARTING YOUR SYSTEM

After you have written your driver and made the appropriate patches to the
@CIOTABLE, you are ready to start the system. Change the
location 4CEH and 4CFH to E7H and 04H. Start execution at location The System wi 11 sign on wi th ., __ •

. ",

MICROPOLIS MDOS VS X.X - COPYRIGHT 1978

Proceed to Section 2.2.5 to configure your system for other supported
devices.

2.2.5 SYSTEM PRINTER CONFIGURATION

The Program Development system provides 1 ine printer support as welt as '
terminal and disk I/O. If your system does not have a printer
from the terminal, you are'not required to build a
and may proceed to Secti on 2.2.6 to create your system di sk. ,'<> :,;": .

2-25

Rev. 7 3/78

PDSa$ loaded per Section 2.2.3 contains a generalized line printer handler.
In mClny cases this handler can be configured to your equipment by patching

appropriate port addresses and flag bit assignments into the proper
, To determine if this handler can support your equipment, refer

to 11,t"ing 0, f the physical line printer hand,ler in Appendix E.3 beginning
ORB @PlIST. Section 2.2.5.1 is a procedure for configuring this
if applicable. ,Section 2.2.5.2 presents a detailed example of

a T,ELETYPE Model 40 printer. Section 2.2.5.3 is a procedure
for writing your own printer handler, if necessary.

CONFIGURING THE SUPPLIED PRINTER HANDLER
"'I, 'i ':, .j, '.l, " ... '.

The printer handler performs three output of an ASCII
ofa printer attention condition, and software

of programab1e printer interface devices.

Refer to the printer handler in the system I/O HANDLER listing in
The handler accesses the printer through three I/O port

PTOAT Printer Data Port -- Character data to be printed will be output
ito', thi port.

PTCTl Printer Control Port -- READY TO RECEIVE status will be read from
tRi's"port, , I

Printer Status -- PRINTER ATTENTION status will be read from this
Jf four printer does not generate attention status then this port

will nQt be
Printer attention detection requires two masks: PMSKl and PMSK2. The
handler, inputs from port PTSTS and extracts the printer attention bit(s)

, the status with PMSK1. The result is then exclusive ORled
PMSKZ, The resulting condition code will be zero if printer is

or non-zero if an attention condition exists.

Assume a printer generates ON-lINE and PAPEROUT status which
to bits 7 and 0, respectively, of the status PMSK1

Will be to extract bits 7 and 0. The printer will be operational if
and only if' bit 7 = 1 and bit 0 = 0. PMSK2 must be constructed to yield

zero for this bit combination. Since Exclusive OR'ing the
status whieh PMSK2 results in complementing each bit of the for which
the bit in PMSK2 = 1, the mask value required is 080H.
Reaqyto reqeive status detection also requires two masks: PMSK3 and

The handl er inputs from port PTCTl and extracts the ready to
bit(s) by ANDing the status read with PMSK3. The result is then

with PMSK4. The resulting condition code will be zero
if printer is ready to receive or non-zero if the printer is busy.
The,mo, ,ks ,r,e,' f,ormed in the same manner as illustrated for printer

.

2-26

Rev.

Configure the printer handler as follows:

1) Determine the values of the port addresses and masks as described
above for your printer and interface board. Determine the
instructions required to initialize your printer/interface board.

2) You can make the patches with your running MOOS system or-with
your front panel switches (or monitor). If you want to use the
system t.o make the changes, refer to the description of the ENTR
command under MOOS EXECUTIVE in Chapter 4.

3) Change location @LIOTABLE+8 in the listing to the address of
LDOUT.

This change is necessary because when the system boots this
address is set to CDOUT, so both logical output streams go to
the console device, which effectively no ops the printer handler.

4) If your printer does not support a printer attention condition
skip to Step 8.

5) To configure the printer attention routine change location LDATN
and LDATN+1 to 0 (NOP). The system boots with an XRA A and a
RET in these locations which turns the attention logic off.
Placing the two NOP's in the code activates the printer attention
logic. -

6) Change location LDATN+3 to the value of PTSTS (printer status
port address) for your printer.

7) Change location LDATN+6 to the value of PMSK1 and location LDATN+8
to the value of PHSK2. The printer attention logic is configured.

8) To configure the character output routine, change location LDOUT1+l
to the value of PTeTL (printer control port address).

9) Change LDOUT2+1 to the value of PTDAT (printer data output port
address).

10) Change location LDOUT1+4 to the value of PMSK3 and location
LDOUT1+6 to the value of PMSK4. The printer character output
routine is configured.

11) If your interface device requires software initialization, enter
the machine code required starting at LDINIT and ending with the
code C9H (RET). The code as assembled in the listing initializes
an INTEL 8251 USART for two stop & 8 data bits w'ith no parity. To
activate this logic change locations LDINIT and LDINIT+l to 0.
If your equipment does not need initialization do not make any
change to this code.

2-27

Rev. 7 3/78

12) The logical printer output routine provides carriage return line
feed after a specified number of characters as an option.

This allows lines longer than the carriage to wrap around rather
than banging at the end of the carriage. If you want to disable
this feature, change location PWRAPFLAG to a 1, otherwise disregard.

13) The number of nulls output .in conjunction with a carriage return
and the width associated with the wrap .10gic can be, set using the
ASSIGN command. These values are set at 2 nulls and 72 character
width when the system is booted. The ASSIGN command is described'
in Chapter 4 under MOOS EXECUTIVE COMMANDS and Chapter 5 under
BASIC PRINT FILE OUTPUT. .

14) Some applications and systems programs need to know if the printer
hardware is capab1 e of advanci'ng to the top of a page when a form
feed is output or if the software needs to handle the top of form
by issuing the correct number of line feeds.

15)

A memory location is provided in the RES module which can be set
at configuration time to indicate the type of printer you have.
This memory location is called FORM FLAG and is located at 4C8H.
A FORMFLAG of 0 indicates a printer which does not do a top of form
when it receives a form feed. A FORMFLAG of 1 indicates a printer
that does a top of form when it receives a form feed. The value
of the FORMFLAG is 0 as the system is shipped. This is the
configuration that would be used with a Teletype 33 that does not
have a hardware top of f,orm feature.

If your printer does a top of form when it receives a form feed
(ASCII code 12 decimal) set this location to a 1 by typing:

ENTR 4C8 and a carriage return.
lL and a carriage return.

The ASSM program, for example, checks the FORMFLAG and outputs
a form feed if it is a 1 or line feeds if 0, to advance to the
top of the next page. '

User applications programs can also use the FORMFLAG to make
the software less hardware dependent by providing both form feed
logic and multiple line feed logic, which is conditionally
executed depending on the sense of the FORMFLAG.

You have finished configuring. the line printer handler. Type
EXEC 4E7 and a carriage return, to warmstart the system and
initialize the printer.

You can test the printer by typing ASSIGN 2 3 and a carriage
return. The printer should echo all characters typed on the
console. Type ASSIGN 2 2 and a carriage return and the printer
should stop echoing.

Rev. 8 9/78 2-28

16) to Section 2.2.6 to create a configured SYSTEM disk.

2.2.5.2 P'FUNTER INTERFACE EXAMPLE
i

This section presents a comprehensive case study of interfacing a TELETYPE
Model 40 line printer to an IMSAI 8080 system. This example assumes an

SERIAL INTERFACE BOARD with the terminal connected to port A. The
printer is equipped with an ASCII EIA-type interface which interfaces
directly to port B of the SI02.

The printer interface is illustrated in Figure 2.10 and consists of the
following signals:

1) CHASS,lS GROUND

2) SIGNAL 'GROUND

3) RECEIVED DATA .. - Serial data to be printed.

4) CLEAR TO SEND -- The printer interface line "REQUEST NEXT
CHARACTER" (RNC) is applied to the CTS line to enable the USART
device on the serial board. This synchronizes transfers to the
printer and allows the TRANSMITTER READY status bit of the
USART to function as "READY TO RECEIVE".

5) DATA TERMINAL READY -- The printer asserts the DTR line when
print,er power is on and no alarm conditions such as paper out

This status line is jumpered to the USART DATA SET READY

Rev. 8 9/78 2-28.1

;:::0
CD
< .
co

N
I

N c:::o .
N

Figure 2.10 Interfacing a Teletype Model 40 Printer with EIA Interface Option to an
IMSAI S102-2 Port B

,- - - - -

INTEL ' Tx 0
'8251

(.IS

DSR.

IMSAI S102-2

L __ --l

PART OF JUMPER
PLATFORM 8-8

J AA C. ... erNO

I '
I

.---__ ? 8A St;L. (;, NO

I

"
7

I
'3 88 ,R6' OATA 1 I

OTR. '

OSR

d. PRINTER INTERCONNECT
CABLE

" EIA -- EDG£: CONNECTOR CABLE
FROM'·'BACKPANEL.:TOSI02 :'PCBA
NOT SHOWN

TELETYPE
MOD 491
PRINTER

(DSR) input line. The state of this line may be read as one of
the USART status bits and serves as PRINTER OPERATIONAL for
printer attention detection.

6) DATA SET READY -- The DATA TERMINAL READY output line from the
USART is applied to the DATA SET READY (DSR) interface line.
When asserted, DSR turns the printer motor on.

This interface requires the user to fabricate· theprinterihterconnec,t
cable shown. . i.: .'

The SI02-2 is to be jumpered so that the USART status register may be read
from port 5 and the USART data register may be written into from port 4.

The status byte read from the USART consists of the following bits:

BIT 7

BIT 6-1

BIT 0

7 65432 1 0
D T
S X
R R

D
Y

DSR = (PRINTER OPERATIONAL) o = Printer Attention
1 = Printer Operational

Don't Care

TRANSMITTER READY -- (READY TO RECEIVE) 1 = the
USART is ready to receive a character to transmit
to the printer.

Since both printer operational and ready to receive are contained in. the
same status byte, PTSTS = PTCTl = 5.

The printer data port is the USART data register, so PTDAT = 4.

The masks required for attention and ready status are:

PMSKl = 080H
P·MSK2 = 080H
PMSK3 = 1
PMSK4 = 1

Refer to the printer handler in the System I/O HANDLER 1 i,stingin Appendix
E. The handler listed has been assembled for the example given in this
section.

Details of the operation of the 8251 USART may be obtained from the INTEL
note AP-16 USING THE 8251 USART.

2-29

Rev. 7 3/78

Since all of the port and other parameters are assembled into
the syst,m printer handler, configuring the handler for this'example is
simply a of enabling the handler. However, to the

in Section 2.2.5.1 the full dialogue is given below.
The procequre numbers are annotated to the right of the listing:

>ENTR
>CB 6/

Skip to Step 8 if Printer Attention
is

>ENTR 6E8
>0 0/ '
>ENTR 6EB
>5/
>ENTR 6EE
>80/

>80/
>ENTR
>5/
>ENTR 60S-
>4/
>ENTR 603
>1/
>ENTR 605
>1/
>ENTR6FE
> 0 0 3E AA 03 5 3E. 40 03 '5 3E. CE 03 '5
>3E 17 03 5 C9/' .
>ENTR 510 .
>1/
>ASSIGN2 2481
>EXEC4E7

MICROPOLI$ MDOSV$ X.X ... COPYRIGHT 1978

2-30

Rev. 8 9/78

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13
Step 14

2.2.5.3 CONFIGURING SPECIAL PRINTER HANDLERS

If you are unable to patch the generalized print handler for your system,
you will have to write your own. A general discussion of the needed routines
follows. See 2.9. .

2.2.5.3.1 THE LIST I/O TABLE

ORG @LIOTABLE

PWRAPFLAG
PNULLS
PWIDTH

OW 9)
OW LOUT
OW LATN
OW 9)
OW LDOUT
OW LDATN
OW LDIN!T
DB 0
DB 3

place holder corresponding to CIN
address of logical list output
address of logical list attention check
place holder corresponding to COIN
address of physical list device output
address of physical list device attention check
address of physical list device initialize
enable (0) or disable (1) list device wrap logic
list device null count + 1
list device carriage width DB 72

OS 1 t must be provided for internal system use

The addresses in the table point to the actual routines. PNULLS AND PWIDTH
may be changed at any time in either MOOS or BASIC by using the ASSIGN command.

2.2.5.3.2 LOGICAL LIST I/O (LOUT, LATN)

The logical output routines have been tailored to meet the requirements
of MOOS and BASIC. They should not have to be rewritten.

2.2.5.3.3 PHYSICAL LIST DEVICE OUTPUT (LDOUT)

LDOUT is the physical output routine. Most standard interface boards can
be accommodated by patching the output port addresses and the ready mask
values into the supplied printer handler (see the listing in Appendix E).
This generalized printer handler isin place after the system is booted.

there are some cases where the generalized printer handler cannot
be used. A couple of examples might be systems using an old BAUDOT teletype
as a printer, or DIABLO which uses a non-standard ETX system. In these
cases the physical output routine must do considerably more than just output
when the print device is ready. For the BAUDOT teletype the physical output
routine must convert from ASCII to BAUDOT before outputing.

The physical output handler must have the following characteristics to
interface with the rest of the system:

1) The character to be output is passed to the physical output routine
in the B register in ASCII.

2) The physical output routine can use (destroy) the A register.

2-31

Rev. 7 3/78

3) All registers except A must be returned unchanged.

4} Some printers can signal when paper is out, the motor is off, or
they are out of ribbon. The system supports printers which can
signal a PRINTER ATTENTION condition.

If the printer needs attention, the physical output routine should
return with the carry flag set (C). If your printer does not
support a Printer attention then always return with the
carry clear (NC). The other status flags· can be return·ed in any
state.

2.2.5.3.4 PHYSICAL LIST DEVICE ATTENTION ROUTINE (LDATN)

LDATN is a routine which checks PRINTER ATTENTION on printers which support
this condition.

If your printer does not support printer attention, then this routine can
simply clear carry and return.

LDATN XRA
RET

A

If your printer is capable of signaling printer attention, yourLDATN
routine must have the following characteristics:

1) The LDATN routine can use (destroy) the A register.

2) All registers except A must. be returned unchanged.

3) If the printer needs attention the routine returns with the carry
set (C), otherwise the carry is returned clear (NC). The other
status flags can be returned in any state.

2.2.5.3.5 PHYSICAL LIST DEVICE INITIALIZE (LDINIT)

LDINIT is a routine which initializes the printer/interface device. Some
devices are not programab1e and cannot be software initialized in which
case the LDINIT routine needs only clear carry and return.

LDINIT XRA· A
RET

If you need a software initialization sequence, it must have the following
characteristics:

1) The LDINIT routine can use (destroy) the A register.

2)· All registers except A must be returned unchanged.

3) The carry flag must be returned clear (NC). The other status flags
can be returned in any state.

2-32

Rev. 7 3/78

2.2.6 CREATING YOUR SYSTEM DISKETTE

The Program Development system is shipped with a MASTER diskette and a
SYSTEM diskette, which is a dupl,icate of the Master.

This is done as a convenience for people with a single drive system, and
provides a simple, fast method for generating your first configured running
SYSTEM diskette. However, to generate additional configured'systems on a
blank diskette requires a more detailed procedure if you have only one
drive. This procedure is described in Section 2.2.8.

With a multiple drive system it is simple to make additional copys using
either the DISKCOPY utility which makes a duplicate diskette on another
drive, or the FILECOPY utility which copies a named file from one drive to
another. .

After the system has been configured to the input/output requirements of
your equipment, you are ready to create your configured SYSTEM diskette.

1) Remove the MASTER diskette and keep it in a safe place. The
MASTER diskette should never be re-written.

2) Insert the nonconfigured SYSTEM diskette in your drive (unit 0 on
multiple drive systems).

3) Type FILES and a carriage return. A list of all the files on the
system diskette will be displayed.

4) The flrst file entry on the diskette is OIR which is the directory.
The second file entry;s RES, which is the resident portion of
the Program Development Software systems.

5) Type TYPE "RES" 0 and a return. This changes the file
type from read only and permanent to a normal data file. This
must be done prior to removing the file from the directory in
preparation to saving the new configured version.

6) Type SCRATCH "RES" and a carriage return. This removes the
file from the directory.

7) Type SAVE tiRES" 2B1 1598 3 and a carriage return. The unit
select light will go on indicating that your configured RES
file is being written onto the diskette.

8) When the system prompt ">" ;s printed again, the file has been
saved. Type FILES and a carriage return. RES should be the
second file entry.

Rev. 8 9/78

9) Due to the addition of the three commands, EOIT, RENUM and MERGE,
the current BASIC is longer than BASICs before version 4.0. If
there is no need to shorten BASIC, j gnore thi s If
you want the SYSTEM diskette to have a shortened version of BASIC,
proceed to APPENDIX G, the FEATURES PROGRAM, which describes the
procedure for shortening BASIC. When this procedure is completed,
you are running a shortened BASIC. Do the following to save the
shortened BASIC on the SYSTEM diskette.

In response to BASIC's READY p'rompt:

a) Type OPEN 1 "BASIC":ATTRS(1)=8 and a carriage return.

b) Type SA.VE "B8sit" 16R1572,16R5DFF and a carriage return, "', . (.",.... ' .

c1 Type ATTRS(1}=16RF:CLOSE 1 and a carrfage
.' .' , '. .

The System di skette now has a copy of your persona 1 i zed system. You may want
to make a copy of your persona 1i zed sys tern at thi s ti me as a backup. I f you
have a single system, go to Section If you have a multiple drive system,
type DISKCO'PY and a carriage return. The DISKCOPY program will be brought in
from the di sk and type ins tructi ons for its use.

2.2.7 CREATING A BASIC ONLY SYSTEM DISKETTE

Some users may only want to program in BASIC or maybe developing BASIC
application program packages for sale. You can create a BASIC only system
which will boot up directly to BASIC. The BASIC only system should not use
the SYSTEr1 diskette provided, rather a blank diskette should be used.
This procedure should only be followed after you have configured your system
as described in Section 2.2.4 and 2.2.5, and created a configured System disk
as in Section 2.2.6.

1) Put a blank diskette in disk drive 0.
2) Type INIT 0 and a carriage return.

The system responds ARE YOU SURE? This is done to help prevent
accidentally initializing a diskette. The initialization process
will destroy anything which was previously on the diskette. If
you are sure· the diskette ybu have in drive 0 is to be initialized,

Type r and a carriage return.

When the prompt ">" is printed again, the diskette is initialized.

3) Remove the initialized diskette and put the SYSTEM diskette back
into drive 0.

2-34

Rev. 10 4/79.

4) Type BASIC and a carr; age,return.

BASIC will be loaded into memory and sign on with

MICROPOLIS BASIC VS X.X.- COPYRIGHT 1978
READY

NOTE: It is possible to optionally remove features from BASIC before
creating the BASIC only diskette. See Appendix G for details.

5) Remove the SYSTEM diskette and put the initialized diskette back
into dri ve 9L

6) Type SAVE "N:BASIC" 16R2B1, 16R5DFF and a carriage return.

BASIC will be written onto the initialized disk. When this
is done the system will respond, READY.

7) Type OPEN 1 IBASIC":ATTRS(1)=3:CLOSE 1 and a carriage return.

This will set the attributes of BASIC to permanent and write
protected. The diskette is now a valid BASIC only configured
system disk.

If you want to copy the BASIC UTILITY program onto the BASIC only diskette,
pl'\'oceed as follows.

1) Put the original SYSTEM diskette into drive 0.
2) Type LOAD IIUTILITY II and a carriage return.

The UTILITY program will be loaded into BASIC's current program
buffer and BASIC will respond, READY.

3) Remove the SYSTEM diskette and put the BASIC only diskette in
drive 0.

4) Type SAVE IIN:UTILITY II and a carriage return.

The UTILITY program will be written on the BASIC disk.

Users with multiple drive systems may also wish to place the DISKCOPY
utility on the BASIC disk. This can be done by using the FILECOPY
ea:pa,bi 1 i ty i n MOOS.

MAKING ADDITIONAL COPIES OF YOUR SYSTEM USING A SINGLE DRIVE

Mtcropolis provides two diskettes with your drive as described in Section
2.2:.3 to simplify the initial system generation procedure, for single drive
oW,ners. However, after you have configured your system and created your
S¥STEM diskette, it would be a good idea to make a back up copy of your
configured diskette - especially if you have a nonstandard system
which is harder to personalize.

BEFORE COPYING YOUR CONFIGURED SYSTEM, IT IS RECOMMENDED THAT YOU PUT A WRITE
PROTECT TAB ON THE SYSTEM DISKETTE. IF NECESSARY, THIS WRITE PROTECT TAB CAN
BE REMOVED AFTER THE COPYING PROCESS IS COMPLETE.

2-35

There are two utilities which can be used to make a copy of a configured
system diskette:

•
1) The OISKCOPY utility can be used to make an exact duplicate image

of a diskette. OISKCO'PV can be used on a single drfve system,
though the procedure is somewhat more difficult than for multiple
drives. Refer to chapter 4, section 4.8 for instruction on using
OISKCOPY in this manner.

2) A special utility called COPYFILE is provided for' the single drive
owner. COPYFILE is similar to FILECOPY which is designed for
multiple drives. COPYFILE makes it simpler for the single drive
owner to backup di sk fi 1 es on another di skette. Refer to chapter
4, section 4.10 for instructions on using COPYFILE.

When using COPYFILE to backup your configured systems diskette,
the following steps should be followed:

a) Initialize a blank diskette by typing the command INIT 0
and a carriage return. The system prompts

ARE YOU SURE?

If you are, type a I Y I. Any other response wi 11 cancel
command.

When the sys tern prompts '>.', the di skette is i ni ti ali zed.

b) The RES file must be the first file to be copied on the newly
initialized diskette. If any other file is copied before RES,
the new diskette will not boot. Type:
COPYFILE II RES II

and a carriage return.

The COPYFILE program leads the user interactively through the
copying process.

c) The second file on the copy diskette should be MOOS. Type:

COPYFILE "MOOS"

and a carr; age return.

d) The rest of the system files can be copied in any order you wish.

2-36

Rev. 8 9/78

III NORMAL OPERATION

3.0 INTRODUCTION
(, i

ThiS section describes the day-to-day operating procedure for a user-
Gonriijured system.

3 1S00TSTRAP PROCEDURE

1) Ensure that the diskette drive and controller are properly inter-
connected with your system and that the "proper of memory
is configured and installed in your system. Apply power to the
diskette drive and system.

2) Insert the configured SYSTEM di ske,tte ,into the dri ve (dri ve 0
of dual drives) and load the diskette. ';' On single drives, wait

5 seconds to ensure the unit fsup to sp:eed.

3) Activate the bootstrap ROM on the controller. For Altair/lmsai
type computers with a front panel, this ;s done by setting the
address switches to the bootstrap addre:ss (F400H unless the
controller base address has been changedl!l reset, examine,and
run. For computers under control of a resident ROM monitor,
follow manufacturers instructions on starting p,rogram
exeGution'at a given address. ,Use the,add.ress;:,of the bootstrap
ROM ,I (F400H unless the controller base address ,has be;en changed).

Ii
When the boot program is started, the unit select indicator on
the drive will ,illuminate' and the disk head will load with an
audible Ilcl ick".

"

The addres s lights on the computer fron,t, panel (i f you have
one) will flash the 10aQ process·which willtakei'4 to 7 seconds.

, , . .

The bootstrap program brings the system. loader into RAM and it
loads and starts the confi gured system.",' When' this: process is
comp 1 the loaded sys tern w,i 11 output a s i gO -on message to
your The MOOS system signs on with

MICRQPQLIS MOOS VS. X.X - COPYRIGHT 1978
')t

The BASIC system signs on with

MICROPOLIS BASIC VS. X.X - COPYRIGHT 1978
READY

3-1

Rev. 7 3/78

4) Approximately 5 seconds.afte.r,the load is complete, the drive
will automatically be de-selected. This will be evidenced by
the audible "click" of the head unloading and the unit,seJect,
indicator will extinguish. ' :,':

If the system has not si gned on within 10 seconds '. observe"
the unit select inqicator. If the, unit is still selected after
about 20-30 seconds, the bootstrap program has not
read the loader into memory. Reset your system and'rembVe the
SYSTEM Inspect the diskette for any obvious damage
or the diskette and retry the bootstrap
bperation, '

If the system has not Signed on but the unit select indicator
has extinguished, the loader may not have been able to read the
system into Stop the system and examine location
039AH,which qontains the loader termination status. The status
code should be one of the following:

47H (ASCII "Gil) THE SYSTEM WAS LOADED WITHOUT AN ERROR' - the
problem is probably with your terminal or
your termina 1; s onl ine) . "

55H (ASCI I "U") ') UNRECOVERABLE 01 SK ERROR' .
The systf;!1111pader was unable to read the diskette
prope'rly. Remove the diskette and inspect for ebvi.o.us damage or
contamination. Re ... insert the di skette and retry "the' boot operati on.

4DH (ASCII "M") ,'" MEMORY ERROR - the system loader reads the system
into its read buffer sector by sector and moves the data from each
sector into the RAM area where it executes. During this process,
the loader read's the data back to ensure that the move destination
contains operable RAM. If the data read back does 'not compare,
then the 1 aborts wi th an "M" error. conta i ns
the RAM addr$ss at which the error Try'todeposit/

ne 0, FFH, ASH at the address whi ch caused the error.

a)

b)

c)

If the examine always yields FFH, there is no RAM at
that address (or a memory board failure which makes
it appear so) or memory is protected.

If the examined data does not match the data deposited
at that you probably have a defective memory
boarQ or the memory is protected.

If merriory appears to be OK', retry the' boot operation -
if it fa1ls again you have noise or some similar

memory error problem.

If the Gode is not one of the above, the RAM at 00A0H -
03A0H into which the loader is read may be protected,
or

3-2

Rev. 8 9/78

, 3.2 OPERATING HINTS

1) The Micropo1is flexible disk drive subsystem was designed to take
every reasonable precaution to protect your diskettes and the data
recorded on them. Examples of this care are the door interlock
which prevents loading of the diskette until it is properly inserted,
and the automatic 5 second deselect feature which relieves the head
load pressure from the recording surface when the dr.ive is not in
use. Once the diskette is removed from the drive, it is your
responsibility to exercise the same care in handling and storing
the diskette to ensure its long service life. The following
precautions are guidelines for proper handling:

a) The exposed recording surface is easily contaminated - do
not touch or attempt to clean the surface. Do not smoke,
eat or drink while handling the diskette. Whenever the
diskette is removed from the drive, return it to its
protective envelope.

b) The diskette is a thin oxide-coated plastic sheet which
may be damaged' if handled carelessly. Do not place heavy
objects on the diskette; do not expose the diskette to
excessive heat or sunlight; do not use rubber bands or
paper clips on the diskette; do not bend or fold the
diskette.

c) Do not write on the diskette labels with an erasable
pencil: graphite particles may contaminate the diskette
or it may be damaged by the force exerted in writing. A
fiber-tip type of pen is recommended. Return the diskette
to its envelope before writing on'labe1s.

d) Information is recorded on the diskette as magnetized
"spots". Exposure of the diskette to magnetic fields or
ferromagnetic objects which may become magnetized may
result in the loss of information.

If a diskette is damaged or contaminated it should be replaced.
If a contaminated diskette is placed in the drive, the receiver
and read/write head may become contaminated and ruin other diskettes.

2) The auto-deselect will ensure reasonable diskette life. But, as a
rule you should unload the diskette whenever it is not going to be
accessed for long periods of time. This will give added diskette
life and prolong the life of the drive motor.

3) All diskettes used with the Micropolis subsystem must be initialized
before they can be used. The required initialization can be performed
by using the INIT command in the MOOS System or by using the BASIC
UTILITY program provided on the MASTER diskette and described in
Appendix B.

3-3

Rev. 7 3/78

3.3 THE CONCEPT OF BACKUP

A key concept in the successful operation of any computer system is BACKUP.
System failures are not a matter of probability, they are a matter of
certainty. Failures may occur because of internal problems such as component
failures or defects in media used in storage devices; or because of external
sources such as power failure or line transients. Adoption of a sensible
back-up scheme can minimize the inconvenience and expense of system failures.

In the context of microcomputers equipped with Micropolis flexible disk
storage subsystems, backup means taking steps to ensure that'your program
and data files are not lost.

Protecting your programs is easy if the convention of master and working
copies of programs is adopted as follows:

1) A master program diskette exists for the purpose of backup only.
It is kept in a safe place and is only used when its contents are
copied to a working diskette. .

2) In day to day operations, programs are loaded and executed from
working diskettes.

3) Never use the master diskette for program development. Copy its
contents onto a working diskette and perform the program editing
using the working diskette.

4) When editing program files, resave the program file periodically.
In the event of a failure, the chance of losing all of a lengthy
editing session is reduced.

5) When the editing of a program is complete, the diskette containing
the source program should be saved as a temporary master. Debugging
of the program should be performed using a copy 'of the temporary
master. Subsequent program editing may be performed on the temporary
master or a copy of it depending upon how extensive the previous
editing was. The key concept is: If the only copy of a program
under development is destroyed, it should be possible to recreate
the latest version from previous masters and documentation of the
changes made to the previous programs. (e.g., marked-up program
listings) The extent to which this concept is extended depends
upon weighing the inconvenience and time of making backup copies
against the possible loss and inconvenience caused by a failure.

6) Once the program under development is stable and ready to be phased
into operation, the temporary master becomes the new current master
diskette. The previous master should be retained as a 'grandfather'
backup master, until it is certain that the new program functions
properly and there is no need to fall back to the previous program.

Listings of the programs on the master diskette should be saved in
_ a safe place as further securi ty.

Rev. 8 9/78 3-4

Protection of data files is more difficult. The extent to which data files
may be protected depends upon the application but the concept ;s the same.
In a properly designed system it should be possible to recreate the current
data base from a backup copy and a list of the changes which have occurred
since backup copies of the files were made.

A static data base may be protected by procedures similar to those given for
program protection.

A dynamic data base, such as the data base used in an intereactfve order entry
or inventory control system, is difficult to protect. A properly designed
system should include making frequent backup copies and saving the transactions
against the data base in a separate file, preferably on a different device
from the device on which the data base resides. If a failure occurs, the
data base may be reconstructed except for transactions which may have been
processing at the time of the failure. Many books and articles have been
written concerning the design and security of data bases - consult them
for an in depth discussion of the problems and solutions.

In systems which have only one disk drive, the backup process involves
swapping diskettes in and out of the drive. Although the need for backup
is independent of the number of drives in the system, in this context the
time and invonvenience of the process may appear to overshadow the
potential value. Micropolis has attempted to minimize this time and
inconvenience by providing file and disk copy utility programs which support
the single disk drive environment.

In systems which have two or more disk drives, the Micropolis DISKCOPY program
provides the easiest means of making backup copies. The entire contents
of a diskette may be copied onto another diskette in a few minutes.

Rev. 8 9/78 3-5

IV MICROPOLIS DISKETTE OPERATING SYSTEM

4.0 INTRODUCTION TO MOOS

Micropolis Program Development Software consists of two systems,
Micropolis BASIC which is discussed in Chapter V and the Micropolis
Diskette Operating System (MOOS). MOOS consists of an executive·
program, a group of shared subroutines available to user programs,
and an assembly language program development package.

The MOOS executive program implements an interactive command language
that allows the user to control computer system operations from the
system console. It provides commands for memory management, file
management, I/O control and program control.

MOOS contains a very large group of subroutines which can be called
from a user's application program. These subroutines provide for
console and printer character I/O, buffered line I/O, text line
parameter parsing, sequential and random file access, file management,
physical diskette access, and 16 bit integer arithmetic. There are
also a number of processor oriented utility subroutines.

Six application programs make up the package that supports assembly
language program development. LINEEDIT facilitates the creation of
source files. ASSM is a two pass 8080/8085 disk to disk assembler.
SYMSAVE creates a source file of equate statements from a latent
symbol table. FILECOPY is a utility for copying named files. DISKCOPY
is a utility for making literal copies of an entire diskette. DEBUG
provides facilities to locate and correct program bug's in machine
language programs.

4-1

Rev. 8 9/78

4.1 THE MOOS EXECUTIVE

The MOOS executive program implements an interactive command language
that allows the operation of the microcomputer system to be controlled
from the system console. When MOOS is loaded it signs on the
message
MICROPOLIS MOOS VS. X.X - COPYRIGHT 1978
>
It is then waiting for an executive statement to be entered.

4.1.1 ENTERING EXECUTIVE COMMANDS

Executive statements are entered by typing characters in sequence on
the console keyboard. An executive statement is terminated by pressing
the RETURN key. During the entry of a statement each character that is
typed is echoed by the executive on the console display. Two control
features may be used when entering a line.

1) Each time, the RUBOUT key is pressed the next previously typed
character will be deleted. from the line. A backarrow is echoed
to the terminal display for each character deleted.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The
executive is positioned to accept entry of a new line.

4. 1. 2 EXECUTIVE ,STATEMENT FORMAT

An executive statement has the following form:

[unit:]NAME [1I<ASCII>1t "<ASCII>II ... II<ASCII>II <hex> <hex> ... <hex>]

The NAME in an executive statement may be the name of an explicit command
or the name of a disk file. MOOS has 23 explicit commands which are
discussed in this section. Explicit command names are uppercase only
and must not be preceded by any spaces. In addition, executable assembly
language programs can be loaded into memory and run by entering their
file NAME. This provides an implicit command capability that can be used
to extend the executives vocabulary. Implicit command filenames can be
up to ten ASCII in the code range 21 hex to 7E hex. Imbeded
spaces, double quotes, backarrows, and rubouts are not allowed in
impl i cit command fi:l enames.

When an executive statement is entered the executive program searches
its table of expl'icit command names for a match with the NAf1E that was
input. If the NAME is found in the table of command names the statement
is executed immediately. If the NAME is not an explicit command name,
then the NAME is treated as an implicit command filename which must be

4-2

Rev. 7 3/78

found on disk. Implicit command filenames may be prefixed by an optional
unit number. This specifies the disk drive on which the NAMEd file is to
be found. If no unit number is specified, unit 0 is assumed. If a unit
number is specified it must be separated from the first character of the
NAME by a colon (:). The executive processes the implicit command filename
by searching the directory of the 'specified disk drive for the file. If
the file is found on the disk (and the file type is correct) the executive
loads the program file into memory and transfers control, along with any
parameters in the executive statement, to the program. If the executive
does not find the file on the specified drive an error message is.output
to the console stream: COMMAND NOT FOUND. If the file is found on the
disk but it is not an executable file an error message is output to the
console stream: WRONG FILE TYPE. See the section on file type definitions
for a detailed discussion of file types.

Executive statements consist of a NAME followed by parameters, as necessary.
Parameters can be ASCII or numeric. There can be up to four ASCII parameters
and up to four numeric parameters. There must be at least one space between
the NAME and any parameters. All parameters must be separated from each
other by at least one space. Entry of an executive statement with too many
parameters of either type, or without the required spaces between fields
will result in a SYNTAX ERROR.

ASCII parameters consist of from 0 to 10 ASCII characters in the code range
20H to 7EH except for 22H which is the double quote and 5FH and 7FH which
are interpreted as backspace requests by the logical console input routines.
ASCII parameters must be enclosed in double quotation marks. Entry of an
executive statement with unbalanced quotation marks or illegal characters
in an ASCII parameter will result in a SYNTAX ERROR.

ASCII parameters in executive statements are generally used to specify
disk filenames. In this usage a unit number may be prefixed to the ASCII
filename within the quotation marks by typing the unit number followed by
a colon (:) followed by the filename. This indicates the disk drive unit
on which the file is to be found. If no unit is specified, unit 0 is
assumed. The digit of the unit specification and the colon are not included
in the 10 character length restriction for ASCII parameters. For example,
IIDATAFILE01" and "l:DATAFILE01" are both valid ASCII parameters in an
executive statement.

Numeric parameters in executive statements are unsigned hexadecimal values
from 0 to FFFF. They represent such elements as memory addresses, filetypes,
and databytes. Entry of a numeric parameter with a value greater than FFFF
or with illegal characters will result in a SYNTAX ERROR.

4.1.3 CANCELLING AN OPERATION

All MDOS explicit commands and all application programs supplied by Micropo1is
can be cancelled in progress by holding down the control key and typing a
C (CNTL/C) on the console keyboard. The operation will be terminated as soon

CNTL/C is recognized and the message CANCELLED will be output to the
console. Control is returned to the MOOS executive.

4-3

Rev. 7 3/78

4.1.4 DISPLAY CONTROL

All MDOS explicit commands and all application programs supplied by Micropo1is
can be temporarily stopped in progress by holding down the control key and
typing an S (CNTL/S). The process -will pause upon recognition of the CNTL/S.
Typing any key other than CNTL/S or CNTL/C will cause the process to resume.
This function is very useful in controlling commands and programs that output
displays at high speed. For example, the output of a DISP command may be
vi ewed at reading speed by stopping and resuming the output as 'necessary.

4.1.5 EXPLICIT EXECUTIVE COMMANDS

Conmand syntax for each of the MDOS explicit commands is illustrated in
this section with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are
opt i ona 1 .

< > Symbol brackets. This space should be replaced by the item
described.

4.1.5.1 THE COMP COMMAND

COMP <start addr. b1ock1> <end addr. blockl> <start addr. b1ock2>

The COMP command compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

>COMP 5000 5010
5004 01 09 5014

The block of memory from 5000 to 500F is compared vlith the block of memory
from 5010 to 501F.· One location fails to compare. Location 5004 contains
01 while the corresponding location, 5014, in the second block contains 09.

4.1.5.2 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs to the system console a formatted hex display of
the contents of a block of memory. Sequential memory locations are shown
16 to a line with the memory address at the left margin. If the optional end
a,ddress parqmeter is not entered, only one byte is dlsplayed. Example:
>DUMP 5000 5011
5000 50 C0 27 77 4F 33 4F CD 7D 9E 98 00 FD 82 90
5010 77 2B

4.1.5.3 THE ENTR COMMAND

ENTR <start addr.>

4-4

Rev. 8 9/78

The ENTR command allows data to be entered into memory directly from the
console device. Example:

>ENTR 7000
>78 89
6FI
Three bytes were entered starting at location 7000 hex. These were 78
at 7000, 89 at 7001, and 6F at location 7002.

Typing in an ENTR command places the executive in a special enter mode.
While in the enter mode each ,line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed
the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (I) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.1.5.4 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

>FILL 7000 8000 9

Each byte of memory in the block from 7000 to 8000 is changed to a 09
by this command.

4.1.5.5 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

>MOVE 3000 4000 7000

Each byte in the memory block from 3000 to 4000 is copied into the
corresponding position in the memory block from 7000 to 8000.

4.1.5.6 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

>SEAR 3000 3020 9F
3004 9F
3018 9F

The block of memory from 3000 to 3020 is searched for all occurrences of
a 9F. Location 3004 and location 3018 both contain 9F. No other
locations in the block contain 9F.

4-5

Rev. 7 3/78

4.1.5.7 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

>SEARN 3000 3010 67
3002 09 67
3006 76 67

The block of memory from 3000 to 3010 is searched for all non-matches with
the mask 67. Location 3002 contained a 9 rather than a 67, and 3006
contained a 76 rather than a 67.

4.1.5.8 THE CREATE COMMAND

CREATE /I [uni t:]<fil ename>/I [<fi 1 e type>]

The CREATE command creates a new file in the directory of the diskette
in the specified unit and allocates the initial track for the file. If
no unit is specified, unit 0 is assumed. The second parameter optionally
gives the file a TYPE designation. If no type is specified the type is
defaulted to 0.

4.1.5.9 THE DISP COMMAND

DISP "[unit:]<filename>" [<record number>]

The OISP command outputs a formatted hex display of the data contents of
a file to the system console. The unit number indicates the disk drive
on which the file is to be found. If no unit is specified, unit 0 is
assumed. The optional record number indicates on which record in the file
the display is to begin. If no record number is specified, record 1 is
assumed.

Each record is displayed with a header line that contains the record
number, the address in memory where the record is to be loaded, and the
number of data bytes in the record. Data lines follow the record header.
Each data line has up to sixteen data bytes preceded by the index position
in the record of the first data byte on that line.

>DISP "l :TEST" 29
0029 3C00 0022
00 12 2A SD 76 8F ED 54 41 89 00 00 82 BC CC 76 89
10 78 88 3B BB 88 54 58 56 90 88 32 31 30 00 00 00
20 89 55
002A 3C80 09103
00 FF FF FF
002B 3F00 0009
00 45 43 4B 4C 31 37 38 91D 00
002C 2B00 0000
END-FILE

Rev. 8 9/78

4-6

The first line of the display shows the record number 29, the load
address 3C00, and the length of the record 22 bytes (all in hex). The
header line is followed by three lines which display the data in record
29. Each data line starts with the index position of the first byte in the
line. It is followed by two spaces and then the data.

The next header is for record 2A which has a load address of 3C80 and
contains 03 bytes of data.

Record 2B has a load address 3F00 and contains 09 bytes of data.

The last header is for record 2C has a load address of 2B00 and a
record length of 0. If the file is an executable object file (like
for example), the address in the zero length sector is the execution
address of the file. LOADing stops when the zero length sector is read.
If the file is a run type which is being implicitly loaded and run,
program control is transferred to the execution address.

4-6.1

Rev. 8 9/78

4.1.5.10 THE FILES COMMAND

FILES [<unit>]

The FILES command a formatted display of the file information
in a diskette directory to the system console. The unit number
indicates which disk drive directory is to be displayed. If no unit is

unit 0 is assumed. Example:

>FILES 1
DIR 03 0000
RES 03 0013
MOOS 0F 001C
LINEEDIT 15 000C
ASSM 15 0010
SYMSAVE 15 0003
FILECOPY 15 0003
DISKCOPY 0F 0009
BASIC 0F 004B

The files on drive one are displayed on the console. The left column
contains the the second column is the file and the
third column contains the number of sectors the file uses. All numbers
are in hex.

4.1.5.11 THE FREE COMMAND

FREE [<unit>]

The FREE command outputs to the system console the number of tracks
left unallocated (free) on a diskette. The unit number indicates which
disk drive. If no unit is unit 0 is assumed. Example:

>FREE 1
003B

The diskette on drive one has 3B tracks available to be allocated.

4.1.5.12 THE SCRATCH COMMAND

SCRATCH "[unit:]<filename>"

The SCRATCH command removes a named file from the directory of a diskette
and returns its allocated tracks to available status. Disk drive 0 is
assumed if no unit is specified.

Note: Some files cannot be SCRATCHed without first changing the file
TYPE (see 4.1.5.9 and 4.2.3).

4-7

Rev. 7 3/78

4.1.5.13 THE LOAD COMMAND

The LOAD command loads (reads) a named file from a diskette into the computers
memory and then returns control to the MOOS executive. If no unit number
is specified, the file is expected to be found on unit 0.

The LOAD command can be used in conjunction ·with two categories of files,
OBJECT files and DATA files. The specific nature of the load that is
performed depends on the category of the specified file to be loaded. The
process of LOADing an OBJECT file is described in 4.1.5.13.1. The process
of LOADing a DATA file is described in 4.1.5.13.2.

The LOAD command can NOT be used to load a file in the OVERLAY category.
An OVERLAY file is defined as any file with a file type value in the range
0C - 0F hex (see Section 4.2.3). An attempt to LOAD an OVERLAY file results
in the message WRONG FILE TYPE. OVERLAY files are not LOADab1e because
they generally imply the replacement of the MOOS module and require immediate
execution. Control cannot be returned to the MOOS executive and must be
transferred immediately to the newly overlayed program module. If there is
a necessity to LOAD an OVERLAY file into a memory area which does not
conflict with MOOS, this can be done by changing the file type to an OBJECT
type and then using an offset load per Section 4.1.5.13.1.

4.1.5.13.1 THE LOAD COMMAND FOR OBJECT FILES

An OBJECT file is defined as any file with a file type value in the range
08 - 0B hex or 14 - lB hex. These ranges include ASSM object files, BASIC
'save memory' files, executable system files, and executable user files
(see Section 4.2.3).

The format of the LOAD command for OBJECT files is:

LOAD "[unit:] <filename>" [<start addr.>]

OBJECT files are LOADed by using the address and length information in the
header of each record of the file (see Section 4.2.4). This is called a
'scatter load' because it permits records in the file to be loaded into
non-contiguous portions of memory depending on the associated addresses.
The LOAD is terminated when the first 0 length record in the file is
encountered.

If the optional start address is not specified in the LOAD command, then
the load of an OBJECT file proceeds according to the following example.

The OBJECT file to be loaded is "TEST".

DISP "TEST"
00091 2B00 0005
00 31 32 33 34 35
09101 2C00 0004
00 54 45 53 54
0002 2B00 0000
END-FILE

Rev. 8 9/78

4-8

Typing LOAD "TEST" loads two text strings into memory. The string "12345"
in record 0 is loaded starting at 2B00 hex for five bytes. The test string
"TEST" in record 1 is loaded starting at 2C00 hex for four bytes. The last
record contains a zero length sector which terminates the load of an OBJECT
type file. For an executable file the zero length sector contains the run
address which in this case ;s 2B00 hex. This file, however, could not be
a run file as it stands as there is no executable code.

If the load address of the first record is less than 2B00 hex, the message
LOAD ADDRESS ERROR is displayed because file may not be loaded the
MDOS application area.

If the optional start-address is specified in the LOAD command, then the
first record of the file is loaded starting at the specified address. The
load address in the record header of the first record is subtracted from
the start-address to produce an offset. When the records following the
first record of the file are loaded, the calculated offset is added to the
load address in the record header and the record is loaded starting at the
calculated address. This is called an 'offset scatter load'.

Using the file TEST in the example above, typing LOAD "TEST" 5000 loads the
string "12345" starting at memory location 5000 hex for five bytes. The
offset is calculated by subtracting the load address in the header of the first
record from the start-address. 5000-2B00=2500 hex. The string "TEST" is
loaded starting at 5100 hex for four bytes. The load address in the header
of the second record, 2C00 has the offset 2500 hex added to it and the result
is the offset-load address.

If the optional start-address is less than 2B00 the message LOAD ADDRESS
ERROR is displayed.

4. 1 .5. 13.2 THE LOAD COMrt1AND FOR DATA FILES

Any file which is not an OBJECT file and not an OVERLAY file is treated as
a DATA file by the LOAD command. DATA files thereby include file type values
in the ranges 0-7, 10-13 hex, and 1C-FF hex. These ranqes cover MDOS and
BASIC DATA files, ASSM and LINEEDIT source files, BASIC program files and all
of the unassigned file types (see Section 4.2.3).

The format of the LOAD command for DATA files is:

LOAD "[unit:] <filename>" <start addr.>

The start address parameter is mandatory.
a SYNTAX ERROR message will be displayed.
2B00 HEX a LOAD ADDRESS ERROR will result.
tion of the operating system.

4-8.1

Rev. 8 9/78

If a start address is not specified
If the start address is less than
This prevents accidental destruc-

Data is loaded starting at the specified address and continuing until the
number of records in the file as shown in the directory have been loaded.
The data is loaded into memory sequentially and contiguously. Only the
number of data bytes in each record are loaded. The LOAD command does not
pad records of less than 256 bytes. If a file were loaded at location
3000 and the first record had only 4 data bytes in it, then the_first data
byte from the next record would be loaded at location Records with
zero length are skipped over. The load address in the sector header (see
Section 4.2.4) has no meaning when doing a data LOAD.

4.1.4.14 THE SAVE COMMAND

SAVE "[unit:]<filename>" <start addr.> <end addr.> [<file type>]
[<exec. addr.>]

The SAVE command saves (writes) a new file to a diskette from a block
of memory. The file is written sequentially from the memory start
address through the memory end address into full sequential records. If
no unit number is specified, the file' is written to unit 0. If a file
type is not specified the file type will be zero. If an execution address
is not specified, the execution addres$ of the file will be set to the
start address of the memory block. Note that the type and execution
address' parameters are position dependent such that if an execution address
is specified then a file type must also be present. Example:

>SAVE "l:NEWFILE" 2B00 3700 0 3000
A file is created on the diskette in drive one with the name NEWFILE
and the memory block from 2B00 to 3700 is written to that file. The file
is given a type of 0 and the execution address saved with the file is
3000. If no execution address had been specified then 2B00 would be
saved as the execution address.

4.1.5.15 THE RENAME COMMAND

RENAME "[unit:]<filename>/I /I<new name>"

The RENAME command changes the name of a diskette file to a specified
new name. If no unit number is specified, the file to be renamed is
expected to be found on unit 0. Example:

>RENAME "1 :OLDFILE"

The file named OLDFILE on the diskette in drive one is changed to NEWFILE
on the diskette in drive one. The file type is unchanged by the renaming
process.

4-8.2

Rev. 8 9/78

4.1.5.16 THE TYPE COMMAND

TYPE "[unit:]<filename>" <type>

The TYPE command changes the type designation of a specified file. The
type designation is a single hex byte. A definition of file types is
given in Section 4.2. Example:

>TYPE "1: PROGRAMX" 15

The type of the file PROGRAMX on disk drive one is changed to a value
of 15.

4.1.5.17 THE APP COMMAND

APP ["<ASCII>" "<ASCII>" ... "<ASCII>"] [<hex> <hex> ... <hex>]

The APP command transfers program control from the MOOS executive to
the start of the MOOS applications area at 2B00. hex. It expects a valid
executable program to be in the applications area with its entry point
at the beginning. Up to four ASCII parameters and four hex parameters
can be passed to the program. For example, if you are doing several
assemblies, the assembler need only be read into memory once from diskette
as it does not change itself in the process of assembling a program.
After it is once in memory the APP command can be used to communicate with
the assembler. Example:

>APP "1: SOURCE" "OBJECT" "P"

If the assembler were already in memory, the above example would transfer
control and the necessary parameters to the program and the assembler
would assemble the source file called SOURCE from drive one; produce an
object file on drive zero called OBJECT; and output a paginated listing
on the print device.

The APP command functions like the EXEC command in that it PUSHes the
address of the operating systems warm start entry point onto the system
stack. Therefore if the program in the applications area does not provide
its own stack, a RET would return control to the operating system.

4.l.5.l8THE ASSIGN COMMAND

ASSIGN <device #> <logical stream mask> [<width> <null count>]

The ASSIGN command is a dual purpose command which provides the ability
to specify the connections of physical output print devices to logical
output streams and the values for carriage width and null count of the
referenced physical device. The physical device number must be 1 or 2.
The logical stream mask must be a 0,1,2, or 3. The device width and
nullcount must be numeric values in the range 1 to FF hex. The width
and nul1count parameters are optional. If width or nullcount are not.
included, the values corresponding to the referenced physical device

4-9

Rev. 10 4/79

are not changed. If only the device width is included, then the
nu11count is left unchanged. However, if a nu11count is specified then
the width must be present as a place holder even if it is the same. If
the ASSIGN command contains only three parameters the third is always
the width. . .

Logical output stream number one consists of all output generated by
system messages, keyboard echoing and the output from any explicit
executive command. Logical output stream number two consists-of all
output generated by LISTP and PRINTP commands in the line editor,- and
by all listings in the assembler. The logical stream mask can be set to
a three to represent both logical output streams one and two, or to a
zero indicating that the device is to receive no output.

Physical device number one represents the display element of the
keyboard display device that is configured as the system console (see
Section 2.2.4.1 on terminal configuration). Physical device number two
represents the hard copy print device which is configured as the system
printer (see Section 2.2.4.3).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to one,
both, or no logical streams. The ASSIGN command cancels any previous

of the specified device.

In its initialized state the terminal is assigned to stream one only,
and the printer is assigned to stream two only. This state can be
restored by executing:

>ASSIGN1 1
>ASSIGN 2 2

When the console and printer devices are configured, each device has a
carriage width and nullcount parameter associated with it. These values
may be changed by specifying optional third and fourth parameters in an
appropriate ASSIGN command. The width parameter determines the maximum
number of characters on each line for the given device. When a line is
output that is longer than this value an autowrap feature is activated
and a carriage return and line feed is inserted at the appropriate point
so that the logical line is continued on the next device line. The
width can be changed on a given device by repeating the current assignment
with the new width parameter. For example, if the console were currently
assigned to stream one with a width of 80 characters (decimal), it could
be changed to a width of 72 characters (decimal) as follows:

>ASSIGN 1 1 48

72 decimal is 48 hex. This width assignment will stay in effect until
the width is specifically reassigned, or until the system is rebooted.

The nullcount may have to be changed to accommodate unbuffered character
serial devices which may lose characters while the carriage is being
returned. The nullcount value is one greater than the actual number of

4-10

Rev. 7 3/78

output nulls (ie. 1 will output no nulls). For example, if the printer
were currently assigned to stream two at 132 characters per line and
no nulls (nullcount=l), the number of output nulls could be changed to
five with the following command:

>ASSIGN 2 2 84 6

132 decimal is 84, and 6 will result in five nulls being output after a
carriage return.

Because the MOOS executive language has been designed to be interactive
it depends on the availability of a display device for system messages,
keyboard echoing, and display of command results. Therefore an interlock
is built into the system to ensure that stream one always has at least
one device assigned to it. If an ASSIGN command violates this condition,
then physical device one is automatically assigned to stream one as part
of the assignment being processed. Additionally if the print device
supports a printer attention condition (out of paper, motor off, etc.)
the system will force the assignment to an initial state (ASSIGN 1 1,
ASSIGN 2 2) if the printer signals that it needs attention. This ensures
that the attention message will be output to the console.

4.1.5.19 THE EXEC COMMAND

EXEC <address>

The EXEC command transfers processor control directly to the specified
memory address. It expects a valid program to begin at that address.
The address Qf the operating systems warm start entry point is PUSHed
onto the 8080's hardware stack by the EXEC command. Therefore, if the
executed program does not set its own stack, a final RET in the program
will return to the operating system. This feature allows subroutines to
be exercised separate of the rest of a system under development.

4.1.5.20 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs 16 bit integer math functions on the two specified
hex numbers. It displays the sum, difference, product, quotient, and modulus.
Example:

>MATH 4 5
0009 FFFF 0014 0000 0004

The results are displayed from left to right: 4+5=9; 4-5=FFFF 4*5=14
; 4/5=0 (intiger division) and a remainder (modulus) of 4.

4. 1 .5.21 PROMPT II <ASCI I> II

The PROMPT command sets the executive prompt string to the value of the
ASCII string. The string can be up to ten characters long. Spaces are

4-11

Rev. 8 9/78

not allowed. The prompt is initially> when the system is configured.
Example:

>PROMPT "**"
**

The prompt is changed from> to a **

4.1.5.22 THE INIT COMMAND

INIT <unit>

The INIT command initializes a diskette in the specified drive. The
drive unit number must be specified. The INIT command formats the
diskette by writing an empty block with the correct track and sector
identification on every sector of the diskette and reading each sector
to verify the media. It creates a blank directory and places a system
loader on the diskette. The INIT command essentially cleans the diskette
of any data previously on the diskette and prepares it for new use.
Accidental use of the INIT command could destroy the entire content of
a diskette. Therefore, the system provides an interlock on this command.
After the command is entered, the system prompts ARE VOU SURE? It waits
for a 'V' or 'N' response to indicate yes or no. An 'N' cancels the
command- without doing any damage. Example:

INIT 1
ARE VOU SURE?

The diskette on drive one will be initialized if a tv' is typed. All
other replys will result in the command being canceled. Control returns
to the executive.

4-12

Rev. 7 3/78

4.2 MOOS DISK FILE I/O

MOOS implements a powerful and efficient method for storage and retrieval
of files on diskettes compatible with Micropolis disk subsystems. Track o of each diskette contains a directory of the files on that diskette.
Each directory entry holds the name, protection attributes, type, length
and starting location for one file. Track 0 also contains a track map
index that lists all unassigned tracks and all tracks assigned to each file
in the order of assignment. Files are stored on the remaining tracks of
the diskette using a track indexed architecture that allows files to grow
or shrink dynamically. Files may be accessed sequentially by byte or
record and directly (randomly) by record or byte within record ..

4.2.1 TRACK INDEXED FILE STORAGE

The track indexed file storage scheme defines one track as the minimum
disk space consumed by a file. The maximum storage assignable to one
file is all tracks on the diskette (35 on MOO I subsystems and 77 on
MOD II subsystems), except the directory track 0. When MOOS creates a
new file it assigns one track to that file. Additional file space is
assigned to the file one track at a time as needed. Files are contiguous
within a track but not necessarily from track to track. If a file is
shortened, unused tracks are returned to available status. When a file
is deleted (scratched), all of its assigned tracks are freed for
reassignment.

Maintenance of the track map in the track indexed scheme operates as
follows. Whenever a file is opened for access MOOS reads the track map
from that files diskette into main memory. Any record in the file may
then be accessed with only one disk seek by appropriate reference through
the track map. File access operations that cause the file to be extended
or shortened by one track also cause the track map to be immediately
updated in memory and on disk. When the file is closed its directory
entry is rewritten to reflect any changes in the files size or status.

4.2.2 FILE NAMES

File names consist of from 0 to 10 ASCII characters in the code range
20H to 7EH except for 22H which is the double quote and 5FH and 7FH
which are interpreted as backspace requests by the logical console
input routines.

A unit number may be prefixed to the filename by typing the unit number
.followed by a colon (:) followed by the filename. This indicates the
disk drive unit on which the file is to be found. If no unit is specified,
unit 0 is assumed. The digit of the unit specification and the colon
are not included in the 10 character length restriction for ASCII para-
meters. For example, oATAFILE0l and 1 :oATAFILE0l are both valid file
names.

If the file name is to be an implicit command in an executive statement
there are additional restrictions that apply. The file name may not
start with a blank. It may have no imbeded blanks and it may not exist
in the MOOS explicit command table.

4-13

Rev. 7 3/78

Files that are to be shared with BASIC must have valid BASIC file names.
BASIC file names can be up to 10 characters long and use the ASCII
characters from 20 hex through 5A hex except the colon (3A hex). This
should be kept in mind when creating file names for MOOS. The BASIC
file names are a subset of the MOOS file names and some incompatibility
can occur if care is not used.

4.2.3 FILE PROTECTION AND TYPE DEFINITION

MOOS provides two forms of file protection. A file can be write protected
or a file can be delete protected. MOOS also allows files to be classified
as to unique information content by assigning a type designation. A files'
access codes and type designation are combined in one byte of the files'
directory entry., The first two least significant bits of the file type
byte are bit encoded and specify file access restrictions. The access
codes are as follows:

BIT
1 0
o 0 A normal read/write file o 1 A normal read only file
1 0 A permanent read/write file
1 1 A permanent read only file

A normal file can be read, written, and deleted from the diskette by
using the SCRATCH command (Section 4.1.2.5). A read only file can be
read or SCRATCHed but it cannot be written into. A permanent file can
be read or written but it cannot be SCRATCHed. A permanent read only
file can be read but it cannot be written into or SCRATCHed. Attempts
to SCRATCH a permanent file will result in the message PERM FILE.
Attempts to write into a read only file will result in the message READ
ONLY FILE. The TYPE command may be used to change the access codes of a
file if necessary.

Note that these access code safeguards are software features that will
only protect a file as long as the operating system has not been damaged.
Diskettes may be physically write protected by placing a write protect
tab over the slot in the upper right hand edge of the diskette. This
causes the write electronics in Micropolis disk subsystems to be disabled
when that diskette is loaded in a disk drive.

The most significant six bits of the file type byte specify the type of file.
This allows 64 different classifications of files each having four access
codes.

The codes 0 through 7F hex are reserved for present and future system usage
and should not be assigned other meanings by the user. The codes from 80
to FF hex are available to the user and are not used by the system.

4-14

Rev. 8 9/78

The executive, the assembler, and the editor check file types when called
upon to load, save, or resave a file. If the file type is not correct
the function will not take place. A table of file types follows:

TYPE CODE
IN HEX

00-03
04-07
08-0B
0C-0F
10-13
14-17
18-1 B
lC-7F
80-FF

DESCRIPTION

MDOS & BASIC DATA FILES
EDITOR/ASSEMBLER SOURCE FILES
ASSEMBLER OBJECT & BASIC 'SAVE MEMORY' FILES
EXECUTABLE OVERLAY FILES
BASIC PROGRAM FILES
EXECUTABLE SYSTEM FILES
EXECUTABLE USER FILES
RESERVED FOR FUTURE EXPANSION
AVAILABLE FOR USER DEFINITION

The line editor produces type 4 files. It can load type 4,5,6, and 7 files.
The assembler will only assemble type 4,5,6, and 7 files. It produces
type 8 files.

Executable system files and user files may be loaded with the load command.
Any attempt to load a file below the application program area will result
in a LOAD ADDRESS ERROR. Executable overlay files may be loaded below the
application program area by typing the file name as an implicit executive
command. Any attempt to implicitly load a file that is not an executable file
will result in the message WRONG FILE TYPE.

