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Motorola 68000 L-8 or 68010 L-8 (L-10 for 10 Mhz)

Control:

Memory Management:
Motorola 68451-L8 (L-10 for 10 Mhz)

CPU Clock: 8 MHz or 10 MHz

Address Bus: 24 bit physical and logical address bus.
Conforms to IEEE 696/S-100 extended addressinR~

Address Space Allocation:
Segmented memory management.
32 dynamically sized segments, 256b to 16Mb.
System level programs may run unmapped.
Relocatable I/O-HMU PageD

Data Bus: 16 bit bidirectional data transfers, 8 bit
data transfers. Programs must reside in
16 bit memory.

Interrupts: IEEE 696 Interrupt lines NMI and VIO through
VI5 supported.
Motorola device supplied interrupts fully
supported by means of S-100 INT. line and
daisy chain.
ERROR* line fully supported.

Configured as permanent" bus master. Provides
TMA p~otocol as per IEEE 696.

Bus Cycle Time: IEEE 696 S-100 (8 MHZ CPU) Bus Cycle:
Unmapped: 750 nS
Mapped: 1000 nS

IEEE 696 S-100 (10 MHZ CPU) Bus Cycle:
Unmaoped: 600 nS
Mapped: 800 nS

P.C. Board: .

Power:

User-Selectable
Options:

Hi~h quality epoxy, solder masked both sides,
screened component legend, plated through holes,
gold plated edge connector fingers. Sockets
provided for all I.C •• s.

Consumes 1650 rnA nominal from 8 volt line.
7.5V Min, 10.5V Max.

AO low on even or odd byte access.
Start address switch selectable of 64K boundries.
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1.1--Data Bus:

All modes of data transfer of the 68000 are supported
by the cpu/68000/M. The only restrictions on the type of
memories which may be used in the system are the following:

1) Programs must be executed
sixteen bit data path.

out of memory with a

2) Memories with only an eight bit data
with the CPU/68000/M, however,
which use a byte as their data type
effect transfers to the memory.

path may be used
only instructions

may be used to

3) Memories which do not support extended addressing
may be used with the CPU/6BOOO/M, but will limit the
total useable memory to 64Kb.

1.2--Address Rus:

The Mc68000 supports a 24 bit address bus, providin~

to the user a 16 Mb address space. The MC68451
memory management unit (MHU) is physically located
between the 16 most significant aqdress lines of the 68000
and the corresponding 16 lines of the S-100 address bus
(see block diagram, next page).

The address lines on the 68000 are referred to as Logical
Addresses. These are the untranslated addresses which
the programmer sees when pro~ramming the 68000. Physi­
cal Addresses are the addresses on the S-100 bus. These
are the addresses which memory, 110 boards and the I/O-MMU
page address decoding responds to.

The HMU can manage up to 32 segments in the address space.
Since the MMU translates only the most significant 16
address lines, the smallest allowable Segment size is 256
bytes. The size of the Segments must be a binary order of
magnitude, 256 bytes, 512, 1024, •.. , 16Mb. The segments
also must be defined such that their physical and logical
base addresses are a multiple of their size.

The MHU can write protect segments, protect user or system
processes from colliding, and translate logical addresses to
physical addresses with an offset. For a complete descrip­
tion of the MMU capabilities, see the Motorola documentation
in section 5.

The option is provided on the CPU/68000/M to allow bypassing
the MMU on accesses to specified regions of the logical
address space. See section 1.3 for a complete description
of this feature.
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As was mentioned in the last sect~on, it is possible to
bypass the MMU. The array of jumpers ALL, TOP, BOT and
NONE control which addresses pass through the MMU, and
which proceed directly to the physical (3-100) address
bus. Make certain that only one of these jumpers is
connected at one time.

If the ALL jumper is set, all lo~ical addresses pass
through the MMU. If the NONE jumper is selected, all lo~­

ical addresses pass directly to the physical address
bus.

The Cpu/68000/M can also partition the logical address space
into two equal sections, one mapped and the other unmapped.
If the TOP jumper is selected, all logical addresses from
800000 to FFFFFF will pass through the MMU. When the
addresses from the logical bus pass through the MMU, they
participate in what Motorola refers to as the "matchin~

and translation process" which makes up memory management.
This is described in great detail in section 5. Anv access
to the bottom of the logical address space, 0 to 7FFFFF,
will be passed directly onto the physical address bus.

The BOT jumper works the same way, only the bottom half of
memory from 0 to 7FFFFF is mapped, while the top of the
address space from 800000 to FFFFFF is unmapped.

The reasons for using the TOP or BOT, settings are twofold:

First, it is possible to increase the amount of avail­
able segments. If all or a portion of the kernel pro­
grams can run in protected unmapped space, more seg­
ments are free for-user processes.

Second, a bus cycle in an unmapped portion of the
address space will run faster than a bus cycle in a
mapped portion of the address space. Configuring the
board so system tasks run in the faster unmapped space
can result in a performance gain.
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The significance of each of the settings is summarized
below:

ALL: The entire physical address space is mapped. All logi­
cal addresses pass through the 68451.

NONE:The entire physical address space is unmapped. All
logical addresses on the 68000 address bus pass
directly to the physical (3-100) address bus. The
memory management is inactive, although the MMU regis­
ters may still be accessed.

TOP: The TOP portion of the logical address space from
Booooo to FFFFFF passes'through the MMU. The logical
address space from 0 to 7FFFFF passes directly the phy­
sical address bus. Protection of the unmapped space is
available via the PROT jumper.

BOT: The BOTtom portion of the logical address space from a
to 7FFFFF passes through the MMU. The lo~ical address
space from 800000 to FFFFFF pass directly onto the phV­
sical address bus. Protection of the unmapped space is
available via the PROT jumper.

PROT Protection for unmapped space is implemented by means
of the jumper labeled PROT. If this jumper is
installed, the CPU/68000/M will not be allowed to
access the unmapped address space unless the S bit
(supervisor mode) is set in the status register. An
attempted access to unmaoped space by the CPU while in
User mode will result in a bus error exception.

The PROT feature was desi~ned to be used in conjunction
with the TOP or BOT jumper settings to protect system
software running in unmapped address space.
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1.~-- l/Q-MMU Register Page

The 68000 instruction set does not have an explicit
Input/Output instruction. Motorola architects intended for
all 68000 I/O to be memory mapped. Memory mapped I/O takes
advantage of the many powerful addressin~ modes for fast,
efficient I/O routines.

To support S-100 I/O mapped peripherals and to allow commun­
ication between the 68000 and the 68451, the processor board
dedicates a 64 kilobyte page of the address space for I/O
and the MMU registers. This page can based in the physical
memory space at one of two following addresses:

I/O-MMU page:
. 1) 7FOOOO to 7FFFFF (LO)

2) FFOOOO to FFFFFF (HI)

The jumper which selects the location of the physical base
address for the I/O-HMU page has two settin~s: HI and LO.
See fig. 3 for the location of the I/O-MMU page jumper. The
.HI. and .LO. refer to the position of the I/O-MMU page at
eithe~ a HI (FFOOOO) or LO (1FOOOO)· base address. The
cpu/68000/M comes configured with the I/O-MHU page jumper
set to the .LO. position. Anv access by the cpu/68000/M to
the I/O page will cause the appropriate I/O status signals
to be asserted on the S-100 bus.

The MMU registers reside in top 64 bytes of the I/O-MMU
page, from 7FFFCO to 1FFFFF, or FFFFCO to FFFFFF in physi­
cal memory, dependin~ on where the I/O-MMU page is located.
On any access to the MMU registers, all S-100 strobes are
rescinded until the data transfer between the CPU and the
MMU is complete. Transfers between the 68000 and the MMU
occur at 8 MHz. For a list of MMU register locations and a
description of MMU register functions, see section 5.

Some Examples: .

If the I/O page jumper is set to
the I/O page base address is FFOOOO.
corresponds to I/O port address 2.
tion:

MOVE.B OFF0002H, DO

is functionally equivalent to the 8080 instruction

IN 02H
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If the I/O page jumper were set to the LO position, the
base address of the I/O pa~e would be 7FOOOO. The 68000
instruction to accomplish a read from port address 2 would
then be:

MOVE.B 07F0002H, DO

Note that almost 64 K 'bytes are dedicated to I/O devices.
This allows almost 64 thousand input and output ports.
To support this many ports requires that 110 ·devices decode
the least significant 16 address lines. The IEEE
specification allows the extended 1/0 addressing, but does
not require it.

The majority of current I/O boards decode only the least
si~nificant 8 address bits. This results in only 256
input and output ports. Since the 110 board does not
decode the full 16 bit address the 256 port
addresses are replicated through the 64 K byte I/O
space at 256 byte intervals.

Eight bit (non-extended) I/O addressing example:

When the 110 page is in the LO
tion:

setting, the instruc-

MOVE.B 7F0002 , DO

non-extendedtypicalafromwill read from port 2
addressing 110 board.

The following will also read from port 2:

MOVE.B 7F0102 , DO

And so will this:

MOVE.B 7F0202 , DO

And so on through the I/O space.

See section 5.1 for a sample MMU register access.

Some Suggestions:

When programming 110, it is a good idea to use the bottom
most 256 byte 110 block exclusively so as to avoid accessin~
the MMU registers accidently. Stay clear of the top 256
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block, 7FFFOO to 7FFFFF (LO) or FFFFOO to FFFFFF (HI) to
avoid unintentionally accessing the MMU re~isters.

Since the I/O page location is decoded in the physical
address space, it may be assi~ned a segment and relocated or
write protected just as with normal physical memory. Take
care that the operating system always has access to the MMU
registers, as it is possible to map them out of the reach of
the operating system entirely.

If the decision has been made to map only half of the physi­
cal memory, we recommend that the the TOP setting be used.
The lower 8Mb could be reserved for the unmapped System
tasks, as the exception vectors at hex addresses 0 to 400
and the I/O/MMU page at 7FFFBF could all reside in the same
half of memory. This would obviate the need to define a
separate System segment for the I/O-MMU page and exception
vectors, as would he neccessarv if everythin~ were located
in mapped space.
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~.1 RESET', SLAVE CLR', POC':

When power is first applied, RESET', SLAVE CLR', and POC'
(Power On Clear) are all asserted low for 100 ms. During
this time, the CPU clears its registers and resets itself,
and the MMU initializes its re~isters so that it comes up
with segment 0 mapping the lo~ical addresses to the physical
address space with no offset. The size of the segment is
16Mb, the entire address space. Even if the MMU is not
engaged it is still initialized. For more information on
the initial state of the MMU and its registers, see SOFTWARE
THEORY OF OPERATION section 5.

