
System 88
... - _...

·System Programmer's
e Guide

PolyMorphic
Syst'erns

460 Ward D-ive Santa Barbara California 93111 (805) 967-2351

This manual is PolyMorphic Systems part number 810133.
Copyright 1981, Interactive Products Corporation. It is to be
used in conjunction with the following System Programmer Disks.

. .[-
For Single User: ..

5" SSSD. 820110" :·
5" DSDD. 820268
8" SSDD. 820269

For TwinSystem:
5" DSDD. 820266
8" SSDD. 820267

The information in this manual relates to system software
r~1eased under Version 6, Exec/94 and BASIC C03, with the
following system disk part numbers:

For Single User:
820190 Rev F 5" SSSD
820260 Rev B 5" DSDD
82:0258 Rev· B 8" SSDD

For TwinSystem:
820263 Rev B 5" DSDD
820261 Rev B 8" SSDD

This manual was prepared by R.T. Martin, B.F. Smith, F.E.
Anderson and D.K. Moe.

Many thanks to C.A. Thompson for his careful proofreading of this
manual.

~

Copyright 1981, Interactive Products Corporation
468 Ward Drive

Santa Barbara, CA 93111

All Rights Reserved

LIMITED WARRANTY AND LIMIT OF LIABILITY

Interactive Products Corporation (dba PolyMorphic Systems) makes
No Warranty, express or implied, concerning the applicability of
this program to any specific purpose. It is solely the
purchaser~s responsibility to determine its suitability fora
particular purpose. Interactive Products Corporation accepts no
liability for loss or damage resulting from the use of this
software beyond refunding the original purchase price.

THIS STATEMENT OF LIMITED LIABILITY IS; . IN
WARRANTIES OR GUARANTEES~ EXPRESS ' OR
WARRANTIES OF MERCHANTABILITY AND FITN~SS
PURPOSE.

LIEU OF
IMPLIED,

FOR A

ALL OTHER
INCLUDING

PARTICULAR

)

System 88 System Programmerls Guide

Table of Contents

Section 0.
Introduction

Purpose
The Di sk

to
of

the System 88 System programmer's
this Manual ••••.••••••

Accompanying this Manual
Sections of this Manual ••
Acknowledgements ••••••••

Section 1.
Commands"

..

Summary of "Undocumented
SetSys
DUMP •••...•••

Guide • • 1
1

.1
• • 1
.2

• 5
• • 5

• •••• 5
• •• 5

• • 5
• • • 6

Sni f f ••
DISPLAY ••
SET •••
WAIT ••
YAK •••

. • • 6

porfavor

Section 2.
The System 88 File System.

Disks
Files.
File Directory Entries ••
The Disk Directories ••••
The Initialized Disk ••••

. ...

.

........
Allocating File and Directory Space ••
Updating the Disk Directory •••
Get File Identifier (Gfid) ••••

Section 3.
System 88 Architecture

Memory Map ••
Equates •••••
Macros •••••
Data Areas ••
Service Vectors •••
Overlays •••••••••••

Section 4.

.

.
. . . .

Utilities for the System Programmer ••
Error Message Editor
SuperZap (SZAP) ••••••
Super Copy (SCOPY) •••
File Utility (FUTIL)

(EMEDIT)

Debugger (RDB) ••.•.•••
Authorization (Auth.OV)
Directory Space (SPACE)
Command File Pause (WAIT)
Change Symbol File (TWID)
Compare Files (COMPARE) ••
Compare Disks (COMP-DISK)
Initialize Directory (CLEAN)

• • 6
• • • • 6

.7

.7

.7
• ••• 8

• •••• 10
• ••• 12

. ~ .

.13

.13

.15

.29
• • 29

.30
• • • • . • • 37

• 56
• •• 106

.164

.173
• •• 174

• • 178
• .186

••• 187
.189

• .194
.198
.198

.....•. . 198
.198

••••• 198
199

System 88 System Programmer's
Table of Contents

Undelete File (ARISE) •••••••••••••
Copy Subdirectory
Recover Lost File

Section 5.

Fil es (DIRCOPY)
(RECOVER) ••••••

Guide

.199

.199

.200

-The System 88 Printer Driver •••••••••••••••••••••••••••••••• 201

Section 6.
System 88 Error

Emsg. OV •••
Berr.OV •••

Section 7.

Messag es ••

Sample System Overlay ••
Emsg.OV •••••••••••

Section 8.
System 88 Boot Sequence ••

Single User... • ••••
Twin User.. • ••••

Section 9.

. • .205
• • 205
• .205

• •••••. 213
••• 213

• •• 219
.220
.223

System 88 Interrupts, I/O Ports and User Switching •••••••••• 227

Section 10.
System 88 Volume Manager •••••••••••••••• ·0 . .•••.••..•• . 233

Section 11.
Implementation

Section 12.

of CP/M on the System 88 •••••••

System 88 Symbol Tables (Exec/94) ••••••••••••••••••

Section 13.
Disk I/O Assembly Code •••••••••••••••••••••••••••••

Section 14.

.243

• •••••• 247

• •••••• 251

Sample Apsemb1y Program ••••••••••••••••••••••••••••••••••••• 259

Index ..•...•••..••••..••...•...•.••..••.•..•.....•.......... 269

)

System 88 System Programmer's Guide
Section 0 Page 1

Section 9

Introduction to the System 88 SYEtem Programmer's Guide

This is the System Programmer's Guide for the System 88. It
-provides a detailed description of the features and capabilities
of the sixth release of the System 88 software (Exec versions 94
and later).

purpose of This Manual

The purpose of this manual is to help the systems developer
build and tailor products based on the System 88. Using system
facilities provided at the machine language level requires a
detailed furictional description. To make best use of this
manual, you should be experienced with assembly language program
development and in particular with the 8080 microprocessor. We
assume that you have knowledge of and experience with general
systems organization and data structures.

This manual is NOT for the novice! - .

This manual was written by the designer of the System 88
software. In preparing this manual, a difficult choice was made
between the desire to protect the proprietary nature of the
system and the wish to provide the systems programmer with the
information needed to make best use of system facilities. The
writer of this manual hopes that the proprietary nature of this
manual and its contents will be respected; the only effective
recourse against promiscuousd~plication and release of this
material is to stop making it available at all.

The Disk Accompanying This Manual

The disk included with this manual is a complete System Disk
and includes a number of programs for use by the systems
programmer.

Sections of This Manual

Section 0

Section 1

Section 2

is the introduction to the System Programmer's
Guide.

contains the summary of the undocumented system
commands.

describes the System 88 file system. It describes
in detail the structure and allocation of file and
directory space.

* Introduction *

Section 0

Section 3

Section 4

Section 5

Section 6

Section 7

f:)~~tion 8

Section 9

Section 10

Section 11

Section 12

Section 13

Section 14

System 88 System Programmer's Guide
Page 2

describes the data areas of the system; the second
part of Section 3 describes utilities and
primitives available to the assembly language
programmer. Of particular interest and importance
is the section on overlays.

describes utility programs provided for the
systems programmer: EMEDIT, SZAP, FUTIL, SCOPY,
Auth, the Debugger, SPACE, WAIT, TWID, COMPARE,
COMP-DISK, CLEAN, ARISE, DIRCOPY, and RECOVER.

discusses the System 88 printer driver and its
interface with the system.

lists System 88 error messages.

gives a listing of a sample system overlay.

describes in detail the system boot process.

describes the interrupt and input/output port
structure of the System 88.

describes the operation of the Volume Manager.

describes how CP/M is implemented on the System
88.

lists the system symbol tables for the Single and
Twin Systems.

lists the assembly language routines for doing
disk I/O.

lists a sample assembly language program that does
disk I/O.

NOTE: Many of the discussions in this manual are, of necessitYi,
,closely interrelated. These discussions often refer to items
defined in Section 3. If an item is unclear, look through the
rest of the manual for more information on it or similar topics.

Acknowledgements

The System 88 operating system was designed and written by
R.T. Martin. Processors and utilities, as well as able
assistance, were provided by Robin Soto, Larry Deran, Frank
Anderson, Lennie Araki, Glenn McComb, Brian Smith, and Don Moe.
The System 88 hardware was designed by John Stephenson. The
packaging and cabinetry were designed by Ron Sanchez.

* Introduction *)

System 88 System Programmer's Guide
Section 0 Page 3

Credit is also due to many people at Scientific Data
Systems/Xerox, especially Ed Bryan, Richard Hustvedt, John
Collins, and Mike Macfarlane. Many of the design philosophies
behind the System 88 come from the BPM/BTM - UTS - CP/V lineage
of systems innovated at SDS/Xerox.

* Introduction *

System 88 System Programmer's Guide
Section " Page 4

* Introduction *

System 88 System Programmer's Guide
Section 1 Page 5

Section 1

Summary of ·Undocumented· Commands

The System 88 recognizes a number of commands that are not
documented in the System 88 User's Guide. They are not
documented because of their complexity or because they have
limited application in general use of the system. The manual
discusses these commands in more detail later; this section is a
single-source reference to these "undocumented" commands. These
commands are interpreted by the Exec.

SetSys Command

The SetSys command requests a directory name from the user,
then marks every file in that directory a system file (including
deleted files). See the section on functions. provided by the
Dfnl overlay. The system must be in the ENABLED mode to use this
command from Exec.

DUMP Command

The DUMP command is used to display the contents of memory
on the screen and printer. The format of the DUMP command is:

~ DUMP Addrl Addr2 Comment

where Addrl and Addr2 are the beginning and ending addresses of
the area of memory to dump, and Comment is a comment string that
is placed at the top of the dump. See the section on functions
provided by the Dfn3 overlay.

sniff Command

The Sniff command accepts a disk number as an argument in
the same format as the LIST or DIR commands (e.g. Sniff 4). If
you give no argument to the Sniff command, the System Residence
(SYSRES) device is used. The Sniff command reads each sector of
the disk from the last sector in use to the beginning of the
disk. If an error occurs while Sniff reads a sector, the error
code and the number of the problem sector are displayed on the
screen. See the section on functions provided by the Dfn2
overlay.

DISPLAY Command

The DISPLAY command displays on the screen the top memory
address in the system (MEMTOP), the wild card path, and the last

* Undocumented Commands *

System 88 System Programmer's Guide
section 1 Page 6

error code reported in the system (ERROR).

The remaining undocumented commands are for TwinSystem only.

SET Command

The SET command requests allocation of a device on a
permanent basis in the mode requested in the set command. See
Section 3 on the Devlock for details on the system cell changes.

SET WAIT Command

The WAIT command instructs the devlock facility to wait for
a device rather than return reporting an error 'That device is
busy!' This is a very dangerous command as it may lead to
deadlock where each user has something the other user needs and
neither one is going to give up what it has. Both users WAIT
forever and very little is accomplished on the system. This
comman~is invoked as follows:

SET WAIT ON
or

SET WAIT OFF

SET YAK Command

,The YAK command puts the TwinSystem into a very talkative ~,'"
mode. Each time any device allocation is done, a short message \ -'
appears on the screen describing what happened. Its main use was
in debugging the Twin as it was built. This is useful to get a
feel for all that is going on in device allocation. This command
is invoked as follows:

SET YAK ON
or

SET YAK OFF

'porfavor' Command

The porfavor command requests the other user to perform some
action. It is only available in ENABLED mode. If the other user
is in Exec waiting for a command, it will do the command
specified after porfavor. For example,

porfavor list 3

If the other user is not at the Exec level waiting for a
command, the message 'User is busy!' will be displayed.

* Undocumented Commands * ')

System 88 System Programmer's Guide
~ection 2 Page 7

Section 2

The System 88 File System

The System 88 file system combines versatility with internal
simplicity for reliability and ease of use.

A file system consists of file names and extensions. These
names and their extensions, together with certain control data,
form file directory entries (FDEs). The FDEs and directory
management information form the directory on each disk. The
directory is first created by the system INIT command, which
writes zeros on the disk (thus performing a simple surface test)
and then writes out an empty disk directory. The system LIST,
DLIST, and DIR commands display the disk directory to the user.
The DELETE, UNDELETE, RENAME, SAVE, DNAME, and PACK commands, and
the Gfid service modify the directory and FOEs. In addition, the
experienced systems programmer may use the system utility program
SZAP to manipulate the disk and its contents (see Section 4,
Utility Programs).

Disks

The system treats each disk as a sequential collection of
256 byte sectors of data. Data transfers to and from a disk are
made in multiples of one sector blocks by the Dio utility. (See
Section 3, System Service Vectors, Dio, page 122).

The first four sectors of each disk (0, 1, 2, and 3) contain
the main file directory for the disk. The system deals with a
generalized disk address; Dio breaks this generalized disk
address into the proper track and sector required for the device.

Files

A file is a group of contiguous sectors on a disk,
accessible through and defined by a file directory entry (FDE) in
a disk directory for the device. A file must be totally
contained on a single disk, and files may not overlap or share
sectors. The internal format of the file is determined by the
programs that read and write the file.

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 8

File Directory Entries (FOEs)

The File Directory Entry (FDE) defines a file on the disk.
The FDE contains all the information required to locate, access,
and delimit the file data on the disk. Since the file name in

-the FDE is of variable length, the FDE itself is also of variable
length. The FDE consists of the following information (in this
order within the FDE):

I Flag byte (8 bi ts)
A File name (variable length)
2 File extension (16 bits)
~ FDA - Starting disk address (16 bits)
.L DNS - File length in sectors (16 bits)
2 LA - File load address (16 bits)
2. SA - File start address (16 bits)

The FDE fo rmat (in a s1 ight1 y mod if ied fo rm) is used by the
system Gfid utility for looking up and entering file names into
the directory.

FDE Flag Byte

The first byte of the FDE contains three one bit flags (D,
S, and N) and five bits for the file name length:

+-+-+-+-+-+-+-+-+
:D:S:N: ••• L ••••• : -) Length of fiLe name
+-+-+-+-+-+-+-+-+
: : +-------------) New file (20H-bit) : +---------------) System file (40H-bit) +-----------------) Deleted file (80H-bit)

The 80H bit (D above), if set, indicates that the file has
been deleted. If this bit is set in an FDE, that FDE will not be
examined in the file lookup procedure and will not be displayed
by the system LIST command. FDEs marked deleted are returned to
normal status by the UNDELETE command or the ARISE program. The
space taken up by deleted files, both in the directory area and
on the disk, is reclaimed by the system PACK command~

The 40H bit (S above), if set, denotes a "System" file.
System commands such as DELETE, RENAME, TYPE, and PRINT check
this bit. A file marked by the System bit may not be deleted,
renamed, edited, or displayed by PRINT or TYPE.

The 20H bit (N above) denotes a "new" file. When a file is
created or changed, its corresponding FDE is marked with the
"new" bit to make it eligible for saving by the system file
maintenance processor, BACKUP, which then clears the new bit.

* System 88 File System *

~ .. :.

' .-. ---"

)

System 88 System Programmer's Guide
Secti,on 2 Page 9

Any combination of the above three bits is allowed.

The last five bits of the flag byte give the length of the
file name that follows the flag byte. This restricts the file
name to 31 characters or less (a file name must be at least one

-character long). Note that the file name length DOES NOT include
the two character extension.

FDE File Name

The file name follows the FDE flag byte and is the only
variable length entry in the FDE. The number of bytes used by
the file name is contained in the lower five bits of the FDE flag
byte. File names usually consist of seven bit ASCII characters,
although programs may generate file names consisting of arbitrary
eight bit quantities that cannot be entered from the keyboard.
When a file name is displayed on the screen, control characters
(ASCII 00 to lFH) appear as Greek characters.

FDE Extension

The FDE file extension is a sixteen bit (two character)
field that follows the file name. The extension identifies the
type of file. The bytes appear in the extension in the same
order in which they would be typed, rather than the "standard
8080" byte reversed form. For example, the extension "GO" would
appear in memory in the FDE as the character "G" followed by "0".
Any sixteen bit value may be , used as an extension. A number of
extensions are predefined and recognized by the system (as the
system expands, this list may also expand):

Extension

DX
GO
OV
BS
DT
TX

SY
RL
ED
FM
FV
FW
ZO
DD

Use

Sub-Directory
Runnable machine code file
System overlay
BASIC source program
BASIC data file
Text (e.g., assembly language source
file)
Symbol table file
Relocatable machine code file
Editor key definition libr.ary
Form File
Form Values File
Form Work File
Onboard code for DSDD Controllers
Device Driver for Hard Disk

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 10

FOE FDA First Disk Address

FDA is a sixteen bit field in the FDE containing the
starting disk address for the file.

-FOE DNS - File Size in Sectors

DNS is a sixteen bit field in the FDE that contains the
number of sectors in the file.

FOE LA - File Load Address

For runnable machine code files (extension .GO or .OV), LA
contains the sixteen bit load address for the program. When the
file is loaded into memory by the system Runr service, it is read
into memory starting at the address contained in LA. For
non-runnable files, the LA field in the FDE contains zero. Runr
will not load or execute any machine code file with a load
address of zero, since there is read only memory at location 00
in the System 88. For relocatable files LA contains the offset
to the relocation bit map.

FDE SA File Start Address

For runnable machine code files (extension .GO
gives the sixteen bit starting execution address.
field is zero, indicating a non-runnable file, this
used for other purposes.

The Disk Directories

or .OV), SA
If the FDA LA
field may be

The disk directory is the collection of FDEs and control
data used to allocate and retrieve files. The main directory
appears in sectors 0, 1, 2, and 3 of each initialized disk. The
system INIT command is used to set up the initial directory
structure on a disk. Since the directory is a fixed 1024 bytes
in length, the number of FDEs it may contain is limited and
depends on the length of the file names in the individual FDEs.
The directory consists of the following fixed fields (beginning
with the first byte of the directory), followed by a list of file
directory entries (FDEs):

Displacement Name
(in bytes)

o
1
9
0BH
0DH
0FH

Dck
Dname
Nf
Nfa
Nda

Description

8 bit directory checksum
8 byte disk name (main directory only)
Number of files in directory
Next free directory address
Next free disk address (main dire only)
Start of FDE list

* System 88 File System *)

System 88 System Programmer's Guide
Section 2 Page 11

In addition to the main directory it is possible to have
sub-directories on a disk. Sub-directories look exactly like the
main directory except that the disk name and Nda are zeros. A
sub-directory is a file on the disk just like any other file
except that it is a list of other files on the disk. A

-sub-directory has an FDE in the directory of which it is a part
listing its name with a '.DX' extension. The SA and LA are
always 0101 and the file is 4 sectors. Sub-directories are
created automatically by Gfid when a new file is created
specifying a non-existent sub-directory. For more details see
the description of Gfid in section 3.

Since the directory resides in memory in the SBUFl area, the
offsets given above are in hexadecimal from SBUFl.

Filename length versus number of files

The directory on each disk is 1024 bytes. The directory
header takes up the first fifteen bytes (decimal) of the
directory, leaving 1009 bytes for FDEs. Each FDE has eleven
bytes of control data and the varying length name. The table
below shows the relation between file name length and the maximum
number of files with that name length that fit in the directory.

Table 2.1 Filename length vs. Number of files

Name
Length

1
5

10
15
20
25
31

Dck - Directory checksum

Maximum number
of riles

84
63
48
38
32
28
24

Byte 0 of the directory contains an eight bit checksum
computed by the Ckdr service. This checksum is the eight bit sum
of the remaining 1023 bytes of the directory, and provides more
security in handling the disk directory. When a directory is
read into memory, the Ckdr routine is called to calculate the
checksum, which is compared to byte 00 of the directory. If the
checksums do not match, the directory is considered destroyed,
and a 03FFH error results. Whenever the system updates the
directory in memory, it also updates the direc~ory checksum.

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 12

Dname - Disk Name

The disk name is in an eight character field following the
disk directory checksum. The INIT and ONAME commands store the
disk name in the directory, and the LIST, OLIST, and OIR commands

-display the disk name at the top of the directory listing. Oname
is empty in sub-directories since the filename of the directory
is used as its name.

Nf - Number of files in the directory

Nf is a sixteen bit field containing the total number of
files in the directory. This count includes deleted and
undeleted files. It is used as a secondary sanity check of the
directory structure and is displayed by the system LIST, OLIST,
and OIR commands in directory listings.

Nfa - Next FDE Address

Nfa is a sixteen bit pointer to the first free byte after
the FOE chain in the directory. Note that this pointer assumes
that the directory is residing in SBUFI. When the disk is
initialized, Nfa is set to SBUFll0-FW-7 When a file is entered
into the directory, it is entered at the/~ddress pointed to by
Nfa, and then Nfa is updated to point p¥st the newly entered FOE.
Nfa is also used to check the space remaining in the directory;
it may not exceed SBUFl+1023.

Nda - Next Disk Address
(Iv St--- ~j3 V1 ~1 +;1

2<JODH

Nda contains the sixteen bit disk address of the first free
sector on the disk. Nda exists only in the main directory of a
disk. Since files are allocated sequentially, Nda is also the
number of sectors in use on the disk. When the disk is
initialized, Nda is set to 4; this points to the location
directly after the directory on the disk. Thus the LIST command
on an empty disk displays: "4 sectors in use. II When a new f i 1 e
is entered by Gfid in a sub-directory, Nda is updated in the main
directory to reflect that additional space in use on the disk.

The Initialized Disk

The user must initialize disks prior to their use. The
initialization process fills the disk with zeroes, which performs
a simple surface check. Then INIT writes the initial directory
to sectors 0, 1, 2, and 3 of the disk. The user specifies the
name of the disk in the INIT process. Nf, the number of files on
the initialized disk, is set to sixteen bits of 00. Nfa, the
next FOE address, is set to SBUFl+0FH. Nda is set to 4, the
first free sector on the disk. The remainder of the directory
area is set to zero, the checksum computed by calling Ckdr and

* System 88 File System * ')

System 88 System Programmer's Guide
Section 2 Page 13

stored in Ock, and the directory written to the disk.

Allocating File and Directory Space

The system allocates space on the disk sequentially for
-files and FOEs. Nda always points to the first sector past the
used area of the disk; Nfa always points past the end of the last
FOE in the directory. When a file is written to a disk, the data
is written starting at the disk address contained in Nda in the
main directory. When the FOE is entered into a directory, it is
stored at Nfa, and Nfa is updated to point past the new entry.
Nda is updated in the main directory by adding the size of the
file just entered. (This information is found in the DNS field
of the FOE.) This means that space in the directory and the disk
is allocated sequentially and contiguously.

Files may not overlap, and the order of FOEs in the
directory corresponds to the order of the files on the disk.
When files are deleted, the corresponding FOE is marked deleted,
but the space in the directory (and the data area of the disk) is
not reclaimed until the PACK command is used.

Updating the Disk Directory

The Gfid system service has been provided to update the disk
directory. We STRONGLY encourage you to make use of this service
and NOT to write programs that update the directory unless
absolutely necessary. An improperly updated directory can cause
an immediate catastrophe, or the disaster may be postponed until
the disk is PACKed or new files are entered on it.

updating the disk directory in memory (in the ' SBUFl area)
involves the system cells NFCK, NFDIR, and PATH, described in
Section 3, and the sy~tem routine Ckdr, described in Section 3.
Ckdr computes the checksum of the directory in the SBUFl area.
NFCK is a copy of that checksum. NFOIR is the drive number of
the directory currently in SBUFI. The 80H bit of NFDIR if set
indicates that the Directory is a subdirectory and the path name
of the subdirectory is at PATH. If you MUST update the directory
without using the Gfid service, you may use the following
procedure:

1) Disable interrupts and compare the drive number desired
with the contents of NFDIR and PATH. If the proper
directory is in memory, go to step 3.

2) Force the directory into SBUF1 by calling the Gfid Look
service to look up a file that does not exist, such as
the file with the single byte name 00H. If Look
returns any error code other than 0300H, the directory
is unreadable.

* System 88 File System *

System 88 System Programmer's Guide
Section 2 Page 14

3) With the interrupts disabled, call Ckdr to compute the
directory checksum. This returned checksum must match
the contents of NFCK and of byte 00 of the directory.
If it does not match, load 03FFH into DE and jump to
the -system Er ro r ro ut i ne , si nce the d i recto ry is
destroyed.

4) Update the directory with the interrupts disabled, and
do it carefully.

5) Call Ckdr to recompute the directory checksum. Store
the checksum in NFCK and in byte 00 of the directory
(SBUFI) •

6) Call Dio to write four sectors to disk address 00
(memory address SBUFl) to the device number in NFDIR.
In the TwinSystem you may call the Gfid Updir service.

7)~f any errors are returned by Dio, store 0FFH into
NFDIR and NFCK to prevent the damaged directory from
being used, and jump to Error to process the error.

* System 88 File System *

System 88 System Progr~mmer's Guide
Section 2 Page 15

Get File Identifier (Gfid)

. A Brief History of Look.

Look was originally (and still is) a system service to look
up a file using a file descriptor block or lookup block. Look
returns with DE pointing at the FOE in the directory. Gfid used
Look to look up files after it h~d parsed the input text into a
file descriptor block. With the advent of the sub-directory,
Look was not designed to handle the extended directory file
descriptor block~ Since Look was very fast and in ROM, it was
retained as it existed to do special very speedy lookups of
things in base directories using the original file descriptor
block. Gfid, however, still needed something with which to look
up files that were listed in sub-~irectories instead of in the
main directory. Thus was born 'look'. Now there was a function
in Gfid that would do the same thing Look used to do but would do
it in sub-directories too! Much too simple, so we called it
'look' so it could forever be confused with Look. In the
following discussion references to 'look' mean the one in Gfid
unless specifically stated that it is Look in the ROMS. The
'look' in Gfid is called internally by both the
Get-file-identifier and the Enter/Replace functions. 'look' is
also available as a function of Gfid to be called with an
extended directory file descriptor block just as the Look in the
ROMS does with the original file descriptor block.

NOTE: There is a file on the disk included
called GFIO-OEMO.GO which can be used
effects of various options in using
will be useful in understanding
discussion.

Original File Descriptor Block

with this manual
to observe the
Gfid. GFID-DEMO

the following

The original file descriptor block built by Gfid consists of
one byte containing the specified drive number and an extension
presence tag followed by a directory FOE.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 16

Extended Directory File Descriptor Block

The extended directory file descriptor block mentioned above
looks like this:

Fi rst byte
Second byte
Third byte

drive number and extension flag
overall length byte ------~--------+
first file length byte----------+ I

I I
first file name I I

I I
first file extension <----------+ I
second byte of extension I
second file length byte---------+ I

I I
second file name I I

I I
second file extension<------~---+--+
second byte of extension
FDA File disk address (2 bytes)
DNS Number of sectors (2 bytes)
LA Load address (2 bytes)
SA Start address (2 bytes)

Here are a few examples of this structure. Use GFID-DEMO
with the Parse option or use the 'look' option with a non-exisent
file to create your own examples.

Text ~~ parse

<2 <Gf id .OV
<9<TRIX<UTILS<SCOPY.GO
Dfnl. OV
<4<I<U<B<F<DEEP.GO

~ulting lookup block

02 05 04 GfidOV
09 15 04 TRIXDX 05 UTILSDX 05 SCOPYGO
01 05 04 DfnlOV (SYSRES is drive 1)
04 11 01 IDX 01 UDX 01 FDX 04 DEEPGO

As you may have noticed, if the above blocks are viewed as
original file descriptor blocks, the length byte once masked to
length only (remove NEW, SYS, and DELETED bits) will point at the
'f i nal ex tens ion just as the old type did.

Gfld, Gover, and OVrto

In the single user system Gfid is an overlay called Gfid.OV.
On the TwinSystem, Gfid is a resident system service. For
compatibility, the gfid MACRO is provided in SYSTEM.SY (See the
section on System Macros). There is a Gfid overlay on the
TwinSystem disk that is available so that an overlay call will
still work. GFID-DEMO uses the overlay so that even Twin users
can see the effect of the overlay mechanism on the variables set
by Gfid.

* System 88 File System: Gfid *)

System 88 System Programmer's Guide
Section 2 Page 17

If Gfid is called using the Ovrto function, when Gfid
returns the overlay mechanism will cause the previously resident
overlay to be loaded back in. When that happens a base directory
will be loaded to look up the overlay name and much of what Gfid
set in the way of system cells may be changed. OirAddr is

-guaranteed to be correct but the information in NFOIR, PATH, and
SBUFl will be for the lookup of the overlay, not for the lookup
that Gfid did. In the Twin, the information provided by Gfid is
preserved if Gfid is called using the macro provided in the
SYSTEM.SY file or just using:

CALL Gfid

In the single user system the information can be preserved
by using the Gover service instead of the Ovrto service. Gover
will generally be faster anyway. Of course, if you are in an
overlay you must use Ovrto. The effects of the difference in
these calls can be seen by using alternately the Gover and Ovrto
functions in GFID-DEMO.

Gfid Functions

The Gfid (Get-file-identifier) service provides the assembly
language user with the following functions selected by the lower
four bi ts of A:

A and 0FH
"'.
1
2
3

Function
Get file idenfifier
Enter/Replace FOE
Look up a file
Update directory on disk (Twin only!)

The function performed depends upon the parameter byte
passed to Gfid in the A register. All functions return any error
codes in DE with the carry bit in the PSW set.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 18

Get-file-identifier Function

Registers on entry:

HL: If the 80H bi t is set in A, HL po i nts to a prompt
string to be used by Rlwe in prompting the user (see
RLWE in Section 3). If the 80H bit is not set in A, HL
points to the text buffer to be examined in parsing the
file descriptor. Note: this address MUST NOT be in the
overlay area (2000H-27FFH) on the single user or if the
Twin uses Gfid.OV.

DE: Points to the 44 byte area used to build the file
descriptor (described above). Note that this area is
first set to zero by Gfid.

BC: If the 20H bit in A is set, Be contains the default
extension to use if the user does not specify an
extension.

A:

Registers
HL:

DE:

Be:
A:
FLG:

Flag bi ts, as follows:
80H: If set, read from user (via Rlwe) into an internal

buffer, using the string pointed to by HL as a
prompt string.
If clear, use HL as a pointer to the text to parse
into the file identifier. .

40H: If set, look up the resulting file. If the file
exists, create an original file descriptor block
at the address pointed to by DE. If an 0300H
error (file does not exist) _is returned, return an
extended directory file- descriptor block with NFA
from the main directory in the FDA slot of the
FDE.
If clear, just parse the file name into an
extended directory file descriptor block.

20H: If set, use the contents of Be as the default
extension if the user does not specify one.

IFH: These bits MUST be zero for the
get-file-identifier function.

on exit:
Points to the ending delimiter symbol in the text
buffer.
If carry bit set in PSW, DE contains an error
code/subcode; if carry is not set and 'look' was
requested (i. e., 40H bi t set in A on entry), then DE
points to the FDE address in the directory. IMPORTANT
NOTE: Because of the overlay mechanism, the directory
in the SBUFI area on return from Gfid MAY NOT BE FROM
THE DISK CONTAINING THE DESIRED FILE (see Gfid, Gover,
and Ovrto above).
junk
junk
Carry bit set if errors detect€d; clear if not. If

* System 88 File System: Gfid *

f-~
Ic-'-i

e

Section 2
System 88 System Programmer's Guide

Page 19

'look' (40H in A) was specified and the carry bit is
set, the zero flag reset indicates that error was on a
directo~l lookup rather then the file lookup.

Description:

The Get-file-identifier function of Gfid relieves the
assembly language programmer of the burden of parsing a
generalized file identifier. This function is used extensively
within the disk system itself by commands such as SAVE, DELETE,
RENAME, COPY, PRINT, and TYPE.

You can either pass Gfid a text buffer to scan (useful where
more than one file identifier may appear on a single line, as in
the case of DELETE or RENAME) or requBst that Gfid read a
specification from the user. If you direct Gfid to read a file
specification directly from the user, you must supply Gfid with
the address of a prompt string (as in the case of the system SAVE
code). In either case, Gfid scans the appropriate text and
attempts - to parse it into a va-l id -file ---ident i f ier . - -- -Gf id -_. -will
then look up the file identified if directed to do so by a set
40H bit in the PSW.

The file descriptor block is assumed to be 44 bytes long in
order to contain maximum length file names. The block is
initially zeroed by Gfid. If no extension was given by the user
in the input to Gfid, the 80H bit of this initial byte (pointed
to by DE on entry to Gfid) will be set. If you requested that
Gfid look up the file (and the file exists), the buffer specified
by DE will contain the drive number of the file plus an extension
presence flag followed by the FDE copied from the directory
(original file descriptor block). If the file was found, the
file descriptor block now contains no information about the
pathname for the file. Other system cells are available with the
needed information. On return from a call to Gfid with 'look'
specified, DirAddr contains the address of the directory that has
the FDE of the last file found. If the 80H bit in NFDIR is set,
the system cell PATH contains the directory names used to get to
the directory of the file. The structure of PATH is similar to
the lookup block. A length of name byte is followed by the name
plus DX. This is repeated for each directory used in the path to
the file. See the PATH printed by GFID-DEMO for examples. PATH
is terminated by a zero byte.

If the file did not exist, 'look' will report a 0300H error
and the buffer specified by DE will contain an extended directory
file description block. Then the FDA slot in the file
description block will contain the first free disk address on the
specified device. Thus, if the user wants to create a new output
file, the returned 0300H error code indicates that the file
specified does not currently exist. In that case, the block

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 20

contains the first disk address to write to. The file descriptor
block built by Gfid is designed to be easily read by the
Gfid/Enter function (the function that creates file directory
entries (FDEs)) and 'look', the Gfid file lookup function.

Special Note on Using the Get-file-identifier Service:

As mentioned in the register contents descriptions above, on
the single user system or if the TwinSystem calls the Gfid
overlay, you MUST NOT pass addresses in the HL and DE register
pairs that are within the overlay area (2000H-27FFH). Doing so
will cause anomalous behavior.

Looking up the file processing <?> as drive selector

Gfid processes the wild card device selector <?> in a file
name. If Look was not specified in the call to Gfid, a 0509H
error is generated. Note that if the error is returne'd, the
filename has NOT been scanned into the lookup block. When <?> is
recognized as the device selector, the disk drives in the system
are searched for the file in the following manner:

1) Set drive number to SYSRES
2) If drive is zero go to 4.
3) Convert drive number to ASCII character, and store

into string where? was found. Look up file. If no ~ ..
errors are returned by Look, go to 5.. ~ .. ~

4) Increment drive number. If drive = SYSRES, put? back
into string and return. If drive number = 10 then set
drive number to 0. Go to 2.

5) Store ASell code for drive number at DEFPATH.

Note carefully that the input string is modified. If the
user gives Gfid the string <?>Bessel, and file Besse1.BS is found
on drive 2, the string <2>Bessel will be in the user's buffer,
and the FOE for file <2>Besse1 will be returned in the lookup
block. If the file is not found on any drive, the string
<?>Bessel will not be changed and the procedure for handling a
0~00 error will be followed. Note that ANY error returned by
Look causes Gfid to examine the next drive or stop the process.
Also, note that SYSRES is examined first, and then the drive
number is incremented to maxdrive (9) and then back to drive 1
until SYSRES is again reached.