It is not possible to load an overlay file without beginning its execution.
However, the entry point of the overlay could contain a jump to the MOOS
warmstart address. This would return control to MDOS immediately after
the overlay file was loaded, provided that the file did not overlay any
functional MDOS code.

4.2.4 FILE AND RECORD STRUCTURE

An MOOS file consists of a group of related records stored on a diskette.
The group is given a filename and type designation as described above.
These are stored in the file directory on track 0 of the diskette.

Each record of an MOOS file begins with a two byte memory address followed
by a two byte length indicator. The remainder of the record consists of o to 256 data bytes. The memory address tells MOOS where in memory to load
the data from that record. The length indicator tells MOOS how many valid
data bytes are in the record. A record needs a minimum block of 4 bytes
and a maximum block of 260 bytes to be properly stored.

The records of a MOOS file are stored on the sectors of a diskette, one
for one. Micropolis disk subsystems write a physical sector that is 268
bytes long. The first 8 bytes of the sector are used for control purposes
strictly by the operating system. The remaining 260 bytes are available
for a record. Short records, including 0 length (empty) records are
possible. If a particular record has less than 256 data bytes the remainder
of the sector is not used. However, the record may be expanded at any
time by rewriting the sector to make use of the unused bytes.

4-15
0 , 170

The object program file that corresponds to the following assembly
language program serves to illustrate the MDOS file and record structure.

ADDR Bl B2 B3 E LINE# LABEL OPCODE OPERAND

0000 1000 START ORG 4000H
4000 21 00 70 2000 LXI H,7000H
4003 3000 DATA OS 10H
4013 00 4000 BYTE DB 0
4014 5000 DATAl OS 10H
4024 01 6000 BYTE1 DB 1
4025 C3 25 40 7000 BEGIN JMP $
4028 8000 END BEGIN

The first record of the object file has 4000 hex in the memory address
bytes in Intel low/high format. The record length bytes contain 0003,
indicating that the record has only three bytes of data. The three data
bytes are 21 00 70. This record is written on the disk as one sector.
The second record of the object file has a memory address of 4013 and a
length of 0001, one byte of data 00. This record is also stored on the
disk as one sector. The third record has a memory address of 4024 and a
length of 0004, four bytes of data 01 C3 25 40. This record is stored
on the disk as one sector. A fourth record is written that has a memory
address 4025 and a length of 0000. This empty record marks the end of
the object file and its memory address holds the execution address
specified in the END statement.

The structure of this object file is standard for all MDOS executable
or memory load files. The file is allocated one entire track on the disk.
It contains eight data bytes spread across 3 sectors. The 4th and last
sector contains no data. Its memory address field holds the file
execution address. Given an executable file type, the records of this file
could be loaded into memory at 4000, 4013 and 4024 by typing its name to
the executive. Direct processor control would transfer to 4025 to begin
program execution. This type of file is called a scatter loadable file
because it can be loaded non-contiguously into main memory.

Note: The number of records in each MDOS file is included in the directory
entry for that file. This determines the end of file for data files.
Data files do not require a zero length record to mark their end because
there is no execution address for a data file. The special zero length
record is used with files that load into a range of memory and may require
an associated execution address. For these files the zero length record
is included in the record count in the files' directory entry.

4.2.5 FILE ACCESS METHODS

MDOS contains shared subroutines that allow user application programs to
access diskette files sequentially by byte or record and directly (randomly)
by record and byte within record.

A file may be written sequentially by writing a byte at a time and
incrementing the index position. The system buffers the bytes written

4-16

Rev. 8 9/78

until a full 256 byte record is constructed and then writes it to the
next sector in the file. The file space is automatically extended as
necessary. A file may also be written sequentially by repeatedly writing
blocks of data up to 256 bytes in length as one record and then incrementing
the record position to the next record. A file written in this manner
may have records of varying length up to 256 bytes.

A file may be read sequentially by reading a byte at a time and incrementing
the index position until the end of file is reached. If the file contains
any short records the unused bytes at the end of the sectors of those records
will be automatically skiped by this byte sequential access. A file may
also be read sequentially a record at a time by starting at the first record,
reading the record length and then reading that number of bytes as a block,
incrementing the record position to the next record, and repeating the
process until the end of file is reached.

A specific record in a file may be accessed by setting the index position
directly to the start of that record. The record may then be read or written
either a byte at a time or as a block of bytes. A specific byte in a
directly accessed record may be read or written by first setting the index
position directly to that byte in the record. These techniques facilitate
the spot updating of a file.

4.2.6 COMPATIBILITY BETWEEN MOOS AND BASIC FILES

BASIC file names are a subset of MOOS file names. Therefore all BASIC files
can be handled by the MOOS file name parsing logic, but not all MOOS file
name can be handled by BASIC. Refer to the Section 4.2.2 on FILE NAMES for
a complete discussion.

BASIC data files contain records of from zero to 250 bytes of data. The
file and record structure is the same as that used by MOOS as discussed
in Section 4.2.4. The two bytes at the start of the record which hold the
length of the record can never be greater than 250 if the file is to be
used by a BASIC program as a data file. BASIC will output an error message
to the console stream and stop the program if the record length is greater
than 250. MOOS can create BASIC readable files as follows:

1000 * GET DATA TO BE WRITTEN INTO A BASIC COMPATABLE FILE
2000 START MVI E,250
3000 GET CALL GETOATE
3500 JC EXIT ;CLOSE FILE & EXIT
4000 CALL @WTINXPOSI
5000 OCR E
6000 JNZ GET
7000 CALL @INCRECPOS
8000 JMP START

This partial program illustrates a method for writing 250 byte records.
For these records to be meaningfull to BASIC, the data must be seven bit
ASCII with the proper BASIC string delimiters (refer to the STRING statement
in the chapter on BASIC). The subroutine GETOATE is the users data acquisi-
tion routine which returns the carry flag set when the process is done.
@WTINXPOSI and @INCRECPOS are MOOS subroutines which are documented in Section
4.3.3. The method shown corresponds to the process for writing a file
sequentially by record as described in Section 4.2.5.

4-17

4.3 MDOS SHARED SUBROUTINES

MDOS provides the applications development programmer with many useful
subroutines that can be accessed directly from an applications program.
These subroutines provide for console and printer character I/O, buffered
line I/O, text line parameter parsing, sequential and random file
file management, physical diskette access, and 16 bit integer arithmetic.
There are also a number of processor oriented utility subroutines.

When you write an assembly language program, these subroutines can be
referenced by name; e.g. CALL @HLADDA. The PDS MASTER diskette contains
two files named SYSQl and SYSQ2. These are editor compatible source
files that contain the names of all of the MDOS shared subroutines
equated to their entry addresses. Application programs that reference
these routines by name should include the SYSQl and SYSQ2 files in their
assembly by using the assembler LINK pseudo-op, described in detail in
Section 4.S.

The following sections specify what arguments each subroutines expects,
what arguments each subroutine returns, and how it functions.

4.3.1 CONSOLE AND PRINTER INPUT/OUTPUT SUBROUTINES

Micropolis Program Development Software packages perform input and output
through the following subroutines. These routines link the system with
the device handlers described in Chapter II under configuring for
supported devices.

The device handler routines start with a vector table whose address is
@CIOTABLE for the console, and @LIOTABLE for the printer. The routines
in this section enter the drivers by indirectly accessing these tables
using @CONSOLEADDR, and @LISTADDR which are buffers that hold pointers
to the actual location of @CIOTABLE and @LIOTABLE. By changing the two
bytes at locations @CONSOLEADDR or @LISTADDR the user can have special
purpose drivers in memory at the same time as the standard drivers.

4.3.1.1 @CIN - CONSOLE INPUT

The @CIN routine waits for input from the system console. It strips
parity and changes ASCII codes SF (backarrow) and 7F (rubout) into 08
(backspace). It returns the input character (7 bit ASCII) in the B
register, with the carry flag clear (NC). It preserves the HL, DE,
and C registers.

4.3.1.2 @COUT - CONSOLE OUTPUT

The @COUT routines waits until the console stream is ready and then outputs
a character. It changes carriage returns into a carriage return followed
by the number of nulls associated with the device attached to the console
stream. It changes ASCII code 08 hex (backspace) into a SF (backarrow).
If the wrap logic for the device assigned to the console stream is enabled
aline feed a carriage return nulls sequence will be output when the

4-18

Rev. 8 9/78

number of characters on the line equals the width. Refer to the ASSIGN
command in the MOOS executive. It expects the character (7 bit ASCII)
in the B register. It returns the carry flag set (C) if a printer
attention condition occurs, and sets the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MOOS executive. It
preserves the HL, DE, and BC registers.

4.3.1.3 @CBRK - CONSOLE CHECK BREAK

The @CBRK routine checks the console device for the input of a cancel
(control C), or a pause (control S). It returns the zero flag set (Z)
and the CANCELED message code in the A register if a CONTROL C (03) is
input. It preserves the HL, DE, and C registers. On pause (control S)
the routine loops, waiting for another character to be input. Entry of
any character other than control S will terminate the pause and return
to the caller.

4.3.1.4 @CDIN - CONSOLE DEVICE INPUT

The @CDIN routine waits for input from the console device. It returns the
character (8 bits including parity) in the B register, with the carry flag
clear (NC). It preserves the DE, HL, and C registers.

4.3.1.5 @CDOUT - CONSOLE DEVICE OUTPUT

The @CDOUT routine waits until the console device is ready to receive a
byte and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the flag clear
(NC) .

4.3.1.6 @CDBRK - CONSOLE DEVICE BREAK CHECK

The @CDBRK routine checks the console input ready status. If an input
is ready it gets the input. Otherwise it returns im.mediatelY. It
the zero flag set (Z) and the input character (8 bits including parity)
in the B register if there was an input. It preserves the DE, HL, and C
registers. If there was no input the @CDBRK routine returns the zero flag
clear (NZ), and the B register is unchanged.

4.3.1.7 @CDINIT - CONSOLE DEVICE INITIALIZATION

The @CDINIT routine initializes the console interface device. It preserves
the HL, DE, and BC registers. It returns the carry flag clear (NC).

4.3.1.8 @LOUT - LIST OUTPUT

The @LOUT routine waits until the list stream is ready to receive and
then outputs a character. It changes carriage returns into a carriage
return followed by the number of nulls associated with the device attached
to the list stream. It changes ASCII code 08 hex (backspace) into a 5F
(backarrow). If the wrap logic for the device assigned to the list stream
is enabled a line feed and a carriage return nulls sequence will be output

4-19

t}o\/ A Q /7A

when the number of characters on the line equals the width. Refer to
the ASSIGN command in the MOOS executive. It expects the character
(7 bit ASCII) in the B register. It returns the carry flag set (C) if
a printer attention condition occurs, and sets the assignment to ASSIGN
1 1, and ASSIGN 2 2. Refer to the ASSIGN command in MOOS executive.
It preserves the HL,OE, and BC registers.

4.3.1.9 @LATN - LIST ATTENTION

The @LATN routine checks the list stream for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs,
and sets the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN
command in the MOOS executive.' It preserves the HL, DE, and BC registers.

4.3.1.10 @LDOUT DEVICE OUTPUT

The @LDOUT routine waits until the list device is ready to receive a byte
and then outputs it. It expects the byte for output in the B register.
It preserves the DE, HL, and BC registers. It returns the carry flag
set (C) if a printer attention occurs.

4'.3.1. 11 @LDATN - LIST DEVICE ATTENTION

The @LOATN routine checks the list device for a printer attention condition.
It returns the carry flag set (C) if a printer attention condition occurs.
It preserves the HL, DE, and BC registers.

4.3.1.12 @LDINIT - LIST DEVICE INITIALIZATION

The @LDINIT routine initializes the list device. It preserves the HL, DE,
and BC registers. It returns the carry flag clear (NC).

4.3.1.13 @CCRLF - CONSOLE LINE FEED CARRIAGE RETURN

The @CCRLF routine outputs a line feed carriage return and nulls to the
console stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2"2.
Refer to the ASSIGN command in the MOOS executive. It preserves the HL,
DE, and BC registers.

4.3.1.14 @LCRLF - LIST LINE FEED CARRIAf,E RETURN

The @LCRLF routine outputs a line feed carriage return and nulls to the
list output stream. It returns the carry flag set (C) if a printer attention
condition occurs, and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2.
Refer to the ASSIGN command in the MOOS executive. It preserves the HL,
DE, and BC registers.

4.3.1.15 @ASSIGN - ASSIGN

The @ASSIGN routine assigns the physical device to specified logical stream(s)
. and sets the width and nul1count associated with the device. It expects the

physical device number in the E register, the logical stream mask in the 0

4-20

ReV. 7 3/78

register, the width in the C register, the nullcount (nulls+l) in the B
register, and the number of parameters passed in the H register. No
registers are preserved. (Refer to the ASSIGN command in the executive for
a detailed discussion of physical device assignment to logical output
streams) .

4.3.1.16 @CILINE - CONSOLE INPUT LINE
The @CILINE routine outputs a specified prompt message to the console
and then buffers up to 132 characters of input text from the console
device. It provides the standard backspace (rubout) and line cancel
(CNTL/X) controls during the line entry process. The text line input is
terminated by a carriage return. (Note: The carriage return is not echoed
to the console). It expects the address of a string of text to be output
as a prompt in the HL registers. The message pointed to must be properly
terminated with a byte code of 0 through 1F hex or the high order eight
bit of the last byte set. It returns the input line ;n @INBUFF, and the
number of input characters including the terminating carriage return in the
B register. It preserves the HL, DE, and C registers. Any control
acters input during the line entry process are echoed to the console stream
but not entered into @INBUFF.
4.3. 1. 17 @HEXOUT - OUTPUT

The @HEXOUT routine converts an unsigned 8 bit binary value in the A
register to a hex number and outputs the number to the console. It returns
the carry flag set (C) if a printer attention condition occurs, and changes
the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command
in the MDOS executive. It preserves the HL, DE, and C registers.

4.3. 1 . 18 @HEXADDOUT - HEXADECH1AL ADDRESS OUTPUT

The @HEXADDOUT routine converts an unsigned 16 bit binary value in the
HL registers to a hex number and outputs the number to the console followed
by one space character. It returns the carry flag set (C) if a printer
attention condition occurs, and changes the assignment to ASSIGN 1 1, and
ASSIGN 2 2. Refer to the ASSIGN command in the MDOS executive. It preserves
the HL, DE, and C registers.

4.3.1.19 @HEXOUTSPC - HEXADECIMAL OUTPUT WITH SPACE

The @HEXOUTSPC routine converts an unsigned 8 bit binary value in the
A register to a hex number and outputs the number to the console
followed by one space character. It returns the carry flag set (C) if
a printer attention condition occurs, and changes the assignment to
ASSIGN 1 1, and ASSIGN 2 2. Refer to the ASSIGN command in the MDOS
executive. It preserves the HL, DE, and C registers.

4.3.1.20 @SPACEOUT - SPACE OUTPUT

The @SPACEOUT routine outputs a space (20 hex) to the console stream.
It returns the carry flag set (C) if a printer attention condition occurs,
and changes the assignment to ASSIGN 1 1, and ASSIGN 2 2. Refer to the
ASSIGN command ;n the MDOS executive. It preserves the HL, DE, and
C registers.

4-21

Rev.9 1/79

4.3.1.21 @NLINEOUT - NEW LINE OUTPUT

The @NLINEOUT routine outputs a carriage return line feed and a line of
text to the console stream. It expects the address of the beginning of the
text line in the HL registers. The message pointed to must be properly
terminated with a byte code in the range through IF hex or the high
order eighth bit of the last byte set. It returns the carry flag
clear (NC) in all cases. It preserves: the DE, and C registers.

4.3.1.22 @LINEOUT - LINE OUTPUT

The @LINEOUT routine outputs a line of text to the console stream. It
expects the address of the beginning of the text line in the HL registers.
The message pointed to must be properly terminated with a byte code in
the range 0 through IF hex or the high order eiqhth bit of the last byte
set. It returns the carry flag clear (NC) in all cases. It preserves
the HL, DE, and C registers.

4.3.2 TEXT LINE PARSING SUBROUTINES

The following routines are used by the system to parse input command lines
for the MDOS executive. After the command has been entered into the input
buffer using @CILINE, the @SCAN routine is used to locate the first space
after the command, and @SKIPSPACE skips to the first non-space character.
Then the @PARAM routine separates the command parameters into buffers according
to their type. @PARAM makes use of @SCAN, @SKIPSPACE, and @AHEXTBIN to do
its job. After the parameter types have been separated, the address of the
beginning of the input buffer is placed into @MASKADOR and the @SEAR routine
searches the MOOS command table for a match. If the command is valid, the
@SEAR routine returns with the zero flag clear and @LHLI will get the function
from the which in this case is an address. Control is passed to the
command routine with a PCHL instruction. The command routine can retrieve
the parameters from the appropriate buffers with LHLO instructions.

The user can use these routines to parse applications program input lines
using similar logfc.

4.3.2.1 @PARAM - PARAMETER

The @PARAM routine parses a text line. It separates parameters into ASCII,
numeric and unit numbers. It counts the number of occurrences of each
parameter type and places the count and each parameter in a separate buffer.

It expects the start address of the text to be parsed in the HL registers.

It returns ASCII parameters through @ASCBUFF3.

It returns unit numbers in @DRIVEN0 through @DRIVEN3.

4-22

Rev. 8 9/78

It returns binary (numeric) parameters in @BBUFF0 through @BBUFF3.

It returns the number of ASCII parameters in @NASCPAR.

It returns the number of unit number parameters in @NDRVPAR.

It returns the number of binary parameters in @NBINPAR.

It returns the carry flag clear (NC) and the end of line address in the
HL registers if there were no errors.

It preserves the DE and BC registers.

If a parameter is in error the carry flag is set (C), the SYNTAX ERROR
code is in the A register, and the location where the error occurred is
returned in the HL registers.

4.3.2.2 @SKIPSPACE - SKIP SPACES

The @SKIPSPACE routine skips spaces in a text line.

It expects the text line's start address in the HL register.

It returns the address in the HL registers of the first non-space character.

If the character is a control character the carry flag is set (C).

It preserves the DE and BC registers.

4.3.2.3 @SCAN - SCAN

The @SCAN routine scans a text line for the first occurrence of a specified
character.

It expects the text line's starting address in the HL registers and the
mask character in the C register.

It returns the address in the HL register where the match occurred and
the number of characters passed over in the B register.

The carry flag is set (C) if the mask character was not found prior to
a control character.

It preserves the DE and C registers.

4.3.2.4 @SEAR - SEARCH

The @SEAR routine searches a table of argument-function pairs and returns
the address of the function associated with the argument. The last character
of the argument has the most significant bit set high. For example, an
ASCII A is 41 hex. If the most significant bit is set high it is a Cl hex.

4-23

Rev. 7 3/78

The argument is immediately followed by its function. The arguments can be
variable length but the functions must all be the same length. The end of
the table is marked by a " following the last function.
It expects the table's start address in the HL register and the argument
masks' starting address in @MASKADDR. The argument mask string must be
terminated by a space or control character. It expects the A register to
contain the size (number of bytes) of the functions in the table.

It returns the zero flag clear (NZ) and the address of the start of the
argument's function in the HL register.

The zero flag is set (Z) if the argument was not in the table. In this
case the HL registers contain the end of table address, ie. the address of
the 0 after the last function.
It preserves the DE and BC registers.

4.3.2.5 @AHEXTBIN - ASCII·HEX TO BINARY

The @AHEXTBIN routine converts a text string of unsigned hexadecimal digits
represented in ASCII code into a binary number. The string can be one to
four digits in length. It must end with a space or control character.

It expects the string's start address in the DE registers.

It returns a 16 bit binary number in the HL registers.

It returns the number of digits in the number in the B register.

It returns the OE registers pointing to the space or control character
that ends the text string.

It preserves the C register.

If the number is greater than four digits long or not a hex va1ue t the
routine returns the carry flag clear (NC) and the illegal character's
address in the OE registers.

4.3.3 THE FILE ACCESS ROUTINES

The file access subroutines implement the MOOS file access methods described
in Section 4.2.5. They allow an open disk file to be accessed sequentially
by byte or record and directly (randomly) by record and byte within record.

Before a file can be accessed it must be opened. To open a named file on
a specified disk unit the file must be assigned a logical file number
and a filebuffer. MOOS supports simultaneously open files numbered from
" through 7. It makes available two resident filebuffers. Additional
filebuffers must be allocated in the memory space of the application
program. Each filebuffer requires 288 bytes of memory.

4-24

Rev. 7 3/78

When a file is opened the first record of the file is read into its
filebuffer. The record in the file buffer of a file at any given time
is called the current record of that file. Associated with the current
record of each open file is an update flag. Any access that modifies
the content of the current recorq will cause the update flag to be set.
If the update flag is set, any access that leads to the current record
being replaced by a new record will first cause the current record with
the modified content to be rewritten in place (updated) to the disk
file. If the update flag is not set, no update takes place before a new
record is read. Invoking a new record resets the update flag. "

The current record of each open file has a record length which is written
with the record as described in Section 4.2.4. Its value may vary from
" to 256. A" length record indicates an empty record that still occupies
one physical sector on the diskette. A 256 byte record is a full record
that cannot be extended.

The index position of the current record is a logical pointer that marks
the next byte in the record to be The value of the index position
ranges from" to 255. However, the index position may never be greater than

. the length in a particular record. An index position of 0 indicates that
the next byte to be accessed is the first byte in a record. An index
position of 255 indicates that the next byte to be accessed is the last
byte in a full record. .

If the index position in the current record is less than the current record
length, then it points to a valid byte position within the record. That
byte may be read or rewritten. If the index position is equal to the current
·recoy·d length, then it points to t-he end of record (EOR) position which is
the first non valid byte position in a non full record. The EOR position
may be written but it may not be read.

Reading from the end of record position updates the current record to disk
as necessary and the next record in the file becomes the current record.
The index position is set to 0 and the data is read from this position.
This allows files containing a mixture of non full records to be read
sequentially by byte.

If the end of record position is written to, the length of the current
record is increased by one and the position just written becomes a valid
byte position. This allows data to be added to the end of a record extending
it up to its maximum length of 256 bytes. Note, however, that incrementing
the index position when it already has a value of 255 updates the current
record to disk as necessary and the next record of the file becomes the
current record. The index position will be set to 0.
A new file may be written sequentially by byte by repeatedly writing to
the index position and incrementing the index position. This will produce
a file of full records with·the possible exception of the last record. The
system automatically extends the amount of disk space allocated to a file
when enough :new records are written to require another track.

4-25

Rev. 7 3/78

The current record of each open file also has a record position number
associated with it. The record position number specifies which record
the current record is in the file. The record position.number may be
set or incremented. Setting the record position updates the current
record to disk as 'necessary and the specified record from the file is
read and becomes the current record. This provides a mechanism for
direct (random) access to any record in a file. Incrementing the record
position number updates the current record to disk as necessary and the
next record in the file is read and becomes the current record. This
function can be used to sequentially write a file of short/mixed length
records.

When processing ofa file is the file must be closed. Closing
a file updates the current record to disk as necessary and frees the
logical file number and the filebuffer for subsequent reallocation.

4.3.3.1 @CREATE - CREATE

The @CREATE routine creates a file of a specified type on a specified
disk unit. The created file has one track allocated to it and one empty

. length) record written to it .. It is left open and ready for access
with the index position set t00 and the empty record as the current
record.

It expects the file number in the B register and the disk unit number in the
C .. regi ster and the fi 1 ename in @ASCI I BUFF.

It expects the file type in the D register and the start address of the
file buffer in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

It preserves the DE, and BC registers.

4.3.3.2 @GFILESTAT-· GET FILE STATUS

The @GFILESTAT routine checks the open/closed status of a file.

It expects the file number in the B register.

If the file is closed it returns with the zero flag set (Z) and the
"FILE NOT OPEN II message code in the A register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4-26

Rev. 8 9/78

4.3.3.3 @DIRSEARCH - DIRECTORY SEARCH

The @DIRSEARCH routine reads the directory of a specified disk unit to
determine if a specified file exists.

It expects the unit number in the e register and the file name in
@ASCIIBUFF.

It returns the zero flag clear (NZ) and the"FILE NOT FOUND II message
code in the A register if the file is not in the directory.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.4 @OPENFILE - OPEN A FILE

The @OPENFILE routine opens a file for processing. It assigns a specified
logical file number and filebuffer to the file.

It expects the file name in @ASCIIBUFF, the file number in the B register,
and the drive number in the C register.

It expects the address of the file buffer in the HL registers.

It preserves the HL, DE, and Be registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.5 @CLOSEFILE - CLOSE A FILE

The @eLOSEFILE routine updates the current record to disk as necessary
and frees the logical file number and the filebuffer for subsequent
reallocation.

It expects the file number in the B register.

It preserves the HL. DE, and BC registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.6 @RFILEINF - READ FILE INFORMATION

The @RFILEINF routine gets the disk unit number, the number of records
in the file, the file type, and the record position number of the
current record.

It expects the file number in the B register.

4-27

Rev. 7 3/78

It returns the file type in the B register and the disk unit number in
the C register.

It returns the number of records in the file plus one in the DE registers,

It returns the record position number of the current record in the HL
registers.

If the routine detects an error it returns the carry flag set·(C) and
the error message code in the A register.

4.3.3.7 @SINXTRS - SET INDEX POSITION TO RECORD START

The @SINXTRS routine updates the current record to disk as necessary
and reads a specified record which becomes the current record. The
index position is set to 0.
It expects the file number in the B register and the record number in
the HL registers.

It preserves the HL, DE, Be registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

@RRECORDLEN - READ RECORD LENGTH

The @RRECORDLEN routine gets the length of the current record in a file.

It expects the file number in the B register.

It returns the length of the record in the HL registers.

It preserves the DE and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.9 @RINXPOS - READ INDEX POSITION

The @RINXPOS routine gets the index position of the current record of a
file.

It expects the file number in the B register.

It returns the index position in the C register.

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4-28

Rev. 10 4/79

4.3.3.10 @SINXPOS - SET INDEX POSITION

The @SINXPOS routine sets the index position within the current record
in a file.

It expects the file number in the B register and the index position in
the e register.

It preserves the HL, DE, Be registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.11 @INeINX - INCREMENT INDEX POSITION

The @INCINX routine increments the index position in the current record
of a If the increment would result in a value greater than the
current record length, then the current record is updated to disk as
necessary and the next record of the file becomes the current record
and the index position is set to 0.
It expects the file number in the B register.

It returns the zero flag set (Z) if the position is in the same
record.

It returns the zero flag clear (NZ) if the index position is in a new
record.

It preserves the HL, DE, Be registers.

If the routine detects an error it returns the carry flag set (e) and
the error message code in the A register.

4.3.3.12 @RFINXPOS - READ FROM INDEX POSITION

The @RFINXPOS routine reads the data byte pointed to by the index position
in the current record of a file. If the index position is at the EOR
position the current record is updated to disk as necessary and the next
record of the file becomes the current record. The index position is
set to 0 and the data is read from this position.

It expects the file number in the B register.

It returns the data in the e register.

It returns the zero flag set eZ) if the data is from the same

It returns the zero flag clear (NZ) if the data is from a new

It preserves the HL, DE, B registers.

If the routine detects an error it returns the carry flag set eel and
the error message code in the A register.

Rev. 7 3/78

4.3.3.13 @RFINXPOSI - READ FROM INDEX POSITION AND INCREMENT INDEX

The @RFINXPOSI routine reads the data byte pointed to by the index position in
the current record of a file and then increments the index position. If the
original index position is at the EOR position, the current record is updated
to disk as necessary and the next record of the file becomes the current
record. The index position is set to 0 and the data is read from that position.
Then the increment takes place. If the increment would result in a value
greater than the current record length, the current record is updated to disk
as necessary and the next record from the file becomes the current record. The
index position is set to 0 in that case.

It expects the file number in B.

It returns the data in the C register.,

It returns the zero flag set (Z) if the data is from the same record.

It returns the zero flag clear (NZ) if the data is from anew record.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.14 @WTINXPOS - WRITE TO INDEX POSITION

The @WTINXPOS routine writes to the index position in the current record
of a file. If the index position is the EOR position the record length
is extended by one.

It expects the data in the C register, and the filenumber in the B register.

It preserves the HL, DE,BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.15 @WTINXPOSI - WRITE TO INDEX POSITION AND INCREMENT INDEX

The@WTINXPOSI routine writes to the index position in the current record
and then increments the index position. If the index position is the EOR
position the current record length is extended by one. If the increment
would result in an index greater than 255, then the current record is up-
dated to disk as necessary and the next record in the file becomes the
current record. The index position is set to 0 in this case.

It expects the data in the C register, and the filenumber in the B register.

It returns the zero flag set (Z) if the index position remains on the same
record as before the write.

4-30

Rev. 9 1/79

It returns the zero flag clear (NZ) if the index position has been incremented
to a new record.

It preserves the HL, DE, Be re9isters.

If the routine detects an error it returns the carry flag set (e) and the
error message code in the A register.

4.3.3.16 @LOADDATA - LOAD DATA

The @LOADDATA routine loads a block of data into memory starting from the
index position in the current record and continuing for a specified number
of bytes. It advances the index position like a repeated sequence of reads
and increments.

It expects the file number in the Bregister.

It expects the start address of the memory block in the HL registers.

It expects the block size in the DE registers.

It returns the zero flag set (Z) if the last byte read is from the same
record as the first byte.

It returns the zero flag clear (NZ) if the last byte read is from a new
record.

After a call to @LOADDATA the buffer @MEMORYPNTR contains the address of the
memory byte immediately after the last memory byte loaded. For example, if
5 bytes are loaded into 4000H through 4004H, then @MEMORYPNTR contains the
address 4005H in standard low-hiqh format. This is useful in cases where
the number of bytes loaded is less than the number of bytes requested
because an end of file is encountered during the @LOADDATA.

It preserves the HL, DE, Be registers.

If the routine detects an error it returns the carry flag set (e) and the
error message code in the A register.

4.3.3.17 @SAVEDATA - SAVE DATA

The @SAVEDATA routine writes a block of memory to a file starting at the
index position of the current record and continuing for a specified number
of bytes. It advances the index position like a repeated sequence of writes
and increments.

It expects the file number in the B register.

It expects the start address of the memory block in the HL registers.

It expects the number of bytes in the memory block in the DE registers.

4-31

Rev. 9 1/79

It returns the zero flag set (Z) if the index position remains on the same
record as before the write.

It returns the zero flag clear (NZ) if the index position has been incremented
to a new record.

After a call to @SAVEDATA the buffer @MEMORYPNTR contains the address of the
memory byte immediately after the last memory byte saved. For example, if
5 bytes are saved from to then @MEMORYPNTR contains 4005H in
standard low-high format. This is useful in cases where a DISK FULL condition
causes less bytes to be saved than are in the call to @SAVEDATA.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and the
error message code in the A register.

4.3.3.18 @DFINXPOSTEOR - DELETE FROM INDEX POSITION TO END OF RECORD

The @DFINXPOSTEOR routine deletes from the index position to the end of
the current record by making the record length equal to the value of the
index position.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.31 . 1

Rev. 9 1/79

4.3.3.19 @DFINXPOS - DELETE FROM INDEX POSITION TO END OF FILE

The @DFINXPOS routine deletes from the index position to the end of the
file by making the number of records in the file equal to the record
position number of the current record and the current record length
equal to the value of the index position. Any tracks no longer required
by the file due to the deletion are freed for subsequent reallocation
to other files.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.3.20 @INCRECPOS - INCREMENT RECORD POSITION

The @INCRECPOS routine updates the current record to disk as necessary,
reads in" the next record which becomes the current record and sets the
index position to 0. If the current record is the last record in the
file, the file is automatically extended by one record.

It expects the file number in the B register.

It preserves the HL, DE, BC registers.

If the routine detects an error it returns the carry flag "set (C) and
the error message code in the A register.

4.3.4 FILE MANAGEMENT SUBROUTINES

In addition to accessing named files on the disk it becomes necessary
on occasion to perform housekeeping functions such as removing old files,

" changing file types and names, and determining the amount of space left
on a disk for additional files. These functions are available as executive
commands, and are also provided as subroutines that may be used directly
by applications programs.

4.3.4.1 @FREE - FREE

The @FREE routine returns the number of tracks left on a diskette that
are free and available for allocation to a file.

It expects the unit number in the C register.

It returns the number of free tracks in the HL registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.2 @RENAME - RENAME

The @RENAME routine renames a file on a diskette.

4-32

Rev. 7 3/78

It expects the file number in the B register.

It expects the new name in @ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.3 @TYPE - FILE TYPE

The @TYPE routine changes the type (attributes) of a file. See Section
4.2.3 for type definitions.

It expects the file number in the B register.

It expects the new file type in the C register.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.4.4 @SCRATCH - SCRATCH A FILE

The @SCRATCH routine deletes a specified file from a specified disk unit.

It expects the unit number in the C register.

It expects the file name in @ASCIIBUFF.

It preserves the HL, DE, and BC registers.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5 PHYSICAL DISK ACCESS ROUTINES

The physical disk access subroutines are the most primitive level of
access provided within the MOOS context. They allow a diskette to be
treated as a collection of logical blocks independent of the MOOS file
system and provide access to a specified logical block on a specified
track of a diskette.

Micropo1is MOD I disk subsystems write 35 tracks on one side of a diskette.
The MOD II subsystems write 77 tracks on one side of a diskette. A track
in either subsystem is divided into 16 sectors each of which contains 268
bytes. Tracks numbered 0 through 34 or 76 are written concentrically
inward toward the center of the diskette. The physical sectors on a track
are numbered from 0 through 15.

4-33

Rev. 7 3/78

Diskettes initialized by and formatted for use with MDOS have the track
number written in the first byte and the physical sector number written
in the second byte of each sector of a track. These bytes are maintained
exclusively by the operating system. .

The remaining 266 bytes of a sector are accessible as a logical block
by the MDOS physical disk access routines. In order to enhance access
time to multiple blocks, MDOS maps logically sequential blocks onto the
physical sectors of a track in a staggered pattern as shown.

LOGICAL BLOCKS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PHYSICAL SECTORS 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

The physical disk access routines automatically access the correct
physical sector that corresponds to the logical block that is specified.
If it is necessary to access the sectors of a track in· true physically
sequential the application program must use the table above to
unmap the sectors. For example, to access sector 0 followed by sector 1
the program would have to specify logical block 1 followed by logical
block 9.

Note that the record structure of MDOS files as detailed in Section
4.2.4 must be preserved if the physical disk access routines are used
to operate on such records.

4.3.5.1 @GETASEC - GET A SECTOR

The @GETASEC routine gets (reads) a sector from a specified disk unit
into a specified memory buffer given the track and logical block numbers.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

It expects the address in the HL register of the start of a 266 byte buffer.

If the routine detects an error it returns the carry flag set (C) and
error message code in the A register.

4.3.5.2 @PUTASEC - PUT A SECTOR

The @PUTASEC routine puts (writes) from a specified memory buffer to a
sector on a specified disk unit given the track and logical block numbers.
Before it writes the sector it reads the header information of the target
sector-2 to verify that it will be writing on the correct sector. This
is called a preread. It requires that the preread sector be readable.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block number
in the E register.

4-34

. Rev. 7 3/78

It expects the address in the HL register of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.3 @WRITESECTOR - WRITE A SECTOR

The @WRITESECTOR routine writes from a specified memory buffer to a
sector on a specified disk unit given the track number and logical block
number.. It does not do a preread before writing. This allows a sector
to be written on an uninitialized track or a track on which the preread
sector is unreadable.

It expects the unit number in the C register.

It expects the track number in the D register and the logical block
number in the E register.

It expects the address in the HL registers of the beginning of a 266
byte buffer.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.4 @VERIFYSECTOR - VERIFY A SECTOR

The @VERIFYSECTOR routine verifies the validity of the header information
and checksum of a sector on a specified disk unit.

It expects the unit number in the C register.

It expects the track number in the 0 register and the logical block
number in the E register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.5 @SEEKTRACK - SEEK TO A TRACK

The @SEEKTRACK routine moves the read/write head to a specified track on
a specified disk unit.

It expects the unit number in the C register.

It expects the track number in the 0 register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.5.6 @RESTOREDISK - RESTORE THE READ/WRITE HEAD

The @RESTOREDISK routine positions the read/write head to track zero of
a specified disk unit.

4-35

Rev. 7 3/78

It expects the unit number in the C register.

If the routine detects an error it returns the carry flag set (C) and
the error message code in the A register.

4.3.6 PROCESSOR ORIENTED UTILITY ROUTINES

These subroutines effectively extend the instruction set of the 8080 to
provide for some commonly required operations.

When parentheses enclose an item in the following subsections, this
indicates the contents of the memory location specified by the value
within the parentheses. For example, HL=(HL) means that theHL register
pair is replaced with the bytes at the address in HL and HL+1. If the
HL registers contain the address 4000 hex, and at location 4000 there is
a 01, and at location 4001 there is a 02, then the HL register would be
replaced by 0201 hex.' The low byte goes into L and the high byte into H.

4.3.6.1 @HLADDA - ADD A TO HL

The @HLADDA routine adds the unsigned 8 bit value in the·A register to
the unsigned 16 bit value in the HL registers.

It expects a value in the HL, and the A registers.

It returns HL=HL+A.

It preserves the DE and BC registers.

4.3.6.2 @INXM -INCREMENT MEMORY

The @INXM routine increments a memory pair pointed to by the HL registers.
It is similar to an INR M instruction but it operates on a byte pair
(16 bits) in memory.

It expects the address of the memory pair in the HL registers.

It preserves the DE and BC registers and the PSW.

4.3.6.3 @LHLINDEXED - LOAD HL INDIRECT INDEXED

The @LHLINDEXED routine loads the HL registers indirect from the location
pointed to by the HL registers indexed by the A register.

It expects the address in the HL registers, and the index in the A register.

It returns HL=(HL+2*A).

It preserves the DE and BC registers.

4-36,

Rev. 8 9/78

4.3.6.4 @LHLI - LOAD HL INDIRECT

The @LHLI routine loads the HL registers with the content of the byte
pair pointed to by the HL registers.

It expects an address in the HL registers.

It returns HL = (HL).

It preserves the BC and DE registers.

4.3.6.5 @TRANSDHC - TRANSFER FROM DE TO HL FOR A COUNT OF C

The @TRANSDHCroutine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the C register. It begins at the start of each block and working to
the end. .

It expects the start address of the source block in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the C register.

It returns (HL+0 ... +C) = (DE+0 ... +C).

It preserves the B register.

4.3.6.6 @TRANSDHBC - TRANSFER FROM DE TO HL FOR A COUNT OF Be
The @TRANSDHBCroutine copies a memory block pointed to by the 'DE
registers to a memory block pointed to by the HL registers fora length
in the BC registers. It begins at the start .of each block and works to
the end.

It expects the start address of the source blo.ck in the DE registers
and the start address of the destination block in the HL registers and
the number of bytes to copy in the BC registers.

It returns (HL+0 ... +BC) = (DE+0 ... +BC).

4.3.6. 7 @TRANSDHBCR - TRANSFER FROM DE TO HL FOR A COUNT OF Be REVERSE

The @TRANSOHBCR routine copies a memory block pointed to by the DE
registers to a memory block pointed to by the HL registers for a length
in the BC registers. It begins at the end of each block and working to
the beginning.

It expects the start address of the source block in the DE registers
and the start address of the destination block in the Hl registers and
the number of bytes to copy in the BC registers.

It returns (HL+BC +0) = (OE+BC +0).

4-37

Rev. 7 3/78

4.3.6.8 @TRANSFILENAME - TRANSFER A FILENAME

The @TRANSFILENAME routine copies a,fi1ename from one of the ASCII
buffers (@ASCBUFF0 through @ASCBUFF3) to the @ASCIIBUFF.

It expects the @ASCBUFF number (ie. 0 to 3) in the C register.

It preserves the HL, DE, and BC registers.

4.3.6.9 @FILLZER - FILL ZEROES

The @FILLZER rout i ne'fi 11 sa, block of memory up to 256 bytes in 1 ength
with zeros.

It expects the start address of the memory block in the HL registers
and the 'number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.l0@FILLSPC - FILL SPACES

The @FILLSPC routine fills a block of memory up to 256 bytes in length
with spaces (hex 20).

It expects the start address of the memory block in the HL registers'
and the number of bytes to fill in the B register.

It preserves the DE and C registers.

4.3.6.11 @FILLA FILL fROM THE A REGISTER

The @FILLA routine fills a block of memory up to 256 bytes in length
with the value specified in the A register.

It expects the start address of the memory block in the HL registers,
the number of bytes to fill in the B register, and a fill value in the
A register.

It preserves the DE and C registers.

4.3.6.12 @COMPARE - COMPARE HL TO DE

The @COMPARE routine compares the value in the HL registers to the
value in the DE registers •.

It expects a value in the DE register and the value to compare it to in
the HL register. The forms are like an 8080 CMP B instruction where DE
is analogous to the A register and HL is analogous to the B register.

4-38

Rev. 7 3/78

It returns the following sense!

DE= HL
DE > HL
DE < HL
DE >=HL

zero flag set (Z),
zero flag clear (NZ),
zero flag clear (NZ),
zero flag any state,

carry flag clear (NC)
carry flag clear (NC)
carry flag set (C)
carry flag clear (NC)

It preserves the HL, DE, and BC registers.

4.3.7 EXTENDED 8080 INTEGER ARITHMETIC (16 BITS)

These routines extend the capability of the 8080 to allow 16 bit unsigned
integer addition, subtraction, multiplication, and division (quotient,
and modulus).

The result of all of these routines is returned in the BC registers. The
HL and DE registers are preserved. With the exception of @DEDIVHL and
@DEMODHL (divide and modulus routines), the carry flag is returned set (C)
if a carry or borrow occurred. The divide and modulus routines return the
carry unchanged.

4.3.7.1 @DEADDHL - BC=DE+HL

The @DEADDHL routine performs 16 bit unsigned integer addition.

It expects the addend in the DE register and the augend in the HL registers.

It returns the sum in the BC registers and the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.2 @DESUBHL - BC=DE-HL

The@DESUBHL routine performs 16 bit unsigned integer subtraction using
twos compliment addition.

It expects the minuend in the DE registers the subtrahend in the HL registers.

It returns the difference in the BC registers as a twos compliment number
and the carry clear (NC) unless a borrow into the high order bit occurs.

It preserves the HL and DE registers.

4.3.7.3 @DEMULHL - BC=DE*HL

The @DEMULHL routine performs 16 bit unsigned integer multiplication.

It expects the multiplicand in the DE registers and the multiplier in the
HL registers.

4-39

Rev. 7 3/78

It returns the product in the BC registers arid the carry clear (NC) unless
a carry out of the high order bit occurs.

It preserves the HL and DE

4.3.7.4 @DEDIVHL BC=DE/HL

The @DEDIVHL routine performs 16 bit unsigned integer division.

It expects the dividend in the DE registers and the divisor in the HL registers.

It returns the integer quotient in the BC registers.

It preserves the HL and DE registers.

4.3.7.5 @DEMODHL - BC=DE%HL

The @DEMODHL routine performs 16 bit unsigned integer division and returns
the modulus (remainder) of the operation.

It expects the dividend in the DE. registers and the divisor in the HL registers.

It returns the remainder of the division in the BC registers.

It preserves the HL and DE registers.

Example: 5/2=2 and a remainder of 1. The quotient is the result of @DEDIVHL
and the modulus (or remainder) is the result of @DEMOOHL.

4.3.8 MESSAGE OUTPUT SUBROUTINES

These routines provide a simple means for outputing standard messages.
Some of the routines access the system messages while others allow the user
to set up a table of applications messages. The system messages are described
in Section 4.8.

4.3.8.1 @DISKERROR - DISK ERROR MESSAGES

The @DISKERROR routine outputs system error messages related to disk operation.
The routine closes all open disk files, outputs the appropriate error message
to the console stream, and returns control to the MDOS executive which resets
the 8080 stack to the MOOS system stack.

It will output the appropriate error messages as detected by FILE MANAGEMENT
and PHYSICAL DISK ACCESS routines (Sections 4.3.3 and 4.3.4) when they return
a carry set (C) condition an.d an error message code in the A register.

It expects the error message code in the A register.

It DOES NOT RETURN.

4-40

Rev.· 7 3/78

4.3.8.2 @CLOSEFILES - CLOSE ALL FILES

The @CLOSEFILES routine closes all open files using the standard system
file close routines. Any errors that are encountered will be reported on
the console device.
It always returns the carry flag clear (NC).

It preserves the HL, DE and BC registers.

4.3.8.3 @ERRORMES - ERROR MESSAGES

The @ERRORMES routine performs similarly to @DISKERROR except that it does
not close all open files and it does return to the calling routine on exit.

It expects the error message code in the A register.

It preserves the C register.

4.3.8.4 @MESSAGEOUT - MESSAGE OUTPUT

The @MESSAGEOUT routine is a generalized message-table output routine.
The user can provide his own applications message table and use this routine
to output the messages to the console stream. The table may have variable
length messages with imbedded blanks. Each message can be terminated with
a control character or a character with the most significant bit set high.
The control character will not be output. The character with the eighth
bit high will be output after the bit is stripped. For example, an ASCII A
is hex 41. Cl hex is an ASCII A with the most significant bit high.

It expects the message table's address in the HL registers.

It expects the message's code in the A register. The code corresponds
to the message's location in the table. ie., 0 is the first message, 5
is the sixth etc.

It preserves the C register.

4.3.9 SYSTEM BUFFERS AND ENTRY POINTS

These are miscellaneous entry points and buffers already described in detail
in conjunction with other subroutines.

@CONSOLEADDR - Contains the location of @CIOTABLE

@LISTADD - Contains the location of @LIOTABLE

@CIOTABLE - Start address of the console input/output vector table

@LIOTABLE - Start address of the list input/output vector ·tab1e

@PCON - Start address of physical console driver routines

@PLIST - Start address of physical list driver routines

4-41

Rev. 8 9/78

@WARMSTART - Warm start entry point; initializes console and list devices,
and prints the MDOS signon message.

@MDOSEXECUTIVE - Entry point for MDOS executive. Outputs the current MDOS
executive prompt and· initial izes the MDOS stack. This entry does not output
the signon message.

@FILEBUFFER0 and @FILEBUFFERl - @FILEBUFFER0 and @FILEBUFFERl are 288 byte
buffers used by the system for file access. They may be used as.applications
program file buffers. See the section on FILE ACCESS ROUTINES.

@APROGRAM - Address of the start of the applications area. The APP command
transfers program control to this address. All file types except overlay
(0C-0F hex) must have load addresses greater than or equal to @APROGRAM or
a LOAD ADDRESS ERROR will occur when an attempt is made to load the file.

@MASKADDR - A two byte pointer used by the @SEAR routine. @MASKADDR points
to the address of the mask string.

@MDOSRETURN - Applications programs that have not changed the I/O initializa-
tion return to this entry point instead of @WARMSTART. @MDOSRETURN outputs
the MDOS signon message and initializes the MDOS stack but does not reinitialize
the I/O handlers.

The following buffers are used by the @PARAM routine and are discussed in
detail there.

1) One byte buffers which holds the number of specified parameters.

@NDRVPAR @NASCPAR @NBINPAR

2) Ten byte buffers which holds ASCII parameters.

@ASCBUFF0 @ASCBUFFl
@ASCBUFF2 @ASCBUFF3

3) One byte buffers which holds disk unit number parameters.

@DRIVEN0 @DRIVENl
@DRIVEN2 @DRIVEN3

4) Two byte buffers which holds binary parameters.

@BBUFF0 @BBUFFl
@BBUFF2 @BBUFF3

@ASCIIBUFF - @ASCIIBUFF is a ten byte buffer which holds filenames for
the @CREATE, @RENAME, @SCRATCH, and @TRANSFILENAME routines.

@INBUFF - @INBUFF is the system input buffer. It is 132 bytes long.

4-42

Rev. 9 1/79

4.4 LINEEDIT - THE MOOS LINE EDITOR

LINEEDIT is an MDOS application program which provides assistance in
creating and maintaining assembly language source program files that
are compatible with the MOOS 8080/8085 assembler. It may also be used
as a limited general text editor.

LINEEDIT is invoked by typing LINEEDIT in response to an MDOS executive
prompt or by typing the command LOAD "LINEEDITII followed by the command
APP. It signs on with the message MOOS LINE EDITOR VS. x.x.
The user interacts with LINEEOIT through the system console. Lines
entered at the keyboard may be text lines which are stored in the edit
buffer or commands for LINEEDIT to execute. The general editing process
consists of three parts.

1) Placing a text file into the edit buffer by entering it a line
at a time from the keyboard or by loading an existing file from
disk.

2) Modifying the text file in the edit buffer by adding, changing,
and deleting lines.

3) Storing the file in the edit buffer onto a disk.

How to use LINEEDIT to carry out this process is described in the
following sections.

4.4.1 ENTERING LINES TO LINEEDIT

After signing on LINEEDIT waits for a line to be input. A line consists
of not more than 132 characters typed in sequence. The entry of a line
is terminated by pressing the RETURN key. During the entry of a line
each character that is typed is echoed by LINEEDIT on the console display.
If more than 132 characters are typed prior to the RETURN, LINEEDIT will
stop echoing characters and only honor a valid control function such as the
RETURN. Characters which may be entered into a text line are ASCII
characters in the code range 20H to 7EH with the exception of the backarrow
(5FH). LINEEDIT also uses the MDOS console output system to keep track
of the character count as a line is typed and automatically output a
carriage return/line feed combination when the count exceeds the width of
the display device. This combination is not included in the line count.

Two control features may be used when entering a line.

1) Each time the RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted. Neither the
deleted characters nor the backarrow are included in the line count.

4-43

Rev. 7 3/78

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return/line
feed combination is echoed to the terminal display. LINEEDIT is
pos.itioned to accept entry of a new line.

4.4.2 KEYING IN A NEW TEXT FILE

LINEEDIT recognizes a line as a text file line by the presence of a
leading line number. Each line number must be in the range 0 to 9999. A
text file is entered one line at a time using the normal line entry
procedure. As each line is entered LINEEDIT stores it in the edit buffer
which it maintains in the computer system's main memory. Text lines are
stored in the edit buffer in numeric order by line number. 'The lines in
the buffer at any given time constitute the current text file.

To insert a new line in the current text file, type in, the new line
including the line number. LINEEDIT will automatically place the new
line in the program buffer in proper sequence according to its line number.

To replace an existing line in the current text file enter the line number
and the new text. The new line Will automatically replace the old line
that has the same line number in the current text file.

To delete one existing program line in the current text file type the
line number and press the return key. The corresponding line will be
eliminated from the current text file. Note that multiple lines may also
be eliminated by using the DELT command as described in Section 4.4.18.

Consecutive text lines may be entered conveniently by using LINEEDIT's
automatic line numbering feature. Prior to typing the first character
of a new line, you can cause the 'next' line number to be generated for
you by pressing the space bar one time. The 'next' line number will echo
to the terminal display and LINEEDIT will then be waiting for the first
text character of that line. See Section 4.4.7 on the AUTO command to
specify the increment that determines the 'next' line number.

4.4.3 ENTERING LINEEDIT COMMANDS

a line is typed which does not begin with a line number,
LINEEDIT attempts to interpret this line as a command. If the line is
not recognizeable as a LINEEDIT command, the message COMMAND NOT FOUND
will be displayed. LINEEDIT commands are single words or abbreviations
followed by parameters if required. All LINEEDIT commands are uppercase
only. If the command requires one or more parameters, there must be at
least one space between the command word and the first parameter and
between each parameter. Parameters may be ASCII or numeric. ASCII
parameters must be enclosed in double quotation marks except for within
the SEARCH and CHANGE command dialogues. Numeric parameters are entered
in decimal. LINEEDIT offers commands to facilitate the management of
the editing process.

4-44

Rev. 7 3/78

4.4.4 THE CLEAR COMMAND

The edit buffer may be initialized to an empty state by using the CLEAR
command. This command has no parameters. It is entered by typing CLEAR
and pressing the return key.

Entering a CLEAR command may result in the message FILE ON DISK NOT UPDATED,
PROCEED? This is a warning that the contents of the current text file has
not been stored on disk since it was last altered. When the message appears
the current text file is not yet lost. To override this warning type Y
and press the return key. The CLEAR command will be processed. Otherwise
type N and press the return key. The message CANCELLED will be displayed
and LINEEDIT will be waiting for an alternate command.

When the CLEAR command is processed, LINEEDIT will display the message
FILE NOT NAMED followed by two hex numbers which indicate that the edit
buffer is empty and unnamed.

4.4.5 THE NAME COMMAND

The current file in the edit· buffer may be named or renamed by using
the NAME command. NAME "filename" is the general form of this command.
The filename may be any valid MDOS filename. No disk drive unit number
should be specified since this name is to be associated with the current
text file in the edit buffer which is in the main system memory .. When the
NAME command is executed, LINEEDIT will display the new filename followed
by two hex numbers which represent the beginning and ending addresses of
the current text file in memory. A text file may be keyed into the edit
buffer before itis named. However, it cannot be stored on disk without
being named.

4.4.6 THE FILE COMMAND

The name of the current text file and its address limits in memory can
be determined by using the FILE command. This command has no parameters.
It is entered by typing FILE and pressing the return key. The name of the
C'urrent text file will be displayed, followed by two hex numbers which are
the starting and. ending memory addresses of the current text file. If the
current text file has not been named, the message FILE NOT NAMED will be
displayed in place of the filename.

4.4.7 THE AUTO COMMAND

LINEEDIT's automatic line numbering facility adds a fixed increment to
the last entered line number in order to compute the 'next' automatic
line number. When LINEEDIT is started this increment value is set at a
default of 1. This value may be changed by using the AUTO command. The
general form Of the command is AUTO number. The increment will be set
to the decimal value of number.

4-45

Rev. 7 3/78

4.4.8 THE PROMPT COMMAND

When LINEEDIT is started its prompt message is null. After processing
an input line, it simply echoes a carriage return/line feed combination,
and waits for a new input with the cursor at the left margin of the
terminal display. A prompt character or message can be specified for
LINEEDIT by using the PROMPT command. PROMPT "message" is the general
form of this command. The message may be from 1 to 10 characters in
length and include any characters valid in a text line. It must be
enclosed in double quotes as shown. When the PROMPT command is executed,
LINEEDIT will immediately display the new prompt at the left of the
terminal display and be positioned waiting for a new input line. The
LINEEDIT prompt may be to its initialized state by typing PROMPT
and pressing the return key.

4.4.9 THE LOAD COMMAND

A text file may be loaded into the edit buffer from disk by using the
LOAD command. LOAD "unit number:filename" is the general form of the
command. The double quotes must be used as shown. The filename must be
a valid MOOS filename. The unit number is optional. If it is supplied,
it must consist of a single digit from 0 to 3 followed by a colon (:).
It designates the disk unit on which the specified file is to be found.
If no unit number is specified, unit 0 is assumed.

When a text file is successfully loaded, it replaces the contents of the
edit buffer and all text from the previous text file in the buffer is
lost. The name of the current text file becomes the name of the disk
file that was loaded, not including the unit number.

Entering a LOAD command may result in the message FILE ON DISK NOT UPDATED.
PROCEED? This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears, the current .
text file is not yet lost. To override this warning type Y and press the
return key. The LOAD command will be processed. Otherwise, type Nand
press the return key. The message CANCELLED will be displayed and LINEEDIT
will be waiting for an alternate command.

Entering a LOAD command may result in the message FILE BUFFER
See Appendix D for an explanation of this condition.

4.4. laTHE APPEND COMMAND

A text file may be loaded from disk and appended to the end of the current
text file in the edit buffer by using the APPEND command. APPEND "unit
number:filename" is the general form of this command. The double quotes
must be used as shown. The filename must be a valid MOOS filename. The
unit number is optional. If it is supplied, it must consist of a single
digit from 0 to 3 followed by a colon (:). It designates the disk unit
on which the specified file is to be found. If no unit number is specified,
unit 0 is assumed.

4-46

Rev. 7 3/78

When an APPEND is executed, the text file from disk is concatenated onto
the end of the text file which was already in the edit buffer. The text
lines of the appended file are not merged into the existing file in order
by line number. The appended file may contain line numbers which conflict
with the existing file. For these reasons it is important to use the RENUM
command immediately after a successful APPEND.

The name of the current text file in the edit buffer is not affected by
an APPEND.

Entering an APPEND command may result in the message WRONG FILE TYPE.
This is an indication that the requested file has an attribute type
different than 4 through 7. These are the only valid source file types
acceptable to LINEEDIT and the assembler.

Entering an APPEND command may result in the message FILE BUFFER OVERFLOW.
This is an indication that the amount of system memory 'available for the
edit buffer is not enough to hold the additional file which was requested.
When this condition occurs, the requested file is not appended but the
existing is retained without change.

4.4.11 THE. SAVE COMNAND

The current text file in the edit buffer may be stored on disk as a new
disk file by using the SAVE command. The general form of this command
is SAVE unit number. The unit number is optional. If it is supplied, it
must consist of a single digit from 0 to 3.' It designates the disk unit
on which the current text file is to be stored. If no unit number is
specified, unit 0 is assumed.

The name of the current text file in the edit buffer is used to create
an entry in the directory of the specified disk and the text file is
stored on the disk. under that name. If the name already exists on the
specified disk a DUPLICATE NAME message will result, and ,nothing will be
written to disk. The edit buffer is unchanged. The file may be SAVEd by
first changing its NAME to one that doesn't conflict or by using the
RESAVE command if appropriate.

A file created by the SAVE command is given the attribute type 4 which
marks it as an editor/assembler source file.

4.4.12 THE RESAVE COMMAND

The current text file in the edit buffer may replace an existing file
or disk by using the RESAVE command. The general form of this command
is RESAVE unit number. The unit number is optional. If it is supplied,
it must consist of a single digit from 0 to 3. It designates the disk
unit on which the existing file to be replaced is found. If no unit
number is specified, unit 0 is assumed.

The directory of the specified disk unit is searched for a filename
which matches the name of the current text file in the edit buffer. The
current text file is written over that file on the disk. If no match is

4-47

Rev. 7 3/78

found, the message FILE NOT FOUND will be displayed. The current text
file can be saved as a new file by using the SAVE command. If the file
matched on disk has a type other than 4 through 7, the message WRONG
FILE TYPE will be displayed. Text source files must have a source file
type.

4.4.13 THE LIST COMMAND

A formatted display of lines in the current text file can be output to
the system console by using the LIST command. The forms of this command
are LIST, LIST linenumberl, and LIST 1inenumber1 1inenumber2. The display
will begin with 1inenumberl or the next highest and continue through
1inenumber2 or the next lowest. If linenumberl and linenumber2 are the
same, only one line will be displayed. If linenumber2 is less than
linenumberl, nothing will be displayed. If linenumber2 is not supplied,
the display will begin with 1inenumberl or the next highest, and continue
through the last line currently in the current text file. If no line
numbers are supplied, the entire edit buffer will be displayed.

The LIST command produces a formatted display of the text lines that is
oriented to 8080 assembly source text: The format is defined
as four fields each beginning at a specific tab location. The first field
begins at the left margin and displays the line number as a 4 digit number.
The second field is the label field. It consists of all characters in the
text line through the first space or colon (:) that occurs. The third .
field is the opcode and operands field. The opcode consists of all
characters following the label field through the next occurrence of a space.
The operand consists of all characters following the opcode through the
next occurrence of a space. The fourth field is the comment field. It
begins with a semicolon (;) following the space that terminates the operands
and continues to the end of the text line.

Refer to the TAB command to change the tab settings which determine the
placement of the fields for the LIST format. When using the LIST command
with general text editing, it is advisable to set the tabs to 1 1 1. This,
effectively removes the tabulation effects which are designed for assembly
language source text.

4.4.14 THE LISTP COMMAND

A formatted display of lines in the current text file can be output to
the system printer by using the LISTP command. The forms of this command
are LISTP, LISTP 1inenumberl, and LISTP 1inenumberl 1inenumber2.

The LISTP command functions the same as the LIST command except that output
is directed to the system printer instead of the system console.

4-48

Rev. 7 3/78

4.4.15 THE PRINT COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system console by using the PRINT command. The forms of this
command are PRINT, PRINT 1inenumberl, and PRINT linenumberl linenumber2.
The 1inenumber specifications in the PRINT command function the same as
in the LIST command.

The PRINT command displays text lines as they are stored in the edit buffer
but without the line numbers so that general text may be displayed just as
it was entered. If an unformatted display of assembly language source
text is desired, it can be obtained by setting the tabs to 1 1 1 and using
the LIST command.