The 68000 .reset. instruction will cause the ~-100 SLAVE
CLR' line to be asserted for 62 clock cycles (15.5 us).
This is useful for initializing bus slaves to a known state.
The .reset. instruction will not reset the 68000 or the
MMU.

£.2--JumQ Vector Switch:

A normal 68000 system reset operation consists of a 4 byte
fetch from vector number 0 (hex address 0) to initialize
the stack pointer, and a 4 byte fetch from vector number 1
(hex address 4) to initialize the program counter.

On a hard reset (power up, or RESET' asserted) the
CPU/68000/M will fetch the stack pointer and the program
counter startin~ from the location indicated on the dip~

switch shown in fig. 4. The jump location must be at a 64K
boundary, since only the high order address byte is used to
form the jump address.

For Example:

If your boot program resides at hex address 20008, and the
Stack Pointer is 7FFF. Locations 20000 through 20007 would
have to have the values shown below, and S1 would have to be
set as shown on the following page.

+-----STACK POINTER-----+----PROGRAM COUNTER----+
+ + +
•• , ••••••••••••••••••••• **•••••••*•••**••*•••*.,.
• * • • * • • • •
• 00 • 00 • 7F • FF • 00 • 02 • 00 • 08 •• • * • • • • • *
"1'111"*****1*****'***'********"*******111****

Hex + + + + + + + +
Address: 20000 20001 20002 20003 20004 20005 20006 20007

On reset, the CPU will fetch the stack pointer and the
program counter. It will then begin executing code at the
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address of the PC, at 20008.

2.3--Bus Errors and the ERROR* Line:-- -- ----
Bus errors derive from three sources:

1) The MMU

2) Attempted access of PROTected unmapped System
space while in User mode.

3) The S-100 ERROR* line

There are a number of conditions which will cause the
MMU to initiate a bus error exception. Two of the most com­
mon are:

1) An attempted write to a write-protected segment,

2) An Undefined Segment Access

Refer to section 5 for more details on MMU generated bus
errors.

The ERROR* line on the S-100 bus is a general IV defined
si~nal used to indicate catastrophic errors. We define its
use in the following fashion:

1) The ERROR* line is sampled by the CPU/68000/M at
two points in the S-100 bus cycle:

a) the falling edge of phi durin~ pSYNC.

b) the rising edge of phi immediately preceding
the data strobe (pDBIN or pWR*).

2) After the ERROR* signal is latched, the current
bus- cycle is aborted, and 68000 bus error
exception processing is held pending. Bus Error
exception pro-· cessing will proceed only after
the ERROR* signal has been rescinded. If
another bus error occurs during the exception pro­
cessing, the 68000 will register a double bus
fault condition and the processor will be
halted.

Refer to the timing diagrams in the
detail.

appendix for more

~.~--Temporarv Master Access and TAS Instruction

The CPUI68000lM functions as a permanent bus
specified in the IEEE proposed 3-100 standard.

master as
Temporary
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bus masters (DMA devices) request the bus by asserting con­
trol input HOLD.. They receive control of the bus when the
bus master (CPU/68000/M) asserts control output acknowledge
pHLDA.

Upon receipt of HOLD the 68000 completes the current bus
cycle and then asserts pHLDA. The 68000 suspends all pro­
cessing until HOLD· is released. A temporary master may now
disable the four disable lines ADSB*, SDSB*, CDSB* and
DODSB*. The temporary master now has complete control of
the bus for as long as it wishes. When the bus is no longer
needed control is returned to the permanent master by
releasing the bus disable signals, and finally, HOLD*.

The method of transferring the bus from the permanent bus
master to a temporary master is explicitly specified in the
IEEE bus standard section 2.8. Of significance is the
method used to transfer ownership of the control output bus.
To ensure glitch free transfer, both the permanent and tem­
porary master drive the control output bus during the
transfer period. Except for pHLDA, all lines are driven at
their non-asserted levels. After a specified time (125
nano-seconds) the temporary master asserts CDSB*, disabling
the permanent master.s control output bus drivers and
acquiring control of the bus.

Up to 16 temporary masters may coexist in a system. A dis­
tributed arbitration scheme determines the highest priori tv
device which then takes control of the bus upon assertion of
pHLDA.

In general, the CPU/68000/M will relinquish control of the
bus after the current bus cycle. Howeve~, if HOLD* is
received just before the start of a bus cycle, the 68000
will go ahead with the bus cycle, relinquishing control
after its completion.

As TMA operations occur on the physical side of the address
bUS, care must be taken to insure that memory
addresses passed to TMA devices are physical addresses, not
logical addresses. The corresponding nhysical address for a
given logical address may be determined by a MMU Direct
Translation Operation.

TAS Instruction:

The 68000 TAS (Test And Set) results in ~irferent CPU timing
than other instructions. Motorola defines it as a read­
modify-write cycle. The instr~ction results in sequential
read and write cycles on the 3-100 bus. The two cycles are
indivisble, that is, the write cycle must follow the read
cycle. Two distinct 3-100 cycles are completed, but
interrupts and bus requests will not be accepted until after
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the instruction has completed.

2.2--RUN, HALT, HOLD and FAST Indicators:

The four L.E.D.s on the CPU/68000/M board indicate the fol­
lowing conditions:

RUN--(green):

HALT--(red):

HOLD--(yellow):

Valid addresses on the lo~ical addresses
bus, i.e. the AS· pin of the CPU is
active. This light Is active when the
CPU is the current bus master, and
instruction execution is proceedin~

without error.

CPU is halted. This occurs either on
reset (see section 2.1), or if a double
bus fault condition is present.

A temporary master has been granted con­
trol of the bus. For exaMple, this light
will come on when a disk controller exe­
cutes a TMA cycle.
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2.1--68000 Priority Levels vs. 3-100 Priority Levels:

The first item to be aware of about interrupts is the rela­
tion of the S-100 priority levels tD the 68000 levels.
According to the 3-100 bus standard, NMI Is the hi~hest

priority interrupt followed by VIO, VI1 ..• VI? Of these q
levels of priority, the 68000 supports 7. The two lowest
levels, VI6 and VI?, are not supported by the 68000.
Motorola defines 7 as the highest level and 1 as the lowest
level. This can be a source of confusion. Below is a
chart which relates the two:

IEEE/S-100

NMI

VIO
VI1
VI2
VI3
VI4
VI5
VI6
VI?

68000

7 ••• highest priority

6
5
4
3
2
1 ••• lowest priority

--not supported--
--not supported--

Assertin~ one of these lines low generates a 68000 "auto­
vector", and the 68000 will fetch a program counter (4
bytes) as described in section 2.2.

3.2--Device-Su21ied Vector Numbers vs. AutoVectors:

The MC68000 chip provides a sophisticated interrupt
structure which is completely supported by the CPU/68000/M.
By supplying vector numbers to the CPU, 192 interrupting
devices may be supported per priority level.

The two groups of interrupts to which the the CPU can
respond are "device-supplied" and "auto-vector". Interrupt
requests are placed on the 3-100 lines NMI and VIO, ••• ,VI~.
Motorola 68000 device-supplied interrupt vectors are sup­
ported through the use of the 8-100 INTI line and the S-100
interrupt lines NMI, VIO, ••. ,VI5.

See the next page for a chart illustrating the device sup­
plied interrupt protocol. The CPU/68000/M may be enabled to
fetch vector numbers off the data bus· by installing the
jumper labeled .XVC ..

The CPU will only fetch a vector number from the data bus if
INT* is asserted. If one of the lines NMI, VIO, .•. , VI5
is asserted without INT', a 68000 autovector operation will
result.



3-100 Interrupt Priority

NMI
VIO
VI1
VI2
VI3
VI4
VI5
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PC Fetch Location (hex)

7C
78
74
70
6C
68
64

Notes:
INT* never asserted.
CPU will fetch 4 bytes of PC--address of

interrupt service routine.
MMU Interrupt and VIO at same priority level,

IVR is the MMU Interrupt Vector Register.



Table 5-2. exception Vector AssIgnment

VlICIOf Add....
Numberts) Dec Heft Splice

Auignment

0 0 000 SP Resel Inlllal SSPl

4 004 SP Resel I',,"al PC2

2 8 008 SO Bus Error

3 12 OOC SO Address Error

4 16 010 SO Illegal Irstruchor,

5 20 014 SO Zero DIvide

6 24 01B SO CHK InSHuct_on

7 28 01C SO TRAPV Instruct,,:>n

8 32 020 SO Privilege Vlolallor,

9 36 024 SO Trece

10 40 028 SO Line 1010 E-nulator

11 44 02e SO Line 1111 EmulalOr

121 48 030 SO IUnasslgned. Reserved)

131 52 034 SO IUnasslgned. Reservedl

141 56 038 SO IUnasslgned. Reservedl
15 60 03C SO Ur'llnltlahled Interrupt Vector

16-231 64 040 SO Ilmassigned. Reservedl

95 05F -
24 96 060 SO SPUriouS lnterrup13

25 100 064 SO Level 1 Interrupt Autovector

26 104 068 SO Leve! 2 Interrupt Autoveclor I27 108 06C SO Level 3 Interrupt Aulovector

28 112 070 SO Level 4 Inlerrupl AUIOVE!ctor

29 116 074 SO Level 5 Interrupt AUlovector :
30 120 078 SO level 6 Interrupt AutoveCIOf .
31 124 07e SO level 7 'nterruot AutoveC10r

32·47
128 080 SO TRAP Instruction Veclors4

191 OBF
-f

48-631
192 OCO SO (UnassIgned, Reservedl

255 OFF -
64-255 256 100 -SO User Interrupt Vec!ors

1023 3FF -
NOTES:

1. Vector numbers 12. 13. 14, 16 through 23. and 48 through 63 are re­
served 1o' future enhancements by MOIOlola. No user pellpheral deVices
should be assIgned these numbers.

2. Reset vector 101 requ"es Iou' wo'ds. un"~e the other vectors which only reo
quire two wo,ds. and,s localed In the supe,vIsor p,ogram space

3. The SPUIIOUS interrupt vector is taken when there is a bus error Indica·
lion dUllng interrupi processing Refer 10 Paragraph 5.5.2

4. TRAP In uses vector number 32+".

Table 1. 68000 Vector Number Table
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Fig. 5 Example Circuit to
Supply Vector Numbers to CPU.
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1.3--Protocol for Device Supplied Interrupts:

Interrupting device 68000 CPU

Asserts one of NMI, VIO, ••• ,VI5
concurrent with disabling all devices
lower in the chain.++

+-------------------++
+

Compares interrupt level in status re~ister.