Processing of <I> as drive selector

Gfid also processes the special symbol # as a drive
selector, in coordination with the <?> process. Each time a <?>
lookup succeeds, the drive number is bound to the variable #.
Thus, if a <?> lookup finds its file on drive 2, a subsequent <#>
lookup will search drive 2. The value bound to the # variable is

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 21

displayed by the Exec DISPLAY command and may be set by the Exec * command. The combination of <?> and <#> is very useful in
command files. For example, the Exec command

Asmb <?>Source <#>Object

will search all the drives in the system for a file called
Source.TX and will produce the object file Object.GO on the same
drive the source ~ile was found on. The * symbol is also legal
with the commands LIST, PACK, DIR, and UNDELETE. This method of
drive searching only searches the main directory of each drive.

The Exec # command may be used to set * to a pathname rather
than just a drive number. For example, typing: .

<4<sp
DISP

will result in the display

Top of RAM is DOFF
Wild card path: 4<sp
Last error: fi:lfi:lfi:lfi:l

The # symbol can now be
sub-directory on drive 4.
feature when the files you
sub-directories deep.

used to perform operations in the sp
You can see the usefulness of this

want to deal with are nested 5

Interaction of default extension and user extension

When' Gfid goes to Look up the file, the following procedure
is used:

1) If no extension was passed to Gfid, and no default
extension was given in BC, the Look is done with
8fi:lH+drive number passed to Look, allowing a match on
any file with the same name. The 80H bit is returned
in byte fi:l of the lookup block, indicating that no
extension was given by the user.

2) If no extension was passed to Gfid, but a default
extension was passed in BC, the Look is done with the
default extension, passing only the drive number to
Look in A, requiring an exact match. The 80H bit is
returned in byte fi:l of the lookup block, indicating that
no extension was given by the user.

3) If an extension was passed to Gfid, and no default .
extension was passed in BC, Look requires an exact
match, using the user-supplied extension. The 8fi:lH bit

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 22

is not set in byte 0 of the returned lookup block,
indicating the user suppliea an extension.

4) If the user supplies an
extension was passed in BC,
is used in the Look, which
in (3) above.

extension, and a default
the user-supplied extension
follows the procedure given

Note that the 80H-bit in byte 0 of the returned lookup
block, if set, indicates that the USER did not specify an
extension. If the file was looked up by Gfid, an extension is
present in the returned lookup block. If the 80H bit is returned
set, this extension will match the default, if one was passed to
Gfid. If no default extension was passed in BC, and the 80H bit
is returned set, then the extension returned from the Look is
from the first matching file on the drive. If no extension is
supplied by the user, and no default extension is passed in BC,
and the file is not found, the file descriptor block extension is
two nulls!!

Teraination characters and character scanning:

When Gfid parses the text buffer, it skips leading spaces
-and tabs. A file specification is delimited by a comma, plus
sign, space, tab, or carriage return. The extension is separated
from the file name by a dot. If no drive specification is given ~_ ..
by the user, the drive numb~r in SYSRES is assumed.-,

If you are invoking Gfid to scan multiple file
specifications on a single line, note that the scan pointer
passed in HL must be incremented past a comma or plus sign
delimiter, since Gfid will not skip these characters.

Error Codes Returned by Get-file-identifier:

13500
05131
0502
05133
135139

Invalid disk number specified
Name longer than 31 characters
Extension longer than 2 characters
Zero length name given
<?> specified, but Look not requested

If Gfid is invoked requesting Look, then 03XX errors may be
returned by Look and Dio (see Section 3, System Service Vectors) •

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 23

Examples of Get-file-identifier Use:

; Sample coding showing use of Gfid to get a file
identifier. We want to get an input file
from the user using .TX as a default extension,

; and have Gfid look it up for us. OOPS is our error
; ba i1 0 u t po i n t •
;
;
BUF DS
Prompt DB
;
Doit

;

LXI
LXI
LXI
MVI
g fid
JC

44 ; where to put the body
, In pu t f i 1 e is:', 0

H,Prompt
D,BUF
B, 'TX'
A,0E0H

OOPS

the prompt to use
put stuff here.
default extension
read, look, ext.
call gfid macro.
no good. Complain.

; We now have drive t in BUF, FDE s -tarting at BUF+l
; We need to pick up FDA and NSCTR, and start reading.
;

Enter/Replace FDE Function

Registers
HL:

DE:
BC:
A:

FLG:

Registers
HL:
DE:

BC:
A:
FLG:

on entry:
Points to file block built by Gfid (Get-file-identifier
function) or file block in same format as a block built
by Gfid. First byte of block contains disk drive
number; this byte is followed by the FDE that is to be
entered in the directory.
unused

"
IH to enter new file into directory; 81H to replace
existing FDE (File Directory Entry); 0CIH to replace
exiting FDE and clear "new" bit (used by BACKUP) •
unused

on exit:
junk
If carry set in PSW, error code/subcode in register;
else junk.
junk
junk
If carry set, DE contains error code/subcode.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 24

Description:

MOST IMPORTANT NOTE:
. The Enter/Replace function will accept either the

original file descriptor block or the extended
directory file descriptor block. However, if the
original file descriptor block is used, the file to be
.nt.red or replaced must be in the same directory as
the last file looked up by Gfid. If the original file
descriptor block is used Gfid . assumes that the value of
DirAddr is the correct address of the directory to be
entered into. The safest ways to use the Enter/Replace
function are to either just parse the file name and
pass the resulting extended directory file descriptor
to Gfid or to call Gfid 'look' function without using
Ovrto to look up the file and then call it again
immediately to do the Enter/Replace.

The .Gfid Ente~/Replace function alJows you to enter or
replace FDEs (File Directory Entries) in disk directories. The
file block passed to the Gfid/Enter or Gfid/Replace functions is
the same block returned by the Gfid/Get-file identifier function,
or is in · the same format as a file block built by
Gfid/Get-file-identifier. The Gfid Enter/Replace functions are
selected by a set IH-bit in A. The Replace function is chosen
over the Enter function if the 80H-bit is set in. A.

The Enter function creates a new file directory entry (a new ~
FDE) in a specified directory. No undeleted files with the same
name and extension as the new file can exist on the disk, or a
0505 error code (file already exists) will be returned. The
Replace function replaces the FDE for an existing file with a new
FDE for that file. If the file that you specify does not exist,
a 0300 error (file does not exist) will be returned. The Replace
function CANNOT be used to change file names or extensions, but
all other attributes within the FDE may be modified (such as
deleted or system status, load and start addresses, etc.).
Caution! Do not change the starting disk address (FDA) in the
FDE. The PACK command assumes that the sequential ordering of
FDEs in the directory corresponds to the sequential ordering of
disk sectors in the files on the disk.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 2 Page 25

Srror Codes Returned by Gfid/Enter or Gfid/Replace:

Enter:
File already exists 0S05H

0S04H Directory full (file not entered)

Replace:
030"H File does not exist

Since both Enter and Replace functions work
directory, 03XX or 01XX errors may be reported as the
data transfer errors.

Example of Replace Function Use:

with
result

the
of

The following routine demonstrates the use of the
Gfid/Get-file-identifier and Gfid/Replace FDEfunctions for
setting the "system" bit for specified files. It also
demonstrates the use of CMPTR for accessing arguments on the
command line. Once the program is assembled, it is invoked to
"twiddle" a file by giving the program name, and the name of the
file to "twiddle." It also demonstrates the ease of reporting
errors by invoking the Emsg overlay.

Example showing Gfid use to tweak system bit
in FDE' s ••••

;
CR
TAB
FF

;
ISON
ISOFF

REFS
REF

EQU
EQU
EQU

ORG
IDNT

JMP
JMP

db
db

The code.

Start LHLD
LXI

SYSTEM

0DH
9
0CH

USER
$,$

Start
Start

'System
'System

CMPTR
D,BUF

Bit Now
Bit Now

set up LA and

On! ' ,CR,!il
Off! ' ,CR, 0

point to arg
; buffer area

* System 88 File System: Gfid *

SA

Section 2
System 88 System programmer's Guide

MVI
g fid
JC
LXI
MOV
XRI
MOV
DCX
MVI
gfid
JC
LXI
LOA
ANI
JNZ
LXI
JMP

A,40H

OOPS
H,BUF+l
A,M
40H
M,A
H
A,8lH

OOPS
H, ISON
BUF+l
40H
Msg
H,ISOFF
Msg

Page 26

look up the file.
call appropriate gfid
something wrong! .

get tags byte
; toggle sys bit

point at block start
tell 'em to replace

nope ••••
point at on message
get flag byte
check system bit
return printing on

; it's off
; return printing off

Error reporting- kick Emsg to squeal on this thing!
;
OOPS CALL

DB
MVI
JMP

Gover
'Emsg'
A,CR
WHI

;
; The buffer for
;

the file

process the error.
doesn't do a CRt
return doing CR.

block

aUF EQU $; file buffer
;
; The End

END

Look Function

. Reg isters
HL:

DE:
BC:
A:
FLG:

Registers
HL:
DE:

on entry:
Points to file block built by Gfid (Get-file-identifier
function) or file block in same format as a block built
by Gfid. First byte of block contains disk drive
number; this byte is followed by the FOE that is to be
entered in the directory.
unused

"
2
unused

on ex it:
junk
If carry set in PSW, error code/subcode in register;

* System 88 File System: Gfid *)

System 88 System programmer's Gu~de
Section 2 Page 27

else DE points to FDE in SBUFI (Remember about OVrto).
BC: junk
A: junk
FLG: If carry set, DE contains error code/subcode, and ZERO

indicates whether error was on a directory or the file.

Description:

MOST IMPORTANT NOTE:
The 'look' function will accept either

the original file descriptor block or the
extended directory file descriptor block.
However, if the original file descriptor
block is used, the file to be looked up must
be in the same directory as the last file
looked up by Gfid or it will not be found.
If the original file descriptor block is used
Gfid assumes that the value of DirAddr is the
correct address of the directory to be
examined. The safest ways to uSe the lookUp
function are to either just parse the file
name and pass the resulting extended
directory file descriptor to Gfid or to call
Gfid get-file-identifer function with 'look'
specified (49B bit in A).

'look' determines which type of file descriptor has been
passed to it and .loads the appropriate directory. (' look' uses
DirAddr if passed an original file descriptor block and the path
information in the file descriptor block if passed an extended
directory file descriptor.) The function then scans the
directory for the filename specified and if it finds it, sets DE
to the address of the FDE in the directory. If the file is not
found, 'look' returns CARRY and error code in DE. If passed an
extended directory file descriptor, and CARRY is returned, the
zero flag will be reset if the error occurred on a directory look
up instead of the file look up. In other words, if all the
directories specified in the file descriptor block were found but
the file wasn't, 'look' will return CARRY and ZERO. This is
useful in verifying that the directory specified was in fact
found even though 'look' was given a file that did not exist in
that directory.

updir Function

Registers on entry:
HL: unused
DE: unused
BC: unused
A: 3
FLG: unused

* System 88 File System: Gfid *

Section 2

Registers
HL:
DE:

BC:
A:
FW:

System 88 System Programmer's Guide

on exit:
junk

Page 28

If carry set in PSW, error code/subcode in register;
else junk.
junk
jook
If carry set, DE contains error code/subcode.

Description:

MOST IMPORTANT NOTE:
The Updir function depends on the

accuracy of DirAddr and NFDIR to provide its
service. The directory at SBUFl will be
written to DirAddr on NFDIR so the directory
that is in the directory area should have
been loaded by looking up a file in that
directory without using OVrto.

Updir checksums the area at SBUFl, stores the checksum at
NFCHK, gets the drive number from NFDIR, and writes 4 sectors at
disk address DirAddr from memory address SBUFI. After updating
the directory, it checks the other user's NFDIR and if it is on
the same disk, invalidates it so the other user will not use an
incorrect directory.

* System 88 File System: Gfid *

System 88 System Programmer's Guide
Section 3 Page 29

Section 3

System 88 Architecture

-Memory Map of the System 88

The 8080A central processor can address 64K (K=I~24) bytes
of memory. This address space is segmented into the following
regions on the System 88 disk system:

Locations 0000H-0BFFH
Locations f3Cf3f3H-f3DFFH
Locations f3Ef3f3H-f3FFFH
Locations lf3f3f3H-17FFH
Locations 18f30H-IBFFH
Locations lCf30H-lEFFH
Locations lF00H-lFDFH
Locations lFE0H-lFEFH
Locations lFF-f3H lFFFH
Locations 200f3H-FFFFH

System ROM
System Stack and Wormholes
System Stack and Wormholes
8" Controller Data area.
Video board RAM
5" DD Controller Ram
Reserved for expansion
8" Controller Control Area
NorthStar floating point board
Disk system RAM

The RAM area from 201313 onward is used differently in the
Single and Twin systems. In the Twin system all shared code is
in the area from E000H-FFFFH. Below is a functional listing of
the major components and their locations in both single and twin:

Overlay Area Single and Twin: 2000H-27FFH

Directory Area Single and Twin: 2800H-2BFFH

Reserved System Area Single and Twin: 2Cf3f3H-2EFFH

Printer Driver Single: 2F00H-3IFFH Twin: Fe 0f3-FFFFH

User Area Single: 32f3f3H-FFFFH Twin: 2F00-DDFFH

Stack Area Single: C8f3H-FFFH Twin: DE00H-DFFFH

Shared Area Single: n/a Twin: E000H-FFFFH

In using system routines or data areas in assembly language
programs, it is a good idea to use REF statements to define
symbol values from the symbol file SYSTEM.SY rather than using an
EQU with the value given in this 'manual. If system symbol values
change from version to version, those programs using REFs require
only reassembly, where those using EQUs require a great deal of
editing. The use of REF also forces commonality in names of
system routines and data areas.

* System Memory Map *

System 88 System Programmer's Guide
Section 3 Page 30

SYSTEM EQUATES

This section of the System Programmer's Guide details the
equates found in the SYSTEM file for both single and Twin
systems. Unless otherwise noted, a symbol appears in both single
and Twin system files with the same value.

UNLESS OTHERWISE NOTED, ALL VALUES ARE IN HEXADECIMAL

SYMBOL

BRGEN
cmdf
DBARF
DEVMASK
EERR

EIC
excl
fupd
KBD
mung

PHANTOM
rd
USERS
Version
wlock

wrt

PAGE

31
32
35
33
35

36
32
32
34
32

33
32
31
34
32

32

Single

0020
000F
0ril40

rilril8ril

0018

rilril01
rilril81

* System Equates *

Twin

ril 013 4
0rilrill
0020
ril00F
004ril

0080
0007
0eJril4

00eJ5

0060
0eJ02
eJ002

0rilf2J6

0003

Section 3

Symbol name:

Single val ue:
-Twin val ue :

Description:

System 88 System Programmer's Guide

USERS

0001
0002

Page 31

USERS is defined as 1 or 2' primarily for use in conditional
assembly in building the system. For example, in the IMAGE code,
on a TwinSystem we must have exclusive use of the drive, and must
call Devlock to get this. So, USERS is used as follows:

IF
MOV
CALL
JC
ENDIF

Symbol name:

Twin val ue :

See Also:

Description:

USERS=2
C,A
Devloc k
Oops

BRGEN

0004

PHANTOM, BRG

i get exclusive
i on this unit
i we didn't get it!

BRGEN defines the output port address of the baud rate
generator in the system. It is used in the Twin core and in the
printer driver to access the baud rate generator.

VERY IMPORTANT NOTE: Do not send any dat9 out BRGEN or
modify BRG, as a ·crash" of the Twin System will be the
result.

* System Equates *

Section 3

Symbol name:
Twin val ue:

Symbol name:
Twin val ue :

Symbol name:
Twin val ue :

Symbol name:
Twin val ue:

Symbol name:
Twin val ue:

Symbol name:
Twin val ue:

-Symbol name:
Twin val ue:

See Also:

Description:

System 88 System Programmer's Guide

cmdf
"~Hn

wrt
13003

fupd.
0004

mung
0005

wlock
13006

excl
fiHHn

page 32

Devlock, Dio, sett, clrt, setp, clrp,
devlock

These equates define the access classes for the TwinSystem
device manager, Devlock. They stand for, in order, command file
read, read, write, file update, directory mung, write lock, and
exclusive. Directory mung is known as "dirmod" in the SET
command. The access class is passed in B to the Devlock system
service; see the Devlock service for details, as well as the
sett, clrt, setp, clrt, and devlock macros.

In use, read and write access is requested automatically by
Dio; when Dio detects a write to sector 0000 of a volume, it
requests mung access rather than write. BASIC is the sole user
of file update access to prevent both users from opening INOUT
files on the same drive. Exclusive is used by services such as
INIT, PACK, and IMAGE for the destination drive. Directory mung
is used by all services that may alter a directory, such as
DELETE, RENAME, and creating files through the editor, assembler,
or BASIC.

* System Equates *)

System 88 System Programmer's Guide
Section 3 Page 33

Symbol name: PHANTOM

Twin val ue:

See Also: BRG, BRGEN, PMASK, Giveup

Description:

PHANTOM defines the bits in the baud rate generator that
accomplish switching between users. The bits defined by PHANTOM
cause switching of memory from one user to the other. As the
baud rate generator on the CPU cannot be read, a copy of its
current contents is kept in BRG.

VERY IMPORTANT NOTE: Do not send any data out BRGEN or
modify BRG, as a ·crash· of the Twin. System will be the
probable result.

Symbol name: DEVMASK

Val ue :

Description:

DEVMASK is the device mask used for restricting unit numbers
passed to Dio. Note that in previous versions of the system,
this mask was effectively 7, restricting device numbers to Dio to
the range 1 through 7. With this change, the range is 1 through
F. Note that only 1 through 7 are defined in the Single User, and
1 through 9 in the TwinSystem.

* System Equates *

System 88 System Programmer's Guide
Section 3 Page 34

Symbol name: KBD

Single val ue: 0018

See Al so : SCRHM

Description:

KBD defines the address of the keyboard port in the system.
It is also shifted over 8 bits to give the video board address in
the single user system. It is not defined in the Twin, as it is
not a good idea to go accessing the keyboard directly, because it
may latch up the keyboard interrupt handlers. Rather than using
KBD to get the address of the video display, use the contents of
SCRHM to get the upper eight bits of this address.

Symbol name: Version

Single val ue : 0081

Description:

Version is the version number of the CPU board ROMS this
system was assembled with.

* System Equates *)

8

(
\ ' . .

System 88 System Programmer's Guide
Section 3 Page 36

Symbol name: EIC

Val ue: 0080

See Also: EFLGl, SBRK, PVEC, Ovrto, Gover

Description:

EIC is set in EFLGl to indicate that the Exec is in control.
This is used to mask out Ay interrupts. It is also set by other
system services that would rather not be interrupted by Ay. It
is cleared automatically by the overlay services Ovrto and Gover
when they enter an overlay.

* System Equates *

System 88 System Programmer's Guide
Section 3 Page 35

Symbol name: DBARF

Val ue : 0020

See Also: EFLGl

Description:

DBARF is a bit set by Exec in EFLGl to tell Emsg and other
parts of the system not to quit on errors. This bit gets set as
the result of recognizing a question mark (?) at the start of a
command to the Exec. Its action is to suppress the calling of
Killi by Emsg and other error reporting services.

The Init code checks DBARF before calling Killi. This
allows the INIT command to be run from a command file if it is
preceded by a question mark:

Symbol name:

Val ue :

See Al so:

Description:

LDA
ANI
CZ

EFLGl
DBARF
Killi

EERR

0040

; see if we quit on
command files

; yup, don't want 'em

Err, ERROR, EFLGl

EERR is set in EFLGl by the root Err service to tell the
Exec that it has an error code stored in ERROR to process. If,
when Err is called, EERR is already set in EFLG1, the system
takes an error halt, as it was unable to process the previous
error. See the description of Err for more information.

* System Equates *

e

)

System 88 System Programmer's Guide
section 3 Page 37

SYSTEM MACROS

This section of the System Programmer's Guide details the
assembler macros found in the SYSTEM file for both single and
Twin systems. Unless otherwise noted, a macro appears in both
single and Twin system files with the same definition.

Those unfamiliar with macros should look through the Macro
88 User's Guide, or other literature on macro processing. The
sample overlay shown later in this volume uses a number of the
macros shown here.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page 38

MACROS PAGE Single Twin

ALIGN 51 *
clrp 40 *
clrt 39 *
db 55 * *
dequ 48 *
devlock 41 *
dw 55 * *
enter 43 *
gfid 53 * *
giveup 50 *
gover 44 *
ioret 50 *
leave 43 *
lock 44 *
overlay 54 * *
overto 46 *
print 45 *
ralign 52 *
rddef 51 *
rds 52 * .

9 '.
rorg 52 *
setp 40 *
sett 39 *
show 45 *
unlock 44 *
userpgm 47 *
vcb 42 *
vect 49 *
verdate 42 *

* System MACROS *)

Section 3

Symbol name:

Twin Macro:

clrt
#L

See Also:

Description:

System 88 System Programmer's Guide

MACRO
PUSH
MVI
CALL
POP
ENDM

clrt

B
B,0E0H+#1
0E06FH
B

Page 39

Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,
sett, clrp, setp

The clrt macro is used to clear a temporary device
allocation through Devlqck on the TwinSystem. It takes as its
one parameter the device access code, one of (cmdf, rd, wrt,
fupd, mung, wlock, excl). BC is preserved over the call to
Devlock, and the device number for Devlock is expected to be in
C. An absolute hex address is used in the macro expansion because
the Devlock service vector is not expected to move. Although it
does eliminate the need for a separate REF statement, it is a
questionable practice; using the symbolic name and requiring the
REF would be more easily understood.

Symbol name:

Twin Macro:

sett
#L

See Also:

Description:

MACRO
PUSH
MVI
CALL
POP
ENDM

sett

B
B, 0A0H+# 1
0E06FH
B

Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,
clrt, clrp, setp

The sett macro is used to set (get) a temporary device
allocation through Devlock on the TwinSystem. It takes as its
one parameter the device access code, one of (cmdf, rd, wrt,
fupd, mung, wlock, excl). BC is preserved over the call to
Devlock, and the device number for Devlock is expected to be in
C.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

clrp
iL

System 88 System Programmer's Guide

MACRO
PUSH
MVI
CALL
POP
ENDM

clrp

B
B,0C0H+#l
0E06FH
B

Page 40

See Also: Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,
sett, clrt, setp

Description:

The . clrp macro is used to clear a permanent
allocation through Devlock on the TwinSystem. It takes
one parameter the device access code, one of (cmdf,
fupd, mung, wlock, excl). BC is preserved over the
Devlock, and the device number for Devlock is expected
C.

Symbol name:

Twin Macro:

setp
IL

MACRO
PUSH
MVI
CALL
POP
ENDM

setp

B
B,80H+#1
0E06FH
B

device
as its

rd, wrt,
call to
to be in

See Also: Devlock, cmdf, rd, wrt, fupd, mung, wlock, excl,
clrt, sett, clrp

Description:

The setp macro is used to set a permanent device allocation
through Devlock on the TwinSystem. It takes as its one parameter
the device access code, one of (cmdf, rd, wrt, fupd, mung, wlock,
excl) • BC is preserved over the call to Devlock, and the device
number for Devlock is expected to be in C.

* System MACROS *

Section 3

Symbo I name:

Twin Macro:

devloc k
#L

See Also:

Description:

System 88 System Programmer's Guide

MACRO
PUSH
MVI
CALL
POP
ENDM

devlock

B
B,+#l
0E06FH
B

Devlock

Page 41

The devlock macro is used to call the Devlock service in the
TwinSystem. Its one argument is the access code, one of (cmdf,
rd, wrt, fupd, mung, wlock, excl) which is loaded int-o B. Cis
expected to contain the device number, and BC is preserved over
the call. This macro is used in code that has been changed from
the single ~ser system to the Twin by placing it before a call to
Dio to get some special access. An absolute hex address is used
in the macro expansion because the Dev10ck service vector is not
expected to move. Although it does eliminate the need for a
separate REF statement, it is a questionable practice; using the
symbolic name and requiring " the REF would be more easily
understood.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

vcb
iL

. Description:

System 88 System Programmer's Guide

MACRO
DB
DW
ENDM

vcb

#1+0,#2+0,#3+0
#4+0,#5+0,#6+0,#7+0,#8+0

Page 42

The vcb macro is used internally in the system to set up the
control tables for disk devices. As there are no hooks in that
part of the system allowing user access, it will not be described
further.

Symboi · name: verdat~

Twin Macro:

verdate MACRO
iL DB '7/22/80 RTM'

EN OM

Desc r i ption :

The verdate macro expands into the creation date for the
TwinSystem resident.

* System MACROS *)

Section 3

Symbol name:

Twin Macro:

leave
#L

See Also:

Description:

System 88 System programmer's Guide

MACRO
PUSH
LXI
CALL
POP
ENDM

leave

H
H,#l
Leave
H

Leave, Enter, enter

Page 43

The leave macro is used to call the Leave service, which
leaves the critical region defined by the semaphore address
defined by the argument to the macro. The semaphore address must
be in memory accessible by both users.

Symbol name:

Twin Macro:

enter
#L

See Also:

Description:

MACRO
PUSH
LXI
CALL
POP
ENDM

enter

H
H,#l
Enter
H

Leave, Enter, leave

The enter macro is used to invoke the Enter service,
requesting entry into a critical section defined and protected by
the semaphore address given as the argument. The semaphore
address must be in memory accessable by both users. If the
semaphore is currently held, the user is blocked until the
semaphore is released.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

unlock
iL

See Also:

Descr i pt ion:

System 88 System Programmer's Guide

MACRO
CALL
ENDM

unlock

Unlock

Unlock, Lock, lock

Page 44

The unlock macro invokes the Unlock service, which allows
switching between users to take place again. This service and
the Lock service should be used for extremely short periods of
time, and with caution, as careless use will cause performance
degradation or system failure.

Symbol name:

Twin Macro:

lock
iL

See Also:

Description:

MACRO
CALL
ENDM

lock

Lock

Lock, Unlock, unlock

The lock macro calls the Lock service, which locks the
current user in the Twin against switching. This service and the
Unlock service should be used for extremely short periods of
time, and with caution, as careless use 'will cause performance
degradation or system failure.

* System MACROS *)

Section 3

Symbol name:

Twin Macro:

print
#L

See Al so:

Desc r i ption :

System 88 System Programmer's Guide

MACRO
CALL
DB

. ENDM

print

Print
itA, 0

Print, Show, show

This service prints the text supplied as the argument
system printer through WH7. Note that the macro supplies
terminating byte, so that multiline text cannot be printed
this macro.

Symbol name:

Twin Macro:

show
#L

See Also:

Description:

MACRO
CALL
DB
ENDM

show

Show
tA,0

Print, Show, print

Page 45

on the
a zero

using

This macro
display screen.
the macro.

displays the text passed as the argument on the
Note that a terminating zero byte is supplied by

* System MACROS *

section 3

Symbol name:

Twin Macro:

gover
ftL

Symbol name:

Twin Macro:

overto
ftL

See Also:

Description:

System 88 System Programmer's Guide

MACRO
EQU
IF
MVI
ENDIF
CALL
DB
IF
JC
ENDIF
ENDM

MACRO
EQU
IF
MVI
ENDIF
CALL
DB
IF
JC
ENDIF
ENDM

gover

$
NOT NULL[#2]
A, #2

Gover
'# 1 '
NOT NULL[#3]
#3

overto

$
NOT NULL [12]
A,i2

Ovrto
'#1 '
NOT NULL[#3]
#3

Gover, Ovrto, gover

Page 46

These macros are used to invoke overlays in a fairly general
manner. The first argument is mandatory, and is the 4 character
overlay name, without quotes. If the second argument is present,
it is loaded into A as a function code. If the third argument is
present, it is used as the address to jump to if the overlay
returns with the Carry bit set in PSW. The differences between
the Gover and Ovrto are described in the section on system
services; briefly, Ovrto "remembers" the overlay currently in the
overlay area and restores it on returning, and Gover does not.

* System MACROS * J

System 88 System Programmer's Guide
Section 3 Page 47

Symbol name: userpgm

Twin Macro:

userpgm MACRO
ORG USER
IDNT $,$
JMP $+6
JMP #2
LXI H,0
DAD SP
SHLD ESP
IF NOT NULL[i3]
CALL Show
DB t3,0DH,0
ENDIF
JMP #1

ESP DW ° ENDM

See Al so: Show, USER

Description:

This macro is used to generate a program header for user
programs. The first argument is mandatory, and is the starting
address of the program. The second argument is also mandatory,
and is the reentry address in the program. The third argument is
optional, and if present is expected to be a text string enclosed
in quotes. This string is displayed on the screen when the
program begins execution. The entry stack pointer is also stored
in ESP for use in error recovery and stack limit checking in the
program.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

dequ
#L

Description:

System 88 System programmer's Guide

MACRO
EQU
DEF
ENDM

#1
#L

dequ

Page 48

The dequ macro is used as a shorthand to equate a symbol to
a value and define that symbol. It is used in building the
system symbol files, and in BASIC.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

vect
iL

rpc

Description:

System 88 System Programmer's Guide

MACRO
EQU
DEF
SET
ENDM

vect

rpc
iL
rpc+3

Page 49

The vect macro is used in the TwinSystem to define the jump
vectors starting at E000H. The symbol given is equated to the
value of rpc, and the symbol defined. Then rpc is incremented by
3 to account for the JMP instruction that will be generated in
the eventual code.

This macro is used in the following manner in generating the
symbol file for the TwinSystem:

rpc
Cold
Warm
Msg

SET
· vect
vect
vect

· 0E000H
; 00 cold start

03 warm start
06 dis pIa y m sg

This defines the symbol Cold with value E000H, Warm with
value E003H, and Msg with value E006H, while not generating any
code.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

ioret
#L

See Also:

Description:

System 88 System Programmer's Guide

MACRO
JMP
ENDM

Ioret

ioret

40H

Page 50

This macro expands into a call to Ioret, to return from an
interrupt or to return to an environment placed on the stack. An
absolute hex address is used as the code for Ioret is in ROM.

Symbol name:

Twin Macro:

giveup
iL

See Also:

Description:

giveup

MACRO
CALL
ENDM

Giveup

Giveup

The giveup macro expands into a call to Giveup, which gives
up the processor in the TwinSystem.

* System MACROS *

Section 3

Symbol name:

Twin Macro:

ALIGN

ltL

Description:

System 88 System Programmer's Guide

MACRO
ORG
EQU
ENDM

ALIGN

($+ltl) AND NOT (ltl-l)
$

Page 51

The ALIGN macro is used to force the assembler's program
counter ($) to the specified boundary. For example, ALIGN l00H
forces the program counter to the next page boundary (lower 8
address bits all zero). Note that it is a bad programming
practice to assume that the area from the current location
counter to the ALIGNed area contains zeros.

Symbol name:

Twin Macro:

rddef
#L

rpc

See Also:

Description:

MACRO
EQU
DEF
SET
ENDM

rpc
ltL

rddef

It 1 +rpc

rds, rorg, ralign

The rddef macro is used to define a symbol and calculate
space for it while not generating any code. It is used
extensively in generating the symbol file for the TwinSystem.

The following example shows use of the rddef and dequ macros
in generating the TwinSystem symbol file:

rpc rorg 2000H ; Stuff starts here

OVRLY rddef 2048 ; 2K for overlay
OVENT dequ OVRLY+4 overlay entry point

SBUFI rddef 1024 directory area
CBUF rddef 256 ; command file buffer

* System MACROS *

Section 3

Symbol name:

Twin Macro:

ralign
rpc
IL

See Also:

Description:

System 88 System programmer's Guide

MACRO
SET
EQU
ENDM

ralign

(rpc+ll) AND NOT (11-1)
rpc

rddef, rds, rorg

Page 52

The ra1ign macro is used with the rddef and rds macros to
force the pseudo-location counter rpc to the specified boundary.

Symbol name:

Twin Macro:

rds
IL
rpc

See Also:

Desc r ipt ion:

MACRO
EQU
SET
ENDM

rds

rpc
#l+rpc

rorg, rddef, ral ign

The rds macro is used to advance the pseudo-location counter
rpc. It is used in building the TwinSystem symbol file.

Symbol name:

Twin Macro:

rorg
#L
rpc

See Also:

Description:

MACRO
EQU
SET
ENDM

11
#1

rorg

rddef, rds, ralign

The rorg macro is used with the rddef, rds, and ralign
macros to force the pseudo-location counter rpc to a specified
starting value. See the example given for the rddef macro.

* System MACROS *)

Section 3

Symbol name:

Single Macro:

gfid

#L

iL

#L

Twin Macro:

gfld
#L

See Also:

Description:

System 88 System programmer's Guide

MACRO
IF
CALL
ELSEIF
CALL
DB
ELSE
CALL
ENDIF
ENDM

MACRO
CALL
ENDM

gfid

USERS=2
Gfid
$>2800H
Ovrto
'Gfid'

OVGFID

Gfid

USERS, Gfid, OVRLY, EIC, Ovrto, Gover

Page 53

The gfid macro expands into a call to the Gfid service on
single and Twin systems. On the Twin system, Gfid is a resident
service, so it is called directly. On the single user system,
Gfid is an overlay, and so must be invoked differently if the
macro is expanded from within the o~erlay area (program counter
between 2000H and 2800H). The OVGFID routine called in single
user overlays disconnects Ay by pushing the contents of PVEC onto
the stack and pointing PVEC at Ioret. When Gfid returns, the
original contents of PVEC are restored. This is done to correct
a timing window in the processing of Ay in the single user system
when overlays are fetched (see desc r i pt i on of OVrto fo r deta i 1 s) •

* System MACROS *

System 88 System Programmer's Guide
section 3

Symbol name:

Macro:

overlay MACRO
ORG
IDNT
DB

De s c rip t ion :

IF
JMP
ENDIF
ENDM

overlay '

OVRLY
$,$
#1
NOT NULL[#2]
#2

Page 54

The overlay macro expands into the header for an overlay.
The fi rst. mandatory arg ument is the overlay name in quotes. . The
second argument, which is optional, expands into a jump to the
address given.

* System MACROS *

Section 3

Symbol name:

Macro:

db
iL

Symbol name:

Twin Macro:

dw
iL

Description:

System 88 System Programmer's Guide

MACRO
DB
ENDM

MACRO
DW
ENDM

#A

#A

db

dw

Page 55

The dw and db macros are used mainly to suppress the display
of generated code from long data lists. If MACLIST 0 is included
in the assembly source file, macro expansions are not listed.
So, when the dw or db macro is used instead of the DW or DB
statements, no generated code is displayed in the listing.

* System MACROS *

System 88 System Programmer's Guide
Section 3 Page S6

SYSTEM DATA AREAS

This section details data areas used by the single and Twin
systems. Many symbols appear in both single and Twin systems,
but have differing addresses in each. As in the descriptions for
system equates and service vectors, references are made to other
interacting items in the system.