4.4.16 THE PRINTP COMMAND

A literal (unformatted) display of lines in the current text file can be
output to the system printer by using the PRINTP command. The forms of
this command are PRINTP, PRINTP 1inenumber1, and PRINTP linenumberl
1inenumber2.

The PRINTP command functions the same as the PRINT command except that
output is directed to the system printer instead of the system console.

4.4.17 THE TAB COMMAND

The tab settings that determine the placement of the fields for the LIST
and LISTP format may be changed by using the TAB command. TAB number1
number2 number3 is the form of this command. The first number is the
column at which the opcode field begins. The second number is the column
at which the operand field begins. The third number is the column at which
the comment field begins.

The initial and default values of the TAB parameters are 15, 22, 36 dec'imal.
The settings may be reset to these values by typing TAB without any para-
meters. Missing parameters are set to the default if possible or the value
of the preceding parameter if that parameter is greater than the default
value for that tab column. If TAB 17 were typed the tab setting would be
17, 22, 36. TAB 25 would set the tabs to 25, 25, 36.

4.4.18 THE DELT COMMAND

A group of consecutive lines may be deleted from the current text file
by using the DELT command. The forms of this command are DELT 1inenumberl,
and DELT 1inenumber1 1inenumber2. Lines will be deleted from 1inenumber1
or the next highest that exists, through 1inenumber2 or the next lowest that
exists. If 1inenumber2 is less than 1inenumber1 nothing will be deleted.
If they are equal only that line will be deleted. If only linenumberl is
specified then only that line will be deleted. The edit buffer is
automatically compressed whenever lines are deleted.

Rev. 8 9/78 4-49

4.4.19 THE RENUM COMMAND

Allor part of the lines in the current text file can be renumbered by
using the RENUM command. The forms of this command are RENUM, RENUM
startingnumber, RENUM startingnumber increment, and RENUM startingnumber
increment first-line-to-change. RENUM takes the line number of the first
line to change and sets it equal to the starting number. The line number
of each line after the first line to change is then set to the value of
the preceding new line number plus the increment value. If no first line
to change is specified, the first line in the edit buffer is assumed. If
no increment value is specified, the value 10 is used. If no starting
number is specified, the value 0 is used. Typing RENUM alone will produce
a text file numbered from 0 by l0's.

Entering a RENUM command may result in the message LINE NUMBER OVERFLOW.
This is an indication that the renumbering attempt lead to a line number
greater than 9999. When this occurs the edit buffer is left in a partially
renumbered state. Lines up to the overflow point have been renumbered but
the ones after that point retain their old value. A RENUM with a smaller
increment value should be executed immediately to correct this condition.

4.4.20 THE SEARCH COMMAND

Lines in the current text file that contain a specified string of text
can be located and displayed by using the SEARCH command. The forms of
this command are SEARCH, SEARCH linenumberl, or SEARCH linenumberl
linenumber2. SEARCH without alinenumber specified will search the whole
buffer. SEARCH linenumberl will search from the line number specified
to the end of the buffer. SEARCH linenumberl linenumber2 will search the
buffer starting at the first line specified through the second line
specified.

When the SEARCH command is entered, LINEEDIT will respond with the prompt
SEARCH MASK? A string of up to 132 legal text line characters can be
entered. The entry is terminated by pressing the return key. LINEEDIT
searches through the lines in the current text file looking for the first
occurrence within each line of a substring that matches the specified search
mask. It examines every 1 ine except those 1 ines that 'begin with an asterisk
(*). Every examined line that contains a match is displayed on the system
console. This display is a literal (unformatted) display including the line
number. Lines with a leading asterisk (*) are considered comment lines in
assembly language source text. Refer to the SEARCHALL command to operate
on comment lines.

The SEARCH command also provides a universal match character capability.
Each question mark (?) that is entered in the search mask string is treated
as a match for any character in that position. For example, the search
mask A?I will match all three character substrings that begin with A and
end with I. Note that this capability means that question marks (?)
included in the text cannot be explicitly searched for.

If no lines in the current text file contain a match to the specified
search mask, the message STRING NOT FOUND will be displayed.

Rev. 8 9/78 4-50

4.4.21 THE SEARCHALL COMMAND

All lines in the current text file that contain a specified string of
text, including those lines that begin with an asterisk (*) can be located
and displayed by using the SEARCHALL command.

The forms of this command are SEARCHALL, SEARCHALL 1inenumber1, or SEARCHALL
1inenumber1 1inenumber2. SEARCHALL without a 1inenumber specified will
search the whole buffer. SEARCHALL 1inenumber1 will search from the line
number specified to the end of the buffer. SEARCHALL 1inenumber1 1inenumber2
will search the buffer starting at the first line specified through the
second line specified. The SEARCHALL command functions the same as the
SEARCH command except that all text lines including those that begin with
an asterisk (*) are included in the search.

4.4.22 THE CHANGE COMMAND

The first occurrences of a specified string in lines of the current text
file can be replaced with a different string of same or different length
by using the CHANGE command. The forms of this command are CHANGE, CHANGE
1inenumber1, or CHANGE 1inenumber2." CHANGE without a 1inenumber
specified will change all lines in the buffer. CHANGE 1inenumber1 will
change lines from the line number specified to the end of the buffer. CHANGE
1inenumber1 1inenumber2 will change lines in the buffer starting at the
first line specified through the second line specified.

CHANGE operates on all lines within the specified range except lines starting
with an asterisk (*) or semicolon (;). These lines are considered comment
lines in assembly language source text. Refer to the CHANGEALL command to
operate on comment lines.

When the CHANGE command is entered, LINEEDIT will respond with the prompt
SEARCH MASK 7. A string of up to 132 legal text line characters may be
entered. The entry is terminated by pressing the return key. If no lines
in the current text file contain a match to the specified search mask, the
message STRING NOT FOUND will be displayed. Otherwise, LINEEDIT will then
respond with the prompt CHANGE TO 7. Another string of up to 132 legal
text string characters can be entered. The entry is terminated by pressing
the return key. LINEEDIT searches through lines in the current text file
looking for the first occurrence within each line of a substring that matches
the specified search mask. It replaces such occurrences with the specified
change-to string, adjusting line and buffer length accordingly. Each line
as changed is displayed on the console without tabs expanded.

The CHANGE command also respects the universal match character capability
as described under the SEARCH command. If the search mask contains one or
more question marks (7) these characters positions will match any character
in the search process, and the matched substring will then be replaced by
the change-to string. Example:

Rev. 8 9/78 4-51

LIST
10 Sl@LABEL1A
20 S2@LABEL2A
30 @LABEL3
CHANGE
SEARCH MASK ? S?@
CHANGE TO ? @
10 @LABEL1A
20 @LABEL2A

The change-to string may also contain question marks (?). This provides the
ability to retain specified character positions in the search string while
making changes on either or both sides of the retained character. Example:

LIST
10 TAG01A
20 TAGOFF
30 TAG22A
CHANGE
SEARCH MASK ? TAG??A
CHANGE TO ? LABEL??B
10 LABEL01B
30 LABEL22B

Lines 10 and 30 have been changed while line 20 is unchanged because it
did not match the search string. The TAG at the beginning and the A at
the end of lines 10 and 30 have been changed. The 01 in line 10 and the
22 in line 30 have been retained.

4.4.23 THE CHANGEALL COMt4AND

The first occurrences of a specified string in all lines of the current
text file, including those lines that begin with an asterisk (*), or
semicolon (;) can be replaced with a different string of same or different
length by using the CHANGEALL command. The forms of this command are
CHANGEALL, CHANGEALL 1inenumberl, or CHANGEALL 1inenumberl linenumber2.
When the CHANGEALL command is entered it functions the same as the CHANGE
command, except that all text lines including those that begin with an
asterisk (*) are included in the search.

4.4.24 THE EDIT

The text within a specified line in the current text file can be changed
without retyping the entire line by using the EDIT command. EDIT linenumber
is the form of this command. If the specified 1inenumber is not found in
the current text file, the message LINE NOT FOUND is displayed. LINEEDIT
processes an EDIT command by copying the specified line into a special
editing buffer and displaying the line number at the left margin' of the
console. An invisible edit pointer is set to point to the first character
in the text line after the space that terminates the line number. LINEEDIT
is now in the EDIT command mode. A separate set of single key commands is
available for editing a line in the special edit buffer.

Rev. 8 9/78 4-52

4.4.24.1 ADVANCING THE EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

4.4.24.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a c or C, followed by the new character.
The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

4.4.24.3 DELETING THE NEXT CHARACTER - 0

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (,). The edit pointer is left
pointing at the character immediately after the deleted character.

4.4.24.4 INSERTING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by
the edit pointer. Characters are inserted in sequence as typed until
the insert mode is terminated by typing an escape (lB hex). The edit
pointer remains pointing to the same character that it pointed to when
the insertion began. The insert mode may also be terminated by pressing
the return key. This also terminates the EDIT command and replaces the
line in the current text file with the newly edited version from the
special editing buffer.

4.4.24.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position
of the edit pointer to the end of the line may be displayed by typing
an 1 or L. The characters are displayed on the console followed by
a carriage return-line feed. The line number is reprinted at the left
margin of the console display and the edit pointer is reset to the beginning
position. This command is useful to see what the line looks like before
editing is completed. It may also be useful to use this command immediately
after entering the original EDIT command. This would display the line
about to be edited without exiting the editing mode.

4-52.1

Rev. 9 1/79

4.4.24.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the
first occurrence of a specified character by typing an s or S
followed by the character to search for. The characters from the position
of the edit pointer up to but not including the searched for character
are printed on the console. The edit pointer is left pointing at the
first occurrence of the searched for character. If the search argument
does not exist in the line then the entire line is printed and the edit
pointer is positioned at the end of the line.

4.4.24.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing a k.or K followed by the search The deleted
characters are displayed on the console, enclosed in backslashes (').
If the search argument does not exist in the edit line, then all the
characters from the edit pointer to the end of the line are deleted.
The edit pointer is left pointing at the search character or at the end
of the line.

4.4.24.8 QUITTING THE EDIT COMMAND MODE - Q

The EDIT command may be aborted without changing the line in the current
text file by typing a q or Q. The partia.lly edtted ltne tn the
special editing buffer is abandoned. No changes are made to the line in
the current text file. LINEEDIT is ready to accept a new command.

4.4.24.9 COMPLETING THE EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can replace the line in the current
text file at any point by pressing the return key. This terminates the
EDIT command in a normal manner.

4.4.25 THE DOS COMMAND - EXITING FROM LINEEDIT

Control of the computer system can be returned from LINEEDIT to the MOOS
executive by using the DOS command. This command has no parameters. It
is entered by typing DOS and pressing the return key. Control is
returned to the MOOS executive which signs on with the message MICROPOLIS
MOOS VS. X.X. LINEEDIT remains in the system application program area and
the contents of the current text file are not disturbed unless some action
taken from the executive destroys these areas. Entering an APP command to
the executive would return control to LINEEDIT.

Entering the DOS command may result in the message FILE ON DISK NOT UPDATED,
PROCEED? This is a warning that the current text file has not been stored
on disk since it was last altered. When the message appears the current
text file is not yet lost. To override this warning type Y and press the
return key. The DOS command will be processed. Otherwise type N and press
the return key. The message CANCELLED will be displayed and LINEEDIT will·
be waiting for an alternate command.

4-53

Rev. 9 1/79

4.4.26 LINEEDIT FILE STRUCTURE

The current text file in the LINEEOIT edit buffer has the following
format. Each line begins with a byte that contains a count of the number
of bytes in the line. The count ·includes the count byte and the carriage
return at the end of the line. The count bytejs followed by four bytes
that hold the digits of the line number in ASCII. The line number can
range from 0000 to 9999. At least one space (20 hex) follows the line
number. The remainder of the line can contain from 0 to 125 characters
followed by a carriage return. The shortest line contains 6 bytes. The
longest line contains 132 bytes. The characters of the source program
appear in the line exactly as they were typed during input. ASSM and
LINEEOIT require only one space between elements of an assembly statement.
Additional spaces are ignored. Therefore, there ;s no reason to type in
more than the minimum number of spaces when entering a source program.
After the carriage return that terminates the last line of the current text
file there is a byte that contains a 01 to mark the end of the file.

The current text file is written to a disk file just as it appears in
the edit buffer. All records in the disk file with the possible exception
of the last one are full records; A text line may span two records. 'The
following logic could be used in an MOOS application program designed to
process an editor source file.

1000 START CALL @RFINXPOSI
2000 DCR C
30091 JZ ENDOFFILE
4000 MVI 0,91
591910 MOV E,C
691910 LXI H,BUFFER
791910 CALL @LOADOATA
8919191 *PROCESS THE LINE IN THE BUFFER
9919191 JMP START

The @RFINXPOS routine gets the line count byte into the C register. If
the count is 911 the end of the file has been reached. Otherwise, all
program lines have a line length of no less than 6. The line length is
moved into the DE registers (0=91) and the buffer address is placed into
the HL registers. The @LOADDATA routine starts at the index position
and loads the next DE bytes into the buffer which leaves the index position
pointing to the line count byte of the next text line. The program can
then process the text line and loop back to get the next line.

4-54

Rev. 7 3/78

4. 5 - THE MICROPOLIS 8080/8085 DISK ASSEMBLER

An assembler converts a source program written in an assembly language
into an object program which consists of a sequence of binary codes that
can be loaded into a computer's main memory and executed. ASSM is an
assembler for the 8080/8085 micro-processors. It uses a MICROPOLIS
diskette subsystem as peripheral storage for the source and object files
during the assembly process. Use of a peripheral storage medium allows
the assembly of programs that could not otherwise be assembled because
the source and object files could not fit into the micro-processors main
memory during the assembly.

ASSM produces an absolute object file that can be scatter loaded into
main memory. The object file contains all address references generated
by ORG and DS statements. The operating system puts the object code in
the proper place. Object files on disk do not have to be contiguous
memory images to load correctly.

4.5.1 HOW TO INVOKE ASSM

From the MOOS executive ASSM is invoked by entering the file name ASSM,
like an MOOS command, followed by a list of parameters. The format is
as follows:

ASSM "<source filename>" "<object filename>u u<options>u [<offset>]

The source file must be a TYPE 04 through 07 file which has been created
by the line editor program described in Section 4.4. The object file will
be created by ASSM and given a TYPE of 8.

The option field directs the output from the assembler to different places.
Options are specified by grouping the following letters together as required:

E Only assembly errors will be listed.

P The assembly listing will be paginated.

S Only an assembly listing will be produced. No object
code will be written to disk or memory.

M The object code will be written directly into memory at
locations specified in the source unless an offset is specified.

L The line numbers used during editing will not be written No t-liV£-
on the assembly listing.

T The symbol table created by the assembly will be output SYHg. T7f1SL5:
at the end of the listing.

C All output from the assembler will go to the output device. o (/Tli/,I
T71

CotYJt?£-.6

4-55

Rev. 8 9/78

Option codes are grouped together within the option string. For example,
ASSM "l:SGAME" "GAME" "PLT" will assemble the source file called SGAME on
disk drive one and create an object file on drive zero by the name GAME.
The assembly listing will be output to the list stream and each page will
be numbered and titled with a field header at the top of each page. The
line numbers used by the editor will not appear on the assembly 1 isting.
The symbol table will be added to the end of the assembly listing.

The P option causes the assembler to paginate and title the output listing.
If the FORMFLAG location (see 2.2.5.1) contains a zero value, the pagina-
tion will be done by outputting linefeeds to advance the paper to the top
of the next page. If the FORMFLAG location contains a non-zero value, a
single FORMFEEO (ASCII 12) will be output. When using the linefeed mode,
the assembler will assume the paper is at top of form when the assembly
command is gi ven from MOOS. In the formfeed mode, a formfeed wi 11 be out-
put before any printing to resynchronize to the top of form. The FORMFLAG
location should be configured when the system printer I/O is configured.
See section 2.2.5.1.

4-56

Rev. 8 9/78

The Sand M options are mutually exclusive. S indicates that no object
code is to be produced while M indicates that the object code is to be
placed into memory. The S option is always dominant.

When the options S or M are specified the second ASCII parameter which
holds the filename for the object file can be left out by typing 1111,

because these options do not produce a disk file. If the second parameter
is present it is ignored. The parameters are positional so the 1111 must be
used if there is no object file and/or there are no options.

Exampl es: ASSM "STEST" "TEST" 1111

Assr1 "STEST" 1111 IIpS"

The blank parameter is mandatory in both cases.

The optional offset parameter is only used when the object code is to
be placed directly into memory using the M option. The offset is added
to the actual address where the code would be placed as specified by
the programs ORG statement. The code is assembled to run at the ORG
address but is placed at a different address temporarily. The object
code will not run at the resulting offset address and must be moved to
the proper location before being executed. The offset is useful when
the program is intended to run at @APROGRAM. The program must first be
placed into a memory area that does not conflict with the assembler
program or the generated symbol table.

Example:
0500
1000
2000 START
3000
4000 BEGIN
5000

LINK
LINK
ORG
FILL
JMP
END

ASSM "STEST" 1111 II Mil 3000

'SYSQ1'
'SYSQ2'

@APROGRAM
10H,0
$
BEGIN

;2800 HEX
;2B00-2B0F FILL 0
;SOFT HALT
;EXADD TO SOFTHALT

After the assembly memory would look as follows:

5BOO 00 00 00 00
5B10 C3 10 2B

00 00 00 00 00 00 00 00 00 00 00 00

The code will not run at this location because the soft halt jump is
assembled for an ORG of 2B00 hex. A MOVE 5B00 5B12 2B00 command would
move the code down to the proper location and an EXEC 2B10 would run
the program properly.

4-56.1

Rev. 9 1/79

If this program were assembled into memory without the offset parameter,
it would attempt to overwrite the assembler resulting in a LOAD ADDRESS
ERROR. For this reason assembling directly into memory requires great
care and should only be done if you are absolutely sure all the code
produced during the assembly is outside of the operating system; outside
of the assembler program; and does not conflict with the generated symbol
table. The symbol tables starts immediately after the assembler program
and grows toward high memory. Each label requires one byte for each
character of the label plus two bytes for the address or value definition
of the label. The approximate size of the symbol table can be evaluated
by averaging the label size adding two and multiplying by the number of
labels. If the size of the symbol table plus a safety margin is added to
3000 hex (the start of the symbol table rounded up to the next even page),
the resulting address should be a safe area to put the object code when
using the M option.

4.5.2 LANGUAGE ELEMENTS

The assembler translates assembly language statements into 8080 machine
code. A statement consists of a line number, a label, an opcode,
operands, and comments.

The first element is the line number. The assembler ignores the line
numbers in the SOurce line. Line numbers are only used by the line editor
program and have no meaning to the assembler.

The second element in a statement must be a label or a delimiter to indicate
that there is no label in the statement. ASSM accepts two label delimiters,
the space, and the colon (:). If a label does not appear, then the first
element of the statement must be a space or a colon (:). Additional spaces
are ignored and the next non space character is the start of the third element.

The third element in a statement is the operation code mnemonic. The assembler
uses the standard 8080/8085 opcode mnemonics developed by the

The fourth element'in a statement is the operand field. Some opcodes
require no operands while others need one or two. If an operand is not
required, the fourth element is automatically considered to be a comment
field.

The last element of a statement is the comment field. The comment field
is printed ,on assembly listings but is ignored by the assembler. It's
only purpose is for program documentation and clarity. If the comment
field is preceded by a semi-colon (;) the comment will be formated on
the assembly listing. If the semi-colon is left out, the comment will
appear after the operand field just as it was entered. This feature does
not effect the assembly in any way. It is only a formating feature.

The statement line looks as follows:

LINE# LABEL OPCODE OPERANDS COMMENTS

4-57

Rev. 8 9/78

All spaces shown are mandatory as delimiters, except after a label
where the colon (:) can replace the space as a delimiter. Additional
spaces are ignored with the exception that a label must start immediately
after the space following the line number.
A line can be as a comment only line. This is done by putting an
asterisk (*) or a semicolon (;) as the character immediately after the space
that follows the line number. If the comment line is formed with an asterisk
(*), the line will be listed exactly as entered. If it is formed with a semi-
colon (;), it will be tabulated to start on the same column as in-line comments.
4.S.2.1 LITERALS

The assembler provides for numeric and ASCII literals. Numeric literals
can be decimal, hexadecimal, binary, or octal. The following suffixes
designate the appropriate base:

A capital H is used to designate base 16, hexadecimal.
A capital B is used to designate base 2, binary.
A capital Q is used to designate base 8, octal.
Base 10, decimal, can be designated by either a capital 0, or no suffix.

All numeric literals must begin with a digit in the range zero through nine
regardless of the base. This is done to avoid ambiguity between
hexadecimal literals and symbolic names. For example, the hex address
F90C must be written as 0F90CH. .

ASCII literals appear between single quotes (I) and can include any ASCII
character from 20 hex to 7E hex except the backarrow (SF hex), and the
single quote (I).

4.S.2.2 SYMBOLIC NAMES

Labels are symbolic names. Operands may also be symbolic names instead
of literals.

Symbolic names consist of a string of ASCII characters. A symbolic name
can be from 1 to 47 characters long. It is made up of ASCII characters
from 30 hex to 39 hex and 40 hex to 7E hex, except the backarrow (SF hex).

Symbolic names may not start with the digits 0 through 9. This avoids
ambiguity between numeric literals and symbolic names. The following
characters are valid within a symbolic name:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
01234S6789@[]A'[:]-\

Symbol i c names are defi ned when they appear as 1 abel s of a.n apcade or a
pseudo-opcode. This associates a sixteen bit address or value with the
label. Symbolic names that are defined may appear as arguments in operands.

Rev. 9 1/79 4-S8

Some symbolic names are already defined by ASSM itself and should not
normally be redefined in the source program. ASSM gives the registers
of the 8080 the following symbolic names:

Register 7 is A.
Register 0 is B.
Register 1 is C.
Register 2 is D.
Register 3 is E.
Register 4 is H.
Register 5 is L.
Register 6 is M, PSW, and SP.

ASSM gives the value of the program counter the symbolic name $. It
changes as the assembly proceeds by assuming the value of the program
counter at the start of each statement line being translated.

For example, the following source program line would produce a jump to
itself (also called a soft halt).

0100 $.JUMP TO SELF

4.5.2.3 OPERATORS

ASSM recognizes 10 operators designated with the characters +, *, /,
%, &, , #, >, and <. These operators may combine with symbolic names and
literals to form complex expressions, as described in Section 4.5.3.

All operators treat their arguments as 16 bit unsigned quantities and
generate 16 bit unsigned quantities as their result. The operations are
from left to right with no hierarchal precedence and no precedence
specifier (no parenthesis).

The operator + produces the arithmetic sum of its operands to 16 bits.

The operator - produces the arithmetic difference of its operands when
used as a subtraction, or the arithmetic negative of its operand when
used as unary minus.

The operator * produces the arithmetic product of its operands.

The operator / produces the arithmetic integer quotient of its operands,
discarding any remainder.

The operator % produces the integer remainder obtained by dividing the
first operand by the second.

The operator & produces the bit-by-bit logical AND of its operands.

The operator produces the bit-by-bit logical OR of its operands.

The operator # produces the bit-by-bit logical EXCLUSIVE-OR of its
operands.

4-59

Rev. 7 3/78

The operator> produces a 16 bit rotate to the right by the number of
bits specified in the second operand. The least significant bit becomes
the most significant bit and all other bits are shifted to the right.

Example:

1111000011110101B>3 evaluates to 1011111000011110B

The operator < produces a 16 bit rotate to the left by the number of
bits specified in the second operand. The most significant bit becomes
the least significant bit and all other bits are shifted to the left.

Example:

1111000011110101B<3 evaluates to 1000011110101111B

4.5.2.4 apCODE MNEMONICS

The standard Intel mnemonics for the 8080 and the 8085 are used without
exception. For a detailed discussion of the 8080/8085 opcodes refer to
the "INTEL 8080 Y LANGUAGE PROGRAMMING MANUAL". Opcodes must be
UPPERCASE only.

4.5.3 OPERANDS

Not all opcodes have operands. If an opcode does not have an operand,
the element after the opcode is the comment. Some opcodes have one
operand while others have two. Where two operands are required they
must be separated by a comma (,). There may be no spaces imbedded within
the operands.

An operand may consist of a simple or complex expression. A simple
expression is a numeric or ASCII literal, or a symbolic name. A complex
expression is a combination of numeric or ASCII literals, symbolic names,
and operators. The operand is the evaluation of the expression to 16
bits.

Examples:

1000 REG7
2000 TEST
3000 INC
4000 TEST

EQU
EQU
EQU
LXI

1
1000H
6
REG7+4,TEST*6+INC&7<8 ;COMPLEX EXP

The LXI opcode takes two operands. Both of the operands in the example
are complex expressions. The expressions are evaluated to 16 bits and
truncated to the size of the operands. In the case of the example the
first operand would be truncated to 8 bits because it represents a
register (05). The second operand evaluates to 16 bits and is not truncated
because it is a 16 bit operand (0600 hex).

4-60

Rev. 7 3/78

4.5.4 ASSEMBLER DIRECTIVES

Assembler directives appear in the source program and provide information
needed by the assembler to allocate memory space, initialize values, and
format listings. Assembler directives are often called pseudo-operations
or pseudo-ops. The assembler directives are mnemonics. They are issued
in statements like opcodes. The general pseudo-op statement form is as
follows:

LINE# LABEL PSEUDO-OP OPERAND COMMENT

The label is optional in all but two of the assembler directives. These
are the EQU and the INP pseudo-ops. For the others the label is used
when necessary and has the same form and restrictions as labels with
opcodes. The END, INP, and PRT pseudo-ops can optionally have operands.
The FORM, LIST, NLIST, and ENDIF never have operands.

Pseudo-op operands have the same form as opcode operands. They can be
simple or complex expressions.

Labels and operands are optional with some pseudo-ops. Comments are
always optional.

Many of the assembler directives are the same as the INTEL pseudo-ops
described in the flINTEL 8080 ASSEMBLY LANGUAGE PROGRAMMING MANUAL".
However, some are unique to ASSM. Therefore, all of the pseudo-operations
are described in detail.

4.5.4.1 ORG - ORIGIN

The ORG pseudo-op specifies where a program or routine within a program
is to be placed in memory by setting the assembler's program counter to
the value of the operand. If a program does not have an ORG, then the
program is assembled at zero. Symbolic names used as operands in the
ORG statement must be defined before the ORG statement is encountered.
If a label is present, it is associated with the evaluated operands'
address.

4.5.4.2 LINK - LINK TO A FILE

The LINK pseudo-op allows separate program files on disk to be assembled
to produce one object file .. The LINK operand is a source program file
name enclosed between single quotes. When a LINK statement is encountered
in a source program, assembly continues from the start of the source file
named in the operand field and information is saved to allow ASSM to pick
up from where it was in the linking source file when the linked to source
file is completed.

4-61

Rev. 7 3/78

1000
2000
3000

LXI
LINK

H,4000H
ITEST 1

A,M
;ASSM TEST AND
;COME BACK HERE

In the above example the assembly would assemble all of the file TEST
between the LXI H,4000H and the MOV A,M.

The LINK statement allows the assembly of source programs that are much
larger than could possibly fit into memory at one time.

No unit is specified in the LINK operand. The linked to file is located
as follows. The disk that has the source file which was given in the
MOOS command that invoked the assembly is searched. If the linked to file
is on that disk the assembly continues as described above. If the linked
to file is not located the search proceeds from unit zero through three.
If a unit is not loaded or does not exist in the system it is bypassed and
the search continues until the filename is found or all units have been
searched.

4-62

Rev. 8 9/78

4.5.4.3 END - END OF ASSEMBLY

The END statement s i gni fi es to that the phys oj ca 1 end of a program
has been reached. Because ASSM allows multiple disk files to be assembled
as a single large program, multiple END statements can occur when files
have been LINKed together. Under these conditions the END signals the end
of a source file and not the absolute end of the assembly. The END will
cause the assembler to terminate its current pass on a source file and
proceed to the next source file, or the next pass. When a program consists
of multiple source files, the END statement can be absent from all but the
last file.

In addition to marking the end of a program, the END pseudo-op also
designates the start-of-execution address by its' operand. If the END
statement is missing, or the operand is left off, the start of execution
address is the physically first ORG of a program. The END statement allows
an execution address to be specified that is different from the physical
start of the program. For example, a program which is structured to have
a data area before the executable code can specify the start of execution
address as follows:
0500 LINK
1000 LINK
1100 ORG
1200 INBUF DS
1300 BEGIN MVI
1400 LXI
1500 START CALL
1600 CALL
1700 INR
1800 JZ
1900 CPI
2000 JNZ
2100 LXI
2200 CALL
2300 JMP
9999 END

'SYSQ1 •
'SYSQ2'
4000H
255
C,l
H,INBUF
@CIN
@COUT
C
BEGIN
0DH
START
H, INBUF
@NLINEOUT
BEGIN
BEGIN

;INPUT BUFFER

The name of the object file for this program could be used as an implicit
command in the MOOS executive. By typing the name of the file, the executive
loads the file and transfers program control to the address specified in
the END statement.

Rev. 9 1/79 4-62.1

4.5.4.4 EQU - EQUATE

The EQU pseudo-op equates a literal value to a symbolic name. This
pseudo-op requires a label and an operand.

1000 TEN EQU
2000 TWENTY EQU

10
2*TEN

When the labels TEN, TWENTY are used within the program they will have
the value of 10 and 20 respectively.

4.5.4.5 INP - INPUT

The INP pseudo-op allows the operator to assign a value to a label from
the system console during pass one of the assembly. The INP statement
requires a label. It can have an optional operand. The operand must be
an ASCII literal. If an operand is present, it is output as a prompt to
the console stream during pass one followed by a question mark (?).
ASSM then waits for an input from the console. If no operand is
present the INP statement prompts with a question mark.

The input can be in the form of simple or complex expression including
literals and/or symbolic names. Symbolic names must have already been
defined before the INP statement is encountered during pass one.

Example:

1000 TEST INP 'INPUT'

During pass one of the assembly the prompt would be displayed on the
system console and the assembler would wait for an input.

INPUT
?

4.5.4.6 PRT - PRINT

The PRT pseudo-op outputs the values of its operands to the console
stream during assembly pass two. The operands can be simple or complex
literals and/or symbolic names. If no operands are present the PRT
outputs a carriage return line feed only.

Example:

1000 TEST
2000

EQU 7000H
'THIS IS A TEST' ,TEST

During pass two the message THIS IS A TEST 7000 is displayed on the
system console.

4-63

Rev. 8 9/78

4.5.4.7 TAB - TAB SETTINGS

The TAB pseudo-op changes the tab settings for the assembly listing at
assembly time. The TAB settings are initially 15,22,36. The first column
is defined as the column at which labels start. The positions of the
opcode, operand and comment fields can be changed with the TAB pseudo-oPe
The statement expects three operands. The first operand is the opcode
field tab, the second operand is the operand field tab, and the third is
the comment field tab.

If an operand is set to zero, that tab is set to the initial default value.
The operands can be simple or complex expressions.

4.5.4.8 NLIST - NO LIST TO PRINTER

The NLIST pseudo-op suppresses the listing of the assembly to the list
stream from the point in the source file at which it is encountered until
the next occurrence of a LIST pseudo-oPe

Note: If the E option (see section 4.5.1) was specified, the LIST and
NLIST pseudo-ops will be ignored. In all cases, however, any assembly
lines which contain errors will be output.

,
4.5.4.9 . LIST - LIST TO PRINTER

The LIST pseudo-op is used to start a listing at the point at which it is
encountered in the source file after a previous NLIST statement has sup-
pressed the listing.

4.5.4.10 FORM - FORM FEED

The FORM pseudo-op is used to control output pagination when the P option
is in effect. The FORM statement has two modes. The first causes the
assembler to eject the paper to the top of the next page and continue
printing. To use this mode the FORM statement must have no operand. The
second mode sets the length (in # of lines) of the output page.

FORM 66
FORM

;this sets the form length
;this ejects the page

The example will cause the assembler to use a page size of 66 lines. This
means that 58 lines of program text will be output with 8 lines for page
number, header and margin.

4-64

Rev. 8 9/78

4.5.4.11 DB - DEFINE BYTE

The DB pseudo-op defines one or more bytes of memory storage. The DB
statement has one or more operands.

1000 TEST DB 1,20H,11B,76Q,TEST+3 ;DEFINE BYTES

The DB statement's operands can be simple or complex expressions, with
the exception that ASCII literals can only be one byte long per operand.

Example:

1000 DB 'T','H','I','S'

Is valid while:

1000 TEST DB 'THIS'

Is not valid.

4-64.1

Rev. 8 9/78

4.5.4.12 DW - DEFINE WORD

The DW pseudo-op defineS one or more two byte words of memory storage
in standard Intel low/high address format. The DW statements can have
multiple operands which can be simple or complex expressions.

1000 TEST 4000H,5557H

4000H would appear as 00 40 and 5557H would appear as 57 55 in the
object file.

4.5.4.13 DD - DEFINE DATA

The DO pseudo-op defines one or more two byte words in high/low format.

1000 TEST DO 4000H,5557H

4000H would appear as 40 00 and 5557H would appear as 55 57 in the
object file.

4.5.4.l4DT - DEFINE TEXT

. The DT pseudo-op is used to define a line of text enclosed between
single quotes. The text string can contain any ASCII characters as
described in the section on literals.

1000 TEST DT IABC I

The following object code would be produced by this example: 41 42 43.

4.5.4.15 DTl - DEFINE TEXT TERMINATED WITH lERO

The DTl pseudo-op is used to define a line of text. When the string is
assembled the ASCII code is terminated by a zero.

1000 TEST DTl IABC I

The following object code would be produced by this example: 41 42 43
00.
4.5.4.16 DTH - DEFINE TEXT TERMINATED WITH BIT 8 HIGH

The DTH pseudo-op is used to define a line of text. When the string is
assembled the ASCII code of the last character in the string is ORed
with 80 hex.

1000 TEST DTH IABC I

The following object code would be produced by this example: 41 42 C3.

4-65

Rev. 7 3/78

4.5.4.17 DS - DEFINE STORAGE

The DS pseudo-op is used to set aside storage space. It requires one
operand which can be a simple or complex expression that evaluates to
the number of bytes to be set aside as storage (1 to FFFF hex). No code
is written into the storage area. The assembler adds the operand to the
assembler program counter and continues code production at the resulting
address. Because the assembler produces scatter loadable object files,
any code in the DS area will not be disturbed when the object file is
loaded.

4.5.4.18 FILL - FILL STORAGE

The FILL pseudo-op sets aside storage space and fills it with a specified
byte. It requires two operands which can be simple or complex expressions
that evaluate -to the number of bytes to be filled (1 to FF hex) and the
byte to be stored (0 to FF hex).

1000 TEST FILL 0AH,8 ;FILL 10 BYTES WITH 8

The above example would set aside ten bytes of storage and fill it with
08 1 s.

IFF - IF FALSE

The IFF pseudo-op allows conditional assembly of a block of source code
statements. The beginning of the block is marked with an IFF statement
and the end of the block is marked by an ENDIF statement. The block is
assembled if the operand of the IFF statement evaluates to zero.

2000 TEST IFF LABEL

If LABEL is equal to zero then the code between the IFF-and the ENDIF
will be assembled, otherwise it will not be assembled.

4.5.4.20 1FT - IF TRUE

The 1FT pseudo-op allows conditional assembly of a block of source code
statements. The beginning of the block is marked with an 1FT statement
and the end of the block is marked by the ENDIF -statement. The block is
assembled if the operand of the 1FT statement evaluates to non-zero.

4.5.4.21 ENDIF - END OF IF

The ENDIF pseudo-op ends a conditional assembly block. Conditional
assemblies can be nested up to 255 deep. A label associated with an IFF
or 1FT will always appear in the symbol table. However, a label
associated with an ENDIF will appear only if the block is
Statements inside nested conditional assemblies will be active only if
the outer IF is active.

4-66

Rev. 7 3/78

4.5.5 ASSEMBLY ERRORS

The assembler is designed to catch typographical and syntactic errors
and flag them on listings. These errors are typically oversights; improper
use of labels; opcodes s or operands. The assembler cannot catch programming
logic errors. A program with flagged errors may still assemble properly
depending on the type of error. This is true of syntax errors in listing
format statements like TAB. If the TAB statement is used and the operands
are left out a syntax error is printed with the line on the listing. The
assembler defaults the tab settings to the initial value and continues. The
code will be OK (assuming no other errors) and the listing will have the default
tabs. In all but one case the assembler will continue the assembly doing the
best with each line it encounters and flagging lines that do not make sense.
The one exception is a LINK error when the file named in the operand does not
exist. This error outputs a FILE NOT FOUND message to the console stream
and the assembly is aborted at the point the error is encountered. Syntax
errors in the LINK statement do not abort the assembly. The line is flagged
and the assembly continues.
Because this is a two pass assemblers pseudo-ops which are evaluated during
pass one must have operands that have already been defined before the statement
is encountered. This is true of the following pseudo-ops: EQU, ORG, DS, INP,
IFF, 1FT, FILL. If the operand is not defined before the pseudo-op is
encountered, an undefined symbol error (error code LJ) is output along with the
line in error during pass one. Because the program counter is not properly
updated at that point in pass one, a phase error will occur in pass two. That
is, code will be placed in the right place but references (addresses) in branch
instructions will be wrong. The following example illustrates this case:

1000 START
2000 STORAGE
3000 LENGTH
4000

ORG
DS
EQU
JMP

4000H
LENGTH
40H
$

In the above example line 2000 has a forward reference to line 3000 which is
not defined at this point in pass one. During pass one line 2000 will be flagged
as having an undefined symbol and the assembly continues. The code produced
during pass two will have a phase error as follows:

ADDR B1 B2 B3
4040 C3 00 40

The jump to self is in error because the storage could not be properly defined
during pass one due to the forward reference.

A quick reference summary of ASSM error messages is shown below. Refer to
appendix D for explanations of these message conditions.

A ARGUMENT ERROR
D DUPLICATE LABEL ERROR
L LABEL ERROR
M MISSING LABEL ERROR
o OPCODE ERROR

Rev. 9 1/79

, 4-67

R REGISTER ERROR
S SYNTAX ERROR
U UNDEFINED SYMBOL ERROR
V VALUE ERROR

4.6 SYMSAVE UTILITY

The SYMSAVE utility is an applications program that may be used to create
an equate batch from a symbol table left in memory immediately after an
assembly. This equate batch is stored as an editor source file and can
be edited by the line editor and assembled by the assembler. The program
is invoked from the MOOS executive by typing SYMSAVE followed by an ASCII
filename parameter enclosed in double quotes and an optional ASCII mask
string enclosed in double quotes.

[unit:]SYMSAVE "<filename>" ["<mask string>"]

The mask string can be up to ten characters long. It is used to save only
those symbols in the symbol table that start with the specified mask string.

Example:

ADDR Bl B2 B3 E LINE LABEL OPcaDE OPERAND
0000 1000 ORG 4000H
49100 C3 091 40' 20091 START $
4003 01 3000 DATAl DB 01
4004 02 40910 DATA2 DB 02
491915 03 50091 DATA3 DB 913
40916 69100 FINISH END START

Immediately after the above program is assembled, the symbol table is still
resident in memory. To create a disk file of symbols from the above assembly
type:

SYMSAVE "TESTII

The file TEST that SYMSAVE creates is an editor compatible source file
which looks as follows:

910911 START
00912 DATAl
09103 DATA2
91004 DATA3
00915 FINISH

EQU
EQU
EQU
EQU
EQU

4000H
40913H
4004H
49105H
4006H

If only the data symbols were required, the mask string parameter can be
used as follows:

SYMSAVE "TEST1 1I "DATA"

The file TESTl looks as follows:

091911 DATAl
09102 DATA2
9191913 DATA3

EQU
EQU
EQU

40913H
4004H
4005H

This file contains only the symbols which start with the string DATA.

4-68

n 7 ')/70

A symbol equate file can be used in other programs by using the assembler
LINK pseudo-oPe

Example:

ADDR Bl B2 B3 E LINE LABEL OPCODE OPERAND
0000 1000 LINK 'TEST'
0000 2000 ORG FINISH
4006 3E 01 3000 BEGIN MVI A,DATAl
4008 32 03 40 4000 STA DATA2
400B C3 00 40 5000 JMP START
400E 6000 END BEGIN

By linking the equate batch file with the new program segment all of the
symbols defined in the first program segment can be referenced in the new
program segment.

4.7 FILECOPY UTILITY

The FILECOPY utility is an applications program that allows files to be
copied from one disk to another or onto the same disk under a different
filename. To improve speed in the process of copying a file, it uses
all available memory after the end of the program as a buffer. To invoke
the program from the MDOS executive type FILECOPY followed by a filename
enclosed in double quotes and an optional newfilename enclosed in double
quotes or a unit number by itself if the copied file is to have the same
name as the original.

[unit:]FILECOPY "<[unit:Jfilename>" "<[unit:]newfilename>1I

or

[unit:]FILECOPY "<[unit:]filename>" <unit number>

FILECOPY exits to the MDOS executive when it is done or if it encounters
an error condition. The copied file has the same filetype as the original.
Any file can be copied regardless of type or origin. This includes BASIC
data and program files. Attempting to copy a file onto the same disk
without specifying a newfilename results in a DUPLICATE NAME error.

4.8 DISKCOPY UTILITY

DISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MOOS or BASIC. It uses
all available memory during the copying process. The more memory in a
system the faster the copying process. On average it takes about two
minutes to copy and verify all 3l5k bytes of a t10D II disk. To invoke the
utility from the MDOS executive, type:

DISKCOPY

A sign-on message is output:

MICROPOLIS DISKCOPY VS X.X - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

4-69

Rev. 7 3/78

DISKCOPY waits until the unit number is entered. When a number between o and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (0 to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a write protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write
destination cycles by typing a control S. The process is restarted by typing
any other key except a control C.

The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE?

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM. DISKETTE IN UNIT 0
TYPE Y WHEN READY
?

When a Y is typed the disk in unit 0 is rebooted. If it's an MOOS diskette
MOOS is booted. If the disk in unit 0 is a BASIC only disk or some other
bootable system, it will be booted in and sign on. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COpy
MORE?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:

PERM I/O ERROR ON DESTINATION DISKETTE

or

PERM I/O ERROR ON SOURCE DISKETTE

indicating where the error occurred.

4-70
Rev. 7 3/78

It is possible for single drive systems to make use of the DISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks
from the source disk as can be contained in main memory and then pause.
When the select indicator light goes out, remove the source diskette and
insert the destination diskette. Press the return key and as soon as the
select indicator light comes on type a control S again. the select
indicator light goes out again, the data from the source disk has been
written to the destination disk and one complete cycle is finished. This
process is repeated, swaping source and destination disks in and out
until the entire disk is copied. After the last data is written onto the
destination disk, the program goes directly into a verifying process and
will not pause until this is over. When the source is placed back into the
drive and the return key is pressed the system will prompt: GOOD COpy or
output an error message as discussed above. At this point the copy is
complete.

4.9 ERROR MESSAGES

This section is a summary of the error messages generated by the MOOS
shared subroutines. The shared subroutines return an error code in the
A register when an error exit occurs. These codes can be passed to the-
error message output routines to generate the proper error message.

Example:

A file is created by the following BASIC program:

10 DIM A$(248)
20 Z$=CHAR$(13):REM CARRIAGE RET
30 OPEN 1 "N:TEXTFILE":REM NEW FILE
40 INPUT A$:REM GET A LINE OF TEXT FROM CONSOLE
50 IF A$="EXIT" THEN 80:REM END INPUT BY TYPING EXIT
60 PUT 1 A$+Z$:REM CONCATENATE CARR RTN AT END
70 GOTO 40: REM LOOP TILL EXIT
80 CLOSE 1
90 END

This BASIC program writes one text line per record. Each line is
terminated with a carriage return.

The file can be read by the following assembly language routine. Assume
it has been assembled and given the name READ and an executable file type
of 15. Typing READ "TEXTFILE" loads and executes the program.

4-71

Rev. 7 3/78

0000
0010
0020
0030 START
0040
0050
0060
0070
0080
0090
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220 NEXTCHR
0230
0240
0250
0260
0270
0280
0290
0300
0310 EXIT
0320
0330
0340
0350

LINK I SYSQ1 1

LINK 'SYSQ2 1

ORG @APROGRAM
CALL @CCRLF
LDA @NASCPAR
ORA A
JZ @ERRORMES
MVI C,0
CALL @TRANSFILENAME
MVI B,0
LOA @DRIVEN0
MOV C ,A
LXI H,@FILEBUFFER0
CALL @OPENFILE
JC @DISKERROR
CALL @RFILEINF
JC @DISKERROR
MOV A,B
AN I 0FCH
ORA A
MVI At 17
JNZ @DISKERROR
MVI B,0
CALL @RFINXPOSI
JC EXIT
MOV B,C
MOV A, B
CPI 0DH
CZ @CCRLF
CALL @COUT
JMP NEXTCHR
CPI 2
JZ @CLOSEFILE
STC
JMP @DISKERROR
END START

;MOOS EQUATE BATCH
;MDOS EQUATE BATCH
;APPLICATIONS AREA
;CARRIAGE RETURN LINEFEED
;NUMBER OF ASCII PARAMETERS
; I F ZERO
; ERROR
;@ASCBUFF0
;MOVE INTO @ASCIIBUFFER
; FIL E NUMBER
;UNIT NUMBER
;INTO C FOR OPEN
;USE SYSTEM BUFFER 0
;OPEN THE FILE
;IF ERROR CODE IN A
;CHECK THE FILE TYPE
;IF ERROR CODE IN A
;FILE TYPE
;TYPE NOT ATTRIBUTES
;BASIC DATA FILES=0
;WRONG FILE TYPE MESSAGE
;ERROR
;FILE NUMBER
;READ FILE BYTE AT A TIME
; END? OR ERROR?
;CHARACTER FOR OUTPUT
;INTO A FOR COMPARE
;CARRIAGE RET END OF LINE
;IF CR DO CR LF
;OTHER CHR JUST OUTPUT
;LOOP TILL END-FILE
;END-FILE?
;CLOSE AND RETURN TO MOOS
;ERROR
;ERROR MESSAGE IN A

Note the handling of the errors in lines 140, 160, 210, 240, and
310-340.

4-72

Rev. 8 9/78

The error codes are summarized below. See appendix D for definitions of
the error messages.

CODE# MESSAGE o SYNTAX ERROR
1 PERM I/O ERR
2 END- FILE
3 DISK FULL
4 FILE NOT FOUND
5 DUPLICATE NAME
6 PARM ERR
7 DRIVE NOT UP
8 PERM FILE
9 PROTECT
10 FILE NOT OPEN
11 COMMAND NOT FOUND
12 BAD FILE #
13 FILE OPEN
14 READ ONLY FILE
15 BAD RECORD #
16 CANCELL ED
17 WRONG FILE TYPE
18 INDEX PAST EOR
19 LOAD ADDRESS ERROR

4-73

Rev. 8 9/78

4.10 COPYFILE UTILITY

The COPYFILE utility is an applications program that allows files to be
copied from one disk to another on a system with only one disk drive.
The utility uses all the available memory after the end of the COPYFILE
program as a buffer. To invoke the program from MDOS type COPYFILE
followed by a filename:

[unit:] COPYFILE "<[unit:] fi1ename>"

The COPYFILE program signs on:

INSERT SOURCE DISKETTE INTO DRIVE 0
ARE YOU READY?

The system waits for a capital Y to be typed. Any other input is ignored
except a control C which returns control to MDOS. When a Y is typed the
COPYFILE program loads as much of the source file into memory as it can
and then prompts:

INSERT DESTINATION DISKETTE INTO DRIVE 0
ARE YOU READY?

Take the source diskette out of your drive and put the destination diskette
into the drive. When ready type a capital Y. Any other input is ignored
except a control C which returns control to MDOS. The COPYFILE program
creates a file on the destination disk with the same name and fi1etype as
the source file. It then writes the file from memory onto the destination
diskette.

If the file is longer than can be held in memory at one time the COPYFILE
program will prompt:

INSERT SOURCE DISKETTE INTO DRIVE 0
ARE YOU READY?

The same procedure as above must be repeated until the whole file has been
copied. When the copy is complete the COPYFILE program returns to MDOS
which prompts:

>

If the COPYFILE program encounters any errors it displays the proper error
message and returns to MDOS.

COPYFILE can copy any type or length file. This includes BASIC data and
program files.

Rev. 9 1/79 4-74

4.11 DEBUG - THE PDS 8080/8085 PROGRAM DEBUGGER

Micropo1is DEBUG is a utility program which facilitates checkout and
debugging of machine language programs. It provides an
environment in which the performance of a program can be monitored by
starting and stopping program execution at user-specified points and by
examining and/or' changing the contents of relevant machine registers and
memory locations.

DEBUG and the program to be monitored must co-reside in the main system
memory. Before DEBUG can be used an executable version must be obtained that
uses a 4K,b10ck of memory which does not conflict with the program to be
debugged. The process of creating an executable version of DEBUG configured
for a specific memory space is described in Section 4.12.

DEBUG is invoked from the MOOS executive by typing the name of a configured
DEBUG-XX version as created by the DEBUG-GEN utility (see Section 4.12).
Example:

>DEBUG-70

MICROPOLIS DEBUG VS. X.X - COPYRIGHT 1978
*
DEBUG signs on and displays an asterisk (*) which is the DEBUG Executive
prompt. Program execution control and machine state examination and
modification are performed by entering appropriate commands to the DEBUG
Executive.

The program may be executed one instruction at a time (referred to as
"Single-stepping") with the machine state displayed after each step.
A1ternatively,the results of a program segment may be examined by placing
a breakpoint at the end of the segment. When execution of the program
is started, it will execute in real time until the breakpoint is reached.
Control of the computer is then returned to the DEBUG Executive and the
user may examine the contents of memory and the machine registers.

4.11.1 THE DEBUG EXECUTIVE

Operation of DEBUG facilities is controled by the DEBUG Executive. The
executive prompts the user for a command with the character '*'.

Executive statements are entered by typing characters in sequence on the
console keyboard. An executive statement is terminated by pressing the
RETURN key. During the entry of a statement each character that is typed
is echoed by the executive on the console display. Two control features
may be used when entering a line.

1) Each time the RUBOUT key is pressed the next previously typed
character will be deleted from the line. A backarrow is echoed
to the terminal display for each character deleted.

Rev. 8 9/78 4-75

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return line
feed combination is echoed to the terminal display. The executive
is positioned to accept entry of a new line.

An executive statement has the following form:

NAME [<hex> <hex> ... <hex>]

The NAME in an executive statement is the name of one of the DEBUG connnands.
Command names are uppercase only and must not be preceded by any spaces.
If the comnand name is not recognized by DEBUG a SYNTAX error message is
displayed.

Executive statements consist of a NAME followed by up to four numeric
parameters. There must be at least one space between the NAME and any
parameters. All parameters must be separated from each other by at least
one s·pace. Entry of an executive statement with too many parameters or
without the required spaces between fields will result in a SYNTAX error.

Numeric parameters in executive statements are unsigned hexadecimal values
from 0 to FFFF. They represent such elements as memory addresses and
register values. Entry of a numeric parameter with a value greater than
FFFF or with illegal characters will result in a SYNTAX error.

4.11.2 DEBUG MEMORY RELATED COMMANDS

The DEBUG memory related commands are similar to those available under the
MDOS executive (see Section 4.1) with the exeception of the LIST command
which is unique to the DEBUG context. The syntax of these commands is
illustrated with the aid of the following notation:

[] Option brackets. Any parameters enclosed between brackets are

< > Symbol brackets. This space should be replaced by the item described.

4.11.2.1 THE DUMP COMMAND

DUMP <start addr.> [<end addr.>]

The DUMP command outputs a formatted hex display of the contents of a block
of memory. Sequential memory locations are shown 16 to a line with the memory
address at the left margin. If the <end addr.> is not entered only one byte
is displayed. Example:

*DUMP 5000
5000 50 C0 27 77 4F 33 4F CD 70 9E 98 00 6A FD 82 90
5010 77 2B

Notice that memory bytes are printed out in groups of four so that addresses
inside the line may be more easily computed. The grouping follows the address.

*DUMP 5002 501F
5002 LI 77 4F 33 4F CD 7D 9E 98 00 6A FD 82 90
5010 77 2B 54 56 F4 3E 23 2A 34 87 19 3D 21 2C 2A 2B
Rev. 8 9/78 4-76

THE ENTR COMMAND

ENTR <start addr.>

The ENTR command allows data to be entered into memory directly from the
console device. Example:

*ENTR 7000
*78 89
6F/

Three bytes were entered starting at location 7000 hex. These were 78
at 7000,89 at 7001, and 6F at location 7002. .

Typing in an ENTR command places the executive in a special enter mode.
While in·the enter mode each line of values that is typed is entered into
memory when the RETURN key is pressed. Until the RETURN key is pressed
the standard backspacing and CNTL/X tools are available for line correction.
The last value on the last line must be followed by a slash (/) to properly
terminate the enter mode. Entry of a illegal hex value in any line will
also cause termination of the enter mode with the message SYNTAX ERROR.

4.11.2.3 THE FILL COMMAND

FILL <start addr.> <end addr.> <byte>

The FILL command fills a block of memory with a specified byte.
Example:

*FILL 7000 8000 9

Each byte of memory in the block from 7000 to 8000 is changed to a 09
by this command.

4.11.2.4 THE MOVE COMMAND

MOVE <source addr. start> <source addr. end> <dest. addr. start>

The MOVE command copies the source block of memory to the destination
block. The source block is not changed. The destination block is
changed to be an exact copy of the source block. Example:

*MOVE 3000 4000 7000

Each byte in the memory block from 3000 to 4000 is copied into the
corresponding position in the memory block from 7000 to 8000.

Rev. 8 9/78 4-77

4.11.2.5 THE SEAR COMMAND

SEAR <start addr.> <end addr.> <byte>

The SEAR command searches a block of memory for all occurrences of the
specified byte and displays all locations with a match. Example:

*SEAR 3000 3020 9F
3004 9F
3018 9F

The block of memory from 3000 to 3020 is searched for all occurrences of
a 9F. Location 3004 and location 3018 both contain 9F. No other
locations in the block contain

4.11.2.6 THE SEARN COMMAND

SEARN <start addr.> <end addr.> <byte>

The SEARN command searches a block of memory for all non-occurrences of a
specified byte and displays all locations that do not match. Example:

*SEARN 3000 3010 67
3002 09 67
3006 76 67

The block of memory from 3000 to 3010 is searched for all non-matches
with the mask 67 .. Location 3002 contained a 9 rather than a 67,
3006 contained a 76 rather than a 67.

4.11.2.7 THE COMP COMMAND

COMP <start addr. blockl> <end addr. blockl> <start addr. block2>

The COt4P corrmand compares two blocks of memory and displays address locations
that do not compare and the data at those locations. Example:

*COMP 5000 500F 5010
5004 01 09 5014

The block of memory from 5000 to 500F is compared with the block of memory
from 5010 to 501F. One location fails to compare. Location 5004 contains
01 while the corresponding location, 5014, in the second block contains 09.

4.11.2.8 THE LIST COMMAND

LIST <start addr.> <end addr.>

The LIST command displays the 8080/8085 mnemonic form of the bytes contained
in the specified memory

*DUMP 3000 3008
3000 CA 02 37 B7 C3 lA 37 CB

Rev. 8 9/78 4-78

*LIST 3000 3008
3000 JZ 3702
3003 ORA A
3004 JMP 371A
3008 CB *

The memory block from 3000 to 3007 contains three 8080/8085 instructions.
The byte following the third instruction is not a valid 8080/8085 instruction.
This is indicated by the 1*1 following its value.

4.11.3 DEBUG MACHINE REGISTER AND FLAG COMMANDS

The DEBUG commands in this category are used in conjunction with DEBUGls
program execution control features during the process of monitoring a
programs performance. Whenever the program execution is paused and the
DEBUG Executive is waiting for a command, it is possible to display and/or
alter the state of the 8080/8085 registers and flags as they are relative
to the last instruction executed in the program being monitored.

4.11.3.1 THE DISR COMMAND

DISR

The DISR command displays the contents of the processor registers and flags
along with the next instruction to be executed. In addition the contents
of memory at locations addressed by register pairs (e.g. at the address
contained in BC) along with the word on the top of the stack are displayed.
Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

00 ZCMEH 0000 0000 0000 1234 00 00 00 0000
0000 LXI SP,1234

The second line of the display indicates the processor state. The columns
@B, @D, @H and @SP indicate the contents of memory at the addresses contained
in the respective register pairs. The flag values are indicated by the
presence or absence of a character in the FLAGS column. The Z character
indicates a zero condition, the C character a carry condition, the M
character a negative sign condition (in the SIGN flag), the E character an
even-parity condition and the H character a half-carry condition. Absence
of any character indicates the opposite condition on the same flag.

The third line displays the address and mnemonic of the next instruction
to be executed. The address of the instruction corresponds to the current
value of the 8080 program counter (PC) register in the context of the program
that DEBUG is monitoring. The instruction is the one that will be executed
next by a single step operation or when program execution is resumed by
using a command such as the CONT or RET commands. Note that the state of
the registers and flags as displayed by the DISR command reflects their
values BEFORE the next instruction shown on the third line is executed.

Rev. 8 9/78 4-79

4. 11.3.2 REGISTER SETTINGCOMr1ANDS

REGISTERNAME <hex number>

The register setting commands allow the contents of the 8080/8085 processor
registers to be set to a specified value prior to the execution of the next
instruction in the program being monitored. The general format of a register
setting command is a register name followed by a hex data value.

The following register names may be used:

ABC D E H L
BC DE HL SP PC @SP

The first line shows 8 bit registers and the second line shows 16 bit
registers. PC is the program counter. @SP designates the 16 bit word on
top of the machine stack.

The following examples would change the program counter value to 60F3, the
A register value to 7, and the value at the top of the stack to C172.

*PC 60F3
*A 7
*@SP C172

4.11.3.3 FLAG SETTING COMMANDS

The flag setting commands allow the states of the 8080/8085 processor flags
to be set or reset prior to the execution of next instruction in the program
being monitored. The commands set the flag state according to the mnemonic
form used in. assembly language. The commands are:

FZ FNZ FC FNC FP FM FPE FPO FH FNH

The FZ and FNZ commands set the state of the ZERO flag to zero or non-zero.
The FC and FNC commands set the state of the CARRY flag to carry or no carry.
The FP and FM command set the state of the SIGN flag to positive or minus.
The FPE and FPO commands set the state of the PARITY flag to even or odd.
The FH and FNH commands set the state of the HALF-CARRY flag to half-carry
or no half-carry.

Examples:

*FNZ
*FC

The state of the ZERO flag is set to non zero and the state of the CARRY
flag is set to carry.

Rev. 8 9/78 4-80

4.11.4 DEBUG MISCELLANEOUS UTILITY COMMANDS

The two commands in this category are the MATH command which is useful in
doing address computations while engaged in a debug session, and the RST
command which may be needed to avoid conflict with program usage of the
processor restarts.

4.11.4.1 THE MATH COMMAND

MATH <hex number> <hex number>

The MATH command performs a 16 bit integer addition and subtraction on the
two specified hex numbers. It displays the sum and difference. The MATH
command is useful for length and address calculations. Example:

*MATH 4 5
0009 FFFF

4+5 equals 9 and 4-5 equals FFFF.

4.11.4.2 THE RST COMMAND

RST <vector number>

DEBUG normally uses the 'RST 6' restart vector of the 8080 or 8085 processor
as its mechanism for implementing breakpoints (see Section 4.11.5.1). Some
computers and/or a particular program may already be using 'RST 6' for a
different purpose. In this case it is possible to change the RST vector
used by DEBUG to one of the other available RST's, 1-5 or 7. Example:

*RST 7

The RST vector used by DEBUG is changed to RST 7 from its default usage of
RST 6.

4.11.5 DEBUG PROGRAM EXECUTION CONTROL

DEBUG offers 3 modes of control to monitor progress through a program; the
breakpoint mode, the single step mode, and the trace mode. There is a
permanent breakpoint facility normally used in conjunction with the commands
SET, DISB, CLR, EXEC and REPT. There is a temporary breakpoint facility
used in conjunction with the commands CONT and RET. The single-step mode is
controlled with the space bar. The trace mode is a form of continuous single-
stepping. Use of these modes and their associated commands are detailed in
this section.

4.11.5.1 THE BREAKPOINT MODE

Breakpoints provide a means to stop program execution at a given point. When
program execution reaches that point control of the processor is transferred
to DEBUG. Once in DEBUG, ·the results of the program section which was executed
may be examined or modified.

