digital research computers
(214) 225-2309

INTRODUCTION

The 128 K S-100 Static Ram/Eprom Board you have just purchased is one of the best Ram/Eprom bargains on the market today. We have gone to great lengths to combine the right mix of features that are most often required on high density Ram/Eprom boards for S-100(IEEE-696) systems.

FEATURES:
FULL STATIC OPERATION!
FULL S-100 IEEE-696 COMPATIBLE!
USES POPULAR 28 PIN " 2764 " STYLE 8 K X 8 DEVICES
EACH LOCATION MAY BE DISABLED
16 BIT AUTOMATIC MODE (8 OR 16 BIT OPERATION)
8 BIT SEQUENTIAL MODE (8 BIT ONLY OPERATION)
ZERO TO SEVEN WAIT STATES
BYTE LOW OR BYTE HIGH MODE
24 BIT EXTENDED ADDRESSING BUT WILL WORK IN OLDER 8 BIT SYSTEMS
FRONT PANEL OPERATION
FAST ACCESS TIMES (50NS PLUS MEMORY ACCESS TIME)
PC BOARD IS SOLDER MASKED AND SILK SCREENED
GOLD PLATED CONTACT FINGERS FOR LONG LIFE
ALL DATA, ADDRESS AND CONTROL LINES FULLY BUFFERED
PHANTOM AVAILABLE
LOW POWER OPERATION (<600 MA. TYP.)

| 7 | 14 | PIN SOCKETS |
| :--- | :--- | :--- | :--- |
| 7 | 16 | PIN SOCKETS |
| 11 | 20 | PIN SOCKETS |

28 PIN SOCKETS
SHORTING BLOCKS

3 PIN JUMPER POST

HEATSINKS (THM 6106-14) WITH \#6 HARDWARE
. 1 MFD BYPASS CAPS (VALUE MAY VARY)
1 MFD 16 VOLT OR GREATER TANTALUM CAPACITORS
2. 2 K TO 5.6 K 10 PIN RESISTOR PACKS (PIN 1 COMMON)

220 OHM $1 / 4$ WATT RESISTOR
2.2 K TO 5.6 K 1/4 WATT RESISTOR

7805 VOLTAGE REGULATOR
74 LSO 0

7406

74 LS 10
74 LS 14

74 LS 30

74工S86

74 LS 138

74 LS 157
74 LS 165
74 LS 244

PAL 16L8
25 LS 2521
8 POSITION DIP SWITCHES

LED

GENERAL CONSTRUCTION HINTS

For soldering we recomend a 32 watt soldering pencil. Do not use a soldering gun!!! Use a quality grade small diameter (such as 22 gauge) rosin core $60 / 40$ alloy solder.

Keep the soldering pencil clean with a wet sponge or cloth.
After soldering such components as resistors or capacitors, use a small pair of diagonal cutters to remove the excess lead length.

Observe polarities on all tantalum caps, resistor packs, ICs and LEDS .

If any discrepancies between the parts received and those listed are noticed please notify us.

LIMITED WARRANTY

Read the enclosed yellow sheet for a statement of our limited warranty as relates to this kit.

Also note that when this product is purchased as a blank board, all that is covered by the limited warranty is the PC Board itself.

ASSEMBLY INSTRUCTIONS

[] Give the PC Board a good visualinspection for any obvious shorts or opens. There should be none, but a few minutes spent here could save hours later.
[] Using an Ohmmeter, insure that there are no shorts between buss pins 1 and 50.

Install and solder the 28 pin sockets for IC locations Yl through Y8 and XI through X8. Note that pin 非lon all ICs is oriented to the top of the board.
[1] Install and solder the 1120 pin sockets at locations UllU15, U20, U23 and U26-U29.
[] Install and solder the 716 pin sockets at locations U3, U5, U 8 , U21-U22 and U24-U25.