UNLESS SPECIFICALLY STATED, ALL VALUES ARE IN HEXADECIMAL

* System DATA Areas *

System 88 System programmer's Guide
Section 3 Page 57

SYMBOL PAGE Single Twin

BHA 74 E05F
BOOTVOL 88 2D92
BRG 82 0C60
BUGS 103 2DFC 2EB4
BUSIES 85 0C6E 0C6E

CBUF 63 2C00 2C00
CMOA 65 2D8C 2E82
CMOO 64 2D89 2E7F
CMOF 63 2088 2E7E
CMON 65 208E 2E84

CMOP 64 2D8A 2E80
CMNO 96 2D40 2E3C
CMPTR 96 20C7 2E7C
Command 81 0C4C
DEFPATH · 99 2E27 2D80

DioA 84 0C66 0C66
Dio BSy 85 0C6C 0C6C
DioDn 84 0C6B 0C6B
DioOrv 84 0C69 0C69
DioHL 84 0C67 0C67

e:3
Di r Addr 93 2E02 2EA7
DONT 79 2D90 2E8E
ORVADTAB 83 0C7E 0C7E
EFLG1 102 20C9 2EB0
EFLG2 102 2DCA 2EB1

ERROR 104 2D9A 2EB7
EXECSP 92 2DAF 2EBD
FILE 92 20CB 2EBF
GFLOCK 75 E07E
IOIP 83 0C62

JOBST 103 2D9E 2EB2
KBEX 70 2086 2E38
KBIG 67 2084 2E36
KBIP 67 2082 2E34
KBMOOE1 71 2E3A

KBMODE2 71 2E3B
KBUF 66 2De0 2DC0
LERR 1134 209C 2EB9
LOCK 1130 2E8F
LUSER 103 20C6 2EB3

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 58

SYMBOL PAGE Single Twin

MemAdd 81 0C49
MEMTOP 92 2080 2EBB
MTO 89 20A2
MUNGl 95 20A7 2E9F
MUNG2 95 20A9 2EAl

MUNG3 95 20AB 2EA3
MUNG4 95 20AO 2EA5
MUNGP 88 2000
NORIVES 89 209F 2EA9
NFA 101 2 E QJ0 2EAO

NFCK 94 20A1 2EAC
NFOIR 94 20AQJ 2EAB
ONCE 101 20CS 2EAF
OVBC 72 20C1 2E9B
OVDE 72 20BF 2E99.

OVENT 86 2004 2004
OVHL 72 20BO 2E97
OVMEM 100 2E53
OVNM 72 20B6 2E90
OVPSW 72 20C3 2E90

OVRLY 86 2000 2000 e Pages 1 81 0C4B
PATH 99 2E04 2040
PMASK 74 E0S0
POS 99 0C 0E 2E0A

PVEC 76 2093 2E87
SBRK 76 2091 2E86
SBUFI 87 2800 2800
SBUF2 87 2900
SBUF3 87 2A00

SBUF4 87 2B QJ0
SCENO 98 0C IE 2E08
SCHR 78 2098 2E8C
SCREEN 86 1800
SCRHM 98 0CIF 2E 09

SINT 89 20B3
SRAI 60 0C 10 0C10
SRA2 60 0C12 0C12
SRA3 60 0C14 0C 14
SRA4 60 0C 16 0C16

* System OATA Areas *)

System 88 System Programmer's Guide
Section 3 Page 59

SYMBOL PAGE Single Twin

SRA5 61 0C18 0C18
SRA7 105 0CIC 2EEC
SRA7I 61 0CIC
STACK 85 1000
SUWH8 62 0C40

SYSRES 93 2092 2EAA
TIMER 91 0C00 2E02
UBRK 77 2097 2E8B
UCHR 78 2099 2E80
USER 73 3200 2F00

USP 90 2E00
USRNAME 90 2EEE
USTATS 75 20Bl E05E
UTIME 91 2E02
UVEC 77 2095 2E89

VCBTAB 83 0C63 0C63
VERLOC 80 0439
WAKEUP 97 0CIA 2E06
WHICH 83 0C 61
WH8 62 (2JC40 2E2C

~
XTIMER 80 0C 00

'"

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 60

Symbol name: SRAl

Val ue: 0Cl0

Description:

SRAI contains the address of the interrupt handler for
memory parity interrupts generated by new memory boards such as
the 48K memory used in the Twin. This location should not be
modified by the user.

Symbol name: SRA2

Val ue: 0Cl2

SRA2 is the service vector for sector pulse interrupts from
the 5" SSSD disk controller. It should not be modified by the
user.

Symbol name: SRA3

Val ue : 0C14

Description:

SRA3 is reserved for future use by the PolyNet interface.

Symbol name: SRA4

Val ue: 0C16

Description:

SRA4 contains the address of the interrupt service routine
for the USART. Caution should be used in handling of this
interrupt by user programs. In the TwinSystem, this interrupt is
best left to the system, as the USART baud rate generator latch
controls user switching.

* System DATA Areas *)

Section 3

Symbol name:

Val ue :

Description:

System 88 System programmer's Guide

SRAS

0C18

Page 61

SRA5 contains the address of the keyboard interrupt service
routine. This location should not be modified by the user in
either single or Twin systems.

Symbol name: SRA71

Twin val ue : 0ClC

Description:

SRA7I isthe -TwinSystem symbol for the single step interrupt
vector. In the TwinSystem, each user has a separate copy of
SRA7, and the system vectors the common SRA7I fielded interrupt
through the proper user's SRA7 vector. This allows each user to
use the front panel code at the same time.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Twin val ue :

Symbol name:

Twin val ue:

See Also:

Description:

System 88 System Programmer's Guide

- W08

~C40
2E2C

SUW08

0C40

Ticker, WAKEUP

Page 62

WH8 is used as an interrupt service vector. It contains the
address of the routine to be entered when the real time clock
interrupts. In the single user system, it is connected to the
normal clock processing log ic. In the TwinSystem, it is
corinected to Ticker, the Twi~System clock handl~r. ~winSystem
WH8 is not used. WH8 should not be modified by the user, as the
real time clock is fundamental to the operation of the system.
The WAKEUP vector is provided for use of the real time clock by
user programs. The coding for the clock interrupt handler in ROM
is essentially:

Clock PUSH
PUSH
PUSH
PUSH
LHLD
PCHL

PSW
B
D
H
WH8

std save sequence
get vector
go do it.

* System DATA Areas *)

System 88 System Programm~r's Guide
Section 3 Page 63

Symbol name: CBUF

Val ue: 2C00

See Al so : CMDD, CMDF, CMDP, CMDN, BASIC

De s c rip t ion :

CBUF is the 256 byte buffer used to hold the current sector
of a command file.

BASIC also makes use of CBUF. When ru~ning programs, if
BASIC detects that command files are not 1n use, by CMDF
containing zero, it uses CBUF to hold its line number cache.
This cache is a list of 32 bit entries (64 in number, to give 256
bytes), consisting .of 16 bits of BASIC line number followed by 16
bits of memory address for the start of the program line. An
entry 1S pla-c-ec]" -In -tcfe- caCcne -by- Findln only wheh --it is searched
for as the result of a GOTO, GOSUB, or similar statement. This
makes a 64 entry cache quite effective. When the cache fills up,
new entries are placed in the cache treating it as a circular
list. This use of a line number cache greatly speeds up line
number searches in BASIC, since BASIC normally searches for
target line numbers by starting at the beginning of the program
text and scanning forward line by line.

Symbol name:

Single value:
Twin value:

See Also:

Description:

CHDF

2D88
2E7E

Killi, DBARF, CMDD, CMDN, CMDP, CBUF

CMDF is a single byte flag used to indicate that characters
are being read from a command file. If CMDF is zero, command
file mode is not active, and requests for characters through WH0
are satisfied from the keyboard buffer. If CMDF is nonzero,
character requests through WH0 are satisfied from the command
file buffer CBUF. CMDF is set nonzero by the Exec in setting up
a command file, and set to zero by either Killi in killing
command files, or by the command file code itself when end of
file is detected on the command file.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Twin val ue:

See Also:

Description:

System 88 System Programmer's Guide

CMDD

2089
2E7F

CMDN, Devloc k, cmd f, Ki 11 i

Page 64

CMDD is used to hold the drive number for the active command
file. It is set by the Exec in starting up a command file.

In the TwinSystem, each time a sector is read from the drive
noted by CMDD into CBUF, permanent command file read access
(cmdf) is requested through Devlock. This permanent command file
read access is cleared when end of file is reached on the command
.f-i-le.-, o -r through - calling Killi and aborting command files.

Symbol name:

Sing le val ue:
Twin val ue :

See Also:

Description:

CMDP

2D8A
2E80

CBUF, CMDA

CMDP is the 16 bit pointer into the command file buffer
CBUF, and points to the next character to remove from the buffer.
When the pointer points to CBUF+l~0H, another sector must be read
from the disk; the drive number is in CMDD and the disk address
is in CMDA. When a command file is set up by the Exec, CMDP is
initialized to CBUF+l~~H, so that the first character requested
through WH~ causes the first sector of the command file to be
read into CBUF.

* System DATA Areas *)

Section 3

Symbol name:

Sing Ie val ue:
-Tw i n val ue :

See Also:

Description:

System B8 System Programmer's Guide

CMDA

2D8C
2E82

CBUF, CMDD, CMDP, CMDF

Page 65

CMDA is the 16 bit disk address of the next sector to read
from the disk. It is initialized by the Exec to the starting
disk address of the command file, and incremented after each new
sector is read from the disk.

For Exec/90 and later systems, CMDA will be properly
adjusted by PACK if the disk containing the currently active
command file is PACKed. On earlier systems, this is not done,
wi t -hthe --resui-t that the next sector read, after the -- disk is
shuffled by PACK, may no longer be the next sector of the
original command file!

Symbol name:

Sing Ie val ue :
Twin val ue:

See Also:

Description:

CMON

2D8E
2E84

CMDF, cmdf, Devlock

CMDN is the 16 bit number of sectors remaining in the
command file. It is set by the Exec to the number of sectors in
the command file, and decremented after each sector is read.
When a new sector is needed, and CMDN is zero, CMDF is set to
zero to disable command files, as end of file has been hit. On
the TwinSystemj permanent command file read (cmdf) is also
cleared for the drive.

* System DATA Areas *

Section 3

Symbol name:

Single val ue :
-Twin val ue :

See Also:

Desc r iption :

System 88 System Programmer's Guide

KBUF

2D00
2DC0

KBlP, KBlG, Killi, Flush

Page 66

KBUF is the address of the 64 byte keyboard ring buffer. As
keyboard characters are picked up, they are placed in the ring
buffer until the buffer fills. Once the buffer is full, new
characters are dropped on the floor. .

* System DATA Areas * Keyboard Processing *)

Section 3

Symbol name:

Single val ue:
-Twin val ue :

Symbol name:

Single value:
Twin value:

See Al so:

Description:

System 88 System Programmer's Guide

KBIP

2D82
2E34

KBIG

2D84
2E36

KBUF, Killi, Flush, KBEX

Page 67

KBIP and KBIG are the keyboard ring buffer "put" and "get"
pointers. They are altered at the interrupt level. They should
not be modified by the user at any time. They may be examined to
see -if there are characters in the ri:n~ buffer by code such as
the following, which is extracted from BASIC's INP(0) function:

DI
LHLD
LOA
EI
CMP
LXI
JZ
INR
JMP

KBIP
KBIG

L
H,0
AINP1
L
AINPI

don't bug mel
get put pointer
and lsb of get
allow ints ag ai n

i see if equal
i assume so, return 0

jmp/ empty, return 0
else return 1, we1ve
got something there.

The above code returns a 00 in HL if there are no characters
in the ring buffer, and a 1 in HL if there are. This is
determined by comparing the put and get pointers. Since these
pointers are altered at the interrupt level, interrupts must be
disabled while they are fetched to insure that both are correct.
If both pointers are the same, the buffer is empty.

Here i? the code used to put a character into the ring
buffer. It is copied from the keyboard interrupt service code
for the TwiriSystem, the character to be placed in the buffer is
in C, and the interrupts are disabled:

LHLD
MOV
OCR
MVI
CMP
JNZ
MVI

KBIP i Put pointer
M,C ; poke into buffer
L ; dink pointer
A, (KBUF-1) AND 0FFH
L i did we wrap around?
Kbi1 i jmp/nope
L,(KBUF+63) AND 0FFH i reset if so

* System DATA Areas * Keyboard Processing *

Section 3

Kbil

System 88 System Programmer's Guide

LOA
CMP
JZ
SHLO
JMP

KBIG
L
Kbxx
KBIP
Kbxx

see if we're full

; jmp/yup, drop on floor!
else update put ptr
and split

Page 68

The ring buffer put pointer is loaded, and the character
stored into the ring buffer. The put pointer is decremented and
checked for wraparound. The ring buffer get pointer is loaded
and compared to the put pointer. If they are equal, we have 63
characters in the ring buffer; it is full. We exit without
storing the updated put pointer. Once the buffer fills, incoming
characters are stored on top of the last character in the buffer.
If the buffer is not full, we store the updated put pointer and
exit.

Here is the code
buffer, again taken
WH~. Note the checks
g fveup:

that removes characters from the ring
from the TwinSystem. Cin is hooked up to
for~ommand files (CMDF) and the use of

Cwt POP H ; restore saved thing
; wait for a while giveup

; Try to get a chr!

Cin LOA CMDF ; see if command files active
ORA A
JNZ Cfin . jmp/yup, go check over there ,

01 i don't bug me!
PUSH H i save ·HL on the stack
LHLO KBIG i get pointer
LOA KBIP i put pointer
CMP L i anything there?
JZ Cwt i jmp/nope, go wait & try again

MOV A,M ; pick up chr
PUSH PSW stash on stack
OCR L i dink ptr
MVI A, (KBUF-I) AND ~FFH
CMP L
JNZ Cinl ; jmp/didn't wrap around
MVI L,(KBUF+63) AND 0FFH

Cinl SHLO KBIG ; save new pointer
POP PSW restore chr
EI ; allow interrupts
LHLO KBEX ; get tail end handler address
XTHL i swap onto stack, get HL back
RET i return thru post processor

* System DATA Areas * Keyboard Processing *

.9

)

System 88 System programmer's Guide
Section 3 Page 69

This routine is entered at Cin from WH0. First, the check
for command files being active is made, and control is
transferred to the command file get routine (Cfin) if so. Then
interrupts are disabled and HL is pushed onto the stack.
Interrupts are disabled because KBIP and KBIG may be altered at

-the interrupt level. HL is pushed so we do not alter any
registers but A and PSW. If the get and put pointers are equal,
the buffer is empty; we go to Cwt where HL is restored, and we
give up the processor. When control is returned to our task, we
try again falling into Cin. If the buffer had something in it,
we load the character, decrement the pointer mod ring size, and
store the updated pointer. Control is returned to the caller of
Cin/WH0 by going through the routine pointed to by KBEX. This is
usually Fold, Flip, or just a RET instruction. KBEX can be
pointed to custom routines for special purposes.

These routines show the interaction of KBIP, KBIG, and KBUF.
KBIG and KBIP are initially set up by calling Killi, which resets
them and marks the ring buffer clear. Note also the use of KBEX,
whfcn .. is Used to include post processing routines suc-h as F11p
and Fold.

* System DATA Areas * Keyboard Processing *

Section 3

Symbol name:

Single value:
. Twin val ue :

See Also:

Description:

System 88 System Programmer's Guide

KBEX

2D86
2E38

KBUF, KBlG, KBlP, Flip, Fold

Page 70

KBEX holds the address of the character input postprocessing
routine. The code pointed to by KBEX is executed for each
character read through WH0. KBEX is initialized to point to a
RET instruction. The Exec Flip and Fold commands point KBEX at
routines Flip and Fold. The routine connected to KBEX must not
modify registers BC, DE, or HL. See KBlP and KBIG for the code
invol v ing KBEX.

* System DATA Areas * Keyboard Processing *)

Section 3

Symbol name:
Twin value:

'Symbol name:
Twin value:

See Also:

Description:

System 88 System Programmer's Guide

KBMODEl
2E3A

KBMODE2
2E3B

PHANTOM, SET SKM command

Page 71

KBMODEI and KBMODE2 are used in the Twin to control single
keyboard mode, which is enabled by the Exec command SET SKM ON.
When active, this mode allows both users to be controlled from a
single keyboard. As KBMODEI and KBMODE2 are in per-user memory,
SKM is enabled on a per-user basis. That is, if user 1 has
enabled SKM, user 1 can type into user 1 or user 2, but for user
2 to type into user 1, user 2 must arso enable SKM.

Single keyboard mode (SKM) when enabled is controlled by the
I and II function keys on Keyboard III, (on Keyboard II, A = I =
Ie hex and A] = II = ID hex). When SKM is active, these
character codes will not be seen by programs; they are trapped
within the keyboard handler.

If KBMODEl is zero, SKM is disabled. KBMODEl nonzero means
that SKM is active, and KBMODE2 has 00 to indicate the characters
go to user 1, and PHANTOM if the characters go to user 2.

Note that since Word Master II depends on the use of the I
and II function keys, it disables SKM by storing a zero in
KBMODEL

* System DATA Areas * Keyboard Processing *

Section 3

Symbol name:

Single value:
-Tw i n val ue :

See Also:

Description:

System 88 System Programmer's Guide

OVNM

2DB6
2E90

Ov rto, Gover

Page 72

OVNM is a 6 byte area used internally by the system in
overlay fetch processing. It contains the name of the target
overlay, followed by the extension OV for Look to find. It
should not be used or modified by the user.

Symbol name: OVBL

Single value: 2DBD
Twin value: 2E97

Symbol name: OVDE

Single value: 2DBF
Twin value: 2E99

Symbol name:

Single val ue :
Twin value:

Symbol name:

Single value:
Twin val ue:

Description:

OVBe

2DCl
2E9B

OVPSW

2DC3
2E9D

OVHL, OVDE, OVBC, and OVPSW are temporaries used in overlay
processing to hold the contents of the registers. They should
not be used or modified by the user.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Tw i n val ue :

Description:

System 88 System Programmer's Guide

USER

3200
2F00

Page 73

USER is the start of the user memory area. All user
programs are assumed to start here. Program start addresses are
assumed to be equal to USER if the Exec START command is to work,
and program reentry addresses are assumed to be USER+3 for the
Exec REENTER command to work.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 74

Symbol name: PMASK

Twin val ue : E05D

See Also: BHA, PHANTOM, SET SOLO command

Oeser iption :

PMASK is the processor switch mask in the TwinSystem. If
PMASK contains 00, then the system is either running as a single
user, on single user hardware, or is running in SOLO mode as the
result of the SET SOLO command. If PMASK is zero as the result
of the SET SOLO command, the 20H bit in BHA will be set, allowing
PMASK to be reset to PHANTOM when the SET TWIN command is given.

Altering PMASK is an excellent way of b10wlng up the
TwinSystem and probably the quickest.

Symbol name: BHA

Twin val ue: E05F

See Al so : Devlock, SET YAK, SET SOLO commands

Description:

BHA contains a number of flag bits used in the TwinSystem.
The currently allocated ' bits are:

80H YAK enabled. If the 80H bit in BHA is set, device
allocations through Dev10ck will be reported on the video
screen for both users. This is enabled by the Exec
command SET YAK ON and disabled by the Exec command SET
YAK OFF as well as by modifying the bit directly.

40H Two users. The 40H bit is used in the processing of the
SET SOLO command. It is set during SET SOLO to indicate
that before solo mode was started, two users were
running. This bit should not be altered by the user.

20H WAIT mode. Setting the 20H bit in BHA enables device
WAIT mode. This is normally set by the Exec command SET
WAIT ON and disabled by SET WAIT OFF Exec command. See
the description of Dev10ck for more details. This bit
can be turned on and off by user programs, as long as
other bits are not affected.

IFH These bits are reserved for future use in the TwinSystem.

* System DATA Areas *)

Section 3

Symbol name:

Single val ue :
-Tw i n val ue :

De s c rip t ion :

System 88 System Programmer's Guide

USTATS

2DB1
E05E

Page 75

USTATS contains the current status of the USART maintained
by the system printer driver. It is not normally modified by
user programs. On the TwinSystem especially, any modifications
should be done with extreme care and an understanding of the
printer driver and user switching.

Symbol name: GFLOCK

Twin val ue: E07E

See A1 so: Gfid

Description:

GFLOCK is the semaphore for Gfid. It should not be modified
by the user under any circumstances, as a complete failure of the
file system may result.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Tw i n val ue :

See Also:

Description:

System 88 System programmer's Guide

SBRK

2D9l
2E86

PVEC, DONT, EIC, EFLGl, GFLOCK

page 76

SBRK is the single byte flag set nonzero when a Ay is
recognized at the keyboard interrupt level. It is the user's
responsibility to clear SBRK. Note that SBRK is set nonzero by
Ay if the Ay action is masked by DONT (or GFLOCK in the Twin),
but is not set if EIC is set in EFLGl; see the coding for escape
characters and the other descriptions for details.

Symbol name:

Single value:
Twin val ue :

See AI so:

Description:

PVEC

2D93
2E87

SBRK, DONT, EIC, EFLGl, GFLOCK, Ioret, Iexec

PVEC contains the address of the routine to enter as the
result of a Ay being received from the keyboard. The action of
Ay is masked by DONT, EIC set in EFLGl, and GFLOCK on the
TwinSystem. The routine is expected to return by executing a JMP
Ioret. All registers except SP may be altered, as the
environment of the interrupted program is on the stack. PVEC is
initialized in the Exec to point to Iexec, which runs the Exec
overlay as the result of a Ay interrupt. If the action of Ay is
masked by EIC in EFLGl, DONT, or GFLOCK, SBRK will still be set
nonzero. For example, BASIC points PVEC at Ioret, and checks the
state of SBRK at the top of its interpretation loop to see if a
Ay has been hit.

When using PVEC or UVEC in a program, it is a good practice
to save the old values of these vectors and restore them upon
exiting the program. The user should not assume that PVEC or
UVEC are initialized, or that SBRK or UBRK contain zero.

* System DATA Areas *)

Section 3

Symbol name:

Single val ue:
-Twin val ue :

See Also:

Description:

System 88 System Programmer's Guide

UVEC

2D95
2E89

UCHR, UBRK, DONT, GFLOCK

Page 77

UVEC contains the address of the routine to enter as the
result of receiving the character contained in UCHR at the
keyboard interrupt level. This action is masked by DONT and
GFLOCK on the TwinSystem. The routine is expected to return by
executing a JMP Ioret. All registers except SP may be altered,
as the environment of the interrupted program is on the stack.
UVEC is initialized i~ the Exec to point to Ioret. If the action
is masked by DONT, or GFLOCK, UBRK will still be set nonzero.

-- _ _. -

When using PVEC or UVEC in a program, it is a good practice
to save the old values of these vectors and restore them upon
exiting the program. The user should not assume that PVEC or
UVEC are initialized, or that SBRK or UBRK contain zero.

Symbol name:

Single val ue:
Twin value:

See Also:

Description:

UBRK

2D97
2ESB

UVEC, UCHR, DONT, GFLOCK

UBRK is a single byte flag set nonzero at the keyboard
interrupt level when the character in UCHR is recognized. It is
the user's responsibility to clear UBRK. Note that UBRK is set
nonzero even if the action of UVEC is masked by DONT.

* System DATA Areas *

Section 3

Symbol name:

Sing leva 1 ue :
. Twin val ue :

See Al so:

Description:

System 88 System Programmer's Guide

SCHR

2098
2E8C

DONT, GFLOCR, Fpanel

Page 78

SCHR contains the character that will cause activation of
the front panel code when the character is recognized at the
keyboard interrupt level. It is set to zero by the Exec DISABLE
command, and in the boot process. It is set to AZ by the Exec
ENABLE command. The contents of SCHR is used throughout the
system to determine if the system is in ENABLEd or DISABLEd mode.

Symbol name:

Single val ue:
Twin val ue:

See Also:

Description:

UCBR

2099
2E8D

UVEC, UBRR, DONT, GFLOCR, RBMODEl, RBMODEl

UCHR contains the character that will cause the program to
interrupt to the routine pointed at by UVEC when recognized at
the keyboard interrupt level. Additionally, UBRR will be set
nonzero when this character is recognized. Good programming
practice and common sense dictate that UVEC be set up before UCHR
is initialized.

At the keyboard interrupt level when checking for an
interrupt character, the system first checks for Ay. Then the
character is compared to SCHR, the system enable character.
After this check, the character is compared to UCHR.
AdditionallY in the TwinSystem, if single keyboard mode is
enabled (SRM, see RBMODEl and RBMODE2), checks for function keys
I and II are made prior to checking for Ay. This means that UCHR
should not be set to Ay, the contents of SCHR (usually AZ), or in
the TwinSystem, function codes I or II. If UCHR is set to one of
these values, that character will most likely never be seen, as
it is intercepted before the test for UCHR is made.

* System DATA Areas *)

Section 3

Symbol name:

Single val ue :
-Twin val ue :

See Also:

Description:

System 88 System Programmer's Guide

DONT

2D90
2E8E

PVEC, SBRK, UVEC, UCHR, UBRK, SCHR, Dio

Page 79

DONT is the single byte interlock set and reset by Dio that
disables action by interrupt characters ~y and the contents of
UCHR and SCHR. It is set nonzero at the start 9f an I/O
operation and cleared when the operation completes. Program
interruptions may be blocked by non-I/O programs by setting DONT
nonzero. If a program doing I/O wishes to block out
interruptions, it should po int PVEC and UVEC at 10 ret, and set
SCHR to zero. Programs should not disable interrupts by using a
01 (disable " interr'upts) instruction- " for other than verys'hort
(less than .05 seconds) critical sections, as this severely
affects overall performance, especially typeahead and printer

' buffering, and is very detrimental on the TwinSystem.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 80

Symbol name: VERLOC

Single value: 0439

Description:

VERLOC is the location in ROM of the ROM version number. It
is not included in the TwinSystem, as the TwinSystem will not
boot on other than version 81 ROMS.

Symbol name: XTIMER

Twin val ue : 0C00

Description:

XTIMER is the internal name in the Twin for the clock area
in CPU board RAM. Separate copies of TIMER are kept for each
user in the Twin.

* System DATA Areas * J

System 88 System Programmer's Guide
Section 3 Page 81

Note: The following three symbols are used in the operation of
the 5" DSDD disk controller. See the hardware reference manual
for the 5" DSDD disk controller for more detail. The user is

-cautioned against modifying these cells while the system is in
operation as it may cause system failure.

Symbol name: MemAdd

Single val ue: 0C49

Description:

MemAdd is a temporary used by the DDSD 5" controller code to
hold the memory address involved in the data transfer. It should
not be modified by the user.

Single value: 0C4B

Description:

Pagesl is a temporary used by the DSDD 5" controller code to
hold the number of pages remaining in this I/O transfer. It
should not be modified by the user.

Symbol name: Command

Sing Ie val ue : ~C4C

Description:

to
the

Command is a temporary used by the DSDD 5" controller code
hold the current I/O command. It should not be modified by
user.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 82

Symbol name: BRG

Twin val ue: 0C60

See Also: BRGEN, Giveup, PHANTOM

De s c rip t ion :

BRG is used to hold the contents of the CPU board baud rate
generator latch, since this latch on the CPU is not readable.
The bits defined by PHANTOM determine if this user is named user
1 or user 2. The code in the Exec that does this for enabled mode
prompting is:

IF
LDA

. ANI
MVI
JZ
INR

Erda CALL

USERS=2
BRG

,P.HAN.TOM
A, ' I'
Erda
A
WHI

only for twin

,; . who are . w,e?
; assume user 1

; must be user 21

* System DATA Areas *)

,

System 88 System Programmer's Guide
Section 3 Page 83

Symbol name: WHICH

Twin val ue: eJC 61

Description:

WHICH was used in the Twin to point to the current user.
This cell is still used by some internal functions, but its
contents cannot and should not be depended on.

Symbol name: IOIP

Twin val ue: eJC62

Description:

- ---------- rOTP --wi:ff:f usedbytlfE~ -"TWni --to - irtar1C I/O in- progress -- for - each -- -- -
user. While it is no longer used for that purpose, it is still
used by some system functions, and as such should not be used.

Symbol name: VCBTAB

Val ue: 'eJC63

Description:

VCBTAB contains the address of the active volume control
block tables that define disks to the I/O system. This location
should not be modified by the user.

Symbol name: DRVADTAB

Val ue : eJC7E

Description:

DRVADTAB contains the address of the driver address table,
used by the Volume Manager to locate the physical device drivers.
This location should not be modified by the user.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 84

Symbol name: DioA

Val ue: 0C66

Description:

DioA is a temporary
contents of the A register.
user.

used in Dio processing to hold the
It should not be modified by the

Symbol name:

Val ue:

Desc r i ption :

DioHL is
contents of HL.

Symbol name:

Val u.e :

Desc r i ption :

DioHL

0C67

a temporary used in Dio processing to hold the
It should not be modified by the user.

DioDrv

0C69

DioDrv is a temporary · used in Dio processing to hold the
address of the disk driver to call when access to the attached
controller has been granted. It should not be modified by the
user.

Symbol name: DioDn

Val ue: 0C6B

Description:

DioDn is a temporary used in Dio processing to hold the
translated drive number for passing to the driver routine. It
should not be modified by the user.

* System DATA Areas *

,
i -"-

)

System 88 System programmer's Guide
Section 3

Symbol name: DioBsy

Val ue: eJC 6C

Description:

DioBsy is a temporary used in Dio processing to
address of the controller semaphore for this drive~
not be modified by the user.

Symbol name: BUSIES

Val ue : eJC6E

Description:

page 85

hold the
It should

BUSIES is the start -of a 16 -byte area used - for controller
semaphores by the Dio code. This area should not be modified by
the user.

Symbol name: STACK

Single value: leJeJeJ

Description:

STACK is the initial stack pointer value loaded during
system boot. It should not be used to reset the stack in the
Twin! If the stack must be reset in the TwinSystem, it should be
reset to the value present at the start of program execution!

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 86

Symbol name: SCREEN

Single value: 181313

See Also ~ SCRHM

Description:

SCREEN is the address of the video display in memory. While
this address is accurate, a better technique is to use the
contents of SCRHM as the high order byte of the video display.

Symbo 1 nam e : OVRLY

Val ue :
~-- --- --_._------. -----------_.-

See Also:

Description:

OVRLY is
Users wishing
the section
overlays.

Symbol name:

Val ue :

See Also:

Description:

OVrto, Gover, OVENT, overlay

the start of the 2K byte system overlay area.
to make use of this area should read and understand
of the System Programmer's Guide relating to

OVENT

213134

OVrto, Gover, OVRLY, overlay

OVENT is the start raddress for code in overlays. All
overlays must either have code or a JMP instruction at this
location, as that is where they are entered by the overlay
manager.

* System DATA Areas *)

System 88 System Programmer's Guide
Section 3 Page 87

Symbol name: SBUFl

Val ue: 2800

Description:

SBUFI is the address of the lK byte file directory. The
contents of this area is detailed in the separate section on the
file system.

Symbol name:
Single value:

Symbol name:
Single val ue:

---- --Symtior name:
Single value:

Description:

SBUF2
2900

SBUF3
2A00

-S8UF4
2B00

SBUF2, SBUF3, and SBUF4 are single user symbols for the
second, third, and fourth pages of the file directory area.
These symbols are not used, but the entire lK directory area is.
These symbols are excess baggage, and maybe we'll delete ~hem
from the file someday.

* System DATA Areas *

System 88 System programmer's Guide
Section 3 Page 88

Symbol name: MUNGP

Twin val ue : 2000

Description:

MUNGP is the address of a 64 byte system scratch area. It
should not be modified by user programs.

Symbol name: BOOTVOL

Twin val ue: 2092

Description:

___ . __ .. _BOOTVOL._ in the. TwinSystem. hold-s _the _drive number of the
system disk. It is used throughout the Twin in checking the
system drive, such as in the INIT code to detect attempts at
initializing the system disk. Note that BOOTVOL is in per-user
memory; each user has a separate copy of BOOTVOL as each user may
have a different disk drive as system residence.

* System DATA Areas *)

System 88 System Programmer's Guide
Section 3 Page 90

Symbol name: USP

Twin val ue : 2E00

See AI so: Giveup

Description:

USP holds the user's SP while the other user is running.
This location ESPECIALLY should not be modified by the user!

Symbol name: USRNAME

Twin val ue : 2EEE

-- -- - --_·- -·--Oe-scr,.-i -p-t-i-on-:

8

USRNAME is a 16 byte area that was originally intended to
hold the user name in the TwinSystem. Parts of this area are
used in the Twin, so this area should not be modified by.the user
program.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 89

Symbol name: MTO

Single val ue : 2DA2

Description:

MTO is the motor time-out counter for the S" SSSD disk
controller code. As Sit SSSD disks are not supported on the Twin,
this byte is unused.

Symbol name: SINT

Single val ue : 2DB3

Description:

. -- -- - --- -- -- ··---SiNT--is ·--t:hEf . ·6ii:,,;,"sec·tot · bailout -vect-6r- -usedbytheS"SSSD­
disk controller code. As Sit SSSD disks are not supported by the
Twin, this word is unused.

Symbol name:

Single val ue :
Twin yal ue :

See Also:

Description:

DEFPATH

NDRIVES

2D9F
2EA9

NDRIVES was used in earlier versions (pre Exec/78) to hold
the drive number resulting from a <?) search. It is unused, as
its function has been expanded and replaced by DEFPATH.

* System DATA Areas *

Q

Section 3

Symbol name:

Single val ue:
-Twin value:

See Also:

Description:

System 88 System programmer's Guide

WAKEUP

TIMER

0C00
2E02

Page 91

TIMER is the address of a four byte area that is decrementea­
on each real time clock tick (60Hz line clock). Note that BOTH
user's clocks are decremented in the Twin even if one user has
the processor locked through use of the Lock service, or the user
is blocked waiting for a system semaphore.

Symbol .name: UTI~E

Twin val ue : 2E02

Description:

UTIME is the same thing as TIMER. Originally there were two
separate timer cells per user in the Twin.

* System DATA Areas *

Section 3

Symbol name:

Sing 1 e val ue :
-Twin val ue:

See Also:

Description:

System 88 System Programmer's Guide

Runr

MEMTOP

2D80
2EBB

Page 92

MEMTOP contains the 16 bit address of the last good location
of memory. It is set as part of the boot process. Programs
should not assume that the low order byte of .the last good
address is FF. Also, programs that alter MEMTOP should return it
to its previous contents when the program exits. The Exec
DISPLAY command displays the contents of MEMTOP. Note that the
Runr service does not check MEMTOP when loading a program into

---- mem.ory.Thus , Runr may -.overw.ri teex isting information, or load a
program into nonexistent memory.

Symbol name:

Single value:
Twin val ue :

Desc r i ption :

EXECSP

2DAF
2EBD

EXECSP is used to hold the 16 bit value of the stack
pointer. This is used by the Exec in preventing stack overflow.

Symbol name:

Single value:
Twin val ue:

Description:

FILE

2DCB
2EBF

FILE is a 44 byte area used for holding file control blocks.
It is used by system functions, but may be used by the user
program.

* System DATA Areas * J

~-

Section 3

Symbol name:

Single val ue:
-Tw i n val ue :

Description:

System 88 System Programmer's Guide

DirAddr

2E02
2EA7

Page 93

DirAddr contains the 16 bit sector address of the directory
currently in SBUFl. It is set by Gfid, and should not be
modified by the user program.