Rev. 8 9/78 4-81

In the breakpoint mode DEBUG replaces the instruction at a given address
with one of the 'RST' instructions of the 8080/8085 (see 4.11.4.2 the RST
command). Then DEBUG replaces the three bytes of code at the corresponding
'RST' vector location with a 'JMP' instruction to a routine inside itself.
DEBUG then loads the processor's registers with the stored 'user program
register' values and transfers control of the processor to the user's program.
When the breakpointed instruction address is executed, the 'RST' that DEBUG
had placed at that location causes the processor to 'CALL' the RST vector
location which then causes the processor to 'JMP' back to DEBUG. DEBUG then
stores the processor's registers in the 'user program registers' and replaces
the original contents of both the breakpointed instruction and the RST
vector location.

Because of the introduction of an 'RST' instruction into the program, when a
breakpoint is encountered, at least one level of stack space must be available
so that the return address back into the program can be stored. Therefore,
when using the breakpoint mode the user must insure that at least one stack
level will be available when the breakpoint is encountered.

Note that breakpoints cannot be used to DEBUG ROMed code because an 'RST'
instruction cannot be patched into the code.

a breakpoi nt is encountered during program execut i on, DEBUG wi 11 di sp 1 ay
the contents of the program registers in the following format:

A FLAGS BC DE HL SP @B @D @H @SP
13 0000 0000 0000 01A2 00 00 00 14FE

Refer to the DISR command section for a detailed description of this display.

4.11.5.2 PERMANENT BREAKPOINTS

Permanent breakpoints are set using the SET command. These breakpoints are
not cleared when control of the processor is returned to DEBUG. Permanent
breakpoints are only cleared by the CLR command. Permanent breakpoints can
be used as traps on such things as error routines or executive loops.

Note that permanent breakpoints do not leave a 'RST' instruction in the
program code. The existence of a permanent breakpoint tells DEBUG to place
a breakpoint in the code only when the program is executing. Thus the
original program is intact whenever the DEBUG has control of the processor.

4.11.5.3 THE SET COMMAND

SET <breakpoint #> <address>

T-he SET command defines a permanent breakpoint. The breakpoint # and the
hex address at which the breakpoint will be set are entered with the command.
More than one breakpoint # may be set with the same breakpoint address.
However, an attempt to SET a breakpoint # which is already set will cause the
message SYNTAX ERROR to be printed and the command to be ignored. A maximum
of 4 breakpoint liS may be set at any time. Example:

*SET 1 2354

Permanent breakpoint number 1 was set at location 2354 (hex).
Rev. 8 9/78 4-82

4.11.5.4 THE DISB COMMAND

DISB

The DISB command displays all currently SET breakpoints.
Example:

DISB
01 2354
03 2365

The display indicates that breakpoint number 1 is set at address 2354 (hex)
and breakpoint number 3 is set at address 2365 (hex). Breakpoints number
2 and 4 are not SET.

4.11.5.5 THE CLR COMMAND

CLR [<breakpoint #>]

The CLR command clears a SET breakpoint. If the optional breakpoint number
is not entered, then all SET breakpoints will be cleared. If a breakpoint.
number is entered but is not currently SET, the message SYNTAX ERROR will be
displayed.

Example:

*CLR 1

Permanent breakpoint number 1 is cleared.

4.11.5.6 THE EXEC COMMAND

EXEC <starting address>

The EXEC command transfers control of the processor to the user's program.
The processor's PC register will be set to the entered starting address and
execution will start there. If a breakpoint is encountered, control of the
processor will be returned to DEBUG. If no permanent breakpoints are SET
at that time, the program will retain control of the processor.

Example:

*EXEC 3014

A FLAGS BC DE HL SP @B @D @H @SP
00 Z C 0012 0341 3674 0195 00 00 00 3054
3507 JMP 3643
*
Program execution was started at location 3014 (hex). A breakpoint was
encountered at location 3507 returning control back to DEBUG.

Rev. 8 9/78 4-83

4.11.5.7 THE REPT COMMAND

REPT <breakpoint #> <repeat count>

The REPT command transfers control to the user's program until a permanent
breakpoint has been hit a given number of times. The breakpoint number entered
specifies the breakpoint address and the entered repeat count specifies the numbe'
of times it must be hit before control is transferred back to DEBUG. If any
breakpoint other than the one being repeated is encountered, control will be
transferred back to DEBUG and the repeat operation is cancelled .. If the
breakpoint # specified in the REPT command is not set, a SYNTAX error isdisplaye
Example:

*SET 1 3000
*00 E 2000 0000 0000 00 00 0000

3000 DCR B
*00 lF00 0000 00 00 0000

3001 JMP 3000
*REPT 1 8

A FLAGS BC DE HL SP @B @D @H @SP
00 E 1800 0000 0000 01A0 00 00 00 0000

*
The breakpoint at location 3000 (hex) is allowed to be passed over 8 times
before control is transferred back to DEBUG and the processor state is
displayed.

4.11.5.8 TEMPORARY BREAKPOINTS

Temporary breakpoints are one-shot breakpoints which the user instructs
DEBUG to place in the program by us i ng the CONT or RET commands.
control of the processor returns to 'DEBUG, the breakpoints are cleared.
Temporary breakpoints are the type normally used to follow the execution of
the program from routine to routine.

4.11.5.9 THE CONT COMMAND

CaNT [<break 1> [<break 2> [<break 3> [<break 4>]]]]

The CaNT command continues execution of the user's program at the current
PC location with up to four temporary specified breakpoints. If no temporary
breakpoints are specified, then control will never return to DEBUG unless an
already specified permanent breakpoint is encountered. Example:

*CONT 356F
A FLAGS BC DE HL SP @B @D @H @SP

00 M 0120 0341 3674 0195 00 00 00 3054
3507 DCR A
*
Program execution is resumed at the next instruction indicated by the value
of the user program PC register and execution continues until the breakpoint
at location 356F (hex) is encountered, which returns control back to DEBUG.

Rev. 9 1/79 4-84

4.11.5.10 THE RET COMMAND

RET

The RET command transfers control of the processor to the user's program
with a temporary breakpoint set at the address which is on the top of the
stack (@SP). This allows the user to 'RETURN' from a subroutine which was
'CALL'ed by the program.

If a breakpoint other than the 'RET' breakpoint is hit, control will return
to the DEBUG and the 'RET' breakpoint will be cleared.

Note. The RET command should only be used after a 'CALL' type instruction
has been executed or when the top of the stack contains a known return
address. Otherwise a breakpoint might be placed at an address which is not
a part of the program. (e.g. the last instruction was a 'PUSH' and therefore
the top of the stack contains a data word instead of a return address)
Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

00 Z0000 0000 0000 0000 00 00 00 0000
2A00 LXI SP;3000

*00 Z 0000 0000 0000 3000 00 00 00 3243
2A03 CALL 2B00

*00 Z 0000 0000 0000 2FFE 00 00 00 2A06 .
2B00 STC

. *RET
A FLAGS BC DE HL SP @B @D @H @SP

00 ZC 0000 0000 0000 3000 00 00 00 3243

After the second instruction single-step, the RET command causes a temporary
b.reakpoint to be set at location 2A06 (which is the return address on the top
of stack) and program execution is resumed. When the program reaches 2A06
control of the processor is returned to DEBUG and the processor state is
displayed.

Exception Note: The following program fragment illustrates a special
programming construct with which the RET command can not be used.

TEXT Call MESSAGE
DTH "S I GNON "
RET

MESSAGE XTHL
CALL @LINIOUT
INX H
RET

If an RET command is given after the call to MESSAGE has just been executed,
the return address on the top of the stack is pointing to location TEXT.
DEBUG puts a breakpoint at that location. MESSAGE then outputs the Signon
text and returns without encountering the breakpoint because the return
address has been modified by the called routine.

Rev. 9 1/79 4-85

4.11.5.11 THE SINGLE STEP MODE

The single-stepping mode of program execution allows a detailed inspection
of what the program is doing on an instruction by instruction basis. Each
time the space bar is pressed in response to the DEBUG '*' prompt, DEBUG
causes the next instruction in the program to be executed and displays
the contents of the processor registers.

Example:

*DISR
A FLAGS BC DE HL SP @B @D @H @SP

13 0000 0000 01A2 00 00 00 14FE
2A00 STC
*13 C 0000 0000 0000 01A2 00 00 00 14FE
2A01 XRA A
*00 Z E 0000 0000 0000 01A2 0000 00 14FE
2A02 STA 345F

At the 1*1 prompt the user typed a space which caused DEBUG to single-step
an instruction and print the resulting register contents on the same line.
In the single-step mode of operation, DEBUG makes a local copy of the instructio'
to be executed in its own buffers. DEBUG then executes the instruction in its
buffers and stores the results. The single-step mode does not need to modify
the program in any way which allows programs in ROM may be stepped through
without problem.

4.11.5.12 THE TRACE MODE COMMAND

TRACE

The TRACE command operates as a continuous single-stepping command. It is
used to provide a trace printout of the user's program. During a TRACE the
C6ntrol S / Control C functions provide pause and break control.

Example:

*TRACE
,00 E 1800 0000 0000 01 A0 00 00 00 0000

3001 JMP 3000

*

00 E1800 0000 0000 01A0 00 00 00 0000
3000 DCR B
00 E 1700 0000 0000 01A0 00 00 00 0000
3001 JMP 30091
00 E 1700 0000 0000 01A0 00 00 00 0000
3000 OCR B
00 1600 0000:0000 01A0 00 00 00 0000
3001 JMP 3000

The program .was put in TRACE mode. The Control C key was pressed and stopped
the TRACE after 5 instructions had been executed.

Rev. 9 1/79 4-86

Exception Note:. The nature of Micropolis disk subsystems is such that a
disk access must not be interrupted during the data transfer process which
is accomplished by a program loop. For this reason it is not possible to
TRACE successfully through portions of a program that call MOOS disk access
routines, because the TRACE command effectively interrupts the program once
every instruction.

4.11.6 INITIATING A DEBUG SESSION

Both DEBUG and the program to be monitored must be in memory at the same
time. The program is loaded into memory first by using the LOAD command
from the executive. DEBUG is then invoked from the MDOS executive
by typing the name of a configured DEBUG 'version as created by DEBUG-GEN
(see Section 4.12). The version invoked should not use any memory space
that is required by the program to be monitored. Example:

>LOAD "TEST PROGRAM"
>DEBUG
MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978
*
DEBUG signs on and displays its executive prompt. Monitoring of program
execution is now controlled from the DEBUG executive.

If the program to be monitored is one which runs in the MOOS Application
area, and which requires one or more ASCII or binary parameters that are
normally input as part of an MOOS Executive statement, then the way to
initiate program execution control is by SETting a permanent breakpoint
at the address of the entry point (first instruction) of the program and
then EXECuting the MOOS Executive at the warmstart address which is 4E7H.
Example:

*SET 1 2B00
*EXEC 4E7

IS MOOS V . S. X. X - COPYRIGHT 1978
>APP "ASCIIPARM" 12

A FLAGS BC DE HL SP @B @D @H @SP

2B00 LXI SP, 01A0

Permanent breakpoint number 1 is set at the program entry point 2B00 hex
and execution is begun at the system warmstart The MOOS executive
signs on and prompts for a command. The APP command is used to transfer
control to the start of the program in the application area and to pass
one ASCII and one numeric parameter. The breakpoint is encountered.
DEBUG outputs a register display and waits for additional single-step,
breakpoint or other commands.

Rev. 8 9/78 4-87

If the program to be monitored is one which can be executed directly without
requiring any parameters from the MOOS executive, then the simplest way
to initiate program execution control is to set the PC register to the program
entry point address. Set the stack pointer to an appropriate address and then
use the CONT command to set a temporary breakpoint at the first desired stop
point and transfer control to the program. Example:

*PC 3000
*SP 1A0
*CONT 3020

The program counter is set to 3000 hex and the stack is set at 1A0 hex. A
temporary breakpoint is set at 3020 hex and program execution is begun at
the PC value, 3000 hex. When the temporary breakpoint is encountered DEBUG
will output a register display and wait for a new command.

4.11.7 EXIT'ING DEBUG

The user may exit DEBUG in one of two ways. First, the user may simply
transfer control of the processor to the program permanently. This is done
by clearing all permanent breakpoints with the CLR command and then using
the CONT command without setting any temporary breakpoints. Second, the
user may simply return to the MOOS executive. This is done by CLRing all
permanent breakpoints and then typing:

*EXEC 4E7

This, warmstarts the MOOS executive and leaves the program without any
breakpoints set.

4.11.8 RE-ENTERINGDEBUG

If control of the processor has been permanently given to the program, DEBUG
may be restarted by executing the first address of the 1K boundary on which
DEBUG is running. This 'warmstart' pr'ocedure will cause any breakpoints
which were set 'in the program to be replaced by the original instructions.

An example of a situation where a restart of DEBUG would be necessary is as
follows. A breakpoint was set in the program and control transferred by a
CONT command. However, ,the program entered a loop which had a bug such that
the loop was never exited. This caused the system to lock up. The only
way to get control back to DEBUG is by restarting DEBUG.

4.11.9 SAMPLE PROGRAM DEBUGGING SESSION

This section contains a sample debugging session as an example of the use of
various DEBUG features. The program being DEBUGged is listed in 4.11.9.1.
Assume that the program and DEBUG are on disk unit 0 along with an
system. The actual debugging session is shown in Section 4.11.9.2.

Rev. 8 9/78 4-88

4.11.9.1 SAMPLE PROGRAM LISTING

3000 16 00 0000 r·1VI 0,0
3002 21 80 02 0010 LXI H,280H
3005 CO 13 30 0020 LOOP: CALL SUB
3008 25 0030 OCR H
3009 C2 05 30 0040 JNZ LOOP
300C 70 0050 MOV A,L
300D 0F 0060 RRC
300E 6F 0070 MOV L,A
300F D2 9)5 30 0080, JNC LOOP
3012 C9 0090 RET
3013 F5 0100 SUB: PUSH PSW
3014 7C 0110 MOV A,H
3015 B5 0120 ORA L
3016 F1 0130 POP PSW
3017 C9 0140 RET
4.11.9.2 DEBUGGING SESSION

The following text is a description of the debugging session listing which
follows.

The first three lines show the test program being loaded into memory along
with the load and execution of the DEaUG. Once DEBUG is loaded and running
it signs on and displays its executive prompt 1*1. At that point the PC
and SP registers are initialized so that the program can be tested. A
permanent breakpoint is set at the final RET instruction so that the program
will not return illegally. Then the first three instructions of the program
are single-stepped leaving the program inside the subroutine. The subroutine
is RETurned from and execution is allowed to proceed to location using
the CONT command. Then the TRACE command is used to let execution proceed.
The TRACE is cancelled at location 3005. A permanent breakpoint is SET and
the REPT command used to allow the inner loop (the CALL,'DCR Hand JNZ) to
execute twice. ' After two loops control returns to DEBUG. The second
breakpoint (the one used for the REPT) is cleared and the program is allowed
to execute to the final RET instruction. Having finished testing the program,
MDOS is warmstarted.

MICROPOLIS MDOS V.S. 4.0 - COPYRIGHT 1978

>LOAD "TEST"
>DEBUG-70

load program into memory
run debug (7000 hex)

MICROPOLIS DEBUG v.s. 4.0 - COPYRIGHT 1978

*SP lA0
*PC 3000

Rev. 9 "'/79.

set up a stack
set up' PC

4-89

*DISR
A FLAGS BC DE HL SP @B @D @H @SP
80 ZC E 01A0 C3 C3 C3 5845
3000 MVI

*SET 1 3012 set breakpoint on final RET
*DISB

01 3012
*80 ZC E 0000 01A0 C3 C3 C3 5845 single-step

3002 LXI H,0280
ZC E 0000 0280 01 A0 C3 C3 11 5845 s i ng1 e-s tep

3005 CALL 3013
*80 ZC E 0000 0280 019E C3 C3 11 3008 single-step

PUSH
*RET return from SUB call
A FLAGS BC DE HL SP @B @D @H @SP
02 M 0000 0000 0280 01A0 C3 C3 11 5845
3008 DCR H

*CONT 300C set temporary break and go
. A FLAGS BC DE HL SP @B @D @H @SP

01 Z E 0000 0000 0080 01A0 C3 C3 0A 5845
300C MOV A,L

*TRACE trace execution
80 Z E 0000 0000 0080 01A0 C3 C3 0A 5845
3000 RRC
40 Z E 0000 0000 0080 01A0 C3 C3 0A 5845
300E MOV L,A
40 Z E 0000 0000 0040 01A0 C3 C3 0A 5845
300F JNC 3005
40 Z E 0000 0000 0040 01A0 C3 C3 0A 5845
3005 CALL 3013 Control C hit here

*SET 2 300C set permanent break
*REPT 2 2 execute inner loop twice
A FLAGS BC DE HL SP @B @D @H @SP
20 Z E 0000 0000 0020 01A0 C3 C3 0A 5845
300C MOV A,L

*CLR 2 clear breakpoint 2
*DISB display breakpoints

01 3012
*CONT complete program
A FLAGS BC DE HL SP @B @D @H @SP
80 ZC E0000 0000 0080 01A0 C3 C3 0A 5845
3012 RET

*CLR clear all breakpoints
*EXEC 4E7 warms tart MOOS

MICROPOLIS MOOS V.S. 4.0 - COPYRIGHT 1978

Rev. 9 1/79 4-90

4.11.10 USING DEBUG WITH BASIC

DEBUG is designed so that it is independent of the MOOS executive. The
only part of PDS on which DEBUG relies is the console and printer I/O
logic contained in the RES module. This independence makes it possible to
use DEBUG in conjunction with Micropolis BASIC to debug user written
machine language routines th'at BASIC accesses via its DEF FAA construct.

To use DEBUG in this way, its filetype must be changed to an overlay type
C, so that it may be accessed with the BASIC LINK statement. This can be
done from the MOOS executive by using the TYPE command.

The BASIC program and the machine subroutine should be loaded prior to
accessing DEBUG. Also the end of BASIC's memory space must avoid conflict
with the machine routine and the particular version of DEBUG being used.
When these conditions are met DEBUG can be accessed from the BASIC monitor

'by using the statement LINK "DEBUG-XX". Example:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY
LOAD "BASICPGM"
READY
LIST
10 DEF FAA=16R7010
20 A=FAA (1)
30 PRINT A
40 END
READY

16R7000
READY
LOAD "MROUTINE"
READY
LINK IIQEBUG-74"

MICROPOLIS DEBUG V.S. X.X - COPYRIGHT 1978

*SET 1 7010
*EXEC 4E7

r,nCROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

READY
RUN
A FLAGS

DEBUG Register display
7010 PUSH H
*

Rev. 8 9/78 4-91

From the BASIC monitor the file "BASICPGM" is loaded and listed. It is a
program that accesses a machine language routine beginning at address
hex. BASIC's end of memory is. set to hex and the machine routine
"t4ROUTINE" is loaded in above the end of BASIC. A version of DEBUG which
starts at 7400 hex is then linked to. In DEBUG a permanent breakpoint
is set at 7010 hex, the beginning of the machine routine. Control is then
transferred to the system warmstart address 4E7 hex and BASIC signs on
again. A RUN command starts execution of the BASIC which accesses
the machine routine when 1 ine 20 is executed. The· DEBUG breakpoint is
encountered and DEBUG outputs a register display and waits for a command.
The machine routine accessed from BASIC may now be stepped through or
otherwise debugged as required.
4.12 THE DEBUG-GEN UTILITY

The Micropolis DEBUG program is supplied in a non-configured form embedded
within the DEBUG-GEN utility program. Before DEBUG can be used an executable
version must be obtained by running the DEBUG-GEN utility.

DEBUG requires 4K of contiguous memory address space which may start on any
lK boundary above the beginning of the MDOS applications area. DEBUG-GEN
accepts a memory space specification and creates a version of DEBUG that
uses the specified memory space.

From the MDOS executive, DEBUG-GEN is invoked by entering the filename
DEBUG-GEN like an executive statement (see Section 4.1.2) or by entering
the command LOAD IIDEBUG-GEN" follollied by the command APP.

The program signs on with the message

DEBUG GENERATION VS. X. X.

and prompts for the memory address at which the DEBUG will run with the
message

ENTER PAGE ADDRESS (2B-F0) ?

Type a two digit hexadecimal number that corresponds to the high-order byte
of the start address where the DEBUG will run. This address may only be on
a lK boundary. The program will ignore the lowest 2 bits of the response.

DEBUG-GEN creates a type 14 file on disk unit 0 and fills it with the
relocated DEBUG system. The file name is "DEBUG-XX" where XX (hex) is the
page address entered by the user.

Rev. 9.1/79 4-92

Example:

MICROPOLIS MDOS V.S. 4.0 COPYRIGHT 1978

>DEBUG-GEN

DEBUG GENERATION PROGRAM V.S. X.X

ENTER PAGE ADDRESS

RUN FILE NAMED DEBUG-70
>
In this example a program file named "DEBUG-70 11 is created on disk unit 0.
This file is a running DEBUG package which will use the memory space from
7000H to 7FFFH.

Rev. 9 1/79 4-93

V MICROPOLIS DISK EXTENDED BASIC

5.0 INTRODUCT ION

Micropolis Program Development Software consists of two systems, the Micropolis
Diskette Operating System (MDOS) and Micropo1is Disk Extended Basic. Both
systems are supplied on a MASTER diskette included with each Micropolis disk
subsystem. The auto-load bootstrap brings MOOS, which is the first system on
the diskette, into memory. Control is transferred from MDOS to BASIC by
typing tne filename BASIC to the MOOS executive. It is also .possible to create
a BASIC 0nly diskette so that BASIC may be directly loaded by the bootstrap

See Chapter II, Section 2. This chapter describes the Micropo1is
BASIC interpreter and its associated BASIC programming language.

The Micropo1is BASIC Interpreter is a special 8080 machine language program
supplied on a master diskette included with the disk subsystem. It provides
a simple and powerful means for developing, maintaining and executing BASIC
programs on 8080 type microcomputer systems. The user, interacts with the
Interpreter through a terminal which consists of an input keyboard and an
output display that may be video or printed hardcopy. Lines entered at the
keyboard may be program lines which are stored in the program buffer or
commands for immediate execution. A program in the program buffer may be
modified in place, stored as a disk file, retrieved from disk and executed
under control of the Interpreter. These functions and others are invoked
by entering the appropriate immediate commands. Elements of the BASIC
Interpreter and its use are described in Sections 5.1 and following.

The original BASIC programming language was developed by John Kemeny and
Thomas Kurtz at Dartmouth College, Hanover, New Hampshire; Micropo1is
Extended Disk BASIC is an elaborated version of that language. BASIC
consists of data types, operators, function references and key words which
combine to form statements that can be grouped into executable BASIC
programs. The details of these language elements and the rules for com-
bining them are described in sections following.

5. 1 ENTERING LINES TO THE BASIC INTERPRETER

The BASIC Interpreter is loaded into the main computer memory from
or booted from a BASIC only diskette. At the end of this procedure the
message READY is displayed at the terminal. This means that the Interpreter
is in control and is waiting for a line to be input.

A line consists of not more than 250 characters typed in sequence. The
entry of a line is terminated by depressing the RETURN key. If more than
250 characters are typed prior to the RETURN the Interpreter will ignor-e the
extra characters and respond only to the RETURN, RUBout or CNTL/X keys.

During the entry of a line each character that is typed is echoed by the
Interpreter on the·termina1 display. If the character typed is not part
of the BASIC character set (see Section 5.15) it will not be echoed and
will not be included in the line entered. The Interpreter also keeps
track of the character count as a line is typed and automatically outputs
a carriage return / line feed combination to the terminal display when

5-1
Rev. 9 1/79

the count exceeds the width of the display device. This combination is not
included in the line count.

Two control features may be used when entering a line.

1) Each time the RUBOUT key is depressed the next previously
typed character will be deleted from the line. A back arrow
is echoed to the terminal display for each character deleted.
Neither the deleted characters nor the back arrows are included
in the line count.

2) Holding down the control key and typing X (CNTL/X) will cause
all of the current line to be cancelled. A carriage return
line feed combination is echoed to the terminal display; the
Interpreter is positioned to accept entry of a new' line.

5.2 ENTERING A PROGRAM

The BASIC Interpreter recognizes a line as a program line by the presence
. of a leading line·number. A BASIC program is entered one program line at

a time using the normal line entry procedures. The message READY is not
displayed after the entry of a program line. This permits consecutive
program lines to be entered conveniently. As each program line is entered
the Interpreter stores it in a program buffer which it maintains in the
computer system's main memory.

Each line of a BASIC program is composed of a line number followed by one
or more statements (see Section 5.20) which are separated from each other
by a colon (:).' The length of a program line may not exceed 250 characters
including the digits in the line number. Each line number must be within
the range 0 - 65529. Spaces preceding the first digit of a line number
are ignored. Spaces embedded in a line number are not legal. All other
spaces in a program line are preserved as entered.

lines are stored in the program buffer in numeric order by line
number. The lines in the buffer at any given time constitute the current
program. This program may be modified in three ways.

To insert a new program line, type in the new line including the line
number. The interpreter will automatically place the new line in the
program buffer in proper sequence.

To modify an existing program line enter the line number and the new
statement or statements. The new line will automatically replace the
old line in the program buffer that has the same line number.'

To delete an existing program line type the line number followed by carriage
return. The corresponding line will be eliminated from the program buffer.
Note that multiple lines may also be eliminated by using the DELETE command
as described in 5.4.

5-2

Rev. 8 9/78

5.3 IMMEDIATELY EXECUTED LINES

Whenever a line is typed in, the Interpreter scans it from left to right
until the first non blank character is encountered. If this character is
a digit it is assumed to be the first digit of a line number and the line
is treated as a program line. (see Section 5.2). If the first non blank
character is not a digit then the line is interpreted for immediate
execution.

Most normal BASIC statements may be entered for immediate execution.
Exceptions are the DEF FN, DEF FA, and DATA statements which are only
functional within a program. Multiple statements may be included in an
immediate line by separating them with colons (:). BASIC statements are
covered in Section 5.20.

Another form of immediate line is the command. Commands are operations
which generally make sense only in immediate mode. Most of the commands
in BASIC system relate to the program buffer and to the manipulation and
execution of BASIC programs. The available commands are described in the
following sections.

EDIT, RENUM and MERGE are three commands which function only in the immediate
mode. These commands cause a SYNTAX error if they appear in a program.

5.3.1 THE BASIC EDIT COMMAND

EDIT linenumber

A specified line in the BASIC program buffer can be changed without retyping
the entire line by using the EDIT command. EDIT linenumber is the form of
this command. If the specified linenumber is not found in the current program
buffer, the message STt{f # NOT FOUND is displayed. BASIC processes an EDIT
command by copying the specified line into a special editing buffer and
setting an invisible pointer to point to the first digit of the linenumber
that begins the text line. BASIC is then in the EDIT command mode. A
separate set of single key commands is available for editing a line in the
special edit buffer. The whole line including the linenumber can be edited.

5.3.1.1 ADVANCING THE BASIC EDIT POINTER - THE SPACE BAR

The invisible edit pointer in the special editing buffer may be advanced
one position by pressing the space bar one time. The character to which
the edit pointer is pointing will be displayed on the console. This
indicates that the edit pointer has passed over the character. The edit
pointer is then advanced so that it is now pointing at the next character
in the text line immediately after the one that is displayed. The entire
line can be displayed in this manner.

5.3.1.2 CHANGING THE NEXT CHARACTER - C

The character to which the edit pointer is pointing in the edit buffer
can be changed by typing a c or C, followed by the new character.
The new character is printed on the console and replaces the character
in the edit buffer at that position. The edit pointer is advanced to
point to the character immediately after the new displayed character.

5-3
Rev. 8 9/78

5.3.1.3 DELETING THE NEXT CHARACTER - 0

The character to which the edit pointer is pointing in the edit buffer
can be deleted by typing a d or D. The deleted character is printed
on the console enclosed in backslashes (/). The edit pointer is left
pointing at the character immediately after the deleted character.

5.3. 1 .4 .INSERT ING CHARACTERS - I

Characters may be inserted into the line or at the end of the line by
typing an i or I followed by the characters to be inserted. The
insertion begins immediately before the character pointed to by the
edit pointer. Characters are inserted in sequence as typed until the
insert mode is terminated by typing an escape (18 hex). The edit pointer
remains pointing to the same character that it pointed to when the insertion
began. The insert mode may also be terminated by pressing the return key.
This also terminates the EDIT command and replaces the' line in the current
text file with the newly edited version from the special editing buffer.

5.3.1.5 LISTING THE LINE IN THE SPECIAL EDITING BUFFER - L

The remainder of the line in the special edit buffer from the position
of the edit pointer to the end of the line may be displayed by typing an
1 or L. The characters are displayed on the console followed by a carriage
return-line feed. The edit pointer is reset to the beginning
This command is useful to see what the line looks like before editina is
completed. It may also be helpful to use this command immediately after
entering the original EDIT command. This would display the line about to
be edited without exiting the editing mode.

5.3.1.6 SEARCHING TO A SPECIFIED CHARACTER - S

The edit pointer may be advanced in the special editing buffer to the first
occurrence of a specified character by typing an s or S followed by the
character to search for. The characters from the position of the edit
pointer up to but not including the searched for character are printed on
the console. The edit pointer is left pointing at the first occurrence of
the searched for character. If the search argument does not exist in the
line then the entire line is printed and the edit pointer is positioned at
the end of the line.

5.3.1.7 DELETING TO A SPECIFIED CHARACTER - K

Characters in the special editing buffer from the edit pointer position
up to but not including a specified search character can be deleted by
typing a k or K followed by the search character. The deleted characters
are displayed on the console, enclosed in backslashes (/). If the search
argument does not exist in the edit line, then all the characters from the
edit pointer to the end of the line are deleted. The edit pointer is left
pointing at the search character or at the end of the line.

5-4

Rev. 8 9/78

5.3.1.8 QUITTING THE BASIC EDIT COMMAND MODE - Q

TheE"DIT command may be aborted without changing the 1 ine in the current
text file by typing a q or Q. The partially edited line in the special
editing buffer is abandoned. No changes are made to the current program
buffer. BASIC is ready to accept a new command.

5.3.1.9 COMPLETING THE BASIC EDIT COMMAND - THE RETURN KEY

The line in the special editing buffer can be placed in the current program
buffer by pressing the return key at any point while in the BASIC EDIT
command mode. If the line number of the line in the special edit buffer
matches a line number in the current program buffer, then the edited line
replaces the corresponding line in the program buffer and the EDIT mode is
completed. If there is no line in the current program buffer with the same
line number as the line in the special edit buffer, then the edited line is
inserted into the current program buffer in proper line number order. This
feature facilitates the copying or repetition of program lines by changing
only the line number during the edit.

5.3.2 THE RENUM COMMAND

RENuM (starting-number)
RENUM (starting-number, increment)
RENUM (starting-number, increment, first-line-to-change)

Some or all of the lines in the current program buffer can be renumbered by
using the RENUM command. This command renumbers lines in the program, changing
line numbers, and line number references that follow branch statements.
These statements are GOTO, GOSUB, ON ... GOTO", ON ... GOSUB, THEN, RESTORE. The
ERROR, END, and ENDPAGE options of the OPEN statement are also affected.

The forms of this command are RENUM, RENUM (starting-number), RENUM (starting-
number, increment), and RENUM (starting-number, increment, first-line-to-change).
RENUM takes the line number of the first-line-to-change and sets it equal to
the starting-number. The line number of each line after the first-line-to-change
is then set to the va"lue of the preceding new 1 ine number plus the increment
value. If no first-line-to-change is specified, the first line in the program
buffer is assumed. If no increment value is specified, the value 10 is used.
If no starting-number is specified, the value 10 is used. Typing RENUM alone
will produce a program numbered from 10 by l0 l s. Examples:

Assume that the current program buffer contains the following program:

9 RENUM EXAMPLE PROGRAM
25 INPUT "VALUE";A
30 PRINT liTHE SQUARE ROOT OF";A;"IS";SQR(A)
45 GOTO 25

The command RENUM (50,30,30) would produce the following:

9 EXAMPLE PROGRAM

Rev. 8 9/78

25 INPUT "VALUE";A
50 PRINT liTHE SQUARE ROOT OF";A;"IS";SQR(A)
80 GOTO 25

5-4.1

The command RENUM would produce the following:

10 REM RENUM EXAMPLE PROGRAM
INPUT "VALUE";A

30 PRINT liTHE SQUARE ROOT OF";A;IIISII;SQR(A)
40 GOTO 20

The command RENUM (100) would produce the following:

. 100 REM RENUM EXAMPLE PROGRAM
110 INPUT "VALUE";A
120 PRINT "THE SQUARE ROOT OF";A;"IS";SQR(A)
130 GOTO 110

The command RENUM (1000,100) would produce the following:

1000 REM RENUM EXAMPLE PROGRAM
1100 INPUT "VALUE";A
1200 PRINT liTHE SQUARE ROOT OF";A;IIISII;SQR(A)
1 300 GOTO 1100

Several error conditions are checked before any renumbering is done. This
is to safeguard the program against possible damage. As errors are detected
error messages are printed along with the lines where the error occurred. No
changes are made to the program if any errors are encountered and no
renumbering can be successfully carried out until the corrected.

Entering a RENUM command may result in the message NUMBER OUT OF RANGE
followed by the line where the error occurred. This is an indication that
the renumbering attempt lead to a line number greater than 65529. This can
be corrected by entering a RENUM with a smaller increment value that does
not cause a line number greater than 65529.

Enteri ng a command may resul tin the message MEMORY OVERFLOW. Th i s
indicates that renumbering would create a program to long to be run in the
memory currently available to BASIC. The program is not renumbered.

Entering a RENUM command may result in the message STMI # NOT FOUND without
printing the offending line. This occurs when the specified
first-1ine-to-change does not exist in the program. No change is made.
Example; if the program is:

10 PRINT "TEST"
20 GOT010

The command RENUM (100,10,30) would cause a STMT # NOT FOUND error because
there is no line 30 at which to start renumbering.

Entering a RENUM command may result in the message STMT # NOT FOUND followed
by the line where the error occurred. This indicates that a branch statement
{GOTO,GOSUB, etc.} contained a reference to a line number that does not exist
in the program. If this is intentional a stub line should be placed in the
program to allow the RENUM to operate. This can be done by typing the line
number with a REM statement as a place holder.

5-4.2
Rev. 8 9/78

Entering a RENUr1 command may resu1 tin the message SYNTAX ERROR. Thi scan
be caused by several types of syntactical errors. If the line contains
unbalanced quotes or parentheses the SYNTAX ERROR message is displayed, or
if renumbering would cause a.sequence error in the line numbering (e.g. the
lines were numbered 10,20,30,40 and you typed RENUM (10,10,30). This would
result in numbers 10,20,10,20 which is not allowed.).

The RENUM command does not change line numbers following LIST, or DELETE.
If these statements are used within a program they must be changed manually.

RENUM will not renumber line number references in scientific notation (lE3),
or expressions (GOTO 90*8+3). Such references must be changed manually.

If computed GOTOls, GOSUBls or RESTORE's are used in the program they will
more than likely be incorrect after renumbering unless extreme care is
taken in selecting the renumbering parameters.
Example; if the program is:

10 DATA THIS,IS,A,TEST
20 DATA MORE,TEST,HERE,END
30 INPUT "WHICH DATA,l or 2",A
40 RESTORE (10*A)
50 READ A$,B$,C$,D$

The command RENUM (100,'10,30) wou1 d renumber the executable part of the
program while leaving the DATA statements unchanged.

10 DATA THIS,IS,A,TEST
20 DATA MORE,TEST,HERE,END
100 INPUT "WHICH DATA,l OR 2" ,A
110 RESTORE (10*A)
120 READ A$,B$,C$,D$

The computed RESTORE on line 110 would still function after the program is
renumbered. However, if lines 10 and 20 had been renumbered, then the
program would not perform as intended.

The RENUt·1 command can cause ali ne to expand to a 1 ength greater than 250
characters. Such a long line can only be created by RENUM and could not be
entered from the keyboard because the input buffer is only 250 characters
long. The Bas ic EDIT command uses the 250 character input buffer during
editing. If renumbering causes a line longer than 250 characters and that
line is later edited using the Basic EDIT command the line will be truncated
at 250 characters by the editor.

5.3.3 THE MERGE

MERGE l un it#:fi1ename"

The MERGE command allows existing program files on disk to be incorporated
with a program presently in the BASIC program buffer. The form of the
command is MERGE l un it#:fi1ename". The unit# is a number from 0 to three
followed by a colon. If no unit number is specified, unit zero is assumed.

5-4.3
Rev. 8 9/78

Lines are merged one at a time from the merge file into the current program
buffer, starting with the first line in the merge file. If the line number
in the merge file is the same as a line number presently in the program
buffer, then the line from the file replaces the line in the buffer. If the
line number in the merge file does not match any line number in the program
buffer, then the line from the file is inserted in the current program
buffer" in proper 1 ine number order. When all 1 ines from the merge file have
been placed in the program buffer the MERGE is complete.
The entire merge file is loaded into memory following the program in the
program buffer. Therefore the length of program in the program buffer plus
the program must be less than the space currently available to BASIC,
otherwlse a LOAD OVERRUN message is butput and the merge does not take place.

The MERGE command also needs some additional buffer space to perform the
merge. If there is not enough room the message MEMORY OVERFLOW is output
and the merge does not take place.

Large programs are often developed as modules. Each module is written with
its test data and debugged separately. The following example shows a three
part survey program. Part 1 reads the survey data and ta11eys the vote.
This module is allocated line numbers from 1000 to 2000. The data has been
allocated lines 10 to 100 and the printer output module is allocated lines

to 6000.

The program under test uses lines 10-30 as test data, and lines 5000-5010
prints the test results. The program looks as follows in the program buffer:

10 REM LIVE DATA SUPPLIED BY OTHER PART OF PROGRAM
20:REM TEST DATA.
30 DATA 1,1,2,2,3,3,4,4,0,1,4,1,99
1000 REM PROCESS SURVEY MODULE.
1010 T=l :REM INIT TOTAL COUNTER
1020 REM VALID DATA IS 0=NO OPINION,1=YES,2=NO,99=END OF DATA.
1025 READ C
1030 IF C=0 THEN T1=T1+1
1040 IF C=l THEN T2=T2+1
1050 IF C=3 THEN T3=T3+1
1060 IF C=99 THEN T=T-1:GOTO 5000
1070 IF C<0 OR C>2 AND C<>99 THEN PRINT "ITEM";T;"NOT VALID"
1080 T=T+1
1090 GOTO 1025
5000 REM TEST PRINT OUT ROUTINE
5010 PRINT "NO OPINION=";T1;" YES=";T2;" NO=I;T3;" TOTAL=";T

This process module with the temporary test data and print logic can be
separately tested,debugged and then saved on disk with the command SAVE "PART1".

The real print module can then be developed as follows:

DELETE
5000 REM PRINT MODULE
5010 OPEN 1 "*P" ERROR 5200
5020 A$="ZZ9":B$="VZ9"
5030 Pl=Tl/T:P2=T2/T:P3=T3/T
5040 IF P1+P2+P3<>100 THEN PRINT"PERCENT ERROR":STOP
5050 PUT 1 TAB(60);"NO"

5-4.4
Rev. 8 9/78

5060 PUT 1 TAB(10);IRESPONSES";TAB(25);"YES %1;TAB(46)"NO %";
5070 PUT 1 TAB(60)"OPINION %"
5080 PUT 1 REPEAT$("=",72)
5090 PUT 1 ,A$);TAB(30);FMT(Pl ,B$);
5100 PUT 1 TAB(45);FMT(T2,A$);TAB(51);FMT(P2,B$);TAB(60);FMT(T3,A$);
5110 PUT 1 TAB(69);FMT(P3,B$)
5120 PUT 1 REPEAT$("-",72)
5130 CLOSE 1: STOP
5200 PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5020

When the real print module is debugged the command SAVE IPART2" saves it on
the disk.

To test the system PARTl and PART2 are combined by typing the commands
LOAD "PART1 11 and a carriage return, and then the command MERGE IIPART2" and
a carriage return. The combined programs are RUN using the test data. When
these parts are debugged they are saved on di sk by typ.i ng the command SAVE
"PROGRAM" and a carriage return.

The data is entered into a separate file as follows:

DELETE
10 REM LIVE DATA
20 DATA 1,1,1,2,2,1,0,1,2,1
30 DATA 0,2,2,2, 1 ,2 ,2 , 1 , 1 , 1
40 DATA 1, 1 , 1 , 2 , 2,1 , 2 , 1 , ° , 0
50 DATA 99
And then saved by typing the command SAVE "DATA" and a carriage return.
Several different data files can be produced if needed.

The final program is loaded in two parts by typing the commands:
LOAD "PROGRAM" and a carriage return and then MERGE "DATA" and a carriage
return. The final program appears as follows:

10 REM LIVE DATA
20 DATA 1,1,1,2,2,1,0,1,2,1
30 DATA 0,2,2,2, 1 ,2,2, 1 , 1 , 1
40 DATA 1,1,1,2,2,1,2,1,O,O
50 DATA 99
1000 REM PROCESS SERVEY MODULE.
1010 T=l :REM INIT TOTAL COUNTER
1020 REM VALID DATA IS 0=NO OPINION,1=YES,2=NO,99=END OF DATA.
1025 READ C
1030 IF C=0 THEN Tl=T1+1
1040 IF C=1 THEN T2=T2+1
1050 IF C=3 THEN T3=T3+1
1060 IF C=99 THEN T=T-1:GOTO 5000
1070 IF C<0 OR C>2 AND C<>99 THEN PRINT "ITEM" ;T; "NOT V.A.LID"
1080 T=T+l
1090 GOTO 1025

5-4.5

Rev. 8 9/78

5000 REM PRINT MODULE
5010 OPEN 1 "*P" ERROR 5200
5020 A$="ZZ9":B$="VZ9"
5030 P1=T1/T:P2=T2/T:P3=T3/T
5040 IF P1+P2+P3<>100 THEN PRINT"PERCENT ERROR":STOP
5050 PUT 1 TAB(60);"NO"
5060 PUT 1 TAB(10);IRESPONSES";TAB(25);"YES %1;TAB(46)"NO %";
5070 PUT 1 TAB(60)"OPINION %"
5080 PUT 1 REPEAT$("=",72) .
5090 PUT 1 TAB(12);FMT(T,A$);TAB(25);FMT(T1,A$);TAB(30);FMT(P1 ,B$);
5100 PUT 1 TAB(45);FMT(T2,A$);TAB(51);FMT(P2,B$);TAB(60);FMT(T3,A$);
5110 PUT 1 TAB(69);FMT(P3,B$)
5120 PUT 1 REPEAT$("-",72)
5130 CLOSE1: STOP
5200 PRINT ERR$:INPUT"CONTINUE",C$:GOTO 5020

5.4 THE DELETE COMMAND

Groups of program lines may be eliminated from the current program buffer
by using the DELETE command. There are four forms of this command.

Type DELETE X-V to eliminate the lines numbered X through V. Line number
V must be greater than line number X. If either line X or line V or both
are not in the current program buffer a LINE NOT FOUND message will be disp1ayec
and nothing will be deleted. .

Type DELETE X- to eliminate line X through the last line in the current
program buffer. If line X is not in the buffer a LINE NOT FOUND message
will be displayed and nothing will be deleted ..

Type DELETE -V to eliminate the first line through line V in the current
program buffer. If line V is not in the buffer a LINE NOT FOUND message will
be displayed and nothing will be deleted.

Type DELETE to eliminate the entire contents of the current program buffer.
The buffer will be set to empty and a new program may be entered.

5.5 THE LIST COMMAND

Allor part of the program in the current program buffer can be listed
on the terminal display device by using the LIST Corrrnand. There are four
forms of this command.

Type LIST X-V to display the lines numbered X through V. Line number V must
be greater than line number X. If either line X or V are not in the current
program buffer the first present line number greater than X or V will be used
instead .

. Type LIST X- to display the lines from line X through the last line in the
current program buffer. If line X is not in the current program buffer the
first present line number greater than X will be used instead.

5-4.6
Rev. 8 9/78

Type LIST -Y to display the first line through line number Y in the current
program buffer. If line Y is not in the current program buffer the first
present line number greater than Y will be used instead.

Type LIST to display the entire content of the" current program buffer.

5.6 THE SAVE COMMAND

A program in the current program buffer can be stored on disk for later
retrieval by using the SAVE command.

SAVE liN: unit number: name of file" is the general form of the command.

The word SAVE and the quotation marks and the name of file must always be
present. The name of file may be from 1 to 10 characters long. The characters

5-4.7

Rev. 8 9/78

which are legal in a file name are the letters A through Z, the digits 0
through 9, and ten special characters including comma (,), dash (-),
period (.), slash (I), semi-colon (;), less than «), equal (=), greater
than (», question mark (?) and at sign (@).

The N: is optional. If it is not included in the command the existing
file with the specified name on the specified unit will be overwritten
and replaced by the program in the program buffer. If no such file exists
the message FILE NOT FOUND will be output. However, if the N: is, included
in the SAVE command then a new file will be created with the designated
name on the designated If N: is used and the file already exists
on the specified unit the message DUPLICATE NAME will be output.

The unit number: is also optional. When present it consists of a single
digit from 0 to 3 followed by the colon (:). It represents the address
of the disk unit on which the specified file is to be replaced or created.
If no unit number is specified in the SAVE command, unit is assumed.

5. 7 THE LOAD COMMAND

A previously stored program can be retrieved from disk and placed in the
current program buffer by uSing the LOAD command.

LOAD "unit number: name of file" is the general form of the command.

The word LOAD and the quotation marks and the name of file must always be
present. The name of file may be from 1 to characters and may use the
1ettersA-Z,the digits {b-9 and the special characters (,), (-), (.), (I),
(;), «), (=), (?),(@),(») ..

The unit number: is optional. If it is used it must consist of a single
digit from to 3 followed by a colon (:). It designates the address of
the disk unit on which the specified file is to be found. If no unit number
is specified, unit is assumed.

If the filename specified in a LOAD command is not present on the specified
unit the message FILE NOT FOUND will be output. When a program file is
successfully loaded it replaces the contents of the current program buffer
and all data associated with the last program in the buffer is lost. If
the filename specified in the LOAD command is a data file (see section 5.21)
which cannot be properly placed in the program buffer, the message NOT A
LOAD FILE will be output.

5.8 TIm DISPLAY COMMAND

The names of all files which are presently stored on a diskette are recorded
in a special file on that diskette. This special file is known as the
diskette directory and its name is always DIR. The names currently recorded
in a diskette directory can be output to the terminal display by using the
DISPLAY command.

DISPLAY "unit number: DIR" is the general form of the c.ommand.

5-5
Rev. 2 5/77

The word DISPLAY and the quotation marks and the name DIR must be nresent.
The unit number: is optional. If it is not present unit 0 is assumed. If
it is used it must consist of a single digit from 0 to 3 followed by a colon (:)
It designates the address of the disk unit whose directory is to be displayed.

The DISPLAY command outputs the filenames five to a line. The first name
shown should always be DIR. On disks where it is present the second name
shown should always be BASIC.

If the diskette in the specified unit does not contain a valid directory file
a PERM message will result because the disk cannot be accessed by
the BASIC system.

5.9 THE SCRATCH COMMAND

A file tha't is stored on disk may be eliminated by using the SCRATCH command.

SCRATCH "unit number: name of file" is the general form of the command.

The word SCRATCH and the quotation marks and the name of file must always
be present. The name of file may consist of 1 to characters, including
the letters A-Z, the digits 9-9 and the special characters (,), (-), (.),
'(I), (;), «), (=), (», (?), (@).

The unit number: is optional. If it is used it must consist of a single
digit from to 3 followed by a colon (:). It designates the address of
the disk unit from which the specified file is to be eliminated. If no
unit number is specified, unit will be assumed. If the specified file
on the specified unit does not exist the message FILE NOT FOUND will be
output.

When a file is SCRATCHed the storage space ,unused by that file is automatically
freed and made available for reallocation.

5.10 THE RUN COMMAND

A BASIC program must be in the current program buffer in order to be
executed by the interpreter. This may be accomplished by typing in the
program from the input terminal or by using the LOAD command. Once a
program is in the current program buff,er it may be executed by using the
RUN c emma nd .

RUN is the form of the 'command.

When the RUN command is entered, the interpreter resets all disk files to
"closed", and frees all memory space previously allocated to variables 'from
the last program run. It then begins execution of the program with the
first program line in the buffer and proceeds to execute program lines in

5-6

Rev. 2 5177

ascending order of line number. This sequence is altered only when
particular program statements deliberately change the sequence by trans-
ferring control., Each,pregram line is only executed when execution
control reaches that line; it is executed each time that this occurs.
Execution is halted when an END or 'STOP statement is encountered or when
execution control processes the last line in the current program buffer
and it does not alter the control sequence. At this point the interpreter
displays the message READY and waits for a line to be entered.

5.11 INTERRUPTING A RUNNING PROGRAM

The execution of a program may be interrupted prior to completion by
holding down the CONTROL key and typing C at the input terminal. The
interpreter will respond by displaying the message INTERRUPT followed
by the message READY.

The interruption generally occurs after the end of whatever, program line
was being executed ,when the CONTROL'e was entered. In the case of the
input statement and whenever characters are being output, the interrupt
will occur immediately. Under these circumstances the remainder of the
input or output will be lost if a continue is attempted (s,ee sect ion 5. 12) .

When program execution is interrupted, the value of all program variables
remain as last assigned. disk files remain open with file pointers
current. Variables may be examined by using immediate PRINT statements and
may be altered with immediate assigniment statements. These are frequently
used aids in debugging programs. However, if the program in the current
program buffer is modified (lines deleted, inserted, or changed) then all
variable and file information from the interrupted program is lost and the
program can no longer be continued.

5.12 CONTINUING AN INTERRUPTED PROGRAM

If an executing program has been interrupted by the CONTROLC procedure
and no changes have been made to the current program buffer, then the
execution of the program may be continued by using the eONT command.

eONT is the form o,f the command.

When the CONT command is entered program execution is resumed at the point
in the execution control sequence following the last program line executed.
If continuation is not poss.ible because no program has been interrupted or
because the current program buffer has been altered, the message NOTHING
TO RETURN TO will be displayed.

5-7
Rev. 2 5/77

5. 13 PROGRAM TRACING COMMANDS

Often, when developing a new program, it is useful to be able to follow
the execution on a line basis. This capability is provided in
the Micropolis BASIC system through the use of the FLOW and NOFLOW commands.

FLOW is the form of the command which enables this program line tracing
capability. When the FLOW trace capability is enabled and the RUN conmand
is entered the interpreter displays each program line immediately before
it is executed. The FLOW trace remains enabled after the end of a p'rogram
execution. It must be specifically disabled.

NOFLOW is the form of the command which disables the program line tracing
capab ility.

5.14 BASIC SYSTEM ERROR HANDLING

Whenever the BASIC interpreter attempts to execute an inmediate line
which has just been entered or the next program line during program
execution, it is possible that an error condition may arise. If this
occurs the interpreter tries to indicate the problem by displaying an
appropriate error message at the terminal.

If the line in error is an immediate line then the error message will
be directly followed by the message READY. Allor part of the erroneous
line may not have been executed.

If the line in error is a program line, the line number and text of the
erroneous line are displayed after the error message and before the READY
message. Allor part of the erroneous program line may not have been
executed. Program execution is not continuable, after an error.

Appendix A specifies the error messages which may be printed by BASIC
and their probable causes.

5.15 THE BASIC CHARACTER SET

BASIC recognizes all printing ASCII characters except the SHIFT 0 (5F HEX)
backspace character and the RUB OUT (7F HEX) character. However, lower case
symbols may only be used in REM statements and in literal strings. The
character set, along with the decimal, hexadecimal and octal values of the
corresponding ASCII codes are listed in table 5.1.

5-8

Rev. 8 9/78

5.16 BASIC DATA

BASIC programs operate on two types of data: Numeric and String. Numeric data
includes integers and real (floating point) numbers. Character string data
items consist of a sequence of characters chosen from the BASIC character set.
This includes letters, numbers, special characters and blanks. A data item
may be a constant which has an unchangiag value, or a variable which may assume
different values during the execution of a program. A variable may be either
simple or grouped with other variables of like data type into a structure
called an array, and· referenced as a member of the array.

5.16.1 CONSTANTS

A constant is an unvarying value. It is expressed as its actual value. A
constant may be a numeric value, or a character string value.

5.16.1.1 NUMERIC CONSTANTS

Numeric constants may be integers or real numbers.

An integer is a positive or negative whole number which may be defined
as a decimal number or in any number base (radix) up to 36. The format
of an integer may be:

Integer format: -nne ... n Example: -93784

Radix format: -xxRnn n Example: -16R7B2

Where (-) is an optional sign, xx is the number base, R indicates radix
format, and nn n is the number expressed with the digits 0-9 and the
letters A-Z (for radix format). The range of an integer specified in
decimal format is 1-5E (2*ISIZE) to 5E (2*ISIZE). See SIZES statement
for definition of ISIZE. The maximum value of an integer specified in
radix format is 65535. A DIGIT BEYOND RADIX error occurs if a digit or
letter is used that is invalid for the radix

A real number is a positive or negative number which includes a decimal
point and fractional part or a number expressed in scientific notation.
The formats of a real number may be:

Rea 1 forma t : -nne •.. n. nne ..

Scientific format: -nn ... nE xx
-nn ... n.nn .•. E-xx

Example:

Example:
Example:

-2.677

257E-4
-12.231E14

Where nn ... n.nn ... represents the number expressed uSing the digits 0-9
and a decimal point; an optional minus sign (-) denotes a negative number
or exponent; E specifies scientific notation and Xx represents the
exponent expressed with the digits 0-9.

The range of a real number is lE-61 to (lE62) -1.

5-9
Rev. 2 5/77

BASIC CHARACTER Sft II' COLLATING SElUElCE

CRAlt DECIMAL HEX OCTAL CHAR DECIMAL HEX OCT At
..

(space) 32 20 04:0 @ 64 40 100
I 33 21 041 A 65 *1 101
• 34 22 042 :8 66 42 102

" 35 23 043 C 67 43 .103 • 36 24 044 D 63 44 104
« 25 0.5 E 00 45 105 • 38 26 046 F 70 46 106

39 i!'l 047 G 71 47 . 107 , 40 28 050 H 72 4B 110
\ 41 29 051 I 7{5 49 .111
* 42 21 052 J 74 4.1 112
of. 43 2:8 053 K 75 4) 113 , 44 20 054 L '76 4C 114

45 2D 055 M 7'7 4D 115
• 46 2:1 056 I '1S 41 116
I 47 21 05'7 0 '?9 41 117
0 48 30 060 P 80 50 120
1 49 31 061 • a1 51 121
2 60 32 062 R S2 52 122
3 61 33 063 S 83 53 1.23
4 52 .34 064 If S4 54 124
5 53 35 065 0 S5 55 125
e 54 3e ose , a6 56 126
'7 Sf; 3'7 Oe'l V 131 57 12'1
8 56 3S 070 X sa ee 130

57. 39 071 T 89 !59 131
t 58 3A 072 Z 90 5A 132
1 59 3! 0'13 [91 5J 133

60 3C O'Poi \ 92 50 1M
!I!I 61 3D 0'75] 93 5D 135
> 62 31 076 t 94 51 136
? 63 3r 071 .. 95 lSI' 13'7

Table 5.1 Standard Collating Sequence

5-9.1
Rev. 1 5/77

5.16.1.2 STRING CONSTANTS

A character string is a sequence of valid BASIC characters. Entered
as a constant, a string must be enclosed in quotes ("). Quotes
within a string must be doubled (the constant" is entered as " " " ").
The length of a string is the number of characters. The maximum
length of all character strings within a program is set by the SIZES
statement.

5.16.2 VARIABLES

Variables may be integer, real, or string. The amount of memory used
for each of the 3 types can be defined in a SIZES statement before
execution of a BASIC program. ISIZE defines the memory space for
integers; RSIZE- for real variables; and SSIZE for character strings.

5.16.2.1 INTEGER VARIABLES

Integer variables are designated by any letter followed by a percent
sign (%).

The range of an integer is frpm l-5E(2*ISIZE) to 5E(2*ISIZE).
The internal format is 2 BCD digits per byte stored in tens complement.
If an attempt is made to store a number that exceeds the range a
CONVERSION error occurs.

5.16.2.2 REAL VARIABLES

Real variables are indicated by any letter (not enclosed in quotes)
or a letter followed by a digit. The range of a real is lE-6l to
(lE62.)-1. The precision or level of accuracy is 2(RSIZE-l) decimal
digits.

The Internal Storage Format Is:
Byte 1: 1bit sign and 7 bit exponent (excess 64)
Byte 2 thru RSIZE: 2 BCD digits per byte.

5.16.2.3 STRING VARIABLES

A string variable is designated by a letter followed by a dollar
sign ($). String variables may have a length of UP to 250 characters.
The default value of maximum string length is defined by the SSIZE
parameter of the SIZES statement. The maximum SIZE of any particular
string may be declared in a DIM statement, which supercedes the
SIZES statement. If a string which is longer than the maximum length
is assigned to a variable, it will be truncated on· the right.

The internal format of a string variable is:

5-10

Rev. 2 5/77

Byte 1: Maximum string length
Byte 2: Current string length
Byte 3 thr1,l N: Any character, 1 pet: byte

(N= 2+ Maximum string length found in Byte 1)

5.16.2.4 CONVERSIONS

Automatic conversion between integer and real data type·s is pro-
vided which mixed-mode arithmetic. A real value is con-
verted to an integer by truncating the fractional part while
pr e serving the sign of the number.

Conversion between string and numeric data types is provided by
the STR$, VAL, FMT, CHAR $, and AS'C functions. See' se'ction 5.18.1.2
for description of these functions.

5.16.2.5 ARRAYS

Numeric and character string data may be stored in memory as
arrays. An array is a set of variables of one data type (numeric
or character) identified by a Single variable name', A numerie
array is denoted by a Single letter or a single letter follOlfed
by a percent sign (%) and may have 1 to 4 dimensions. A string
array is denoted by a single letter followed by a dollar Sign ($)
and may have 1 to 3 dimensions. Both types of array are
indexed. An array must be declared in a DIM statement whic'b
defines the number of dimension. and the index range itt each
dimension. An array indexing erto1." dccurS if an attempt made
to reference an element of an array Which has not been defined in
a DIM statement.

A one dimensional array is a simple linear list in which the
elements of the array are stored sequentially in memory. 1'(\>1'
example, an array A which has a dimension of 4 is st:ot',d:

A (0)
A (1)
A (2)
A (3)
A (4)

An element of a one dimensional 8.:r:ray is referenced by the array
name and by the index of the element Within the array, f4nclo$ed in
parentheses. The 4th element of array A in the above example is
A (3). The index may be specified by Ii constal'lt, as in this
example, a numeric variable, or a numeric exPfession.

5-11
Rev. 2 5/77

A two dimensional array is conceptualized as a table organized
by rows and columns. An array B dimensioned as B (3,2) would
be represented as:

/-

c c c
0 0 0
L L L
fA 1 2

ROW fA
ROW 1 Array B(3,2)

ROW 2

ROW 3

An element of a 2 dimensional array is referenced by the array
name and the row and column indices. The shaded element in the
above illustration is referred to as B(2,2), where the first
index is the row index and the second is the column index.

The elements, of a 2 dimensional array are stored sequentially in
memory in column major order, that is column by column. The
elements of tJ1e array B would be stored:

B
B (l,QJ)
B (2,QJ)
B (3,QJ)
B (QJ,l)
B (1,1)
B (2,1)
B (3,1)
B (QJ,2)
B (1,2)
B (2,2)
B (3,2)

As with one-dimensional arrays, the row and column indices may be
specified by a constant, a numeric variable or a numeric expression.

3 and 4 dimensional arrays extensions of the two dimensional
concept. An element· of one of arrays is referenced by the
array name and appropriate number of indices.

5.16.3' OUTPUT FORMATS

A numeric data item is converted to a string when it is output to

5-12
Rev. 1 5/77

the terminal. Unless the output format is explicitly specified
by use of the FMT function, a numeric value will be output in
one of three default formats according to the following rules:

1) The negative sign (if present) precedes the number
2) A space is output in place of a positive sign
3) A space is output following the number.
4) A number is either-a whole number or a decimal

number. A whole number is a number without a
fractional part. A decimal number is a number
with a whole and a fractional part.

5) The output formats are: Whole, Decimal and Scientific.