K] Install and solder the 714 pin sockets at locations Ul, U6, U9-UIO, U16 and U30-U31.
[] Install and solder the 4 - position dip switches at locations Sl-S4.
[] Install and solder 4 resistor packs at locations U2, U4, U7 and U19. NOTE PIN \#I IS TOWARDS THE TOP OF THE BOARD.
[] Install and solder the remaining resistor pack in location U32. NOTE PIN \#1 IS TOWARDS THE LEFT EDGE OF THE BOARD, DENOTED BY THE DOT.
[] Install and solder the 16 3-pin jumper posts near locations Yl-Y8 and Xl-X8 labeled ROMRAM.
[] Install and solder the bypass caps in locations Cl-C23 and C28-C32.
[] Install and solder the 2.2 K to 5.6 K OHM resistor at location R1.
[] Install and solder the 220 0HM resistor in location R2.
[] Install and solder the LED at location DSI. The cathode (denoted by the flat side) goes towards the bottom of the board.
[] Install and solder the 4 Tantalum caps at locations C24-C27. Please observe the proper polarity when instaling the parts.
[] Using the heatsinks and hardware, install and solder the 2 7805 voltage regulators at locations Ul7-Ul8.
[] Using any of the regulator mounting tabs as ground, measure the output of each 7805 under power in your system. The output is
measured on the right most pin of the 7805 . The measured voltage should be between 4.75 and 5.25 VDC. Any regulator out of spec. must be replaced.

Install a 74 LSOO in socket location U30. Pin 非1 is to the

Install a 7406 in location Ul 0.
[1 Install a 74 LS 10 in location U31.
C] Install a 74 LS 14 in location Ul 6.
[J Install two 74 LS 30 s in locations $U l$ and $U 6$.
I] Install a 74LS86 in location U9.
[] Install two 74LSl38s in locations U3 and U8.
[] Install four 74 LS 157 s in locations U21-U22 and U24-U25.
[] Install a 74LS165 in location U5.
[] Install nine 74LS244s in locations Ull-U14, U23 and U26-U29.
[] Instal 1 a PAL 16L8 in location Ul.
[] Install a 25 LS 2521 in location U20.
[] Remeasure the voltage outputs on the 7805 s now to insure proper operation.
[] Install shorting blocks in ROMRAM locations as per your application. See Setup and Use for information.

SETUP AND USE

Determine which locations you need to be RAM and which need to be EPROM. Using the shorting blocks provided jumper the center pin at each location to either RAM (right pin) or ROM (left pin).

Switches Gland S3 enable memory locations when the switch is on. The location is disabled when the switch is off.

```
16 BIT MODE
```

SWITCH SI(first byte)
POSITION MEMORY LOCATION
1 (Y1) $00000-03 \mathrm{FFF}$
2 (Y2) $04000-07 \mathrm{FFF}$
3 (Y3) $08000-0 \mathrm{BFFF}$
4 (Y4) $0 C 000-0 \mathrm{FFFF}$
5(Y5) $\quad 10000-13 \mathrm{FFF}$
6(Y6) $\quad 14000-17 \mathrm{FFF}$
$7(\mathrm{Y} 7) \quad 18000-1 \mathrm{BFFF}$
8(Y8) 1C000-1FFFF

SWITCH	second byte)
POSITION	MEMORY LOCATION
1 (X1)	00000-03FFF
2(X2)	04000-07FFF
3 (X3)	08000-0BFFF
4(X4)	0C000-0FFFF
5 (X5)	10000-13FFF
$6(\times 6)$	14000-17FFF
7 (X 7)	18000-1 BFFF
8(X8)	1C000-1FFFF

8-BIT MODE
SWITCH SI
POSITION MEMORY LOCATION
1(Y1) 00000-01FFF
$2(\mathrm{Y} 2) \quad 04000-05 \mathrm{FFF}$
3 (Y3) 08000-09FFF
4 (Y4) 0C000-0DFFF
5 (Y5) 10000-11FFF
6(Y6) $\quad 14000-15 \mathrm{FFF}$
7 (Y7) 18000-19FFF
8(Y8) 1C000-1DFFF

SWITCH S3
POSTION MEMORY LOCATION
1 (XI) 02000-03FFF
$2(\mathrm{X} 2) \quad 06000-07 \mathrm{FFF}$
3 (X3) $0 \mathrm{~A} 000-0 \mathrm{BFFF}$
4 (X4) 0E000-0FFFF
$5(X 5) \quad 12000-13 \mathrm{FFF}$
6 (X6) $\quad 16000-17 \mathrm{FFF}$
7 (X7) 1A000-1BFFF
8 (X8) $\quad 1 \mathrm{E} 000-1 \mathrm{FFFF}$

Switch S2 positions 1 through 7 enable wait states. Zero wait states are all positions off. One wait state is position 1 on. Two wait states are positions land 2 on. Three wait states are positions l, 2 and 3 on. And so on till seven wait states are positions 1 to 7 all on.