Symbol name:

Single value:
Twin value:

Description:

SYSRES

2D92
2EAA

SYSRES is the byte containing the drive number of the system
drive. Since it 1S in per-user memory in the TwinSystem, each
user may be running off a different system drive, as long as both
users are running exactly the same version of the TwinSystem.
This location should not be modified by the user program.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Tw i n val ue :

See Also:

Description:

System 88 System Programmer's Guide

NFDIR

2DA0
2EAB

NFCK, Di r Addr, SBUF I, Gf id, Loo k

Page 94

NFDIR is the byte containing the drive number of the
directory currently in SBUFI. Both 00 and FF in NFDIR indicate
the contents of SBUFI, DirAddr, and NFCK are invalid. If the 80H
bit of NFDIR is set, then the directory in SBUFI is a
subdirectory, and its disk address is contained in DirAddr. This
byte is set and updated by Look and Gfid.

Symbol name:

Single value:
Twin val ue:

See Also:

Description: .

NFCK

2DAI
2EAC

SBUFl, Ckdr

NFCK contains the single byte checksum of the directory in
SBUFl as computed by Ckdr. This byte is expected to match the
first byte of the directory area. It is updated by Look and
Gfid.

* System DATA Areas *

"".--"-" t;:g

)

Section 3

Symbol name:
Single val ue:
Twin val ue:

Symbol name:
Sing Ie val ue :
Twin value:

Symbol name:
Single val ue:
Twin value:

Symbol name:
Sing 1 e val ue :
Twin val ue:

Desc ription:.

System 88 System Programmer's Guide

MUNGl
2DA7
2E9F

MUNG2
2DA9
2EAl

MUNG 3
2DAB
2EA3

MUNG 4
2DAD
2EA5

Page 95

MUNGl through MUNG4 are scratch locations used internally in
the system. They should not be altered by user programs.

* System DATA Areas *

Section 3

Symbol name:

Sing 1 e val ue :
-Twin val ue :

See Also:

De s c rip t ion :

System 88 System Programmer's Guide

CMND

2D40
2E3C

CMPTR, ONCE

Page 96

CMND is the 64 byte Exec command buffer. Before reading
commands, the Exec fills the buffer with carriage returns (0D).
CMPTR, the Exec's command pointer, usually points into CMND for
overlays and other system components to pick up arguments and
filenames.

Note that when the Exec is invoked, if the 40H bit in ONCE
. ___:..1-s_...::.m:Lt=-:.._s...eJ:_,...:.~_.:Ex_e.c.....:..a~:um.e:s_-±hat __ a...::.commaru:L~.s":"llr..e_ad.¥:_in....cMNI1.. _ _ .. ____ .. _

for it to process, and so does not prompt or read from the user.
This is the mechanism used to start the INITIAL (or INITIALI or
INITIAL2) file, and is also used by C02 BASIC to pass an exit
command string to the Exec. So, for a program to force the Exec
to execute a command, the command text delimited by a carriage
return should be placed in CMND, and the 40H bit (and ONLY that
bit) turned off in ONCE. When the Exec gains control, it will
interpret and perform that command. '7
Symbol name:

Single value:
Twin value:

See Al so:

Description:

CMND

CMPl'R

2DC7
2E7C

CMPTR is the 16 bit pointer set by the Exec to point after
the command name in the command line. It usually points into
CMND. CMPTR is used by system functions and programs such as
BASIC to scan for filenames and flags on the command line.

* System DATA Areas *

Section 3

Symbol name:

Single value:
-Twin value:

See Also:

De s c rip t ion :

System 88 System Programmer's Guide

TIMER

WAKEUP

0ClA
2E06

page 97

WAKEUP contains the address of the routine to call when the
four byte TIMER area is decremepted to zero. On the single user
system, this routine is JMP'd to at the interrupt level; it is
expected (hoped) to return by JMPing to Ioret. On the
TwinSystem, an interrupt environment is built onto the user's
stack, and the routine pointed to by WAKEUP will be executed the
next time that user is run. As with the single user system, when
the WAKEUP routine completes, it should JMP to Ioret.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3

Symbol name:

Single val ue:
"Twin val ue :

Description:

SCEND

0CIE
2E08

Page 98

SCEND contains the high byte of the video screen ending
address. It is ~odified by some programs to "protect" four line
chunks of the screen. It is also ignored by the Editor and the
graphics functions in BASIC, so care must be exercised in its
manipulation.

Symbol name:

.singJ,_~._ y_gl..J,te _: _________ _
Twin val ue:

Description:

seRBM

_ _~lF
2E09

SCRHM contains the high byte of the video display starting
address. It may be modified by user programs, but with caution.
While the Editor and the graphics functions in BASIC use the
contents of this cell to determine the starting address of the ~
video display, both assume that t .he video display always has lK \7
bytes available starting at this address. Catastrophic system
failure can result from incrementing this address to protect the
top four lines of the display screen and then using the PLOT and
DRAW functions in BASIC; they will alter memory used as parameter
passing and control for the DSDD 5" and MS disk controllers!

* System DATA Areas *)

Section 3

Symbol name:

Sing leva 1 ue :
Twin val ue:

See Also:

Desc r i ption :

System 88 System Programmer's Guide

Vti, WHl

POS

0C 0E
2E0A

Page 99

P~S points to the cursor on the video screen. It is updated
by the video display driver, vti, which is usually called via
WHl.

Symbol name: PATH

Sing Ie val ue : 2E 04
--------~Wiff-VdlUe-:---- ---. -- -- -~D-40

See Also: Gfid, NFDIR, SBUFl

Description:

PATH is the 64 (decimal) byte pathname holder used by Gfid
to determine the path to the current subdirectory in SBUFI if the
8elH bit is set in NFDIR. It should not be modified by user-
programs.

Symbol name:

Single val ue:
Twin val ue:

See Also:

Description:

Gfid

DEFPATH

2E27
2D8el

DEFPATH is the 43 (decimal) byte area used to hold the
default path associated with Hi". It is set by the Exec "#"
command, as well as by <?< searches in the Exec and Gfid. The
default path specification in DEFPATH is terminated by an 80H
byte. An opening bracket, either "<" or ">" is deleted in the
processing of the default path specifier.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 100

Symbol name: OVMEM

Single value: 2E53 .

Desc r i ption :

OVMEM marks the start of the overlay scratch area in the
single user system. From this point to 2F00H may be used by
overlays, but is not protected by other overlays. User written
overlays may make use of this area but cannot expect it to go
unmodified if system overlays are invoked; this includes the
Exec.

Symbol name: LOCK

Twin value: 2E8F

See Also: Vti, Lock, lock, Unlock, unlock

Desc r iption:

LOCK is a single byte flag used to inhibit time slicing in
the TwinSystem. Normally, the TwinSystem switches between users
60 times a second as the result of real time clock interrupts. e
If the contents of LOCK are nonzero, this switching is inhibited. .

" While switching between users is inhibited, keyboard characters
are still accepted from the other user's keyboard and placed in
the typeahead buffer. LOCK is set by Vti, the screen driver, and
by the Editor to prevent switching while screen updating and
screen scrolling is in progress. If used, it should 'be set and
reset using the lock and unlock macros, or by calling the Lock
and Unlock system services. It should be used only for short
periods of time, as its effect on the system can be quite
noticeable.

* System DATA Areas *)

(

Section 3

Symbol name:

Sing Ie val ue :
-Twin value:

Description:

System 88 System Programmer's Guide

NFA

2E00
2EAD

Page 101

NFA in the single user system contains a disk address used
by Gfid, usually in the creation of subdirectories. It should
not be modified by the user. In the TwinSystem, this is in Gfid
local storage and is not globally defined.

Symbol name:

Single value:
Twin value:

See Also:

Description:

ONCE

2DCS
2EAF

CMND, Boot process description

ONCE is the flag byte used to sequence the system boot
process. The 40H bit in ONCE tells the Exec if it is to read a
command into CMND or parse the string already there! See CMND
for information on this interaction. The remaining bits of ONCE
should not be modified by the user.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Twin value:

See Also:

Description:

System 88 System Programmer's Guide

EFLGl

2DC9
2EB0

EIC, EERR, DBARF, SBRK

Page 102

EFLGl is a flag byte kept by the Exec. The 80H bit is EIC,
Exec in control. This is set while the Exec is running, and
disables Ay. See descriptions of Erc and SBRK for more
information. The 20H bit is DBARF, which inhibits the call to
Killi in Emsg when errors are reported; see DBARF for more
information. The 40H bit is EERR which tells the Exec it has an
error code in ERROR to process; see EERR, ERROR, and Err for more

. __ -",i-,-,n f9...:..r:nHl~i~UL. __ Th~ _ _ r: em a i r.U.J19 . __ b.Lt.~ __ j~L_a r e . .JJ.s eQ. __ fQ(_. ite.[a..11l:. t _._ .. __ _
device number and other tags used in command processing.

Symbol ~ame:

Single value:
Twin val ue :

Descrfption:

EFLG2

2DCA
2EBI

EFLG2 is a byte of flags used by the Exec in scanning and
processing the user command line. The 10H bit, if set, notes
that there is something loaded into memory. This is the bit that
the Exec uses in disabled mode to determine what to do with the
REENTER command. If the l0H bit is set in EFLG2, REENTER is
allowed in disabled mode. If the 10H bit is not set, the Exec
doesn't think there is anything in user memory to run, and it
doesn't allow the REENTER command. If a user program does not
wish to honor the REENTER command in disabled mode, it may clear
the 10H bit in 'EFLG2, although placing a RET instruction at
USER+3 would be more effective.

* System DATA Areas *)

Section 3

Symbol name:

Sing le val ue :
-Twin value:

Symbol name:

Sing Ie val ue :
Twin val ue :

Description:

System aa System Programmer's Guide

JOBST

2D9E
2EB2

LUSER

2DC6
2EB3

Page 103

JOBSTS and LUSER are each single byte flags used internally
in the Exec in command processing. While the Exec is not
running, they may be used by the program. Programs should not
expect them to be undisturbed when the Exec runs, however.

Symbol name:

~ingle value:
Twin val ue:

Description:

BUGS

2DFC
2EB4

BUGS is a three byte area used to count up soft 102, 103,
and 104 errors from the 5" SSSD disk controller. These counts
each have a maximum value of FF; that is, they will not be
incremented from FF to 00. In systems prior to Exec/90, these
counters were displayed by the DISPLAY and SQUEAL commands. Due
to lack of room in the Exec, the SQUEAL command and the display
of these cells is no longer supported. Additionally, these cells
are not clocked by errors on a" drives or 5" DSDD drives.

* System DATA Areas *

Section 3

Symbol name:

Single val ue:
-Tw i n val ue :

See Al so:

Description:

System 88 System Programmer's Guide

ERROR

2D9A
2EB7

EERR, LERR, Err

Page 104

ERROR is the 16 bit error code last reported to the system.
ERROR is updated either by the Emsg overlay ,called with the
error code in DE, or by a JMP Err with the error code in DE.

Symbol name: LERR

- -----Si-ng-1-e- v-al-Ue:-------- -- --- -.2D-9C - ---- ----- ---.----.---- -.-- --------------------.-------- -----
Twin value: 2EB9

See Also: EERR, ERROR, Err

Description:

LERR is a 16 bit error code. Depending on how the last
error was reported, it may contain the same code as ERROR, o~ it
may contain the code of the error reported previous to the one in
ERROR. It is updated by Err in the root and by Emsg.

* System DATA Areas *

Section 3

Symbol name:

Sing le val ue:
"Twin val ue :

Description:

System 88 System Programmer's Guide

SRA7

eJC lC
2EEC

Page 105

SRA7 contains the address of the service routine for RST 7
and single step interrupts. In the TwinSystem, it is in per user
memory so that each user may have separate control over this
interrupt for such uses as debugging. This interrupt is
generated either by triggering the single step logic, or by
executing a RST 7 instruction (FFH). This FF pattern will occur
when an instruction is fetched from nonexistent memory.

* System DATA Areas *

System 88 System Programmer's Guide
Section 3 Page 106

SYSTEM SERVICE VECTORS AND ROUTINES

The following section details the resident services provided
by the single and Twin systems. Some services are only provided
in one version of the system; some are provided in both. Some
services are supplied in both systems but with different
spellings (DEOUT and Deout).

REGISTERS - For each service, entry and exit registers are
described where applicable, as is the state of the interrupt
system on return. If __ registers are ·not ~ecified in the
description, it is safe to assume that they are neither used nor
modified. If a register on exit is described as containing
"junk", its contents should not be depended on- even if they seem
useful; as there is NO promise made that the next version of the
system will return the same junk!

INTERRUPTS - For each service, the state of the interrupt system
when the service completes is given. If nothing is stated about
interrupts in the description, interrupts are not modified during
execution of the service. Depending on the path taken in the
service, interrupts mayor may not be altered. For example in
WH~, if the character returned is from the keyboard, interrupts
will always be enabled on return. If the character was taken
from the command file buffer and no read was required, the
interrupts are unchanged from their state on entry to WH0. As
part of good design and programming practice, interrupts should
be disabled only when absolutely necessary, and for the minimal
number of instructions required to complete a critical section.
The usual reason for disabling interrupts is to protect data
areas that may be. altered by code executing at the interrupt
level, or to block out interrupts themselves.

As with any system functions, care should be exercised in
debugging and experimenting with assembly language programs,
especially in the TwinSystem. Causing a system failure while the
other user is in the process of packing a disk may be hazardous
to yo ur heal th!

* System Service Vectors *)

System 88 System Programmer's Guide
Section 3 Page 1137

SYMBOL PAGE Single Twin

Byte 151 E05A
Ckdr 119 0433 E02D
Cold 115 E000
DEOUT 151 03D1
Deout 151 03Dl E045

Dev10ck 157 E06F
Dha1 t 121 r2J409
Dio 122 0406 2E30
Enter 155 E04E
Err 130 0413F E00C

Fdfp 163 E075
Flip 118 042D E02A
X1ipem 143 E039
Frush 117 0-4i:-E---E-0-1-B
Fold 118 1342A E1327

Gdfp 163 E 1372
Gfid 148 E 134 2
Giveup 143 E133C
gLook 121 E 137B ., Gover 131 0415 E 1312

Iexec 140 0436 E 1330
Ioret 160 0064 E 1366
Kil1i 117 041B E018
Leave 156 E 1351
Lock 153 E 1348

Look 134 0421 E0IE
Mfos 120 E 1363
Move 161 E06C
Moven 161 E1369
Msg 116 134r2JC E 1306

Mtos 120 E060
Ovrto 131 0412 E00F
Pmsg 116 E009
Print 142 E036
Rlgc 121 04313

(\ * System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 1138

~
SYMBOL PAGE Single Twin

R1we 139 0427 E024
Rtn 133 0418 E015
Runr 137 0424 E021
Show 141 Ef333
SUWH0 128 0C20

SUWH1 128 f3C 24
SUWH2 129 f3C 28
SUWH3 129 f3C2C
SUWH4 129 0C30
SUWH5 129 f3C 34

SUWH6 129 f3C38
SUWH7 129 f3C3C

-SUWH9 129 f3C44 ------------ _._---
Ticker 145 Ef33F
Unlock 154 Ef34B

Vmgr 162 Ef3S4
Vti III Ef3S7
Warm 115 134133 E 1313 3
WHf3 1139 f3C 213 2E0C
WH1 III f3C 24 2E10

~
WH2 113 f3C 28 2E14
WH3 113 f3C2C 2E18
WH4 113 f3C 30 2E1C
WHS 114 0C34 2E2f3
WH6 114 f3C38 2E24

WH7 114 f3C3C 2E28
WH9 122 0C44 2E 313

* System Service Vectors *

Section 3

Symbol name:

Single value:
-Twin val ue :

Entry:

Exit:
A:
INT:

See Also:

Description:

System 88 System Programmer's Guide

WH"

0C20
2Er2JC

WHr2J takes no inputs

Character from keyboard or command file
not modified/enabled

KBEX, Flip, Fold, KBUF, KBIP, KBIG,
CBUF, CMDF, CMDD, CMDN, CMDP, CMDA,
Killi, Flush, DBARF

Page 109

--------Wlfr2J~-S-~c_a~-r_ea____to-~r-ec-crr-h-~a--cn_a-ra-c1:-~r-fro-m-tITe--us-eT-.-"Ttre'----­

character is returned either from the keyboard ring buffer (see
KBUF, KBIP, KBIG) or from the command file buffer (see CBUF,
CMDF). A request to read a character past the end of a currently
active command file causes the system to switch automatically
back to the keyboard for input. The character returned in A is
not echoed to the screen; this must be done by the program. WH0
is initialized by the boot process to point to Cin (label not
defined in the single user system).

If command files are not active, and a character is not
present in the keyboard buffer, the system waits until a
character is available. In the single user system, the processor
enables interrupts, halts to wait for an interrupt, and then
checks again for a character. In the TwinSystem, Giveup is
called to give up the processor (see description of KBIP for this
code) •

If the character returned is from the keyboard buffer, or a
disk read was required to bring in command file data, the
interrupts are returned enabled. If the character is returned
from the command file buffer (CBUF) and a read is not required,
the interrupt system is unaltered. Any errors in attempting to
read from the command file cause control to be transferred to
Err, essentially aborting the program; restart may be difficult.

The character removed from either the command file buffer or
the keyboard buffer is passed through the routine connected to
KBEXi this is commonly a null routine, but may also be either
Flip or Fold, or a user specified routine.

As the result of invoking Killi or Flush, the contents of

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide
Section 3 Page 110

the keyboard typeahead buffer may be flushed. Killi also aborts
command files if in progress . -.

* System Service Vectors * Wormholes *)

Section 3

Symbol name:

Single value:
-Twin val ue:

Symbol name:
Twin val ue:

Entry:
A:

Exit:

See Al so:

Description:

System 88 System Programmer's Guide

WHI

0C24
2E10

Vti
E057

character to be displayed on screen

All registers and interrupts unchanged.

SCRHM, SCEND, POS, vti, Lock, Unlock

Page 111

WHI is cal~ed tC>Olsplay a character on the ~eo screen.
It is initialized by the system boot process to point to the
video display driver (Vti in the TwinSystem, no separate label
for the single user system). Certain character values have
special effects when displayed. They are:

Code Name - Action

HT - Tab cursor
VT - Move cursor to top of screen

09H
0BH
0CH
0DH
laH
7FH

FF - Clear screen and move cursor to top
CR - Move cursor to start of next line
CAN - Erase remainder of line
DEL - Move cursor left one position

Values less than 20H not appearing in the above list are
ignored. Note that displaying a character may cause the screen
to scroll up a line, destroying the information in the top line
of the screen.

The display driver finds the starting and
address of the screen by examining SCRHM and SCEND.
the display driver, POS contains the address of the
the video display.

end ing page
On exit from

cursor within

In the TwinSystem, and in ROMs version 81 and later, the
screen driver does not alter the state of the interrupt system.
Earlier versions of the ROMs always enabled interrupts.

In the TwinSystem, erasing lines, clearing the screen, or
scrolling the screen is done with the task protected against

* System Service Vectors * Wormholes *

System 88 System Programmer's Guide
Section 3 page 112

slicing by first calling the Lock service. This prevents the
screen from being left partially updated. The Unlock service is
called as part of exiting the screen driver (Vti) and WHI, even
if Lock was not called; this means that a program wishing to
remain locked against slicing may not use any service that may

-call WHI.

* System Service Vectors * Wormholes *)

~.

Section 3

Symbol name:

Single val ue :
-Twin value:

Description:

System 88 System Programmer's Guide

WH2

,",C28
2E14

Page 113

WH2 has no specific meaning in the system. In the
TwinSystem, it is initialized to STC/RET. It is not initialized
on single user systems.

Symbol name:

Single val ue:
Twin val ue :

Descriptlon:

WH3

,",C2C
2E18

WH3 has no specific meaning in the system. In the
TwinSystem, it is initialized to STC/RET. It is not initialized
on single user systems.

Symbol name: WH4

Sing leva 1 ue :
Twin val ue:

Description:

WH4 has no specific meaning in the system. In the
TwinSystem, it is initialized to STC/RET. It is not initialized
on single user systems.

* System Service Vectors * Wormholes *

Section 3

Symbol name:
Single val ue:
Twin val ue :

Symbol name:
Sing Ie val ue :
Twin val ue:

Symbol name:
Single val ue:
Twin val ue :

Desc r i ption :

System 88 System Programmer's Guide

WHS
0C34
2E20

WH6
0C38
2E24

WH7 '
0C3C
2E28

Page 114

WH5, WH6, and WH7 are used with the printer and printer
driver. See the section on the printer driver for details. In

_ _ _ _ ~~.t.h~..sjng~~---.-and----'1'wi~~...s-y...sL~ms-l-iL..t.he---Ern-t.--o-'l~la¥-is- -llO_t _ ___ _
present, these wormholes are initialized with a STC/RET pair.

* System Service Vectors * Wormholes * J

System 88 System Programmer's Guide
Section 3 Page 115

Symbol name: Cold

Twin val ue: E000

Description:

Cold is the cold start location in the TwinSystem. Once the
Twin has completed its boot process, it is turned into a JMP
0000, which if executed, will cold start the system. It should
not be called, since it is the equivalent of pushing the Load
button!

Symbol name:

Single val ue :
Twin val ue:

Warm

134133
E003

------- ------_._--

Entry: No inputs

Exit: Does not return

Description:

Warm is called to warm start a user. The stack pointer is
reinitialized and the Exec reloaded by calling Gover. Here is
the coding for Warm from the TwinSystem resident:

Warm LXI
CALL
DB
JMP

SP,0E1300H i reset stack
Gover
'Exec' i Go run the Exec
Warm i do that again.

* System Service Vectors *

Section 3

Symbol name:

Sing le val ue :
Twin val ue :

-Entry:

System 88 System programmer's Guide

Msg

040C
E006

Page 116

HL: Address of text string delimited by 00 byte

Exit:
HL: Points to 013 byte
A: 130

Description:

Msg displays the message pointed to by HL on the screen by
calling WHI with each character and incrementing HL until a 130
byte is encountered. Here is the coding for Msg:

____ . _ ___ M!;tg------~-O'l---,A__$-~ _ _ __i-g:..e.t~ r--

Symbol name:
Twin val ue:

Entry:
HL:

Exit:

ORA A ; done yet?
RZ ; return if 50

CALL WHl ; display
INX H
JMP Msg ; do another one.

Pmsg
E0e9

Address of text s~ring delimited by 00 byte

HL: Points to 013 byte
A: 130

Description:

Pmsg prints the message pointed to by HL on the printer by
calling WH7 with each character and incrementing HL until a 00
byte is encountered. Here is the coding for Pmsg:

Pmsg MOV A,M ; get chr
ORA A ; done yet?
RZ ; return if 50
CALL WH7 ; display
INX H
JMP Pmsg ; do another one.

* System Service vectors *

Section 3

Symbol name:

Single val ue:
Twin val ue :

-Entry:

Exit:
A:
PSW:
INT:

See Also:

Symbol name:

System 88 System programmer's Guide

Killi

04lB
E0l8

No inputs

Junk
Junk
Disabled

CMDF, DBARF, Err, SBRK, UBRK
Devlock, CMDD, cmdf (TwinSystem only)

Flush

Single value: 041E
---------Twi~-va~~:~------------~E~re_

Entry:

Exit:
INT:

See Also:

Description:

No inputs

Disabled

Interrupt Character Processing
KBIG, KBlP, KBUF

Page 117

Killi is called to kill typeahead and abort command files if
in progress. Flush is called to just kill typeahead; it is used
by Killi after command files have been taken care of. When Killi
is called, it checks CMDF to see if command files are in
progress.If the contents of CMDF are nonzero, the text "(Cmdf
Abort)" is displayed on the screen by calling Msg, and CMDF is
set to 00. On the TwinSystem, permanent command file read access
to the command file device specified by CMDD is released.

If CMDF contained zero, or if Flush was called, typeahead is
cancelled by initializing KBlP and KBIG to KBUF+63 (decimal).
This processing is done with the interrupts DISABLED, and both
Killi and Flush return with interrupts DISABLED.

Flush is. also called as part of the system i.nitialization
sequence in both single and Twin systems to initialize KBlP and
KBIG pointers.

* System Service Vectors *

Section 3

Symbol name:

Single val ue :
Twin val ue :

-Entry:

System 88 System Programmer's Guide

Fold

042A
E027

A: Ascii character

Exit:
A:
PSW:

Symbol name:

Single value:
Twin val ue:

Entry:

Exit:
A:

See Also:

Description:

Upper case Ascii character
See code for Flip and Fold

Flip

0420
E02A

Flipped alphabetic character

KBEX

Page 118

Fold and Flip are post processing routines hooked up to
KBEX, usually as the result of the Exec Fold and Flip commands.
Fold causes all lower case alphabetic characters (a-z) to be
folded to upper case (A-Z). Flip causes the case of alphabetic
characters only to be inverted, for example a lower case "a"
becomes "A", and "A" becomes "a". Here is the coding for Flip
and Fold:

Flip CPI 'A'
RC i split if not interesting
CPI 'Z'+l
JM Fli 1 ; jmp/flop upper to lower

Fold CPI ' a'
RC ; split if not a-z, A-Z
CPI 'z' +1
RNC ; split- not interesting

; Flip upper and lower case
FI i I XRI 20H ; do the dirty work.

RET ; and split.

* System Service Vectors *

. ~

)

Section 3

Symbol name:

Single value:
-Tw i n val ue :

Entry:

Exit:
A:

See A1 so:

Description:

System 88 System programmer's Guide

Ckdr

0433
E02D

No inputs

Single byte checksum of directory area

SBUF1, NFCK, Look, Gfid

Page 119

Ckdr is called to compute the checksum of the directory
currently in SBUF1. This checksum is used to validate the disk
<Hre<::tory • . Ji~x_e _ is the codJng _ for Ckdr:

Ckdr

Ckdr1

PUSH
PUSH
LXI
XRA
ADD
INX
MOV
MOV
CPI
MOV
JNZ
POP
POP
RET

H
o
H, SBUF1+1
A
M
H
D,A
A,H
CB UF/256
A,D
Ckdr1
o
H

; save DE and HL
start here
wi th 00

; <-- watch this one!

* System Service Vectors *

System 88 System Programmer's Guide
Section 3

Symbol name: Mtos

Twin val ue: E060

Entry:
HL: Destination addr in other user

Exit:

DE: Source addr in this user
Be: # bytes to move (positive)

HL:
DE:
Be:
A:
INT:

Dest addr + count + 1
Source addr + count + 1
0000
00
Disabled

Page 120

-------_._-----------------_._--_._---_._-------
Symbol name:

Twin val ue:

Entry:
HL:
DE:
Be:

Exit:
HL:
DE:
Be:
A:
INT:

Description:

Mfos

E063

Destination address in this user
Source address in other user
bytes to move (positive)

Dest addr + count + 1
Source addr + count + 1
0000
00
Disabled

Mtos and Mfos are move to other space and move from other
space. In the TwinSystem, they are used in moving blocks of
memory from one user space to the other. Interrupts are disabled
for the duration of the transfer between users, and interrupts
are returned disabled. Extreme care should be used with these
serv ices.

* System Service Vectors * .J

System 88 System Programmer's Guide
Section 3 Page 121

Symbol name: Dhalt

Single val ue: 0409

Description:

Dhalt was provided in old 5" SSSD systems for shutting down
the 5" disk drives. It is no longer supported and should not be
called.

Symbol name:

Single value:

Description:

Rlgc

0430

- - - - . . . " . .. -

--- --<Rl-gc-i-s--arr---rnt-erna-l--entry-i-nt-o-----Rrwe-- d-e-f-i--ne-d--i-n- --s--i--n(Jl--e-------us--e-r'---------
systems. It should not be used by user programs, and is not used
by the system. The definition is not present in the TwinSystem.

Symbol name:

Twin val ue:

Description:

gLook

E078

gLook is an internal entry to the Look process used by
TwinSystem initialization. It should not be called by the user,
as it bypasses file system interlocks.

* System Service Vectors *

Section 3

Symbol name:

Single value:
-Twin value:

Symbol name:

Sing I e val ue :
Twin val ue :

Entry:

System 88 System programmer's Guide

WH9

0C44
2E30

Dio

0406
2E30

HL: Disk address
DE: Memory address
BC: B: Command: 0=write, l=read, 5=disk size

C: Unit number: I-F

Page 122

A: Number of sectors, 1 (= # (= 255 (decimal)
____ __ ________:ESW-:-______ un-USe.d-___ ________________________ --- ------- --- -----

Exit:
HL:
DE:

BC:
A:
PSW:

INT:

Disk size if B=5 on entry, else junk
If carry bit set in PSW, error code
If carry bi t not set, junk
junk
junk
Carry bit set if error, clear otherwise
All other flags unknown
Enabled/unchanged

See Also: DONT, Devlock, MEMTOP, Giveup

Error conditions:

The error codes reported by Dio are reported in DE, with Carry
set in PSW:

0101 Bad parameters passed to Dio: A=0; invalid command in
B; invalid drive in C; disk address in HL, or disk
address in HL plus number of sectors to be transferred
is greater than the number of sectors on the diSk.

0102 The sector preamble is bad. This indicates a
non-initialized disk or a serious error with the
hardware or with the contents of the disk.

0103 Incorrect sector checksum on data read from the disk.

0104 A verify operation finds that the contents of memory
and the contents of the specified sector (or sectors)
do not match.

* System Service Vectors * Dio - Disk I/O *)

System 88 System Programmer's Guide
Section 3 Page 123

0105 An attempt was made to write on a write-protected disk.
No data will be transferred to the disk.

0106 This error occurs when the system does not receive
sector interrupts from the selected drive. Several
conditions may cause this: no drive on the system with
the specified drive number (e.g., you tried to access
drive 9 on a one drive system); there is no disk in the
drive specified; the door on the drive specified is
open; the disk is inserted wrong.

0107 No controller present for that drive. An attempt was
made to access a DSDD 5" drive with no DSDD controller
in the system, or an MS drive with no MS controller in
the system. Note that it takes approximately 3 seconds
to detect this error, during which the system cannot be
interrupted.

0108 T.ransfer errOL. An err.or occJ.~rLe_q in the transfer of
---- d-ata----rrolt\----the-D5-oo--S-ll-cuntroi--l~T~o-ard--an-d-1tI-a-i--n~m-oT~·----

This may be caused by bad main memory or a problem with
the 5" DSDD controller.

0109 No such drive. The drive requested does not exist on
either the 5" DSDD or MS controllers.

0108 Seek error. This error is reported by the DSDD 5"
controller in attempting to position to the requested
track on the disk. It indicates an improperly
initialized disk or a problem with the DSDD controller.

018X (0180 018F) " These error c6des indicate that the
controller in question has failed. Detailed
information on these error codes is contained in the MS
and DSDD controller Theory of Operations manuals.

01C2 That device is busy. (TwinSystem only) The type of
access requested was denied by the device interlock
mechanism (see Devlock) because of the operation being
done by the other user in the system.

Description:

Dio is the central system service routine for transferring
data to and from disk, and verifying those transfers. Call Dio
with the register contents outlined above. Think of the disk as
a set of sectors; Dio worries about tracks and track position.
Each sector contains 256 (decimal) bytes. Each write operation
is automatically verified by comparing the data written on the
disk with the contents of memory.

* System Service vectors * Dio - Disk I/O *

System 88 System Programmer's Guide
Section 3 ~age 124

Oio does not check MEMTOP to see that the transfer requested
is to valid memory; these checks must be made by the user
program. This is especially important in the TwinSystem; user
programs must be careful not to modify memory above OFFFH.

NOTE: The Hard Disk volume manager, if
present filters all calls to Oio (See section
10, Volume Manager) •

* System Service Vectors * Oio - Disk I/O *)

System 88 System Programmer's Guide
Section 3 Page 125

Single User Dio

In the single user system, Oio is called through the normal
ROM vector (406H). CPU board ROMs version 81 and later vector
this through WH9 to support user written disk device drivers.

-While I/O is in progress, OONT is set nonzero to inhibit the
action of interrupt characters (see DONT for details) • DONT is
cleared on I/O completion • Note that earlier version ROMs may
not correctly support the disk size function (8=5); earlier ROMs
may return wi th an error code of HH (inval id code), or return an
incorrect result. The following code is used by the system to
return dlsk size when the ROM version is not known:

LXI
MVI
MVI
LXI
PUSH

H,lFEEH
8,5
A,l
0,0
B

bad disk address
disk size function

; read 1 from drive in C
i memory address 00

__ .C.b.LJ.__ __ ~~.g __ . _. __ _ l _~_~~ _ wh.E_!: __ !~_ ~.~Y~.__ _ ___ . .
Po-P B p-r-e-se-r-v-e---B€----ov-er-eCl-l-l,--------------
JNC Gotsize ; got size in HLI
MOV A,C
CPI 4 i small or big drive~?
LXI H,350
JC Gotsize ;

small ones are 350 sectors
if < 4, small ones.

For MS drives, we must force the head to load to set the
single/double side flag correctly •.

LXI H,lFEEH illegal address
MVI B,l
MOV A,B read 1 sector (or try toll
CALL Dio
LXI H,2464 i single size flag
LOA lFEEH i single/double flag
ORA A
JNZ Gotsize . jmp/single size ,
DAD H i double is twice as much.

Gotsize

Of course, the above code does not properly handle double
side single density 5" drives (not supported by polyMorphic
Systems). The easiest way around having to use code like this is
to upgrade the machine to CPU ROMs version 81 or later!

* System Service vectors * Dio - Disk I/O *

System 88 System Programmer's Guide
Section 3

TwinSystem Dio

Disk I/O in
single user system.

Page 126

the TwinSystem is more complex than in the
Disk I/O follows these basic steps:

1. If the contents of A (it of sectors to transfer) is less
than or equal to CHUNK, go to step 4.

2. Save registers on stack; set A to CHUNK size for device
to do CHUNK number of sectors. Call step 4; if it
returns with C set, unwind stack and return the error
code in DE.

3. Restore registers from stack. Subtract CHUNK from A,
add CHUNK * 256 to DE, go to step 1.

4. Check for device number in C between I and F inclusive,
and command in B between 1 and F inclusive. Return

--------------eer-i-e~~~ 1 i fek-h-e-r--e-heek---fa-H.-s"'.------------

5. Call Devlock to get permission to access the device
specified in C. If the operation requested is a read,
get temporary read access. If the operation is a
write, get temporary write access. If the operation is
a write to sector 0000, get mung access. If Devlock
returns with an error, return that error code. Note ~.' .. " ..
that if WAIT mode is enabled (see BHA and Devlock for ~ ... ~
details), the program m~y wait at this step until the
device is available.

6. wait for the device semaphore to indicate the device is
available.

7. With interrupts disabled, set DO NT nonzero and set the
device semaphore to indicate the device is busy.

8. Enable interrupts and call the device driver (note that
DONT has been se~ nonzero).

9. With interrupts disabled, clear DONT and the device
semaphore; return enabling interrupts through Giveup,
giving up the processor, and returning any error code
returned by the device driver.