Whole: (-)xxxxxxx16
Decimal
Scientific:

{-)xxx .•• x.xxx16
(-)n.xxxxx

(-) = minus sign if negative, blank if positive
x digit position
n one digit
E signifies exponent

TT exponent
16 = blank

6) The value of an integer variable is output in whole format.
7) A constant or the value of a real variable is output as

follows:
a) If the constant or value is a whole number

having less than or equal the number of digits
specified by RSIZE, then whole format is used.

b) If the constant or value is a decimal number greater
than or equal to and having less than or equal the
number of digits specified by RSIZE, then decimal
format is used.

c) Otherwise, scientific format is used.

String data is output without modification.

The maximum output line length is 250 characters. If an attempt
is made to output a line longer than the maximum length, e.g. ,by
trying to output 2 strings of 250 characters with the same print
statement, the message OUTPUT OVERFLON is displayed and the line
is not printed.

5-13

Rev. 9 1/79

5.17 BASIC ·OPERATORS

Operators are symbols which specify operations to be performed upon data
items. BASIC recognizes 4 classes of operations:

Numeric (arithmetic) ; String; Relational; and Logical.

5.17 • 1 Numer ic Opera mr.s

Numeric operators specify arithmetic operations to be performed
upon numeric data items and numeric function references. A numeric
data item may be a constant, a simple numeric variable or a numeric
array element. Numeric operators are classified as binary operators
which perform operations with 2 data items, and unary operators which
perform operations upon single data items.

The binary operators are listed below:

Symbol

+ I/SE' 1\
/
* ,
+

Operation

Exponentiation
Division
Multiplication'
Integer Division
Subtraction
Addition

(X'Y = Int (X/Y))

The unary operators are listed below:

Symbol

+

Operation

Negation
No effect

The "+" symbo 1 is recognized as a unary opera tor to a 1low cons truc ts
such as A= +7 and A= +B to be syntactically correct although the "+"
has no effec t.

5.17.2 String Operators

One operator is recognized for string data items: concatenation.
A string data item may be a string constant, string variable or
string array element, or a string function reference.

Symbol Operation

+ Concatenation

5-14

Rev. 2 5/77

yields a string composed of the characters in the
string data item to the left of the operator followed by the char-

in the st:ring data item to the right of the operator.

EXAl1PLE: If A$:;::: "ABeD" and B$ = "EFGH" the operation A$ + B$
yie14s the string "ABCDEFGH"

5.17,3 Operators
f".,." ". .. J

allow the comparison of the values of numeric
or string items.

+he operators are listed below:

<
)
:;:::

Meaning

Less Than
Greater Than
Equal to

. Less than or equal to
Greater than or equal to
Not equal to

A is used in an expression of the form (Data Item 1
operatpr ltem 2) which yields a single value as follows: The
values of the two data items are compared. Based upon this comparison
if the e:xpression is true, the value "true" (1) is returned. If the
exp17ession is false, the value "false" (0) is returned.

EXAMPLE: If A;cl and B=2 then

AU Yields a value of 1
A=FB a value of 0

The data iteI1l$ compared must both be the same data type (numeric or
or 8 t,ype error results.

S.tring <:;.ompa:rison is performed as follows: Starting from the leftmost
cha,racter, two strings are compared character-by-character until there
is. a mis ... ma tch or the end 0 f one 0 f the str ings is reached. If there
is a mis"match, the string containing the character which is higher in
the sequence is considered "greater" than the other string.
1£ t,he end of one of the strings is reached without a mis-match and
tl\f;) sttings are J;lot of the same length then the longer string is
ugl;.ea,ter". If the end of one string is reached and the strings are
c;>,f t:he. length then the s tr ings are "equa 1" •

5-15

Rev. 2 5/77

Logical Operators

The relational operators as described in section 5.17.3 return a
value of "true" or "false". This type of value is referred to as
a boolean value and is represented in Micropolis BASIC as an integer.
Truth or falsity is determined by converting the integer to a 16 bit
binary number. If the least 'significant bit of the binary number is o then the value is false, else the value is tru,e'.' operators
specify operations to be performed with boolean values as described
below:

Binary Logical Operators

Operator Expression Truth Table

AND VAt 1 AND VAt 2 VAL 1 VAL 2 RESULT
True True True
True Fa l.se False
False True False
FaJse False False

Operator Expression Truth Table

OR VAL I OR VAL 2 VAL I VAL 2 RESULT
True True True
True False True
False True True
False False ;False

Unary Logical Operators

Operator Expression Truth Table

NOT NOT VAL RESULT
False
True

The primary function of the logical operators is to allow the
forritationof complex exnressions which evaluate to a of
"true" or "false".

EXAMPLE: A<=B AND c=0

5-16

Rev. 2 5/77

A secondary function is nrovided by the 16 bit im,lementation of
Boolean values. The logical operators perform the above defined
functi.ons across the full 16 bits. This allows YOll to 'Perform the
AND, OR and Complement (NOT) functions in the same manner as the
elementary 8080 instructions. The utility of this feature is illus-
trated in the following example which is a serial I/O handler for
an IMSAI SIO board.

8000
8100
8200
8300
8400
8500

NOTE :

REM INPUT ROUTINE - RETURNS CHAR IN A
A = IN (3) AND 2: IF A GOTO 8100: !WAIT INPUT READY
A == IN (2) AND l6R7F: RETURN:! MASK PARITY AND RETURN
REM OUTPUT CHARACTER IN A
B= IN (3) IF B=0 GOTO 8400:! WAIT OUTPUT READY
OUT(2) = A: RETURN:! OUTPUT AND RETURN

This example will not work for I/O to the terminal device.
The BASIC interpreter checks for input from the terminal
between execution of statements and will gobble any
character received unless it is a

5.18 BASIC FUNCTIONS

Functions are included in the BASIC language to provide commonly required
computations. A function reference consists of the name, followed by its
arguments. The arguments are enclosed in parenthesis and separated from
each other by commas.

A function returns a single value.

BASIC recognizes two types of functions: Intrinsic functions which are
built into BASIC; and user defined functions.

5.18.1 Intrinsic Functions

Intrinsic functions may be classified as numeric, string,
and file. The functions relating to files are discussed in the file
I/O section.

5 .. 18.1.1 Numer ic Func tions

The numeric functions provide most of the commonly used trigonometric
and math functions. The math package computes these functions with up
to 29) digits of precision, which requires RSIZE to be set less. than or
equal to 10. Attempting to use the math functions with RSIZE greater
than 10 will cause a PRECISI6>N ERROR. The numel7ic functions' Bt'e detailed
in table 5.2.

Rev. 8 9/78 5-17

Table 5.2 NUMERIC FUNCTIONS

Function
,Reference Value

ABS(x) The absolute value of x, where x is a
numeric expression.

ATN(x) The ar.ctangent of x, where x is a
numeric expression.
range -It 12 to 'It'12.

Returns value' in the

COS (x) The cosine of x,whel;e x is a numeric
eX1'lression in radians.

EXP(x) The value of e ,raised to .the power x,
where x is a numeric expression.
The whole number part of x with any frac-

FIX (x) tional part truncated ·and the sign
where x is a .numeric expression.

FRAC (x) The fractional part of x with the sign
preserved, where x is a numeric ex'pres s ion.

INT(x) The greatest integer not greater than X,
where x is a numel;ic expression.

LN(x) The logarithm of x to the base e, where
x is a numeric expression with a value
greater than 0.

LOG (x) The logarithm of x to base 1O, where x
is a numeric expression with a value
greater than 0.

MAX(x,y) The greater value, x or y, where both x
and yare numeric expressions.

M1N..(x,y) The lesser value, x or y, where both x
and yare numeric expressions.

MOD(x,y) x modulo ywhich is ,equal to x-(,y'kINT(x/y».
Both x and y must be numeric expressions.

Rev. 2 5177

Table 5.2 (cont)

Func.t.ion
Reference Value

Generates a pseudo random number between o and 1. The argument x is a numeric
expression which controls the number generated
as follows:
If x is non RND generates a number

RND{x) using x as the seed. If x=0, the last
random number generated is used as the seed.
Reneatedly calling RND with x=0 generates
a sequence of pseudo random numbers.

SGN(x) +1 if the sign of x is positive, -1 if the
sign of x is negative, 0 if x is 0.

SIN (x) The sine of x where x is a numeric exp-
ression in radians.

SQR(x) The positive square root of x, where x is
a positive .nume·ric express ion._

TAN (x) The tangent of x, where x is a numeric
expression in radians.

Rev. 2 5/77 5-19

5.18.1.2 String Functions

String functions are provided to compare strings, manipulate substrings
and to convert between numeric.and string data types. The string functions
are detailed in table 5.,3.

Function
Reference

ASC (s $)

CHAR $ (x)

FMT(Jc, y$)

Rev. 2 5/77

Table 5. ·3. STRING FUNCTIONS

Value

The ASCII code of the first character
in strings$. Returns a numeric value

Returns the character whose ASCII code
is x

Returns a consisting of the value
x forma tted by the pic ture conta ined in
string y$. The argument y$ can be any
expression evaluating to a string. Each
character in the string (except a V)
represents one character in the result
string. The following characters are
used to format the digits of a number:

9-- A digit position of the number
leading zeroes are output as "it"

z-- A digit position. Leading zeroes
are replaced by blanks.

V-- Decimal point alignment. If V is
not specified, the decimal point
is assumed to be at the far right
resulting in truncation of the
fractional part of the number.

$-- A digit position. If more than 1
$ appears in the string then the
digit position closest to the leading
non-zero digit of the numbercontains
a "$" and tl:te leading zeroes are
blanked.

*-- A digit position. Leading zeroes
are replaced by asterisks.

,-- A comma appearing before the leading
digit is replaced with a blank,
asterisk or dollar sign according to
the context.

All other characters are output unchangEd
If the number is too large to fit in the
format string is
filled with question marks (?l.

5-20

Table 5.3

Function
Reference

INDEX (x$, y$)

(continued)

Value 1
The position in string lIi$ of the first occurrence -1
of string y$. If string y$ is not a substring of
x$, then 0 is returned.

LEFT$ (x$, n) Return$ n leftmost characters of x$.

LEN (x$)

MID$ (x$,n,y)

MAX (x$,y$)

MIN (x$,y$)

Returns length of x ••

Returns y characters from string x$ starting with
character n. t

The greater, string x$ or string y$. See the
collating sequence in 5.1.

The lesser, string x$ or string y$. See the
collating sequence in Table 5.1. .. -.

REPEAT$ (x$, n)

RIGHT$ (x$, n)

STR$ (n)

The character string with string x$ repeated
n number of tUnes.

The n rightmost characters of string x$.

Converts the number n to a string.

VAL (x$)

VERIFY (x$, y$)

Rev. 2 5/77

Converts the string x$ to a The contents
of x$ may be numeric digits or a numeric expression
EXAMPLE: If A$ = "2+2", then VAL (A$):;;:4

Verifies that all characters in string x$ are also
in y$. Retul"J;ls the position of the first character
in x$ which is not found in y$.. If a 11 charac tel'S
in x$ are in y$ retut:'ns 0.

5 .. 21

5.18.1.3 Special Functions

Micropolis BASIC provides several other functions which pertain
neither to numbers nor strings. l'hesespecial functions are
detailed in Table 5.4. '

Table 5.4 SPECIAL FUNCTIONS

Function
Reference Value

IN(x) Inputs a value from I/O port x. The
value of x must be greater than , and
le8s than 256.

PEEK (x) Returns the contents of
location .x. The value of x nDlt be.
greater than and less· than 65536.

- Returns the size of the program ' PGMSIZE currently occupying the program buffer
in bytes.

SPACELEFT Returns the amount of space left in
the program buffer in bytes.

5.18.2 User Defined Functions

Micropolis BASIC provides the ability to define two types of functions:
BASIC functions and assembly language functions.

5.18.2.1 User Defined BASIC Functions

BASIC allows the user to define functions which consist of BASIC
expressions and which are referenced in the same manner as the
intrinsic functions. A BASIC function is defined in a DEF statement
which has the following form:

DEF FN(lette:t) (parameter) = expression

Function
Name

Rev. 2 5/77

Optional
Parameter

5-22

Expression which provides
the value of the function

The characteristics of a function definition are:

1) Function Name--consists of the characters "FN" and one of
the letters A-Z yielding to 26 user-defined BASIC functions.

2) Parameter--a function may optionally include a pa+ameter which
passes a value to the function when it is referenced. The
parameter which appears in the function definition is a "dummy
parameter". For example, consider the function defined by:

10 DEF FNZ(X) =

The parameter X is a "dummy" in the sense that when the function
is referenced, the value passed in the function reference is
used in the place of ''X''. The parameter is only used in
definition to indicate the form of the expression. However, the
variables A and B are actual variable names.W'hen the function is
referenced, the current values of A and Bare used in evaluating
the expression.

3) Expression--a function may be defined as either a string function
or a numeric function by the form of the expression. The ex-
pression may be any BASIC expression which yields a single value
of the appropriate data type.

A function reference consists of the 3 character function name
and the parameter (enclosed in parentheses) If a parameter is
included in the function definition. A function reference yields
a single value and can be used as a data item in any expression
not restricted to constants. A small program using the above
defined function is given below as an example:

10 DEF FNA(X) =xt3+xt2+A+B
20 INPUT A,B,C

PRINT FNA(C)
40 GOTO 20
READY
RUN
? 2,3,1

7
? 0,1,2
13
?
INTERRUPT
READY.

Rev. 6 9/77
5-23

Below is an example of a string function.

5 SIZES(5,4,BO)
10, DEF FNB (8$) =REPEAT$ (S$, N)
20 INPUT A$,N
30 B$,=FNB(A$)+"ISN'T mIS REPETITIVE?"
40 PRINT. B$

READY
RUN
? "AGAIN AND ",4
AGAIN AND AGAIN AND AGAIN AND, AGAIN AND ISN'T THIS REPETITIVE?

READY

See the "DEF FN" $tatement for more detailed information.

5.18.2.2 .Assemb1y Language Functions

Micropolis BASIC allows the user Assembly Language
"Functions" which provide linkage to assembly language subroutines.
The linkage allows a BASIC program to pass from 1 to 4 arguments
to an assembly language subroutine and provides for a result to be
passed back to the basic program when the assembly language sub-

returns control.

An Assembly Language Function is defined as follows:

DEF FA (letter)= expression

The func t ion name cons is ts of the charac ters "FA" and, one of the
letters A-Z yielding up to 26 assembly language functions. The
expression is a numeric expression which &,ecifies the memory address
of the subroutine entry point.

An assembly language function reference consists of the 3 character
name followed by a list of arguments enclosed in

Examples:

100 A
200 A$

FAA
FAB (B$, C$)

Up to 4 arguments may be passed to an Assembly Language Function
and 1 result may be passed back as the of the function reference.

5-24

Rev. 7 3/78

The arguments and result are passed through the following locations
which define the subroutine linkage:

LOCATION LABEL DESCRIPTION

04BCH ARGl Pointer to the first argument
04BEH ARG2 Pointer to the second argument
04C0H ARG3 Pointer to the third argument

ARG4 Pointer to the fourth argument
04C4H NARGS Number of arguments passed
04C5H RSIZE Values of RSIZE, ISIZE
04C6H ISIZE and SSIZE as described
04C7H SSIZE in Section

RESULT 250 byte result buffer

When an assembly language subroutine is the basic interpreter
sets the pointers in the linkage table to point to the values
arguments, indicates the number of arguments passed in NARGS, and calls the
subroutine. When the subroutine returns, the to find
the value returned by the subroutine, if any, in the result buffer.

The format of the arguments pointed to by ARGl-4 and oT the result returned
is:

BYTE - Type Indicator
1 - Real
2 - Integer.
3 - String

BYTE l-N- Refer to Section 5.16.2 "Variables" for the
internal storage format for each variable type.
The length of each variable type is specified
by RSIZE, ISIZEand SSIZE.

The general procedure for using assembly language subroutines is as follows:

1) Load BASIC from MOOS or directly from a BASIC only SYSTEM DISk.

2) Set the memory space used by BASIC using the MEMEND statement
to reserve space above BASIC for your subroutine.

3) Load the subroutine using the LOAD command. Execution of an
object file load within a program is allowed.

4) Define the name and entry point of the subroutine with the
DEF FA Statement. The subroutine may now be used.

5 .. 25

Rev. 7 3/78

The assembly language program example on the following pages demonstrates
most of the principles involved in passing arguments and returning results.
It was created by using the assembly language development tools of the
MOOS The source program was entered with LINEEDIT and then assembled
with ASSM to produce an object file named CONCAT which can be loaded by
BASIC.

The CONCAT subroutine expects two string arguments to be passed and returns
a string which is composed of the" second argument concatenated with the first
argument. If only one argument is passed, the result string is "argument
error". If both arguments are not strings, the string returned is "type
error!! .

Note: This example is not complete - a proper subroutine of this type
would have to handle the special cases of null strings and checking to see
if the maximum string length has been exceeded, etc.

5-26

Rev. 7 3/78

0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000

0000
0000
0000
6040
6040

6040
6040
6040

01A0
04BC
04BE
04C0
04C2
04C4
04C5
04C6
"04C7

6040 3A C4 04
6043 FE 02
6045 C2 8D 60
6048 2A BC 04
604B 7E
604C FE 03
604E C2 87 60
6051 2A BE 04
6054 7E
6055 FE 03
605? C2 87 60
605A
605A
605.A
605A 11 A0 01"
605D 3E 03
605F 12
6060 13
6061 13
6062 13 "
60€3 AF
61064 47
6065 2A BC 04
6068 CD 79 60
606B 2A,BE 04
SeSE CD 79 60
6071 78
6072 32 A1 01
6075 32A2 01
6078 C9

Rev. 7 3/78

* ••• •• * •• *.* ••• *.** ••••
* * * ASSEMBLY LANGUAGE * * SUEROUTINE LINKAGE * * DEMO 1978 *
* * **** ••••••••••••• *** ••• ****** •• ****
•
* RESULT EQU
ARGl EQU
ARG2 EQU
ARG3 EQU
ARG4 IQU
NARGS EQU
RSIZE EQU
ISIZE EQU
SSIZE EQU
* *

lA0H
4!CH
ARG1+2
ARG1+4
ARG1+6
ARG1+8
ARG1+9
ARG1+10
ARG1+11

ORG 6040H
* * THIS BEMO"ACCEPTS TWO ARGUMENTS * WHICH ARE STRINGS AND RETURNS * ARG1 CONCATENATED WITH ARG2.
*
NBRCK

Type!

LDA
CPI
JSZ
LHLD

CPI
JNZ
LHLD
MOV
CPI
JNZ

NARGS
2
N!RER
ARGl
A.M
:3
TYPElt:R
ARG2
A,M
:3
TYPERR

jCHECK FOR TWO
; ARGUMENTS.
;IF NOT TWO - ERROR,
;ELSE, CHECK TYPE OF
; ARG1 .• IT MUST
;EE A STRING.
; IF NOT - ERROR.
;ELSE, CHECK ARG2
; IT ALSO
;EE A STRING.
; IF NCT - ERROR.

* BOTH ARGUMENTS ARE VALID STRINGS
* LXI

MVI
STAX
INX
INX
IN!
IRA
MOV
LHLD
CALL
LHLD
CALL
MOV
STA
STA
RET

D,RESULT
A.3
D
D
D
D
A
E,A
ARG1
MOVE
AP.G2
MOVE
A,E
RESULT+l
RESULT+2

5-27

;SETUP RETURN
;PARAMITER AS A
;STRING TYPE.
;SKIP OVER
; LENGTH FOR
; NOW
;ZEROLENGTH
; COUNTER.
;MOVE FIRST"
; ARGUMENT TO RESULT
; MOVE SECOND
;AGRUMENT TO RESULT
;GET LENGTH COUNT
;PUT COUNT INTO
; RESULT".
iDONE, RETURN TO BAstc

61279 oh
1

€079 MOVE ARGUMENTS TO RESULT.
6079 HL REGISTERS HA 5 .ARGUMiNT ADDRESS.
6079 DE REGISTERS HAS POSITION IN RESULT. ','

6Z?9 B REGISTER IS COUNT
6079 i,{

6e79 23 :V:OVE INX H ;SKIP TYPE
50?A 23 H ;SKIP MAX LENGTH
6073 4E C,M ;GET LENGTH OF STRING
ee.?C 22 INX H
607D 7E MOV A,M ;GET CHARACTER
6l7E 12 STAX D ; PUT. IT INTO RESULT
627! 13 INX D ; NEXT
6080 23 INX H
6;081 04 INF.. B ; COUNT +1
6e.·E2 en DCR C ;lENGTH -1
6e C2 7D 62 IN Z MOVEl ;LOCP TILL DONE
6;&8t 1'"'10 VV RET ;DONE
6287 .. , ','

eeS7 ,' '
6t87 21 9E 60 TYPERR LXI H,TYPMSG
60EA C3 9e. 60 Jt-';p EMSG
608D ::C

606D 21 A] 60 NBl1ER LX! H,NBRMSG
6e. 90 11 A0 01 EMSG LXI D,llESPLT ; PUT MESSAGE IN RESULT
5093 3E 03 MVI 1..,3 ;STRING
60S5 12 STAX D
63G6 13 INX D
6297 13 INX D
6098 13 INX D
6099 AF XRA A ; ZERO C OUN 'I
62i 9A '4.7 rv:OV B,A

C3 68 60 JMP MSTR ;fv:OVE TO RESULT
6e 9E: ,t,.

','

6e9E oh OR MESSAGES "P

609E J, ','

609]; 00 00 0A 'TYPtv'.S G DB 0.0,10
60A1 54 59 50 DT 'TYPE ERE.OR'
6c1A4 45 20 45'
60A7 52 52 4F
60A}. 52
60AE
60A:B 00 00 0E NBFJ1SG DB 0.O,14
60AE 41 52 47 DT ' ARG UMENT ERROR'
60Bl 55 4D 45
6034 4E 54 20
6eE7 45 52 52
60BA 4F 52
60BC -,-
60BC END NBRC!

5-28

Rev. 7 3/78

Listing of and output from a BASIC program that utilizes
the CONCAT assembly language routine.

READY
LIS '!
10 rIM ,C$(250)
22 ;.' Itv; EN D 16R5FFF
30 LeAD "CONCA'!"

rEF FAA=16R6040
53 INPUT A$
6J INPU'! B$
?0
80 PF'INT C$
90 GOTO 50
READY
RUN
? 12345
? 67890

? IS THE TIME
? FOR ALL GOOD MEN

IS THE TIMEFOR ALL MEN
?
It\ TIER UPT
63 INPUT B$
READY
PEIN/I
Aft G ur"i, EN 1 IF. FeR

FAA(A,B)
TYPI; ERROR
REAry
PE IN'!' l'AA(.
122,4::67890
READY

5-29

Rev. 7 3/78

Pages 5-30 through 5-32 left blank intentionally.

5-30

Rev. 7 3/78

5.19 BASIC EXPRESSIONS'

A BASIC expression is a combination of data items and function references
connected by operators. An expression specifies an operation or series of
operations that yields a single value, which is referred to as the value of
the expression. Data items may be constants, simple variables, or array
elements. Operators may be arithmetic, string, relational, and logical.

5.19.1 Evaluation of Expressions

BASIC contains a precise set of rules which define the manner in
which expressions are evaluated:

1) Operator Precedence -- Operators encountered in an
expression are performed in the following order:

1) Function references
2) Unary operators
3) Arithmetic & string operators
4) Relational operators
5) Logical onerators

2) Operators which have the same level of precedence are
performed in the order in which they are encountered
in scanning the expression from left to right.

3) The normal rules of precedence & order of ·evaluation
may be overriilienby the use of' parentheses to partition
an expression into subexpressions. Nesting of sub-
expressions is limited by the overall complexity of the
expression. If an expression is too complex it may cause
a STACK OVERFLOW error. In this case, the expression
should be broken into two expressions.

4) Expressions containing subexpressions are evaluated
from the innermost subexpression outward to the next
level of parenthesis until all parenthetical expressions
have been evaluated. Within a subexpression the rules
given for operator precedence and order of evaluation
apply.

5.19.2 Numeric Expressions

A numeric expression consists of numeric function references, numeric
operators, and numeric data items and evaluates to a numeric result.
Operations are performed in the following order:

5-33

Rev. 2 5/77

1) Function .references
2) Unary & :dnd -
3) Exponentiation
4) Division and Multiplication
5) Integerdivision
6) Addition and Subtraction

Parentheses may be used to force evaluation in the exact order

EX,AMPLES:

This is evaluated as follows: (V (x) indicates the value
of x)

1) 2'1(3 yields 6
2) 7*4 yields 28
3) V(2*3) + V(.J*4) yields 34

2. 2*(3+7) *4

This expression is evaluated as follows:

1) 3+7 yields 10
2) 2* V(3+7) yields 20
3) V(2*V(3+7)) *4 yields 80

5.19.3 Strins Exeressions

A string expression consists of string function references, string
operatot;'s, and string data items and evaluates to a string result.
Operations are performed in the following order:

1) Function references
2) Concatenation

EXAMPLE: Let B$ = "The number is"

B$+STR$(134)

This expression is evaluated as follows:

1) STR$ (134) yields " 134 "
2) V (STR$(134)) is concatenated with the current

value of B$ which yields "The number is 134 "

5-14

Rev. 2 5/77

5.19.4 Logical

A logical expression consists of numeric and string expressions
combined with relational and logical operators. The value of a
logical expression is a Boolean value. Operations are performed
as follows:

1) Function references are performed.
2) The NOT operation is performed.
3) Numeric and string expressions are evaluated.
4) Relational operations are performed
5) The AND operations are performed
6) The OR operations are performed
7) Parentheses may be used to force evaluation in the exact order

desired
EXAMPLE:
A+2(=3 AND B+3<5 OR NOT (B$="A ")

This expression is evaluated as follows:

1}1 The value of B$ is compared with "A" (Note: if parentheses
had not been used, BASIC would have tried to nerform NOT
B$ which would have given an error) Temporary result TI is
set =1 if B$="A II else is set =0

2) T1 is complemented
3) A+2 is evaluated
4) B+3 is evaluated
5) The value of A+2 is compared with 3 and a temporary result

T2 is set =0 if A+2)3 or 1 otherwise.
6) The value of B+3 is compared with 5 and T3 is set =0

if B+3 is greater than or equal to 5 else is set =1.
7) T2 ANDed with T3 yielding T4
8) The value of the expression is obtained by ORting T4

with TI

Note: The NOT operator complements the 16 bit representation of
Boolean values so the final value of this expression is
65535 if true and 65534 if false.

5- 35

Rev. 2 5/77

5.20 BASIC STATEMENTS

BASIC statements specify operations to be performed in a BASIC program,. and
the data and operating environment of the progr:ain.

Every BASIC statement consists of a keyword followed by a list of zero or
more expressions which specifies the operation to be performed by the
statement.

Multiple statements may be included in the same program line by
the colon (:) (see section 5.2).

The statements included in the BASIC language are listed alphabetically
and in detail in the following pages. Conventions of notation
used are:

1) Ul Indicates a choice of one of the items enclosed.

2) [J Indicates optional items.

3) Parentheses () used in definitions must be included as
illustrated.

5.20.1 DATA 1 numeric constant}
l string constant {

nume .. ric constant]
str1ng constant ., ..

150 DATA 25, "APRIL 1, 1977", 26E-3

The DATA statement is used to define a list of data internal
to a BASIC program which may be accessed with the READ state-
meht. When a BASIC program is started, the DATA nointer is
initialized to point to the first data item in the first DATA
statement in the program. When a READ statement is executed,
one value is read from the list for each variable specified
and the pointer iscadvariced to point .to the next dSta item.
When the data items in a DATA statement are depleted, the
pointer is set to point to the first data item in the next
DATA statement encountered in the program such that all the
data values contained in DATA statements constitute a con-
tiguous list. The RESTORE statement can be used to re-position
the DATA pointer to point to the first data item of any DATA
statement within the program.

The DATA statement is non-executable and may therefore appear
anywhere within a program.

5-36
Rev. 2 5/77

5.20.2 DEF FN letter (function parameter name)]

10
100
150

DEF
DEF
DEF

FNA = X+Y+Z
(4*3.l4l5*A)/3

FNR(M$)= REPEAT$(M$,5)

expression

The DEF FN statement is used to define a function.
The name of the function defined is "FN" followed
by one of the letters A-Z. Each function name may be
defined only once in a given program.

For example, if the statement 110 DEF FNN= 3.l4l5*R2
were used in a program. 260 DEF FNN (M$)=REPEAT(M$,5)
could not be used because the function names are
identical. The statement 260 DEF FNM (M$)=REPEAT(M$,5)
wou ld be lega 1.

A function parameter is optional. If nresent, it is a
dummy ,.,arameter and its name may be any simple variable
name. A function will return a numeric or string value
depending upon the form of the expression.

A DEF FN statement is non-executable and may appear
anywhere in a program.

5.20.3 DEF FA letter = numeric expression

90 DEF FAA = l6R7000

The DEF FA statement is used to define a function which
provides linkage to an assembly language subroutine.
The function name consists of the letters "FA" and one
of the letters A-Z. The expression contains the starting
address of the assembly language subroutine. See section
5.18.2.2 "Assembly Language Functions" for details of
linkage and passing arguments.

5-37
Rev. 2 5/77

5.20.4 DIM letter [%1 (II, 12, ••• 14)
DlM letter $(length)
DIM letter $(Il, •••

10 DIM A (2,4)
20 DIM B%(2,3,4,S)
30 DIM A$ (40)
40 DIM A$(2,3,40)

The DIM statement is used to define the maximum length of
string variables and to define the number of dimensions and
index ranges for arrays.

The first form of the DIM statement is used to define a
numeric array. The array name consists of one of the letters
A-Z. An optional percent sign (%) may follow the letter to
denote an integer array. The array may have 1 to 4 dimen-
sions as defined by the number of parameters (I). The value
of each I defines the maximum value of the index for that
dimension.

The second form is used to set the maximum length of a
string variable. The name of the variable is one of the
letters A-Z followed by the dollar sign ($). The length
specified must be less than or equal to 250 and overrides
the default length specified in the SIZES statement.

The third form is used to define a string array_ The array
name consists of one of the letters A-Z followed by the dollar
sign ($). A string array may have 1 to 3 dimensions as
defined by the number of parameters (I) specified. The value
of each I defines the maximum value of the index for that
dimension. The last parameter specified in the parameter
list is the maximum length of each string element.

Dimension statements are executed dynamically, therefore
the parameters may be either constants or expressions.

5.20.5 END
10000 END

The END statement is optional in BASIC. Execution will
terminate when the END statement is executed and may not
be continued with the CONT command. It is recommended
that an END statement be the last statement of a program
to serve as a listing aid. Its presence ensures that the
listing is complete.

5-38
Rev. 2 5/77

5.20.6 EXEC s tr-ing expres s ion

100 EXEC A$

The EXEC statement is a feature unique to Micropolis BASIC.
The EXEC statement causes the string expression to be passed
to the BASIC Interpreter and to be executed as a statement.
The expression may consist of one or more BASIC statements
separated by co10ns{:). The expression passed is checked for
syntax errors and then executed if valid. The following
program is given as an example of the power inherent in this
statement. The program accepts arithmetic statements from
the terminal and prints the results -- effectively operating
the terminal as a desk calculator.

5.20.7 FLOW

LIST

10 INPUT A$: EXEC ';PRINT -"+A$': GOTO 10
READY
RUN
? 2+2
4

? SIN{3.14159/4)
.70710595

?

10 FLOW

The FLOW statement turns on the program trace feature which
aids in debugging BASIC programs. The program trace will out-

to the terminal the program line of each statement which
is executed. The program line will be output again if the
THEN portion of an IF . THEN statement is executed. The
program trace is turned off by the NOFLOW statement.

5-39
Rev. 2 5/77

5.20.8 FOR numeric = numeric
variable expression

TO numeric
expression

30
40
50

FOR X
FOR Y
FOR X

= 1 TO 30
30 to 0 STEP -1
A to B

fSTEP nu, meric. J L expreSS10n

The FOR statement initiates the repeated execution of a set
of statements following it. The set begins with the statement'
immediately following the FOR statement. The set ends with
the NEXT statement that contains the same variable as the
FOR statement. The numeric variable controls the number of
times tre set of sta tements is to be executed and is ca lIed the
loop variable. The set of statements to be executed is
referred to as a FOR • • NEXT loop.

The expressions specify the initial value of the loop
variable, the terminal value of the loop variable, and the
va lue to be added to the loop variable after each pass
through the loop (step). The step parameter is optional;
when not specified, a default value of +1 is used.

The statements within the FOR NEXT are executed
until the value of the loop variable is stepped outside
the range defined by the initial and terminal

The STEP value can be negative, as in:
20 FOR I = 1<10 to rJ STEP -10

This statement would cause the initial value of the 1000
variable I to be set at subtract 10 from the loop
variable each time the loop was completed, and terminate
executing the loop when the loop variable contained the
value 0.

The statement 15 FOR J = 0 TO 0 would cause the FOR loop
to be executed one time. That is, the statements between
the FOR J ..•. and the NEXT J statements would be executed
once before the loop variable of D + 1 would be compared to
the limit value of 0. At this point the loop variable limit
would have been exceeded and program execution would fall
through to the next line number.

A set of FOR ••• TO ••• NEXT statements may be nested within
one or more sets of FOR. ' •• TO ••• NEXT statements. For
example:

Rev. 2 5/77

lD FOR K - 1 TO 90
20 FOR L = 1 TO 15
30 PRINT K,L
40 NEXT L
5D NEXT K

5-40

When nesting FOR ••• TO •.• NEXT statements it is
that the inside loop (in this case the L loop) be completely
enclosed within the outer loop.

If the above statements had been entered incorrectly as follows:

10 FOR K = 1 TO
20 FOR L = 1 TO 15
30 PRINT K,L
40 NEXT K
50 NEXT L

The error message ''MISSING FOR" would occur when the "NEXT
statement is encountered.

If a GOTO or IF. .THEN statement is executed from within a
loop, the program will continue in a normal manner.
BASIC will continue the loop fro·m the current value of the
loop variable if the loop is re-entered at some later point.

Rev. 2 5/77

5. ," <' ,:
.; . expres s ion .•• t ' "," ",' 1"

The GOSUB statement causes a, set of to be executed as
a subroutine.

When a GOSUB statement is ,:1.s transferred to the
first statement whose line number is' spec'Jfied in the GOSUB
statement. The referenced line number': and all statements following
it will, pe execu,teq" Hat: il.a : RETURl'l: s,ta temellt ",' is '",
Control 'is then 1:0 the follqwing GOSUB.
Cons ider the following: ' " "

GOsuB' NT,) ',A +:e, '16C1 ENP \ ":' " ':,
:21d.IN:E,>UT' X; z

A=X + 1: B = Z-10
230 RETURN

When line number 150 is executed, control is transferred to line
number Line and 220 are executed, then 230, the RETURN
statement. The RETURN causes control to be transferred to the
statement immediately following the GOSUB. Therefore, the sum
of A + B will be printed before the program ends.

GOSUB statements can be nested. That is, a subroutine can
contain a GOSUB statement that references another subroutine.
Control will be returned to the first subroutine when the RETURN
statement of the second is executed. The message STMT # NOT
FOUND will be output if a GOSUB statement references a line
number that does not exist in the program.

BASIC allows an expression to be used as the line number. If
this is done, care must be taken to insure that the value of
the expression is a positive real number. The fractional part
of the number will be truncated in forming the line number.
A OUT OF RANGE error will occur if the number is invalid.

5-42
Rev. 2 5/77

5.20.10 GOTO
{

line number }

5.20.11

numeric expression

100 GOTO 5000
200 GOTO A+B

The GOTO statement causes control to be transferred to the first
statement in a specified program line. A GOTO statement may
reference any line in a program, including its own line. The
line number may be specified as a constant or a numeric expression
Care must be taken to ensure that the expression evaluates to a
positive real value. The fractional part of the number will be
truncated in forming a line number. If the value is invalid, a
NUMBER OUT OF RANGE error will occur. If the line number does
exist in the program, a STMT # NOT FOUND will occur .

.!! log ica 1 express ion {[THTHEENN 1 8TA TEMENT [: 8TATEMENT}l 1 1 ine number J
10 IF THEN PR!NT' '-1<"

20 IF A 2 GOTO 100

IF A 4 THEN 100

40 IF A = 2 AND C = 3 THEN D = 2: GOTO 1000

The first form of the TF statement provides conditional execution
of one or more statements based upon the value of a logical
expression.

The statements subject to conditional execution must all reside
within the same program line as the IF statement. If the logical
expression evaluates to "true", then the statements are executed.
If the expression evaluates to "false", then all remaining state-
ments within the line are ignored. The keyword THEN is optional
in this form.

The second form of the IF statement provides a conditional
program branch based upon the value of a logical expression.
If the expression evaluates to "true", control is transferred
to the first statement in the specified program line. If the
expression evaluates to "false", program execution continues
at the next sequential program line. line number must be
specified as a constant. If the line number snecified does not
exist in the program, a STMT # NOT FOUND error occurs.

5-43

Rev. 2 5/77

5.20.1'2 INPUT ["prompstring"{:}] variable list

INPUT A,A$
20 INPUT "ENTER NUMBERS"; A,B

The INPUT statement prompts for data to be entered from the
termi na 1 and wa i ts for the user to enter the da ta. I f a
prompt string followed by a semicolon (;) is included, the
string is output, followed by a question mark (1) before
wa i ti ng. If a prompt string fo 11 owed by a comma (,) is
included, the string is output and then the question mark
is output on the next 1 i ne before wa i ti ng for entry. If
no prompt string is included, a question mark is output
to the next terminal line before waiting for input.

One value must be entered for each variable in the variable
list. Values may be numeric or string constants separated
from each other by the current string delimiter. Strings
entered do not need to be enclosed in quotes (") unless they
contain the string delimiter. If a string constant is
erroneously entered in place of a numeric constant, a
TYPE ERROR occurs, followed by the message REENTER FROM
BEGINNING. This means that all values in the variable list
should be entered again in proper order. The last value
entered i's delimited by a carriage return. If too few values
are entered, INSUFFICIENT INPUT is output to the termina 1 and
the statement waits for more input to satisfy the variable
list. If too many values are entered, EXTRA INPUT IGNORED
is output to the terminal and the program continues execution.

5.20.13 [LET] variable = expression

10 LET A = 5

Rev. 6 9/77

20 A$ = "FAT HIPPO"

The LET statement causes the expression to be evaluated and
assigns the resulting value to the variable. The data type
of the expression and the variable must be the same type or
a "TYPE ERROR" results. The LET keyword is optional.

5-44

5.20.14 MEMEND numeric expression

10 MEMEND l6R7000

The MEMEND statement is used to define the upper limit of the
memory space used by BASIC. One of the main applications of
this statement is to reserve memory for assembly language
subroutines which may be placed above the address specified
by the expression.

5.20.15 NEXT numeric variable

10 NEXT X

The NEXT statement terminates the loop initiated by the
FOR statement that contains the same variable. While the
loop is being executed, each time control reaches the NEXT
statement, the loop variable is incremented by the STEP
value, or by 1 if a STEP value was not defined.

When loop execution terminates, control passes to the
statement following the NEXT statement.

If a NEXT statement is encountered prior to the execution
of a FOR statement naming the same loop variable, a MISSING
FOR error occurs.

5.20.16 NOFLOW

500 NO FL OW

The NOFLOW statement turns off the program flow trace
which may be activated by a FLOW statement.

5.20.17 ON numeric expression GOTO line number list

100 ON K+5
200 ON J

GOTO 200, 300, 400
GOTO A+50, 400,B

The ON .•• GOTO statement causes control to be transferred to
the line number whose positional value in the line number list
is equal to the expression. If the expression is zero or
greater than the number of lines in the list, control is
passed to the next statement. If the expression is fractional,
the fraction is truncated prior to the GOTO being executed.
If the expression is negative a 'NUMBER OUT OF RANGE error
occurs. The 1 ine numbers' in the 1 ine number 1 is t may be
numeric constants or numeric expressions. If a line number
in the list does not exist a STMT # NOT FOUND error occurs.

5-45

Rev. 2 5/77

5.20.18 ON numeric expression GOSUB line number list

100 ON X GOSUB 500, 600, 700, 800
200 ON Z+2 GOSUB B,C, 600

The ON ••• GOSUB statement causes execution of the subroutine
beginning at the line number whose positional value in
the line number list is equal to the value of the numeric
expression.

If the expression is zero or greater than the number of
lines in the list, control is passed to the next statement.
If the expression is fractional, the fraction is truncated
prior to the GOSUB being executed. If the expression is
negative a NUMBER OUT OF RANGE error occurs.

The line numbers in the line number list may be numeric
constants or numeric expressions. If a line number in the
list does not exist a 8TMT # NOT FOUND error occurs.

When a. RETURN statement is encountered in the subroutine,
control returns to the statement fo1lowng the ON ••• GOSUB
statement.

5.20.19 OUT (numeric expression 1) = nwn.eric expression 2

100 OUT (16R10) = 20

The OUT statement causes the value of expression 2 to be
output to the I/O port specified by expression 1. Both
expressions must be numeric expressions with values in the
range 0 to 255 or a 'NUMBER OUT OF RANGE error occurs.

5.20.20 'POKE (numeric expression 1) == numeric expression 2

100 POKE (16R6000) 200
200 POKE (A) = B

The POKE statement stores the value specified by expression
2 in the memory location specified by expression 1. Ex-
pression 1 must be in the range to 65535 and 2
must be in the range to 255. If the value for either
expression is outside of the specified range, a NUMBER OUT
OF RANGE' error occurs. Care must be exerc ised to ensure
that the location POKE'd does not cause BASIC to crash.

5-46

Rev. 2 5/77

5.20.21 PRINT expression fiJ [TAB(numeriC expreSSion] .•.

100 PRINT A;B;C
200 PRINT TAB (10); "THE ANSWER IS"; FMT (A, "ZZZ9V. 99")

The PRINT statement causes the value of the expressions in
the expression list to be output to the terminaL Expressions
are output in the formats described in section 5.16.3.
"Output Formats".

An output line conSists of up to 250 characters and is
partitioned into 16 character print fields. Print position
within an output line is controlled as follows:

Rev. 6 5/77

1) An expression is output starting at the current
print position. Each expression must be separated
from the next expression by a comma (,) or a
semico Ion (;).

2) If the expression is followed by a semicolon,
the print position is set to the next position
following the last character output for the
expression. If the expression is the last
expression of the PRINT statement then output
generated by -subsequent PRINT statements will
start at this position on this line of the output
on the termina 1.

3) If the expression is followed by a comma, the
print pOSition will be set to the of
the next 16 character print field after out-
putting the expression. If the expression is
the last expression of the PRINT statement then
output from subs'equent PRINT statements will
begin at this pOSition on this line of output
on the terminal.

4) If the last expression of the PRINT statement is
not terminated by a or semicolon then the
print position is set to the first character of
the next line after outputting the value of the
expression.

5) The print position may be explicitly set by including
references to the tab function which Cl' erates only
in PRINT or PUT statements. TAB moves the print
position to the position snecified by the value of
the tab function parameter. If the position is
already beyond the specified value when the print

5-47

statement is executed then the specified ·value is
simply ignored.

BASIC contains a parameter which specifies the length of a
physical output line on the terminal .. If a print line
which is longer than the terminal width is output, carriage
returns and line feeds will automatically be inserted to
wrap the output across as many physical lines as necessary.

5 ... 48
Rev. 2 5/77

5.20.22 READ variable-list

10 READ A,B,C$

TIle READ statement reads values fro.m the BASIC pro.grams
internal data list which is created by including data
statements within the pro.gram. One value is read fro.m
the data list fer each variable appearing in the variable
list. If there is insufficient data the data list to.
satisfy the variable list then RAN OUT OF DATA will be
o.utput. If a string value is read fer a numeric variable
then a TYPE ERROR will o.ccur. Values are read sequentially
fro.m the data list unless the po.inter which po.ints to. the
next value to. be read is repo.sitioned by use o.f the RESTORE
statement.

5.20.23 REM remark text

10 REM THIS JUNK IS A REMARK AND IS NOT EXECUTED

TIle REM statement is used to. include co.mment text. The
character (!) may also be used to include co.mments in a
pro. gram line. TIle REM statement and any characters fo.1-
lo.wing a (!) character in a pro.gram line are no.n-executable
and are igno.red.

5.20.24 RESTORE [numeriC expreSSion]

10 RESTORE
20 RESTORE 25

TIle RESTORE statement is used to. po.sitio.n the data list
po.inter which a11o.ws co.ntro.1 o.f the sequence in which
data items are read fro.m the pro.gram's internal data list.
TIle po.inter will be set to. the first data item o.f the data
statement who.se line number is specified by the numeric
expressio.n. If an expressio.n is net specified, the po.inter
will be set to. the f.irst item in the first data statement
appearing in the pro. gram.

5.20.25 RETURN
100 RETURN

TIle RETURN statement transfers co.ntro.1 to. the statement
immediately fo.11o.wing the last GOSUB statement executed.
If a RETURN statement is enco.untered to. the executio.n
o.f a GOSUB statement the erro.r message TO RETURN
TO is o.utput to. the terminal.

5-49
Rev. 2 5/77

5.20.26 SIZES (numeriC numeric numeric ,-numeric 1)
constant 1, constant 2, constant 3, Lconstant 11
20 SIZES (5,4,80)
30 SIZES

The SIZES statement is used to specify the number of bytes
of storage to be used for real variables (RSrZE), integer
variables (ISIZE) and string variables. (SSIZE), and the
maximum program size when using chained program segments
(see section 5.21.2.6). Constant 1 - constant 3 are positive
integer constants. The value of constant 2 specifies ISIZE
which must be greater than 1 and less than RSIZE. The value
of constant 1 specifies RSIZE which must be greater than
ISIZE and less than 30. The value of constant 3 specifies
SSIZE which must be greater than 0 and less than 251.

Constant 4 is an optional parameter. If it is present it
specifies the maximum number of bytes allocated for progl"am
size, after which variable space allocation begins.

If no SIZES statement is executed, the default SIZES are
(5,3,40) .

The SIZES statement may not be executed if any variables are
already allocated. If any of the constraints described are
violated, a SIZES ERROR error occurs.

5.20.27 STOP
100 STOP

The STOP statement causes the execution of a BASIC program
to cease. The execution may be resumed from the line
following the STOP statement with a CONT connnand.

5.20.28 STRING string expression

Rev. 6 9/77

10 STRING 11;11

The STRING statement defines the current string delimiter
used to terminate a string accessed by an INPUT or GET
statement. The end of string will be signified by either
the end of the record or the first occurence of the string
delimiter. If a STRING statement has not been executed,
the default delimiter is the comma (,).

5-50

5.21 BASIC DISK FILE I/O

A file is a data structure which may be accessed as a named entity and consists
of a collection of data grouped into elementary units called records. The file
structure is generally used for storing data on mass storage devices such as a
disk. Disk Exterided BASIC provides the ability to create and access files stored
on the disk. Common maintenance operations such as renaming or deleting a file
are included.

5.21.1 Disk Files

Each file stored on a diskette is identified by a file name, which may be
from 1 to 10 characters long. The characters may be letters, digits
0-9, or the special characters period (.), slash (/), or hyphen (-).

The amount of space required to store a file is one track. When a
"new" file is opened, a complete track is allocated. This track and any
other track assigned by the BASIC file" system to this file remain unavail-
able to any other file until released by the user. The maximum number of
files that can be stored on a disk is a function of the number of tracks
available on the disk. The Mod I disk drive provides 35 tracks per
diskette; Mod II provides 77 tracks per diskette. One track per diskette
is required for the file directory, so the maximum number of files is
either 34 or 76. Conversely, the maximum size of a file is 34 or 76
tracks. Each track consists of 16 sectors of 256 bytes per sector. A
file is accessed sector by sector; therefore a "record" is 1 sector.

Actual placement of files is maintained by the BASIC file system. One
track is allocated for each "new" file opened. When 16 records have been
written to a particular file, another track is allocated. The file
appears contiguous to the program, even if it is not stored on contiguous
tracks. It is not possible to store one file on more than one disk; that
is, a file may not span disks.

Files may be stored in 3 formats: Program, Object and Data.

1) Program Files - A program file is a BASIC program which was stored
by a SAVE command as described in section 5.6. The data consists
of the BASIC program text as it resided in the program buffer with
keyword compression. A LOAD will load the data from a
program file into the BASIC program buffer.

2) Object Files"- An object file is an image of a block of memory
which was saved using the memory range option of the SAVE command.
A LOAD command will read the data back into the memory locations
from which it was saved. " This is the format in which assembly
language programs may be stored on the disk.

5-51
Rev. 2 5/77

3) Data Files • Data files contain data created by and are
accessible to BASIC programs by use of the PUT and
GET statements. Each execution of a PUT statement
stores 1 record in the file. within each record
is represented as ASCII characters.

Each record is a character string. A data file
may not be loaded using the LOAD command. Micropolis

provides the ability to access the records of a
data file either sequentially or directly. (commonly
referred to as random access)

In addition to the format, a file may also have Write
Protect and Permanent attributes.

1) Write Protect • A file which is Write
Protected cannot be re-written but may
be deleted by a SCRATCH command. This
is a software Write Protect not related
to the physical Write Protect provided
by a Write Protect tab installed on a
diskette. If a physical Write Protect
tab is installeQ on a diskette, all

which attempt to modify a
file or the directory will yield a
'WRITE PROTECT- error.

2) Permanent - A Permanent file may be re-
written but may not deleted by a SCRATCH command.

A file may be both Permanent and Write Protected.

Several keywords are provided to manipulate disk files as described
below:

5.21.2 Disk File Commands

Commands are provided to 10a4 and save program or object files, delete
a file, and to display a list of the files which reside on a diskette.
Although commands may appear in a BASIC program, commands will generalJy
be executed in Immediate m0ge. All disk commands reference the directory
of the desired diskette. If the diskette is not loaded or a malfunction
exists in the disk drive which causes it to return a not ready status
the message "':')RlVE NOT UP will be output to the terminal when a command
is executed. If the drive is unable to read or write on the diskette
properly then a PERM I/O ERROR will result.

Rev. 2 5/77 5-52

5.21.2.1 DISPLAY string expression

DISPLAY "1: DIR"
DISPLAY A$

The DISPLAY command will output the directory of the diskette loaded
into the drive specified by the string expression. The value of the
string expression must be of the form:

" [unit!] DIR" where unit is the drive

unit address in the range of 0 to 3. If omitted, drive 0 is assumed.
If the string is a constant it must be enclosed in quotes ("). If
a directory does not exist on the diskette a 'FILE NOT FOUND- error
results.

5.21.2.2 LOAD string expression

LOAD "2: DEMOPGM"

The LOAD loads a program or object file into memory. The
file is specified by the string expression which must evaluate to
the following form:

" [unit:] filename" where unit is the

unit address in the range 0 to 3. If omitted, unit 0 is assumed.
The file name may be any valid filename. If the string is a constant
it must be enclosed in quotes ("). If the desired file does not
reside on the diskette a FILE NOT FOUND' error results. If the
file is a data format file, a NOT A LOAD FILE error results.

5.21.2.3 PLOADG string expression

PLOADG "0: NEXTSEG"

The PLOADG statement operates like a combined LOAD command and RUN
command. It loads the program file named in the string expression
into the current program buffer and then transfers control directly
to the logic of the RUN command. All variables and file status from
the preceding program are reset to the initialize condition and
execution begins with the fiLst line of the new program.

The PLOADG statement may be used to cause automatic execution of
several program files in sequence. This is accomplished by using
a PLOADG statement as the last executed statement of each program
in the sequence, such that it names, loads and begins the next
program in the sequence. Note, however, that no variables
or open files are retained from one program or segment to the next.

5-53

Rev. 3 6/77

The string expression in the PLOADG statement must evaluate to the
following form:

" [unit:] filename"

where unit is the unit address in the range 0 to 3. If omitted,
unit assumed. The file name may be any valid filename. If
the string is a constant, it must be enclosed in quotes ("). If
the desired file does not reside on the diskette a FILE NOT FOUND
error results. If the file is a data format file, a NOT A LOAD
FILE error results. If the file is an object file rather than a
program file, it will be loaded just as if a LOAD command had been
used and the current program will continue executing with the
statement after the PLOADG statement.

5.21.2.4 SAVE string expression (memory address range]

SAVE "N:l :NEWPRG"
SAVE uN: LOADER" l6R 7 l6R 7DFF

The SAVE command stores program format or object format files on the
diskette. The file is specified by the string expression which must
evaluate to the following form:

" f N:] [unit:] filename"

If the file to be saved does not already on the diskette, the
"N:" must prefix the unit/file name to cause the creation of a new
file in the directory on the diskette. The unit is the drive unit
address in the range 0-3. If omitted, unit 0 is assumed. If the
string is a, constant it must be enclosed in quotes (rr).

The filename may be any valid filename.

If the memory range option is not included, the contents of the
BASIC program buffer will be stored in the desired file in r'rogram
format.

If the memory range option is specified it' must be of the form:

numeric expression 1, numeric expression 2

The numeric expressions must evaluate to positive real values in
the range 0 - 65535. Fractional parts will be truncated. The
contents of memory from ,expression 1 to expressi.on 2 will be
stored in the desired file in object format.

5-54

Rev. 3 6/77

If "N:" is not specified fora new file, a FILE NOT FOUND
error results. If a file has a Write Protect attribute,
it cannot be overwritten and a WRITE PROTECT error will
occuri"f an attempt is made to save it. If a file specified
as new already exists a DUPLICATE NAME error occurs.

5.21.2.5 SCRATCH string expression

SCRATCH "1:JUNKFILE"

The SCRATCH command deletes a file from the diskette directory
and re 1 eases the tracks allocated to the fi 1 e for use by other
files. The file to be scratched is specifi"ed by the expression
which must evaluate to the form:

"[unit:] fi"lename" where the unit is

the drive unit address in the range 0 - 3. The filename may
be any valid filename. If the expression is a constant it
must be enclosed in quotes ("). If the unit address is
omitted, unit 0 is assumed.

If the specified file does not exist, a FILE NOT FOUND error
results. If the file has a permanent file attribute then it
cannot be deleted and a PERM FILE error occurs.

5.21.2.6 CHAIN string expression

990 CHAIN "NEXTPART"

Rev. 6 9/77

The CHAIN statement loads the BASIC program file specified
in the string expression into the current program buffer and

" then transfers execution control to the first line of the
newly loaded program segment. This operation is similar to
the PLOADG statement with the important exception that the
CHAIN statement preserves all allocated variables, user
defined assembly language functions, SIZES parameters, and
the current string delimiter from the last program segment.
These preserved values are passed to the newly loaded program
segment which may use them just as if it had assigned them.
Note that open file information and user defined BASIC
functions are not preserved by the CHAIN statement. If any
files are open when a CHAIN is executed they are implicitly
closed. means that the filenumber is disassociated
from the filename and made free for reuse; but the directory
'i s not updated and therefore any changes in" the length of
the file are not In general, all open files should
be properly CLOSEd before executing a CHAIN statement.

5-54.1

Rev. 6 9/77

The CHAIN statement is a powerful tool which facilitates
the construction of programs much larger than available
system memory would otherwise permit. It makes it possible
to transfer data and control from section to section of a
very large program that has been divided into separately
loadable segments. To use the CHAIN statement effectively
certain rules must be observed.

1) The program size of a segment being chained in
cannot be greater than the program size of the
program currently in the program buffer. If
this condition does occur a LOAD OVERRUN error
will be reported. A procedure for avoiding this
condition is to specify the size of the largest
program in a chained program set as the fourth
argument of a SIZES statement (see section
5.20.26). This SIZES statement should appear as
the first statement of the first executed program
of the chained set. The program size of each
segment can be determined by LOADing it and using
the PGMSrZE function (see section 5.18.1.3).
Assum;"ng a set of three program fi 1 es named
SEG1, SEG2, SEG3, the following example illustrates
the procedure:

LOAD "SEG1"
READY
PRINT PGMSIZE
472
READY
LOAD "SEG2"
PRINT PGMSIZE
526
READY
LOAD "SEG3"
PRINT PGMSIZE
126
READY

In this example the largest PGMSIZE is 526. If
SEGl were the first file to be executed and the
standard system precisions were desired, then the
statement SIZES (5,3,40,526) would be included
as the first statement of SEG1.

2) All files should be closed before executing a
CHAIN statement.

3) A CHAIN statement should not normally be executed
from within a FOR-NEXT loop. If this is done only
the current value of the loop index will
be preserved across the CHAIN.

5-54.2

4) A CHAIN statement should not normally be executed from within
a subroutine. If this is done the RETURN information for that
subroutine ·is lost across the CHAIN.

5) A program segment which is to be CHAINed should not normally
contain a SIZES statement since SIZES statements cannot be
executed after any variables' have been allocated. The only excep-
tion is the case of the SIZES statement used to set the maximum
program-size. A special internal test allows such a statement
to be chained back to as necessary.

5.21.2.7 LINK string expression

LINK "MOOS"

LINk "OISKCOPY"

The LINK command loads the overlay file specified in the string expression
into memory and transfers control to the execution address of the overlay.
This command is designed primarily for use with Micropolis supplied overlay
files such as MOOS and DISKCOPY. These files completely replace BASIC in
memory when LINKed to. They take over the control of the computer system
and provide their own operating commands and dialogue.

The string expression must evaluate to a valid filename. The file must be
an overlay type C through F. If the specified file is not found or the
disk unit is not ready, control will return to BASIC where the error will
be reported. If an unrecoverable disk error occurs during the LINKing
process, the system will execute a soft halt. This is done because BASIC
has already been destroyed and the new system has not been
successfully loaded. The computer must be reset and a new system booted in.

The LINK command can be used to load and transfer control to a machine
language program file that runs ;n high memory above the end of BASIC
(see MEMENO statement). It can return to the BASIC interpreter by jumping
to the system warmstart address.

5.21.3 DISK I/O STATEMENTS

BASIC statements are provided which allow a BASIC program to create and
transfer data to and from data format files, and to perform certain file
maintenance functions on any type file such as renaming a file or changing
the attributes of a file. The operation of disk I/O statements differs from
the disk commands as follows:

5-54.3

Rev. 7 3/78

1) Disk I/O statements refer to files through a program
"File Number"i An OPEN statement must be executed to
associate a file on the diskette with a nrogram
number.

2) When all I/O operations on a file are complete, a file
must be closed by executing a CLOSE statement. Closing
a file consists of updating the directory to reflect all
operations which have been performed since the file was
opened, and-disassociating the file from the program
file number. CAUTION: A file which has been written to
must ALWAYS be closed or data written to the file may be
lost.

Prior to any operation which accesses the disk, BASIC ensures that
the drive is ready to accept commands. If the diskette is not
loaded or a malfunction exists prevents the drive from
performing operations then a DRIVE NOT UP' error results. If the
disk is unable to perform the specified read/write operation properly,
a 'PERM I/O ERROR results.

A program file number may be in the range 0 to 9. As many as 10
be open at once within a program. If an I/O statement

attempts to access a file which has not been opened by an OPEN
statement then a 'FILE NOT OPEN' error results.

If an I/O statement specifies a file number outside the range 0
to 9 then a 'NOT A FILE# error occurs.

5.21.3.1 OPEN file number string expression options

10 OPEN 1
. 20 OPEN 2

"N: NEWFILE"
"JOE" END 1000 ERROR 5000

The OPEN statement opens the specified file for access by disk
I/O statements. The file is selected by the string expression
which must evaluate to the form:

If the file to be opened does not exist on the diskette, the characters
"N:" must be included in the unit/filename to cause the creation of a
new file in the directory. The file created is a data format file. The
unit specifies the drive unit address which must be in the range 0-9.
The filename maybe any valid filename. If the string is a constant,
it must be enclosed in quotes (fI). If the unit address is omitted,
unit 0 is assumed. If the specified file does not exist and is not
declared as a new file, a FILE NOT FOUND error occurs. If a file
specified' as new already exists, a DUPLICATE NAME erIOr occurs.

5-55
Rev. 8 9/78

TIle filenumber must be a numeric expression with a value of " - 9.
TIle filename specified will be associated with this file number
until the file is closed and all file I/O directed to the file number
will be performed using this file.

Each open file has two associated pointers which point to the next
record to be accessed in a sequential PUT or GET statement. When
a file is opened, the sequential GET pointer is initialized to
point to the first record. TIle sequential PUT pointer is initialized
to point to the record following the last record. TIle last record in
the file is considered the end of the file for GET statements. The
last record +1 is considered the end of file for PUT statements.
For example a 5 record file wouJ.d have pointers initialized as follows:

RECORD

r EOF for a GET (Read)

I, ----- t- EOF for a PUT (Write)
6 : 1 3 4 I 5 _____ I ------------------ t I 2 I

t
Sequential
GET pointer

Sequential
PUT pointer

An open file may be read from and written to both sequentially and
directly by record.