Waits for current instruction to complete.
Asserts sINTA.
68000 interrupt level is placed on
address lines A1,A2,A3.

+
+

+-------------------+
+
+

Compares A1,A2,A3 with the interrupt
level which it asserted. If equal,
deposit vector number on next read,
and assert INT*

+
+
+-------------------+

+
+

If INT· asserted:
Starts read cycle.
Latches vector number on pDBIN.
Fetch PC at vector number • 4.
Begins exception service routine
at new program counter.
If INT. not asserted, then
autovector

+
+

.+-------------------+
+
+

Interrupting device rescinds IRQ·
active low). Enables devices
lower in chain to ~enerate interrupts.
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l.i--Daisy-Chaining Interrupting Devices:

In order to use two or more devices
numbers within a priority level (NMI,
is necessary to daisy-chain devices
numbers within each priority level.

"Daisy-chaining" means the following:

to supply vector
VIO, ••• , VI5), it

which supply vector

If two or more devices
interrupt requests, the
chain disables the lower
number.

in the chain make simultaneous
requesting device hi~hest in the

ones, and supplies the vector

A maximum of two interrupting devices may be used within the
same 68000 priority level without daisy- chaining.
The constraint is that one must supply a vector number
to the CPU/68000/M while the other must use an autovec­
tor.

Devices are chained only within priority levels because
the CPU displays the priority level it is servicing
on address lines A1 through A3. Devices must only supply
vector numbers to the CPU if lines A1 through A3 on
the address lines are equal to the 68000 priority level of
the chained devices (see section 3.1 for an explanation of
.priority level.). See fig. 5 for a sample circuit using
daisy-chained interrupts.

Remember that it is only necessary to daisy-chain interrupt­
ing devices if it 1s desired that two or more devices sup­
ply vector numhers within a priority level to the
CPU/68000/M. If autovectors only are requested on VIa (a
normal S-100 interrupt), the ENOUT jumper is not required.



ENOut Daisy Chain Point. (The
post to the left is a test point.)
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Fig. 6 Location of XVC Jumper
and ENOut Daisy Chain Post.

XVC Jumper set. Board will
respond to both normal 8-100
interrupts and devices supplying
vector numbers.

1:aJ1~
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~.l--MMU Registers:

HMU Register Page
Physical Base address = 7FFFCO (LO) or FFFFCO (HI)

. (depending on setting of I/O-MMU page jumper )

·Offset Acronym
(bytes)

Function

Address Space Table:

0 AST 0 reserved
2 AST 1 user data
It AST 2 user program
6 AST 3 reserved
8 AST It reserved
A AST 5 supervisor data
C AST 6 supervisor program
E" AST 7 interrupt acknowled~e

Accumulator:

20 ACO Lop:ical Base Addr/ translation ADDR (MSB)
21 AC1 Logical Base Addr/ translation ADDR (LSB)
22 AC2 Logical Address Mask (MSB)
23 AC3 Logical Address Mask (LSB)
24 AC4 Physical Base Addrl translated ADDR (MSB)
25 AC5 Physical Base Addrl translated ADDR (LSB)
26 AC6 Address Space Number
27 AC7 Status Number
28 AC8 Address Space Mask

Control and Status:

29
2B

~2C

2F
31
39
3B
3D
3F

DP
IVR
GSR
LSR
SSR
IDP
RDP
DTO
LDO

Descriptor Pointer
Not implemented
Global Status Register
Local Status Register
Segment Status Register /transfer descriptor
Not implemented
Result Descriptor Pointer
Direct Translation Operation
Load Descriptor Operation

~WARNING!due to a characteristic of the current mask of the
68451 MMU, writing to this read only register will HALT
the processor board.
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Calculating an MMU register address;
an example:

To write the contents of DO to AST7 with I/O-MMU page
in LO (7FOOOO) physical memory:

First calculate register address;
AST7 address = (mmu base addr) + (AST7 offset)
7FFFCE = 7FFFCO + E

Then.write the byte in DO (for example) to that address;
MOVE.B DO, (7FFFCE)
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4.2--Motorola Documentation of 68451:

The following is an edited version of the Motorola documen­
tation for the MC 68451 Memory Management Unit. Note that
as there is only one MMU in the system, so it is not neces­
sary to distinguish between the terms global and local in
the documentation, i.e. local operations are always ~lo­

bal. In addition, the facility of the MMO to generate dev­
ice supplied interrupts to the CPU is not ~upported.
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~.l--Binary Budd! System

The following paper outlines a memory management scheme sug­
gested by Motorola for use with the 68451 Memory Management
Unit.



~"ORY ~NAQEnENT

FROM THE SOFTWARE ENgINEER'S VIEWPOINT

Ru••• ll E. Sch~.u.ch

St.ff Engin"T

Motorol.. Inc.
"OS lnt.gr.t.d Circuit. Divi.ion

3~Ol Ed Blu••t.in Blvd
Au.tin. TX 79721

SUMMABY S,am,nt,d vir.u' P.a,~ M,moru M.n.a,men!

Impl •••nt.tion of •••or~ ••n.g•••nt
in • comput.r 'V.t.m t.k••• combin.tion
of h.rdw'T' .nd .oftw.r.. Sinc. th.
.oft~.r. i ••u.. involv.d .r. both Com­
pl.l .nd .v,t.m d.p.nd.nt th. d.ci.ion,
r.g.rding th.m .r. not ".v .nd r.\uir.
compromi,•• b•••d on 'V.t.m prioriti ••.
I .m going to di.cu•••om. of th. tr.­
d.of'. involving h.rdw.r.. .oft~ar••
tim, and ••morV.

For .n introduction to ••morv
man.g.m.nt I will u•••om. background
inform.tion on t~o curr.nt ••morv
m.n.g.m.nt t.chni\u... ..gm.nt.d _.morv
••n.g.m.nt .nd p.g.d m.morv _.n.g.m.nt.
Th.n I .m going to t.lk about d.,cri,tor
m.n.g.m.nt and it. r.lation.hip to
m.morV ••nag,m.nt and I will al.o di.­
CUI' ••morv fr.gm.nt.tion. ~oth int.rn.l
.nd .It.rn.l. Sine••v,t.m ov.rh••d i.
• k.V i ••u. I will pr•••nt .om. id••• on
how to r.duc. ov.rh.ad with v.riou.
m.morv ••n.g.m.nt t.chni,u••.

I do not int.nd to do .n 'Ihau.tiv•
• tudv of ••morv ••n.g.m.nt philo.ophi.,
but r.th.r to paint out '0" of th. pit­
f,ll. vou might .ncount.r (hop,'ullV
b,'or. vou .ncount.r th.m) .nd to
pr•••nt .n .ppro.ch to ••morv _.n.g•••nt
th.t i. w.ll-.uit.d to the Motorol.
684'1 M.morv M.n.g.m.nt Unit (MHU).

MEMORY MANAOEMENT TECHNIQUES

1

Wh.n m.morv i. divid.d into bleck.
of .or. th.n on••iz •• th••• block • • r.
I.n.r.llv r,'.rr.d to ••••gm.nt.. S.g­
m.nt .ize. v'~v d.pending on the
.nvi~onment" Th•••• iz.s .au b. pew.rs
of t~o o~ thav ••V chang. in ,il' in
step. th.t a~. pDwa~. of two Dr th.v ~.V

f.ll on anv bVt. boundarv_

E.ch t.sk c.n b. "Iign.d on. Dr
_Dr. .egm.ntl. In • .egm.nt.d ~.mory

.vst.m. a t.l. Ulu.llV h.1 f.~.r .ag­
••nts than it ~Duld h.ve in a p.g.d Svs­
tem. Thi. ..ans that 1.,. ..mory i.
re~uir.d for the .llocation tab 1•• that
must b••• int.in.d in .amorv. Tha siz •
af a ••gment •• ,ign.d to a t.sk i, usu­
.11V dat.r~inad dVnamicallV at tha tim.
of th. T.\U.lt. F.wer ••gments ar.
n.adad to rapr•••nt the re.id.nt t.lk
.and •• a r ••ult Ie" ov.rhe.d is n•• ded
to m.nag. lh....orV .

In a p.g.d Iv.tam ~••arv pag., ar.
'il.d in l.ngth and u.uallv ••• 11 in
.iz. with multi,l. pag.. .ssigned to
••ch .ctiv. task in lh. Iv,t.m. Th're i.
I.n.r.llv a t.ble in ma.o~v to k•• p
track of p.ga. av.il.bl. for ,lloc.tiDn
and anothe~ table 'or p.g'. currently
elloc.t.d to .ctive t ••••. The page s1l.
i. sv.t.m d.p.ndent.

Th. mo.t fr.,u.ntlv u••d p.g •
• anag.m.nt .ch.m. i. d••and p.ging. This
t.chni,ue r,'.rs to an .pproach in ~hich

p.g•• ar. alloc.t.d to a talk a. n••d.d.
As a ra.ult the number of p.g.. of
_a.ory that ar. allocatad to • t.sk .t
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anv liven ti.. i ....11. And••ince onlv
a f.... pages are al10c.ted. the page
alloe.tion t.ble which is len.r.llv
r.sident in ..morv c.n be ... ller. Ho...- FFFFFF
ever, this ••V r.sult in .or. fr.\u.nt
.V st• m int.rvention to ••tisfV r.\u.sts
for .ddition.l m.morV. As a r ••ult .V s -
tem overhe.d incr•••••.

loth of th••••pproach.' r.pr•••nt
for.. of dVn••ic .tor.g. alloc.tion.
Dvna.ie .tora,. ·.llocation .implv
implie. that ".OTV is .llocate' at run
tim. and is d.p.nd.nt on the current
.tat. of the 'V.t... With either
approach a ta.k .av r.side in different
ar.a. of ".OTV .ach tim. it i. e ••­
cut.d.

nEMORY fRAOMENTATIQN

BK
SEQMENT

lK
FRAQHENT

'TK
REGUEST

Internal ••morv fragmentation [4]
occurs b.cau•• m.morV ••g••nt••• lthough
variable in sil'. are anI, availabl. in
discrete siz.s. Th. unus.' portion of •
T.~uelt.d ••gm.nt 0' ".oTI repr.s.nt.
an inlt.nce of intern.l fr.g__ ntation.

