JADE COMPUTER PRODUCTS

Presents
THE BIG-Z

S-100 BUS MICRO PROCESSOR BOARD

THE BIG-Z

Options

A. 2 MHz operation

Install:

1) 18 MHz crystal at YI

I uh coil at LI
1 uf cap at C2
56 pf cap at C25
3) Jumper from U to S.
B. 4 MHz operation

Install:

1) 36 MHz crystal at Yl
2) If overtone type crystal, then:

1 uh coil at C26
20 pf cap at C25
3) Jumper from U to T

INTEL 2732/TMS 2532 EPROM

1) Cut etch L to E.

Cut etch F to M
Cut etch G to H .
2) Install jumper from D to M.

Install jumper from C to B
Install jumper from G to E
Install jumper from H to I.
3) Set switch 1,2 and 7 on U,3 0 on
3) Set switch 1, 2, and 7 on U33 to on

Switch 8 on 1133 to off
4) Select EPROM address from table III- 3 and set switches on U.33 as shown.
Install jumper from A to I.
D. No EPROM and no power-on jump:

Set swich 7 and 8 on U23 to off.
E. Power-on jump.

Note: An EPROM must be on the board to use the power-on jump option.
Set switch 8 on U23 (if installed) to on.
Jumper U23 pin 8 to 9 if switch not installed.
F. EPROM wait state

Note: An EPROM must be on the board to use this option. Set switch 7 on U23 (if installed) to on.
Jumper U23 pin 7 to 10 if switch not installed.
C. On board EPROM:

Install:
8 position switch module at U33.
G. USART option:

8 position switch module a
24 pin chip socket at U13.

1) Install:

28 pin socket at U3
16 pin chip socket at U34
8131 IC at U34
2704/2708/2716/2516/2532 EPROM at U13
16 pin socket at U24
14 pin sockets at U9 and U12
8 position dip switch at U1 and U23
2704 /2708 EPROM

1) Install 7905 regulator at VR1.

Install 7812 regulator at VR3 (used for USART also)
2) Install 1.5 uf capacitors at C19, C18, and C17

Install .I uf capacitors at C13, C15, and C12.
3) Set switch 1 on U33 to off.

Set switch 8 on U33 to on
A IC at U3
MCI44II IC at U
8131 IC at U24
1489 1C at U9
4) Select EPROM address from table III-1 and set switches on U33 as
shown.
1488 IC at U12
1.8432 MHz crystal at Y 2

22 Meg resistor at R6
7912 regulator at VR2
7812 regulator at VR3, (used for EPROM also)
1.5 uf capacitors at C20, C21, and C17
.1) uf capacitors at C14, C15, and C13.
2) Set one switch on Ui to desired baud rate, (silk screened next to UI

TMS 2716 EPROM
switches) and set all other switches on U1 to off

1) Install 7905 regulator at VRI.
Install 7812 regulator at VR3, (used for USART also)
2) Select desired I/O port address from table III-4 and set switches on
${ }^{2)}$ Install 1.5 uf capacitors at C19, C18, and C17. U23 as shown.
Install 1 uf capajcitors at C13, C15, and C12.
H. Shadow EPROM option:

A to C

1) Cut etch J to K

D to B
2) Install EPROM as shown in option C
4) Set switch 1 and 7 on U33 to on. Set switch 8 on U33 to off.
5) Select EPROM Address from table III-2 and set switches on U33 as
shown.
INTEL. 2716, TMS 2516 EPROM

1) Cut etch L. to E.

Cut etch F to M .
2) Install jumper from I) to M

Install jumper from C to B
Install jumper from C to B
Install jumper from 1 to A .
Install lumper from 1 to A.
3) Set Switch 1 and 7 on U33 to on.
3) Set Switch 1 and 7 on
Set switch 8 on $V 33$ to off.