This process shows a number of key features of disk I/O on
the TwinSystem. Steps I through 3 break up large (> optimum for
device) I/O requests into CHUNK sector pieces. Large requests
are done CHUNK sectors at a time; when each CHUNK is completed,
the device controller is released and the other user allowed to
run. Breaking up large transfers in this manner allows one user

* System Service Vectors * Dio - Disk I/O * J

System 88 System Programmer's Guide
Section 3 Page 127

to do large operations (such as IMAGE and COpy of large files)
while allowing the other user to access that device, or other
devices on the same controller. If large - operations were not
broken up, all devices on the controller would be locked out
until the operation completed, which could take a while (such as

-a 48K byte write to an MS). Eight sectors is optimum on the 8"
controller, 20 (a full track) on the 5", and 127 for the hard
disk.

The call to Devlock in step 5 provides a built in level of
security for device accesses. Note that a write request to a
write locked device returns a 0lC2, device busy, if WAIT mode is
not enabled, and if WAIT mode is enabled, it waits until the
write can be done.

The semaphore referred to in step 6 is specified on a per
controller basis. This means that on TwinSystems with both 8"
and 5" intelligent controllers, I/O operations can be in progress

__ for both I,ls}:!rs q!L_(UJJ~X_~Itt ___ clriv _~ _~ypes~t the~.aIne time. This
---- -......provto-e 5 a sub-stanti.--ai.-p-erf-orrnanc-e---tm-pr-ov-em-en-t--wh-e-n---t-h-e~-Ys-t---efllr-'li~s;-----­

on a 5" DSDD drive and main file storage is on 8" MS disks.

When the transfer completes, Dio returns through Giveup to
allow the other user to execute. This balances out performance,
and since the device semaphore was released, insures the other
can use the controller or device if it is waiting for it.

* System Service Vectors * Dio - Disk I/O *

Section 3

Symbol name:
Twin val ue :

-Symbol name:
Twin val ue:

See Al so:

Description:

System 88 System Programmer's Guide

WH0, WH1

SUWHI
0C2eJ

SUWHI
0C24

Page 128

On the TwinSystem, single user wormholes 0 and 1 are
connected to their Twin counterparts; this is done primarily so
that the Msg service may be used from the CPU ROMs. Programmers
should always use the symbols WH0 and WHI.

* System Service Vectors *)

System 88 System Programmer's Guide
Section 3 Page 129

symbol name: SUWH2
Twin val ue : 0C28

-Symbol name: SUWH3
Twin val ue : 0C2C

Symbol name: SUWH4
Twin val ue : 0C30

Symbol name: SUWHS
Twin val ue : 0C34

Symbol name: SUWH6
Twin val ue: 0C38

Symbol name: SUWH7
. __ Tw i .n .v al_ue_:. .- aC3.c.

Symbol name: SUWB9
Twin val ue : 0C44

Description:

On the TwinSystem, single user wormholes 2, 3, 4, 5, 6, 7,
and 9 are pointed to the single user abort routine. This is done'
to trap out attempts to run programs assembled for single user
systems on the Twin. Since many system addresses have changed
between the single and Twin systems, these programs will not
execute properly, and may destroy the system. If one of these
single user wormholes are called, the me?sage

Single user trap- Reboot1

is displayed on the offending user's screen, and that user is
stopped. The other user in the Twin may be unaffected, but the
system should be rebooted as soon as it is possible, or
convenient, as system memory and pointers may have been damaged
before the errant program was trapped.

* System Service Vectors *

Section 3

Symbol name:

Single val ue:
Twin val ue :

-Entry:

System 88 System Programmer's Guide

Err

040F
E00C

DE: Error code to process

Exit:
Through Warm

See Al so: EERR, EFLGI, Killi, Warm, ERROR, LERR

Description:

Page 130

Err is called with an error code/subcode pair in DE. The
typeahead buffer is flushed, and command file mode is aborted if
active. (This is done by calling Killi.)

If the flag bit EERR in EFLGI is set, we have an error
condition arising from an attempt to report a previously reported
error: we are in serious trouble, because that flag should have
been cleared (by the Exec). The code/subcode in ERROR is
displayed on the screen in the form:

(Error xxyy)

- where xx is the code in D and yy is the subcode in E. After
displaying the error code, the system HALTS. The Emsg overlay is
responsible for clearing the EERR bit in EFLGI. User written
Emsg handlers must remember to clear this bit, or a system panic
halt will result.

If EERR in EFLG1 is not set, Err sets it, so that when Exec
begins execution it knows that it has an error to process. Err
then stores the code/subcode in the system cell ERROR. We then
jump to Warm to warmstart the system. The Exec, after doing its
cleanup, will see the EERR flag set in EFLGI and invoke the
system error message handler, Emsg, to process the error code.
If a message is present in the error writer, the message will be
displayed; if no message is present, the text

?No message found for error xxyy

will be displayed, where xx and yy are the error code and the
error subcode contained in DE.

* System Service Vectors *

(

Section 3

Symbol name:

Single val ue:
Twin val ue:

Entry:

Ex it:

Symbol name:

Single val ue:
Twin value:

Entry:

EXlt:

See Al so:

Description:

System 88 System Programmer's Guide

Ovrto

0412
E00F

All registers passed to target overlay

All registers returned from overlay

Gover

0415
E0l2

All registers passed to target overlay

Page 131

Runr, Dio, Look, EFLG1, SYSRES, OVRLY, OVENT

Ovrto and Gover provide the mechanisms for invoking system
functions'by name and for extending the available system services
in a powerful manner. These facilities are the cornerstones on
which the System 88 disk operating system is built.

Use Ovrto or Gover to invoke a function that is in an
overlay. (See below for the differences between Ovrto and
Gover.) The overlay desired mayor may not be in memory before
you invoke it. Both the entering and exiting register contents
are defined by the overlay invoked. Common system conventions
for overlays that process more than one function suggest that the
function code be passed in A. The invocation of an overlay takes
the form of the example below (assuming that the registers have
already been set up to hold the proper contents):

CALL
DB

Ovrto
'Dfn I'

Overlay names are defined to be four bytes long, and the
overlay name must follow the call to Gover or Ovrto. If the
overlay named is not currently in memory, it is read into memory
from the SYSRES device by calling Runr. We enter at the overlay
start address, OVENT. We will return from the function to the
byte following the text of the overlay name in the Ovrto or Gover
call.

* System Service Vectors * Overlay Processing *

System 88 System Programmer's Guide
Section 3 page 132

As part of the overlay load procedure, EIe in EFLGl is ~
cleared. There is an important difference in this between single ~
and Twin systems that results in a timing window with respect ' to
"'Y. In the single user system, EIe in EFLGl is cleared before
calling Look to find the destination overlay. This leaves a

-"window" where''''y is not disabled by EIe from the time Look is
called until interrupts are disabled prior to entering the
overlay. In the TwinSystem, this overlay does not exist; EIe, if
set in EFLGl is not cleared until after the target overlay is
loaded and interrupts are disabled.

In looking for an overlay, the system calls Runr to find a
file on the SYSRES disk with the name specified after the call to
Ovrto or Gover and the extension OV. If the file is not found or
is not runnable, Err is called to process the error. If the file
is found, Runr reads it into memory at the load address specified
in the file; we do NOT check to see that this is OVRLYl The
overlay, when loaded, is entered at OVENT. The overlay name in

__ ._. ·-··-~:aU:ons-:.])llRL~hU>::ugh OVNEm'±3-·-i-s......-:.used by the ' system to
.. remember" what overlay is in memory for the OVrto serv ice.

Differences between OVrto and Gover:

Both Ovrto and Gover invoke a function in an overlay, which
may not be in memory at the time, and both return control to the
program just afte.r the overlay name following the call to OVrto
or Gover. The only difference between OVrto and Gover is that ~ ... '.
Ovrto "remembers" the o~erlay currently in the overl~y area and ~ _~
restores that overlay before returning to the caller, while Gover
does not. Both OVrto and Gover are "l:mper subroutine" calls;
they can call subroutines that do not have to be in memory at the
time. OVrto can be used from WITHIN one overlay to call a
function in another overlay, since the original overlay is
restored after the called overlay completes its processing.
Gover does not "remember" or restore the overlay currently in the
overlay area, and so it can only be used from programs outside
the overlay area.

Error conditions:

If an error occurs in invoking an overlay, the error code/
subcode is passed to Err, which reports the error and warmstarts
the system. Any errors reported within the overlay are handled
by that overlay.

* System Service Vectors * Overlay Processing * ,)

System 88 System programmer's Guide
Section 3

Symbol name:

Sing 1 e val ue :
'Twin val ue :

Entry: From overlay

Exit: Same as entry

Description:

Rtn

0418
E01S

Page 133

Rtn is the
an OVrto call.
the old overlay
OVRLY+2.

entry point used by the system for returning from
On entry to Rtn, the stack has on it the name of

(to be restored), which was pushed from OVRLY and

Under some circumstances Hin -ovel'l-ays, it may be n-ecessary,~t~o-=-_ ____ _
----------u-s-e--t~fi1s entry. For example, BASIC provlldes a number of commonly

used service routines in its resident (above USER) portion that
are called by overlays. In some cases these resident routines
may call functions in other overlays. So, some overlay routines
must call services in the BASIC resident "remembering" their
overlay name. Here's what the code looks like; assume we're in
an overlay and calling service PFIXE in the resident:

Pfixe SHLD HLtemp ; stash HL
LHLD OVRLY
PUSH H ; first 2 chrs of our name
LHLD OVRLY+2
PUSH H ; last 2 chrs of name
LXI H,Rtn
PUSH H ; make sure we're here!
LHLD HLtemp HL back again
JMP PFIXE

In the overlay, to use resident service PFIXE, the
intermediate routine Pfixe is called. Since pfixe was called,
there is a return address on the stack. The overlay name is
pushed onto the stack, then the address of Rtn, and PFIXE JMPed
to. When PFIXE returns, it returns to Rtn, which unwinds the
overlay name from the stack, insures that overlay is in memory,
and then returns to the address on the top of the stack. All
registers are preserved.

* System Service Vectors * Overlay Processing *

System 88 System programmer's Guide
section 3 Page 134

Symbol name: Look

Sing 1 e val ue :
-Twin value:

13421
E 131E

Entry:
HL:

DE:
BC:

Address of lookup block. HL points to a byte
containing the length of the file name (from
1 to 31 bytes) followed by the text for the
name and the two byte extension (if present).
unused

"
A: Drive number of disk to search for the file

(1-9). If the 813H bit is set, then the
extension is not checked and a match will occur
on equal names.

________________ ~p~S~W~·~: __ -_·· ___ unuse~~ _________________ _

Exit:
HL:
DE:

BC:
A:
PSW:

unchanged
If carry is set in PSW, DE contains error code
resulting from Look; If carry not set, register
contains FOE directory address.
junk
junk
Carry is s~t on error; clear otherwise.

See Also: Dio, Ckdr, SBUF1, NFCK, NFDIR, GFLOCK, Gfid

Error Conditions:

Error codes are returned in DE with C set in PSW. If an
error is returned from Dio in reading in the directory, the code
in 0 is changed from a 1 to a 3; thus error 139 becomes 339.
Look specific error codes are:

33133 The file requested was not found.

33FF The disk directory is destroyed. The directory
checksum computed by Ckdr does not match the checksum
stored in the first byte of the directory. All
information on the disk is probably lost. If an error
other than 13333 is reported, NFDIR is set to 03 to
invalidate the data currently held in SBUFI, the
directory area.

* System Service Vectors * Look *)

('

System 88 System Programmer's Guide
Section 3 Page 135

Description:

Look looks up files in the main directory on a disk. It is
called with HL pointing to a "lookup block," which consists of
the length of the file name (1 <= length <= 31), the text of the
name, and the extension (if present). A contains the number of
the drive to search, and the 80H bit of A is used to indicate
whether or not the extension has to match. Note that Look only
searches the root directory for the file; it does not search
subdirectories, Gfid must be used for that purpose. If the file
is found in the directory, Look returns the address of the FOE
(File Directory Entry) within the directory in DE. If for some
reason the file is not found or an error occurs when reading the
directory, the error code is passed back to the caller with the
carry bit in the PSW set. An example of a lookup block and
coding to look up file GRONK.BC on disk 2 would be:

;
-Tx-t--

;
- DB

LXI
MVI
CALL
JC

H,Txt
A,2
Look
Oops

Description of the Look process:

Look first checks to see if the directory to be searched is
resident in the SBUFI area; system cell NFDIR contains the drive
number of the disk whose directory is in the directory area of
memory.

If the proper directory is not in memory, Dio is called to
read the directory (sectors 0-3) from the specified disk into
SBUFl; errors reported from Dio are passed back to the caller
with the code in 0 changed to 0'3 (error 0103 becomes 0303, etc.).

When the proper directory is in SBUFl, its checksum is
computed by calling Ckdr, stored in cell NFCK, and compared to
the first byte of the directory. If this checksum does not match
that first byte, we consider the directory destroyed and return
to the user reporting an 03FF error. If the directory checksum
is good, we mark NFDIR with the directory number and scan the
directory for the specified file, skipping those files marked
deleted. If we come to the end of the directory before finding a
match, we report an 0300 error. If the 80H bit was passed in A,
noting not to check the extension, Look will report a match on
the first file in the directory with the specified name.

In the TwinSystem, Look must aquire the file system
semaphore GFLOCK before examining the directory (either in memory

* System Service Vectors * Look *

System 88 System Programmer's Guide
Section 3 ,Page 136

or read from disk). This insures that only one user at a time is .~
accessing the file system. ~

* System Service Vectors * Look *)

•

Section 3

Symbol name:

Single val ue :
·Twin value:

Entry:
HL:

DE:
BC:
A:

PSW:

Exit:
HL:

DE:

BC:
A:
PSW:

See Also:

System 88 System Programmer's Guide

Runr

0424
E02l

Address of lookup block (see Look for
description) •
unused

"

Page 137

Drive number to search; 80H bit set if extension
does not have to match.
unused

If carry is clear, register holds start address
f.r.om -FOE.
If carry is set, register fiolds error code;
else it holds junk.
junk
junk
Carry is set if error; clear otherwise.

Dio, Look, MEMTOP

Error Conditions:

Error codes are returned in DE with C set in PSW if an error
has occurred. Runr calls Look and Dio, and so can return any
error code generated by these services. Look specific error
codes are:

201 No load or start address. The load address field of
the file descriptor block is zero. This usually
indicates a text file. Note that a start address of
0000 is val id.

Desc r iption :

Runr is called pointing to a "lookup block" (see Look for
description) and a drive number. Runr attempts to find the
program identified in the main directory of the drive specified
and load it into memory. If it is successful, it returns the
start address of the file in HL. If unsuccessful, Runr returns
an error code/subcode in DE.

Runr first calls Look with register contents the same as on
entry to Runr. Runr returns if Look returns with the carry set,
thus passing any Look errors to the caller of Runr. If the file

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 138

asked for eXdists, the FOE f(Fi
h
1e Directory Ent:y) is examined for ~

a load ad ress (LA). I t e load address 1S 0000, we report a ~
20lH error, since the file is not runable. If the load address
is nonzero, we call Dio to read the file into the memory address
given as LA in the FOE. Any Dio errors are passed to the caller.

-If no errors occur during the read, Runr returns with the start
address from the FOE in HL, and the carry flag in the PSW is
clear. Note that although calling Runr does not automatically
execute the desired program, the program is loaded into memory,
possibly overwriting the routine calling Runr. If no extension
was given on the file passed to Runr, Look will match on the
first file on the specified disk with the given name-- which may
not be a "runnable" file. For example, if disk 2 has files
"Flange.TX" and "Flange.GO" appearing in that order, telling Runr
to run file "Flange" without specifying an extension will return
a 20lH error, as Look will find file Flange.TX, rather than
Flange.GO.

* System Service vectors *)

Section 3

Symbol name:

Single value:
-Twin val ue:

Entry:

System 88 System Programmer's Guide

R1we

0427
E024

HL: Address of user buffer to read into.
DE: Prompt string terminated by 00 byte.
BC: C: Maximum number of characters to read.

B: If 0, echo termination character.

Page 139

If 1, do not echo termination character.

Ex it:
HL:
DE:
BC:

A:
PSW:

See Also:

Desc r ipt ion:

Points to last character in buffer.
junk
B: Length of line read.
C: junk
termination cnaracter
junk

WH0, WHl, CBUF, CMDF, Msg, Killi

Rlwe is used to read an input line. It provides an input
prompt by using Msg (see Msg in this section) to output to the
screen the string pointed to by DE. Rlwe then reads in
characters (allowing edi ting of those characters) into the user
buffer pointed to by HL. C contains the maximum buffer size, and
B contains a flag that controls echoing of the termination
character. Characters are read into the user buffer until one of
the following conditions is met: 1) the buffer is full; 2) the
user enters a carriage return (CR). Rlwe returns with HL
pointing at the termination character in the buffer, the
termination character in A, and the line length in B.

Editing functions supported by Rlwe:

Single characters are deleted in Rlwe by use of the DEL key
(DELETE). Delete words by using Control-W. A word is defined as
a sequence of contiguous characters a-z, A-Z,0-9. Delete an
entire line by using Control-X.

* System Service Vectors *

Section 3

symbol name:

sing 1 e val ue :
-Twin value:

Entry:

Exit:

See Also:

Description:

System 88 System Programmer's Guide

Iexec

0436
E030

No inputs

May return to environment on stack

PVEC, EIC, DONT, SBRK

Page 140

Iexec is usually connected to PVEC, and causes the Exec to
be run when ~y is hit. The coding for Iexec is as follows:

______________ -AI~e~xec __ · ~C~A~L~L~ _ ___ ·~0v~rt~o~ __ _
DB 'Exec'
JMP Ioret

When Iexec is entered, the Exec overlay is loaded into the
overlay area and run. If the "CONTINUE" command is given to the
Exec, it returns, which will restore the overlay present before
~y was hit, and return through Ioret, which will restore
registers and continue execution of the program.

Note that this technique is fairly powerful; a program can
be running, possibly using its own custom overlays. It is
interrupted and the Exec run. From this, disks can be listed,
files deleted or typed; any command issued that does not alter
user memory or cause the system to warmstart, and the program can
be continued.

* System Service vectors *)

Section 3
System 88 System programmer's Guide

Page 141

Symbol name: Show

Twin value: E033

Entry: No register inputs

Exit:
A: 00
PSW: Z set

See Also: WHl, show, print, print

Description:

Show is called to display the text following the Show call
on the screen, until a 00 byte is hit. Program execution resumes
with .the .. 00 _. byte. . .Text . is displayed. thro.u9.h .W.Hl •. __ Ji~r_e i~ ____ 1;_h~_
code fo r sho w:

Show
Showl

Show2

XTHL
MOV
ORA
JZ
CALL
INX
JMP

XTHL
RET

. save HL, get RA ,
A,M
A ; done?
Show2 jmpjyup
WHl
H
Showl

; get HL back

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 142

Symbol name: Print

Twin value: E036

Entry: No register inputs

Ex it:
A: 00
PSW: Z set

See Al so: WH7, print

De s c rip t ion :

Print is called to print the text following the Print call,
until a 00 byte is hit. Program execution resumes with the 00

. byt e •. ·Te.x:.L....l:s d i sp~yed ~tb_r.JlJJ.g~.mJ2. · H~ __ ~bj!------..C.-Od...,elL-~f~ o~·.Lr _ ___ _
Print:

Print XTHL ; save HL, get RA
Printl MOV A,M

ORA A done?
JZ Show2 ; jmp/yup
CALL WH7
INX H 9 JMP Printl

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 143

Symbol name: Flipem

Twin val ue : E 039

Entry: Internal vector, do not call

See Also: Ticker, PMASK

Oesc r i ption :

Flipem is an internal service that flips from one user to
the other in the TwinSystem. It should not be called or used
directly. See the following description of Giveup for details.

Symbol name: Giveup

Twin val ue: E03C

Entry: No inputs

Ex it:
INT: Enabled, no registers modified

See Also: PMASK, PHANTOM, BRG, BRGEN, LOCK, g~veup
Ticker, USP, Ioret

Description:

Giveup is called to give up the processor, either by calling
Giveup, or by using the giveup macro. It saves the user's
registers on the stack, saves the stack pointer, flips to the
other user, and loads that user's environment, and starts
executing that user. Let's look at the code in detail:

Giveup iDI
PUSH
PUSH
PUSH
PUSH
XRA .
STA

PSW
B
D
H
A
LOCK

std save sequence

; insure not locked!

; Flipem flips to the other process. We first stash the
; stack pointer at USP, and then flip the PHANTOM bit of
; the baud rate generator, load the new SP from USP, and

return thru Ioret to load the new environment.

Fl ipem DI

* System Service Vectors * TwinSystem User Switching *

System 88 System Programmer's Guide
section 3 Page 144

LXI H,0 assume reg s stashed!
DAD SP
SHLD USP save SP, user now parked!

FI ipl LDA PMASK ; get f1 ip mask
MOV B,A
LDA BRG current BRG contents
XRA B ; flip the mag ic bit
OUT BRGEN ; we are the other guy now!
STA BRG ; mark it done
LHLD USP
SPHL ; load new SP
JMP Ioret ; go to it!

This code is very important; it's the core of the
TwinSystem. When we enter at Giveup, we already have a PC on the
stack from whoever called Giveup. We then push the registers on
the stack; this forms the "environment" that Ioret will restore

----when -·---we· - return to - - this user • . We clear LOCK,as . the user is
giving up the processor, and fall into Flipem.

The first thing Flipem does is to save the user's stack
pointer. This is done with the interrupts disabled so that
nothing can be modified. With the user's stack pointer stored at
USP, the user is now "parked". We have saved all the information
necessary to restart the user later on. Note carefully that USP,
as well as the stack, is kept in the 48K board that is switched ~
with the user. We pick up the contents of PMASK, which contains , -,
PHANTOM if we are running two users, and 00 if we are running in
solo mode or on a single user system. We pick up the current
baud rate generator contents, and flip the bits set in PMASK.
Doing the OUT BRGEN causes the PHANTOM line on the backplane to
change, assuming we're running two users. We have now selected
the other user. We store the new baud rate generator contents
(BRG is in system common memory, in CPU board RAM). The new
stack pointer is loaded from USP (the new user's). When we jump
to Ioret, it unwinds the registers from the new user's stack, and
continues executing that user's code.

* System Service Vectors * TwinSystem User Switching * ~

Section 3

Symbol name:

Twin val ue:

Entry:

Exit:

See A1 so:

Description:

System 88 System Programmer's Guide

Ticker

E03F

From RTC interrupt via SUWH8

Through Ioret

USP, UTIME, WAKEUP, PMASK, BRG
BRGEN, LOCK, F1ipem, Lock, Unlock

Page 145

Ticker is the TwinSystem clock server. It is connected
through SUWH8 and is entered on every RTC interrupt, 60 per
second. Its basic purpose is to cause the switching between

-users --- to -- --shar-e -- ----the--- --CP-U-. ------ -It - has -_ the _ _ subsidj_ary task_so f
--------~incrementing user clocks, posting the WAKEUP 1nterr~~~dr----

enforcing the processor lock via LOCK. Let's look at the code
and then discuss it; we are entered via the PCHL in the interrupt
code with interrupts disabled and all registers pushed onto the
stack:

Ticker OUT

Tick0

Tick1

Tick2

LHLD
INX
SHLD

LXI
MOV
DAD
SHLD

LXI
MVI
INR
JNZ
INX
DCR
JNZ

8
XTIMER
H
XTIMER

H,0
B,L
SP
USP

H,UTIME
C,4
M
Tick3
H
C
Tick2

; reenab1e interrupt

bump 0C 00 c10c k
for everybody to see

mark diddling current user

; user now parked!

user timer
; 4 bytes long

; jmp/not time yet.
bump next cell

; did we hit all 00?
jmp/not yet.

; User clock went to 0000. Build environment to invoke
; WAKEUP routine next time we run 'em.

LHLD
SPHL
LHLD
PUSH
PUSH

USP pick up SP
; and insure loaded

WAKEUP ; vector
H new PC
PSW

* System Service Vectors * TwinSystem User Switching *

Section 3
. System 88 System Programmer's Guide

PUSH
PUSH
PUSH
LXI
DAD
SHLD

B
D
H
H,"
SP
USP

reg contents don't matter

save updated SP,
; all done.

i End of clock processing. See if we've diddled both

Page 146

; clocks, and split thru Ioret when we have. B will be
nonzero if we've. done both users.

Tick3 MOV A,B
ORA A i done both yet?
JNZ Tick4 ; jmp/yup
LDA PMASK
ORA A ; anybody else to do?
JZ Tick4 jmp/nope 1
MOV B,A ; remember doing other guy
LDA BRG
XRA B
OUT BRGEN ; ***** SWAP *****
JMP Tick1 i go do other guy.

Tick4 LDA BRG
OUT 8RGEN insure mapped to first one
LXI H, LOCK
MOV A,M ; software lock set?
JZ Flipl i jmp/not loc ked, flip , em
MVI M,2 i mark quantum overrun
LHLD USP get stack back
SPHL
JMP Ioret i and let ' em run some morel

If you understand this code, Giveup, and Flipem, you
understand how the TwinSystem runs two users. When we are
entered from the RTC vector, we reset the clock interrupt and
bump the clock kept at 0C00H. The user's PC and registers are
already on the stack; we save the SP in USP to "park" him. From
Tick0 through Tick3 we use the B register to note if we are
working on the current .user (8 contains 00) or the other user (B
contains PHANTOM).

The general idea in the remainder of the code is to bump
both user's timers. If a user's timer increments to all zero, we
want to schedule the specified WAKEUP routine to be called the
next time the user is run. Note that in the single user system,
we just jump to the WAKEUP routine directly from the interrupt
level. This would adversely affect performance in the Twin.

The first 7 lines of code at Tickl take care of incrementing

* System Service Vectors * TwinSystem User Switching *

(:3

)

System 88 System Programmer's Guide
Section 3 Page 147

the user's clock. Note the clock is kept in per-user memory (in
the 48K board) so each user has his own copy, at the same
address. If the clock doesn't g6 to all zero, we go to Tick3.
If the clock does go to all zero, we fall into the second chunk
of code. The first thing we do is load the user's stack pointer;

-we may ·not have the correct one from switching users in Tick3.
We then build an environment on the stack to take the user to the
WAKEUP specified routine the next time the user is run, and
update USP.

At Tick3 we check to see if we have "diddled" both user's
clocks, if there are two users. If we have done both users, we
go off to Tick4 to check the software lock. If we only have one
user, we go to Flipl to continue running that user. Note that we
do this through Flip! to insure the hardware and the BRG are set
up properly, rather than going directly to Ioret. If we haven't
done both users, we flip to the other user, setting B nonzero for
the next time we come through Tick3. Note that we don't update

- BRG; - thls -swap--is -only - tem.po-r-ar-y- -whil-e -_we_ llPda_te __ thoe _otfleruser' __ s
clock.

At Tick4, we have updated clocks for both users. If the
software lock is not set, we go to Flipl to flip to the other
user. If the software lock was set, we change it to indicate
that the locked user ran over a clock tick. When the user calls
the Unlock system service, unlock will Giveup as a result. Since
the processor is software locked, we restore the user's stack,
and go to Ioret to continue execution.

* System Service Vectors * TwinSystem User Switching *

System 88 System Programmer's Guide
Section 3

Symbol name:

-Twin val ue :

Entry:
A and 0FH

o
1
2

Gfid

E042

Function
Get file identifier
Enter/replace FDE
Look up a file

Page 148

3 Update directory (TwinSystem only)

The registers on entry contain:

HL: Points to either the prompt string to use in
reading from th~ user (Via RLWE) or the address of
thetex t -buffe-r -t-o _--",e,-"x,-"a...,m"-,1:",-,·n,-,,e,,"-·~·._·· _ ________________ _

DE: Points to the buffer that is used to return the
file specification in form suitable for feeding to
LOOK.

BC: May contain the default extension to use if the
user does not give one.

A: 80H if set, read (RLWE) from the user, prompting with
the MSG -) by HL. .

40H if set, LOOK the file up. If it exists, copy the
FDE to the buffer -) (DE) +1,. thus returning FDA,
NSCTR, LA, SA. If an 0300 error is returned from
LOOK, return NFA from directory in the FDE slot in
the buffer -) (DE)+l.

20H If set, use the extension in BC if the user does
not specify one.

Return:

HL:
DE:

BC:
A(PSW) :

Errors:

Enter FDE:

Points to the ending delimiter in the text buffer.
If C set in PSW, error code. If not, FDE address
if LOOK was requested, else junk.
Junk
C set if error, clear if not.

0500
0501
0502
0503

Invalid disk #
Name longer than 31 characters
Extension longer than 2 characters
Name zero length

HL: Points to a file block as built by get file

* System Service Vectors *)

~ \

System 88 System Programmer's Guide
Section 3 Page 149

function. First byte has disk i, next byte has
flags and name length, etc.

A: 80H If set, replace an existing FDE with the one
pointed to by HL, else enter a new one at the end
of the disk.

40H If set and 80H set, replace existing FDE and
clear "new" bit.

Returns:

A(PSW): If C set, then DE has error code/subcode. If C
not set, then registers scrambled.

Errors:
0504 Directory is full

Update directory: uses NFDIR, DirAddr, SBUFl in.formation

"-See Al.so! ---- GFLOCK, NFDIR, _NFCK, SBUFl, _Dio .

Desc r iption :

Single User Gfid

In the single user system, Gfid is an overlay (Gfid.OV).
Gfid provides three main services: Get and parse file identifier,
Enter or replace directory entry, and Lo.ok up a file. The Look
function provided by Gfid differs from the resident Look service
in that it accepts full pathnames involving subdirectories and
the resident service does not.

TwinSystem Gfid

Gfid in the TwinSystem is a resident service. For
compatibility, a Gfid overlay is provided; it just jumps to the
resident service vector. On the Twin, the file system and Gfid
is considered a "critical section", only one user may be running
that code at a time. For this reason, entry into Gfid or into
Look on the Twin is controlled by the GFLOCK semaphor'e.

If the user requests that Gfid read a line from the user in
the Get function (A AND 0FH =0), the line is read before the
semaphore is acquired.

Some system functions, such as RENAME, DELETE, and UNDELETE,
modify the contents of directories. In the Twin, Gfid has an
additional command for updating a directory. Gfid looks at the
contents of NFDIR and DirAddr when this command is given. If
NFDIR does not have the 80H bit set, the directory in SBUFl is a
root level directory; its disk address is 0000. If the 80H bit
in NFDIR is set, this is a subdirectory and DirAddr has its disk

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 150

address. Gfid computes and updates the checksum of the directory
in SBUFI and writes it to the disk.

TwinSystem Gfid - Invalidating Directories

In the TwinSystem, each user has a directory area. So, when
Gfid updates any directory on disk, it must see if the other user
has a copy of-rnat directory. If the user does, this copy is now
invalid; Gfid sets NFDIR for that user to 00. This is why Look
and Gfid are protected by the GFLOCK semaphore; so that only one
user at a time may modify directories. This is also why looking
into the directory area is not a good idea; programs should use
Gfid to get file information.

NOTE: For more information on Gfid, see Section 2 on the file
system.

* System Service Vectors *

Section 3

Symbol name:
Sing Ie val ue :

-Symbol name:
Single value:
Twin val ue :

Entry:

System 88 System programmer's Guide

OEOUT
0301

Deout
f33Dl
Ef345

DE: 16 bit value to display on screen

Ex it:
A: Last ASCII character output

See Also: Byte, WHl

Description:

Page 151

Deo u t (0 r DEUUTl-----"ls c a 11 ed-e-o-aTg-pra-y-th--e-o()n-t-e-n-~s-o f th e-oE--'--,:--- ­
registers on the screen in hex. This is done by calling Byte
with the D and E registers.

Symbol name: Byte

Twin value: E05A

Entry:
A: Hex byte to display

Exit:
A: Last ASCII character displayed

See Also: Deout, WHI

Description:

Byte displays the byte in A in hex
characters are displayed by calling WHl.
code for Deout and Byte:

Deout

Byte

MOV
CALL
MOV
PUSH
RRC
RRC
RRC
RRC
CALL

A,D
Byte
A,E
PSW

By tel

; display D
then E
save it

; top 4 bits

on the screen. The
Here is the TwinSystem

* System Service vectors *

section 3

By tel

System 88 System programmer's Guide

POP
ANI
ADI
DAA
ACI
DAA
JMP

PSW
0FH
90H

40H

WHI

then bottom 4 bits
just 4 bits at a time

* System Service Vectors *

Page 152

j -

System 88 System Programmer's Guide
Section 3 Page 153

Symbol name: Lock

Twin va"l ue: E1348

Entry: No inputs

Ex it: All registers and interrupts unchanged

See Also: LOCK, Ticker, Lock, Unlock, Vti, WAKEUP

Description:

Lock is called to lock the processor against the normal time
slicing done by Ticker as a result of real time clock interrupts.
It is used, for example, by the screen driver (Vti) and the
editor to prevent slicing while updating and scrolling the

_. __ _ . ---- . __ sc_r-e.en •.. _ Usin9 __ Lo_cKnpr_eY'_ents_s.wi_tc.hin9 _____ .to ____ .th_e _ o.the ruse r. fOL_.
normal processlng, lnterrupt character processing, WAKEUP'---------­
processing, or I/O completion processing. Only character
typeahead is performed, although environments may be stacked for
interrupt characters and WAKEUP events. That Lock blocks I/O
completion processing is important to understand. Let's say user
1 requests a read from drive 4. The read is started, and user 1
gives up the processor. Then user 2 calls Lock to lock the
processor. User 2 cannot access drive 4 (or 5, 6, or 7 on a
normal MS configuration), as user 1 still has an I/O operation
uncompleted. If user 2 tries to access drive 4, the system will
deadlock. So, Lock should be used sparingly!

* System Service vectors *

System 88 System programmer's Guide
Section 3

Symbol name: Unlock

Twin val ue : Er,;,4B

Entry: No inputs

Ex it:

See Also:

Description:

A:
PSW:
INT:

junk
junk
Enabled/unchanged

LOCK, Giveup, Ticker, Lock, lock, unlock

Page 154

Unlock is called to remove the processor lock set by the
---Loc k -syst-em --se r-v -i-ce ---o-rthe - lock -m-ac--r-o . ---I-t---may -be ----ca l--ledd-if"ec-tl-y

or through the unlock macro. It may also be called if the
processor_ was not locked. When called, the software lock is
cleared. If the real time clock did not tick while the processor
was locked, control is returned directly to the user. If the
processor was locked over a clock tick, Giveup is called to give
up the processor before returning to the user. See the coding
for Ticker and Giveup for details.

* System Service Vectors *)

Section 3

Symbol name:

Twin val ue:

Entry:

Exit:

See Also:

Description:

System 88 System Programmer's Guide

Enter

Ef34E

HL: Address of semaphore

A:
PSW:
INT:

1313
Z set
Disabled

Gfid, gLook, enter, Giveup, Leave
GFLOCK, Interrupt character processing

Page 155

-- - -- --._-- --- -- -------- ------- ---- ---- - - --- ---------- --- ---- -------
Enter is used to enter a crltical code sectlon ~totected-oy

the semaphore byte pointed to by HL. The semaphore must be in
shared memory (i.e. not between 2f3f3f3H and DFFFH), although this
is not validated by the Enter code. ' Here is the code for Enter:

Enterw CALL Giveup i wait a while

Enter DI
MOV A,M i get value
ORA A
JNZ Enterw i wait till it goes 1313
LOA BRG
ORI 8f3H i insure nonzero
MOV M,A i mark we have it
XRA A
RET i return to user

Note very carefully what Enter does and does not do. It does not
check to insure that the semaphore is in shared memory. It does
not insure that we do not already have the semaphore. It does
not insure that the semaphore starts out zero. It just waits
till the semaphore byte goes to zero, then marks it taken and
returns with interrupts disabled. The semaphore is set with 8f3H
ORed with the user tag primarily for use with GFLOCK inhibiting
the action of interrupt characters. See the coding example for
Interrupt Character Processing in the TwinSystem for details.