Letl look .t •••moTV T.\U.lt that
r ••ult, in internal ••morv fragmenta­
tion. We'll a,su.e that the Imall.,t
black of m.moTV th.t c.n b. alloc.t.d i.
:2K. If a ta.k r'llu.,t, a 7K block of
.emorv ...e .ust fill that r.\ue.t with
the n.lt larger size s.gm.nt. an SK ••g­
••nt. As a T•• ult .... have an unus.d lK
fragment that is not availabl. for us.
bV the .vst.m. Thi. i. referr.d to a.
int.rnal fragm.ntation sine. the frag­
••nt i. int.rnal to a ..moru •• g••nt.
figure 1 illultr.t•• this situation.

Internal ••moru fragm.ntation c.n
al'o be thought of a. allocated ..mar V
that il not ne.ded bV the task it i.
allocated to.

E.t.rn.l M.mory Fr.gm,nt.tign

Elternal .,morv 'ragmentation [43
1.ads to the situation in which. talk
cannot g.t •••gm4nt of ".OTV of the
r.,u•• t'd ,ire .v.n though th.r. is
enough .'.OT~ .vail,ble in the '~It••.
Thi' happ.ns b.cau,. the ...orV ••nage­
••nt •• chani •• cannot combine the avail­
able ••morV into _ contiguous block at
l.alt a. l.rg. as the ••gM.nt T.,u•• t.d.

000000

figure 1. Erample of Int.rnal M.morV
Fragm.ntat ion.

fragm.ntation l.t'. look at m.moTU aft'T
a numb.r of r.~u•• t. hav, b••n .ed. and
lome •• gm.nt. d•• lloc.t.d. W.'ll , •• um.
w. have • fr•• 16K block at addr'l' 4000
and anoth.r fr•• 16K block at addre,.
1BOOO. NQ~. r.,u.st com.s in for _ 3~K

block of ••moTV. A standard ••morv
.anagem.nt algorithm .uch as the bin.rv
budd~ algorithm look. fDr • contiguoul
32K block compo••d of t ...o 16K buddi ••.
Sine. th••e two 16K block. ar. not con­
tiguous th. binarv buddU •• thod· ...ould
ignore the.. If a contiguous 32K blotk
~ould not b. found the T'~U.'t ...ould b.
lII.ueued up untU a contiguous' 32K block
..... ava~labl.. According to Knuth [1]
this il nDt as in.flici.nt.s it firlt
app.ars. In fact it do.sn't b.eom••
probl.m until 9'X of ••morv ha. b••n
r •••rv.d. Figur. 2 illu.trat•• an •• am­
pIe of .It.rnal .'.OTV fragm.nt.tion.

E.t.rn.l ••morV freg ••ntation cen
be thought of as un.llDc.t.d .,moTV that
is curr.nt1~ unusabl.. Thi. di.tin­
lui.he. it from internel fragm.ntation
which also r.pr.sent. uou.abl. ..morV
but ...orV that ha. b••n .llocat,d.



FFFFFF

01COOO

018000

008000

004000

EXTERNAL
FRAQt£NT

EXTERNAL
FRAQMENT

look .t wh.t it t.k.. to do • tllk
switch w. find out whV w. don't w.nt to
1'.pl.c. MMU-r.dd.nt d.scriptar.. If'
the d••criptor••'1" r •• id.nt w. cln .im­
plV ch.n,e two .ntri•• in the 68451' •
• ddI'" .p.c. t.bl. to •• l.et the new
u ••r .ddr••• ,ple. numb.r. Thil i.
illu.tr.t.d in filur. 6 bll the
'TASKSWTCH' Tout in.. Haw.v.r. if the
••~criptDrs ar. nat r •• id.nt, the
op.rltinl SV.t.m MU.t fir.t d.t.rmin.
whic. r •• id.nt d••criptors to r.pl.ce.
Th*n it MU.t load .ach n.w d••criptor
into the ~U .1 .hown bV the 'LDDESC'
routine in figure 6. And finlllV it _u,t
change the two addrel' .pac. t.bl •
• ntrie. one. the d••criptor. er.
re.id.nt. In loa. c•••• the delcriptors
mu.t b. .av.d b.for. b.ing r.placed.
This i. n.e••••rv if th.V cont.in .tatul
information thlt i. signi'ic.nt to the
operating SV.t.. (s.. 'SAVEDESC' and
'SVDSCDIS' in figure 6'. So w. can s ••
thlt de.criptor .Ina,...nt bV itlelf i •
• n importlnt ta'k. It mUlt b. handled
proper IV to miniaile sy.te. ov.rh••d.

000000

Filu~e 2. E••mpl. 0' E.t.~n.l "-mo~v

Fragm.nt.tion.

IHE 6B4~1 APPROACH

pelcriptgr M.n.a,ment

Anv ••mOTU ••nag.m.nt ••ch.ni.m
involving h.rdw.re i. c.p.bl. of
~.pr•••ntin, a fil.d numb.r of ••moru
block. .t .nu on. ti••. In the MotOTOl.
68451 th... M.moru block. .r.
r,pr•••nt.d bU d••criptor.. E.ch
d'Jcriptar cant. in. in'orM.tion th.t
.p.cifi.. the .ir.t ward .dd~••• of •
lIl\.ma~\1 black, it•• iI. or I.n,th. the
phll.ic.l .dd~... it will b. m.pp.d to.
the t •• k it i •••• i,n.d to (it. .ddr•••
.pac. numb'Tf, .n .ddr... .p.c....k
th.t d.t.rlll\in•• which t ••t. c.n .h.r.
this m.morv block .nd •••gm.nt .t.tu.
bVt. th.t cant. in. .ce... control' .nd
,t.tu. inform.tion.

Th, 10.1 of d•• c~iptor m.n.g,m.nt
t. to lIl\ini.ia. the numb.r 0' tim•• th.t
MMU-T•• id.nt d••criptar. mu.t b.
r.pllc.d. This hlpp.n. if d••criptar.
r.~uiT.d bll .nath.r t •• k. b.ing
.ctivlt.d, .I' not r •• id.nt. Wh.n w.

3

We Must d•• l with two ••p.rat.
t.... in maneging MMU delcriptor •. Th.
fir.t t •• k involve. d.cidin, on the
nu~ber of d.lcriptor. to u•• to describe
a liven ,eg.ent of ...oru. On one hand
we would like .nough d••criptor. to
.ini~ila the occurr.nc. of int.rnal
frl,.entation. On the oth.r hand w.
would like to u•• d••criptor. .p.ringIV
to reduce the n.ed to r.pllce re.ident
de.criptors wh.n a new talk is
activlt.d. I' too mlny d.scriptorl are
u,.d we .au n••d more MMU, or w. mav
inc~•••e _Vitam ov.rh.ld Te~uired to
tr.n.fer d.scriptor. in and out of the
tU1U fro•••1I0rv.

At on. e.tr.m. we cln .1w.V' .110­
cIte .e~orv u.ing only on. MMU descrip­
tor. Th. av.r.g. m.morv block .ir.
r.,u•• ted will fIll h.lf wIV b.tween •
liv.n .i.e 2... .nd the ne.t 'maIler
.ir. 2.-.-1. Int.rn.l fra,m.ntation with
this appro.eh will be approli•• t.1V 25%0' the ,egm.nt .i.e re,uired to fill the
r.,u•• t. Thi. i ••hown in figure 3. Th.
A.ount 0' int.rnll 'r.gm.nt.tion for a
p.rticul.r block .ia.. r.pre••nt_d bv
on. d••eriptor. will v.ry betwe.n 0% and
50X. Th. aver.ge aaount 0' int.rnal
fr.gm.ntation will then ~e 2SX. If the
fragmentltian r.ach.s SOX w. would ul.
the nalt •••11.r s.g~.nt.• ir••nd Ieduc.
frlllm.nt.tion to I.ro. If w. u.e :i!
delcriptors per •• g••nt.e can cut the
aver.ge wa.te in half from 2'% to 12.5%.
A. w. eontinu. this Ippro.ch the .mount



Figure 3, R.lation.hip letween De.crip­
tor. and Internal "-mar, Frag­
lIentll t ion,

of int.rnal fragm.ntation .pproach.,
1.1"0. lut the number of HMU descriptor.
l.ft to "e,crib. other ".01'" .•eglllent.
• lso decrell'.'.

M,moty M.n'Alm~

Th. Itn'TY IUddy Su.tam

Th. de.ir.bilitu of thil Ich.m.
Ii.. in the •••• with which budd i •• c.n
b. r.combin.d into I'Tg'T "I.ent.. W.
would lik. to recomb in. '1"'• ••~orv I'g­
.entl into the larg.,t po•• ibl. contigu­
OUt blackl In pr.p'T.tion 'or • 1.Tg•
memOru re,u'lt. How.var this Ich.m. il
not without it. pTobl••I. Dv.rh.lld i.

Our intent throughout thil di,cuI­
lion ha. be.n to look .t way. to .ffec­
tivelv man.g. lIlemorv. In oTder to m.nllg •
••moTy we mUlt bre.k it up into p.rts
thllt are .a., to h.ndle. Th. Motorol.
69451 II d•• ign.d to divld...lIorU into
p.rt. who•• 'i... .ra pow.rl of t~o.

Th.r. have b••n ,ev.ral p.p,rs writt.n
on m.n.gino ••morV in this falhion -.
The .Olt common algorithm'or UI. with
I.gm.nt. of the•••il•• i. ref.rr.d to
•• the bin.ru buddU IU,t••.

i ••ue. 0' I) how .anv ~. to put in the
IV.t••, 2) how lIluch •••orv to put in the
.v.t.m, lind 3) how much 'V.t•• overh.ad
to allow for .wapping d••criptor•
bet••en the ""U(,) .nd memorv. The,.11 i.
no ••1' an...r to th... three i.lue•.
Each Iv.te. ha. ~if'erent characteri.­
tic••nd mu.t be tuned for optimum per­
formance. On. wav to get • Irip on
the.e numb.r. wCluld be to u.e· limula­
tionl bal.d on the makeup 0' a given
Iv.tem. Dr .e could build • pratotyp.
.nd a.p.ri..nt with the.e Iv.tem vari­
.bl.1 whila coll.cting data on .~.t.m

p.rformance. Keep in .ind. though, th.t
perfor.ance can ch.nge with ti~... the
t,p. of progra.1 run on the .~st.m

chang •. Somathing th.t il optim.l nO~

might not b. a fe~ .onth. 'rom no~.