Set switch 8 on U33 to off.
4) Select EPROM address fr
3) Enable power-on jump as shown in E

When the system is powered-up or rreset is activated, the processor will run code from the EPROM. The processor will continue running from the EPROM until a jump oceurs to thje address range selected by the switehes on U33. Note that the program in the FPROM should be the switehes on U33. Note that the program in the FPROM should be
assembled to run in an address range other than the one selected by assembled to run in an address range other than the one selected by
U/33. When the jump to the address range selected by $U 33$ is detected, U33. When the jump to the address range selected by 033 is detected,
the EPROM will no longer be accessed, and is transparent to the system. The program in the IPPROM may be assembled to run in any address range, (as long as it is different from the one selected by U33) Program function is not affected by the address range the program is assembled to run at. However, the first instruction to be executed must be at the starting address of a valid address range (as selected from charts III-1, III-2, or III-3) for the EPROM being used.

Table III-1 2704/2708 EPROM Address Select (U33)

Address Range	$\begin{aligned} & \text { SW3 } \\ & \text { A } 15 \end{aligned}$	$\begin{aligned} & \text { SW6 } \\ & \text { A14 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{SW} 4 \\ & \mathrm{~A} 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW5 } \\ & \text { A12 } \end{aligned}$	$\begin{aligned} & \text { SW2 } \\ & \text { A11 } \end{aligned}$	$\begin{aligned} & \text { SW? } \\ & \text { A } 10 \end{aligned}$
0000-03FF	x	x	X	X	x	x
0400-07FF	X	X	X	X	X	
0800-0BFF	X	X	X	X		x
0C00-0FFF	X	X	X	X		
1000-13FF	X	x	x		x	x
1400-17 FF	x	X	x		X	
1800-18FF	x	X	x			x
1C00-1FFF	x	X	X			
2000-23FF	X	X		X	X	X
2400-27FF	X	x		X	x	
2800-2BFF	x	x		x		X
2C00-2FFF	x	x		X		
3000-33FF	x	X			X	X
3400-37FF	x	x			X	
3800-3BFF	\underline{x}	X				X
3C00-3FFF	X	X				
4000-43FF	x		x	x	x	x
4400-47FF	x		X	x	X	
4800-4BFF	x		x	x		x
4C00-4FFF	x		x	X		
5000-53FF	x		X		X	x
5400-57FF	x		x		X	
5800-5BFF	x		x		-	x
5C00-5FFF	x		x			
6000-63FF	X			X	X	X
6400-67FF	x			X	x	
$6800-6 \mathrm{BFF}$	x			x		x
6C00-6FFF	x			X		
7000-73FF	x				x	X
7400-77FF	x				X	
7800-7BFF	x					x
7C00-7FFF	X					

$\mathrm{X}=$ switch on

* Table III-1 (continu							
	Address Range	$\begin{aligned} & \text { SW3 } \\ & \text { A15 } \end{aligned}$	$\begin{aligned} & \text { SW6 } \\ & \text { A14 } \end{aligned}$	$\begin{aligned} & S W 4 \\ & \text { A13 } \end{aligned}$	$\begin{aligned} & \text { SW5 } \\ & \text { A12 } \end{aligned}$	$\begin{aligned} & \text { SW2 } \\ & \text { A11 } \end{aligned}$	$\begin{aligned} & \text { SW? } \\ & \text { A } 10 \\ & \hline \end{aligned}$
	8000-83FF		x	X	X	X	X
	8400-87FF		x	x	X	X	
	8800-8BFF		X	X	X		x
	8C00-8FFF		x	x	X		
	9000-93FF		X	X		x	X
	9400-97FF		X	x		X	
	9800-9BFF		x	x		.	x
	9C00-9FFF		x	x			
	A000-A3FF		X		X	X	X
	A400-A7FF		x		X	X	
	A800-ABFF		x		X		x
	ACOO-AFFF		x		X		
	B000-B3FF		X			x	x
	B400-B7FF		X			X	
	B800-BBFF		X				x
	BCOO-BFFF		x				
	C000-C3FF			x	x	x	x
	C400-C7FF			x	X	X	
	C800-CBFF			x	X		x
	CCOO-CFFF			x	X		
	D000-D3FF			x		X	X
	D400-D7FF			x		x	
	D800-DBFF			x			x
	DCOO-DFFF			X			
	E000-E3FF				X	X	x
	E400-E7FF				x	x	
	E800-EbFF				X		x
	ECOO-EFFF				x		
	F000-F3FF					x	X
	F400-F7FF					x	
	F800-FBFF						X
	FCOO-FFFF						