TIle open statement includes several options which are listed below:

1) CLEAR - TIle CLEAR option overrides the normal initialization
of the sequential GET & PUT pointers. TIle pointers are
initialized so that the file is empty. A subsequent GET
will encounter an· end-of-file. A PUT will write into
record 1. TIlis option is generally used to initialize the
pointers for re-writing a file sequentially.

2) ,END Ilumer ic express ion

TIle END option specifies the line number to GOTO when the
end-of-file is encountered during a read operation. TIle
numeric expression must evaluate to a positive real number
which is a valid program line within the program when the
fractional part, if any, is truncated. If the line does
not exist, a 8TH! # FOUND error occurs. TIlis option
allows the BASIC program to handle an end-file condition
without the program being aborted. If the END option is
not specified, the normal end-file handling is to abort
the program with an 'END-FILE' error.

5-56
Rev. 2 5/77

3) ERROR numeric expression

The ERROR option specifies the line number to GOTO if a
disk I/O error occurs. 'The numeric expression must
evaluate to a positive real number which is a valid
program line within the program when the fractional part,
if any, is truncated. If the line does not exist, a
'STMT # NOT FOUND' error occurs. This option allows

a BASIC program to handle disk I/O errors without being
aborted. If the error option is not included, a disk
I/O error will cause the appropriate error message to
be output and abort the program. the ERR function may
be used in the error handling program section to determine
the type of error.

5.21.3.2 PUT fi1enumber RECORD record number expression List

100 PUT 1 A;B;C
PUT 1 A;A$+","; B

300 PUT 1 RECORD 3 A;B;C

The puT statement causes the values of the expressions in the ex-
pression list to be written onto a record of the file specified by
the fi1enumber expression. The fi1enumber must be a numeric ex-
pression having a value of the digits 0 - 9 when the fractional
part, if any, is truncated.

Each execution of a PUT statement writes one record into the file.

Each disk record is composed of a 250 character string and is, in
fact, a print line. Each expression in the expression list is
evaluated, converted to a string if the resulting value is numeric,
and is placed in the string in exactly the same way that print lines
are built; The rules for building the string are as follows:

Rev. 6 9/77

1) The record string is partitioned into 16 character fields.
A pointer which is initialized to point to the first char-
acter in the string keeps track of the next position in
the string to be loaded.

2) Expressions are evaluated as they are encountered in
scanning the expression list and from left to right,
and are converted to strings according to the formats
described in section 5.16.3 "Output Formats". The
resulting string is loaded into the record string
beginning at the pointer position. Each expression must
be separated from the next expression by a comma{,) or a
semico lon{;) .

5-57

3) If the expression is followed by a comma(,) after the
expression has been loaded into the string, the string is
padded with enough blanks to position the pointer to the
beginning of the next 16 character field.

4) If the expression is followed by a semicolor(;), after the
expression has been loaded into the string the pointer is
set to the character position following the last character
of the expression.

5) After all expressions have been loaded into the record.
string, any remaining characters tn the string are padded
with blanks and the record string is written onto the
diskette.

EXAMPLE: If A = and B = -2.5, the statement:

PUT lA;B

wou1 d cause the fo.ll owi ng· record to be wri tten on
the disk: (Note: denotes a blank)

- •••
A B Character pad

The Statement

PUT.' A,B

would cause the following record to be written to
the disk:

The expressions in the expression list may be numeric and string in any
order subject to the following restrictions: (1) If a string expression
follows a numeric expression it must be immediately preceded by the
current string delimiter. (2) The last character of a string expression
must be the current string delimiter. These restrictions Must Be
Strictly Followed or the expression will not be properly read back.

On Input, numeric values are delimited by blanks. The output format of
numeric values always follows the value with a blank, so numeric strings
built as described will always read back correctly. Strings, however,
may contain embedded blanks. The input logic which reads a record from
the disk looks for the current string delimiter to denote the end of a
string. If a string follows a numeric value, the blank following the
numeric field will be included in the string unless the current string
delimiter precedes the string.

Rev. 8 9/78 5-58

One solution to this problem is to concatenate the string delimiter
on all string variable references, include the string delimiter in all
string constants,and precede all string following numeric
expressions with the string delimiter.' .
EXAMPLE: .

To write the values of A,B$,C, E$ and F$ on the diskette, the PUT
statement would be

100 PUT 1 A'" "+8$+11 II. C' II II+E$+II II. F$+II II " "" " , (This example uses the default delimiter, comma (,))

If it is desired to change the string delimiter, the following approach
could be used to implement the previous example:

10
20

D$ = "." • , , ..
STRING D$

SET STRING DELIMITER

100 PUT 1 A;D$+B$+D$;C;D$+E$+D$;F$+D$

If this approach is used, the string delimiter must be the same
when a record is read as when it was written or incorrect results
will be obtained.

If the record option is not included, the record is written into the
file at the record number specified by the sequential PUT pointer. The
pointer is then incremented by 1.

If the record number option is included,the record is written into
the record specified by the record number expression. The record
number expression must have a value which is a positive real number.
The fractional part is truncated. If the record number is greater
than.the end-of-file as described in 5.21.3.1, a PARM ERROR
occurs.

NOTE; Writing a record directly by use of the RECORD option does
not affect the sequential put pointer. The pointer will
only be moved by a sequent"ial PUT or execution of a PUTSEEK
statement.

If an attempt is made to write more than 250 characters into a
record, the message OUTPUT will be output to the terminal
and nothing will 6e written. .

Rev.9 1/79 5-59

5.21.3.3 GET filenumber RECORD record number variable list

1 A,B,C$ 100 GET
200 GET 1 RECORD 100 A,B C$

The GET statement reads a record from the file specified by the
filenumber expression and assigns the values read to the variable
list. The fi1enumber expression must evaluate to one of the digits o - 9. The frac tiona 1 part, if any, is trunca ted.

If a string is read for numeric variable, a ITYPE ERROR' results.
If too few values exist in the record string to satisfy the
variable list, a RAN OUT OF DATA error occurs. If an
is made to get a record which is past the last record, an END
FILE error occurs.

If the RECORD option is not included, the record read is the
record specified by the sequential GET pointer. The sequential
GET pointer will then be incremented by 1.

If the RECORD option is included, the record read is the record
specified by the recordnumber expression. The ,expression must
evaluate to a positive real number. The fractional part will be
truncated.

NOTE: The sequential GET pointer is not affected by a direct
GET. The pointer will only be modified by a sequential
GET or by execution of a GETSEEK statement.

5.21.3.4 filenumber

100 CLOSE 1

The CLOSE statement causes the file specified by the filenumber
expression to be closed for disk I/O. The filenumber expression
must evaluate to one of the digits 0 - 9.when the fractional part
is truncated.

Closing a file consists of updating the file entry in the diskette
directory to reflect all operations which were performed upon the
file since it was opened, and disassociating the file from the
program filenumber. As a rule, all files which are opened in a
program should be closed before the program terminates. All files
which have been written into be closed or the directory wil]
not be updated and data written into the file may be lost. Any
files which are left open are implicitly closed by a RUN command
or any command that modifies the program buffer, such as a DELETE,

5-60
Rev. 2 5/77

LOAD or line insertion/deletion. Implicit closure does not update
the d irec tory.

5.21.3.5 ATTRS (filenumber) = numeric expression

100 ATTRS (2) = 19

The ATTRS statement sets the file attributes of the file referenced
by the filenumber to the value of the numeric expression. The file-
number expression must evaluate to one of the digits 0-9 when the
fractional part is truncated. The numeric expression, when the
fractional part is truncated, must evaluate to a valid combination
of the attribute values which are described below:

VALUE

16
8
2
1

ATTRIBUTE

Program File
Object File
Permanent File
Write Protect

A file which does not have a Program or Object attribute is assumed
to be a Data Format file. Some examples are:

19
9

26

16+2+1
8+1
16+8+2

Write protected, permanent, program file
= Write protected, object file

Invalid combination - This would identify
a file as being a Permanent Program file and
Object file, which is not possible.

A main intent of the ATTRS statement is to allow the user to change
the Write Protect and Permanent attributes only. The File Format
attributes should not be changed. The current value of the attribute
parameter may be accessed by the ATTR function.

5.21.3.6 EOF (filenumber) = expression

150 EOF (9) = 50

The EOF statement sets the file length parameter of the file
referenced by the file number to the value of the expression.
The filenumber expression must evaluate to one of the digits o - 9 when the fractional part is truncated. The expression
must evaluate to a positive real number. The fractional part
will be truncated. The EOF statement is used to decrease the
length of a file. The value of the expression should be set to
1 greater than the last record number. For example if a file
contains 100 records and it is desired to delete the last 50
records, the statement

100 EOF (1) = 51

Rev. 2 5/77

would cause record 50 to be the last accessab1e record. The following
cautions apply to the use of EOF statement:

1) The EOF statement does not reset the sequential PUT/GET
pointers. If they are set beyond the new EOF an 'END-FILE
error will occur if a PUT or GET is attempted. Reset the
pointers to the proper values with the GETSEEK and PUTSEEK
statements.

2) Do Not Set The EOF Beyond the true length of the file.
Any sectors remaining on the last allocated track may be
read by a GET and will yield garbage.

3) Resetting the EOF does not release the now unused tracks
for system use. De-allocate the unused tracks by executing
a FREESPACE statement.

5.21.3. 7 FREES·PACE fi1enumber

100 FREESPACE 1

The FREESPACE statement de-allocates any tracks allocated to the
file referenced by fi1enumber which are beyond the current end of
file. Fi1enumber expression must evaluate to one of the digits o - 9 when the fractional part is truncated. If there are no
excess tracks a lloca ted an "END FILE" error resu1 ts.

5.21.3.8 GETSEEK (fi 1enumber) = numer ic expres s ion

50 GETSEEK (1) == 20

The GETSEEK statement sets the sequential GET pointer associated
with the fi1enumber to the value of the numeric expression. The
fi1enumer expression must evaluate to one of the digits 0 - 9 when
the fractional part is truncated. The numeric must
evaluate to a positive real number. The fractional part is
truncated. The value must be greater than zero and less than or
equa 1 to the last record number or a PARM ERROR or "END FILE
error-will occur when a sequential GET is performed. The current
position of the pointer may be accessed by uSing the RECGET function.

5.21.3.9 PUT SEEK (filenumber) = numeric expression

100 PUTSEEK (2) = 30

The PUTSEEK statement sets the sequential PUT pointer associated
with the fi1enumber to the value of the numeric eXDression. The
fi1enumber expression must evaluate to one of the digits 0 - 9
when the fractional part is truncated. The numeric expression must

5-62
Rev. 8 9/78

evaluate to a positive real number. The fractional part is truncated.
The value must be greater than zero and less than the last record
number +2 or a PARM ERROR will occur when a sequential PUT is
performed. The current value of the pointer may be accessed by
using the RECPUT function.

5.21.3.10 RENAME (,fi1enumber) = string expression

100 RENAME (1) = "NEWNAME"

The RENAME statement changes the name of the file referenced by
the fi1enumber to the value of the string exnression. The fi1e-
number expression must evaluate to one of the digits 0 - 9 when
the fractional part is truncated. The string expression must
evaluate to a valid file name. The current name can be accessed
USing the NAME function.

5.21.4 DISK I/O FUNCTIONS

Disk File I/O functions are included within BASIC to provide information
about a currently open file. Each function reference includes a file
number expression which must evaluate to one of the digits 0 - 9 when the
fractional part is truncated. If the specified file number does not
have a file currently opened to it a 'FILE NOT OPEN error occurs. The
disk file I/O functions are detailed in table 5.5.

5-63

Rev. 2 5/77

Function
Reference

ATTR (n)

ERR

ERR$

NAME (n)

RECGET (n)

RECPUT (n)

SIZE (n)

TRACKS Cn)

. FREETR Cn)

Rev. 9 1/79

TABLE 5.5 DISK I/O FUNCTIONS

VALUE

Returns the attribute parameter associated with
file n. See section 5.21.3.5 for a description
of the value.

Returns the error code associated with the last
disk error. ' The error codes are:

o - No Error
1 - Permanent I/O Error
2 - End-F;-l e
3 - Disk Full
4 - File Not Found
5 - Duplicate Name
6 - Parameter Error
7 - Drive Not Up
8 - Permanent File
9 - Write Protect

12 - Printer Attention
The error code is not reset by a successful operation,
so is meaningless unless an error occurs.

Returns the error message string associated with the
last disk error.

Returns a string containing the name of the file
associated with file number n.

Returns the value of the sequential GET pointer
associated with file number n.

Returns the value of the sequential PUT pointer
assoc ia ted with file number n.

Returns the SIZE (in records) of the file associated
with file number n.

Returns the number of disk tracks currently
allocated to file number n .

Returns. the number of di sk tracks currently
available for allocation (free) on the disk
unit associated with file number'n.

5-64

5.22 BASIC PRINT FILE OUTPUT

Micropolis BASIC provides a set of print file output features for systems which
have a hard copy printer device in addition to the standard keyboard-display
terminal. This section specifies each of the printer related language features
and discusses how to use the available features to solve some common printer
programming problems.

5.22.1 Printer Related Language Features

The printer related language features consist of seven statement and option
keywords. They achieve a high flexibility of output control by expanding the
disk file I/O scheme to include print file and terminal file output and by
adding a physical device assignment capability. Following are descriptions
of each statement syntax and function.

5.22.1.1 OPEN filenumber string expression option(s)

Rev. 6 9/77

191 OPEN 1 "*p lI PAGESIZE 66 ENDPAGE 900
291 OPEN 2 "*T"
391 OPEN 7 "*N"

The syntax of the OPEN statement in this context is the same as that
for disk files as shown in section 5.21.3.1. The statement associates
a filenumber with a filename specified in the string expression. '
The filenumber must be a numeric expression with a value of 9) - 9.
The string expression which contains the filename must have one of
three specific values which designate a particular output print device.

1) Filename *p associates the fi1enumber being opened with the
system printer.

2) Filename *T associates the fi1enumber being opened with the
display element of the system terminal.

3) Filename *N associates the filenumber being opened with a null
output device. The output directed to that file will be
discarded or drained.

Any other filename will be interpreted as a disk file name per
section 5.21.3.1.

There are two print file options available with the OPEN
statement:

a) PAGESIZE numeric expression

This option allows the programmer to set a limit value for
an internal system counter which counts the number of lines
output to the associated fi1enumber. The counter is incre-
mented on each PUT statement to the associated file, unless
that PUT statement ends in a comma or semicolon (see section
5.22.1.2). Each time the limit count is reached, the

5-65

counter is reset and the system checks for a correspond-
ing ENDPAGE option.

The numeric expression must evaluate to a whole number from'
- 65535. Ifa print file is opened without a PAGESIZE

option the internal limit value defaults to a value bf 66
which is the number of lines per page on standard 11 inch
forms.

b) ENDPAGE 1inenumber

This option specifies a program line number to which the
system will perform a GOSUB each time that the limit is
reached on the internal lines per page counter. The line-
number must be a numeric expression which evaluates to a
legal linenumber. That line should be the beginning of a
subroutine which programs some appropriate end of page
actions and which ends with a RETURN statement. The RETURN
will go back to the statement immediately after the PUT
statement which triggered the end of page action.

If no ENDPAGE option is specified for a given file the
internal lines per page counter is just reset each time the
1 imi tis reached and pro.cess i ng conti nues norma lly.

5.22.1.2 PUT fi1enumber expression list

Rev. 6

15 PUT "TOTAL = II; A1, "ITEM NAME ="; B$
25 PUT 7 A, B;

The PUT statement causes the values of the expressions in the
expression list to be assembled into an output record which is then
output to the print file device associated with the fi1enumber.
The fi1enumber must be a numeric expression with a value in the
range - 9. The expression list consists of a sequence of
constants and/or variables separated by commas or semicolons. The
rules by which the output record is assembled are the same as those
for PRINT statements as detailed in section 5.20.21. Separate
carriage width wraparound control is provided for the printer
device. If the expression list ends with a comma or semicolon then
no carriage return line feed is output. In this case the internal
lines per page counter of the associated file is not incremented.
(see section 5.22.1.1 - PAGESIZE option). The TAB and FMT func-
tions may be used in PUT statements.

5.22.1.3 CLOSE filenumber

9/77

CLOSE 6
99 CLOSE 2

The CLOSE statement causes the file specified by the filenumber
expression to be closed for output. The filenumber must be in
the range - 9. When a print file is closed the associated
fi1enumber is freed for use in a subsequent OPEN to another file.

5-66

Any files which are left open are implicitly closed by a RUN command
or by any command that modifies the program buffer, such as DELETE,
LOAD or line insertion change.

5.22.1.4 ENDPAGE fi1enumber

25 ENDPAGE 7

28 ENDPAGE R6

The ENDPAGE statement is related to the ENDPAGE option described in
section 5.22.1.1. However, it is syntactically and functionally
distinct. Its function is to end the current output page of the
designated fi1enumber and thereby position the output device to the
beginning of the next logical page. The fi1enumber must be a numeric
expression with a value in the range 0 - 9. When the ENDPAGE state-
ment is executed the current value of the lines per page counter
associated with fi1enumber is subtracted from its limit value. The
resu1 t determi nes the number of empty 1 i nes whi ch.are output to the
file device to complete the current logical page. When the ENDPAGE
statement is complete the associated lines per page counter is reset
to mark the beginning of the next logical page.

ASSIGN (physical device number, logical stream indicator, device
width, null count)

6 9177

ASSIGN (2,1,80,6)
ASSIGN (2,2,132)

30 ASSIGN (1,1)

The ASSIGN statement is a dual purpose statement which provides the
ability to specify the connections of physical output print devices
to logical output streams and the values for carriage width and
null count of the referenced phys i·ca 1 devi ce. The phys i ca 1 devi ce
number must be a numeric expression which evaluates to a 1 or a 2.
The logical stream indicator must be a numeric expression which
eva 1 uates to a 1, 2 or 3:. The devi ce width and nu1-1 count must be
numeric expressions with values in the range 1 - 255. They are
optional parameters in the ASSIGN statement. If they are not in-
cluded, the values corresponding to the referenced physical device
are not changed. If only the device width is included, then the
nu1lcount is left unchanged. Note however that specifying a nu11-
count requires that a device width also be specified, i.e., if the
statement only contains three arguments, the third will always be
treated as a device width.

Logical 'output stream number 1 consists of all output generated by
system messages, keyboard echoing, PRINT statements, LIST commands,
and PUT statements when the corresponding fi1enumber is open to *T .

. Logical output stream 2 consists of all output generated by LISTP
commands and by PUT statements when the corresponding filenumber is
open to *P. The logical stream indicator may be set to a value of
3 to represent both logical output streams 1 and 2.

5-67

Rev. 6 9/77

Physical device number 1 represents the display element of the
keyboard display device that is configured as the system terminal.
(see section 3.3.1 on terminal configuration). Physical device
number 2 represents the hard copy print device which is configured
as the system printer. (see section 3.3.4).

The output of a logical stream is directed to all physical devices
which are assigned to it. A physical device may be assigned to
one or both logical streams. Whenever a physical device is ASSIGNed
its previous assignment state is effectively cancelled. A list of
legal device connections follows:

ASSIGN (1 , 1) - connects terminal display to stream only

ASSIGN (1 ,2) - connects terminal display to stream 2 only

ASSIGN (1 ,3) - connects terminal display to stream 1 and
stream 2

ASSIGN (2, 1) - connects printer to stream 1 only

ASSIGN (2,2) - connects printer to stream 2 only

ASSIGN (2,3) - connects printer to stream 1 and stream 2

In its initialized state BASIC connects the terminal to stream 1
only and the printer to stream 2 only. This state can be restored
by executing an ASSIGN (1,1) followed by an ASSIGN (2,2).

When the terminal and printer devices are configured each device
has a carriage width and a nu11count parameter associated with it.
These parameters may be altered under program control by specifying
optional 3rd and 4th arguments in an appropriate ASSIGN statement.
The width parameter determines the maximum number of spaces on each

for the given device. When a line is output that is longer
than width the autowrap feature is activated and a carriage return
line feed is inserted between character number width and width +1.
The autowrap feature may be disabled at configuration time. The
width parameter may be changed on a given device by restating the
current device assignment with a new width argument. For example,
if the terminal were currently assigned to stream 1 with a width
of 80, it could be changed to a width of 72 with the statement
ASSIGN (1,1,72). Note that any such change remains in effect until
a subsequent ASSIGN statement alters it or until the system is re-
loaded. The nullcount parameter is one greater than the number of
nulls which are output after each carriage return output to a given
device. It is important with unbuffered character serial devices
which may lose characters while the carriage is being returned .

. The mll count parameter for a gi ven devi ce may be dynami ca lly changed
by restating the current device assignment and WIDTH with a new
"nullcount. For example, if the printer were currently assigned to
stream 2, 132 columns, no nulls (nullcount = 1), it could be changed
to stream 2, 132 columns, 5 nulls by using the statement ASSIGN
(2,2,132,6).

5-68

B.ecause BASIC is an interacttve la.n9u.age tt depends on the avail-
abil tty of a display device for system mess:ages and keyboard
echoing. An interlock is therefore built 'in to ensure that stream
1 always has at least one device assigned to it. If an ASSIGN state-
ment is processed the result of which would violate this condition,
then physical device 1 is automatically assigned to stream 1 as part
of the ASSIGN being processed.

5.22.1.6 LISTP X - Y

LISTP
LISTP 1G
LISTP -10
LISTP 1G-
LISTP 1G-1GG

The LISTP command causes a listing of the program tn the current
program buffer to be directed to' logical output stream 2 which is
normally connected with the system printer. This COMMAND is anal-
ogous to the LIST command (see section 5.5) with two exceptions.
The LIST command directs its output to logical stream 1 which is
normally connected to the system terminal display. The LISTP
command outputs a paginated listing with blank lines at the
top and bottom of each page and 60 lines of listing as standard.
(see 5.22.1.7).

X and Y must be legal linenumber constants.

LISTP prints the entire program buffer.

LISTP X prints only line X if present or th.e first line greater than
X if no line X exists.

LISTP X- prints all lines starting with 1 or the first greater than
X through the end of the program buffer.

LISTP -Y prints from the beginning of program buffer thru line Y or
the first greater than Y.

LISTP X-V prints from line X or first greater than X through line Y
or first greater than Y.

5.22.1.7 PAGESIZE numeric expression

Rev. 6 9/77

PAGESIZE 42

The PAGESIZE command is related to the LISTP command. It causes the
number of lines of listing per page of the LISTP command to be set
to the value of the numeric expression in the PAGESIZE statement.
This number is the number of actually printep lines not including the
3 blank lines at the top and bottom of each page. For example, to
list a program on paper which holds 48 lines per page, the statement
PAGESIZE 42 would be the proper value to use. When BASIC is config-
ured the default value for this parameter is 60. .

5-69

NOTE that the PAGESIZE statement as described here 15 syntactically
and functionally di.stinct from the PAGESIZE option of the OPEN
statement as described in 5.22.1.1

5.22.2 Notes On Printer Re 1 ated Programi ng

Used properly and with care the printer related language features in
Micropol is BASIC provide for highly flexible and e"ffi"cient programming
of many common print file related functions. This section provides $oroe
examples and commentary.

5.22.2.1 Separating Print Files and Interactive Messages

There is a large variety of applications which can be programmed in
the following three part structure:

1) Output to the terminal display a sequence of prompting
messages which lead the user through a process of entering
variable data from the terminal keyboard.

2) Process the input data through algorithms which create de-
sired output data.

3) Output to the printer one or more pages which present the
desired output data with proper labelling in an appropriate
report format.

This structure requires the ability to separate output which is
normally intended for the operators terminal from output which is
normally intended for the system printer. In Micropolis BASIC the
separation may be accomplished by using PRINT statements for terminal
display messages and PUT statements to open print files for system
printer output. The technique is illustrated by the following program
for building a depreciation schedule chart.

Rev. 6' 9/77 5-70

100 ••• DATA INPUT SECTION
110
120 PF.: I t'iT II TH I S PP0I3F.:At·1 hi I LL BU I LD A DEPFEC I AT I OH
1 (I P F.: I t'i T II :s: HO 1 . ..1 I t·i[, E A P B·.... E A P DE P P E C I AT I 0 t'i 0 F A F I ::< E II A E T II
14 (I PF.: I t'iT "AT 113HT L I t'iE At'iD 2 0 ACCELEPATED PATES."
150
16 (I I t'iT .. PLEASE Et·iTEF.: ASSET '· ... ALUE .. ;
170 INPUT A
U:: (I PF.: I t'iT II PLEASE TEPt'1 I t'i II ;

19rt It'iPUT T
2 I) P P I t'i T II P LEA SEE t'i T E F I F.: :S: T E A P 0 F T E P t'1 .:: E (3 • 1 '377::' If ;

21 InpUT Y
:;:0
31 ••• PPINT OUT CHAPT HEADInGS
::::2
33 OPEN'3 ".p"
::::4 PUT '3: PUT '3
35 PUT '3 II DEPF.:EC I AT IOt'i SCHEDULE FOF.: $ If; A; If OI·.·'EP .. ; T; If 'lEAP ..
::::6 PUT'3: PUT '3
37 PUT'3" ·· .. ·EAP If !I If ST. Lt·". liEF'. If !I .. BALAt'iCE If !I If 2 (10\ DEF'."!I" BALAt'iCE"

.:::::::u PUT '3
400
410 ••• COMPUTE AND PRINT EACH LInE
420
4::: f"1 E: 1 =A: E:2=A: :S: = A.···· r : It ';"3"
440 FOF.: K= 1 TOT
450 Bl=Bl-S
460 D=2.B2 ·T
470 B2=B2-D
4:::0 PUT 9 Y!lFMT(S!lF$) !lFMT(Bl!1F$)!lFMT(D!lF$) !lFMT(B2!1F$)
4'30 · =·· .. ·+1
5 (I I) t·iE::·::T K
510 CLOSE '3
999 END

6 9/77 5-71

r;::UN
THIS PROGRAM WILL BUILD A DEPRECIATION SCHEDULE
SHOWING YEAR BY YEAR DEPRECIATION OF A FIXED ASSET
AT STRAIGHT LINE AND 200% ACCELERATED RATES.

PLEASE ENTER ASSET VALUE? 100000
PLEASE ENTER TERM IN YEARS? 25
PLEASE ENTER FIRST YEAR OF TERM (EG. 1977)? 1980

DEPRECIATION SCHEDULE FOR $ 100000 OI",IER ,-',e:"
e.,_1 (:s:)

.... 'EAr;:: ST. • DEP. BALANCE 2 I) fiEF'.

19::::0 $ 40 o. 00 $ 96000. 00 $::::000. 00
19:::1 $ 40 o. 00 $ '32000. 00 7360. 00
1'382 $ 40 O. 00 $::::::::000. 00 $ 6771 · 20
1 $ 40 o. 00 $ B4000. 00 $ 622'3. 50
19:::4 $ 40 o. on $ BOOOO. 00 $ 1 · 14
1'3:::5 $ 40 o. 0 $ 76000. 00 $ c::::-.-. -:"1'--,

,_Ie. .. e. •
," e:" 1::,,_1

1986 $ 40 o. 0 $ 72000. 00 $ 4::::50. :::4
1';':::7 $ 4000. 0 $ 6:::000. 00 $ 4462. 77
1'3:=::3 $ 4000. 0 $ 6400 - 00 $ 41 05. -:01:: · .. ,_I

19:::9 $ 4000. 0 $ 6000 · 00 $ ·:-"?7"7 ,_, I I I • 29
1'390 $ 4000. 0 $ 560n · 00 $ 75. 1 0
1991 $ 40 - o. I) $ 520 00 $::: 1 '::ei=' • 0'3 · 1 qq':' _' _' t.;.. $ 40 o. 0 $ 480 · 00 $ 2941 · ,-,0-,

.;, .. :.,.
1993 $ 4ft o. 0 $ 44 - 00 $ 2"(06. 02 · 1994 $ 4 o. 0'-' $ 40 t · 00 $ 24::::'3. 54
1'395 $ 4 o. 00 $ aE, o. 00 $ 22'30. .-.--:t

'::"1

1'396 $ 4 o. 00 $.::.":. ._''- '-' o. on $ 21 07. 14 1,::,q-::o _ •• ' I $ 4 , o. 00 $ 2::: 00. 0 $ 1 e:" -;0
,_If

19'38 $ 4 o. 00 $ 24 tOO. 0 $ 1 • 4'::' .'
1999 $ 4/J o. 00 $ 20000. (I $ 1640. ::: 1
2000 $ 40 o. 00 $ 16000. 0 $ 150'3. 54
2001 $ 40 o. 00 $ 12000. 0 $ 1 ::! ::: • -,,-. ,. -I:.
2002 $ 40 o. dt. $:::000. 0 $ 1':'7-::0 '- I I • E.::::
200:3 $ 40 o. 00 $ 4000. O/J $ 1 175. 46
2004 $ 40 o. 00 $ · 00 $ 1 0::::1 · 42

PERD '

. Rev. 6 9/77 5-72

BflLAt'iCE

:£; '3200 (
$::::464 (
$ 77:=:E.:=
$ 7' 1 t, ';'
$ 65'3 U:::
$ 60'::,:;::
$
$ 51:321
$ 4721E
$ 4:1:4:;:::
$:;:'996::
'I; ::;:E.7'::.':
$:::: ::! 2
$:31 1
$ 2:::E·2'j
$
$ 242::!:c
$ 2Z21:;':;
$ Z 0:-11 (
$ 1 ::: ::: .: ..
$ 17:;:5';
$
$ 1469:J
$ 1 :351 7
$

5.22.2.2 Paginattng Print Files

Rev. 6 9/77

When the number of lines in a print file spans several pri"nted
pages it is often required to print the file with page numbers,
headings and an equal number of lines on each page. The ENDPAGE
statement and the PAGESIZE and ENDPAGE options of the OPEN statement
provide a useful set of tools for accomplishing this goal. The
following example shows the depreciation schedule program of section
5.22.2.1 modified to print on line pages with each page numbered
and titled. Note the use of the PAGESIZE and ENDPAGE options in
line 320 in conjunction with the page heading subroutine at line 600.
NOTE also the use of the ENDPAGE statement in line 510 which ejects
the last report page and leaves the printer at the top of the next
blank page.

5-73

100 ••• DATA INPUT SECTION
110
120 PP I NT II TH I S 1 .•. 1 I LL BU I LII A I AT I Ot'i II

130 PR I tiT II SHOI.t.I I til3 ' ... 'E A F.: BY ' EAF.: I AT lOti OF A F I ::<EII A:SSET II

14 I) PP I NT II AT I GHT L I t'iE At'iIl 2 I) ACC:ELEF.:ATEII PATES."
150 PF.:INT
160 PP I NT II PLEASE Et'iTEF.: ASS:ET ',/ALUE ";
170 It'iPUT A
1 ::: 0 PF.: I NT II PLEASE Et·iTEF.: TEF.:t'l I t'i \'EAF.::S: II ;

1 0;. (I I t'i PUT T
200 I NT II PLEASE Et·iTEF.: F I F.:ST ' EAF.: OF TEPt'l (EG. 19(7) II ;

21 (I I tiPUT ')"
::::00 '!
::::05
310

••• OUTPUT INITIALIZATION

:;:20 OPEN 9 ".P II PAGES I ZE 20 Et'iIIPAGE 6 (I 0
330 P=1:GoSUB 600
::::40 B 1 =A: B2=A: S=A ·T: F$= II $ZZZZZZV • '3'3 II
400
410 ••• COMPUTE AND PRINT EACH LINE
420
440 FOR t<=lToT
450 Bl=Bl;"'$
460 It=2.B2/T
471) B2=E:2-D
480 PUT 9 Y,FMT(S,F$),FMT(Bl,F$),FMT(D,F$),FMT(B2,F$)
4'30 · +1
5 (I 0 t'iE>::T t<
510 ENDPAGE 0;.
520 STOP
600
610 ••• PAGE HEADING SUBROUTINE
620
6:30
.::'40
E.50
660
.::'70
675
E.77
700
710

Rev t 6 9/77

PUT 9
PUT 9 TAB(72);"PAGE ";P
PUT '3
PUT '3 "DEPF.:EC I AT I Ot'i SCHEDULE FOR $ "; A; II O\"ER "; T; II 'lEAP CS:) II

PUT q:PUT '3
PUT '3 II •• .. ·EAF.: II , II ST. Lt·i. DEP. It, II BALAt'iCE ", II 2 (I ItEP. II !I II BALAt-iCE II
PUT 9
P=P+l
F.:ETUF.:N
Et'iD

5-74

PROGRAM WILL BUILD A DEPRECIATION SCHEDULE
;HOWING YEAR BY YEAR DEPRECIATION OF A FIXED ASSET

STRAIGHT LINE AND 200% ACCELERATED RATES.

ENTER ASSET VALUE ? 100000
?LEASE ENTER TERM IN YEARS? 25
)LEASE ENTER FIRST YEAR OF TERM (ES. 1977)7 1980

DEPRECIATION SCHEDULE FOR $ 100000 OVER 25 YEAR(S)

'lEAF.: ST. LN. DEP. BALAt·iCE 2 0 DEP.

1 ':":::0 $ 4000. 00 $ 96000. 00 $::: 00 o. 00
19:::1 $ 4000. 00 $ 92000. 00 $ 7:360. 00
1982 $ 4000. 00 $ 88000. 00 $ 6771 .20
19:::3 $ 4000. 00 $ 84000. 00 $ 6229. 50
1':"84 $ 4000. 00 $ 8000.0. 00 $ 57:31 . 14

$ 4000. 00 $ 76000. 00 $ 5272. .- c:;'
t'd

l'i86 $ 4000. 00 $ 72000. 00 $ 4850. ::::4
113:::7 $ 4000. 00 $ ':,8000. 00 $ 4462. 77
1';'::::=: $ 4000. 00 $ ':.4000. 00 $ 41 05. 75
1'3:::'3 $ 4000. 00 $ 60000. 00 $ 3777. 2':"
1990 $ 4000. 00 $ 56000. 00 $ 3475. 10
1'391 $ 4000. 00 $ 5200 I). 00 $ 3197. 09

DEPRECIATION SCHEDULE FOR $ 100000 OVER 25 YEAR(S)

' EAF.: :ST. Lr·i. DEP. BALAt·iCE 2 (I DEP.

1992 $ 4000. 00 $ 48000. 00 $ 2941. ::::::::
1'3':":3 $ 4000. 00 $ 44000. 00 $ 2706. 02
1994 $ 4000. 00 $ 40000. 00 $ L:::4E:'3.54
1995 $ 4000. 00 $:36000. 00 $ 2290.37
1996 $ 4000. 00 $:32000. 00 $ 2107. 14
1'3':"7 $ 4000. 00 $ 28000. 00 $ 57
1'398 $ 4000. 00 $' 24000. 00 $ 1 4'3

$ 4000. 00 $ 20000. 00 $ 1640.:::1
2000 $ 4000. 00 $ 16000. 00 $ 150'3.54
2001 $ 4000. 00 $' 12000. 00 $' 1 7:=:
2002 $ 4000. 00 $ 8000. 00 $ 1277.68

$ 4000. 00 $ 4 (roo. 00 $ 1175.46

DEPRECIATION SCHEDULE FOR $ 100000 OVER 25 YEAR(S)

\'EAF.: ST. Lti. IIEP. BALAt·iCE DEP.

2004 $ 4000.00 • 00 :I; 1081.42

.Rev.6 9/77 , 5-75

PAGE

BALAnCE

$ 920 I) o. 00
$ 84640. 00
$ 77:=: E.::! • :::: (I
$ 71639. 29
$ 65'308 . 15
$ 60635. 50
$ 557::::4.66
$ 51321 . :::::!
$ 47216. 1 0

:, ._'
$ 43438. :::4
$
$ 3676':,.

F'AI:;E

BALAnCE

$::: 2 5 • (I
$ 31 11'=-'.2:::
$ 2:::629. -:-.-. ... :.,
$ 2':. :::: '3. E,
$ 242::::2.21
$
$ 20510. 14
$ 1 E: :=: E. '=.-. :::: ::::
$ 17::::5'3. 7:=:
$ 15'371. 00
'$::::2
$ 85

PAGE

BALAt·iCE

$ 12436.42

5.22.2.3 Spooling Print Files To Disk For Later Output

The commonality of the OPEN, CLOSE and PUT statements to both disk
and print files makes it possible to alter a print file program so
that the output is saved in a disk file instead of sent tb
The procedure is to change the filename in the relevant OPEN statement
from "*P" to some appropriate disk filename. For example, line 320
in the depreciation program listing might be changed to

320 OPEN 9 "N:DEP-REPORT" PAGESIZE 20 ENDPAGE 600

A print file that has been spooled to disk in this manner can be
printed out at a later time by using the following program:

5 INPUT "ENTER PAGE WIDTH OF FILE TO BE PRINTED";A
10 DIM A$(A)
20 STRING CHAR$(16RFF)
30 INPUT "ENTER NAME OF FILE TO BE PRINTED";A$
40 OPEN 1 A$ END 90
50 OPEN 2 "*"P"
60 GET 1 A$
70 PUT 2 A$
80 GOTO 60
90 CLOSE 1
100 CLOSE 2
110 END

Note that the string into which each disk record is read must be
dimensioned to a length which matches the expected page width of
the report (lines 5 and This ensures that the extra blank
padding that fills each disk record will not be printed out causing
extra blanks lines on most printers.

Note also that line 20 changes the system string delimiter to a
value that is illegal in normal print files. This ensures that the
entire content of each line will be assigned to and printed fromA$
regardless of which characters appear in the print file. If this
were not done any commas in the print file would cause erroneous
output.

5.22.2.4 Draining File Output To A Null Device

Rev. 8

During the program development and test process or in a reduced
system hardware environment it is sometimes useful to run a program
which outputs one or more files and be able to suppress one or more
of the output files while the rest of the program runs normally.
In Micropo1is BASIC this is easily accomplished by changing the
filename in the open statement of each file to be suppressed to a

o":*N". When the program is run all output to "*N" files will be
suppressed or drained away without otherwise affecting program
operation. The following program illustrates this idea.

9/78 5-76

1 G DIM A$ (4 , 3(1)
2(1 FOR J=l TO 4:A$(J}="I;NEXT J
3(1 INPUT II FIRST LINE U-;A$(l}

INPUT "SECOND LINE ";A$(2)

INPUT II THIRD LINE ";A$(3)
6(6 INPUT IIFOURTH LINE ";A$(4)
70 B$="LABELS"
80 INPUT IIADD TO DISK FILE (YjN)";X$
9(6 IF X$ = lIylI THEN B$="*N II
100 C$=II*P"
110 INPUT IIPRINT LABEL (YjN)II;X$
120 IF X$= "yll THEN C$="*N"
130 X$=", II -
140 OPEN 1 B$

PUT 1 A$(1)+X$+A$(2)+X$+A$(3)+X$+A$(4)+A$
CLOSE 1
OPEN 2 C$
FOR J=l TO 4:PUT 2 A$(J):NEXT J
CLOSE 2
GOTO

The file output section attempts to add four lines of input to a
label file and then print a copy of the new label entry. If either
or both of these functions is refused by the operator during the
input section, the program changes the filename variable for the
associated OPEN statement to II*N". When the output section exe-
cutes the refused function output is simply drained, i.e. not
output anywhere.

5.22.2.5 Echoing Of Terminal Output To Printer

8 9/78

On systems with a video terminal and printer device it is often
desirable to obtain a hard copy audit trail of all system program
operation, including all of the prompts and system messages normally
directed to the terminal only. This is easily done by using the
statement

ASSIGN (2,3).

This statement causes the hard copy printer to be connected to logical
output stream 1 which includes all print statements, input dialogue,
keyboard echoing, *T files, and system messages; and to logical out-
put stream 2 which includes all *p print files. Thus everything
aimed at the terminal thru stream 1 will also go to the printer.

This echo mode remains active until changed. The statement ASSIGN
(2,2) will restore the system to normal which is device 1

. (terminal) connected to stream 1 and device 2 (printer) connected to
stream 2.

5-77

(This page left blank deliberately.)

6-1

Rev. 4 7/77

Rev. 4

LABEL

DISKETTE NO.

MICROPOLIS"

51/4"

READ/WRITE HEAD ACCESS
HOLE (BOTH SIDES)

7/77

'----------::....-STRESS RELIEF NOTCHiS

Figure 6.1

6-2

WRITE PROTECT
CUTOUT

DRIVE SPINDLE HOLE

SECTOR/INDEX HOLE
(BOTH SIDES)

VI. DISK SUBSYSTEM THEORY AND DIRECT PROGRAMMING

6.0 INTRODUCTION

This section describes the Micropo1is flexible disk subsystem in
sufficient detail to enable an experienced 8080 assembly language
programmer to implement a disk driver.

6.1 FUNDAMENTALS OF THE FLEXIBLE DISK: MEDIA

6.1.1 Recording Medium

The recording medium used with the Micropolis flexible disk
subsystem is illustrated in Figure 6.1. The medium consists
of a thin, oxide coated circular disk permanently housed in
a protective plastic jacket. The disk rotates freely within
the jacket, which is lined with a material that cleans the
disk as it rotates. Several holes in the plastic jacket
allow a disk drive to access the disk. When a diskette is
loaded into a drive, the disk is clamped to a motor-driven
spindle through the drive spindle hole. The read/write head
and the load pad which presses the disk against the head,
access the disk through the read/write head access holes.
A photo detector senses sector and index holes through the
sector/index hole. A switch in the disk drive senses the
Write Protect cutout. If a Write Protect tab is placed
over the cutout, the diskette may be read, but may not be
written on. If the cutout is open, both read and write
operations may be performed.

6.1.2 Disk Data Format

Figure 6.2 illustrates the format of data recorded on the
diskette. Data is recorded on the diskette on concentric
tracks. The outermost track is Track 0 and the innermost
track is 76 in Mod II subsystems and Track 34 in Mod I
subsystems. Each track has an unformatted capacity of
6250 bytes. Disk data transfers are performed on a block
baSis, which would require a 6250 byte RAM buffer in the
computer for a full track size block. This buffer size
is wasteful of memory, so the actual format used divides
a track into blocks of more manageable size called sectors.
The format used in the Micropo1is flexible disk subsystem
divides each track into 16 sectors. The beginning of each
sector is indicated by a sector hole punched in the disk.
This hole is sensed by a sector/index sensor in the disk
drive. An index hole is located halfway between the holes
for sector 15 and sector 0 and indicates the next hole is
sector 0.

6-3
Rev. 4 7/77

ZERO

11

12

SECTOR HOLES

INDEX HOLE 15

SECTOR PULSE

HEADER

PREAMBLE POSTAMBLE DISK DATA

SYNC CHECKSUM

Figure 6.2

6-4
Rev. 4 7/77

Each sector has an unformatted capacity of anproximate1y 390
bytes. However, not all of the available storage space can be
used for data. The electronics in the disk drive and the nature
of the media and drive mechanism require a certain amount of
space be given up to accommodate the electronic characteristics
and to allow sufficient tolerance in the recording format to
permit interchanging diskettes between different disk drives.
Briefly, the factors which must be taken into account are:
mechanical tolerance in the physical distance between sector
holes punched in the disk; alignment of 'the sector/index sensor
with respect to the read/write head; response of the sector/
index sensor and logic; disk speed variation; write clock
frequency tolerance; and, acquisition time of the read data
decoder.

The recommended sector format is illustrated in Figure 6.2.
This is the format used in disk files created by the Micropolis
Disk Extended BASIC software and is the format required by the
disk bootstrap located on the controller board. This forrmt
was designed to make the best trade-off between storage capacity
and tolerance margins. Although other formats could possibly
utilize more storage capacity, they would be incompatible with
the bootstrap and a complete discussion of the engineering
considerations necessary to design another format is beyond
the scope of this sect ion.

A disk sector consists of the following fields:

1) Preamble: The preamble is composed of anproximately 40 bytes
of zero (0) data bits. The preamble is automatically generated
by the disk controller and is necessary to provide tolerance
for the mechanical alignment and electrical characteristics
of the sector/index sensor. It also provides a field of known
data pattern for synchronization of the read data decoder.

2) Sync': The sync byte is a byte of 0FFH da ta which is used in
the disk controller to define the beginning of useful data.

3) Header: The header is a 2 byte block consisting of the binary
track address of the track on which the sector resides (0-76 (34))
and the address of the sector (0-15). The header is used to
verify that the proper sector is being accessed in a disk I/O
operation.

4) The data field consists of 266 bytes of user data.

5) Checksum: The checksum is a one byte error detection code which
provides error detection in read operations. The checksum is
computed as follows: a) The accumulator and carry are initially
cleared; b) Each byte of the header and data fields is added to
the accumulator with carry. In write operations, the computed
checksum is written immediately following the data field. In
read operations, the checksum is re-computed from the read data
and is compared with the checksum byte which is read. If they
do not compare, a read error has occurred.

6-5
Rev. 4 7/77

UNIT ADDRESS

UNIT SELECTED

4 BIT SECTOR
ADDRESS

SECTOR FLAG

STEP

DIRECTION

PRDY

XFER READY

WRITE PROTECT
STATUS

WRITE

8 BIT DATA

8 BIT DATA

READY STATUS

4 SECOND TIMER

SELECT LOGIC

INDEX SEPARA TOR

SECTOR COUNTER

READ/WRITE
CONTROL

WRITE DATA
ENCODER

DA TA DECODER

SERIAL WRITE. DA TA

SERIAL READ DA TA

DRIVE SELECT

POSITIONER

CONTROL

READ/WRITE/ERASE

CONTROL LOGIC

MOTOR
CONTROL

LOGIC

DRIVE ELECTRONICS

SECTOR/INDEX PULSE

TRACK ZERO

K ZERO SWITCH

MOTOR
DRIVE

STEP
MOTOR

WRITE PR

WRITE PROTECT
SWITCH

READ/WRITE/ERASE CONTROL AND DATA

SPINDLE MOTOR CONTROL

DISKETTE LOADED SWITCH

DRIVE MECHANICS

DISKETTE

o o
I
I
I
I I L ___ ...1

I I

SECTOR/INDEX
PULSE SENSOR

I I SPINDLE
I I
I I
I
I

\.0
I

\.0

6) Postamble: The rest of a sector from the checksum to the next
sector hole is filled with zero data bits. The length of the
postamble allows for the mechanical tolerance in the placement
of sector hales on the disk and tolerance for disk speed and
write clock variations.

6.2 HARDWARE FUNDAMENTA LS

Figure 6.3 is a block diagram of the Micropolis flexible disk
subsystem. The components of the subsystem may be grouped as:
spindle drive control; sector logic; position control logic;
read/write logic; select and head load logic.

1) Spindle Drive Control: The disk drive spindle motor is
controlled by a micro-switch that senses when the diskette
is inserted and loaded, or unloaded. When the diskette is
loaded, the disk is accelerated to a speed of 300 RPM.
After an appropriate delay to allow the speed to stabilize,
the drive is ready to accept commands. If the drive is
selected by the controller, the drive will indicate this
state by asserting ready status.

2) Sector Logic: When the disk is rotating, the sector/index
hole sensor provides the controller with an electrical pulse
corresponding to each hole punched in the disk. The controller
separates the sector and index pulses and counts the sector
pulses, thereby providing the programmer with the 4 bit address
of the sector currently passing under the read/write head. A
flag bit in the status register is provided to indicate when
the sector address is valid and when a read or write operation
may be initiated.

3) Position Control Logic: The read/write head is mounted on a
carriage which is moved from track to track by a stepper
motor-driven lead screw. Positioning is accomplished by
specifying the desired direction (in or out) and issuing
a step command. Control logic in the drive electronics
generates all the signals necessary to cause the motor to
move a track in the desired direction. When a drive is
first selected, such as at power on, the track position of
the drive is indeterminate. . Before read or write operations
may be performed, the positioner must be recalibrated as
follows: when the carriage is positioned at track 0, a
microswitch associated with the positioning mechanism is
made. The state of this "track 0" switch is provided as
a status bit. Recalibration consists of examining the
track 0 status and if it is not true, issuing a command to
step out. After an appropriate delay to allow the command
to be executed, the process is repeated. Once the positioner
has been calibrated, the software must keep track of the
current position.

6-7
Rev. 4 7/77

4) Read/Write Logic: Data is transferred between the computer
and the controller on a byte-by-byte basis. For write
operations, the controller generates the preamble and then
converts 8-b·it byte data from the computer to the serial
data which is recorded on the disk. When the computer
stops supplying data,· the controller automatically writes
zero data to the rest of the sector until a sector pulse
is sensed. For read operations, controller converts
the serial data stream coming from the disk to bytes
and automatically detects the sync byte to determine when
valid data is available.

The controller generates a -"transfer ready" status flag
which indicates that the controller is ready to accept
data in a write operation, or that data is available in
a read operation.

The controller is accessed using a technique called
"memory-mapped I/O". This means that the controller
command, status and data registers are treated as
memory addresses and that controller read/write commands
are actually memory reference instructions. When the
controller data register is accessed in a read or write
operation, the controller forces the computer to wait
antil the controller is ready to transfer data. From
the computer's point of view, the controller appears to
be s low memory.

The read/write control logic in the drive electronics
provides the conversion between the serial digital data
at the controller interface and the serial data signals
at the read/write head. Whenever the drive is performing
a write operation, the positioner control and read logic
is disabled and the appropriate signals are generated to

the read/write and erase heads. The erase head used
in flexible disk drives is a "trim" erase head. Old data
written on a sector is implicitly erased by being written
over by new data. However, any slight track positioning
errors could eause sufficient remnant old data to be left
in the space between tracks to cause data reliability
problems. To eliminate this error source, an erase head
which erases the disk a small distance on either side of
the newly written data is provided. This erase head is
located a small distance behind the read/write head and
cleans up the inter-track gap after data is written.

When a write operation is terminated by the occurrence of
a sector pulse, the erase head is left on a sufficient
amount of time the last data written to be trimmed.
Since the position control and read logic will be inhibited
until the write operation is complete (including the erase),
a new operation must not be attempted for at least one
millisecond after the termination of a write operation.

6-8
Rev. 4 7/77

The drive contains a microswitch which senses the write
protect cutout in the diskette jacket. When the write
protect tab is installed, the write/erase control logic
is inhibitefr. The state of the write protect switch is
available as a status bit.

5) Select and Head Load Logic: The controller will support
up to 4 disk drive units connected in a "daisy chain"
configuration. The drive electronics in each unit are
conditioned by the drive select such that only one drive'
at a time will respond to, or provide, signals on the
controller/drive interface. When a drive is not selected,
the spring-loaded pressure ,pad which holds the disk in
contact with the read/write head is moved away so that there
is no contact and the head is "unloaded". When the drive is
selected, a solenoid is energized, which allows the load pad
to contact the disk so read or write operations may be
performed. The controller contains a 4-second timer which
automatically deselects all units if the controller has not
been accessed for four seconds.

6.3 CONTROLLER REGISTERS

The disk controller occupies a 1K byte block of memory from F400H to F7FFH.
The first half (F400H to F5FFH) is reserved for on-board bootstrap ROM. The
controller command, status and data registers start at address F600H and are
defined as follows:

1) Output Registers

Command Register

F600H or
F601H

z c
COMMAND

CODE

MOD = Command Modifier

The commands available are:

Code Command
Select drive

.)

001

010 Set interrupt enable
(controls sector
'pu1se interrupt)

011 Step 1 track

100 Enable write

101 Reset controller

2 1 0
/ // /"

f /l. ,,// ,/,/
.J'

MOD

Modifier
Contains drive unit address (0-3)

01
00

00
01

enable interrupt
disable

step out
step in

Not used

Not used

6-9
Rev. 4 7/77

2)

Write Data Register

F602H

Input

Sector

F600H

Bits
0-3

4,5

6

7

If the write data register is referenced when the
transfer flag is set during a write operation, the
controller expects a data byte to be on the S100
buss data lines. The PRDY line will be held false
until the controller has accepted the data, then
the PRDY line will be set true for 1 bit time
(4 usee). (See the status register description
for the definition of the transfer flag.)

Registers

Register

7 6
S I
C N
T T.
R.

F
F .L
L G.
G.

5 3 ".-

Definition

2 1

SECTOR
ADDRESS

Sector Address: Address of the sector currently
passing under the read/write head of the selected
drive.

Reserved.

Sector Interrupt Flag: Indicates an interrupt
request has been generated by a sector pulse.
Flag is reset by issuing a reset or an interrupt
disable conunand.

Sector Flag: Indicates the sector address is
valid and that a read or write operation may be
performed. Flag is true for 30 usee at the start
of each sector. All data transfers must be
initiated within 100 u seconds of the flag going
true.

Status Register

F60lH] 6 5 r 3 2 1 0
X P R T S U A
F I

I
E P - K L N D

E N A ! T 0 T I D
R. T D 1 D T R

E I Y I F I,
j

L t
G. I --

6-10
Rev. 4 7/77

F602H

Rev. 8

Bits

2

3

4

5

6

7

Definition
Unit Address: Address of the currently selected
drive. Address is valid only if SLTD is true.

Unit selected. This flag is low true,
i. e. , o =,Selected

1 = Not selec'ted

SLTD is true if a drive has been selected and
the 4-second timer has not expired. SLTD is
low true so that the software may detect when
the controller' is not installed (non-existent
memory references yield 0FFH).

Track 0 status from selected drive.

Write protected status from selected drive.

READY: Ready status from the selected drive.
When true, indicates the drive is ready to
perform commands.

PINTE: PINTE status from the S100 BUSS.

XFER FLAG: Transfer flag. In write operations,
indicates that the controller is ready to accept
data from the computer. In read operations,
indicates the controller has data available to
the computer. When the software detects the
transfer flag has set, all data transfers are
performed by accessing the controller data
register, which automatically synchronizes the
transfer by use of the PRDY line.

, Read D'ata Register

If the read data register is accessed when the transfer flag is
set during a read operation, the controller will hold the PRDY
line false until a' byte of data is available. The controller
will then place the data on the s100 BUSS data lines and set
PRDY true for 1 bit time (4 usec). The data will only be
available for this 1 bit time period.

6-11
9/78

Figure 6.4

DRIVE SELECT LOGIC

Rev. 4 7/77

N MILLISECOND TIMER

Status Read
Re-triggers.
4 second
timer

6-12

Nor uP

elZ.2.014

DSl.A If
!. MSGC.

6.4 DISK OPERATIONS

The following paragraphs describe in detail the steps involved in performing
each of the operations required to operate the Micropolis flexible disk drive
subsystem.

6.4.1 Select a Drive

A drive must be selected to any status read, step or data transfer
operation. Selection must be performed for each operation since the 4
second timer may have deselected a unit since it was last accessed. The
important considerations in selecting a drive are:

1) When the drive is selected, the head will be loaded. A
minimum of 75 milliseconds must be allowed for the head
to load and settle.

2) The sector counter is located in the controller. When a
drive is selected, a minimum of 250 milliseconds must be
allowed for the sector counter to synchronize to the drive.

Figure 6.4 is a flowchart of the select operation.

NOTE that all delays are generated by a software timing loop
subroutine. A read status command is included to re-trigger
the 4 second timer every time the delay routine is entered.

6.4.2 Position the Head

A drive must be selected before a step command can be issued to cause
the head to move 1 track. One step command of the appropriate direction
(in or out) must be issued for each track moved. A minimum delay of 30
milliseconds must be allowed between each step command. (Note a step
in moves the head toward the center of the disk and therefore to a higher

number.) Typical logic to implement a 1 track step is illustrated
in Figure 6.5.

After the head is positioned to the desired track, an extra delay must be
allowed for the head to settle before read/write operations are attempted.
The complete process for an N track move is illustrated in Figure 6.6.

6.4.3 Restore to Track 0
When a drive is first selected, the position of the read/write head is
indeterminate. Prior to performing disk data transfers, the positioner
must be "recalibrated" which consists of stepping the head out until the
track switch is made. If the drive already indicates track 0 status
when first selected, the head is stepped in 8 tracks, then out to ensure
a good track 0 position. Once calibrated, the software must keep track of
the current head position for each drive. The restore logic recolnmended
is illustrated in Figure 6.7.

6-13
Rev. 4 7/77

Figure 6.5

Figure 6.6

Rev. 4 7/77

STEP 1· TRACK

POSITION N TRACKS

(POSITION)

I
5ELGCT

DR''''''

SiEP
IN/OU;

DELRY
t f/) ",,"sEC.

(EXIT)

6-14

Figure 6.7

STeP
IN

RESTORE TO TRACK 0

-------------------If already at track 0, move
off 8 tracks then restore to
ensure a good position.

Rev. 4 7/77

5TJ;P
OWl

NO

";0

1<.£.5 TOR.fi E RP..O R..

6-15

-------If 85 step out cOIIlIl1artds haVe
been given and track 0 bas
not been reached, something
is wrong.

6.4.4 Write Operation

Figure 6.8 illustrates the logic necessary to perform a sector
operation. The program illustrated requires a 268 byte memory
with the first two bytes set to the track and sector address.
sync byte and checksum are generated in the program. The steps
involved in writing a sector are:

1) Move the data to the write buffer.

2) Select the drive.

write
buffer
The

3) Wait for sector flag. When the flag goes true compare the
sector address with the desired sector address. When the
desired sector is found, issue an enable write command.

4) The enable write command causes the controller to generate
the preamble. Wait for transfer ready flag to indicate the
controller is ready to receive data. The software must then
write the sync byte. The timing of the software loop which
tests for .XFER ready and then outputs the sync byte is
extremely critical. The sync byte must be on the buss
data lines within 32 usec after XF£R ready sets. The
following code satisfies the timing requirements:

(HL = F60lH and A 0 when this loop is entered)

*Wait for XFER ready flag

WAIT ORA M
JP WAIT

*INSERT SYNC BYTE
INX H
'MVI M,

5) Each successive data byte must be made available within 32
useconds of the previous byte. When the data register is
accessed, the controller will hold PRDY false until it accepts
the data and then allow PRDY to go true for 1 bit time. The
timing constraints on the write loop are therefore a maximum
loop time of 32 useconds and a minimum loop time of I bit time
(4 useconds). These figures do not include any margin for
clock tolerance, so the actual design goals should be about
28 and 6 useconds for a conservative design.

6) When the checksum has been written, stop accessing the controller
write register. The controller will automatically zero fill the
rest of the sector.

7) After the checksum is written, the program waits for the next
sector flag. At this time the controller terminates the write
operation and the erase delay in the drive starts. The 1 milli-
second software delay allows sufficient time ,for the erase delay
to expire so that step and read functions are again enabled.

6-16
Rev. 4 7/77

Figure 6.8

Controller
generates
preamble

Write
sync
byte

Main

loop

Rev. 4 7/77

NO

SECTOR WRITE

SELECT
DRlvt:

DATA *-
(J)FFH

C:rfT O(.)-rA
Ff2.O/'"l'
BtJFr:sR.

p. 00 DATA
"iO

SUN'.

6-17

__ --------1 ----Wait for
(wAlr SECTOR) des ired

sector

rJo

DGLAY

1-

-1
I
! 1

>1

---Zero
fill
sector
to next
sector
mark

for
erase
delay in
drive

6.4.5 Read Operation

Figure 6.9 illustrates the logic necessary to a sector read
operation. The program illustrated requires a 268 byte read buffer.
The track/sector ID will be read into the first two bytes of the
buffer and when the operation is complete, will be compared against
the desired track/sector address. The steps involved in reading a
sector are:

1) Select the drive.

2) Wait for the sector flag. When the sector flag is true,
compare the sector address with the desired sector.

3) When the desired sector is found, wait for the transfer
flag to set to indicate disk data is available. Note
that no command is necessary to start a read operation,
but you must always wait for a sector flag to indicate
the start of the read.

4) When the transfer flag is set, the sync byte will be
available in 25-28 useconds. The sync byte will only
be available for 3-4 useconds so the timing of the loop
which checks for the transfer ready flag is critical. The
following code satisfies the timing requirements:

(HL = and A = 0 when this loop is entered)

* Wait for XFER RDY flag

WAIT ORA M
JP WAIT

';\-GOBBLE SYNC BYTE
INX H
MOV A,M

5) Each successive data byte will be available within approximately
25 useconds and will be available for about 3 useconds.
When the controller data register is accessed, the
controller will hold PRDY false until the data is
ready, then will place the data on the s100 buss data
lines and allow PRDY to go true for 1 bit time. Once
the software has read a byte, it must not access the
data register again until this bit time has expired.
The timing constraints on the rea.d loop are therefore
a maximum loop time of 25 useconds and a minimum loop
time of 5-6 useconds. These figures reflect a
conservative margin to allow for timing variations
in the disk read data.