Th. bin.rv buddU 'Vltem r.f.rl to •
I.gm.nt.tion lehem. in which .11 IlIg­
••nt••re of .ilel th.t .r. ppw.rl of ~.

AI • r.lult .nv I.gment c.n be Iplit
into two #b~ddi•• ' whOle lile••re .1.0
pow.r. of two. For inst.nca .n Bioi. lI.morv
..gm.nt .t addr... XIII e.n b. .plit
into two 4K buddie••t .ddr•••••• 11.

.and ••• 1+4K. Bin.rv budd i •• ara .lw'VI
.,u.l in lila. Th. firlt word .ddr•• 1 of
the buddV for ••egm.nt i. found bV p.r­
'or.ing tha •• clu.iv. 'OR' 0' the I'g­
.ent firlt word .ddre.. .nd it. IiI'.
Figur. 4 shaWl how this i. dan•.

:i!S'X
UNUSED

AVERAQE
REQUEST

SIZE
6K

r
I
I
I
I
I

FFFFFF

000000

8101.
SEQMENT

Keeping all de.criptar, in th. KMU
.11 the tille i' on. approach. Thi.
method work, fin. if the total number of
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Figure 4. linarv luddV Addre••
tion.
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[5]

n,moru lib.r.$iRn

bit. th.t com. f~o. the PhV.ic.l ••••
Add~"1 R.gi.t'T. Z'TO' indic.t. bit, of
the logic.l .ddT'" from the CPU th.t
'1" p••••d through the ~U to the phV.i­
c.l .ddr••• bUI. A. ..o~, bit~ of the
10gic~1 .ddr... .~. u••d both the
• ddr••• ing r.ng••nd the "Im.nt siz.
incr••••.

Wh.n ...mo~v "Im.nt is 'r••d or
lib.r.t.d it i. T.combin.d with its
buddV if the buddV i •• lso fr ••. Thi. i.
• r.cur.iv. tvp. of op.r.tipn th.t con­
tinu.1 until. '1'" ••gm.nt dO'ln't h.v.
• fr •• buddV. Thi. proc'l. e.n b. tim.­
eon.uming .nd b.com.. .noth.r f.ctor
th.t .ff.ct. ov.r.ll 'V.t•• p.r'or••nc•.

In ord.r to T.duc. svst.m OV.Th••d
n ••d.d to T.combin. budd i.. w. could
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I.gm.nt h.1 r ••ch.d • siz. th.t i.
optimum for our p.rticul'T 'Vlt.m. This
liz. will b. on. th.t ,.ti•• i •• Mo,t of
the m.moT~ T'~U•• tl T.c.iv.d. How.v.r,
the 'Vlt.m will u•••ddition.l tim. to
fill T'~U'ltl th.t .1" 1.rg'T th.n this
optimum siz•. Thil il on. of ~h. 'Vlt.m
v.ri.bl.1 th.t will n••d to b. fin.­
tun.d fOT b.lt p.r'orm.nc•.

CONCLUSION

Th. Motorol. 694'1 .'f.ctiv.l, sup­
port. m.morv ••nag.m.nt.. Th. bin.TV
buddV IVlt.m can b. • •• ilV impl.m.nt.d
uling the 694'1: M.moT, ••nag.m.nt is
import.nt for tod.V', micToproc'l,or­
b'I,d IVlt.ml with th.ir 1.1'1' .ddr•• ,
Ip.C.1 .nd Motorol. ha, the hardwar. to
support it.
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MC68451 MEMORY MANAGEMENT UNIT

F.1INTRODUCTION

The MC68451 Memory Management Unit (MMU) provides address translation and protec­
tion for the 16 megabyte addressing range of the MC68QOO processor. Each bus master
(or processor) in the M68000 family provides a function code and an address during each
bus cycle. The function code specifies an address space and the address specifies a
location within that address space. The function codes distinguish between user and
supervisor spaces and. within these. between data and program spaces. This separation
of address spaces provides the basis for memory management and protection by the
operating system. Provision Is also made for other bus masters, such as the MC68450
Direct Access Controller (DMAC), to have separate address spaces for efficient direct
memory access. A multitasking operating system is simplified and reliability is enhanc­
ed through the use of a memory management unit.

The MC68451 is the basic element of a memory management mechanism in an MC68000­
based system. The operating system Is responsible for ensuring the proper execution of
user tasks In the system environment, and memory management is basic to this respon­
sibility. The memory management mechanism provides the operating system with the
capability to allocate, control. and protect the system memory. A block diagram of a
memory management mechanism using a single MMU is shown in Figure F-1.

A memory management mechanism Implemented with one or more MC68451 MMUs can
provide address translation, separation, and write protection for the system memory. The
memory management mechanism can be programmed to cause an interrupt when a
chosen section of memory Is accessed, and can directly translate a logical address into
a physical address. making it available to the processor for use by the operating system.
Using these features, the memory management mechanism can provide separation and
security for user programs and allow the operating system to manage the memory in an
efficient fashion for multitasking.

F.2 MEMORY SEGMENTS

The memory management mechanism partitions the logical address space into con­
tiguous pieces called segments. Each segment Is a section of the logical address space
of a task which is mapped via the memory management mechanism into the physical ad­
dress space. Each task may have any number of segments. Segments may be defined as
user or supervisor, data·only or program·only, or program and data. They may be access­
ed by only one task or shared between two or more tasks. In addition, any segment can
be write protected to ensure system Integrity. If an. undefined segment is accessed, a
FAULT Is generated by the MMU and applied to the bus error input of the processor.
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f.3 FUNCTION CODES AND ADDRESS SPACES

Each bus master in the M68000 family provides a function code during each bus cycle to
Indicate the address space to be used for that cycle. The address bus then specifies a
location within this address space for the operation taking place during that bus cycle.

The function codes appear on the FCO·FC2 lines of the MC68000 and divide the memory
references into two logical address spaces - the supervisor and the user spaces. Each
of these is further divided into program and data spaces. A separate address space is
also provided for Interrupt acknowledge bus cycles giving a total of five defined function
codes.

In addition to the 3·bit function code provided by the MC68000. the MMU also allows a
fourth function code line (FC3) which provides for the possibility of another bus master In
the system. In this case, FC3 would be tied to bus grant acknowledge Input of the
MC68000 to enable a second set of eight function codes. This raises the total number of
possible function codes to sixteen. If there Is only one bus master (the MPU), the FC3 pin
of the MMU should be tied low and only eight address spaces used.

f.4 ADDRESS SPACE NUMBERS

To separate the address spaces of different tasks, each address space Is given an identi·
fylng number. This should not be confused with the address space indicated by the func·
tlon code. Each function code defines a unique address space and within each of these
there can exist a number of different tasks. Each of these tasks needs an address space
number (ASN) to distinguish It from the other tasks with which it may share an address
space.



The address space numbers are kept In the MMU in a set of registers called the address
space table (AS1). The AST contains an 8-bit entry for each possible function code (16).
Each entry can be assigned an address space number and, during a bus cycle, the func­
tion code Is used to Index Into this table to select the cycle address space number. This
number is then associatively compared with the address space number in each descrip­
tor to attempt to find a match.

F.5 DESCRIPTORS

Address translation Is done using descriptors. A descriptor Is a set of six registers (nine
bytes) which describes a memory segment and how that segment is to be mapped to the
physical addresses. Each descriptor contains base addresses for the logical and
physical spaces of each segment. These base addresses are then masked with the
logical address masks. The size of the segment Is then defined by "don't cares" in the
low-order bits of the masks. This method allows segment sizes from a minimum of 256
bytes to a maximum of 16 megabytes In binary increments (Le., powers of two). This also
forces both logical and phySical addresses of segment boundaries to lie on a segment
size boundary. That Is, a segment can only start on an address which Is a multiple of 2k.
The segments can be defined so that they are physically shared between tasks. A func­
tional block diagram of an MC68451 MMU is shown in Figure F-2.
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Figure F·2. MC68451 Functional Block Diagram

During normal translation, the MMU translates the logical address provided by the
MC66000 to a physical address which Is then presented to the memory array. This Is ac­
complished by matching the logical address with the information in the descriptors and
then mapping it Into the physical address space.



The logical address Is composed of address lines Al·A23 as shown In the memory
management mechanism block diagram, Figure F-l. The upper 16 bits of this address
(A8-A23) are translated by the MMU and mapped Into a physical address (PA8-PA23). The
lower seven bits of the logical address (Al-A7) bypass the MMU and become the low·
order physical address bits (PA1·PAn.

F.B MMU REGISTER DESCRIPTION

A programmer's model of the MMU Is shown In Figure F-3. The MMU register consists of
two groups: the descriptors and the system registers. Each of the 32 descriptors Is nine
bytes long and defines one memory segment.
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Figure F·3. MC88451 Programmer. Model



Address Space Number (ASN)

Address Space Mask (ASM)

Segment Status Register (SSR)

The system registers contain both Information local to the MMU and Information global
to the memory management mechanism. Each bit In the system registers and the seg­
ment status registers, except the address space table, Is one of four types:

Control Control bits can be set or cleared by the processor to select
MMU options. These are read/write bits.

Status Alterable Status alterable bits are set or cleared by the MMU to indicate
status Information. These are also read/write bits.

Status Unalterable Status unalterable bits are set or cleared by the MMU to reflect
status information. These bits cannot be written by the pro­
cessor.

Reserved Reserved bits are reserved for future expansion. They cannot be
written and are zero when read.

The system registers are all directly addressable from the physical address space. Ac­
cessing these registers causes certain operations to be performed. The descriptors are
not directly addressable, but are accessed using the descriptor pointer and the ac­
cumulator.

In the following discussion, a segment access Is defined as a successful match occur­
ring on a segment during normal translation.

F.6.1 DESCRIPTORS. Each MMU contains 32 descriptors (0-31). each of which can define
one memory segment. A descriptor is loaded by the processor using the accumulator and
descriptor pointer with a load descriptor operation. The segment status register (SSR)
can be written to Indirectly by the processor using the descriptor pointer. Each descriptor
consists of the following registers:

Logical Base Address (LBA)
Logical Address Mask (LAM)

Physical Base Address (PBA)

F.8.1.1 Loglca' Ba•• Address (LBA). The logical base address register Is a 16-blt register
which, together with the logical address mask, defines the logical addressing range of a
segment. This Is typically the first address In the segment, although It can be any ad­
dress within the range defined by the logical address mask.