$X=$ switch on

Table III-2 $2716 / 2516$ EPROM Address Select (U33)

Address Range	$\begin{aligned} & \text { SW3 } \\ & \text { A } 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW6 } \\ & \text { A } 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW4 } \\ & \text { A } 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW5 } \\ & \text { A } 12 \end{aligned}$	$\begin{aligned} & \text { SW2 } \\ & \text { A11 } \end{aligned}$
0000-07FF	X	X	X	X	X
0800-0FFF	X	X	X	X	
1000-07FF	X	X	X		X
1800-1FFF	X	X	X		
2000-27FF	X	X		X	X
2800-2FFF	X	X		X	
3000-37FF	X	X		.	X
3800-3FFF	X	X			
4000-47FF	X		X	X	. X
4800-4FFF	X		X	X	
5000-57FF	X		X		X
5800-5FFF	X		X		
6000-67FF	X			X	X
6800-6FFF	X			\mathbf{X}	
7000-77FF	X				X
7800-7FFF	X				
8000-87FF		X	X	X	X
8800-8FFF		X	X	X	
9000-97FF		X	X		X
9800-9FFF		X	X		
A000-A7FF		X		X	X
A800-AFFF		X		X	
B000-B7FF		X			X
B800-BFFF		X			
C000-C7FF			X	X	X
C800-CFFF			X	X	
D000-D7FF		-	X		X
D800-DFFF			X		
E000-E7FF				X	X
E800-EFFF				X	
F000-F7FF					X
F800-FFFF					

$x=$ switch on

	Table III-3 2	EPRO	Addres	elect	33)
	Address Range	$\begin{aligned} & \text { SW3 } \\ & \text { A15 } \end{aligned}$	$\begin{aligned} & \text { SW6 } \\ & \text { A14 } \end{aligned}$	$\begin{aligned} & \text { SW4 } \\ & \text { A13 } \end{aligned}$	SW5 A12
	0000-0FFF	X	X	X	X
	1000-1FFF	X	X	x	
	2000-2FFF	x	X		x
	3000-3FFF	X	X		
	4000-4FFF	X		x	X
	5000-5FFF	X		X	
	6000-6FFF	x			x
	7000-7FFF	X			
	8000-8FFF		x	x	X
	9000-9FFF		x	X	
	A000-AFFF		x		x
	B000-BFFF		X		
	C000-CFFF			x	X
	D000-DFFF			X	
	E000-EFFF				x
	F000-FFFF				

$X=$ switch on

Table III-4	R'T	ress	lect	23)			
Address Range	$\begin{aligned} & \text { SW } 1 \\ & \text { A } 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW2 } \\ & \mathrm{A} 6 \end{aligned}$	$\begin{aligned} & \text { SW3 } \\ & \text { A5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW4 } \\ & \text { A4 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW5 } \\ & \text { A3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW6 } \\ & \text { A2 } \end{aligned}$	
00-01	X	X	X	X	X	X	
04-05	x	x	x	x	x		
08-09	x	X	X	x		X	
OC-OD	x	X	x	X			
10-11	x	x	x		X	x	
14-15	x	x	x		x		
18-19	x	X	x			X	
1C-1D	x	X	X				
20-21	x	x		x	X	- X	
24-25	x	x		x	X		
28-29	x	x		x		X	
2C-2D	X	x		X			
30-31	X	x			x	x	
34-35	X	X			x		
38-39	X	X				X	
3C-3D	x	x					
40-41	x		x	x	x	X	
44-45	X		X	X	X		
48-49	X		x	X		x	
4C-4D	x	.	X	X			
50-51	X		X		X	X	
54-55	x		x		x		
58-59	X		X			x	
5C-5D	x		x				
60-61	x			X	x	x	
64-65	x			X	x		
68-69	x			X		X	
6C-6D	x			X			
70-71	x				x	x	
74-75	x				x		
78-79	x					X	
7C-7D	X						
$\mathrm{X}=$ switch on							
			8				