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 156

Symbol name: Leave

Twin val ue: E051

Entry:
HL: Address of semaphore

Exit:
Registers unchanged, interrupts enabled

See Also: · Enter, enter, leave

Desc r i ption :

Leave is called to leave the critical section marked by the
semaphore byte pointed to by HL, clearing the semaphore. It

____ ---"r-"e'--'tJn:Jl:S--- wi th interrupts enablecLL · -Thesemaphore-- is notche-c-ked to
see if the user calling Leave currently owns the semaphore.

* System Service vectors *)

System 88 System programmer's Guide
Section 3 Page 157

Symbol name: Devlock

Twin val ue : E06F

Entry:
C: Device number, 0-F
B: Command, as high and low nybbles:

B AND 0F0H:
80 Set permanent allocation
90 Initialize
A0 Set temp allocation
B0 Invalid command
C0 Clear permanent allocation
D0 Invalid command
E0 Clear temp allocation

___ __ . __ ___ --F~ ___ . Re_s_e_t _ t _o ___ p_ex.mane~t __ ~U oC_g~io 11~._. __ .. ________ _

Ex it:

See Also:

BAND

DE:
PSW:
INT:

0FH:
1
2
3
4
5

6
7

cmdf
rd
wrt
fupd
mung

wlock
excl

- Command file read
- Read
- Write
- File update
- Dir mung/file create/

rename **
- Write lock
- Exclusive use

Error code if C set in PSW
C set on error, C clear otherwise
Disabled/unchanged

BHA, Giveup, Dio, DONT, SBRK,
cmdf, rd, wrt, fupd, mung, lock, excl,
sett, setp, clrt, clrp, devlock

The interlock mechanism arbitrates device access between
users in the TwinSystem. Its main purpose is to keep users from
stomping each other, or otherwise getting in each other's way.
Device 00 is the printer; devices 1 through 7 correspond to disk
drives I through 7. Devices 8 through F are for expansion; device
codes C-F may be used by user programs wishing to use Devlock.

Devlock is called directly by Dio before performing any disk
operation; it is also called by printer functions to allocate the
printer. Devlock is called by system programs to get other
classes of device access; for example, PACK attempts to get

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 158

exclusive use of the disk to pack. Devlock is also called by the
Exec SET command.

The access classes are shown above, and are defined - as
symbol s cmd f, rd, wrt, fupd, mung, wlock, and excl. The access

-class is combined with a command in the B register, and the
device number in the C register, for Devlock to use.

Devlock uses a set of lists indexed by device number.
user has two lists: one for temporary allocations, and one
permanent allocations. Any allocation set in the permanent
is also set in the temporary list.

Clear Allocation

Each
for

list

The clear allocation commands, clear permanent (C0H) and
clear temporary (E0H), simply clear the allocation class
specified. If the allocation had not been granted, the service

-. ----- -- :re turns-.----Note---tilat----ci-e-aT - --pe-rmane-nt-a-l-so --cf-ears -"the -tempo...:.r.arL*'i ____ _
allocation of that class for the device.

Grant Allocation

In granting an allocation, through set temporary (A0H) or
set permanent (80H) commands, a number of steps are taken.
First, if the system is running on single user hardware (PMASK
contains 00 an~ the 40H bit in BHA is clear), the allocation is
granted. Next, a check is made t~ see if the allocation has
already been granted, and we return if so. If not already
granted and this is a permanent request, we see if the allocation
is set in the temporary list. If it is, we set it in permanent
and return.

If the permission was not already present in one of the
lists, we look to see if it is implied by an already granted
permission, either permanent or temporary. For example, write
permission implies command file and read permission. Exclusive
use implies all permissions. So, if the access i~ implied by an
already granted permission, we set that in the proper list and
return.

* System Service vectors * J

System 88 System Programmer's Guide
Section 3 Page 159

If the permission was neither already set nor implied, we
must check the other user's tables to see if that user has been
granted an access that excludes our request. Based on the

-numeric values of the access classes specified above and by the
equates, the permission matrix looks like this:

= granted <-- CURRENT STATE -->
X = denied f2l 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+
R 1 I I I I I I I I X I
E 2 I I I I I I I I X I
Q 3 I I I I I I I X I X I
U 4 I I I I I X I I X I X I
E 5 I I I I I I X I X I X I
S 6 I I I I X I X I X I I X I
T 7 I I X I X I X I X I X I X I X I

If there is no conflict, the permission bit is set in the
tables and we return. If there is a conflict, our action is
determined by the contents of PMASK and BHA. If PMASK contains
f2lf2l, indicating we are in SOLO mode (we checked for strict single
user earlier), this means that the other user holds the device,
and we have shut that user off; we abort with a 0lC2 error
(device busy). If PMASK is nonzero, denoting Twin operation, we
examine the 20H bit of BHA. This bit is set in response to the
Exec command SET WAIT ON. If this bit is clear, WAIT mode is not
enabled; we return the 0lC2 error to the requesting user; the
device is busy.

WAIT Mode

If WAIT mode is enabled, we set DONT nonzero to inhibit
interrupt character action. SBRK is tested to see if its
contents are nonzero. If SBRKs contents are nonzero, we clear
DONT and return reporting the 0lC2 error; Ay has been hit by the
user. If SBRK contains zero, we unwind the saved registers from
the stack, give up the processor, and reenter' Devlock to try
again.

* System Service Vectors *

Section 3

Symbol name:

Sing Ie val ue :

Twin val ue :

Entry:

Exit:
INT:

Desc r iption :

System 88 System Programmer's Guide

Ioret

0064

E066

No inputs

Enabled, registers returned from stack.

Page 160

Ioret is jumped to to return to an environment on the stack,
usually pushed as the result of an interrupt, or time slicing on
the TwinSystem. Here is the coding for Ioret:

Ioret POP
POP
POP
POP
EI
RET

H
D
B
PSW

; let in interrupts

* System Service vectors *)

System 88 System Programmer's Guide
Section 3 Page 161

Symbol name: Moven

Twin val ue: E069

Entry:
HL: Source address
DE: Destination address
BC: - # bytes to move

Exit:
HL: Source + count + 1
DE: Dest + count + 1
B: Checksum of data transferred
C: 00
A: junk

Symbol name: . Move

Twin val ue : E06C

Entry:
HL: Source address
DE: Destination address
BC: # bytes to move (positive)

Exit:
HL: Source + count + 1
DE: Dest + count + 1
C: 00
B: Checksum of data transf~rred

Desc r i ption :

Moven and Move are block move routines available in the
TwinSystem. They differ only in that Moven takes the number of
bytes to move in BC as a' negative number, and Move uses a
po.sitive number. The move routine uses what is known as an
"unrolled loop", and is very fast, especially for large blocks of
data. It is used internally for scrolling the screen and
transferring data to and from the disk controller buffers.

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 162

symbol name: vmgr

Twin val ue : E054

Oeser iption:

Vmgr is a service routine used internally in the system as
part of the disk I/O mechanism. It should not be called by the
user.

* System Service Vectors *

- --- \

Section 3

Symbol name:

Twin val ue:

Entry:

Ex it:

See Al so:

Symbo I nam e :

Twin val ue:

Ent.r y:

System 88 System Programmer's Guide

Gdfp

E1372

No inputs

Interrupts enabled

Devlock, BHA, TwinSystem printer driver

Fdfp

E 075

No inputs

Exit: Interrupts enabled

See Also: Devlock, BHA, printer driver

Description:

Page 163

Gdfp and Fdfp are called to get and free the printer in the
TwinSystem. When the printer driver is initialized, wormholes

. WH5, WH6, and WH7 are initialized by Fdfp to contain calls to
Gdfp. When a program calls WH5, 6, or 7, Gdfp is invoked. It
attempts to get temporary exclusive use of device 130 through
Devlock; device 1313 is the printer. If Devlock returns with C set
in PSW, we jump to Err to abort and report the error. Note that
if wait mode was enabled (see Devlock and BHA), the user will
wait until the printer is available. Once the printer is
available, the wormholes are connected to the printer driver, and
the proper wormhole invoked. Gdfp can also be called from the
user program to insure the printer is connected.

* System Service Vectors *

System 88 System Programmer's Guide
Section 3 Page 164

SYSTEM OVERLAYS

The internal structure and flexibility of the System 88 disk
system is based on the overlay mechanism. This section describes
the internal structure of overlays in the System 88 and the

-facilities provided to the assembly language programmer by the
various system overlays. These discussions assume that you have
perused the descriptions of Gover and Ovrto (the overlay linkage
facilities) •

The overlay area in System 88 memory is from 2000H (OVRLY)
to 27FFHi overlays are therefore assembled for this area of
memory and do not exceed 2K bytes in size. Overlay names are
four characters long and may not contain blanks, tabs, or other
control characters. The fi rst four bytes of the overlay (OVRLY
to OVRLY+3) must contain the overlay name, which must match the
file name. The file name and the internal name must match so
that Ovrto can "remember" the current overlay. When an overlay
ts::=:brongn-r-- =1-n-- by==<1vrto- or· Gmrer,-uit --j -s ---en1:lITe-d - at - -QVENT-;---Th-e --- -- --
contents of the registers are unchanged from the call to Gover or
Ovrto.

When writing overlays, the 2K byte space reserved for
overlays may be used in any manner you choose. Overlays are
assumed to be "pure" code, code that does not modify itself.
Portions of the overlay area may be used by the overlay itself
for buffers or data. Remember that such data is lost if another
overlay is invoked. Arguments may not be passed to other
overlays through the overlay area itself.

When entered at OVENT, interrupts are disabled and the EIC
(Exec in Control) bit in EFLGI is not set. If the overlay wishes
to process Control-Y interrupts from the user, PVEC should be set
accordingly. Note that if 1) the user types a Control-Y, 2) the
EIC bit is not set, and 3) your program did not set PVEC, then
the overlay area will be overwritten by the Exec overlay (brought
in as a response to the Control-Y). If the user then gives the
Exec a CONTINUE command, the previous overlay will be restored
from disk and reentered at the point where it was interrupted
with the original register contents but without any data stored
in the overlay area.

The overlays provided as part of the standard disk system
are protected from abuse (deletion, renaming, etc.) by having
the system bit set in the FDE for each. You may set the system
bit in the FDE (or clear it) using the Szap utility described in
Section 4 of this manual, or the "Tweak" program listed in
section 2. You must use either Szap or the Gfid replace function
described later in this section. This degree of difficulty
encourages caution and planning, and discourages thoughtless
experimenting.

* Overlays *)

System 88 System Programmer's Guide
Section 3 Page 165

For an example of an overlay, refer to the listing of the
system error message writer overlay, Emsg, given in Section 7.

_ . _ _ ._._---_ ._-_._---_._-----------_._--_._.-._-- -_._-_. ---- -------_ .. - - -- _.-. __ .. __ ._-

* Overlays *

System 88 System Programmer's Guide
Section 3 Page 166

System OVerlays

As shipped, the single and Twin systems have a number of
overlays that perform system functions. Some of the functions

-provided by the overlays may be invoked by the user. Each
overlay will be discussed, with the functions it provides.

Overlay

Exec.OV
Emsg .OV
Dfn 1. OV
Dfn2.0V
Dfn3.0V
Gfid.OV
Prnt.OV
Pack.OV

Function

System executive Command processing
Error message display
Disk functions
Disk functions
Disk functions
Get/enter file services
Printer functions
Pack a disk

------------------- -- -n----r;f-on;Ov - - -- - -Ed1-to r --fD1YCl:-r6l'fS--- - ----- ----- - ----- ---- . u ___ u _ _ • -- - -- " ------- - "

Mfun.OV

Berr.OV
Bfun.OV
Bslv.OV
Bdir.OV
Xref.OV

Amsg .OV

Vmgr .OV

Mise functions (Twin only)

BASIC error reporting
BASIC functions
BASIC program save/load
BASIC direct commands
BASIC cross reference

Assembler error reporting

Vol ume Manager

Note that the overlays used by BASIC, the assembler, Editor,
and printer are for a specific version. Overlays from one
version of BASIC may not be used by another version. If such a
mix is attempted, disaster will be the - result. Since the
overlays on the system disk are marked as system files, the user
can't meddle with them. This problem can only be caused by a
systems programmer!

The overlay functions described are for the Exec/94 release
of the system, and may not correspond to previous versions of the
system. This is especially true when dealing with Dfnl, Dfn2,
and Dfn3. In producing the TwinSystem, functions performed in
these overlays were shuffled around to meet the 2K byte size
constraint. Also, some functions were reduced or eliminated
enti reI y.

Some overlays are driven from the function code passed in A.
Most " overlays do not check to see that this value is within the
expected range. A bogus function code will cause bogus results.

* Overlays *)

~-)

System 88 System Programmer's Guide
Section 3 Page 167

Exec.OV is central to the operation of the system. It
parses user commands and initiates their execution. It also
processes errors reported through Err, and is the default handler

. for control Y ("Y) as set through Iexec. The E.xec also plays an
important role in the system boot sequence.

Emsg .OV is the system error message handler. When invoked
with an error code in DE, it displays the appropriate text on the
screen. Note that the text does not terminate with a carriage
return; this must be supplied by the user program, if needed.
Emsg is set up for use with the system error message editor,
Emed it.

Dfnl.OV provides the following functions, based on the
function code passed in A:

-Code . - -Comm andl-EunctiO-n -

13 Unused
1 IMAGE
2 INIT
3 Unused
4 RENAME
5 SetSys
6 Unused
7 Unused

The IMAGE, INIT, and SetSys functions all request
information from the user (via reads through Rlwe and WH13) , so
they are not particularly useful . as callable functions. The
command string for RENAME is pointed to by CMPTR, so this
function may be invoked by the user program. The overlay will
always return to the calling program, but does not give any
indication of error or success to the caller. The overlay takes
control of PVEC and may not restore it before returning.

Dfn2.0V provides the following functions, based on the
functlon code passed in A:

Code

13
1
2
3
4
5
6
7

Command/Function

LIST
DELETE
UNDELETE
Unused
Unused
Sniff
Unused
DIR

* Overlays *

Section 3

8
9

System 88 System Programmer's Guide

boot
DLIST

Page 168

The LIST, DIR, and DLIST commands pick up their argument
using CMPTR. Note that LIST and DLIST stop after ea~h 15 lines

-of display, requesting a character from WH~ before continuing.
DELETE, UNDELETE, Sniff, and boot also expect CMPTR to be
pointing to their arguments. The boot command should be used
with extreme caution on the TwinSystem; both system disks must be
the same revision (of the TwinSystem). The overlay will always
return to the calling program, but does not give any indication
of error or success to the caller. The overlay takes control of
PVEC and may not restore it before returning.

Dfn3.0V provides the following functions, based on the
functlon coae passed in A:

Code

o
1
2
3
4
5
6
7

Command/Function

Unused
Memory Dump Function
DUMP command in Exec.
COpy
DNAME
PRINT
TYPE
SAVE

The Memory Dump function of Dfn3 is called with the
registers as follows:

HL: Starting address of the memory area to dump to the
printer.

DE: Ending address of area to dump.
Be: The address of a string to be printed at the top of

the memory dump, terminated by a CR and a ~0 byte.
A: 1 (To select the memory dump function in Dfn3.)

On exit from the overlay all registers contain junk.

Dump dumps the selected memory area specified by the
contents of HL and DE to the printer. The string pointed to by
BC is printed along with the memory limits as the first line of
the memory dump. This string Should be terminated by a carriage
return and a zero (00) byte. Duwp first outpust the memory
limits to the printer, then begins dumping memory in hexadecimal
form, sixteen bytes per line. After a line is printed, the next
sixteen bytes are examined to see if they are identical to the
previous 16 bytes. If they are identical, this 16 byte area is
not printed, as it is a duplication of the preceding area.

* Overlays *

System 88 System Programmer's Guide
Section 3 Page 169

The DUMP Exec command does the same thing as the Dump Memory
function directly from Exec. The form of the command is:

DUMP ADRl ADR2 COMMENT

-This command is valid only in the ENABLED mode. ADRl and ADR2
are the beginning and ending memory limits, and COMMENT is any
string of characters up to a carriage return that is displayed on
the header line of the dump.

The SAVE command requests input from the user, and is
probably not useful as a callable function. PRINT, TYPE, and
COpy all use CMPTR to retrieve arguments. DNAME requests input
directly from the user. The overlay will always return to the
calling program, but does not give any indication of error or
success to the caller. The overlay takes control of PVEC and may
not restore it before returning.

-G-f-i-d-.-G-V i-s -- r-e-spo-n-s-U;)-l-e -fo-r:- - pa-r-s ing---fi I.e -names ,----en-te-l" i ng
files into directories, and replacing file entries in
directories. For more information on Gfid, see the descriptions
in the sections on the file system and system service vectors.
In the TwinSystem, the Gfid overlay just jumps to the resident
service vector.

Prnt.OV handles printer setup and modification.
section on the printer for more information.

See the

Pack.OV is called to pack a disk. It assumes that user
memory has been set to zero by the Exec. It uses CMPTR to locate
the text of the drive to pack. This function should not be
invoked by the user.

Efun.OV provides services to the editor.
functions that can be used by other programs.

It has no

Mfun.OV
m iscellaneo us
provides the
passed in A:

Code

QJ
1
2

appears only on the TwinSystem. It contains
routines and functions used in the Twin. It
following functions, based on the function code

Command/Function

SET
Porfavor
ziffle

The ziffle command uses CMPTR to retrieve its argument. The
argument is expected to be a file name followed by a space and
the seed string. The seed string may fill the remainder of the
line, just as long as you can remember it. The file is encrypted

* Overlays *

System 88 System Programmer's Guide
Section 3 Page 170

in place, one sector at a time, so the process should not be
interrupted. Porfavor and SET also use CMPTR to retrieve
arguments. The overlay will always return to the calling
program, but does not give any indication of error or success to
the caller. The overlay takes control of PVEC and may not

-restore it before returning.

Arnsg.OV is the Macro-88 Assembler error message handler. It
has no functions that can be used by other programs.

Vmgr.OV handles the hard disk volume allocation. Refer to
section 10 for more information.

* Overlays * ' J

~ ..

System 88 System Programmer's Guide
Section 3 Page 171

BASIC OYerlays

The descriptions that follow are for BASIC version C03.
With the exception of Berr, the overlays for BASIC do not provide
user callable functions. These overlays are used to reduce the

-amount of memory BASIC needs to run. They assume that the BASIC
resident is in memory, and they call functions provided in this
resident, as well as modify data areas defined by the resident.
This is why switching components between versions won't work, and
why it's hard to use these overlays other than wi th BASIC.

Bdir .OV contains "direct" commands, as well
and reenter code. The direct commands are:
RENUMBER, DIGITS, and program . line entry.

as cold start
LIST, DELETE,

Xref.OV contains the cross reference generator for BASIC.

Berr.OV contains the error processing and recovery code for
. -BAS~C-. _ No t e tha_t __ .th.e-.-fir-'s~Act_._Q_f __ e_LLo_r._.QX.Q~5!~ng_L_~~~illg ___ ._

ON ERROR state~, 1s han(ne~ by the BASIC resident. If 8el I

is called with an error code in DE and a 5 in A, it will display
the corresponding error message on the screen. All other
function codes in A rely on internal functions or data in BASIC
and should not be invoked by the user. Berr is set up to work
with the system error message editor, Emedit.

Bslv.OV provides SAVE, LOAD, SAVEF, SAVEP, CHAIN, and LINK
funct10ns.

Bfun.OV provides many of BASIC's internal functions; this
overlay 1S resident most of the time when a BASIC program is
running. It performs graphics functions (PLOT, DRAW), scientific
functions (MOD, EXP, SIN, COS, SINH, COSH, SQRT, A, LOG, TAN,
TANH, ATAN, ASIN, LOG10), matrix functions (SUM, PROD, MAX, MIN,
MEAN, STD), as well as INP and OUT.

BASIC can be run with from 6 to 26 digits of precision.
This means that the scientific functions must be implemented in a
manner that will give full accuracy over a wide range. For this
reason, power series expansions are used for most functions, with
terms being generated until the point is reached where subsequent
terms will not add to the accuracy of the result. SQRT uses a
modified Newtonian iterative approximation. The number of
iterations is determined by the number of digits precision.
Expressions of the form XAy are evaluated by repeated
multiplication for Y an integer less than 100 (decimal) ,
otherwise a log expansion is used.

* Overlays *

System 88 System Programmer's Guide
Section 3 Page 172

* Overlays *

System 88 System Programmer's Guide
Section 4 Page 173

Section 4

U.tilities for the System Programmer

Section 4 describes the utilities for the System 88.
of these programs is on the disk included with this manual.
programs included are the following:

Each
The

EMEDIT an editor for error message overlays.
allows the systems builder to tailor
messages to the end user and to add new
use by applications systems.

This program
system error

messages fo r

SZAP a program used for examining and manipulating the
contents of disks and memory. SZAP is a powerful tool
meant for use by experienced pro~mmers.

SCOPY a program used for copying a large number of files at
one time or copying a new version of a program over the
old version.

FUTIL a file utility program used to create a command file
to copy entire directories or parts of directories.

RDB a debugger for machine language programs.

Auth.OV may be installed on a user's system disk to inhibit
access by unauthorized personnel.

SPACE displays the number of bytes remaining in the
directory named on the command line.

WAIT allows a pause during command file execution.

TWID displays the contents of a symbol table file.

COMPARE compares two files.

COMP-DISK compares two disks.

CLEAN reinitializes the root directory on a disk.

ARISE undeletes a selected deleted file.

DIRCOPY copies all files within a directory, including the
subdirectories within it.

RECOVER recovers a file from a disk with a bad directory.

* Utilities *

System 88 System programmer's Guide
Section 4

EMEDIT - An Editor for Error Message Overlays

EMEDIT allows the system programmer to examine and
error message overlays in the System 88. Using EMEDIT,
view messages in an error message overlay, delete

-messages, list the messa~es to the system printer, or
existing messages.

Restrictions

Page 174

modify
you can
or add
replace

EMEDIT will edit only system error message overlays. This
means the name of the file to be edited must be exactly four
characters long. The load and start addresses in the file must
be2,,,,,m. Location 213137H in the overlay is expected to contain a
pointer to the body of messages within the overlay (see Section
7). In addition, EMEDIT must be invoked in the enabled mode. If
invoked in disabled mode, EMEDIT returns to the Exec. At this
time, the error message overlays on the disk are Emsg.OV,

--B-e-r-r.ev-,--an-d----Am-sq-.ev-.--

Using EMEDIT

The user invokes EMEDIT when the system is in the enabled
mode. EMEDIT then displays lts version number and command list
on the screen. Give commands to EMEDIT by typing a command
character, in either upper or lower case (EMEDIT folds lower case
to upper case). The command characte rs are:

Character

A
D
E
R
V
X
S
L

Command

Add message
Delete message
Edit error file
Replace message
View messages
Exit
Sort
List messages

If EMEDIT does not recognize the character typed as a legal
command character, EMEDIT again displays the command list on the
screen.

* Utilities * EMEDIT *

\ System 88 System Programmer's Guide
Section 4 Page 175

Adding messages to the text: The A Command

In response to the A command, EMEDIT prompts the user for
the error code to add by displaying the text

Add error code:

and accepts a hexadecimal number followed by a carriage return.
Lower case letters are folded to upper case, and the conversion
stops when a character not in the set a-f, A-F, 0-9 is
encountered. This number is the number under which the new
message will be stored. Any existing messages in the file with
that code will be deleted. EMEDIT then displays:

Terminate new message with ESC-CR

on the screen, and prompts the user for lines of input with the
prompt character <. Input is accepted until a line ending with an

-----e-se-ape:::::(-ESGi---eha-r-a-e-t--e-E--- fe-l-l-e -wed- -ay- a-e-a-r-F-i-a-g e re-t--l-l-FR--f-G-R-}- --i-s------­
detected. This terminates processing in the Add command. If no
file has been opened for editing by using the E command, the
error text

No file open for editing- use E first

is displayed on the screen. If the added text would force the
overlay over the maximum size of 2K bytes, EMEDIT displays the
message:

Message truncated-Overlay is full!

EMEDIT truncates the added text and terminates the Add command.

Deleting a Message: The D Command

The D command is used to delete messages from the file. The
user is prompted wi th

Delete error code:

and a hexadecimal number is input by the user for the message
code to delete. If the message is not found, the text

I can't find that message

is displayed. If no file has been opened for editing, the text

No file open for editing- use E first

is displayed and the command terminated.

* Utilities * EMEDIT *

System 88 System Programmer's Guide
Section 4 Page 176

Opening a File for Editing: The E Command

After typing E to invoke the Edit command, EMEDIT prompts
with

Edit file name:

and waits for the user to enter the name of the error message
overlay to edit (followed by a carriage return). The file is
validated, as described in the section on Restrictions. Any
errors in looking up the file are reported to the user and
terminate the command. If the file does not iook like an error
message overlay, the text

That's not an error message overlayl

is displayed and the · command terminated. If another file was
open for editing at the time the E command was given, that file

-----------=ts- ci-u-se-d,- =and--Tt--ts-=rewr±tt-en- :tn--rl±S1c:±f--moittfj-ca:t±nns::have- -be-en--------
made.

Replacing a Message: The R Command

The R command is similar to the A command for adding a
message, but it assumes that there is a message with that code
already in the file. The user is first prompted with the text

Replace error code:

and the user inputs the error code. If no message with that code
is found within the overlay text, the message

I can't find that message.

is displayed on the screen and the command terminates. If the
message exists, it is deleted, and the A (Add) command invoked to
add the message.

Viewing the Contents of the File: The V Command

The V command displays the messages in the file on the
screen. The display stops at the end of each page, and a dot is
displayed. The user may type either the single character x or X
to abort the display at that point, or any other character to
continue the display. The error codes and texts are displayed in
their order of appearance in the file. Messages added with the A
(Add) or R (Replace) commands will appear at the end of the file.

If no file is open for input, the message

No file open for editing- use E first

* Utilities * EMEDIT *

System 88 System Programmer's Guide
Section 4 Page 177

is displayed and the response to the command aborted.

Listing messages to the system printer: The L Command

The L command lists all error messages in the currently open
-file to the system printer. An error message results if no file
is currently open for editing. The error messages are listed in
the same format as produced by the V (View) command.

Exiting the program: The X Command

If no file was open for input when the X command was given,
or no modifications had been made to the file currently open,
EMEDIT returns to the Exec. If the currently open file was
modified by use of the D (Delete), A (Add), or R (Replace)
commands, the new file will be written to disk. If the file has
not increased in size, the new contents will be written over the
old file on the disk. If the file has increased in size, the old

- --copy of .the-f-i--i-e is d-e-i-ete-d-=1--ev--en if it:=js a syst--em filej, and-a----- --
new copy of the file is created on the disk.

Editing BASIC Error Messages

The error messages for BASIC are in the error message
overlay Berr.OV. To save space in the overlay, if the last
character in a message is the letter e, this will be expanded to
the word "error." This expansion turns the string "Syntax e" in
the Berr file into the string "Syntax errror" on the screen when
the error is reported from BASIC. The user be aware of inserting
messages into the Berr file that end in the single character e.

Suggestions for using EMEDIT

When adding new error codes to the system, write them down
and add them to the User's Guide, as well as to the System
Programmer's Guide and any applications documents. Make error
messages clear, giving as much information about what caused the
error as possible, and use good grammar. . Be cautious in
inserting obscene error messages- if a disk containing such error
messages accidentally gets released or sent to customers, it can
cause a lot of trouble!

* Utilities * EMEDIT *

System 88 System programmer's Guide
Section 4 Page 178

Utility SZAP

SZAP (SuperZap) is a utility .program that allows the
experienced system programmer to examine and modify the contents
of both system RAM and disk storage. SZAP is a powerful tool

-when used correctly and is capable of destroying the contents of
disks and main memory when used incorrectly.

SZAP allows the system programmer to display a selected 256
byte page of main memory or a selected disk sector. SZAP
displays the page in hexadecimal form, with an optional character
display. The user may move an editing cursor through the
selected page by using the cursor controls and so display the
previous or next page of memory or disk. To modify data present
in the display, the programmer enters either hexadecimal bytes or
character strings. Additionally, SZAP can zero the contents of
the page from the cursor to the end of the page in response to a
single keystroke. SZAP makes modifications to main memory pages
as t trECJT5"eT=-ent~ r 5 tbJL:o--ew=t'htta::=:=A-m15J'ttfte"1t1ti::sk paqe:=:tsesn---m
is written to the disk when a request is made to display another
page or to exit the program. The programmer may disable error
checking and reporting when modifying the disk; this allows the
systems programmer to attempt to reconstruct damaged disk
directories and the like.

Running SZAP

The user must be in the enabled mode to execute SZAP. If
the user tries to invoke SZAP when in the disabled mode, SZAP
immediately returns control to Exec. When SZAP begins execution,
the Control-Y vector is set to force exiting of the program (that
is, a control-Y will cause you to exit from SZAP). SZAP displays
a command summary and the version number. SZAP then waits for
the device selection, ":" and a ~rive number or 0 for memory.

A SZAP command is either a single character or a hexadecimal
number. (The single character commands appear below.) A number
alone is an implicit command to SZAP to place that byte at the
cursor position in the page that is display~d on the screen. A
hexadecimal number is terminated by a space, whether it appears
as the default data entry command or as a command argument.

* Utilities * SZAP *

9

System 88 System Programmer's Guide
Section 4 Page 179

The command characters recognized by version 2.3 of SZAP (and
their associated functions) are:

Character

Contro1-E
Contro1-Y

ESC
ESC

:n
/n
I

Control C
Z

RET
LF

Function

Exit after updating disk
Exit without updating disk
Begin text entry (single quote)
Toggle text display mode
Terminate text entry (escape)
Select device n for display
Select page n for display
Display indirect
Toggle error check on disk data
transfers
Checksums 4 sectors.
Zero data from cursor to end of page
(Carriage return) Display next page
(L i.ne- .f-e.ed-) Dis pIa y p r:ell-io-US--pa g e

(n = a hexadecimal number)

SZAP folds lower case letters to upper case when accepting
commands or hexadecimal numbers as input.

The four cursor control arrows have the following functions:

Cursor
Arrow

UP
DOWN
LEFT
RIGHT

Function

Move to beginning af previous line
Move to beginning of next line
Move cursor left one byte
Move cursor right one byte

SZAP displays the preceding page if the user moves UP or
LEFT from the top of the screen display; it displays the next
page if the user moves DOWN or RIGHT from the bottom of the
display. The cursor appears in the upper lett hand corner (byte
00) of a new page display.

Exiting SZAP: Contro1-E

To exit from SZAP the user types a Control-E. Any modified
dis~ pages not yet written out will be written to the selected
disk drive. Once the user exits SZAP, SZAP may not be restarted
or reentered by way of the system commands START and REENTER.
The user must re-invoke SZAP to use it again.

* Utilities * SZAP *

System 88 System Programmer's Guide
Section 4 Page 180

Hexadecimal Data Entry

Entering a hexadecimal number is an implicit command to SZAP
to store the least significant eight bits of that number in the
location pointed to by the cursor. The number is delimited by a

-space. Once the space has been entered, the selected byte is
updated and the cursor moved to the right (the next location in
the page). Typing errors are corrected by simply typing enough
characters so that the least significant eight bits (the last two
digits) of the number are correct. The strings 2, 9A02, and
3E002 all store the eight bit hexadecimal quantity 02.

Text Entry: The ' Command

A single quote symbol places SZAP in the text entry mode.
All characters typed from that point on, with the exception of
Control-Y and ESC (escape), will be entered into successive
locations in the displayed page. This includes control
cha rae e:ers SlJ cn=a-s car-rl ag e r-erur n =ana cur so r =conEt01 k e ysr=xsc
(escape) is used to terminate the text entry mode. To terminate
text entry and exit from SZAP, the user types an ESC/ Control-E.

Toggling the Text Display: The ESC Command

The user may display the page in text form on the right
portion of the screen. The ESC ~ommand enables or disables this
display. When the text display is enabled, the frame address is ~_
not displayed, and those characters' in the range 00 to 7F ~
hexadecimal are displayed in their normal ASCII form; the values
80H through FFH display as blanks. NOTE: SZAP will not display
the contents of the screen properly if you try to display the
video board itself!

Selecting the Device: The: Command

The command character : (colon) followed by a hexadecimal
number selects the device to be displayed and edited. Device
z~ro denotes main machine memory, device 1 is disk drive 1, and
so on. If the page currently on display represents a disk page
that has been modified, that page will be written out to the
proper device before the: command is processed. When a disk is
edited, the frame number displayed in the upper right corner of
the ~creen consists of the device number and a four digit
hexadecimal number representing the sector address. (Note: the
frame address does not appear when the text display is enabled.)
When a disk is selected, sector 00 is automatically displayed on
the screen as the current page.

* Utilities * SZAP *)

System 88 System programmer's Guide
section 4 Page 181

Selecting the Displayed Page: The / Command

To display a particular page of the device being edited, the
user types /nnnn, where nnnn is a hexadecimal number. This
number selects the des i red page. When dev ice 00 (mai n memory) is

-being edited, only the upper eight bits (the two most significant
digits) of the last four digits of the number are used to select
the page to be displayed. When the user is editing a disk (by
using the command), SZAP uses the entire number as a sector
address. In either case, the number is terminated by a space.
Typing errors are corrected by entering more digits, since only
the last four hexadecimal digits of the number are used. For
example, suppose the user enters /12345678. If a disk is being
edited, sector number 5678H will be displayed (or at least SZAP
will try to do so!). If main memory is being edited, as selected
by "device" 0, " memory starting at location 5600H will be
displayed.

The I command uses the sixteen bit address pointed to by the
cursor in the frame currently being displayed as the new frame to
display. This number is treated in standard 81218121 fashion, less
significant byte first. If the user executes the I command while
the cursor is pointing to the two bytes containing the number 3D
01, sector 13DH is displayed (if a disk is being edited). If
main memory is being edited, page l00H is displayed. If the page
currently on display is a modified disk sector, "that sector will
be written out to the disk before the next sector is displayed.

Disabling Disk Error Reporting: The Command

WARNING: THIS IS DANGEROUS!

The command toggles a flag that enables or disables SZAP
disk error detection and reporting. When the user inputs the !
command, this flag is displayed on the screen following the frame
address. , A value of 00121121 indicates that errors will be reported;
a value of FFFF indicates that errors will be ignored. It is
sometimes useful to disable error detection and reporting when
attempting to recover destroyed or unreadable disk directories.
Although useful, this feature is dangerous-- use with extreme
caution!