F.8.1.2 Logical Address Mask (LAM). The logical address mask Is a 16·blt mask which
defines the bit positions In the logical base address register which are to be used for
range matching. Ones, In the mask, mark significant bit positions while zeroes Indicate
"don't care" positions. A range match occurs If, In each bit position In the logical ad­
dress mask which Is set to one, the logical base address register matches the Incoming
logical address. The matching function Is depicted schematically In Figure F-4.
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Figure F·4. Schematic Representation for Address Matching

F.B.l.3 Physical Base Address (PBA). The physical base address register is a 16·bit
register which, together with the logical address mask and the incoming logical address,
is used to form the physical address. The logical address Is passed through to the
physical address In those bit positions of the logical address mask which contain zeroes
(the "don't cares") and the physical base address is gated out in those positions which
contain ones. A schematic representation .of the physical address generation
mechanism is shown in Figure F·5.

Figure F·5. Schematic Representation of Physical Address Generation

F.B.l.4 Address Space Number (ASN). The address space number is an a·bit number
which, together with the address space mask, is used in detecting a match with the cycle
address space number.

F.B.l.S Address Space Mask (ASM). The address space mask is an a·blt mask which
defines the significant bit positions in the address space number to be used in descriptor
matching. As in the logical address mask, the bit positions which are set are used for
matching and the bit positions that are clear are "don't cares." A space match occurs If,
In the significant bit positions, the cycle address space number matches the address
space number. Address space matching Is schematically similar to logical address
matching as shown in Figure F·4.

F.B.l.B Segment Status Register (SSR). Each descriptor has an a·blt segment status
register. The segment status register can be written to In two ways: using the load
descriptor operation or indirectly using the descriptor pointer in a write status register
operation. Each bit is labeled as control or status alterable. Bits 5 and 6 are reserved for
future use. .



Address
Indirect through Descriptor Pointer

a) MPU writes "1"
a) MPU writes "0"
b) Reset (segment 1#0 of master)

U U (Used) is set by the MMU if the segment was accessed since It was defined. This
bit is status alterable.
Set: a) by a Segment access (successful translation using the segment)

b) by an MPU write of "1"
Cleared: a) Reset (in segment 1#0 of master)

b) MPU write of "0"

If the I (Interrupt) control bit is set, an Interrupt Is generated upon accessing the seg­
ment.
Set:
Cleared:

IP IP (Interrupt Pending) is set if the "'" bit is set when the segment Is accessed.IRQout
is asserted if an IP bit, in one or more SSRs,ls set and IE in the global status register
is set. IRQout is negated when all the IP bits In all SSRs are clear or IE is cleared. IP
is status alterable and should be cleared by the Interrupt service routine.
Set: a) Segment access and "1" is set

b) MPU writes "1"
Cleared: a) MPU writes a "0"

b) Reset (In segment #0 of master)
c) E bit is a "0"

M The M (Modified) bit Is set by the MMU If the segment has been written to since It
was defined. The M bit Is status alterable.
Set: a) Successful write to the segment

b) MPU writes a "1"
Cleared: a) MPU writes a "0"

b) Reset (segment #0 In master)

WP If the WP (Write Protect) control bit Is set, the segment Is write protected. A write ac­
cess to the segment with WP set will cause a write violation.
Set: a) MPU writes a "1"
Cleared: a) MPU writes a "0"

b) Reset (segment 110 In master)

E E (Enable) Is a control bit which, when set, enables the segment to participate In the
matching process. E can be cleared (the segment disabled) by a write to the SSR, but
a load descriptor operation must be performed to set It.
Set: a) Load descriptor with AC7, bit #10

b) Reset (segment #0 in master)
Cleared: a) MPU writes a "0"

b) Unsuccessful load descriptor operation on this descriptor
c) Load descrIptor operation with AC1, bit If{) clear



F.8.2.2. Accumulator (ACO·AC8). The accumulator (Figure F·3) is used to access the
descriptors, perform direct translation, and latch Information during a fault. The ac­
cumulator consists of nine a·bit registers. The register assignments for each operation In
which It participates is shown in Table F·1.

The contents of the accumulator can be either local or global depending on the
preceding operations. The global accumulator for load and global accumulator for
translate bits In the local status register (LSR) indicate whether the information in the ac­
cumulator Is sufficiently global to perform a load descriptor or direct translation opera·
tion.

Table F·1. Accumulator Assignments for Operation

RegIster
ASS'Qnmenl

Load. Read Descriptor Direct Translation Normal Translation IFaultl
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F.6.2.3 Global Status Register (GSR). The global status register is an B·bit register used
to reflect faults and to enable interrupts from an MMU. All MMUs maintain identlcallnfor.
mation in their global status registers. Bits 1,2,3,4, and 5 are reversed for future use. The
organization of the global states register is shown below.

GSR

Address

$20

F F (Fault) is a status alterable bit that is set by the MMU whenever FAULTin is
detected. Clearing the F bit automatically clears bits L4·L7 in the local status
register.
Set: a) Write violation detected in this MMU

b) FAULTln detected (write violation In.another MMU)
c) ALlin detected (Undefined Segment Access)
d) MPU writes a "1"

Cleared: a) Reset asserted
b) MPU writes a "0"

DF DF (Double Fault) Is set if a FAULTln signal was detected with F set. DF is a status
alterable bit.
Set: a) FAULTln detected and F was previously set

b) MPU writes a "1"
Cleared: a) Reset

b) MPU writes a "0"



F.8.2 SYSTEM REGISTERS. The system registers consist of:

Address Space Table (AST) Descriptor Pointer (DP)

Accumulator (ACO-AC8) Result Descriptor Pointer (RDP)

Global Status Register (GSR) Interrupt Descriptor Pointer (lOP)

Local Status Register (LSR) Interrupt Vector Register (IVR)

F.8.2.1 Address Space Table (AST). Each MMU has a local copy of the address space
table. This table Is organized as sixteen 8-bit, read/write registers located starting at ad­
dress $00. Each entry is programmed by the operating system with a unique address
space number, each of which is associated with a task. During a memory access, the
MMU receives a 4·bit function code (FCO-FC3) which is used to Index into the address
space table to select the cycle address space number. This number is then used to check
for a match with the address space number in each of the 32 segment descriptors.

Only the MC68000 microprocessor and the MC68450 direct memory access controller on­
ly provide a 3-bit function code. In a system with more than one bus master, the bus grant
acknowledge signallrom the processor could be inverted and used as the fourth bit, FC3.
This would result in the address space table organization shown in Figure F-6.



MPU writes a "1"
Reset
MPU writes a "0"

IE If IE (Interrupt Enable) Is set, the Interrupt·request line Is enabled. This is a read/write
control bit.
Set: a)
Cleared: a)

b)

F.6.2.4 Local StatuI Register (LSR). The local status register is an 6·bit register which
reflects information local to Its MMU. The local status register can be globally written but
the global accumulator for load, global accumulator for translate, and local interrupt
pending bits will not be affected. Bits L4·l7 are cleared if the fault line in the global
status register is cleared. All bits in the local status register are cleared on reset. The
organization 'of the local status register Is shown below.

,..-''--'--:=--'--:=--y--':''-y--=--y--=--..--':''-..,..-.:::-., Address
lSR $2F

RW RW is a status alterable bit which reflects the state of the RIW pin at the time
FAULTin is asserted.
Set: a) MPU writes a "1"

b) Read of segment when F in SSR is set
Cleared: a) Reset

b) MPU writes a "0"
c) Write of segment when F In SSR is set

GAT GAT (Global Accumulator for Translate) is set by the MMU if ACO, AC1, and AC6 are
globally consistent.
Set: a) If ACO, AC1, and AC6 are globally consistent (they were last

modified as a result of a global write)
Cleared: a) Reset

b) If ACO, AC1, and AC6 are not globally consistent

GAL GAL (Global Accumulator for Load) is set If ACO, AC1, AC2. AC3, AC6, and AC6 are
globally consistent.
Set: a) If ACO, AC1, AC2, AC3, AC6, and ACe are globally consistent
Cleared: a) Reset

b) If ACO, AC1, AC2, AC3, ACe, and ACe are not globally consistent

UP LIP (Local Interrupt Pending) Is set If one or more descriptors have IP set in their seg·
ment status registers.
Set: a) If IP Is set in any descriptor
Cleared: a) Reset

b) If all IP bits are clear

L4· The status information encoded In L4·L7 reflects the status of the MMU after the last
l7 event (an operation or fault). These bits are encoded and changed as a unit. They are

cleared whenever the F bit In the GSR Is cleared and are alterable by the MPU.



l7 L6 L5 L4
0 0 0 0
1 0 0 0

1 0 0 1

1 0 1 0

1 1 0 0

NO The MMU was not the source of the last event.
DT A direct translation was locally successful. A match was found In

one of the MMUs descriptors.
LD A load descriptor fault occurred. A previously defined descriptor

conflicts with the descriptor being loaded.
USA An undefined segment access was attempted. The logical address

was not matched In any descriptor in the MMU.
WV A write violation occurred. A segment defined in this MMU was write

protected and a write to that memory segment was attempted. The
NVR bit in the RDP will show whether the USA or WV occurred in this
MMU.

Set: a) .Varlous bits set if DT, LD, USA, or WV occur
b) MPU writes a "1"

Cleared: a) Reset
b) MPU writes a "0"
c) When F bit in GSR is cleared
d) If MMU was not the source of the last event (NO)

F.8.2.5 Descriptor Pointer (DP). The descriptor pointer is an a·bit read/write pointer
register located at address $29. The five low-order bits identify the descriptor to be used
In the load descriptor, read segment status (transfer descriptor), and write segment
status operations. Bits 5, 6, and 7 are reserved.

The descriptor pointer Is initialized to $00 on reset. It can be globally written by the pro·
cessor. The descriptor pointer is loaded by the memory management mechanism with
the number of the descriptor matched in a direct translation operation to allow a subse·
quent transfer descriptor operation to load the matched descriptor into the accumulator.

F.6.2.8 Result DescrIptor Pointer (RDP). The result descriptor pointer Is an B·blt, read·only
register that identifies a descriptor Involved In the following events: a write violation, a
load descriptor failure, or a direct translation success. The result descriptor pointer Is
loaded from a priority encoder which determines the highest priority descriptor Involved.
For example, In a load descriptor operation, more than one descriptor currently In the
MMU may collide with the descriptor being loaded. Only the number of the highest priori·
ty descriptor will be loaded into the result descriptor pointer. Descriptor 0 is considered
to be the highest priority and 31 is the lowest.