6) The last byte to be read from the disk is the checksum.

Rev. 4 7/77

The checksum read should be compared with the re-computed
checksum, to determine if a read error has occurred.

6-18

Figure 6.9 SECTOR READ

SELECT
OJ<\VE

WAlr
SECToR

A-Ol)
;0
e.i-+E<..KSlJM

ry..O\lG DA-rA
1"'0

Rev. 4 7/77

Wait for
controller
to detect
sync

Capture sync
byte and
discard

6-19

>----",(i: 1<. Roo Q
J.lGADE'fi.. ERROQ.

:>-------:1 ... ' Ci tz. (J. CI

First 2 bytes of
buffer shou1d'be
track/sector ID

7) If no checksum error is detected, the first two bytes
read should be compared with the desireotrac"k and
se,ctor addresses to ensure the correct was read.

6.5 ERROR HANDLING

An important cons idera tion wh 1ch may !!E! be ignored in. the des ign of a
flexible disk driver is the handling of errors which occur. Magnetic
storage devices in general are subject to errors. The succeptability
of the diskette to damage or contamination due to handling makes error
handling particularly important in flexible disk systems. Most errors
are of a temporary nature and will be invisible to' the system with a
properly designed driver.

Most errors can be attributed to one or more of the following sources:

1) Transient Electrical Noise

2) Media Contamination - Particles of foreign substances may become
lodged between the head and the recording surface of the disk and
cause data errors.

3) Head Positioning - The read write head may be positioned to the
wrong track if the specified step rate is exceeded or may be
marginally positioned if a drive is misadjusted.

4) Disk Centering - Due to the flexible material of which the disk
is constructed, or in the event the disk is damaged or distorted
due to mis-handling, it is possible that a diskette may be
improperly clamped to the spindle in the disk drive.

The following procedures are recommended to perform proper error handling
in disk read/write operations:

Read Opera t ions

1) Step the pOSitioner to the desired track.

2) Perform the read operation as described in Section 6.9.5. If a
header or checksum error occurs, re-read the sector up to 5 times.

3) If the 5 retrys were unsuccessful, step the positioner off one
track and then back to the desired track. Repeat Step 2. If
still unsuccessful, step the positioner off one track in the
other direction and then back. Repeat 2.

4) Perform the restep procedure given in Step 3 up to 4 If
still unsuccessful, deselect the unit and wait about
seconds for head to unload. Reselect the unit, restore to
track 0, and re-seek to the desired track. Repeat Steps 2 and 3.

5) Perform the reselect function given in Step 4 up to 3 times. If
still unsuccessful, abort the operation with a permanent I/O error.

6-20
Rev. 4 7/77

Write Operation

1) Step the positioner to the desired track.

2) Read the sector immediately preceding the desired sector. Any
errors which occur should be handled in the manner described
for normal read operations. This operation ensures the head'is
properly positioned to the right track and the sector counter is
synchronized with the disk.

3) the desired sector as described in Section 6.4.4.

4) Read the sector just written to ensure the data was recorded
properly. If an error occurs, repeat Steps 2, 3, and 4 up to 5 times.

5) If unsuccessful, perform the restep operation as described for the
read operation and repeat Steps 2" 3, and 4.

6) If 4 restep operations are unsuccessful, perform the reselect
operation as described for the read operation.

7) If 3 reselect operations are unsuccessful, abort the operation
with a permanent I/O error.

If a permanent I/O error occurs, the disk may be improperly centered', there
may be a defect in or damage to the recording surface of the disk, or the
disk may have been written on a marginal drive.

The "restep" procedure described takes advantage of the hysteresis present
in all positioning systems. Friction in the positioner causes the head
position to deviate slightly from the nominal track position. This position
will be different when the head is stepped to a track from different directions.
In normal operations, this slight position error is well within the tolerance
limits for proper operations. However, if errors are encountered in reading
a disk which was written on another drive,that is marginally aligned, the
slight difference may be enough to recover the data.

The "reselect" procedure serves to dislodge any foreign particles and to
recalibrate the positioner, should it be positioned to the wrong track.

6.6 DISK DRIVER

As a comprehensive example of all the principles presented in this section,a
sample disk driver is presented here. This driver provides the facilities to
seek to a track, seek and read a sector, seek and write a sector, and seek
and verify a sector. This verify operation is a special case of a sector
read but only the header bytes are transferred into the buffer. This allows
the use of a single disk buffer to perform write operations, which consist
of a header check prior to write, writing the sector, and a read-after-write
check.

The power-on recalibration is transparent. The driver maintains a table
containing the current track address of each drive connected to the
The user's power on initialize software must set the entries in this table ,to
0FFH. The fLrst time a drive is accessed, the driver will recognize this
flag and recalibrate the positioner on the drive before performing the
specified operation.

6-21
Rev. 4 7/77

When the driver is called, the HL register must point to.-a parameter block
(referred to as a disk control block) which specifies the operation to be
performed. When the driver returns, the condition code will reflect the
status of the operation. (See the listing for details.)

The DCB is structured as follows:

ADDRESS 7 6 543 2

DCB + 0

1 0
FN

CODE. t-----t----r----------------

DCB + 1

DCB + 2

DCB + 3

DCB + 4

ID
F
L
A
G

It
A
W

F
L
A
G

SEC TOR

T R A C K

BUFFER

ADD R E ,S S

ADD RES S

ADD RES S

UNIT
ADDR.

LSB

DCB + 5
Ii--B-U-F-F-' -E--R--A-D-D-R--E-S-S---M-S-B---

The DCB entries are described. as follows:

FN CODE Function code
0 Seek only
1 Seek and read sector
2 Seek and write sector
3 Seek and verify sector

ID FLAG Pre-Write Header (ID) Check Flag o Per form chec k
1 = Inhibit check

RAW FLAG Read-After-Write Check Flag o Perform check
1 = Inhibit check

UNITADDR. Drive Unit Address
0-3

Sector and Track Address are the address of the sector which is to be
written or read and the address of the track upon which the sector
resides. The driver will seek as necessary to move the head to the
desired track.

The Buffer Address is a 16 bit memory address stored in standard
8080 low/high format. ThlS must be the address of a 268 byte read/
write buffer. The first two bytes of the buffer are reserved for the
header.

6-22
Rev. 4 7/77

To perform a write operation, move the data to the read/write buffer,
set up the DCB, and call the driver.

To perform a read operation, set up the DCB and call the driver. When
the operation is complete, the data from the desired sector will be in
the read buffer.

6-23
Rev. 4 7/77

**
* * * * *

DISK DRIVER FOR MICROPOLIS
FLEXIBLE DISK SUBSYSTEM * * * * COPYRIGHT MICROPOLIS CORPORATION *

* 8 JUNE 1977 *
* * **
* * * 1) CALLING SEQUENCE I
* * * * *

LXI
CALL DSKIO
JNZ ERROR

POINT HL TO USER
DCB & PERFORM
OPERATION

* UDCB IS THE USER'S DISK CONTROL * BLOCK WHICH DEFINES THE OPERATION * TO BE PERFORMED AND IS STRUCTURED * AS FOLLOWS:
* * UDCB+0 FUNCTION CODE * 0 SEEK TRACK ONLY * 1 SEEK AND READ SECTOR * 2 SEEK AND WRITE SECTOR * 3 SEEK AND VERIFY SECTOR
* * WRITE OPERATIONS CONSIST OF' * 1) VERIFY THE TRACK/SECTOR 10 * IN THE SECTOR IMMEDIATELY * PRECEEOING THE DESIRED SECTOR * 2) PERFORM THE WRITE OPERATION' * 3) THE SECTOR WRITTEN IS THEN * VERIFIED BY A READ-AFTER-WRITE * CHECKSUM READ * NOTEITHE 10 CHECK AND READ AFTER * WRITE CHECKS CAN BE OVERRIDDEN * BY CONTROL FLAGS IN UDCB+l * FOR WRITING ON UNFORMATTED DISKS
* * UDCB+l CONTROL FLAGS/UNIT SELECT * BIT FUNCTION * 0-1 UNIT ADDRESS * 6 READ-AFTER-WRITE-CHECK * * I-INHIBIT * 7 PRE-WRITE 10 CHECK * CONTROLI" * I-INHIBIT * UDCB+2 SECTOR ADDRESS (0-15) * UDCB+3 TRACK ADDRESS (0-76)(34) * UDCB+4&5 BUFFER ADDRESS * BUFFER ADDRESS IS THE START * ADDRESS OF THE READ/WRITE * BUFFER TO BE USED IN * PERFORMING THE OPERATION.

6-24
Rev. 4 7/77

0000

0400 F3

* * * * * * * * * * *

ALL OPERATIONS
REQUIRE A 266 BYTE BUFFER
ORGANIZED AS FOLLOWS,
BYTE 0 -- TRACK ID
BYTE 1 -- SECTOR ID
BYTE 2-267 -- DATA

BYTES 0 AND 1 ARE FILLED
IN AS NECESSARY BY THE
DRIVER

* 2) THE DISK I/O DRIVER RETURNS WITH * THE CONDITION CODE SET TO Z IF * THE OPERATION WAS SUCCESSFUL AND * NZ IF AN ERROR OCCURRED. THE * A REGISTER WILL CONTAIN AN ERROR * CODE AS FOLLOWS: * 1 PERMANENT I/O ERROR - AN * UNRECOVERABLE DISK ERROR * OCCURRED * 2 PARAMETER ERROR - ONE OF THE * PARAMETERS IN THE DCB IS * INVALID * 3 DRIVE NOT UP - THE SELECTED * DRIVE IS NOT READY * .4 WRITE PROTECT - THE SELECTED * DRIVE IS WRITE PROTECTED AND * A VBITE OPERATION WAS * SPECIFIED * 3) INITIALIZATION REQUIREMENTS,
* * 1) THE DRIVER CONTAINS A TABLE * LABLED "TRA.CKn WHICH CONTAINS * THE CURRENT TRACK POSITION FOR * EACH DRIVE CONNEXTED TO THE * CONTROLLER. EACH ENTRY MUST BE
* INITIALIZED TO FFH TO CAUSE THE * TRACK POSITION OF EACH DRIVE TO * BE HE-CALIBRATED THE FIRST TIME * IT IS ACCESSED
* * 2) THE PARAMETER LABELED "TRKMX" * MUST BE SET TO THE HIGHEST * TRACK ADDRESS WHICH IS 76 FOR * MOD II SUBSYSTEMS AND 34 * MOD I SUBSYSTEMS
* * 3) THE 16 BIT PARAMETER LABELED * BE SET TO THE ADDRESS * OF THE .DISK CONTROLLER WHICH IS * THE BOOT PROM ADDRESS+200H
* * * ORG X'400'
* DSKIO 01

6-25

0401 C5
10402 D5
0403 E5
10404 2113000
0407 39
0408 220807
040B El
040C E5
040D I1F506
0410 0606

PUSH B
PUSH 0
PUSH Ii
LXI H,,"
DAD SP
SHLD STACK
POP H
PUSH H

SAVE REGISTERS

SAVE STACK POINTER

GET POINTER TO
USER'S DCB
COpy USER DCE TO
INTERNAL DCB

0412 7E 05010

LXI D"DCB
MVI B"DCBLEN
MOV A"M
STAXD 0413 12

121414 23
0415 13
0416 05
0417 C21204

1041A 21F506
12141D 7E
12141E FEI2I4
0420 D2D21215
0423 23
0424 7E
0425 E63F
0427 FE04
0429 D2D21215
042C 23
eJ42D 7E
042E FE10
0430 02D21215
121433 23
0434 3AFBI2l6
0437 96
0438 FAD205

043B CDE405

043E CD0504

121441 3AF506
0444 B'7
10445 CACC04

Rev. 4 7/77

INX H
INX D
OCR B
JNZ 05010

* * VALIDATE ,DCB PARAMETERS

*

*

LXI H"DCE
MOV A"M
CPI 4
JNC PARMER
INX H
MOV A"M
ANI X'3F'
CPI 4
JNC PARMER
INX H
MOV A"M
CPI 16
JNC PARMER
INX H
LDA TRKMX
SUB M
JM PARMER

FUNCTION MUST 8E
3 OR LESS

PARAMETER ERROR

UNIT ADDRESS MUST
8E LESS THAN 4

SECTOR MUST BE
15 OR LESS

TRACK MUST BE LESS
THAN OR EQUAL TO
MAX TRACK

* ENSURE DRIVE IS OPERATIONAL
* CALL SLeT

* * SEEK TO DESIRED TRACK

* CALL SEEK

* * GET FUNCTION PARAMETER FROM DCB * AND PERFORM ANY OTHER REQUIRED * FUNCTION

*

*

LOA DCBFN
ORA A
JZ DS100

DONE IF FUNCT::
'SEEK ONLY(0)
DONE

* PERFORM READ/WRITE FUNCTION

* * * RETRY CONTROL FOR READ/WRITE

6-26

0448 3E03
044A 320607
044D 3E04
044F 320507
0452 3E05
0454 320407

0457 2AF986
045A 220rtJ87
0450 3AF506
0460 3D
0461 C26A0.1&

0464 CD8106
0467 C3A204
046A 3D
046B C29704

046E 3AF606
0471 E680
0473 C28304
0476 3AF706
0479 3D
847A E60F
047C 47

Rev. 4 7/77

* * * * * * * •
* * * * * * * * •
* * * •
* * * * DS020

OS030

05040

* * * * DS050

* * *
DS060

* * *

OPERATIONS a
A 3 LEVEL RETRY STRUCTURE IS
PROVIDED AS FOLLOWS a
1 -- IF AN ERROR OCCURS#UP TO !
RETRYS OF THE OFFENDING OPERATION
WILL BE PERFORMED
2-- IF THE LEVEL I RETRYS ARE NOT
SUCCESSFUL#THE POSITIONER WILL
BE STEPPED OFF TRACK AND.BACK
AND THE LEVEL 1 RETRYS WILL BE
PERFORMED. THE LEVEL 2 RETRYS
WILL BE PERFORMED UP TO .1& TIMES
3 -- IF THE LEVEL 2 RETRY
PROCEDURE IS NOT
UNIT WILL BE DESELECTED TO UNLOAD
THE HEAD THEN THE UNIT WILL BE

POSITIONER WILL
BE RECALIBRATED AND MOVED BACK
TO THE DESIRED TRACK AND THE
LEVEL 1 AND 2 RETRY PROCEDURES
WILL BE PERFORMED. THIS WILL BE
DONE UP TO 3 TIMES.IF NOT

PERMANENT 1/0
ERROR WILL RESULT

MVI A,,3
STA L3RTRY
MVI
STA L2RTRY
MVI
STA LIRTRY

PRESET RETRY .
COUNTERS

SELECT DESIRED FUNCTION AND
PERFORM

LHLD DCBAD
SHLD BUFADR
LOA DCBFN
OCR A
JNZ DS060

READ SECTOR

CALL READAL
JMP 05090
DCR A
JNZ 05080

WRITE SECTOR

LOA DCBUN
ANI HCI
JNZ OS070
LDA DCBSC
OCR A
ANI X'0F'
MOV B"A

PRESET BUFFER
ADDRESS
GET FUNCTION

READ SECTOR
CHECK FOR ERROR

IF HEADER CHECK
INHIBIT SET GO
WRITE
BACKSPACE SECTOR
COUNT MOD 16

6-27

847D 00B106 CALL READCK DO PRE-WRITE HDR
8480 C2A204 "NZ 05090 CHECK - ABORT ERR
8483 CD2F06 05070 CALL WSECT GO WRITE
11186 3AF706 LOA oeESC DO RAW CHECKSUM
1489 47 MOV B"A REAO CHECK
IIiSA 3AF606 LOA DCBUN UNLESS INHIBITED
0480 E640 ANI RAFI
14S,. EE40 XRI RAFI
0491 C4B106 CNZ READCK
0494 C3A204 "MP 05090 GO CHECK" FOR ERR
0497 30 05080 DCR A
0498 C20205 "NZ PARMER TRAP-"UST IN CASE

* * VERIFY SECTOR
* 0498 3AF706 LDA DCBSC

049£ 47 MOV B"A
049F CD8106 CALL REAOCK DO CHECKSUM READ

* * CHECK FOR ERROR
* 04A2 CACC04 05090 "Z OS100 NO ERROR-EXIT

04A5 3A0407 LOA LIRTRY LEVEL 1 -- RETRY
04AB 3D OCR A UP TO 5 TIMES
04A9 320407 STA LIRTRY
04AC C25704 JNZ DS050

* * RETRIED 5 TIMES - STEP OFF TRACK
* AND BACK AND REPEAT
* 04AF C03605 CALL RESTEP

04B2 3A0507 LOA L2RTRY PERFORM UP TO 4
04B5 30 DCR A TIMES
04B6 320507 STA L2RTRY
04B9 C25204 "NZ 05040

* * STEPPED OFF 4 TIMES - DESELECT
* ORIVE TO UNLOAO HEAD THEN
* SELECT"RESTORE AND RE-SEEK

* 048C CD6305 CALL RESLCT
048; 3A0607 LOA L3RTRY PERFORM UP TO 3
04C2 3D DCR A TIMES
04C3 320607 STA L3RTRY
04C6 C24D04 JNZ OS030

* * UNSUCCESSFUL ABORT WITH
* PERMANENT 1/0 ERROR

* 04C9 C3CC05 "MP PERMER

* * END OF OPERATION
* 04CC 2A0807 05100 LHLO STACK RESTORE STACK PTR

14CF F9 SPHL
14DfJ £1 POP H RESTORE REGISTERS
0401 Dl POP D

7/77
6-28

Rev. 4

0402 Cl
0403 00
0404 C9

POP B
EIAOR NOP

RET

* *

SPACE FOR EI

* SEEK TO DESIRED TRACK

04D5 COE405
0408 E5
0409 CDBD05
04DC 3EFF
04DE BE
04DF C2E504
04E2 CD7905
04E5 3AF806
04E8 4F
04E9 96
04EA CA0405

* SEEK

SEEK!

*

CALL
PUSH
CALL
MVI
CMP
JNZ
CALL
LOA
MOV
SUB
JZ

StCT
H
LOiRK
A.lX'FF'
M
SEEK!
RESTOR
DCETX
ColA
M
SEEKR

ENSURE DRIVE SLTD
AND READY
POINT HL TO TRACK
SEE IF DRIVE HAS
BEEN INITIALIZED
YES-CONTINUE
CALIBRATE POSITION
GET TRACK FROM DCB
SAVE IN C
ALREADY AT TRACK?
YES-RETURN

* NOT AT TRACK -- ISSUE THE * APPROPRIATE NUMBER OF STEPS TO * MOVE TO THE DESIRED TRACK
* 04ED FAFA04

04F0 CD0705 SEKIN
04F3 3D
04F4 C2F004
04F7 C30105
04FA CDID05 SEXOUT
04FD 3C
04FE C2FA04
0501 CD2D05 SEEKRI
0504 71 SEEKR
0505 El
0506 C9

*

JM
CALL
OCR
JNZ
JMP
CALL
INR
JNZ
CALL
MOV
POP
RET

SEKOU!
STEPIN
A
SEKIN
SEEKRI
STPOUT
A
SEKOUT
SETTLE
M.lC
H

VAIT HEAD SETTLE
STORE TRACK

* STEP POSITIONER IN 1 TRACK

0507 F5
0508 D5
0509 E5
050A AF
050B 320707
050E 2.A0207
0511 3661
0513 l11E00
0516 CD1706
0519 El
051A Dl
051B Fl
05lC C9

0510 F5
051E D5

Rev. 4 7/71

* STEPIN

5TPl

*

PUSH
PUSH
PUSH
XRA
STA
LHLD
MVI
LXI
CALL
PO?
POP
POp·
RET

PS\>,r
D
H
A
DIHCTN
DADR
M.lSTEP+l
D.l30
TIMER
H
D

SET DIRECTION FLAG

STEP IN ONE TRK

STEP T It-1E

* STEP POSITIONER OUT 1 TRACK
* STPOUT PUSH PSui

PUSH D

6-29

051F E5
8520 3EFF
0522 320707
0525 2A0207
0528 3660
0S2A C3130S

0520 D5
052E 11eA0"
0531 C01706
0534 01
0535 C9

0536 CDBDeS
0539 7E
053A B7
053B C24205
053E CD7905
0541 C9
0542 3A0707
0545 B7
0546 C25605
0549 CD0705
054C CD2005
054F CDID0S
0552 CD2D05
0555 C9
0556 CDID05
0559 CD2D05
055C C00705
055F C02005
0562 C9

0563
0564
0567
0569
056C
056F
0572
0573
21576

E5
2A0207
36A0
11CB00
CD1706
(;OE405
El
CD7905
C3D504

Rev. 4 7/77

* *

PUSH Ii
MVI
STA
LHLD
MVI
JMP

A"X'FF'
DIRCTN
DADR
M"STEP
STPI

SET DIRECTION FLAG

STEP OUT ONE TRK
GO WAIT STEP TIME

* *
WAIT HEAD SETTLE TIME

SETTLE PUSH

*

LXI
CALL
POP
RET

D
D,,10
TIMER
D

10 MILLISECONDS

* STEP OFF TRACK ONE AND BACK TO CORRECT * POSSIBLE MARGINAL TRACK POSITION * OF DRIVE WHICH WROTE THE DISK
* IF TRACK" SUBSTITUTE RESTOR
* REST!P CALL LDTRK GET CRNT TRK ADDR

MOV GET CRNT TRK
ORA A
JNZ RSTPA
CALL RESTOR USE RESTOR IF TK "
RET

RSTPA LDA DIRCTN
ORA A
JNZ RSTPB
CALL STEPIN
CALL SETTLE
CALL STPOUT
CALL SETTLE
RET

RSTPB CALL STPOUT
CALL SETTLE
CALL STEPIN
CALL SETTLE
RET

* * RETRY ROUTINE TO RESTORE TO 0 THEN * LIFT HEAD" LOWER HEAD AND RESEEK
* RESLCT

*

PUSH
LHLD
MVI
LXI
CALL
CALL
POP
CALL
JMP

H
DADR
M"RESET

TIMER
SLCT
Ii
RESTOR
SEEK

RESET CONTROLLER

RESELECT"LOWR HEAD

GO RE-SEEK

* RESTORE POSITIONER TO TRACK" * POSITIONER MUST BE STEPPED OUT
* UNTIL THE TRACK" SWITCH IS MADE·

6-30

0579 E5
057A C5
057B CDBD05
057E 36FF
0580 CD8805
0583 3600
0585 Cl
0586 El
0587 C9

0588
0589
058C
0580
058E
21591
0592
0593
0595

E5
COE405
05
C5
2A0207
23
7E
E608
CAA405

0598 3E08

* TO CALIBRATE TRACK POSITION
* RESTOR

*

PUSH H
PUSH B
CALL LDTRK
MVI M.,X'FF'
CALL RESTRI
MVI M.,0
POP B
POP H
RET

* RESTORE TO TK 0
* RESTR 1

*

PUSH
CALL
PUSH
PUSH
LHLD
INX
MOV
ANI
JZ

H
SLCT
D
B
DADR
H
A.,M
TK0
REST3

POINT HL TO TRACK
PRESET TO BAD TRK
RESTORE TO TK 0
SET TRACK=0

ENSURE UNIT SLCTD
AND READY

POINT TO STATUS
BYTE
ALREADY AT
TRACK 0 ?
NO - PRESS ON

* ALREADY AT TRACK 0 - STEP * IN 8 TIMES THEN RESTORE * TO ENSURE GOOD POSITION

*
059A CD0705 REST2
059D 3D

MVI A., 8
CALL STEPIN
DeR A

STEP IN 8
TRACKS

059E C29A05
05Al CD2D05

05A4
05A6
05A7
05A9
05AC
05AF
0580

0E55
7E
E608
C28605
CDID05
0D
C2A605

0583 C3CC05

Rev. 4 7/77

*
JNZ ·REST2
CALL SETTLE WAIT SETTLE TIME

-* STEP OUT UNTIL TRACK 0 SWITCH * IS ACTUATED OR UNTIL 85 STEPS * HAVE BEEN ISSUED SO THAT WE * DONT BANG AGAINST THE STOP * FOREVER IF TK0 SWITCH IS * BROKEN
* REST3
REST3A

*

MVI
MOV
ANI
JNZ
CALL
DCR
JNZ

C.,85
A.,M
TK0
REST4
STPOUT
C
REST3A

LOAD MAX STEPCNT
TRACK 01

YES- PRESS ON
STEP OUT ONE TK
MAX STEPS ?
NO - TRY AGAIN

* MAXIMUM NUMBER OF STEPS HAVE
* BEEN ISSUED - ERROR ABORT
* JMP PERMER

* *FOUND TRACK 0 - WAIT * SETTLE TIME THEN EXIT
*

6-31

05B6 CD2D05 REST4
05B9 Cl

CALL SETTLE
POP B

y.!AIT HEAD SETTLE

058A 01
05BB El
05SC C9

*

POP D
POP H
RET

* LOAD ADDRESS OF CURRENT TRACK ON * CURRENT UNIT INTO HL
* 05ED D5 LDTRK PUSH D

0SBE 3AF606
0sel E603
05C3 SF
05C4 1600
05C6 21FC06
05C9 19
05CA Dl
05eB C9

05CC 3EIOI
05CE B7
05CF C3CC04
05D2 3E02
05D4 B7
05D5 C3CC04
05D8 3E03
050A B7
05DB C3CC04
05DE 3E04
05E0 87
05El C3CC04

F400
F600

F602
F602

Rev. 4 7/77

LDA DCEUN
ANI 03
NOV E"A
I'-1VI D,,0
LXI H"TRACK
DAD D
POP D

* * * *

RET

* ERROR EXITS
* P MV I

ORA
JMP

PARt1ER MVI
ORA-
JMP

DRIVER MVI
ORA
JHP

PROTER r1VI

* *

ORA
JHP

A" 1
A
D5100
A,,2
A
DS100
A,,3
A
05100
A,,4
A
DSI100

t1ASK OUT UN IT

PO INT HL INTO
TRACK TABLE

* ** * REGISTER DEFINITIONS AND * * FLAG EQUATES FOR MICROPOLIS * * FLEXIBLE DISK CONTROLLER B *
**
* * * BPROM EQU X'F400'
DIADR EQU EPROM+X'0200'
* * DATA REGISTERS
* WDATA EQU DIADR+X'02'
RDATA EQU

* * STATUS REGISTERS
* 6-32

F600

0040
0080
0020

F601

0080
0040
0020
0010
0008
0004

F600

0020

0040

0060

0080

00A0

Rev. 4 7/77

DSECTR EQU
* 0-3

DIADR
SECTOR COUNT
SPARE * 4 * 5 SPARE

* 6 SCTR INTERRUPT FLAG
SECTOR FLAG * 7

* * * SIFLG
SFLG
DTMR

* *

FLAG BITS

EQU X'40'
EQU X'S0'
EQU X'20'

DSTAT EQU DIADR+l * 0-1 UNIT ADDRESS
* 2 UNIT SELECTED (LOW TRUE)

TRACK 0 * 3 * 4 t.,rR I TE PROTECT
DISK READY
PINTE
TRANSFER FLAG

* 5 * 6 * 7
* * FLAG BITS
* TFLG
INTE
RDY
t.,rpT
TK0
USLT
* *

EQU X'S0'
EQU X'40'
EQU X'20'
EQU X'10'
EQU X'0S'
EQU X'04'

* COMMAND REGISTER
* DCMND EQU DIADR
*(ALSO WILL RESPOND TO DISK+1)
* * * * * * SLUN
* SINT
* * STEP
* * WTCMD
* RESET
* * *

0-1
5-7

COMMAND MODIFIER
COMMAND

COMMANDS

EQU X'20' SELECT UNIT
MODIFIER CONTAINS UNIT"ADDRESS
EQU X'40' SET INTERRUPT
MODIFIER =1 ENABLE INTERRUPT

=0 DISABLE INTERRUPT
EQU X'60' STEP CARRIAGE
MODIFIER =00 STEP OUT

=01 STEP IN
EQU X'S0' ENABLE WRITE
NO MODIFIER USED
EQU X'A0' RESET CONTROLLER
NO MODIFIER USED

6-33

* 0086 SCLEN EQU 134 SECTOR LNGTH/2
* * * SELECT DRIVE SPECIFIED
* BY UNIT ADDRESS IN DCB
* 05E4 D5 SLCT PUSH D

05E5 C5 PUSH B
05E6 E5 PUSH H
05£7 2A0207 LHLD DADR GET CONTROLLER ADR
05EA 3AF606 LDA DCBUN GET UNIT ADR FROM
0SED E603 ANI X'03' DCB
0SEF 47 MOV AND SAVE
05F0 23 INX H POINT TO STATUS
0SFI 7E MOV AND READ
0SF2 4F MOV SAVE STATUS
05F3 E607 ANI X'07' MASK USLD & ADDR
0SF5 A8 XRA B DESIRED UNIT PREV

* NOTE-THIS TEST WILL FAIL IF
* CONTROLLER IS NOT PLUGGED IN

0SF6 79 MOV A"C SELECTED?
0SF7 CA0C06 JZ SL010 YES-CHECK RDY
05FA 78 MOV GET UNIT ADDRESS
05FB F620 ORI SLUN BUILD COMMAND
05FD 77 MOV OUTPUT COMMAND

* WAIT 250 MSEC FOR
05FE 11 FA00 LXI SECTOR CNTR TO
0601 CD1706 CALL TIMER GET IN SYNC
0604 7E MOV GET STATUS
0605 E607 ANI X'07' SELECTED NOW?
0607 AS XRA B
0608 7£ MOV GET STATUS AGAIN
0609 C21006 JNZ SL020 ERROR IF NOT SLTD
060C E620 SL010 ANI ROY ENSURE UNIT IS
060E EE20 XRI RDY READY
0610 El SL020 POP H
0611 Cl POP B
0612 01 POP D
0613 C8 RZ RETURN IF OK

* DRIVE NOr, UP ERROR
0614 C3D805 JMP DRIVER

* * * 1 MILLISECOND TIMER
* DE=(DELAY) TIME IN MSEC
* * A IS DESTROYED
* 0617 CS TIMER PUSH B

0618 E5 PUSH H
0619 2A0207 LHLD DADR
061C 7E MOV RE-TRIGGER 4
061D 0660 MVI SECOND TIMER
061F 78 T1010 MOV COUNT
0620 D601 SUI 1 DELAY LOOP= 1 .008
0622 B7 ORA A MSEC iS00 NSEC

6-34
Rev. 4 7/77

0623 C22006

0626 IB
0627 7B
0628 B2
0629"C21F06
062C El
0620 Cl
062E C9

062F
0632
0635
0636
0637
0639
063C
0630
063E
063F
0641
0644
0647
0648
0649
064C
064D
064E
064F
0652

CDE405
3AF706
47
C5
0E86
2A0207
E5
23
7E
E610
C20E05
2A0007
E5
01
3AF606
77
23
70
2A0207
CDE906

0655 3680
0657 23

JNZ T1010+1
* * IMSEC EXPIRED - DECREMENT DELAY * MULTIPLIER & CHECK FDR DONE
*

*

DCX D
MOV AlE
ORA D
JNZ TI010
POP H
POP B
RET

* WRITE 1 SECTOR
* *

* * * *

*

CALL
LDA
MOV
PUSH
MVI
LHLD
PUSH
INX
MOV
ANI
JNZ
LHLD
PUSH
POP
LDA
MOV
INX
MOV
LHLO
CALL

SLCT
DCEse
BIA
B
CISCLEN
DADH
H
H
AIM
WPT
PROTER
BUFADR
H
D
DCBTK
MIA
H
MIB
DADR
GETSEC

ENSURE UNIT SLD
AND READY

C <-BYTCT/2
GET CONTROLLER ADR

READ STATUS
ABORT IF
'WRITE PROTECTED

GET BUFFER ADOR

MOVE TO DE
MOVE TRACK AND
SECTOR ID TO WRITE
BUFFER

GET CONTROLLER ADR
FOR SECTOR

FOUND DESIRED SECTOR-
ENABLE\,jR 1 TE

MVI "MI\TTCMD
INX H

* WAIT FOR TRANSFER FLAG
* 0658 B6 WS010 ORA M

0659 F25806 JP WS010
* * INSERT SYNC BYTE

065C 23
0650 36FF

065F AF
0660 EB
0661 0600

Rev. 4 "7/77

*

*

*

INX H
HVI MIX'FF'

XRA A
XCHG
MVI 8 1 0

CLEAR CARRY

AND CHECKSUM

6-35

* WRITE HEADER " DATA FIELD
* 0663 7£ WSfJ20 MOV A"M GET BYTE FROM MEM

0664 12 5TAX 0 WRITE TO DISK
0665 88 ADC B ADD TO CKSUM
0666 47 MOV B"A SAVE CKSUM
0667 23 INX H NEXT BYTE
0666 7E MOV A"M -ETC-
0669- 12 STAX 0
066A 88 ADC B
066B 47 MOV B"A
066C 23 INX H
066D 0D DCR C
066E C26306 JNZ WS020

* * END OF DATA INSERT CHECKSUM
* 0671 78 MOV A"B

0672 12 STAX D'

* * \,TAIT END OF SECTOR
* 0673 El POP H

0674 AF XRA A
0675 B6 \'5030 ORA M WAIT seTH FLAG
0676 F27506 JP \15030
0679 110100 LXI D"l WAIT 1 MSEC FOR
067C C01706 CALI.. TIMER ERASE DELAY
067F 01 pop B
0680 C9 RET

* * * READ 1 SECTOR
* VERIFY CHECKSUM AND HEADER
* * RETURNS Z=OK
* NZ=ERROR
* 0681 CDE405 READAL CALI.. SLCT ENSURE UNIT IS
* ROY + SLTO

0684 3AF706 LOA DeBSC GET SECTOR ADDR
0687 47 MOV E"A FROM DCB
0688 05 PUSH S ..
0689 0E86 MVI C"SCLEN e <- BYTCT/2
0688 COD606 CALL \TTSYNC DES-IRED

* SECTOR & STRIP
* SYNC BYTE
ate

* FOUND DESIRED SECTOR - READ
* 068E EB XCHG

068F MVI B,,0 CLR CHECKSUM
* * READ LOOP
* 0691 lA RDAlr2J LDAX D READ FROM DISK

0692 77 MOV M"A MOVE TO BUFFER

6 .. 36
Rev. 4 '7/77

0693 23
0694 88
0695 47
0696 lA
0697 77
0698 23
0699 88
069A 47
0699- 00
069C C29106

069F lA
06A0 88
06Al Cl
06A2 C0

06A3 2A0007
06A6 EB
06A7 CDBD05
06AA lA
06AB BE
06AC e0
06AD 13
06AE lA
06AF B8
06B0 C9

06Bl C5
0682 CDE405
0685 0E8S
06B7 CDD606

06BA 0600
068C 7E
06BD 12
06BE 88
06BF 47

Rev. 4 7/77

*

INX
ADC
MOV
LDAX
MOV
INX
ADC
MOV
OCR
JNZ

H
B
B"A
D"
M"A
H
B
E"A
C
RDA!0

NEXT LOC
ADD TO CHECKSUM
AND SAVE
NEXT READ
-ETC-

END OF DATA?
NO-LOOP

* END OF DATA-READ CHECKSUM
* LDAX D
RDA020 CMP B

POP B
RNZ

*

COMPARE \-fiTH
COMPUTED CHECKSUM
RETURN IF ERROR

* CHECKSUM OK-VERIFY HEADER
*

*

BUFADR LHLD
XCHG
CALL
LDAX
CMP
RNZ
INX D
LDAX D
CMP B
RET

LDTRK
D
M

* VERIFY SECTOR
*

POINT DE TO READ
BUFFER
POINT TO CURRENT
TRACK AND COMPARE
WITH TRACK ID READ

COMPARE SECTOR 10
WITH DESIRED SCTR

* READ THROUGH SECTOR WITHOUT * MOVING DATA INTO MEMORY AND * VERIFY TRACK AND SECTOR ID * AND CHECKSUM
* * ONLY TRACK AND SECTOR ID ARE READ * INTO MEMORY AND CHECKSUM IS * VERIFIED
* * SECTOR IS SPECIFIED BY E REG
* * RETURNS Z=OK * NZ=ERROR
* READCK PUSH B

*

CALL SLCT
MVI C"SCLEN-l
CALL WTSYNC

HVI 8,,0
MOV A"M
STAX D
ADC B
MOV B"A

SAVE SECTOR
ENSURE SLTD&RDY
C <- BYTCT/2-1
WAI,T SECTOR & STRP
OFF SYNC BYTE
CLR CHECKSUM
READ TRACK 10
SAVE IN BUFFR
ADD TO CHECKSUM
AND SAVE

6-37

06C0 13
06Cl 7E
06C2 12
06C3 88
06C4 47
06CS 00

06C6 7E
06C7 86
f06C6 47
06C9 00
06CA 00
06CB 7E
06CC 88
06CD 47
06CE 0D
06CF C2C606

06D2 7E
06D3 C3A006

06D6 2A0007
06D9 EB
06DA 2A0207
06DD CDE906
06E0 23
06El B6
06E2 F2E106
06E5 23
06E6 7E
06E7 AF
06£8 C9

06E9 7E
06EA B7
06EB F2E906
06EE E60F
06F0 AS
06Fl C2E906
06F4 C9

Rev. 4 .7/77

*

INX D
MOV AIM
STAX D
ADC B
MOV BIA
NOP

READ SCTR ID
AND SAVE

* READ THROUGH REMAINDER OF SECTOR * TO COMPUTE & VERIFY CHECKSUM
* RDCKl" MOV READ FROM DISK

ADD TO CHECKSUM
SAVE CKSUM

*

ADC
MOV
NOP
NOP
MOV
ADC
MOV
DCR
JNZ

AIM
B
BIA·
C
RDCK10

-ETC-

* END OF DATA - READ CHECKSUM
*

* * *

MOV AIM
JMP RDA020 GO CHECK HDR &

CHECKSUM

* WAIT FOR DESIRED SECTOR * TO COME AROUND AND STRIP OFY * SYNC BYTE FOR READ ROUTINES
* WTSYNC

WT5010

* * * * GETSEC

*

LHLD
XCHG
LHLD
CALL
INX
ORA
JP
INX
MOV
XRA
RET

BUFADR

DADR
GET SEC
H
M
WTS010
H
AIM
A

GET BUFFER ADDRESS

AND CONTROLLER ADR
FOR SECTOR

WAIT FOR XFER ROY
FLAG
OK-READ IN SYNC
BYTE - - THROW IT

CARRY
AND GO READ

WAIT FOR DESIRED SECTOR TO COME
AROUND

MOV AIM
ORA A
Jp. GETSEC
ANI X 'eF'
XRA B
JNZ GET SEC
RET

WAIT FOR SCTR FLAG

OK -IS THIS THE
ONE WE WANT?
NO-WAIT
PRESS ON

* RAM STORAGE REQUIRED FOR DRIVER
*

6-38

•
* INTERNAL DISK CONTROL BLOCK
* 1216F5 DeB EQU • 06F5 DCBFN DS 1

06F6 DeBUN DS 1
e6F7 DCBse- DS 1
06FS DCBTH os 1
e6F9 DCBAD os 2
12101216 DCBLEN EQU *-DCB

* *
121080 HCI EQU X'80' HEADER CHECK INH
121040 HAFI EQU)('4121' RAW CHECK INHIBIT
06FE 4C TRKMX DC 76 MOD E

* * * CURRENT TRACK TABLE
* MUST BE INITIALIZED TO FF
* AT POwER ON TO CAUSE DISK TO
* BE RESTORED TO TRACK 0
* THE FIRST TIME IT IS ACCESSED TO
* CALIBRATE TRACK POSITION
* 06FC FF TRACK DC X'FF'

e6FD FF DC X'FF'
1216FE FF DC X'FF'
06FF FF DC X'FF'

* * 1217121121 BUFADR DS 2 CURHENT BUFFER ADR
* * * 121702 00F6 DADR DC B(DIADR) DISK CTLR ADDR
* * RETRY COUNTERS

0704 LIRTRY DS 1
121705 LERTRY DS 1
121706 L3RTRY DS 1

* 9707 DIRCTN DS 1
0708 STACK OS 2 SAVED SP

* * * 070A END *-*

6-39
Rev. 4 7/77

APPENDIX A '" BASIC ERROR MESSAGES

ARGUMENT- Argument ina function reference is the wro,ng data type or missi.ng.

ARRAY INDEXING ERROR'- A reference to an array element contai:nsan invalid
index. May also be caused if an attempt ;s made to reference an array ele ..
ment before the array is defined in a DIM statement.

CONVERSION ERROR - Attempt assign a real to an integ'er variable and
the converted value is too large.

DIGIT BEYOND RADIX - A number specified in radix format includes a digit which
is invalid\for the specified radix. .

DISK FULL - An attempt was made to allocate another track fora file and no
free tracks remain.

DRIVE NOT UP ... The des ireddi sk unit does not h,ave a di skette loaded, is not
up to speed, or has a rna 1 functjonwhfch prevents it from accepti 'Og, commands.

DUPLICATE NAME - An attempt was made to OPEN a file name which already exists
as a new file.

END-FILE - ·The in a disk file read.

EXTRA INPUT IGNORED- The response to an INPUT statement contained more values
than were needed to satisfy the variable list and the extra values were
ignored.

FILE ALREADY OPEN - File nurnberspecified in an OPEN statement ,already has a
file opened to it.

FILE NOT FOUND - File name specified ina disk 110 command does not exist on
the specified diskette.

FILE NOT OPEN - Fi 1 e number specified ina disk 1/0 statement does not have
a file name opened to it.

FILE TYPE ERROR - The attributes of the referenced file are inconsistent with
the requirements' of the statement or command .that referenced it.

ILLEGAL IMMEDIATE - An attempt'was made to use a statement as a direct command,
but the statement is only val id within a BASIC program.

INPUT OVERFLOW - A program line greater than 250 characters in length was en-
tered- th'eentire program 1 fne'i s 'cancel 1 ed.

INSUFFICIENT INPUT - The response to an INPUT statement contained insufficient
values to sati'sfythe variable list.

INTERRUPT - Execution ofa program was interrupted by entry of a GNTL/C key at
the terminal.

INVALID DISK FILE NAME - Disk file name specified ;s not a valid disk file
name.

Rev. 7 3/78

LOAD OVERRUN -, The length of the BASIC program being loaded exceeds the
memory space' currently available to BASIC. '

LOG OF NEG # - Attempt was made to pass a negative or zero val ue to the
LOG LN function.

MEMORY OVERFLOW - Insuffi cient memory exists for ,execution of the program.

FOR - A NEXT statement was encountered 'prior to execution of a
FOR.,statement specifying the loop var,iable.

NOT A FILE # - File number specified in a disk I/O statement is' not one of
the digits 0- 9.

NOT A LOAD FILE - Attempt to load a data format disk file.

NOT A RECORD # - The value following the RECORD option in a GET or PUT
statement is valid record

NOTHING TO RETURN' TO - A RETURN statement was encountered prior to
a GOSUB statement.

NUMBER OUT OF RANGE- The value of an expression referenced is illegal .
Refer to the description of the statement in error for the range of
val id val ues.'

OVERFLOW - Numeric overflow - Result of an operation is too large to be
contained in a variable.

OUTPUT - A PRINT or PUT. statement has attempted to create an output
,ine (record) greater than 250 characters in length. This exceeds the
maximum' fnternal buffer capacity.' The line (record) is not output.

PARM ERR - Disk I/O Parameter error - usually caused by setting the sequential
GET/PUT pointers to an invalid value.

PERM FILE - An attempt was made to SCRATCH a permanent file.

PERM I/O ERROR -Adisk I/O which Was not recoverable in the
disk I/O retry logic.

PRECISION ERROR - A numeric function or the t operator was referenced with
RSIZE greater ,than 10.

READY - The BASIC interpreter is ready for entry of commands or program
lines at the terminal.

RAN OUT OF DATA - A READ statement depleted the data li'st before satisfying
the variable list. A GET statement encountered the end of the current
record without satisfying the variable list.

A-2

Rev. 8 9/78

SIZES ERROR - One of the parameters of a SIZES statement is invalid or
there are a'lready variables allocated when the statement is encountered.

SQRT OF NEG # - Attempt to pass a negative number to the SQR function.

STACK OVERFLOW - The statement in error contains an expression which is
too complex. Break the expression into multiple expressions which are
less complex.

STMT # NOT FOUND - The statement in error tried to transfer control to a
program line number which does not exist.

SYNTAX - The statement in error is not 'recognizable or contains an invalid
structure such as unequal right and left parentheses.

TYPE ERROR - Attempt to assign a value of the wrong data type to a variable.

WRITE PROTECT - An attempt was made to write on a file with a write protect
, attribute or the diskette on which the file resides has a write protect

tab installed.

UNDERFLOW - Numeric underflow - The result of an operation is too small to
be assigned to a variable.

XtY INDETERMINATE - Attempt to take a fractional power of a negative number
or 0 or to raise 0 to a negative or 0 power, which are undefined

ZERO DIVIDE - Attempt to divide by zero which is an undefined operation.

Rev. 8 9/78

APPENDIX B - BASIC UTILITY PROGRAMS

The PDS MASTER d.iskette included with each Micropo1 is disk subsystem
contains a BASIC UTILITY program which provides the following functions:

B.1 FORMAT A DISKETTE

A blank diskette must be initialized (formatted) before it can be used with
the Micropolis Disk Extended BASIC. Initialization consists of writing
track and sector address information in each sector of the data area of the
diskette and writing an empty Directory on the Directory track. Once initial-
ized, a diskette may be used as a data diskette, or it may be configured as
a system diskette by saving BASIC on it.

Diskettes may be initialized by the following procedure. Read this procedure
through completely and carefully before attempting to initialize a diskette.
Follow the procedure exactly.

1) With BAS IC in the computer and runni ng, insert a tt1ASTER di skette
or a system diskette with the program "UTILITY" previously saved
on it into drive 0 and load the diskette by depressing the actuator.

2) Enter the command LOAD "UTILITY" -t. When the system responds with
READY, enter RUN -t. (-t denotes Carriage Return.) The Utility
program will output its sign-on message and prompt for a function
selection as follows:

DISK UTILITY PGM REV 4.X
ENTER KEY TO SELECT DESIRED FUNCTION

F FORMAT DJSK
MEM EXAM/MODIFY

S SAVE BASIC
E EXIT

3) Enter F -t. The Utility program will output the message:

SPECIFY UNIT NUMBER?

4) Type the number of the disk unit (91-3) that ;s to be used and
press return. The UTILITY program will output the message:"

INSERT BLANK DISKETTE IN UNIT X
ARE YOU READY?

Load the diskette you wish to format into the specified unit.

5) Enter Y -t (for Yes). The Utility program will initialize the
diskette in approximately 70 seconds and then output:

FUNCTION ?

B-1

Rev. 8 9/78

6) At this point, the initialized diskette is ready to be used as
a data diskette. If you wish to create a system diskette, enter
S +. The Utility program will output:

ARE YOU READY ?

Enter Y +. A copy of BASIC will then be written 'on the diskette,
in approximately 60 seconds, and then the Utility program will
output:

FUNCTION ?

7) If you wish to initialize-more diskettes, repeat this procedure
from Step 3.

B.2 MEMORY EXAMINE/MODIFY

This function provides the means of examing or altering the contents of
RAM memory. To examine or modify memory, respond to the FUNCTION? prompt
with M +.
The Utility will output:

ENTER ADDRESS ?
Type the hexadecimal representation of the desired memory address followed by
a carriage return. The Utility will print a carriage return linefeed, the hex
address and the hexadecimal value of the contents of the desired memory loca-
tion, followed by a question mark (?). Enter one of the following responses:

1) If a hexadecimal number from 0 - FF followed by a carriage return
is entered, the contents of the memory location just displayed are
set to the value entered. The address and contents of the next
sequential memory location are then displayed and the Utility prompts
for the next response.

2) If a carriage return is entered, the address and contents of the next
sequential memory location are displayed and the Utility prompts
for the next response.

3) If a colon (:) followed by a carriage return is entered, the
Utility prompts for the entry of a new address to display/modify
as described above.

4) If an exclamation mark (!) followed by a carriage return is' entered,
the Utility exits the memory modify/display function and prompts
for a new function select.

B.3 SAVE BASIC

This function writes a copy of the BASIC system software currently resident
in memory onto a diskette. This function may only be used in conjunction with
the disk initialization procedure for creating BASIC system diskettes.

B-2
Rev. 8 9/78

B.4 EXIT

Enter to exit the utility program.

CAUTION: Each version of BASIC requires its own version of the utility
program. Attempting to run utility with the wrong version of
BASIC may result in catastrophic errors.

B-3

Rev. 7 3/78

APPENDIX C - ACCESSING DISKCOPY FROM BASIC

DISKCOPY is a special overlay utility that writes an absolute binary copy
of one disk onto another. The utility overlays MOOS or BASIC. It uses
all available memory during the copying process. The more memory in a system
the faster the copying process. On average it takes about two minutes to
copy and verify all 315k bytes of a MOD II disk.

NOTE 1: Previous versions of DISKCOPY will not run with BASIC 3.0 and
DISKCOPY 3.0 will not run with earlier versions of Micropo1is
BASIC.

NOTE 2: In multiple drive systems DISKCOPY can be copied onto another
disk by using the FILECOPY utility under MDOS (Section 4.7).

The DISKCOPY utility is invoked from BASIC by using the LINK command.

L INK II [unit:]DISKCOPY"

a sign-on message is output:

MICROPOLIS DISKCOPY VS x.x - COPYRIGHT 1978
SPECIFY UNIT # FOR ORIGINAL (SOURCE) DISKETTE
?

DISKCOPY waits until the unit number is entered. When a number between o and 3 is entered it prompts:

SPECIFY UNIT # FOR DESTINATION DISKETTE
?

and waits until the unit number (0 to 3) is entered. It then prompts:

PUT DISKETTES IN SPECIFIED UNITS
TYPE Y WHEN READY
?

and waits for a Y. A note of CAUTION, we strongly recommend placing a
write protect tab on the original (source) diskette. It is 'possible to
put the wrong diskette in the wrong drive or type the wrong unit numbers.
If your original does not have a protect tab and you make an error,
the original can be overwritten. The write protect tab provides a physical
interlock which disables the write electronics.

When a Y is typed DISKCOPY will start the copying process. During copying,
the process can be temporarily halted between read source and write destina-
tion cycles by typing a control S. The process ;s restarted by typing any'
other key except a control C.

,
The control C will cancel the entry or copy process and prompt:

CANCELLED
MORE?

Rev. 7 3/78

C-1

If a Y is typed DISKCOPY starts from the top asking for the unit numbers
again. If an N is typed DISKCOPY prompts:

PUT SYSTEM DISKETTE IN UNIT 0
TYPE Y WHEN READY
?

When a Y is typed the disk in unit 0 is rebooted. If it's an MDOS diskette
MOOS is booted. If the disk in unit 0 is a BASIC only disk or some other
bootable system, it will be booted in and sign on .. DISKCOPY is overlayed
by the incoming system and is no longer in memory.

When the disk has been copied and verified correctly DISKCOPY outputs:

GOOD COpy
rt10RE ?

If the copy cannot be completed or does not verify correctly DISKCOPY outputs:

PERM I/O ERROR ON DESTINATION DISKETTE

or

PERM I/O ERROR ON SOURCE DISKETTE

indicating where the error occurred.

It is possible for single drive systems to make use of the OISKCOPY utility
to copy from one disk to another. In this case it is imperative that the
original diskette be.write protected with a write protect tab. The procedure
involves specifying the same unit number for both source and destination
disks. Immediately after typing a Y in response to the TYPE Y WHEN READY
prompt, type a control S. The DISKCOPY program will read as many tracks from
the source disk as can be contained in main memory and then pause. When the
select indicator light goes out, remove the source diskette and insert the
destination diskette. Press the return key and as soon as the select
indicator light comes on type a control S again. When the select indicator
light goes out again the data from the source disk has been written to the
destination disk and one complete cycle is finished. This process is
repeated, swaping the source and destination disks in and out until the
entire disk is copied. After the last data is written onto the destination
disk, the program goes directly into a verifying process and will not pause
until this is over. When the source is placed back into the drive and the
return key is pressed the system will prompt: GOOD COpy or output an error
message as discussed above. At this point the copy is complete.

C-2

Rev. 7 3/78

APPENDIX 0 - SUMMARY OF MOOS ERROR MESSAGES

0.1 MOOS EXECUTIVE AND SHARED SUBROUTINES

BAD FILE #

The file number specified is greater than 8.

BAD RECORD #

The record number specified is greater than exists in the specified file.

CANCELLED

A control C was typed at the console, canceling an operation.

COMMAND NOT FOUND

The word typed as a command name, or implicit command (file name) does
not exist. The command was spelled incorrectly or the file name was
not found on the specified disk.

DISK FULL
An attempt was made to allocate an additional track to a file, and no
free tracks exist. The file is closed and the message is output. Some
data may have been successfully written to the file before additional
track space was needed.

DRIVE NOT UP
The disk unit specified is not loaded.

DUPLICATE NAME

The file name already exists on the unit specified. All files on a disk
must have unique names.

END-FILE
The end of the file has been reached during a disk read.

FILE NOT FOUND

The file name specified does not exist on the unit specified.

FILE NOT OPEN

The file with the specified number has been opened.

0-1

Rev. 7 3/78

INDEX PAST EOR

The index position is beyond the end of the record.

LOAD ADDRESS ERROR

The address specified with a file to be loaded into memory would cause
the file to overwrite the operating system.

PARM ERR

A parameter is out of range for a particular command, to big or to small.
This is different than a syntax error caused by a parameter beyond the maximum
input range.

PERM FILE

The file specified with a SCRATCH command or with the @SCRATCH subroutine
has an attribute with bit 1 set high indicating a permanent file.

PERH I/O ERR

A disk I/O error occurred which was not recoverable by the disk I/O retry
logic.

READ ONLY FILE

The specified file has an attribute with bit 0 set high. This inhibits
rewriting of the file.

SYNTAX ERROR

The syntax of a command is wrong. This may be due to incorrect spelling,
or parameters beyond the maximum input ranges; 10 characters for ASCII
and four hex digits for numeric.

SYSTEM VERSION ERROR

An attempt was made to run a system program on the wrong version of the
system.

PROTECT

The unit specified with a SAVE command or a subroutine that writes to the
disk has a disk in it with a write protect tab in place.

WRONG FILE TYPE

The file type does not correspond to the type of operation that is to
be performed.

D.2 EDITOR

FILEBUFFER OVERFLOW

Rev. 8 9/78

D-2

This message occurs whenever there is less than 256 bytes of buffer space
remaining in the edit buffer. Input can continue until the buffer is
completely full, but the message will be repeated after each carriage
return. The file should be written to disk and a new file started. If
a file is loaded from disk and is too large to reside in the buffer, this
message is output and the load is aborted. No data is loaded. This is
most likely to occur in conjunction with the APPEND command. If an APPEND
causes an overfollow, it is aborted and the files that were in the buffer
prior to the command are not changed.

FILE ON DISK NOT UPDATED, PROCEED?

The current working file in the editor buffer has not been saved or resaved
to disk. If you want to continue without updating the disk then type a Y
in response, otherwise type an N.
FILE NOT NAMED

A name has not been given to the current editor file prior to trying to
save it onto a disk.

LINE NOT FOUND

A line number which does not exist in the current text file was specified
in an EDIT command.

LINE NUMBER OVERFLOW

The editor command RENUM specified an increment that caused the line number
to exceed 9999 decimal. The file is only partially renumbered and care
should be taken to do an additional RENUM with a smaller increment to assure
that the file is properly numbered prior to doing any editing on the file.

STRING NOT FOUND

The SEARCH MASK specified with a SEARCH or CHANGE command in the editor
does not exist in the text.

0.3 ASSEMBLER

A

ARGUMENT ERRORs. are flagged with a capital A. They are caused when the
operand field contains and invalid character or a three byte opcode has
a ASCII literal which is out of range. In the later case the value is
truncated to the left. The error is flagged during pass two of the
assembly.
o
DUPLICATE LABEL ERRORs are flagged with a capital D. They are the result
of the same symbolic name being used more than once as a label. The error
is flagged during pass one. The assembler uses the value of the first
label during the assembly.

0-3

Rev. 7 3/78

L

LABEL ERRORs are flagged with a capital L. They are caused by labels
containing illegal characters. Refer to the section on symbolic names.
The error is flagged during pass two of the assembly.

M

MISSING LABEL ERRORs are flagged with a capital r·1 •. They are caused when
a label is missing from a pseudo-op that requires a label. Only two
pseudo-ops require labels. They are the EQU and the INP pseudo-ops. The
error is flagged during pass one of the assembly.

o
OPCODE ERRORs are flagged with a capital O. They are caused by illegal
or missing opcodes. The error is flagged during pass two of the assembly.

R

REGISTER ERRORs are flagged with a capital R. They are caused when a
value greater than 7 or less than 0 is used in the operand file where a
register value should occur. The error is flagged during pass two of
the assembly.

S

SYNTAX ERRORs are flagged with a capital S. They are caused by missing
operands, or improper use of operators. The error is flagged during pass
two of the assembly.

U

UNDEFINED SYMBOL ERRORs are flagged with a capital U. They are caused
when a symbolic name that has never been defined as a label is used as
an operand. Or, the label is used as a forward reference in a OS, EQU,
ORG, or INP statement. When the error is the result of a forward reference,
it is flagged during pass one of the assembly. Otherwise it is flagged during
pass two.

v
VALUE ERRORs are flagged with a capital V. They are caused when the
operand of a two byte opcode, or a DB, is beyond the range 0 to FF hex
(one byte). The assembler truncates the expression to the left and uses
the least significant byte. The error is flagged during pass two of the
assembly.

D-4

Rev. 9 1/79

APPENDIX E - SYSTEM I/O LISTINGS

Supplied in this appendix are the assembly listings of the I/O routines and
the configuration program.

The I/O routines are broken into three Sections El, E2 and E3.

Section El is the logical I/O routine for the console and list streams.
These routines should not normally have to be changed as they are tailored
to support BASIC and MDOS system requirements.

Sec;tion E2 is the console physical I/O handler which is modified as necessary
during the configuration process described in Chapter 2.

Section E3 is the printer physical output handler which must be modified or
rewritten as described in Chapter 2.

Section E4is the configuration logic which is provided for information only
and should not be changed.

Section E5 contains the configuration tables whith may in some cases have
to be changed as described in Chapter 2.

E-l

Rev. 7 3/78

Rev. 9 1/79 E-2

E.1 LOGICAL I/O ROUTINES FOR PDS 4.0

04E8 04 0A @EIADDR DW @@EIADDR
04:8A 04BA @SYtv:TABLOC EQU $; USED IN SYMSAVE AND ASSM
04BA 0e 00 ARGf21 Di' (0
04BC 00 00 ARGl DW
04BE 00 00 ARG2 DW 0
04Ce 00.00 ARG3 DW 0
04C2 00 00 ARG4 0
04C4 00 NARGS DB 0
04C5 05 RSIZE DB 5
04C6 ISIZE DB 3
04C7 28 SSIZE DB 28H
04C8 00 @FORMFLAG DB 0 ; Z =L I NEFEEDS NZ=FORMFEEDS
04C9 40 00 @IDViORD DW 40H ;CURRENTLY ONLY FIRST BYTE
04C13 02 00 FILL 2,O ; ZEPOS FILL
04CD)" .'
04CD 1FT APPENDIXE
07713 ENDIF
077] .'
077] oJ. ".'