SZAP Display of Error Conditions

When SZAP encounters an error such as a disk transfer error,
it clears the text display flag and displays the error code on
the screen to the right of the frame address. The error code
displayed is the one reported by the systemstores the checksum in
the first byte of the current sector. Since SZAP has no way of

* Utilities * SZAP *

System 88 System Programmer's Guide
Section 4 Page 182

knowing when a sub-directory is being modified, it is the users ~
responsibility to use this command after modifying a ~
sub-directory so that it will be properly ' checksummed when
checked by Gfid. If a sub-diredtory is modified and not
checksummed, the first access of that sub-directory will report

-one of your favorite error messages -- Disk Directory Destroyedl
When this happens use SZAP again and checksum the sub-directory
using the AC command. Main directories are automatically
chec ksummed •

Zeroing the Page: The Z Command

The Z command zeroes the contents of the page on display
from the cursor position to the end of the page. The previous
contents of the page are lost. If the user accidentally gives
this command while viewing a memory page, that page of memory is
zeroed and the previous contents of that page are lost beyond
recovery. If the user gives this command by accident while

----d-i--s-pra-yi 119 a d ~-g-e,-t-h-e t-wo-wa-v=to=p!-ev-en-t---t-M=-<--pa-r~ i--a-tl-Yt=
zeroed sector from being written to the disk are to RESET THE
SYSTEM by pushing the Load button (and be more careful from then
on) or to type Control-Y to abort to Exec without updating the
disk.

Displaying the Next Page: The RETURN Command

(CR
the
256

To display the next page, the user types a carriage return
or RETURN). If a disk is being edited, the next sector on
disk is displayed. If main memory is being edited, the next

byte page is displayed.

Displaying the Previous Page: The LINE FEED Command

The previous page will be displayed when a LINE FEED (LF) is
typed.

Cursor Movement Using the Cursor Keys
I

The four arrow keys at the right of the keyboard are used to
move the cursor up, down, left, and right within the page on
display. Their use may also cause the previous or next page to
be displayed if they are used to move off the top or bottom of
the frame being displayed. The left and right arrows move the
cursor left or right one byte. The up arrow moves the cursor
either to the beginning of the current line or to the beginning
of the previous line. The down arrow moves the cursor to the
beginning of the next display line. The cursor keys in
combination with LINE FEED and RETURN allow the user to move the
cursor forward or backward one byte, one line (sixteen bytes), or
one pag e (256 bytes).

* Utilities * SZAP *)

System 88 System Programmer's Guide
Section 4 Page 183

Attempting to Reconstruct Directories

NOTE: A complete understanding of Section 2 of this manual
is necessary, but may not be sufficient, in attempting
to reconstruct a damaged disk directory. Making backup
copies of important disks on a regular basis is much
easier than trying to reconstruct a damaged directory.

When SZAP is instructed to read disk sectors ~, 1, 2, or 3
of a disk device (the directory sectors), one sector is read into
the internal editing buffer. When another sector is selected or
any other event takes place that would cause that updated sector
to be written out to the disk as part of the directory, SZAP
follows the following procedure:

1) Each of the directory sectors ~, 1, 2, and 3 of the
selected device are read into the system directory one
sector at a time. This means that four individual calls

______ t.o--D_i'--Q __ ax_e __ m_ade_to_r_eM--tlLEL-d i.I ~ t~ r y, e a ~ r e que s t i ng
one s~ctor, rattl~~ one call to Dio requesting four
sectors.

2) The sector updated by SZAP is copied to its correct place
in the directory area.

3) The directory checksum is recomputed and stored in both
the directory.header and NFCK (see Section 3).

4) The four directory sectors are written out by one call to
'Dio.

If a disk directory is unreadable because of a checksum
error on one of its sectors or some similar error, the following
procedure is suggested, BUT NOT GUARANTEED:

1) Try reading the disk directory on other drives in the
system.

2) Image the disk onto a scratch disk, and try to read that
disk on other drives.

3) If (1) and (2) have not succeeded, use SZAP to examine
the first four sectors of the disk to determine what type
of problem exists and which sector or sectors are
affected. You can also use Sniff to check for hard
errors.

4) If the system can read sectors 0 through 3, chances are
some program has gone wild and stomped the directory. In
this case, the directory may be carefully reconstructed
by hand, one sector at a time.

* Utilities * SZAP *

System 88 System Programmer's Guide
Section 4 Page 184

5) If a checksum or preamble error has occurred, making one ~
or more sectors of the directory unreadable, the! ~
command may be used to disable error checking. You can
then read the offending sector into memory,correct it by
hand, and then write it back to disk. After this is
done, use the 1 command again to enable error checking.
Re-examine the directory sectors to determine if there is
a hard media error or if the error has been covered up.

6) After the disk has been "fixed" by performing (4), (5),
or other procedures, the important files on it should be
INDIVIDUALLY copied to other disks, and then the
offending disk should be re-initialized by using the INIT
command. Th isis very impo rtant , espec iall y if a
directory was rebuilt by hand! Such a reconstructed
directory may have subtle errors in it that are not
immediately apparent but that will cause a catastrophe
the first time a file is deleted, the disk is packed, or
a n~~~ is createG~n the disk.

Morals on Reconstructing Directories

The following suggestions are made in the hope you will
never need this section and the trauma that accompanies it:

1) Perform preventative maintenance on
regularly scheduled basis. This
running the memory test, cleaning
drives, etc.

your system on a
should consist of

the heads on disk

2) Log hard disk errors, such as checksum errors and
preamble errors, recording both the name of the disk and
the offending drive. This information may help in
tracking down a bad drive, compatibility problems between
drives, or bad media.

3) If possible, write-protect system disks.

4) Keep write-protected backup disks. The more important
the contents of a disk is, the more often it should be
backed up. When making backup copies, use a SET of disks
for backup, and rotate the usage of the backup disks so
that you write over the oldest backup copy each time.
After making a backup copy, "Sniff" the disk, or use some
other procedure to verify that the backup is good.
Backup disks should be write-protected and stored away
from other disks.

The gerieral moral of this section is to treat your system
like a "real computer." Regularly scheduled and performed
preventive maintenance can detect problems before they cause

* Utilities * SZAP *)

System 88 System Programmer's Guide
Section 4 Page 185

trouble. Regular backup of the file system leaves you less
vulnerable if disaster does strike. Preventative measures take
time and use up disks, but can minimize losses.

* Utilities * SZAP *

System 88 System Programmer's Guide
Section 4 Page 186

Utility Program SCOPY

SCOPY allows a user to copy files over old files (if they
fit) and to copy files without using Dfn3 which avoids overlay
swapping in the single user system and therfore speeds up the
copying process. System files may be copied without resetting
the system bit. SCOPY accepts commands in two formats. In order
to copy one file, you can type the command in the format:

SCOPY pathnamel pathname2 {anychar}

where pathnamel is the source file, pathname2 is the destination,
and the optional anychar is any printing character. If anychar
is present, SCOPY will copy pathnamel over the already existing
pa-th-n.am.e-2-----Lf-the -f-i-l..e -pa th-n-a-m-e-2 i-s-tn..e same--s-i--Ze--G-£-- sm-a-l-l--e-!' th-a-A
pathnamel. If pathname2 is larger, so that it will not fit in
the former space, SCOPY will give the error 'What?'. In order to
copy more than one file, type

SCOPY

The program will display its version number and the prompt

SCOPY

You can then enter sets of pathnames followed by an optional
anychar as above. SCOPY will copy the files specified and again
prompt for another set of filenames. In order to end the process
type RETURN. Errors shown by SCOPY are prefixed by T:, F:, or
x:, where x is the drive number that caused the error. T:
specifies the To or destination disk and F: specifies the From or
source disk.

SCOPY is used in the command file created by FUTIL to do the
actual copying of the files.

* Utilities * SCOPY *
)

System 88 System Programmer's Guide
Section 4 Page 187

Utility Program FUTIL

FUTIL is a BASIC program that allows the user to copy,
delete, or move some or all of the files in a directory. FUTIL

. works by generating a command file called 'fool. FUTIL first
asks the user for the volume number of the source disk. This is
the drive number of the disk from which you wish to copy, delete
or move files and must be in the range 1-9. The disk specifi~d
is then read, and each file is displayed on the screen as it is
found. Next all of the directories found are displayed on the
screen and the prompt:

M(ove), C(opy), D(elete), N(ew source) or E(xit)?

is displayed. Respond with the one character corresponding to
the task you wish to perform and a RETURN.

Move will copy files from one directory to another and then
--------~6elete the original files. After move is selected, FUTIL will

display the source volume number and wait for the user to specify
a subdirectory if desired. To move files from the main directory
simply press RETURN. FUTIL will then ask for the Destination
Directory. Type a legal pathname including all necessary angle
brackets such as:

Source: <1< Destination: <2<TRIX<

The final angle bracket is not necessary but is allowed.
will then ask:

Copy all or part? (a or p):

FUTIL

If all files are to be copied, enter a, otherwise enter p. If P
is entered FUTIL will ask:

move <1<Exec.OV to <2<TRIX<Exec.OV? (y, n, x):

'y' will cause the file to be entered into the command file. In'
will cause the file to be skipped. 'x' will cause FUTIL to stop
asking about any more files in the directory. FUTIL will ask for
each file in the source directory until all have been done or the
user types 'x'. FUTIL will then return to the options question
to allow moving of another directory or any of the other options.

Copy will copy files from one directory to another in much
the same manner as move.

Delete will delete files from the source directory.

New source will read another volume for copying. Keep in
mind that when the command file is executed the volumes specified

* Utilities * FUTIL *

Section 4

must be in
generated.

System 88 System Programmer's Guide

place as they were when the command
There is no time for disk shuffling.

Page 188

file was

Exit causes the command file to be closed and asks if the
user. wants to run the command file now. If so the file will be

.run immediately. Otherwise, the file can be run by typing 'foo'.
'fool can also be edited to change the action taken when it is
run. For instance, Delete can be specified to FUTIL and instead
of running the command file, the user may edit foo and change
DELETE to PRINT and insert PAGE between each of the commands and
have a command file to print all the files in a directory.

FUTIL is provided in an unprotected and untokenized format
so that the user can play with it and add features if desired.

* Utilities * FUTIL *)

System 88 System Programmer's Guide
Section 4 Page 189

Debugger

'RDB' is the debugger for PolyMorphic Systems System 88
computers. It represents a significant improvement in features
and human engineering over the "front panel" for debugging

-assembly language programs. This short note describes the
facilities available in this debugger, but is not a course in
assembly language debugging or programming. It is strictly a
note on debugging aids. .

Using the debugger

The debugger desired is invoked by typing its
then prints its herald and exits. The user may
other program or set ~f programs. The debugger
entered by typing Control-U on the keyboard.

name, RDB. It
then start any
is initially

The debugger is a relocatable program that must be loaded
_ _ __ -lp.ti-.OI--.t...<LlQadjn9th~ro9ram t~~ebugged. It locates itself

just below MemTop and resets MemTop accordingly.

Warnings on the use of the debugger

The programmer should not use RST 1 or · RST 7 instructions,
and should not use interrupt level 1. The debugger assumes contol
over these interrupt levels as well as interrupt level 7. The
user should not single-step through ,the monitor root, especially
those portions dealing with disk I/O and overlays. Breakpoints
must be very carefully set in overlays. They won't work if the
overlay is swapped out and reloaded.

Debugger Display

The debugger displays in the upper left corner the current
values of the SP, HL, DE, and BC registers ~ith the four bytes
pointed to by them. The A and PSW registers are shown with the
status of the C, Z, M, PE, and AC flags.

The left side shows the next 9 instructions to be executed
with their addresses. The first corresponds to the program
counter.

Debugger Commands

The commands to the deb,ugger are one character, optionally
preceded by a 16 bit hexadecimal number.

* Utilities * Debugger *

System 88 System programmer's Guide
Section 4 Page 190

G Go

The G command is used to continue program execution from the
current value in pc.

x Single step

The X command causes a single instruction to be executed.
Note that if this is a 01 instruction, a sequence of instructions
may be executed before control is returned to the debugger. The
argument, if present, is ignored.

I Indirect Display

The I command indirectly sets the window address. If in the
numeric display mode, the window will display the the address
presently pointed to in byte reversed form. If in the
instruction display mode, the window is set to the address
e-on-t-a-i-n-e-d-o~t-e:-:past the current wi-n~-position. This is
handy for JMP or CALL instructions.

J Temporary breakpoint

The J command puts in a temporary breakpoint at the
instruction following the current one to be executed. When
single stepping a program and encountering a CALL ftti, the J
will execute the subroutine and return to the debugger when the ~_
subroutine returns. If a normal breakpoint is encountered before ~
the temporary, the temporary one is lost.

M Move data

The M command moves a block of data. When prompted, enter
the starting address of the source, the ending address of the
source and the starting address of the destination. If no
starting address is given, the move is aborted. Note that data
cannot be moved on top of itself.

o Output

The 0 command sends a byte of data to an output port.

Q Quit

The Q command restores MEMTOP, sets UVEC to
and UCHR to", and warm starts the Exec. If a
expected to continue functioning, don't Quit the
remove the breakpoints and Go.

* Utilities * Debugger *

point to Ioret,
BASIC program is
debugger, just

)

System 88 System Programmer's Guide
Section 4 Page 191

R Restore screen

The R command restores the screen display until any other
key is pressed.

S Search

The S command searches for a string of up to 10 numbers.
Enter ## ## i# where each number is terminated by a space. The
last byte is terminated by RETURN •. Enter the starting address
and press RETURN. The window will point to the match. "C" will
continue to the next match. The string will always be found at
least once since it is saved in a buffer in the debugger.

T Set MEMTOP

The T command allows the changing of MEMTOP. Enter the
value of the desired MEMTOP and press space. If no number or
zero is given, MEMTOP is not changed.

v View

The V command sets the window address if preceded by a
number. Otherwise it advances the window address either 8 or 64
bytes for instruction or number mode, respectively.

W Warm start Exec

The W command sets PC to 0403H and does a GO.

Z Fill memory

The Z command will fill memory with a byte from a starting
address to an ending address. If no byte is given the fill is
aborted. Note the distinction with the iZ command.

Arrows Move window pointer

The arrow keys move the window pointer:

Up

Down

Left

Right

Up 8 lines in instruction mode.
bytes) in the number mode.

Up I line (8

Down 1 line (8 bytes) in the number mode. If in
the instruction mode, it may show trash as it
can't disassemble backwards.

Left one byte in the number mode. Up 1 line in
the instruction mode.

Right one byte in number mode. In the instruction

* Utilities * Debugger *

Section 4

xxxxl

System 88 System Programmer's Guide
Page 192

mode, it may show trash as it can't disassemble
backwards.

Set breakpoint

The ! command sets a breakpoint at the location specified.
Up to 8 breakpoints may be active at any time. The instruction
breakpoints, and the instuction on which the stop will occur are
displayed in the upper right portion of the screen while the
debugger is active. If the address given is already
breakpointed, no action is taken. Care should be exercised in
setting breakpoints in the overlay or other system areas.

% Clear breakpoints

The % command clears all instruction breakpoints, and the
instruction breakpoint display on the screen disappears. No
facilities are provided for clearing only one breakpoint. All
breakpoints~~~e~TED=at=Pnt=~uc~e~.==

xxxx: Modify register pair

The: command allows the user to. modify the contents of
general register pairs (no facilities are provided for changing a
single register). The various commands are:

xxxx:P Set PC
xxxx:H Set HL
xxxx:D Set DE
xxxx:B Set BC
xxxx:A Set A, PSW

NOTE: No facility is provided for changing SP.

xxxx;I Display in instruction format

The ;1 command sets the display block format to the
instruction mode. The contents of the memory area set by the V
command will be displayed as instruction (see alsa ;N, ;Z, V).
If an argument is given, it will be used as the display start
location. If no argument is given, the current diplay location
will be used.

xxxx;N Display in numeric format

The ;N command sets the display block format to numeric.
The contents of the memory area set by the V command will be
displayed in hexidecimal, with the ASCII character equivalents of
these memory locations displayed to the right of the numeric
display. Arguments are the same as the ;1 command.

* Utilities * Debugger *)

System 88 System Programmer's Guide
Section 4 Page 193

xxxx;P Display input port mode

The ;P command sets the window to display the input ports
selected. Note this mode will not display ports 18H through IBH,
as these are the single step ports.

;Z Clear display block

The iZ command clears the memory block display. This speeds
up the display.

xxxxV View memory

The V command, in conjunction with the iI and iN commands
allows the user to diplay a selected block of memory in either
numeric/character, or instruction format. If an argument is
given with the V command, that location will become the start of
the display, using the current format. If no argument is given,
the locations following the currently displayed block will be
displayed.

Entering hexadecimal data

The. command initiates the entry of hexadecimal, 8 bit data
into the memory block shown by the V, iI and iN commands. After
the has been recognized, hexadecimal data is input from the
keyboard and the least significant 8 bits are stored in
successive locations. Data input is terminated by ESC. The data
byte (if any) preceeding the ESC is not stored into memory. Any
non-hexadecimal character terminates an 8 bit quantity, displays
the stored data, and increments the pointer. The entry pointer
is reset by the V, iN or iI commands. The arrow keys may be used
to move to a specific memory byte.

Enter text

The ' command allows the user to enter text into the memory
block displayed by the V, ;I or iN commands. After the' is
recogni zed, tex t is accepted from the keyboard and stored in to
successive memory locations until an ESC is entered. The text is
echoed to the screen with control characters displayed as special
symbols. The arrow keys may be used to move to a specific memory
byte.

* Utilities * Debugger *

Section 4 ·
\

system 88 System Programmer's Guide

Authorization OVerlay - Auth.OV

Page 194

The Auth overlay is an optional component of the System 88
that requires users to give an authorized name and password
before using the system. Systems containing Exec versions number

-52 or later perform this authorization process if the Auth
overlay is present on the system disk. This authorization
process is not meant to be "totally secure," or to totally
prevent unauthorized use of the system; it IS meant to make
unauthorized use of the system difficult.

Signing Onto the System

The system checks for the Auth overlay during every system
boot. If the overlay is on the system disk, the system invokes
it with a function code of ~~, which it passes to Auth in the
Accumulator. The function code of 0~ tells Auth to ask for a
user name and password. Auth prompts the user to enter his or
he I name; tiTen=-AUth-=cherts tilEcrranre---=ag a i us t all ill t ern all i s t 0 f
authorized names. If the name is present, Auth then prompts the
user to enter a password. The password does not echo to the
screen as the user enters it; instead, question marks appear. If
Auth does not find the name on its authorization list, or if the
password is wrong, it displays an error message to the user; the
system then goes into a loop after disabling interrupts and
zeroing part of memory. At that point the user must re-boot the
system to try again.

The user name may be up to sixty characters long, and must
be terminated by a carriage return. When processing the
password, Auth reads up to sixty characters terminated by a
carriage return; however, it useS only the first sixteen in the
validation process. If the password contains less than sixteen
characters, Auth automatically appends nulls to fill it out to
that length. The initial greeting message, the password request
message, and the failure message are in the system error message
writer, Emsg. The systems programmer may use the EMEDIT utility
described in Section 4.1 to tailor these messages.

The Exec Auth Command

With the authorization processor, a new command, Auth, is
added. This command, which must be given in the enabled mode,
allows the system user to add, delete, and list authorized users,
as well as change passwords for users.

* Utilities * Auth.OV *)

System 88 System Programmer's Guide
Section 4 Page 195

The commands to Auth are single characters, as follows:

Command Character Auth Function

X Exit Auth, warm-starting the system
A Add user to authorization list
D Delete user from list
C . Change password for user
L List names of authorized users

Commands that modify the authorization list (Add, Delete,
and Change) cause the system to re-write the overlay to the
system disk at the time the command is processed; therefore, the
disk must not be write-protected when these commands are given.

Exiting Auth: The X Command

The X command causes Auth to exit, warm-starting the system.

Adding Users: The A Command

The A command is used to add users to the authorization
list. Auth first asks for the user name. If this name already
appears in the user list, Auth gives an error message and aborts
the A command. If the name does not appear on the list, Auth
requests the password. The password echoes to the screen as a
sequence of question marks (1). The name and password are
entered onto the user list, and the overlay is written back to
the disk.

Deleting Users: The D Command

The D command is used to remove a user name from the list.
The user is first asked for the name, which must be on the list,
or an error message results. The user is then asked for the
password. This must match the password in the file, or an error
message is given, and the name is not removed from the list. If
the password matches, the name is removed and the overlay
re-written to the disk.

Changing Passwords: The C Command

The C command is used to change a user's password. The user
is first prompted for a name, which must appear on the
authorization list or an error message is generated. The old
password mu~t then be entered, and must match that currently in
the file. A new password is then asked for; it replaces the old
password in the file, which is then re-written to disk.

* Utilities * A~th.OV *

System 88 System Programmer's Guide
Section 4 Page 196

Listing User Names: The L Command

The L command displays the list of authorized users on the
screen. Passwords are not displayed.

-Installing Auth on the System 88

To install the authorization checker, copy the file Auth.GO
from the disk included with the System Programmer's Guide to the
desired system disk as file Auth.OV. Note that for Auth to be
used, the Exec on the system must be version 52 or later. Using
the Exec Auth command, authorize one or more users. No users are
authorized in the file as it is shipped. The SZAP utility may be
used to set the system bit (see Section 2) on the Auth.OV file to
insure it is not deleted, or the SetSys command may be used (see
Section 3) to make all files on the system disk system files. If
the Exec is version 52 or later and the Auth.OV file resides on
the system disk, whenever the system is booted, the user must
e nte-r--a----n-a-m-e a-n-ci-J)a-ss--we-r-d-----be-f-o-r-e t-h-e--s-y-s-t-e~e-ttS~.

How Auth Connects to the Exec

In the initialization process, before the Exec looks for the
INITIAL file, it checks to see if the file Auth.OV exists on the
system disk. If this file exists, it is called by an OVrto (see
Section 3) with a function code of 00 in A. The Auth overlay
"disconnects" PVEC and UVEC and sets the system in disabled mode ~
by clearing SCHR to prevent it from being interrupted by the \ .--'
user. If the user is authorized, the Auth overlay returns. If
the user is not authorized, the remainder of the overlay area is
zeroed, and the system hangs.

User-Written Auth OVerlays

For more security, or for other reasons, the systems user
may want to prov ide a custom Auth overlay. This overlay should
be written to conform to the conventions described for overlays
in this manual. As noted before, since Auth is called very early
in the boot process, MEMTOP has not been set, so no system
services that depend on this cell should be used. The user
written Auth overlay should recognize two function codes passed
in the A register:

Code in A

00
01

Auth Function

Verify user authorization
Exec Auth command given

* Utilities * Auth.OV *

System 88 System Programmer's Guide
Section 4 Page 197

Storage of Names and Passwords in Auth

The list of authorized user names and passwords is stored as
part of the Auth overlay. The password associated with each name
is stored in an encrypted form. The encryption used is

-simple-minded and is present as a hindrance in obtaining the
passwords of others rather than as absolute security. In the
validation process or in validating a password for the C (change)
or D (delete) commands, the password entered by the user is
encrypted and compared to the encrypted entry within Auth. This
insures that the "clear text" of the password is not left in
memory for very long.

"I forgot my password," or, How to Break Auth

All that is required to "break" Auth is a system disk that
does not have Auth connected and a system with more than one disk
drive. The "unprotected" system may be booted and used to delete

.u-t-h from the--p-r-o-t-e-G-t-e-G-sy-stem d-i-Sk-.----I--f---.t.h.e.-c-O-P¥ 0 f
Auth is marked a system file, protecting it from deletion and
renaming, Szap or a similar program may be used to clear the
system bit and then delete Auth. A different method is . to copy
everything from the protected system disk except Auth.

Once users are authorized, those authorizations may not be
changed or removed without knowing the associated passwords. A
new, "clean" copy of Auth may be installed, without any
authori zations, and then user names- added. It should be possible
for the persistent user to break the encryption used on the
passwords, but no details on the algorithm used will be given
here.

Suggestions for Using Auth

User names may be as long as desired, up
characters. A password should be easy for the user to
A password that is quick and easy to type is desirable
are going to be watching you type your password.

to sixty
remember.
if others

Remember: if you forget your password, it is very difficult
to recover. To be effective at a computer installation, all
system disks should have Auth on them, including backup disks.
The Auth processor is NOT meant to provide "absolute" security
from unauthorized use of the system; it is meant to hinder
unauthorized use.

* Utilities * Auth.OV *

System 88 System Programmer's Guide
Section 4 page 198

Utility Program SPACE

This utility displays the number of bytes remaining in a
directory. It is invoked as follows:

SPACE 4

for the main directory on unit #4

SPACE S<TRIX

for the TRIX subdirectory in unit IS. If no disk number is
given, the space remaining in the SysRes disk directory will be
displayed.

Utility Program WAIT

This utility may be called in a command file to cause the
~~n of·=th~ ~o~nrl file to pAUSe. It displays the word
"Waiting ••• ", until the operator presses a key.

Utility program TWID

This utility is used to view, change, and print the values
in an Assembler Symbol Table File. Since it oper~tes in a manner
similar to Emedit, the error message .editor, refer to its
instructions.

Utility program COMPARE

This utility compare two files, byte by byte, that are
specified on the command line. If there are any mismatches, it
displays the byte count from the start of the file .and the two
bytes that differ. It is invoked as follows:

COMPARE Filenamel Filename2

It asks iwhether the comparison is to be sent to the printer in
addition to the screen.

Utility Program COMP-DISK

This utility compares two disks and can be called after a
disk image to verify the copy. It is invoked with only its name
and it prompts for the source and destination disks. If the
disks are not the identical, the program displays "Verify error!"

* Miscellaneous Utilities *

System 88 System Programmer's Guide
Section 4 Page 199

Utility Program CLEAN

This ~tility reinitializes the main directory of a disk. It
can only be called from the ENABLEd mode of Exec. The number of
the disk unit must be on the command line. The SysRes disk

-cannot be "Cleaned".

Utility Program ARISE

This utility resets the delete bit on a file entry in a
directory, restoring the file to active status. The program is
used in conjunction with the Exec command DLIST to determine
which copy of the deleted file is to be undeleted. It is invoked
as follows:

ARISE Filename N

where N is a decimal number corresponding to the file entry
d.e.su--ed • If th-e-same fi.Lenam.e-alr.ea.d¥-ex i sts---1lL-tbe d i rectOI..¥,
an error message results.

Utility Program DIRCOPY

This utility copies all files within a directory to another
directory, and all of its subdirectories. It is invoked as
follows:

For main directories on unit 4 to unit 5:

DIRCOPY 4 5 *

is essentially an IMAGE and PACK in one operation.

For SubDirectories Sub1 to Sub2:

DIRCOPY <d<Sub1 <d<Sub2 *

where the optional "*" means replace the file if presently in the
directory, ltd" is the option disk unit number. Many combinations
are possible, ie. copying from a main to subdirectory, from two
subdirectories, etc.

If the "*" is not on the command line and a file with the
same name and extension exists in the destination directory, the
program will pause saying:

Output file already exists!
Should I delete it? (Y or N)

If the answer is "N", then it asks:

* Miscellaneous Utilities *

Section 4
System 88 System Programmer's Guide

Page 200

OK, give me a new name for the file I'm backing up.
Filename:

If the answer is "Y", then it replaces the file with the one from
the source directory.

The replace function is performed as follows: If the files
have the same sector length, the source file is written over the
destination file on the disk. If the files don't have the same
sector length, the destinatibn file is marked deleted and the
source file is copied onto the destination disk at the next
available disk address.

If the destination disk becomes full, the message:

Destination disk is full. Insert new disk,
then press RETURN to continue.

============~T'rmr--cIm=:C:DP-rudn.9 pIOc:eSS contin-ue-g-=wi til the fits t f i 1 e in the
current directory being processed.

If the primary function being performed is a backup of a
complete disk rather than a general subdirectory copy, the
program BACKUP supplied on the system disk should be used. It
checks the "New" bit of each file and resets it after a
successful copy, thus not repeating the copying , process with the
first file of the directory endlessly. BACKUP otherwise operates ~
identically to DIRCOPY. ~

Utility Program RECOVER

This utility is used to recover a file that is on a disk,
but not accessible due to a "crashed" directory, or past the
"known" area of the disk. Use SZAP to locate the file starting
and ending disk addresses. Then invoke the program by name. It
asks the following questions:

Enter Disk Drive Number: 5
Enter Starting Sector Number: 3ee
Enter Ending Sector Number: 3lA
Enter Program Load Address: 32ge
Enter Program Start Address: 3299
Enter New Filename with Extension: <4<SUB<FILENAME.GO

A typical response by the user is in bold face.

* Miscellaneous Utilities *)

System 88 System Programmer's Guide
Section 5 Page 201

Section 5

The System 88 Printer Driver

The printer driver is an integral component of the System
88. It provides an interface between the printer and Exec
commands, BASIC programs, the formatter, and user programs. The
goal of this section is to describe the System 88 Printer Overlay
and show how the system interfaces to it. With this information,
users may write routines to interrogate or setup the printer
dynamically from user programs.

Prnt.OV Overlay

These are the function codes that can be passed in A to the
Prnt overlay and conditions for other registers if applicable.

1 - Hookup defau~rif'lter.
2 = Printer command. HL points at string which is printer

name or command.
3 = Turn off logging.
4 = Turn on logging.
5 = Show page parameters on screen.
6 = Set page parameters from keyboard.
7 = Set page parameters from registers.

B = lines per page.
C = characters per line.
D = top margin.

/ (

-,

E = bottom margin.
H = edge offset.

(line number from bottom of page)

8 = Get page parameters into registers. Registers returned
same as 7, except for E, which is the number of the
last printing line.

Wormhole 5

Wormhole 5 filters TAB, LF, VTAB, FF, and CR.
LF checks for top and bottom margin.
CR does only CR, no line feed.
VTAB does form feed if NOT at top of form.
FF does form feed.

All of the above actions are taken according to the current
printer specifications as to margins and understan,ding of TAB's
and FF's.

* Printer Driver *

System 88 System Programmer's Guide
Section 5 Page 202

If the following characters are sent to WH5 they will return
the following information in A:

80H = current line number.
8lH = current character position.
82H = lines per page.
83H = characters per line.

The address for Wormhole 5 is 0C34H for the Single user and
2E20H for the Twin. In BASIC the address is obtained as follows:

100 X=PEEK(2)+20 \ REM X=Address of WH5

Serial I/O Driver - Sio.PS

The standard system loads the code in the Sio.PS file into
the printe.r driver block startiRg==at:=aaar8ss 3T~H in=the SlngIlee=========
User or FD00H in the Twin. This code actually handles the
interrupt level processing of characters to and from the serial
printer.

Direct entry to Sio.PS

There are occasions when an applications program needs to
send escape code sequences directly to the printer without having ~
them trapped and/or modified by the printer driver. This may be • ~~
accomplished by calling directly the serial I/O driver code.

For assembly programs, load the character to be sent into
the A register, set B to I and call either 3000H for the single
user or FD00H for the twin.

For BASIC applications, either of two methods may be used.
The first copies the assembly method, as follows:

100 IF PEEK(5)=0 THEN X=12288 ELSE X=64768\oREM Select User
110 Z=CALL(X,A,256)\ REM Send ASCII code in A
120 RETURN

The other method defines a special device driver attached to
file channel 3, as follows:

10 REM Buffers for assembly code
20 DIM A$(1:10)\A=MEM(A$)
30 DIM Al$(l:l)\Al=MEM(Al$)
40 DIM U$(1:2)
50 REM Determ ine user
60 U$=CHR$(0)

* Printer Driver *

System 88 System Programmer's Guide
Section 5 Page 203

70 IF PEEK(5)=0 THEN U$=U$+CHR$(48) ELSE U$=U$+CHR$(253)
80 REM Load assembly vector code
90 A$=CHR$(120)+CHR$(6)+CHR$(l)+CHR$(195)+U$
100 Al$=CHR$(201) \ REM Return code
110 REM Define Special File Channel, Output only
120 FILE:3,DEF,Al,A,Al

To send characters through this device driver, merely do the
following:

2012l PRINT:3,CHR$(27),CHR$(13) ,CHR$(5)

This sends an Escape, Carriage Return, Ctrl-E to the printer.

Additional information on the System 88 Printer Driver is
contained in the System 88 User's Manual, Appendix H.

* Printer Driver *

System 88 System Programmer's Guide
Section 5 Page 204

* Printer Driver *

System 88 System Programmer's Guide
Section 6 Page 2el5

Section 6

Error Messages

This section contains a list of the System 88 error messages
in numerical order. The first section 1S the Emsg.OV error
messages. The second section is the Berr.OV error messages.

£msg Error Messages

The following error messages are generated by the Emsg error
message writer:

Messages with error code ell are generated by
Dio as a result of either bad parameters
passed for disk transfer or an error in
at t e m-pting th e d i sk-t.r-ans-i-e.r •

Error code 12111211
DIO says: Bad parameters!

Error code 12111212
Hard error! Preamble bad!

Error code 12111213
Checksum error!

Error code 011214
Verify error!

Error code 12111215
Write protected!

Error code 12111216
No disk in drive, or door open!

j

Error code 121107
No controller for that device.

Error code 0108
DIO says: Data transfer error!

Error code 011219
No such drive.

Error code 01l2lB
Seek error!

* Error Messages *

System 88 System Programmer's Guide
Section 6

Error code 0110 (Single user only!)
System PROMS must be version 74 or later!

Error code 0111
I can't do that to the System drive!

Error code 0112
I can't, too much data for destination disk.

Error code 01C0 (Twin only!)
Nothing assigned to that channel!

Error code 01C2 (Twin only!)
That device is busy.

Error codes 0100 to 0106 are issued by the
Vol ume Manager.

Err o-z=cmie=1tij)-0
That unit is already connected.

Error code 0101
That volume is already connected.

Error code 0102
I can't find that volume.

Error code 0103
No volumes available

Error code 0104
Only 1 volume on that device.

Error code 0105
No device driver.

Error code 0106
Oevice definition block bad.

Error codes 02 are issued by the Exec.

Error code 0201
I can't run that file

Error code 0202
Nothing to run!

Error code 0203
OONT what?

* Error Messages *

Page 206

Section 6

Error code 0204
What?

Error code 0205

System 88 System Programmer's Guide

I don't know what to do with that file

Error code 0206
I don't have enough memory to do that!

Error code 0207
I can only pack entire disks.

Error code 0208 (Twin only!)
You need a video display to do that!

Error code 0209 (Twin only!)
That disk is not a Two User System Disk!

Error code 0300
I can't find that file

Error code 0301
I can't access that device!

Error code 0302
Preamble error-- directory unreadable!

Error code 0303
Checksum error - directory unreadable!

Error code 0306
No disk in drive, or door open!

Error code 0307
No controller

Error code 0309
No such dri ve!

Error code 0308
Seek Error!

Error code 03C2 (Twin only!)
That device is busy.

Er.ror code 03FF
Disk directory destroyed!

* Error Messages *

Page 207

System 88 System Programmer's Guide
Section 6

Error codes 05, 06 and 07 are issued by Gfid,
the text editor, and the assembler.

Error code 0500
Bad disk identifier

Error code 0501
Name too long

Error code 13502
Illegal extension

Error code 0503
Name null or weird!