* Table III-4 (continued							
	Address Range	$\begin{aligned} & \text { SW1 } \\ & \text { A7 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW2 } \\ & \text { A6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW3 } \\ & \text { A5 } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{SW4}^{2} \\ \mathrm{~A} 4 \\ \hline \end{gathered}$	$\begin{aligned} & \text { SW5 } \\ & \text { A3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SW6 } \\ & \text { A2 } \\ & \hline \end{aligned}$
	80-81		x	x	X	X	X
	84-85		X	x	x	X	
	88-89		x	x	x		x
	8C-8D		x	x	x		
	90-91		X	x		x	X
	94-95		x	X		x	
	98-99		X	x		.	x
	9C-9D		X	X			
	A0-A 1		X		X	X	. x
	A4-A5		x		X	x	
	A8-A9		X		X		x
	AC-AD		x		X		
	B0-B1		x			x	x
	B4-B5		X			X	
	B8-B9		x				x
	BC-BD		x				
	C0-C1			x	x	x	x
	C4-C5			X	X	X	
	C8-C9			x	X		x
	CC-CD			X	X		
	D0-D1			x		X	x
	D4-D5			X		X	
	D8-D9			x			x
	DC-DD			X			
	E0-E1				x	x	x
	E4-E5				X	X	
	E8-E9				X		x
	EC-ED				x		
	F0-F1					x	X
	F4-F5					X	
	F8-F9						x
	FC-FD						
X - switch on							
!							

IV. Circuit Description

The Z-80 address bus is driven to the S100 bus by U35, U36 and a portion U25. The ADDSB signal on pin 22 will tri-state the address bus for DMA or maintenance functions when driven low.
The S100 DI (data in) bus is provided to the Z-80 during read memory or I/O input cycles by U38 and a portion of U29. The DI bus receivers are disabled when a write memory or I/O output cycle is performed. They are also disabled by the following conditions:

1) SSWDSB low at pin 53.
2) RUN and SS low at pins 71 and 21 .
3) EPROM selected during memory read operation.
4) USART selected during $1 / O$ operation.
5) Power-on jump enabled and Power-on latch (2 sectins of U10) is set.

The Z-80 data bus is provided to the S 100 data out (DO) bus for memory write or I/O output cycles by U37 and part of U25. The DODSB signal on pin 23 will tri-state the data out bus for DMA or maintenance functions when driven low
The Z-80 clock and reset signals are generated by U21. The crystal and tank circuit used allow operation at 2 or 4 MHz . When the RESET signal on pin 75 is driven low, U21 provides a reset signal to the Z-80 and the power-on jump latch if used. This signal is provided to the S 100 bus as POC at pin 99 . Pin 75 is held low mementarily during power-up due to the time it takes to charge C22. 01 and 02 signals are provided to the S 100 bus on pins 24 and 25 . The S 100 bus 2 MHz CLOCK signal on pin 49 is derived from 02 directly for 2 M Hz operation and is divided down by U21 for 4 MHz operation.
The Z-80 WAIT signal is activated by the following conditions:

1) XRDY on pin 3 going low.
2) PRDY on pin 72 going low.
3) First 02 clock cycle after EPROM is selected when EPROM wait state is enabled, (U20).

EPROM wait state is enabled, (U20). PWAIT on pin 27 will go high to indicate when the Z-80 wait signal is enabled.

The following S 100 signals are derived form the Z-80 RD, WR, IORQ, MRQ, MI, and RFSH signals:

1) SOUT + WR and IORQ (output to I/O port).
2) SINP + RD and IORQ (input from I/O port)
3) SMEMR + RD and MRQ (read memory)
4) MWRT + WR and MRQ (write memory)
5) $\mathrm{PWR}+\mathrm{WR}$ and MRQ (processor is outputing data)
6) INTA + MI and IORQQ (interrupt acknowledge).
7) PDBIN + RD or INTA (processor inputing data).
8) $\mathrm{RFSH}+\mathrm{RFSH}$ (refresh access request).
9) MRQ + MRQ (memory access request).
10) SM1 + M1 (processor fetching instruction op code).
11) SWO + RD and INTA (processor not inputing data). This signal is used as an early indication that a write operation will take place. 12) PSYNC +IORQ or MRQ and RFSH (valid memory or I/O access). The PSYNE signal is only high during the first part of a memory or I/O cycle due to multi U5. This signal is provided for S100 bus devices that look at status information during the first portion of a cycle as per 8080 device conventions. SINP, SMEMR, and SWO are latched by PSYNC on U40 before being placed on the S100 bus to make look like 8080 status signals.
The STADSB signal on pin 18 will tri-state the SOUT, SINP SMEMR, SWO, and SM1 signals when it is driven low. The CCDSB signal on pin 19 will tri-state the PDBIN, INTA, PSYNC, nd PWR signals when it is driven low. When a front panel is not used, the RUN signal from the processor board. When a front panel makes RUN low the MWQRT signal is tri-stated to allow the front panel circuitry to perform writes to memory with its own MWRT signal.

The Z-80 BUSRQ signal is activated when the PHOLD signal on pin 74 is driven low. The Z-80 tri-states its data and address busses and generates BUSAK low in response to BUSRQ. BUSAK is provided to the S 100 bus as HLDA on pin 26 to acknowledge that the processor is in a "hold" condition. HLTA is provided as HLTA on pin 48 whenever the Z-80 is executing a halt instruction.
The INT signal on pin 73 will cause the $\mathrm{Z}-80$ maskable interrupt The INT signal on pin 73 will cause the
request to become active when (U13) is selected by the power-on jump latch (2 ections of U10) after it is set by the reset signal. The address bus is compared to switch settings of U33 by comparator U34. When the
selected address range is detected the power-on latch is reset by the comparator output. The comparator output will also select the EPROM when the shadow EPROM option is not installed. The EPROM is accessed only when memory is requested.
The lower portion of the address bus is compared to the switch settings of U23 by comparator U24. When the selected address range is detected during an I/O operation, the USART(U3) is enabled. The USART derives its transmit and receive clock from the baud rate generator U2. The desired clock rate is selected by switch module U1. All the clocks are 16 times the baud rate indicated. The USART should be programmed for 16 X clocks. Refer to vendor data for detailed programming information on the 8251 . The transmit data TXD), receive data (RXD), and reverse channel (RVC) signals are provided at connector socket U19.

JADE Z-80 KIT
PACK \#1
1 Z-80 CPU
1
1
1
1224
1 18 MHz Crystal
1 56pf Disc Cap

PACK \#2

1 Z80A CPU
1 8224-4
$1 \quad 36 \mathrm{MHz}$ Crystal
20pf Disc Cap
PACK \#3
27400
$\begin{array}{ll}2 & 7400 \\ & 7402\end{array}$
37404
27408
17410

17432
1

$\begin{array}{ll} & 7747 \\ 3 & 7475\end{array}$
1
1
1 7121
${ }_{9}$ 74367/8097/8T97
2 DM8131
2 DM8
1
8251
I MC14411
11488
1489
LM320T-5/7905
1 LM320T-12/7912
1 LM340T-5/7805
1 LM340T-12/7812
38 Postion Dip Switch
PACK \#4
330 ohm $1 / 4$ W 5\%
11 K
$\begin{array}{ll}1 & 2.7 \mathrm{~K} \\ 5 & 4.7 \mathrm{~K}\end{array}$
1 22meg. 20 meg .
4.7K 16 pin 15 res. Resistor Pack

16 .Imf Disc
6 1.5/1.8mf Disc
10pf Disc
100pf Disc
100 mf 25 U Axial Electrolytic
1 IUh Coil
PACK \#5
1714 pin Lo Pro Sockets
1216 pin Lo Pro Sockets
224 pin Lo Pro Sockets
140 Pin Lo Pro Sockets
PACK \#6
1373 Heatsink
4 6-32 Hex Nut
4 6-32 x $3 / 8$ " Screw
4 6-32 Lockwasher