077E to' GENEFAL EQUATES
07713 '0'

077}3 000D eR EQU 0DH
077B 0e18 CNTX Eeu 18H ;CONTROL X
077B 0008 13S EQU 8
07713 000A LF EQU 10
07713 0053" BACKARROJJ EQU 5FH
077B 0071 NUROUT EQU 7FH
07713 0003 CNTC EQU 'c' -64
077:8 CNTS EQU 's ' -64
077B 0010 CANCELLED EQU 16
07713 * 077:B CONSOLE DEVICE PORT ASS IGNMENTS

. 077B * 077".8 0e03 TISTAT EQU 3
07713 0002 TDIN EQU 2
077B TOSTAT EQU TISTAT
07713 0002 TDOUT EQU TDIN

0?7B
07?B
07713
0?'tB
077B
077:8
077B
0?7!
0'(113
07'7:8
077:9
077:8
077E
077:8
077:8

077:8
07713
017:8

07?13
07713
07713

0002
0001
0001

0005
0005
0004

0080
0080
0001
0001

04£0 F0 04
04EE 02 05
04t0
0470
04:10
04:fta
04:l0 14: 05
0"2 2A05
04:" 39 8S
04rS 1B 06
04F8 31 08
04:fA 54 06

BJ 06
04rE 00
04FF 03
0500 3F
0501 01

Rev. 9 1/79

* CONSOLE READY FLAG

DIFLG
MSKl
DOFLG
MSK2

EQtJ
rQu
EQU
EQU

2
DIFLG
1
DOFLG

* LIST DEVICE PORt ASSIGNMENTS
* PTSTS
PTOTt
PTDAT
* * tIS T REAtr!
* PMSKl
PMSK2
PMSK3
PMSK4

EQU 5
EQU PTSTS
:EQU 4

FLAG AND ASSIGNMENTS

EQU 80H
EQU PMS"ltl
EQU 1
EOU PMS'3

* VECTORS TO 10 TA»LES AT @CONSOtIADDR AND @tISTADDR
* ORa @CONSOLEADDR

l)W ;CONsotl: to T1BLI
DY @tIOTAllLE ;ttST to TAILI

* * CONSOLE DEvrCE 10 TABLE- -VEctORS TO to H1N»LIR R!NS
*

WRAPFLAG

'N IDTH
CURSOR

ORO
DW
DW
Dt¥
DW
DW
Dw
DB
D:B
DB
DB

@OIOTAl3tE
elN
COUT
ellRK
CDIN
ODOUT
CDBRK
CDINIT
o
3
3FH
1

E-3

; NULL COUNT

Rev. 9 1/79

05-02
Z'502
0502
05,02
0502 00 00
3504 -64
0506 74 05
0508 00 00
050A 3B 06
050C E8 06
0S0E FE 06
0510 00
0511 03
0512 48
0513 01
0514
0514
-0514
0514
0514
0514
0514
0514 CD 8D 07
0517 78
0518 E6 7:F"
051! 47
051B FE 03
051U C8
051E FE 5F'
0520 CA 26 05
0523 EE 7F
0525 C0
0526 06 08 \
0528
0529 C9
-052A

E-4

* LIST DEVICE 10 TABLE- -VECTORS TO 10 HANDLER RTNS
*

PWliAPFLAG

PWIDTH
PCURSOR
'*

ORG
DW 0
Dll LOUT
DW
DiT
DW
DW
DW
DB
DB
DB
DR

LATK
o
tDOUT
LDATN
tDINIT
o
3
48H
1

* CONSOLE LOGICAL INPUT ROUTINE

;NULL COUNT

* STRIPS PARITY FROM INPUT BY1E LEAVING 7 BIT * CHANGESBACKARROR AND INTO SPACE * AND IF A CONTROL C RETURNS THE ZERO FLAG SFT
CARRY FLAG ALWAYS RETURNED CLEAR (NC)

ASCII

CIt\

BSPC

*

CALL
MOV
ANI
MOV
CPI
RZ
CPI
JZ
XRI
RNZ
MVI
INR
RET

@CDIN
A,B
7FH
B,A
CNTC

BACKARROW
BSPC
RUBOUT

'B,Bf
A

* CONSOLE LOGICAL OUTPUT POUTINE

;GET RAW CHR

;STRIP PARITY

; IF BK ARROW'
;TURN INTO CNT H

;FORCE TO NOT ZERO

052A 2A FE 04
052D
052E 2A 00 05
0531 AF
0532 CD 7C 05
0535 22' 00 05
0538 C9
0539
0539
0539
0539

0539
0539
0539
0539
0539
0539
0539 CD 97 07
053C C0
053D 78
053E E6 7F,
0540 FE 13
0542 02 50 05
0545' CD 8D 07
0548 78
0549 ES 7F
05413 FE 13
054D CA 45 05
0550 FE -03
0552 10
0554 C9
0555 0F 00
0564
0564
0564
0564 2A 10 05
0567 E:B
0568 2A 12 e5
056E 3E 01'
e 56r: CD 7C e5
0570 22 12 05
0573 C9

Rev. 9 1/79

COUT LHLD WRAPFLAG
XCBG ;D=NULLS, E=WRAP
LHLD WIDTH ;H=CURSOR, L=WIDTB
XRA A ;0 FLAG FOR DEVOUT
CALL DEVOUT
SHLD WIDTH ;UPDATE CURSOR
RET

* • CHECK CONSOLE READY IF A KEY HAS BEEN PRESSED * IF NOT RETURN IMMEDIATLY.
* IF A KEY PRESSED GET IT AND IF A CONTROL S
* UNTIL SOME OTHER KEY IS PRESSED.
* IF A CONTROL C, THEN PUT ERROR CODE IN A REG. * AND WITH THE ZERO FLAG SET (Z). * ANY OTHER CHARACTER RETURN WITH THE ZERO FLAG * CLEAR (NZ).
* CBRK

PAUSE

CANe

*

CALL
RNZ
MOV
ANI
CPI
JNZ
CALL
MOV
ANI
CPI
JZ
cPt

RET
FILL

@CD:BRK

A,B
7FH
CNTS
CANC
@CDIN
A,B
RUB CUT
CNTS
PAUSE

. CNTC
A ,CANC-ELLED
15,0

* LIST DEVICE LOGICAL OUTPUT ROUTINE
* , LOUT LHLD

XCHG
LHLD
MVI
CALL
SHLD
RET

PWRAPFLAG

PWIDTH
A,l
DEVOUT
PWIDTH

E-5

;STRIPPARITT
; PAUSE
;IS IT A CNTC
;WAIT FOP INPUT
;GET CHARACTER
;STRIP PARITY
; I S IT A CNTS
;YES LOOP
; I S IT A CNTC
jERROR CODE

; D=NULLS E=WR!P
;H=CURSOR, L=WIDTH
;FLAG FOR DEVOUT

jUPDATE PCURSOR

Rev. 9 1/79

0574
0574 .
0574
0574
121577
0578
057:8
057])
05?:B
057B
057]
057]
057B
057:8
057:8
057:8
057:8
05713
057:8
057B
057]
057:B
057:8
05713
057])
12157B
05713
057]
057:8
057]

CD
D0
C3

05713 00
057C

EA

D1

07

05

057C 32 7] 05
057F 48
0580 78
0581 FE 0D
121583 CA BE 05
121586 FE (llA .
0588 CA CC 05

E-6

* LCGICAL LIST ATTENTION CHECK
* LATN

*

CALL @LDATN
RNC
JMP ATT

; PRNT ATTN

* COMMON DEVOUT ROUTINE FOR COUT AND LOUT * LF IS OUTPUT WITHOUT ANY CHANGE IN THE COLM POSITION
.* CR IS CHANGED TO CR .+ NULLS * BS IS CHANGED TO BACKAFROW * CTLX IS CHANGED TO \ LF CR NULLS
* WRAP, IF REQUIRED, OCCURS WHEN THE WIDTH+1 CHARACTER * IS PPESENTED FOR OUTPUT
* * DEVOUT EXPECTS
*

A=0 FOR COUT STREAM OR A=1 FOR LOUT STREAM
D=NULLS FOR SPECIFIED STREAM

* * * * *

E=0 FOR WRAP ENABLED OR E=1 FOR DISABLED
L=WIDTH PARAMETER OF SPECIFIED STREAM
H=LAST COLM PRINTED ON SPECIFIED STREAM
B=CHARACTER TO BE OUPTUT

* DEVOUT PRESERVES D, E, H
* * DEVOUT RETURNS L=NEW LAST COLM OR L=0 IF CR WAS LAST OUT
* * DEVOUT R.ETURNSCARRY CLEAR (NC) IF OUTPUT WAS SUCCESSFUL * IF A PRINTER· ATTENTION OCCURS IT RETURNS CARRY SET (C) * ANrr THE FORCED TO 1,1 AND 2,2. * . ,
DFLAG DB 0 ;0 FOR COUT, 1 FOR LOUT

DEVOUT STA DFLAG ;SAVFWHICH STREAM FLAG
MOV C,B ;SAVE MAIN CHAR IN C
MOV A,B
CPI CR ; IF CR THEN

'" :).

JZ DEV032 • OUTPUT CR + NULLS & ,
CPI LF ;IF LF THEN
JZ OUTPUT LF & COLM UNCHANGED

058B FE 18 CPl CNTX ;IF CONTROL X THEN
058D C2 99 05 JNZ DEV010
0590 0E 5C MVl C • '\' SUBSTITUTE BACKSLASH
0592 CD A1 05 CALL DEV020 • WRAP IF REQUIRED, OUTPUT \ ,
0595 DB RC ATTENTION EFROR EXIT
10596 B6 05 JMP DEV030 · OUTPUT LF,CR+NULLS,COLM=0 ,
0599 FE 218 DEV210 CPI BS ;1r BACKSPACE THEN
J59B C2 A1 05 JNZ

0E 51' MVI C,BACKARROW · SUBSTITUTE BACKARROW ,
05A0 00 NOP ;PATCH PLACEHOLDER
05A1 7B DEV020 MOV A,E
05A2 J37 ORA A ;TEST WRAP ENABLED
215A3 C2 CC 05 JNZ DEV050 ;IF NOT, JUST OUTPUT CHAR
05A6 7C MOV A,H
05A7 BD CMP L ;TEST COLM=WIDTH
05A8 C2 AF 05 JNZ DEV025
05AB CD B6 215 CALL DEV030 ;11 SC DC LF CF. NULLS
05AE D8 RC jATTENTION ERROR FXIT
05AF CD CC 05 DEV025 CALL DEV050 jOUTPUT IT
05B2 DB RC jATTENTICN ERROR EXIT
05B3 24 I NR H ; INCREMENT COLM
05B4 B7 ORA A ;ENSURE CARRY CLEAR
05E5 C9 RET ;NORMAL EXIT
05:B6 * 05:B6 06 0A DEV030 MVI B,LF
05138 CD CD 05 CALL ; OUTPUT LF
05:BB re RC jATTENTION EPROR EXIT
05BC 06 0D MV! 'B,CR ;SET CR FOR OUTPUT
05PE, 5A MOV E,D ;SET NULL COUNTER
05BF CD CD e5 DEV035, CALL DEV055 ;OUTPUT SET CHAR
05C2 DB RC jATTENTION ERROR EXIT
05C3 06 00 MVl],0 ;SET NULL CHAF FOR OUTPUT
05C5 1D nCR E
05C6 C2 :SF 05 JNZ DEV035 ;LOOP UNTIL NULLS COMPLETE
05C9 AF IRA A ;ENSURE CARRY CLEAR
05CA 67 MOV H,A ;AND FORCE
05CE C9 RET

Rev. 9 1/79 E-7

Rev. 9 1/79 E-8

05CC ,',
'1'

05ec 41 DEV050 MOV E,C ;RECOVER MAIN OUTPUT CHAR
05CD CD DA 05 DEV055 CALL ;OUTPUT CgAR FPOM B
05I0 D0 RNC ;SUCCESSFUL EXIT
05D1 F5 ATT' PUSH H ; SAVE WI DTH
05D2 21 01 02 LXI H,201H ;FORCE ASSIGNMENT STATF
051:5 22 EA 04 SHLD @D1PORT jPRESERVING CARRY
05D8 E1 POP H jRESTORE WIDTH
05D9 C9 RET ;ATTENTION ERROR RETURN
05rA .."

'I'

05DA 3A 7'B 05 DEV060 LDA DFLA(! ;" FOR COUT
05DD :B7 ORA A ;OR
05DE CA 92 07 JZ @CDOUT
05f1 C3 E5 07 JMP @LDOUT ;1 FOR LOUT
05E4 e'0 FILL @PCON-$,0

E.2 CONSOLE PHYSICAL I/O HANDLERS

061B * 0€1:B * 061:8 * PHYSICAL DRIVERS START HERE
061B * 061B FIRST THE CONSOLE DRIVEFS
0S1B * 061B ORG @PCON
061B DB 03 CDIN IN TISTAT ie-ET STATUS
061D 00
061£ E6 02 ANI DIFLG
0620 EE 02 XRI MSKl
0622 CA 2C 06 JZ IN010 jlF READY GET CRE

0625 , .. ',-
0625 *SPACE HERE FOR NON-STANDARD JfREA[CHI
0625 *PUT CALL INPALCE OF NO OPS
0625 .-.
0625 00 NOP
0626 00 NOP
0627 0e NOP
0628 C2 lB 06 JNZ CDIN j NOT READY SO WAIT
062:B C9 RET
062C .'
062C DB 02 IN010 IN TDIN jGET CRR FROM DATA PORT
062E 00 NOP
062F 47 MOV :B,A jeHE INTO P
0630 C9 RET j DONE
0631 00 FILL 10,0
06313 '.'

063E DB 03 CDOUT IN TOSTAT jOUTPUT STAT READY PORT
063 I) 00 NCP
063E E6 01 DOFLG jREADY FLAG
0640 IE 01 XEI MSK2
0642 C2 3] JNZ CDOUT ;LOOP
0645 .78 MOV A,B ;INTO A FOR OUT
0646 D3 02 OUT020 OUT TDOUT jOUTPUT IT
0648 00 NOP
0649 C9 RET ;DONE
064A 0A 00 FILL 1O,0
0654
0654 ,t. CHECK BREAK ".'

0654):: IF NO KEY RET NZ
tat IF KEY GET IT J:NU PUT INTO :B

0654 RETURN ZERO '.'

0654 * 0654 DB 03 CDBFK IN TISTAT jREADY STATUS
0656 00 NOP
0657 E6 02 ANI DIFLG
0659 EE 02 XRI MSKl
065:B ce RNZ ;NO KEY IS WAITING
065C DB 02 CDlfRK0 IN TDIN ;IF READY GET KEY
0651 00 NOP
065F.47 MOV B,A
0660 C9 RET jCHR IN B Af'.!D RZ
0661. 0A 00 FILL 10-,0

Rev. 9 1/79 E-9

Rev. 9 1/79 E-I0

066B * SPACE FOP AN INITIALIZATION FOR THE
06611 * CONSOLE DEVICE. LIKE A TTY USING A USART ETC
06€B * 06613 3E AA CrINIT MVI A jDUMMY
066D D3 03 OUT TISTAT
066F 3E 40 MVI A,40H ;RESET THE 8251
0671 :D3 03 OUT TISTAT
0673 31, CE MVI .A ,0CEH ; SETUP EQUI?
0675 D3 03 OUT TISTAT
0677 3E 17 MVI A,17H ;TRUN IT ON
0679 D3 03 OUT TISTAT
067] C9 RET
067C. 4F 00 FILL @PLIST-$,0

E.3 PRINTER PHYSICAL I/O DRIVERS

06CB * 06CE * PHYSICAL HANDLER FOR THE LIST DEVICE
06CB <h

06CB * FOR THE IM5Al 2510-2 PORT :B
06CJ3 * 06CB ORG @PLIST
06CB * 06CB * LIST OUTPUT CHECKS FOR PRINTER ATTENTION
06CB IF PRINTER CARRY SET (e) ON RETURN
06CB ,-.

06CB CD EA 07 LDOUT CALL @LDATN jPRINTEP ATTENTION
06CE DB Re ;YES RETURN CARRY SET
06CF DB 05 LDOUT1 I:-.J PTCTL ;PRINTER READY
06:D1 00 NOP
06t2 E6 01 ANI PMSK3 ; READY FLAG
061)4 EE 01 XF! PMSK4
06D6 C2 CB 06 JNZ LDOUT ;LOOP
0SD9 78 MOV A,B jCHR INTO A FOR OUT
06DA D3 04 LDOUT2 OUT PTDJ. T jOUTPUT CRR
06DC 00 NOP
06ID C9 RET ;DONE
06DE 0A 00 -FILL. 10,0

06E8)'-
"

06E8 .1# PRINiER ATTENTION CHECK ".'

06E8 :!: CARRY SET=ATTENTION
0618 * 06E8 AF LDA'IN IRA A ;NO OP TO ACTIVATE
06E9 Cg RET j IF SUPPORTED
06EA DB 05 IN PTSTS ;ATTENTION STATUS
06EC 00 NOP
06ED E6 80 ANI PMSK1 jATT FLA3
06EF EE 8'3 XRI PMSK2
06]1 C8 RZ jOK
06F2 37 STC jSET CARRY FOR ATT
0t3F3 C9 RET jDONE
06F4 0A 00 FILL 10,0
06FE * 06FE * INITIALIZE THE LIST DEVICE. LIKE A USAPT ETC
06FE .1# #,,

06FE AF LDINIT XEA A ; NO OP
06FF C9 RET ;TO ACTIVATE
0?0e AA MV! A,0AAH ; DUMMY
0702 D3 05 LINIT1 OUT PTeTL
0704 3E 4'3 A,40H ;RESET
0706 D'l: ·u 05 1,INIT2 OUT PTCTL
0708 3E CE MV! A,e'CER ;SETUP EQUIP
0?0A D3 05 I,INIT3 OUT PTeTL
070C c·E 17 MVI A,17H ;TURN ON
070E D3 05 LINIT4 OUT PTCTL
0710 C9 RET
0711 . SA e0 FILL @PLIST+e:B0H-$
077B *
Rev. 9 1/79 E-l1

Rev. 9 1/79 E-12

LOGIC . ,

2A2F '

2A2F ,I. CONFIG FOR MDOS
2A2F CONFIG FESIDES AT THE APP AFEA ",'

2A2F ... WEEN THE IS BOOTED DOWN.
2A2F * T!-IE USER SETS THE DESIRED CONFIG ON TEE
2A2F PROGRA:1 INPUT TCHES AND JMP TO CONFIG. .. ,'
2A2F CONFIG INITIALIZES THE TERMINAL HANDLER
2A2F A THE APPROPRIATE INITIALIZE CODE
2A2F If\TO PLACE. CHANGES SOFTHAL'I TO A Jtv:P TO MDOSSTAFT
2A2:F .'.
2A2F ORG @APROGRAt-': ;CONFIG BEGINS
2B00 ",'

21300 A0 01 CNFIG LXI SP,@STACK
2B03 3A D0 e4 LDA CNBR. ieRK FOR VALID CONFIG #
2B06 137 ORA A
2B€7 FA 48 213 JM CN040 ; SPECI AL
2B0A i.e

2B0A IF 13 IT7 LOW THEN USE GENERAL HANDLER
2B0A UR E # IS VALID
2B0A i.t

2B0A FE 07 CPI NUMBER ; NUM:B OF
2B0C DA 12 213 JC CN010 jOK
2B0F C3 2] $. INVALID CODE TRAP ,
2B12 ','

2P.12 21 9A 2] CN010 LXI H, CNTBL ;TABLE OF CONFIGURATIONS
2]15 87 ADD A ;A*2
21316 5F MOV E,A ;SET UP DE TO ADD TO HL
2]17 16 20 MVI D,0 ; DE=A*2
2:819 19 DAD D
2B1A 5E MOV E,M ; ADDRESS FROM
2]113 23 I NX H ;CONFIG TABLE
2B1C =6 MOV D,M
2B1D 21 72 2B LXI H,GHT13L ;TABLE OF LCCATIONS
2B20 0E 0C MVI C.NUMITEMS JTO BE CONFIGED

2B22 1A
2:B23 13
2B24 D5
2B25 5E
2:B26 23
2:B27.56
2B28 23
2B29 12
2B2A Dl
2B2B 0D
2B2C C2 22 2B
2:B2F
2B2F
2B2F
2B2F
2B2F EB
2]30 4E

23
2B32 11 6] 216
2]·35 CD 3F 213
2B38
2B38 21 99 15
2B3B 22 CE 04
2B3E E9
2B3F

2B3F
2B3F 7E
2B40 12
2:B41 23
2B42 13
2:B4·3 0D
2B44 C2 3F 2B
2B47 C9
Rev. 9 1/79

CN020 LDAX
INX
PUSH
MOV
I NX
MOV
INX
5'111
POP
DCR
JNZ

D
D
D
E,!":
H
D,M
H
D
D
C

;GET VALUE
;NEXT POSIT IN
;SAVF THIS AD DR'
;LOCATION IN HANDLER
;TO BE CONFIGURED
; INTO DE

;PUT CONFIG INTO HANDLER
;GET ADDR BACK

OF LOCATIONS-1
;LOOP TILL DONE

* HANDLER 'gAS NOW BEEN CONFIGURED FROM TABLE * MOVE INITIALIZATION CODE INTO CIN!T

STARTUP

XCHG
MOV
I NX
LXI
CALL

LX!
SHLD
PCHL

e,M
H
D,CDINIT
CN030

;ADDR OF CINlf LENG
; LENG INTO C

; I NI T RTN I N HANDLER.
;MOVE HL TO DE FOR' C

;CHANaE SOLF HALT
@SOFTHALT+1 ;TO START MDOS

; RESTART MDOS

* SIMPLE r,OVE CODE - MOVE FROM HL TO DE FOR A LENGTH C
* CN030 MOV

STAX
INX
I NX
DCR
JNZ
RET

A,M
D
H
D
C
CN030

E-13

Rev. 9 1/79 E-14

2]48 .. ,.'
2B48 *SPECIAL CONFIGURATIONS
2:B48)" .'
2]48 E6 7F CN040 ANI 7FH ;STRIP orF SPECIAL CODE
2B4A FE 02 CPI NUMSPEC ;NUMB SPECIAL CONFIGS
2B4C D2 4C 2:8 JNC $;ERROR TRAP SOFT HALT
2]4F 21 5C 2B LXI H,SCT13L jINDEX INTO TABLE
2B52 87 ADD A ;
21353 5F MOV R,A
2B54 16 00 MVI D,0
21356 19 DAD D nfL=HL+2*A
21357 5E MOV E,M ;GET ADDR
21358 23 I NX H jor SPECIAL
21359 56 MOV D,M ;CONFIG FROM TABLE
2135A EB leRG
2135] E9 PCHL JGO TO SPECIAL CONFIG
2B5C *

E.5 CONFIGURATION TABLES

2B5C

2:B5C . " TABLES ********************************* ".'

2'B tc .A..
2B5C * TABLE OF SUPPORTED SPECIAL CONFIGURATIONS
2B5C
2B5C 39 2C SCTBL DW COMPAL
2B5E 8A 2C DW SOL
2B€0 2]360 ENDSPECIAL EQU ..L

2B6e 12 e'0 FILL 18,0 ;EXTRA SPACE
2]72 01. ",'

2B72 PATCH LOCATIONS IN THE RESIDENT HANDLER
2B72 i,c

2E?2' lC 36 GHTBL D1#: CDIN+l ;TISTAT
2B?4 3C 06 rw CDOUT+1 ;TOSTAT
2]76 55 06 Dw! CDBFK+l ;TISTAT
2:878 2D 06 DW IN010+1 ; TDI N
2:B7A 5D 06 CDBRK0+1 ; TDI N
2B?C 47 06 Dl/: OUT023+1 jTDOUT
2B?E lF 06 CDIN+4 jDIFlG
2]80 21 06 DW CDIN+6 j MSK 1
2B82 58 06 CDBRY"'4 ;DIFLG
2B84 5A 06 CDBRK"'6 ; MSK 1
2B£6 :3F 06 Dw CDCUT+4 jDOFLG
2B88, 41 06 DW CDOUT+6 ;MSK2
2B8A)"

"

2BEA ,.,
'.'

2B8A OF THE SUPPORTED STANDARD CONFIGURATIONS
2P·8A
2B8A ". ','

iBBA AC 2B CNTBL DW CNFG0 ;ALTAIR ,9S-SIO
2B8C C2 2B DW j I MSAI 5102
2B8E E0 2] Cf'JFG2 ;ALTAIR SIO A,"9,C
2B90 EE 2:8 DW CNFG3 ;ALTAIR SIO A,B,C (REV
2B92 FC 2B niT CNFG4 jPTC
2B94 0A 2C DW CKFG5 ; IMSAI MIO
2B96 lB 2C tT"r CNFG6 ;ALTAIR 88-4PIO
2]98 .A.. .'"
2B98 14 00 ENDCNT13L FILL 0

Rev. 9 1/79 E-15

Rev. 9 1/79
2BAC
2BAC
2BAC
2BAC
2BAC
2BAC
2BAC
2BAC
2BAC
2BAC 10 10 10
213AF 11 11· 11
213132 01 01 01
213:85 01 02 02
2B138 09
213:89 3E 03
2131313 D3 10
2BBD 3E 11
2BBF D3 10
2BC1 C9
213C2
2BC2
2BC2
2BC2
2BC2
2BC2
2BC2
2BC2
2BC2
2BC2 03 03 03
2BC5 02 02 02
213C8 02 02 02
2J3CB 02 01 01
2BCF; 11
2BCF 3E AA
2Btl D3 03
2BD3 3E 40
2ED5 D3 03
2BD7 3E CE
2BD9 D3 0:3
2BD] 3E 17
2BrD D3 03
2BDF C9

E-16

*SERIAL INTERFACES

*CONFIGURATION 0-- ALTAIR 88-2510
*OR OTHER SIO USING MOTORCLA
*6850 UART

* CNFG0 DE 16,16,16,17,17,17,1,1,1,1,2,2

*

DB
MVI
OUT
MVI
OUT
RET

9
A,3
16
A,11H
16

; I NI T LENGTH
;RE5ET 6850
;PROGRAM FOR 8 BITS
;2STOP,NOPARITY
;16 CLOCK
; DON E .

**
*CONFIGURATION 1-- IM5AI SI02
*OR OTHER SIO USING THE INTEL 8251 USART
**
* * CNFG1 DB

DB
MVI
OUT
MVI
OUT
MVI
OUT

OUT
FET

3,3,3,2,2,2,2,2,2,2,1,1

17
A,0AAH
3
A,40H
3
A,0CEH
3
A ,17H
3

;INIT LENGHT
; DUMMY

;PESET

jTURN ON

; DONE

2BE0
2BE0
2BE0
2BE0
2:BE0
2BE0
23E0

2BE0
2BE0
2BE2
2BE0 -00
2BE3 01
2J3E6 0-1
2]E9 00
2BiC 01
2:BED C9
2BEE
2:BEE'
2J3IE
2EEE
2:BEE
2Bl'E
2BEE
213EE
2BEE

00 00
'01 01
00 01
80 00

2BEE 000 00 00
2BFl 01 01 01
2BF4 20 20 20
2B 17 20 02 ·02
2BFA 01
2]:F] C9

Rev. 9 1/79

*
* **********************.********************

2-- ALTAIR SIO A,B,C
*(NOT REV 0) OR OTHER UART TYPF SERIAL

- -

*1/0 BOARD NOT REQUIRING INITIALIZATION
************************.************.*****
* *
CNFG2

... fiJ' -.-

* f.<

DB 0,0,0.1,1,1,1,0,1,0,80H,0

DB
RET

1
iDONE

**
*CONFIGURATION 3-- ALTAIR SIO A,B,C (REV 0)
** ,t,
',"

CNFG2

tB
FET

0,0.0.1,1,1,20H,20H,20H,20H,2,2

1
;DONE

E-17

Rev. 9 1/79

2EIC
2BFC
2BFC
2BFC
2BFC
2BFC
2BFC
2BFC
2BFC
2BFC
2BFC 00 0.0 00
2BFF 01 01 01
2C02 40 40 40
2C05 40 Be 80
2C08 01
2C09 C9
2C0A

2C0!
2C0A
2C0A
2C0A
2C0A
2C0A
2C0A
2C0A 43 43 43
2C0D 42 42 42
2C10 02 02 02
2C13 02 01 01
2C16 04
2C17 AF
2Cl8 D3 43
2CIA C9

E-18

* * **
*CONFIGURATION 4-- PROCESSOR TECHNOLOGY 3P+S

I/O
**

CNFr4

* *

DR

D:B
RET

1
;DONE

* **
*CONFIGURATION 5-- IMSAI SERIAL I/O
**
*
.-..
CNFC-5 DB

DB
XRA
OUT
RET

43H,43H,43H,42H,42H,42H,2,2,2,2,1,1

4
A
43E

; INI T LENGHT

;DONE

.:.

2Cl13
201B
ZC1:B
2Cl:ft
2Q1B
2C1'B
2ciB
2C13
2C113·
2C1]
2C1B
2G1]
2C113

lE
2C21
2C24

2C28
2C29
2C2B
2821'
2C2:F
2C3Z

10
11
80,
80
11
AF

1)3
2F
D3

10
11
80
03

10
11
12

13
2C32 3E 24
2C34 D3 10
2C36 D3 .12

C9

Rev. 9 1/79

10
13

03

* * * PAR1LEL. lNtERFACES
* **

5-- ALTAIR 88-4PIO
*OR OT.HER PIO USING THE MOTOTCLA. 6820 PIA - .' . . -

**************.*********************************
,t,
'I'

* CNFG6 DB

DB
IFA
OUT
OUT
OUT

OUT
MVI
OUT
OUT
RFT

17
A
16
17
18

19
A,24H
16
19

E-19

; I NI T I,EN3-TH
;SELTCT DATA DIRECTION
;REGESTEF AND SET
;PORT A=INK
jPORT B=CUT

;CA2/C:B2=OUTPUT
HANDSHAKE

;DONE

Rev. 9 1/79
2C39

2C39
2C39
2C39
2C39
2C39
2C39 2}.]8 04
2C3C 36 FB
2C3E 21 6E 2C
2C41 11 1B 26
2C44 0E 06
2C46 CD 3F 2B
2C49 21 74 2C
2C4C 11 3]3 06
2C4F 0E
2C:1 CD 3F 2B
2C54 21 7A 2C

11 54 06
2C5A 10
2C5C cr 3F 2B
2C5F 21 AF C9
2C€2 22 6E 06
2CS5 21 01 01
2C68 22 FE 04
2C6:B C3 38 2B
2C6E
2C6E
2C6E CD ADE0
2C?l 47
2C72 B7
2C?3 C9
2C74
2C74 78
2C75 CD C2, 10
2C78 AF
2C79 C9
2C7A
2C7A FB
2C7:B 3A FD ED
2C7E 47
2C7F]7
2C20 CA 62 e6

"'. ','
E-20

*SPECIAL CONFIGURATION 0 -- COMPiL 80
*TERMINAL I/O IS THROUGH THE COMPAL
*fwl0N I TOR

* CI

co

ccrBRK

LHLD

LXI
LXI
MVI
CALL
LXI
LXI
MVI
CALL
LXI
LXI
MVI '
CALL
LXI
SHtD
LXI
SHLD
JMP

CALL
MOV
ORA
RET

CALL
XRA
RET

EI
L:9A
Mev
ORA
JZ

@EIADDR

H,eI
D,CDIN
C ,CO-C I
CN030
H,eo
D,CDOUT

CN030
H,CCDBRK
D,CDBRK

;ENABLE INTERUPT AFTER
;DISK ACCESS
;CHR IN RTN IN MONITOR

; CI LENGHT
IT INTO PLACE

. ,;COMPAL CHR OUT

; CO LENGTH.

C ,CEND--CCDBHK
CN030
H ,0C9AFH
CDINIT
H,101H
WRAPFLAG
STARTUP

B,A
A

A,B
0E0C2H
A

0EDFDR
B,A
A
CDBFK+14

;IRA A RET
;DISA:BLE CDINIT
;WRAP orF NULLS
;WRAP AND NULLS

;CRR IN COMPAt MONITOR

;CLEAR CARRY

;CHE OUR COMPAL MONITOR
jCLEAR CARRY

;CHR FROM INTERUPT KEYBRD

2C83 AF -
2C8432 FD ED
2C8? C9
2CM 3C
2C89 C-9

2GB! 2C8A
2e8A
2ceA
2CB!
2CBA
2C8A
2CBA
2CBA
2eBA 3F
2C8C 32 00 0t>
2C8! 0E 0A
2C91 11 1B
2C94 21 C4 2C
2C97 CD 3] 2B

0E 06.
2C9C 11 3.] 06
2C9F 21 CE 20
2CA2 CD 3:F 2B
2CA5 0E aD
2CA7 11 54 06
2CAA 21 D4 2C
2CAD CD 3}1 2B
2CB0 (liE 05
2C]2 11 6] 06
2CB5 21 E1 2C
2CB8 CD 3F 2B
2C13] 21 01 01
2CBE 22 FE 04
2CC1 C3 38 2B
2CC4
2CC4
2CC4 AF
2CC5 CD 22 C0
2C CE CA 1"C 06
2CCB 47
2CCC B7
2CC:C C9
Rev. 9 1/79

XRA A
STA
RET
LNR A.
RET

* CEND $

** * SPECIAL CONFIGURATION 1 --* PR<> C.ES-SOR TICRNCLCGY SOL-20 * WITH SOLOS 1.3
**
SOL

* SOLIN

MVI
STA
MVI
LXI
LXI
CALL
MVI
LXI
LXI
CALL
MVI
LXI
LXI
CALL
MVI
LXI -
LXI
CALL
LXI
SHLD

XEA
CALL
JZ
1'10V
ORA
RET

A,63
WIDTH

;WIDTH

C,SOLOUT-SOLIN ;INPUT LEN
D ,CDIN
H,SOLIN
CN030 ;MOVE SOLIN TO CDIN
C,SOLCDBRK-SOLOUT
D,CDOUT
H ,SOLOUT
CN0.30
C,SOLINIT-SOLCDBRK
D,Cl)BRK
!1, SOLC DBPK
CK02:0
C,SCLEND-SOLINIT
D,CDINIT
H,SOLINIT
CN030
H,101H
WRAPFLAG
STARTUP

A
0C022H
CDIN+1
B,A
A

E-21

NULLS

;PSUDO PORT

Rev. 9 1/79 E-22' .

2CCE * 2CCE AF SOLOUT IRA· A
2CCr CD lC C0 CALL 0C01CH ;PSUDO PORT 0
2CE2 B7 ORA A
2CD3 C9 RET
2CI:4 ,," #,'

2Ct4 AF SOLCDBRK XRA A
2C:D5 CD 22 C0 CALL 0C022H
2CD8 CA 5E 06 JZ CDBBK+10
2CDB 47 MOV :B,A
2CDC AF 'XRA A t Z ER O=READY
2CDD C9 RET
2CDE AF XRA A ;CDBRK+10
2CLF 3C I NR A
2CE0 C9 RET ;NO ZERO CARRY CLEAR
2CEl >:,.-

2CEl 0B SOLlNlT MVl A,0BH
2CE3 C3 3] 06 JMP CDOUT- ;CLEAR SCREEN SET CWlSOR
2CF6 2CE6 SOLEND EQU $
2CE6 .J, #,'

2CE6 ,'" ".'
2CF6 * 2CF6 000C NUMITEMS EQU CNTBL-GHTEL/2
2CI6 0007 NUMBER EQU
2CE€ 0002 NUMSPEC EQU ENDSPEClAL-SCTBL/2

APPENDIX F - MICROPOLIS DISK BOOTSTRAP

The Micropo1is Disk Bootstrap Program resides in PROM on the controller
B board, occupying the first 512 bytes of the controller address space.
The bootstrap is involved by starting program execution at the base address
of the controller. An address-independent relocator determines the controller
base address and moves the bootstrap code from PROM to low RAM system
memory where it is executed. The Bootstrap Program selects drive unit 0
and reads the contents of sector 0 of track 0 (the System Loader Program)
into memory. Sector 0 must be formatted as described in Section 6.1.2
and must be organized as follows:

Byte 0
Byte 1
Byte 2-11
Byte 12-265
Byte 266-267

Track 10
Sector 10
(Ignored)
System Loader Program
Load Address

Sector 0 is read into RAM at the system loader origin specified by bytes
266 and 267. After a successful read, the bootstrap transfers control to
load address +12. The DE register pair will contain the controller base
address.

The Bootstrap Program requires approximately lK of RAM memory from address
90H.

F-l

Rev. 7 3/78

Rev.

* *

*

MICROPOLIS DISK BOOTSTRAP

VERSION 2 -- RELOCATABLE
BOOTSTRAP - OPERATES WI1H
CONTROLLER STRAPPED FOR ANY
LOCATION FROM C000H-FC00H

PROM PART NUMBERS:
HIGH
LOW 800003-02-2C

RELEASE 1.0
COPYRIGHT MICRCPCLIS COFPORATION

OCTOBER 11 1977

',"

"" ,I.
""

,I. ",'

* ,' ..
""

,I,
'f"

.. I .. ',"

.....
**
**

* *
REGISTER DEFINITIONS
FLAG FOR MICROPOLIS
FLEXIBLE DISK CON1RCLLER E

** ,,-

*
F400 EPROM EQU X'F400' * DEFINITIONS GIVEN FOR STANDARD * ADDRESS OF F400H -- CONTROLLER * MAY ACTUALLY BE STRAPPED FOR * ANY 1K BOUNDARY FROM -FC00H

DISK
*

EQU BPROM+X'0200'

* DATA REGISTERS
* F€02 WDATA EQU DISK+X'02'

F€02 RDAT! EQU WDATA

* STATUS REGISTERS

]'600 DSECTR EOU DISK
* 0-3 SECTOR COUNT

4 SPARE
* 5 SPARE 6 seTH IN TERRUPT FLAG

7 SECTOR FLAG ..., r,'

* FLAG BITS
.I .. '1_

0e40 SIFLG EOU X' 40 '
'0080 SFLG EOU X '80'
2J02e DTrV;R X '20'

* "I'

}'601 ISTAT DISK+l

F-2
.... ---...

7 3/78

·2080
0040
002·0 e,e1e
0e08

>!'

f,(

.I,
','
,', ','
)!c
",
""

TFLG
INTE
RIY
WP'T' . ..
TK0
U5LT ", ','
i.e
i,t

0-1 UNIT ADDRESS
2 UNIT SEL ECTED (lOW TRUE)
3 TRACK 0
4 WRITE PROTECT
5 . DISK READY
6 PINTE
7 TRANSFER FLAG

FI,AG BITS

EQU
EOU X' 40'

X '2Z'
EOU X '.10 '
IQU X'08'

X '04'

COMMAND R EGI STER

F60e DCMKt EOU DISK

0020

0040

006e

00A0

000F

.

Rev. 7 3/78

*(A1S0 WILL RESPOND TO DISK+l)
,I. ',' 0-1

5-7
MODIFIER

f" C
,.,
','

SLUN

SIN'!
,I,
','

STEP
,t-
','

0'. ",

RESET
0'. ",'

EOU X'20' SELECT UNIT
MOtIFIER CONTAINS UNIT ADDRESS
EQU SET
MODIFIER =1 ENABLE INTERRUPT

=0 DISABLE INTERRUPT
EQU X'60' STEP CARRIAGE
MODIFIER STEP OUT

=01 STEP IN
EQU X'80' ENABLE WRITE
NO USED

X'A0' RESET CONTPOLLEF
NC MO:IFIER USED

* DISK PARAMETERS

SDLY EOU 15
.f, ','

BYTCT 134
.I,
','

*

STEP+SETTLE TIME
tIVIDED BY 2.6775
BY TCT /2 .

**
,,' . ES I DEN T BOOTSTRAP *

* ********************************t*******
* BOOTSTRAP REQUIRES AT lK * CF RAM FROM 90H

F-3

00A0

000e

F3
006C 21A200

6i' F9
0070 36C9
0072
00"7:: EB
0076 2AA0€e
0079 2E00
0e7] E5
00 '7C 0llDe'0
007F 09
00se E5
0081 El
00B2 eElA
0084 0£1
008S 06BD
0087 EB
0088 3:8

3B
008A lA
308] 77

008C BE

Rev_ 7 1/7P.

* * * *
.):(

*
f.t

* .. ,-,...
.. ','

* *
>t_ .' _t_
','
.t_
','

CTORG
_t.
' ...

1.(

* RELOC

RE010

RELOCATES FROM PROM INTO RAM THEN
BOOTSTRAP LOADS SECTOR ZER0 OF
TRACK ZERO INTO AND STARTS
THE PPOGRAM LOADED

SECTORZER0 IS ORGANIZED AS
FOLLOWS:
BYTES 0-1 HEADER
BYTES 2-265 USER PROGRAM
BYTES 266-267 RAM AtDRESS

BOOTS!RAP WILL READ SECTOR ZERO
INTO RAM STARTING AT THI
ADDRESS SPECIFIED BY BYTES
266 & 267 AND WILL START
TEE PROGRAM AT RAM ADDRESS +12

EQU X'A0' CONTROLLER BASE
ADDRESS SAVEr HERE

ORG CTORG-X'35' CTOFG+2-RLCLEN)

RELOCATOR -- BOOTSTRAP INTO·
AND STARTS BOOTSTRAP

DI
LX I H.CTORG+2 STUFF A RETURN IN
SPHL RAM AND CALL IT TO
MV I f":,X'Cg' DETEF.f":INE! ADDRESS
CALL C'IORG+2 OF CONTROLLER
XCHG SAVE RAM A'DDR
LHLD CTORG GET ADDRESS 1iHICH
MV I L,0 WAS PUSHED ON S TAC
PUSH H MSB IS CTLR ADDR
LXI BUILD LOOP
DAD :s ADDRESS
PUSH U' STUFF ON STACK --
POP H ADJUST SP
MVI C ,B-TDSP2 BUMP HL TO START
DAD E OF BOOT CODE
r-1V I }3,BTLEN
XCHG
DCX S? ADJUST SP TO POINT
DCX SF TO RE010 ON STACK
LDAX D i'-';OVE BYTE FROM
f":OV M,A PROM TO RAM

C C MP A F. M EM CRY WIT H ARE G --
IF DIFFERENT THEN DESTINATION * RAM IS BAD OR IS PROM --* RELOCATOR, WILL LOOP I N * LOOP UNTIL SUCCESSFUL

",

Goar rOVE?

F-4

008D C0
008E 23
008F 13
009Z 05
0091 C0
0092 E1
0093 2AA000
0096 110002
0099 19
009A 22A200
Z09r 36A0
0e 9F' C3D400

001D
021A
e,037

00A2
;l'0A2
00A4

2AA200
e:OA9 7E
00AA E680
00AC CAA900
00A:E· 7E
30]0 E60F
00]2 AS
00B3 C2A900

00136 23

0037 Be

00B8 F2B700

Rev. 7 3/78

,"
]·TrSP1
ETI'SP2
BLCLEN

BOOT
tArp
LDFST .. , ',"
oJ.
't"

oJ.

.f.
'I'

* * *

*
* ':c

.t. ','

* RtSEC

...
'"
)', 0-

,t.
'0'

.', ",

H
D
B

RNZ
INX
INX
DCR
RNZ
POP H
LHLD CrrCRG
LXI D,X'200'
DAD D
SELDDADR
MV 1M. RES ET
J :Ip S L013

NO-LOOP

DONE?
NO-LOOP
YES-CLEAN UP STACK
BUILD CONTROLLER
ADDRESS FROM BASE

AND SAVE
RESET COr\TROLLER
AND GC START BOOT

E:'U
EQU

RE010-RELOC

C

ECU
DS
DS

,', ,,'

2
2

READ 1 SECTOR

B Ee TOR·
C :::-B Y'J'E COUNT /2
DE :=:READ BUFFER

A,HL ARE DESTROYEr

RE'IURr\S Z=OK
NZ=ERROR

WAI'I FOR DESIRED SECTOR

LHLD DADR
MOV A,':". WAIT S CT'R
ANI SFLG
JZ RDSEC+3
f":OV OK -I S THIS

FLAG

THE
ANI X '0F' DESIRED SCTP.?
XFA]
JNZ RDSEC+3 NO-WAIT

FOUND DESIRED SECTOR GO READ

If\X H

RD005 ORA WAIT FOR TRANSFER
FLAG

,I,
--0'

JP RD005

TRANSFER FLAG SET-STRIP

F-5

00B]3 23
0eBC 7E
0013D AF
0eBE EB.
00BF0600
00Cl 00
00C2 00

• SYNC BYTE
* INX H

MOV
XRA A
XCHG
MV I 13 ,0
NOP
NOP

* READ LOOP

00C3 lA RD010 LDAX D
MOV M,A
I NX H
ADC B
MOV B,A
LDAX D
MOV M.A
INX H

00C4 77
23

00C6 88
00C7 47
00C8 1A
00C9 77
e0 CA 23
00 C:E 89
00CC 47
00CD 0D
2leCE C2C300

ADC B
MOV B,A
DCR C
JNZ RD010

READ SYNC BYTE
CLEAR CARRY

AND CHECKStH1

READ DISK
MOVE TO RUFFER
NEXT LOC
AD!) TO 'CHECKSUM
AND SAVE
NEXT READ
-ETC-

END OF D.P.TA?
NO-LOOP

)!c END OF DATA-READ CHECKSUM

00Dl 1A
00D2 BB

C9

*

* *

LDAX D
C t·1P B
RET

* SELECT DRIVE 0
,', ",'

30D4 2AA230 £L010
3620

00D9 23
20rA 7E
e0DB 2]
00DC E624
00DE EE20
00E0 C2D400

00E3 0E5E
00£5 CD4901
00E8 23
e0E9 7E

213
e0E13 E624
00EL EE20
(}.()T;l;1 "r')T\Arx",
It.IV.&:oJ:

Rev, 7 3/78

SL020

LHLt DADR
rv:V I M, SLUN
INX H
MOV A,M
DCX H
ANI RDY+USLT
XR I RDY
JNZ SL010

MVI
CALL
INX
rv:OV
DCX
ANI
XRI

C ,94
TIMER
rl
A,M
H
RDY+USL'I
RTY

F-6

COMPARE WITH
COMPUTED CHECKSUM

SELEC'I' DF I VE

CHECK SLTD & RDY
WAIT UNTI L OK
TO PROCEED

WAIT 250 MSEC
FOR SECTOR CNTR
TO SY NC

READ STATUS AGAIN

TO ENS URE 5'1'.1LL
OK TO PROCEED .. f" m '(p'

A\jA.lN

* * RES'ICRE DRI'IE TC TRACK 3
* 00F2 23 CZERO INX R' READ STATUS

00F3 7E f":OV A.M
e0F4 E608 ANI TK0 TRACK 07

2B DCX H
00F7 CA0701 JZ C Z030 NO-PRESS ON

* * IF ALREADY AT TRACK ZERC
STEP IN THEN BACK OUT

.f, TC ENSURE A GOOD POSITION ','

* 00FA 0608 E,8 STEP IN r-
d TKS

00]'C 3661 CZ010 MV I t"': ,ST Fp4-1 STEP IN
J0FI 0E0F I C,SDLY DELAY SEEK +
e100 CD4901 CALL TIMER SETTLE TIME
0102'· 05 DCR]
0104 C2FC30 JNZ CZ010 LOOP UNTIL IN

2107 23 CZ032 I NX H READ STATUS
e108 7E MOV A ,r1 TRACK 07
0109 E608 A I TK0
e10B 2B DCX H

C21901 JNZ RSZERO YES-PRESS ON
010F 3660 MVI STEP NO-STEP OUT

0E0F rv:VI C,SDLY DELAY
0112 CD4901 CALL TIMER THEN TEST AGAIN
0116 C20701 J!":P CZ030

)f,

"
READ THROUGH SECTOR ZERO ','

* .ONE T I i\1E TO FIN: EAM ADDRESS
.f, THEN READ PROGRAM IN &. START ','

* 12'119 215F01 RSZERO LXI H,BTBUF
011C CD3701 CALL RZER0 READ SCTR ZERO-
011:F' C2D400 JNZ SL010 RESEEK IF HDR BAD
0122 2A6902 LHLr BTBUF+266 GET PGM ADDRESS
e12t· 22A400 SHLD LtRST GO LOAD PG!":
Z128 CD3701 CALL RZER0
012B C2 D400 JNZ SL013 RESEEK IF' HDR BAD
012E 2AA4e0 LHLD- LrRST S 'IART
12131 110C00 LXI D,12 ADDRESS AND GO
0134 19 DAD D START PROGRAM
013= D1 POP D (CTLR eRG STILL
e136 E9 PCRL ON STACK)

* 0127 ""c;:. .I!.. ...) RZEEe. E SAVE PAM ADDRESS
EB XCHG DE<-A::"DRISS

0139 0186e.'0 LXI B.J3YTCT
013C CDA600 CALL RDSEC READ IN SECTOR 0

E1 POP rT n
014e C23701 Jt\z F ZIF0 RETRY IF CKSUM ERR
0143 PUSH 3
0144 7E CHECK HEADER
014!: 23 INX H
0146]6 eRA r-:

F-7

Rtlv 7 ?/7P..

0147 E1 POP- H
e148 C9 RET

* * * * DELAY TIMER
,f. HL-=DISK CONTROLLEP ADrRKSS .,'

* e =DELAY TIME IN MSEC/2.678
.('

A,e ARE DESTROYED ...
'I'

014;9 7E TIMER MOV READ STATUS TO
014A E620 At-.; I DTMR HE-TRIGGER
014C 79 MOV A,C 4 SECOND
e14!' e25101 JNZ *+4
3150 07 RLC
0151 4F MOV e,A
0152: 3EFF TI010 -" I A,X'FF'
0154 D601 SUI 1 DELAY LOOP=-2.678
0156 B7 eRA A MSEC @500 NSEC
0157 C25401 JNZ '11010+2

,,*
.('

* DELAY EXPIRED - DELAY
," ,,' MULT IPL1ER &. CHECK FOR DONE
," ','

015A 0D DCR C
015B C25201 JNZ '1'1010
015E C9 RET

):c
.... ,,'

00BD BT1,EN EQU *-BOOT
>:'

TEMP READ BUFFER FOR FIEST
READ OF SECTOR 0 ,,'

* BTEUF DS 3a0
,,'

026B ORG RELOC+253
0168 C3A600 RDLNK JMP R:DSEC

i.e
016:8 Er\D .BPROM

F-8

Rev. 7 3/78

APPENDIX G - FEATURES PROGRAM TO OPTIONALLY SHORTEN BASIC

BASIC contains features which are very useful during program development
but unnecessary when running debugged production programs. It is possible
to selectively delete some or all of these features. When these features
are removed the program buffer is enlarged. If all these features are
removed, the program buffer starts at the same place as for versions of
BASIC prior to version 4.0 (5700 hex). .

A special assembly language program called FEATURES is supplied to
selectively remove features from BASIC. The procedure is as follows:

1) Load BASIC from MOOS or by booting a BASIC only diskette.

2) Type LINK "FEATURES II and a carriage return.

The FEATURES program contains interlocks which prevent it from running
if loaded from MOOS or if loaded under the wrong version of the system.
The message BASIC NOT LOADED is displayed if FEATURES is run under MOOS
and control returns to MOOS. The message SYSTEM VERSION ERROR is displayed
and the system soft halts if FEATURES is run under a system with a version
number other than that of the FEATURES program. Example: if the system
you are running is PDS 3.0, an attempt to run FEATURES 4.0 will result in
the message SYSTEM VERSION ERROR and the system will soft halt. To continue
you must reboot.

3) If there are no inconsistencies, the FEATURES program signs on:

BASIC V.S. 4.0 FEATURES PROGRAM

ENTER NUMBER OF DESIRED FUNCTION (CONTROL-C TO EXIT)

l-REMOVE MERGE
2-REMOVE RENUM AND MERGE
3-REMOVE EDIT, RENUM AND MERGE

?

4) Select the desired function and enter its number following the
question mark. To exit the FEATURES program hold the control
key down and simultaneously press the letter C. The FEATURES
program will only respond to legal function numbers and the
CONTROL-C. Entries other than these reprompt ENTER NUMBER OF
DESIRED FUNCTION (CONTROL-C TO EXIT) followed by the menu.

5) When the selected features are removed the program displays
FUNCTION COMPLETE and warmstarts BASIC which signs on:

MICROPOLIS BASIC V.S. X.X - COPYRIGHT 1978

NOTE: Running the FEATURES program on a copy of BASIC which has already
been shortened will not replace removed features. For example, if you have
created a BASIC with EDIT, RENUt1 and MERGE removed, rerunning the FEATURES

Rev. 8 9/78 G-l

program and selecting option 1 will not replace the EDIT AND RENUM
cormnands. It will, however, set the beginning of the program buffer as
if the- commands where there thus loosing the user program memory space.

The shortened BASIC created by the FE.ATURES program may be saved on the
systems disk as described in Section 2.2.6 CREATING YOUR SYSTEM DISKETTE;
or saved as a BASIC only disk as described in Section 2.2.7 CREATING A
BASIC ONLY SYSTEM DISKETTE; or used immediately as it is inserted in the
system memory. In this case it is lost on power off or when any other
system (MOOS DISKCOPY) is loaded."

Rev. 8 9/78 G-2

MICROPOLIS SOFTWARE INFORMATION BULLETIN

S. I . B. # 012

Release Date 1-2-79

Serious Error in ·the CHAIN Statement Logic of Micropolis BASIC 4.0

The BASIC interpreter of Micropolis PDS 4.0 has a bug in the logic of the
CHAIN statement that can cause unpredictable results leading to a major
system crash.

ALL SYSTEM USERS SHOULD PERFORM THIS PATCH. ,

To patch BASIC 4.0 for perform the followin9

1 .

2.

, 3.
1 /
L/ 4.

L",5,

6.

v'7.

Boot load MOOS from a configured SYSTEM diskette.

Type BASIC and press the RE1URN key. This causes BASIC
interpreter to be loaded into memory and control is transferred
to the BASIC moni whi'ch si gns on and prompts READY.

Type POKE(16R15l2} = l6RC3 and press the RETURN key.

Type POKE(16R15l3) = l6,R72 and the RETURN key.

Type POKE(16R15l4} = l6R15 and the RETURN key.

Type POKE(16R36Al} = l6R5E:POKE(16R36A2) = l6R23 and press
the RETURN key.

Type POKE(16R36A3} = l6R56 and press the RETURN key,

The BASIC interpreter is now patched correctly in memory.

8. Type OPEN 1 C II and press the RETURN key.

9. Type ATTRS(l) = 8 and press the RETURN key. This removes the
file protect attribute from the BASIC disk file.

10. Type SAVE "BASIC" l6R1512,16R5DFF and press the RETURN key.

11. Type ATTRS(l) = l6RF and press the key.

12. Type CLOSE 1 and press the RETURN key.

The corrected BASIC is now rewritten on the SYSTEM diskette.

MICROPOLIS™

MICROPOLIS SOFTWARE INFORMATION BULLETIN

S. I . B. # 013

Release Date REV. B 2/12/79

SUBJECT: Implementation of Centronics 703 and 779 Printers -- Micropolis
PDS 4.0

The Micropolis POS 4.0 system issues the linefeed before the carriage return
character during output to the console and printer devices. When implementinq
the Centronics printers, Models 703 and 779 fail to work properly. The line-
feed character causes the printer to prematurely clear its line buffer,
resulting in no printed output.

The fo110win9 patch for MOOS and BASIC will reverse the order of the linefeedl
carriage return sequence to avert this difficulty.

To patch the POS 4.0 system for correct operation, perform the following steps:

1) Boot load MOOS from a configured system diskette.

2) Type ENTR 587 and press the RETURN key.

3) TYre QL and press the RETURN key.

4) Type ENTR 580 and press the RETURN key.

5) Type AI and press the RETURN key.

6) Type ENTR 80F and press the RETURN key.

7) Type QL and press the RETURN key.

8) Type ENTR 814 and press the RETURN key.

9) Type AI and press the RETURN key.

10) Type ENTR 81C and press the RETURN key.

11) Type QL and press the RETURN key.

12) Type ENTR 821 and press the RETURN key'.

13) Type AI and press the RETURN key.

The RES module is now correctly patched in system memory.

MICROPOLIS™

S.l.B. # 013

Page 2

14) Type TYPE "RES" 0 and press the RETURN key. This removes any
protect attributes from the filetype of the RES file.

15) Type SCRATCH "RES" and press the RETURN key. This deletes the
old RES file from the system diskette.

16) Type SAVE "RES" 2B1 1598 3 and press the RETURN key. This writes
the corrected RES module onto the system diskette.

17) Type LOAD "LINEEOIT" and press the RETURN key.

18) Type ENTR 359E and press the RETURN key.

19) Type 01 and press the RETURN key.

20) Type ENTR 35A3 and press the RETURN key.

21). Type AI and press the RETURN key.

22) Type TYPE "LINEEDIT" 0 and press the RETURN key.

23) Type SCRATCH "LINEEOIT" and press the RETURN key.

24) Type SAVE "LINEEDIT" 2B00 3800 17 and press the RETURN key.

25) Type LOAD "ASSM" and press the RETURN key.

26) Type ENTR 3921 and press the RETURN key.

27) Type 01 and press the RETURN key.

28) Type ENTR 3926 and press the RETURN key.

29) Type AI and press the RETURN key.

30) Type TYPE "ASSM" 0 and press the RETURN key.

31) Type SCRATCH "ASSM" and press the RETURN key.

32) Type SAVE "ASSM" 2800 3000 17 and press the RETURN key.

33) Type BASIC and press the RETURN key. This causes the BASIC
interpreter to be loaded into memory and control ;s transferred
to the BASIC monitor, which on and prompts READY.

·34) Type POKE(16R1512) = 16RC3 and press the RETURN key.

S. I . B. # 013

Page 3

35) Type POKE(16R1513) = 16R72 and press the RETURN key.

36) Type POKE(16R1514) = l6R15 and press the RETURN key.

37) Type = l6R0A and press the
CARRIAGE RETURN key. BASIC is now correctly patched in memory.

38) Type OPEN 1 "BASIC" and press the RETURN key.

39) Type ATTRS(l) = 8 and press the RETURN key.

40) Type SAVE "BASIC" l6R15l2, l6R5DFF and press the RETURN key.

41) Type ATTRS(l) = 16RF and press the RETURN key.

42) Type CLOSE 1 and press the RETURN key. The corrected BASIC is
now written on the system diskette,

MICROPOLIS SO·FTWARE INFORf.1ATION BULLETIN

S.I.B. # 014

Release Date 1-2-79

SUBJECT: Serious Error in the String Concatenation Logic of Micropolis
BASIC 4.0

.
The BASIC interpreter of Micropolis PDS 4.0 has a bug in the string concate-
nation logic which allows a string to overflow beyond 250 characters and
cause a major system crash.

ALL USERS SHOULD PERFORM THIS PATCH.

To patch BASIC 4.0 for correct operation, perform the following steps:

1) Boot load MOOS from a configured SYSTEM diskette.

'2) Type BASIC and press the RETURN key. This causes the BASIC interpreter
to be loaded into memory and control is transferred to the BASIC monitor,
which signs on and prompts READY.

3) Type POKE(16R1512) = 16RC3:POKE(16R15l3) = 16R72 and press the RETURN
key.

Type POKE(16R15l4) = l6R15:POKE(16R1567) = l6RDA and press the RETURN
key.

5) Type POKE(16R1568) = l6R60:POKE(16R1569) = l6R4F and press the RETURN
key.

6) Type POKE(16R156A) = 16RFE:POKE(16R156B) = l6RFB and press the RETURN
key.

7) Type POKE(16R156C) = l6RDA:POKE(16R156D) = 16R62 and press the RETURN
key.

8) Type POKE(16R156E) = 16R4F:POKE(16R156F) = 16RC3 and press the RETURN
key.

9) Type POKE(16R1570) = 16R60:POKE(16R1571) = 16R4F and press the RETURN
key.

0) Type POKE(16R4F5D) = 16RC3:POKE(16R4F5E) = 16R67 and press .the RETURN
key.

11) Type POKE(16R4F5F) = 16R15:POKE(16R4F61) = 16RFA and press the RETURN
key.

MICROPOLIS™

* 014

Page 2

12) Type OPEN 1 "BASIC" and press the RETURN key.

13) Type ATTRS(l) 8 and press the RETURN key. This removes the file
protect attribute from the BASIC disk file.

14) Type SAVE II BASIC" 16R1512, 16R5DFF and press the RETURN key.

15) Type ATTRS(l) = 16RF and press the RETURN key.

16) Type CLOSE 1 and press the RETURN key.
I

The corrected BASIC is now on the SYSTEM

MICROPOLIS SOFTWARE INFORMATION BULLETIN

S.I.B. # 015 ------
Release Date 1-22-79

SUBJECT: SOL-20 Printer Output via SOL's Printer Port -- PDS 4.0

SOL-20 printer output via SOL's serial port can be accomplished by implementing
the following patches:

1) Boot load MOOS from a configured system diskette.

2) Type ENTR 50A and press the RETURN key.

3) Type CB 06/ and press the RETURN key.

4) Type ENTR 6CB and press the RETURN key.

5) Type CD 4A C0 37 3F C9/ and press the RETURN key.

The system is now properly patched in memory.

6) Type TYPE "RES" 0 and press the RETURN key. This removes any
protect attributes from the filetype of RES file.

7) Type SCRATCH "RES" and press the RETURN key. This deletes the
old RES file from the system diskette. .

8) Type SAVE "RES" 2Bl l59B 3 and press the RETURN key. This writes
the patched RES file onto the system diskette.

MICROPOLIS™