Switch S2 position 7 reverses the order in which 8 bit bytes are transfered during a double byte transfer(l6 bit mode without STXRQ). Normally this switch is on.

Switch S4 position is the MODE switch. Off is 16 BIT MODE, ON is 8 BIT (only) MODE.

Switch S4 positions 2 through 8 correspond to address bits A. 23 through Al7 respectively. OFF equals a high bit and on equals a low bit.

NOTES ON OLD 8 BIT SYSTEMS
This board will work in older systems such as an IMSAI or ALTAIR. To do so requires some unique switch settings and memory chip placement. Remember that these are $64 k$ systems so only $1 / 2$ of the board will be used. Install memory devices in locations Y5-Y8 and X5-X8.

SWITCH Sl

POSITION	SETTING	EXPLAINATION
1(Y1)	OFF	NOT USED
2(Y2)	OFF	NOT USED
3(Y3)	OFF	NOT USED
4(Y4)	OFF	NOT USED
5(Y5)	ON	$0000-1 F F F$
6(Y6)	ON	$4000-5 F F F$
7(Y7)	ON	$8000-9 F F F$
8(Y8)	ON	C000-DFFF

SWITCH S3
POSITION SETTING EXPLAINATION

1(X1)	OFF	NOT USED
2 (X2)	OFF	NOT USED
3 (X3)	OFF	NOT USED
$4(\mathrm{X} 4)$	OFF	NOT USED
5(X5)	ON	2000-3FFF
6 (X6)	ON	6000-7FFF
7 (X 7)	ON	A000-BFFF
8 (X8)	ON	E000-FFFF

SWITCH S2

POSITION	SETTING	EXPLAINATION			
1	OFF	NEW CHIPS PLENTY FAST ENOUGH			
2	OFF	$"$			
3	OFF	$"$			
4	OFF	$"$			
5	$O F F$	$"$			
6	OFF	$"$			
7	OFF	$"$			
8	ON	NORMAL POSITION			

SWITCH S4

POSITION	SETTING	EXPLAINATION	
1	ON	8 BIT (ONIY) MODE	
2	OFF	NO EXTENDED ADDRESS LINES ON BUSS	
3	OFF	BUSS LINES PULLED UP ON BOARD	
4	OFF	TO HIGH STATE BY RESISTOR PACK	
5	OFF	$"$	
6	OFF	$"$	
7	OFF	$"$	

Of course if your system uses extended addressing then this section does not apply, you must use the first section.

THEORY OF OPERATION

Lower order address lines are buffered by U23 and U26. After passing through the 74 LS 157 multiplexers U 21 , U22, U 24 and U 25 , they enter the memory chips. The multiplexers are controlled by S4 position l. When on the memory chips see the normal address lines. This is the normal 8 bit method. When off they see address lines shifted by one, i.e. Buss line Al goes to memory chip AO. This is the normal 16 bit method.

The output of U2l Pin 12 may be inverted by U9 and Switch $S 2$ position 8 in order to reverse the order of the double fetch done when making 8 bit transfers in the 16 bit mode.

Al4 through Al6 are buffered by Ull and decoded by U3 and U8 to provide chip selects for the memory chips.

A17 through A23 are compared with Switch S4 positions 2 through 8 by U20 to generate a board select.

Phantom is also an input to $U 20$.

Ul5 is a 16 L 8 PAL and is used to generate enables for the data buffers (U12, U13, U14, U27; U28 and U29). It also enables the wait state generator and provides SIXTN*. While the enables meet the IEEE standard, the internal code of the PAL is proprietary.

U9 pins 4, 5 and 6 inhibit operation during $1 / 0$ operations.

U30 and U31 provide seperate enables during 8 bit transfers and provide simultaneous enables during 16 bit transfers.

Ul and U6 provide signals to the PAL that a valid chip select has taken place so buffers may be enabled.