The bit assignments are shown below. Bits 5 and 6 are reserved. The result descriptor
pointer Is initialized to $80 on reset.

2 0 Address
$3B

NVA If no descriptor is selected by the priority encoder when the AOP is loaded, NVA
(No Valid Aesult) is set, otherwise it Is cleared. This bit is status unalterable.
Set: a) Aeset

b) No result from WV, LO, or OT
Cleared: a) A WV, LO failure of OT success in this MMU

AO·
A4 AO·R4 encode the number of the descriptor selected by the priority encoder

F.8.2.7Interrupt Descriptor Pointer (lOP). The interrupt descriptor pointer Is an 8-bit read·
only register that is read to determine which descriptor caused an interrupt. Each lime It
Is read, the Interrupt descriptor pointer Is loaded from the priority encoder with the
highest·priorlty descriptor Which has the interrupt pending bit In its segment status
register set. If no descriptor has an interrupt pending bit set, the no valid interrupt bit is
set.

The bit assignment Is shown below. Bits 5 and 6 are reserved.

lOP
Address
$39

NVI NVI Is set If no descriptor has IP set, otherwise It is cleared.

10-14 These bits encode the number of the descriptor selected by the priority encoder.

F.8.2.8 Interrupt Vector Register (IVR). The Interrupt vector register is an 8·blt read/write
register containing the interrupt vector. Its contents are put on data lines 00-07 during
the Interrupt acknowledge operation to provide the processor with a vector number. The
Interrupt vector register Is Initialized to $OF (the MC68000 unlnitiallzed-device vector
number) on reset.

F.7 MMU OPERATIONS

Table F·2 shows the operations which can be performed. Each operation Is initiated by
the access of an address given on the register select lines AS1-RS5 and the upper and
lower data strobes. The access can be from either the logical or physical address bus. In
a multiprocessor system, an external processor could access the memory management
mechanism from the physical address bus. If the access Is from the logical address bus,
an address translation Is first performed. If the access Is from the physical address bus,
the operation state Is entered directly from the Idle state.



Table F·2. Summary of MMU Functions

Function Summ.ry

Idle Tne MMU backs 011 the bus to p'epare for a new access

Resel The MMU IS pre"emplivelv In,tlallzed.

Normal Translation The MMU anempts to translate an access Irom tM log,cal address bus

OperatIons Tne MMU IS accessed Irom tM log'cal or phys,cal bus

Wrote System RegISters An opera~lQn to globally write svs~em registers

Read System Reg,sters Ar'l ooeratlon to rettd th!! system regIsters

Wrote Segmenl Status The SSR of a descroplor can be ou,cklv changed USing on,s operation. The enable btl canhol
be set uSing It. however

load Deswplor W,tn thIS opera;,on, tM contentS of tne accumulatQ! are loaded mlo the desCnplor pOInted 10 by
the descriptor po,nler

Transfer DescrIptor ThiS operation. transfers ~"e conlentS of the selected deSCriptor Into the accumulator.

D,rset TranSlat,on An opera\lOn to globally translate a log'cal address for the operating system

Interrupt Acknowledge An operaHan lhat suPP',es a .eCtor number to the MPU ,n response 10 lACK.

The operation phase Is always entered with PADO·PAD15 In the high-Impedance state
and either (in the case of an operation following a normal translation) one MMU asserting
HAD to hold the physical address, or (in the case of an access from the physical bus) the
external processor holding the address. If both chip select and either the upper or lower
data strobe Is asserted or Interrupt acknowledge and Interrupt request In are asserted,
the MMU asserts ED to enable the data transceivers.

If Interrupt acknowledge and interrupt request In are asserted, an interrupt acknowledge
operation is performed. If chip select and either the upper or lower data strobe Is
asserted, the memory management mechanism determines which operation to perform
by decoding the register select lines and the read/write line. These signals tell which
register Is associated with the operation, which operation to perform, and whether the
operation Is local or global.

After each operation, data transfer acknowledge Is asserted to Indicate to the processor
that the operation is finished. When the processor negates the data strobe, data transfer
acknowledge and ED are rescinded and PADO·PAD15 are placed in the high-Impedance
state. If address strobe Is negated, or had been negated since the last normal transla­
tion, the MMU enters the Idle state.

After the data transfer acknowledge handshake, If address strobe remains asserted and
chip select and either the upper or lower data strobe Is asserted, another master opera­
tion Is performed. If address strobe remains asserted and GOln and either the upper or
lower data strobe Is asserted, another slave operation Is performed.

F.7.1 OPERATIONS ADDRESS MAP. Table F-3 shows the operations address map. Each
system register has an address at which It can be read or written. In addition, some ad­
dresses do not correspond to a register, but rather designate an operation to be perform.
ed by reading that location.

The data strobes are logically separate and operations using both are Independent. The
operation ends when both data strobes are negated.



Some addresses are reserved for future expansion. Any access to an unused location will
result In a null operation. If the access Is a read, the appropriate byte of the data bus is
driven high. If the access Is a write, no side-effect occurs.

F.7.2 LOCAL OPERATIONS. Some operations, such as reading the status registers, af­
fect ~nly one MMU. These are called local operations. Local operations Include:

Interrupt Acknowledge Transfer Descriptor

Read System Register Write Segment Status Register

F.7.2.1 Interrupt Acknowledge. The interrupt acknowledge operation is performed If In­
terrupt acknowledge and interrupt request in are asserted at the beginning of the opera­
tion phase. During interrupt acknOWledge, the contents of the interrupt vector register
are placed on data lines' 00·07 to provide the processor with a vector number.

F.7.2.2 Read System Register. Each system register has an address at which It can be
read. Each MMU should be chip selected at a different location to access the registers In
each. During a processor read of the interrupt descriptor pointer, it is first loaded from
the priority encoder and then gated onto data lines 00·07.

F.7.2.3 Transfer Descriptor. In order to read the contents of a descriptor, it must be
transferred into the accumulator and read from there. The descriptor pointer is first writ­
ten by the processor with the number of the descriptor desired. The transfer descriptor
operation Is then performed by reading from the segment status register address ($31).

The contents of the selected descriptor is then transferred Into the accumulator as
shown In Table F·1 and the contents of the segment status register are gated onto data
lines 00·07. The descriptor registers may then be read from the accumulator.

F.7.2.4 Write segment Status Register. The segment status register of any descriptor
can be written using the descriptor pointer as a pointer. Any bit may be written except the
enable bit. Enable may be cleared using this operation but it may not be set.

F.7.3 GLOBAL OPERATIONS. A global operation is one which Is performed in parallel on
all MMUs In the system. Global operations include:

Writes to System Registers

load Descriptor Operation

Direct Translation

In global operation, one MMU must be the master and the rest must be slaves. The opera·
tlon begins with chip select and either the upper or lower data strobe asserted on one
MMU. The MMU~ith chip select asserted becomes the master for that operation. The
master asserts GOout and, upon detecting GOln as true, the other MMUs become slaves
In the operation.



If there is only one MMU present in the system, the ANY, All, and GO pins must be tied
to Vee through pull-up resistors. Global operations then become local only.

F.7.3.1 Write System Register. Each system register that can be written to is written
globally. This includes: the accumulator, the address space table, the descriptor pointer,
the interrupt vector register, and the local and global statu,s registers. The operation is
performed by writing to the desired register's address.

The MMU which has chip select asserted becomes the master by asserting GOout. The
other MMUs detect GOin and become slaves. Each MMU transfers the data on the data
bus to the selected register. If the write is to a byte of the accumulator, that register is
marked as global. If the fault bit in the global status register is clear, local status register
bits l4-l7 are also clear.

When the transfer is completed In each MMU, each will assert ALLout. After all MMUs
have asserted Allout, ALlin will be true and, upon detecting ALLIn, the master rescinds
GO.

F.7.3.2 Load Descriptor Operation. Descriptors are loaded by transferring the contents of
the accumulator to the descriptor after performing global checks for collisions. A colli­
sion exists when two or more enabled descriptors are programmed to translate the same
logical address.

To prepare for descriptor loading, the accumulator must be loaded globally with the
logical base address, logical address mask, address space number, and address space
mask. To make global collision checks, accumulators AC6 and AC8 must have been
globally loaded. If they are, the global accumulator for load bit In the local status register
of each MMU is set. To initiate the operation, a read from the address $3F Is done. If the
load is successful, the data bus will be set to $00. If a collision is found, the load Is unsuc­
cessful and the data bus Is set to $FF.

During the load desc!!ptor operation, the MMU with..9-h1p select asserted becomes the
master by asserting GOout. The other MMUs detect GOln and become slaves. The slave
MMUs decode the operation from the regisler select lines, the read/write line, and the
data strobes. The descriptor whose number Is in the descriptor pointer Is disabled (its
enable bit is cleared so that it cannot cause a collision).

If the global accumulator for load bit In the global status register of a slave Is clear, bits
LA4-lA1 in the local status register are encoded to indicate that a load descriptor fault
has occurred and ANYout is asserted. If global accumulator for load Is set, the slave
checks the enabled descriptors against its accumUlator for collisions. If a conflict Is
found, the slave asserts ANYout and loads Its result descriptor pointer with the number
of the descriptor which caused the collision. If no collision Is detected, bits L4·L7 In the
local status register are cleared. When GOin Is detected, ALLout and ANYout are
negated and the operation ends.

The master aborts the transfer If there is a local descriptor conflict, the global ac­
cumulator for load bit Is clear, or If ANYin Is asserted. If the failure was not local, bits
L4·l71n the local status register are cleared. Otherwise, bits L4-L7 are encoded for a load



descriptor fault and ANYout Is asserted by the master. The master then puts SFF on data
lines to indicate a failure to the processor, negates ALLout and ANYout, and rescinds
GOout When ANYln Is negated, the operation is terminated.

It there were no local collisions, Its global accumulator for load bit was set, and ALlin Is
asserted, the master completes the transfer and enables the loaded descriptor. It then
puts SOO on 00-07 to indicate success, clears L4·Ll, negates ALLout, and rescinds
GOout.

F.7.3.3 Direct Translations. The memory management mechanism can be used to direct­
ly translate the logical address into a physical address and make it available to the pro­
cessor in the accumulator. The logical address to be translated Is globally loaded Into ac­
cumulator ACQ-AC1 and the address space number to be used is loaded Into ac­
cumulator AC6. Translation Is Initiated with a read from the address S30.

If the translation Is successful, the descriptor pointer and result descriptor pointer point
to the descriptor which performed the translation and the physical address Is loaded Into
accumulator AC4-AC5. The processor reads $00 from the data bus.

If the logical address could not be translated because It was globally undefined, the data
bus Is set to $FF to Indicate the failure.

Using accumulator AC6 to supply the cycle address space number, each MMU attempts
to match the logical address contained in accumulator ACO·AC1 with one of its enabled
descriptors. Each MMU must have the same information in accumulator ACO, AC1, and
AC6. The global accumulator for translate bit In the local status register is set if these
registers have each been globally loaded.

If a match Is found and global accumulator for translate bit Is set, the physical address is
formed as In normal translation and put into accumulator AC4·AC5. The result descriptor
pointer and descriptor pointer are loaded from the priority encoder and bits L4-L7 in the
local status register are encoded to Indicate direct translation. The master puts $00 on
data lines 00-07 to signal that the translation was successful and rescinds GO to ter­
minate the operation.

If no match Is found, or the global accumulator for translate bit Is clear, the MMU asserts
ALLout and bits L4·L7 In the local status register are cleared. The master monitors the
ANYin and ALlin inputs.

If ANYln becomes asserted, then another MMU performed the translation. The master
puts $00 on data lines 00-07 to Indicate success, negates ALLout, and rescinds GOoul. It
waits until ANYln is negated before terminating the operation.

If ALLIn becomes asserted, then none of the MMUs performed the translation. The
master puts $FF on data lines 00-07 to Indicate failure, negates ALLout, and rescinds
GOout to terminate the opE!!!'-tion. Each slave MMU negates ANYout and ALLout when
the master MMU rescinds GO at the end of the operation.



F.8 MMU FUNCTIONAL DESCRIPTION

The memory management mechanism Is comprised of one or more memory management
units. Each MMU is capable of describing thirty-two segments. If more than thirty·two
segments are required in the system, more MMUs can be added to Increase the number
in 32·segment increments.

In order to perform Its operations, some of the information In the MMU's registers must
be global. That is, it must be duplicated in all the MMUs in the system. For example, the
address space table must be global to ensure that the address space numbers are com·
mon to all MMUs. To allow this, certain operations are defined as global. Any system
register that can be written is written globally. This includes the accumulator, the ad·
dress space table, the descriptor pointer, the Interrupt vector register, the global status
register, and the local status register. The result descriptor pointer and the Interrupt
descriptor pointer are read-only and, therefore, are local and not global.

The ANY, ALL, and GO signal lines are used to connect multiple MMUs to form the
memory management mechanism. The memory management mechanism uses these in·
put/output signals to communicate information between MMUs and maintain functional
unity. The global operation (GO) pin is used to establish the master-slave relationship
between MMUs for a given operation. The ANY signal Is detected as true if any MMU
asserts it, allowing MMUs to report conditions that are important in even one device. The
ALL signal is detected as true only if all MMUs assert it. It is used to verify that all MMUs
in the system have performed some operation or are In the same state. A sample circuit
diagram of a two-MMU system Is shown in Figure F·7.

During each global operation, one MMU is specified as the master; all others are
designated as slaves. The MMU which has lts chip select asserted becomes the master
by asserting the GOout signal. This signals the other MMUs that they are slaves for that
operation. Note that all MMUs may be accessed and, therefore, anyone may be the
master for a given operation.

F.8.1 MMU FUNCTIONAL STATES. At any time, an MMU may be in one of five states:

Reset

Idle

Normal Translation

Local Operations

Global Operations

In a glob~operatlon, an MMU may be a master (if the chip select signal is asserted) or a
slave (If GOin is asserted). In addition, two actions can occur regardless of the current
state:

1. If RESET Is asserted, the Reset operation begins. The memory management
mechanism will remain In the Reset state until RESET Is negated.

2. IRQout is asserted If local Interrupt pending bit in the local status register and In­
terrupt enable bit In the global status register are set, otherwise it is placed in the
high-impedance state and should be negated with a pu!lup resistor.



F.8.1.1 Re.et State. Asserting RESET will initiate the reset sequen~gardless of the
state of the MMU. During reset, GO, data transfer acknowledge, ED, MAS, HAD, and WIN
signals are rescinded. The physical address port, FAULT, and ANY lines are placed In the
high-Impedance state. Pullup resistors on the FAULT and ANY lines keep these signals
negated. The ALL pin Is driven low to negate it.

The global status register, local status register, descriptor pointer, and the entire ad·
dress space table are Initialized to SOO. The result descriptor pointer is initialized to $80
and the Interrupt vector register to $OF. All descriptors are disabled by clearing the
enable bits In their segment status registers.

In order to allow the address bus to function before the operating system can initialize
the memory management mechanism, one MMU Is selected to have descriptor 110 In·
itlallzed so that it maps any logical address unchanged to the physical address bus. The
MMU is selected for this by having its chip select line asserted during Aeset. This circuit
Is shown In the diagram In Figure F·7.

Descriptor zero In the selected MMU will have had Its logical address mask and address
space number cleared to SOD, Its address space mask set to $FF, and the enable bit set.
Because of this, the logical address passes to the physical address bus (via descriptor
zero) without alteration. The enable bits of descriptors 1·31 are cleared to zero to disable
them and their contents remain uninltlalized. If the MMU Is not chip selected during
reset, the enable bits In all descriptors are cleared and no descriptor Is Initialized.

F.8.1.2Idle Stat.s, The Idle state Is used to terminate bus accesses and prepare for new
ones. The MMU Is "backed-oU" the bus; I.e., the data transceivers are placed In the high·
Impedance state and the address latches are put into the transparent mode. The outputs
are driven to the same levels as In reset except that HAD is rescinded one·half clock after
MAS to provide address hold time.

While In the Idle state, the MMU uses the function code Inputs to Index Into the address
space table to provide the cycle address space number. If address strobe Is asserted, a
normal translation is performed. If address strobe Is negated and chip select, interrupt
acknowledge, Interrupt request in, GO, and the data strobes indicate an access from the
physical bus, an operation Is performed.

F.8.2 NORMAL ADDRESS TRANSLATION. At the start of a bus cycle, the processor
presents the logical address, read/write signal, and the function code to the memory
management mechanism. The function code Is used to Index Into the address space
table to select the cycle address space number. When address strobe Is asserted, the
normal translation phase begins by sending the cycle address space number, the logical
address, and the read/write signal to each descriptor for matching.

NOTE
The function codes must be valid before address strobe Is asserted to allow for
the table lookup. Current versions of the MC68000 provide this setup time;
however, early mask set (R9M, T6E) do not. With these early mask sets, address
strobe must be delayed to the MMU.



F.8.2.1 Matching. Matches can occur in two areas: range and space.

A range match occurs If. in each bit position in the logical address mask which Is set, the
Incoming logical address matches the logical base address.

A space match occurs if. in each bit position In the address space mask which Is set, the
cycle address space number matches the address space number.

F.8.2.2 Translation. An address match occurs If there Is a range match and a space
match. A write violation occurs If a write is attempted to a wrlte·protected segment. If
there Is an address matcl1 in a descriptor and no write violation, the physical address Is
formed from the physical base address of that descriptor and the logical address. The
logical address is passed through In those bit positions in the logical address mask
which are clear (the "don't cares"). In the other bit positions, the physical base address Is
gated out to the physical address bus.

The used and, if the cycle was a write, the modified bits in the segment status register
are set. If the interrupt bit is set, then the interrupt pending bit Is set. WIN Is asserted If
the write protect bit is set and the cycle was a read or a read-modlfy-wrlte. If the cycle
was a write. MAS Is not asserted to prevent the write from modifying data.

After the physical address is stable. MAS Is asserted to Indicate a valid address is on the
bus. HAD Is asserted to hold the address stable on the latches and the PADO·PAD15 lines
are then placed in the high-impedance state. If address strobe Is then negated, the cycle
has terminated and the MMU returns to the Idle state. If address strobe is not negated,
the cycle can continue in three ways:

1. Chip select or interrupt acknowledge and interrupt request In are asserted, the
MMU will begin an operation as a master.

2. If GOin Is detected by an MMU it will begin a slave operation.

3. If a high-to-Iow transition is detected on the read/write line, Indicating a write, ad­
dress strobe remains asserted and the matched segment is write protected, a write
violation occurs. This would be the result of a read/modify/wrlte bus cycle on a pro­
tected segment.

F.8.2.2.1 WRITE VIOLA TlON. If an address match occurs but the bus cycle was a write to
a write protected segment, a write violation occurs. In this case, the result descriptor
pointer Is loaded from the priority encoder, the fault bit Is set In the global status register,
and the double fault bit Is set If the fault bit was previously set. The state of the
read/write line Is latched into the read/write bit of the local status register and bits L4-L7
are encoded to Indicate write violation. The FAULTout signal Is then asserted for five
clock cycles or until address strobe Is negated, whichever Is greater.

The logical address Is latched Into ACO (MSB) and AC1 (LSB) of the accumulator. The cy·
cle address space number is latched Into AC6. These regIsters are marked as non·global
with respect to the global accumulator for translate and global accumulator for load bits.
If the FAULT pin has been connected to the bus error pin on the MC68000, address strobe
will be negated as the processor begIns the bus error exception processing. When ad­
dress strobe Is negated, the MMU will enter the Idle state.



WARRANTY

Dual Systems Corporation warrants the equipment covered
hereby to be free from defects in material and workmanship
for twelve (12) months from date of original shipment to
purchaser. During this warranty period Dual Systems will
repair or replace defective equipment FOB its place of busi­
ness·without charge to purchaser.

This warranty applies to defects arising out of normal use
and service of the equipment as specified by Dual Systemsm
This warranty does not cover abnormal operation of the
equipment, accident, alteration, negligence, misuse and
repairs or service performed by other than Dual Systems­
authorized representatives. Purchaser shall upon request by
Dual Systems furnish reasonable evidence that the defect
arose from causes placing a liability on Dual Systems.

The obligation of Dual Systems under this warranty is lim­
ited to repair or replacement of the defective equipm~nt and
is the only warranty applicable to the equipment. Dual Sys­
tems shall not be liable for any injury, loss or damage,
direct or consequential, arising out of the use or inability
to use the product. No changes in the warranty shall be
effective without the prior approval in writing of both par­
ties. This warranty and obligations and liabilities
thereunder shall replace all warranties or guarantees
express or implied including the implied warranty of mer­
chantability.

Dual Systems Corporation
2530 San Pablo Avenue

Berkeley, California 94102

(415) 549-3854