Error code 13504
The directory is full

I can't write: the disk is full

Error code 0506
I can't rename across directories: use copy

Error code 0507
No new extension given

Error code 0508
I can't do that to a system file!

Error code 0509
"<7<" is not allowed here

Error code 050C
I can't copy directories

Error code 0600
That file already exists

Error code 0601
That file does not exist

Error code 0701
Output file not specified

Error code 0702
Output file already exists

Error code 0703
Input file not specified

* Error Messages *

Page 208

e

System 88 System Programmer's Guide
Section 6

Error code 0704
I can't edit that file!

Error code 0705
Input file does not exist

Error code 0706
I can't have two OUTPUT files open on the same drive!

Error code 0707
That drive already has an output file opened to it!

Error codes 09 are issued by the Prnt.OV.

Error code 0901
Printer has not been defined

Error code 0902
-----~-ha~.r--i-n te r haS-al-r:ead--¥---be~.n-de-fined

Error code 0903
Please specify a printer name!

Error code 0904
I can't change that!

The following codes are the
catastrophic system failure •.

Error code 0D0~
I can't find that overlay!

Error code DEAD
SYSTEM FAILURE: CHECKSUM CHANGED!

8err.OV Error messages

result

Page 209

of

The following messages are generated by Berr, the BASIC
error message writer. Remember that if a Berr message ends in e,
the e will be expanded to nerror" when displayed.

Error code ~4~~
Syntax e

Error code 04~1
Syntax e

Error code 0402
Subscript e

* Error Messages *

System 88 System programmer's Guide
Section 6

Error code 0403
Bad arg umen t e

Error code 0404
Dimension e

Error code 0405
Function definition e

Error code 0406
Out of bounds e

Error code 0407
Type e

Error code 0408
Format e

I can't find that line

Error code 040A
FOR-NEXT e

Error code 040B
RETURN without GOSUB

Error code 040C
Division by zero

Error code 0400
Function definition e

Error code 040E
Missing matching NEXT

Error code 040F
Read e

Error code 0410
OopS ••• BASIC goofed!

Error code 0411
Oops ••• BASIC goofed!

Error code 0412
Input e

Error code 0413
Out of memory

* Error Messages *

Page 210

o

System 88 System programmer's Guide
Section 6

Error code 0414
I can't do that directly

Error code 0415
Argument mismatch e

Error code 0416
Leng th e

Error code 0417
Overflow e

Error code 041A
Can't continue!

Error code 041B
That's not a BASIC file!

E r-r--e-J' cod e 0-4-lC
Nothing to save!

Error code 0410
That channel not open!

Error code 041E
That channel not open for input

Error code 041F
That channel not open for output

Error code 0420
End of file on that channel

Error code 0421
That program is for a different version of BASIC!

Error code 0422
That program must be saved in tokenized format

Error code 0423
That record is past the end of the file

Error code 0424
I can only do that to a disk file

Error code 0425
End of file on that channel

Error code 0426
Type error on READ

* Error Messages *

Page 211

System 88 System Programmer's Guide
Section 6

Error code 0427
That's not a BASIC data file

Error code 0428
MAT subscript e

Error code 0429
I can't do that to a protected file!

Error code 0430
Too many digits for hardware!

Error code 0431
Renumbering e

Error code 0432
The minimum allowable precision is 6.

The maximum allowable precision is 26.

Error code 0440
•••• LOAD interrupted

Error code 04FF
I can't do that to an OUT file

* Error Messages *

Page 212

9 ,

System Programmer's Guide
Section 7 Page 213

Section 7

Sample System Overlay

The following assembly listing gives a sample of the form
-that a system overlay takes. The assembly listing for Emsg.OV,
the system error message overlay shows the use of macros in the
assembler, the REFS and REF statement, and conditional assembly
for single and Twin systems. Using the REF statement makes the
program easier to update if a system symbol changes; re-assembly
is all that is required. For error message overlays, note the
pointer at OVRLY+7, which points to the start of the text. This
pointer is used by the error message editor, Emedit, to access
the text.

2007 8720

2009 F5
200A C5
2008 D5

+

i
i
i

i
i

.
I

i

i

i

The

Last

error message

updated:
78:8/79 RTM

10/17/79 RTM
12/28/79 RTM
2/26/80 RTM
4/15/80 RTM
7/20/80 BFS

01/22/81 BFS

02/03/81 BFS

handler.

Ad-d-e4--s-appo r t fo-r~B-A-R-F
bit in EFLGI
Two user system
Disaster recovery!
Interloc k msg
Preserves all reg s •
Integrate I and 2 users
sources.
Rip out Auth put in HD
errors.
Changed drive to unit
in lD0H.

We are invoked with the error code expected in DE.
i We put it into ERROR, moving the previous contents

to LERR first, and then look for a message associated
with that error number, and spits it out. If we don't

i find the text, we display an "I don't know" and split.

MACLIST 0
REFS SYSTEM
REF

overlay 'Emsg' ,GO

DW ETXT i pointer for error message
i editor

i And away we go ••••

GO PUSH
PUSH
PUSH

PSW
B
D

* Sample System Overlay *

System 88 System Programmer's Guide
Section 7 Page 214

200C
200D
2010
2012

2015 -
2018
20lB
20lC
2r3lF
21322
21324
21326

E5
3AC92D
E62r3
CC lB 134

2A9A2D
229C 2D
EB
229A2D
3AC92D
F64r3
EE4r3
32C92D

Gol

PUSH
LDA
ANI
CZ

LHLD
SHLD
XCHG
SHLD
LDA
ORI
XRI
STA

H
EFLGI
DBARF
Killi

ERROR
LERR

ERROR
EFLGI
EERR
EERR
EFLGI

; do we flush input?
; Yes, and abort
;command files

; move over, please
; new one

plotz.

clear it.
for recovery.

; Convert 3f2J6-3f2JB to lr36-lf2JB to save text space.

2029 7C MOV A,H ; Check high byte for 3.
2f2J2A FE03 CPI 3

~
~

=~==~Q~~~C~=CC~2~J~~~~~r-===========~JU~~ZC=====(C~~on~t====~~L~0~~~!~f=ccoon¥\l~e~~~t~.~=======================
2f2J2F 7D MOV A,L i it's a candidate check more.
20313 FE 136 CPI 6
21332 DA3C20 JC Cont
2035 FE0C CPI 0CH
2037 D23C20 JNC Cont
203A 2601 MVI H,l

less than 6

greater than 0SH
change to 1

2r33C 118720
2r33F EB

Cont LXI
XCHG

D,ETXT ; start of the text

213413
21341
21343
21346
21347
2r34A
2r34B
2r34C
2r34D
213513
21351
21352
21353
21354
21355
21358
2059

7E
FEFF
CA7B2r3
BA
C25l2r3
23
7E
BB
CA5C20
2B
23
23
7E
B7
C25220
23
C34020

i We now search the text. It is in the form code,sub
; followed by the message, followed by zero. The end
; of the list is an FF byte.

EFND

EFNl
EFN2

MOV
CPI
JZ
CMP
JNZ
INX
MOV
CMP
JZ
DCX
INX
INX
MOV
ORA
JNZ
INX
JMP

A,M
r3FFH
Nope
D
EFNl
H
A,M
E
Yup
H
H
H
A,M
A
EFN2
H
EFND

; end hit?
jmp/yup, no such msg.
is this the one, then?

i jmp/nope.

i this the one?
jmp/yes, go print it

point past the stinker.
find this one's end.

* Sample System OVerlay *

System 88 System programmer's Guide
Section 7 Page 215

205C
205D
2060

2063
2067
206B
206F
2073
2077
207B
207E
2081
2084

~087

FFFF

23
CD0C 04
C36400

3F204E6F
206D6573
73616765
20666F72
20657272
6F722000
216320
CD0C 04
CDD103
C36400

; Found it.

Yup INX
CALL
JMP

H
Msg
Ioret

; point past subcode, dummy •••
display it

; split

; Didn't find it.

NT db '1 No message for error ',0

Nope LXI H,NT
CALL Msg
CALL Deout print the code on the way
JMP Ioret

. Now comes the text. Macros make life simple ••• ,

m MACRO
DB
DB
ENDM

(t1H SHR 8 AND 0FFH) ,(#lH AND 0tFH)
:/1=2,0

ETXT DS

+ m l01,'DIO says: Bad parameters!'
+ m 102,'Hard errorl Preamble bad!'
+ m 103,'Checksum errorl'
+ m 104,'Ver-ify errorl'
+ m 105,'Write protected!'
+ m 106,'No disk in drive, or door open!'
+ m 107,'No controller for that device.'
+ m 108,'Data transfer errorl'
+ m l09,'No such drive.'
+ m l0B,'Seek error!'

IF USERS=l
+ m l10,'System PROMS must be version 74 or later!'

ENDIF
+ m 111,'1 can"t do that to the System drive!'

out.

+ m 112,'1 can' It, too much data for destination disk.'
IF USERS=2

m lC0,'Nothing assigned to that channell'
m lC2,'That device is busy.'

ENDIF

01Dx are Volume Manager errors.

* Sample System Overlay *

Section 7

+
+
+
+
+
+
+

+
+
+
+
+
+

0000

m
m
m
m
m
m
m

m
m
m
m
m
m

System 88 System Programmer's Guide

1D0,'That unit is already connected.'
lD1,'That volume is already connected.'
lD2,'1 can"t find that volume.'
lD3,'No volumes available.'
lD4,'Only 1 volume on that device.'
lD5,'No device driver.'
lD6,'Device definition block bad.'

201,'1 can' 't run that file'
202,'Nothing to runl'
204,'What?'
205,'1 don' 't know what to do with that file'
206,'1 don"t have enough memory to do that!'
207,'1 can only pack entire disks.'

IF USERS=2

Page 216

m 208,'You need a video display to do that!'
======================~m~~=2~4,~~~T~b~a~t~=n=dj~3~~~~~e~~-kk1~~~==============

END1F

+ m 300,'1 can' 't find that file'
+ m 301,'1 can"t access that device!'
+ m 302,'Preamble error - directory unreadable!'
+ m 303,'Checksum error - directory unreadable!'

IF USERS=2
m 3C2,'That device is busy.' (~

END1F
+ m 3FF,'Disk directory destroyed!'

+ m
+ m
+ m
+ m
+ m
+ m
+ m
+ m
+ m
+ m
+ m

500,'Bad disk identifier'
501,'Name too long'
502,'1llegal extension'
503,'Name null or weird!'
504,'The directory is full'
505,'1 can"t write: the disk is full'
506,'1 can"t rename across directories: use copy'
507,'No new extension given'
508,'1 can"t do that to a system file!'
509,'"(?)" is not allowed here'
50C,'I can"t copy directories'

+ m 600,'That file already exists'
+ m 601,'That file does not exist'

+ m 701,'Output file not specified'
+ m 702,'Output file already exists'
+ m 703,'Input file not specified'
+ m 704,'1 can"t edit that file!'
+ m 705, ' Input file does not exist'
+ m 706,'! can"t have two OUTPUT files open on '

* Sample System Overlay *

Section 7

271F FFFF
2800

~-r---t~-a-l -

Macros

System 88 System Programmer's Guide

'the same drivel'
+ m 707,'That drive already has an output file'

'opened to it!'

+ m 901,'Printer has not been defined'
+ m 902,'That printer has already been defined'
+ m 903,'P1ease specify a printer namel'
+ m 904,'1 can"t change that!'

+ m 0D00,'1 can"t find that overlay!'
+ m 0DEAD,'SYSTEM FAILURE: CHECKSUM CHANGED!'

; End of stuff for now.

DW -1 . insurance •••• ,
ORG 281313H

END

13

defined in this assembly:

db gfid m overlay

Labels defined in this assembly:

6GS 2DFC BUSIES 0C6E CBUF 2C130 CMDA 2D8C
CMDD 2D89 CMDF 2D88 CMDN 2D8E CMDP 2D8A
CMND 2D40 CMPTR 2DC7 Ckdr 13433 Command 13C4C
Cont 2133C DBARF 130213 DEFPATH 2E27 DEOUT 03D1
DEVMASK 000F DONT 2D913 DRVADTAB 13C7E Deout 133D1
Dhalt 134139 Dio 13406 DioA 0C66 DioBsy 13C6C
DioDn 13C6B DioDrv 0C69 DioHL 13C67 Di rAddr 2E02
EERR 00413 EFLG1 2DC9 EFLG2 2DCA EFN1 21351
EFN2 2052 EFND 2040 EIC 00813 ERROR 2D9A
ETXT 2087 EXECSP 2DAF Err 1340F FILE 2DCB
Fl ip 042D Flush 041E Fold 042A GO 21309
Go1 2015 Gover 13415 Iexec 0436 Ioret 0064
JOBST 2D9E KBD 13018 KBEX 2D86 KBIG 2D84
KBIP 2D82 KBUF 2D00 Ki11i 041B LERR 2D9C
LUSER 2DC6 Look 13421 MEMTOP 2D80 MTO 2DA2
MUNGl 2DA7 MUNG2 2DA9 MUNG3 2DAB MUNG4 2DAD
MemAdd 0C49 Msg 13413C NDR1VES 2D9F NFA 2EI313
NFCK 2DA1 NFDIR 2DA0 NT 21363 Nope 207B
ONCE 2DC5 OVBC 2DC1 OVDE 2DBF OVENT 213134
OVHL 2DBD OVMEM 2E53 OVNM 2DB6 OVPSW 2DC3
OVRLY 2000 Ovrto 0412 PATH 2E04 P~S 13C0E
PVEC 2D93 pages1 0C4B R1gc 0430 Rlwe 0427
Rtn 0418 Runr 13424 SBRK 2D91 SBUFI 281313
SBUF2 29130 S8UF3 2A013 SBUF4 2800 SCEND 13C1E

&-/\ * Sample System Overlay *

Page 217

System 88 System programmer's Guide
Section 7 Page 218

SCHR 2D98 SCREEN 1800 SCRHM 0C1F SINT 2DB3
SRAl 0C10 SRA2 0C12 SRA3 0C14 SRA4 0C16
SRAS 0C 18 SRA7 0C1C STACK 1000 SYSRES 2D92
TIMER 0C00 UBRK 2D97 UCHR 2D99 USER 3200
USERS 0001 USTATS 2DBl UVEC 2D95 VCBTAB 0C63
VERL0C 0439 Version 0081 WAKEUP 0CIA WH0 0C20
WHl 0C24 WH2 0C28 WH3 0C2C WH4 0C30
WH5 0C34 WH6 0C38 WH7 0C3C WH8 0C40
WH9 0C44 Warm 0403 Yup 20SC

* Sample System Overlay *

System 88 System programmer's Guide
Section 8 page 219

Section 8

The System 88 Boot Sequence

This section describes in detail the boot sequence for
single and Twin systems. The boot sequence followed by the
System 88 is different from that usually found in disk based
computer syste~s. Traditionally, the boot sequence usually
involves reading a track from a predefined disk and disk address
into memory and jumping to it. This function is provided by a
small ROM.

When-S¥~ ~~~-r4~r than loadjng ~redeteLm~nad
number of sectors from a dISk, It selects ~e boot volume, arrd
looks at the file directory on that volume to run an overlay
named Exec. This provides flexibility; the Exec overlay does not
have to be the first thing on the disk, and systems can be
customized by providing an overlay on the disk called Exec. But,
this approach also requires quite a bit of resident code; the
system has to be able to do not only disk I/O, but also interpret
file directories, and perform overlay linkages.

The TwinSystem gets around the ROMs by loading
code into high memory (E000H to FFFFH) at
Essentially, this is done by having the Exec run a
Boot.2U on the TwinSystem disk.

* Boot Sequence *

the
boot

file

system
time.

called

System 88 System programmer's Guide
Section 8 Page 220

Single User Boot Sequence

The boot process in the System 88 is fairly complex; by the
time the System 88 first "talks" to the user, it has exercised
the file lookup mechanism, the overlay mechanism, CPU card and

-main machine memory, the disk controller and disk. Part of this
process is handled by code in the system ROM, and the remainder
is done by the Exec. ROM based initialization is discussed
first.

Differences In Rom Versions

The discussions that follow are based on version 81 root
roms. Earlier versions may do things in a different manner, such
as searching for the system drive, and what wormholes and
interrupts are initialized.

Initialization Done by the Disk System Roms

The disk system ROMS are entered at system reset. The
interrupt system is disabled. The stack pointer is reset to
l000H, and the screen pointers used by the video driver in ROM
are set to reflect the video board at location l800H. The disk
controller is then initialized. Memory from 2000H to 3lFF is
then set to zero. This initializes various system cells, "cleans
out" the overlay and directory areas, and rewrites the parity bit
for memory boards with that feature. The interrupt handlers UVEC ~
and PVEC are initialized to point to Ioret. The keyboard ~~
interrupt is conected to the keyboard handler in the disk system
ROMS, and the input wormhole, WH0, is set. Wormholes 8 and 9 are
set to provide the real time clock vector and the disk I/O
vector; the parity interrupt handler is connected to SRAI. A
form feed is output to clear the video screen.

Selecting sysres

To select the system drive (SYSRES), the ROM code first
tests location lFEFH, to detect the MS controller. If the
controller is present, Look is called to find Exec on drive. 4. If
it is found, SYSRES is set to 4 and we boot off the 8" disk. If
the controller did not exist, reported errors, or the disk did
not have Exec on it, we set SYSRES to I and attempt to boot from
that drive. Note that the call to Look to find Exec on drive 4
just looks for Exec with no extension specified. This may cause
trouble if the disk in drive 4 at boot time has Exec.TX on it.
The system will try to boot from this disk and fail.

* Boot Sequence *)

System 88 System Programmer's Guide
Section 8 Page 221

Load Ing the Exec Overlay

After selecting SYSRES and clearing the screen, we fall into
Warm. Warm first resets the stack pointer, then does a Gover
call to overlay Exec. Since we set 2000H to 31FFH to zero, the

-overlay is not found in memory; Gover calls Runr to load file
Exec.OV from the SYSRES device. Runr calls Look to find this
file, and since NFDIR and the directory area have been cleared,
Look reads the directory from the SYSRES device. If all goes
well, the file Exec.OV is read from the SYSRES device into
memory, and the overlay is entered at OVENT with interrupts
DISABLED. It is in the first I/O to the disk that interrupts are
enabled for the first time in the boot sequence.

Initialization Done by the Exec

The Exec is entered DISABLED by the Gover call at Warm. It
sets the EIC bit in Eflgl, to disable Control-Y action when the
interrupts are enabled later----A-Ch~ade for the EERR--bit
1n EFLGI, Wh1Ch notes an error present in ERROR for the Exec to
process. The ROM part of the boot process cleared EFLGI and also
cleared ONCE. Since the ONCE flag is zero, the Exec calls its
initialization routine.

The first thing done is to Look up the file Auth.OV on the
SYSRES device. If the overlay exists, it is invoked via Ovrto.
Note that the first thing Exec did when it was entered was to set
EIC in EFLGl, disabling Control-Yo SCHR was cleared by the ROM
part of the boot, disabling front panel entry. Auth is entered
with interrupts disabled, and the first thing it does is to "lock
all the doors" so it cannot be interrupted! If Auth returns from
the Ovrto to the Exec, the user is authorized.

If Auth.OV did not exist, or returned, Exec then stores a
0C9H (a RET instruction) into WHS, WH6, and WH7, the printer
wormholes. Exec then Looks up file Prnt.OV on the SYSRES device.
If it exists, it is invoked via Ovrto with a function code of 01
(ini tial i ze defaul t) •

After setting up the printer, Exec looks for any file named
INITIAL on the SYSRES device. If an INITIAL file is found, the
string "INITIAL" followed by a carriage return is moved into the
Exec command buffer and an internal flag set to inhibit reading a
command from the user.

Nothing is displayed on the screen if "INITIAL" was set in
the command buffer, so that the first thing the user sees will be
controlled by the INITIAL program or . command file; otherwise the

Exec version number message is displayed.

* Boot Sequence *

System 88 System programmer's Guide
Section 8 Page 222

Since the ONCE flag has not been set to note the completion
of the boot process, Exec scans for the end of user memory. Exec
starts the scan at USER (3200H). The code used to scan for the

-end of memory is:

Mscan
Mscl

Msc2

LXI
MOV
CMA
MOV
CMP
JNZ
CMA
MOV
CMP
INX
JZ'
DCX
DCX
SHLD

H, USER
A,M

;
M,A
M
Msc2

;
M,A ;
M ;
H
Mscl ;
H
H ;
MEMTOP ;

flip

see if it flipped over
jmp/nope, found the end.
flop
put it back like we found it
see if that worked.

jmp/look at next one.

last good spot
remember that.

Note that this look also rewrites all of memory, setting up
the parity bit on memory boards so equipped. Parity was
rewritten for memory from 2000H to 3lFFH by the CPU memory scan.
If this rewrite was not done, a fetch from memory ~ould generate
a parity error, as the parity was not properly set up.

If the INITIAL text was not loaded into the command buffer,
the address stored in MEMTOP is displayed on the screen. If the
text was put into the command buffer, the user is not prompted
for input. If the text was not loaded into the buffer, the user
is prompted and a command line read. After this, ONCE is set to
0FFH to note the completion (at lastl) of the boot process.
Note that the INITIAL file is handled in such a way that it seems
to the Exec that the user typed INITIAL as a command. Calling
the INITIAL program is special-cased; the program is entered with
EIC set in EFLGI to disable Control-Yo This allows the program
to set up exit and interrupt control without being harassed by
the user. Other than in the special case of invoking the program
INITIAL at boot time, the Exec always enters a program with EIC
cleared in EFLGI and PVEC set to Iexec in the disk system ROM.

* Boot Sequence *

System 88 System programmer's Guide
Section 8 Page 223

TwinSystem Boot Sequence

Since the Twin uses the same CPU ROMs as the single user
system, its boot sequence is the same, up to the point where the
Exec is entered. The ROM code goes through the same steps in
finding and loading Exec.OV from the boot disk, and enter the
Exec at OVENT. What the ROMs don't know is that they've loaded
the TwinSystem Exec; there's still a good bit of initialization
to be done!

The Twin Exec distinguishes between system boot and a normal
Exec entry by looking at single user wormhole !21 (SUWH!2I) • If
SUWH0 contains 0CDH (a CALL opcode), the TwinSystem has not been
initialized; the Exec jumps to a special routine. If the system
does not have RAM at E!2I0!21H, an error message is displayed on the
screen and the system halts~e don't have enou~emory to run
the TWln. If there was RAM at 0E000H, SYSRES 1s ~ed into
SUWHI. Then, the single user Runr service is called to load
Boot.2U from the system disk. Any errors are reported by calling
single user Err. If Boot.2U loads, it is entered at its start
address.

Initialization by Boot.2U

The initialization code in Boot.2U is at the end of the
module; currently it starts at EF!2I0H. This area is used after
the system is initialized to hold Gfid. This is important for
two reasons.

First, the initialization code can be as long and as complex
as needed (up to 3K or so), as it is thrown away after it is
used. Second, because Gfid is loaded over the init code, the
init services cannot use Gfid! When the resident (Boot.2U) is
loaded, the Gfid vector is connected to a small routine that uses
Runr to load Gfid into memory.

Note that Boot.2U is entered with interrupts disabled. They
stay that way for a while.

The first thing Boot.2U checks in initialization is that the
CPU ROMs are version 81 or later. The TWin cannot run with
earlier version ROMs, as they do not have the WH8 hook needed to
steal the real time clock.

Next, the upper 8K (E000H to FFFFH) is rewritten to correct
the parity bit. Then, the resident portion of Boot.2U (from
E000H to EEFFH) is checksummed. This insures that the code has
not been modified, and that it was loaded into good memory. If

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 224

the checksum test fails, an error message is displayed and the
system halts (with interrupts disabled).

After the checksum test, the interrupt vectors and single
user wormholes are set up. This changes SUWHe from a COH to C3H;

-the next time the Twin Exec gets control, it will think the
system has been set up. Then, the PHANTOM line is switched on
and off to see if we have one or two users in the system. This
is done by putting a pattern in low memory (2eeeH), flipping
PHANTOM, and looking to see if the pattern is there. If it is,
we must be running on a single user system (56K, no PHANTOM
line). If the pattern i sn' t there, we must be on a Twi n wi th two
48K boards connected to PHANTOM. PMASK is ' set accordingly; ee
for single user systems, and PHANTOM for a Twin.

At this point, we are ready to perform per-user
either one or two users in the system. Before this is
modify the JMP instruction at Cold (EeeeH) to be a JMP
this illstruction is ex:e-cuted, the system will reboot.

Per-User Setup

setup for
done, we
eeee. If

The per-user setup code is called to initialize the user's
memory space, wormholes, and stack. It is called with the user's
address space selected (using PHANTOM and the BRG), so that the
one routine is used for setting up both users in a Twin. First,
memory from 2eefllH to EFFFH is rewri tten to correct the par i ty ~,/ .
bit. Then, the area from USP through KBEX is loaded. After data .~ J'
is copied into this area, it is checked. If it did not copy
correctly, we assume that user memory is bad and we halt the
system with an error message displayed on the proper user's
screen. The area following KBEX, to USER is then zeroed, and a
memory error declared if this memory does not go to zero. The
user's SYSRES, PVEC, UVEC, and SRA7 are then set up, and WHl
called to clear the screen. Note that we are still disabled!

At this point, the initial environment is built onto the
u·ser's stack. Later on when the system is "turned loose" for
normal operation, the user will be placed in operation by Flipem
jumping to Ioret to load the environment from the stack. So, we
build an environment onto the stack with the PC value EflIflI3H,
Warm. So, when the user is placed in execution, the Exec will be
loaded. USP is updated after this environment is built.

Common Setup

After initializing one or both users by calling PerUser, we
still have a few things to do. We still can't run as a full
system yet, and can't allow user timeslicing, so we save the
computed value for PMASK, and store a flIflI in PMASK to prevent
slicing. Note that interrupts are still disabled at this point.

* Boot Sequence *

System 88 System Programmer's Guide
Section 8 Page 225

We first try to initialize the printer. In the TwinSystem,
the printer driver itself lives in system common memory (FC00H),
as it is directly connected to the US ART interrupt. Look is
called to find Prnt.OV on the SYSRES disk. Note that during this
call to Look, interrupts are enabled for the first time since the

' Exec was entered. If the file exists, we call it with a Gover
and a function code of 1 in A (initialize default).

After the printer, we try to load the cache code (Cache.ZO)
for the 8" disk controller. If this file exists, we try to feed
it to the 8" controller, which mayor may not be there.

Twin Startup

At this point in time, both users have been set up; memory
has been rewritten to set up the parity bit. Both screens have
been cleared. The printer driver and cache functions have been
initialized. The wormholes (single and per user) and interrupt
vectors have been initialized. Each user's stack has been set up
to contaln a dummy environment to take the user to Warm.
Assuming we've got both users, we're currently mapped and running
as user 1. Since we've been doing setup, user 1 has a valid
directory in SBUFI. We've not run as user 2 yet, so user 2 does
not have a valid directory in its SBUFl.

We're ready to turn things loose. So, PMASK is restored to
its earlier computed value, and we jump to Ticker to start system
operation.

Return of the Twin Exec!

At Ticker, we park this user (user 1). Note that Ticker
assumes that an environment is already on the stack; it's the
environment we put there in the peruser setup code. We get to
Flipem, where we flip to the other user (user 2), load that
user's environment through Ioret, and go to the stacked pc. This
puts us back at Warm, but this time it's the Twin's Warm (E003H)
rather than the single user Warm (403H). Now user 2 needs to get
the Exec. It goes through the same sequence as usual; the
overlay isn't in memory, so it must be loaded. Look has to call
Dio to load in the directory from SYSRES. About the time we get
to Dio as user 2, we either get a clock tick that causes us to
switch users, or we start the read to the SYSRES disk, and Giveup
waiting for the read to complete. From this point on, we'll just
look at what one of the Execs does. The user switching code
works, so we can pay attention to other thin~s.

Here we are back in the Twin Exec again. SUWH0 doesn't have
a CDH in it, so we have done system initialization. ONCE
contains zero, so we have to do our part of initialization.
MEMTOP is set to DDFFH; we know how much memory we have. The

* Boot Sequence *

System 88 System Programmer's Guide
Section 8

stack runs from DFFF down to DE00; this is more
stack than in the single user system. We then
calling it to find the Exec on the system disk.
trouble if this fails!

Page 226

space fo r the
force in Gfid by
Weare in big

After forcing in Gfid, we look for the Auth overlay, and
call that if it exists to perform user authorization.

We then look at BRG to see if we are user I or user 2, and
try 0 find the appropriate INITIAL file, either INITIALI or
INITIAL2. If that file exists, we move its name into CMND so we
will do it. If not, we look for INITIAL and if found do that.

Note that Boot~2U
initialization for us.

al ready took

* Boot Sequence *

care of printer

~
~

)

System 88 System Programmer's Guide
Section 9. Page 227

Section 9

System 88 Interrupts, Input/Output Ports, and Switching

The System 88 is interrupt-driven. Tasks such as disk input
-and output are initiated by interrupts. The keyboard generates
interrupts, as does the real-time clock. This section of the
System Programmer's Guide gives an overview of the interrupt
system and the input/output port structure of the System 88 as it
affects the system programmer.

Interrupts: The Interrupt Environment and Ioret

In the 8080 processor as implemented on the PolyMorphic
Systems CPU card, response to interrupts is indistinguishable
from the execution of RST instructions. Both cases will be
referred to as interrupts except where the distinction is
important. When an interrupt occurs with interrupts enabled, the
processor pushes the address of the next instruction onto the
system stack alld jumps to vlle vf the illterr upt vector locations
defined in the monitor root. (See appendix, Listing of the 4.0
Monitor.) The interrupt receiver code in the root pushes
registers PSW, B, D, and H onto the system stack, in that order.
This is called the interrupt environment. The monitor code then
loads the new program counter value from the corresponding
interrupt vector and transfers control to it. Note that the
receiver is entered with the environment on the stack and
interrupts disabled. After completing its processing, the
service routine jumps to Ioret in the monitor root to restore the
interrupt environment, enable interrupts, and resume the
interrupted task.

A Moral for Interrupt Level Code

There is a very simple moral for the design and
implementation of code running at the interrupt level: keep it
simple, keep it fast, and keep it disabled. The first part of
the moral comes from common sense and the difficulty of debugging
code entered as the result of an interrupt. As for the second
part, the faster the code executing at the interrupt level, the
more time is left for other processing, and also the more
interrupts may be handled within a given period. Interrupt
handling code should be kept disabled (especially in a system
with more than one kind of interrupt) to prevent the following
scenario. An interrupt occurs, and during its processing, the
interrupt handler enables the interrupts. An interrupt of a
different type occurs and is processed. The original interrupt
handler is reentered, and another interrupt of that type occurs.
This scenario, if it continues, causes system failures in one of
two ways (usuallyl).

In the first failure mode, the system stack overflows as

* Interrupts, I/O Ports, and Switching *

System 88 System Programmer's Guide
Section 9 Page 228

interrupt environments are pushed onto the stack faster than they
are removed. The stack grows, and grows, and then either marches
over system data, causing ~ failure in some other part of the
system, or grows into read-only-memory. When the environment
"pushed" into ROM is restored, it will probably not be correct.

-On the System 88, the "blown stack" failure usually makes itself
known by marching repeating patterns over the video screen.

The usual cause of fail ure other than "blown stack" is the
"non-reentrant" handler. Let's say that a particular interrupt
handler was coded (ignoring the moral above!) in such a way that
it enabled interrupts and used some fixed temporary storage
locations. During processing of an interrupt, it enables and
gets re-entered by an interrupt of the same type. This interrupt
is processed, CHANGING the temporary locations used by the
interrupt handler. Then the handler is reentered at its point of
interruption with registers restored, but its temporary locations
modified. From here, things usually get quite confused and quite
hard to predict!

In summary, if the interrupt level code is kept simpI~,
fast, and disabled, it will work. Interrupts and interrupt
systems allow computers to process randomly timed asynchronous
events with a minimum of software overhead. It is the opinion of
the designer of the System 88 software that some people are
opposed to interrupt-driven systems because they don't understand
interrupts and are not capable of the careful design and ~
implementation required for interrupt processing. .~.~

Table 1: INTERRUPT LEVELS, RST's, VECTORS, AND FUNCTIONS

INT VECTOR
LVL RST ADDR

7
6
5
4
3
2
I
13

13
1
2
3
4
5
6
7

.
0Clr;,H
13C12H
0C14H
0C16H
13C18H
13CIAH
13ClCH

FUNCTION
IN SYSTEM 88

System Reset- no vector
Not used
Single density disk controller
Not used

(UISR) USART interrupt (See Note 11)
Keyboard interrupt
Real time clock interrupt
Single step interrupt

Note 1: Before diddling with the USART, read section 5.

* Interrupts, I/O Ports, and Switching *)

System 88 System Programmer's Guide
Section 9

Table 2: SYSTEM 88 INPUT AND OUTPUT PORTS

PORT
(HEX)

e
1

I/O

I/O
I/O

FUNCTION

USART data (See Note 11)
USART control (See Note 11)

Page 229

4-7
8-B

0
0

Baud rate, device and user selection
Real time clock reset

8-B
C-F
C-F

18
20-2F

I
0
I
I

I/O

ROM on for CP/M (See note 3)
Single step trigger
ROM off for CP/M (See note 3)
Keyboard data
Single density disk controller

Note 1: Before diddling with the USART, read section 51

Disc-.llSS ion oL-Table 1

Table 1 lists interrupt levels, RST instruction codes,
vector addresses, and interrupt functions defined in the System
88. The INT LVL column corresponds to the vectored interrupt
(VI) numbers on the CPU board and the bus. In the next column is
the equivalent RST instruction code. The address given under
VECTOR ADDR is the address of the16-bit vector location used by
the monitor root (see appendix). The function of the interrupt
is also given. Proper operation of the System 88 requires that
those interrupt levels used by the system are not modified. For
example, the disk transfer logic makes use · of the system
real-time clock. Interrupt levels 6 (RST 1) and 4 (RST 3) are
not used PRESENTLY in the System 88 (use with caution). Remember
that any code operating at the interrupt level is effectively
part of the operating system. For more information on the exact
processing of interrupts, refer to the monitor listing in the
append ix.

Discussion of Table 2

Table 2 gives a sketchy description of dedicated input and
output ports used by the System 88. Further information on these
ports may be obtained from the hardware manual associated with
the specific board, and may (possibly) be inferred from the
listing of the monitor root in the appendix. As with system
interrupts, the proper operation of the System 88 depends on
these control ports and on the fact that the operating system is
the only code manipulating them. Other programs fiddling with
system ports will most likely cause the system to become confused
and fail.

* Interrupts, I/O Ports, and Switching *

System 88 System Programmer's Guide
Section 9 Page 230

Twin System User Switching: The Baud Rate Generator Latch

The baud rate port is used for thre.e purposes in the System
88. The baud rate latch is a six bit latch. The least
significant four bits are used to select the baud rate. Bit 4

- (l0H) is used to select a device on the mini cards (printer
interface and cassette interface). The device selected by bit 4
corresponds to the" or I jumper on the mini card. Bit 5 is used
to select user 1 or 2 on the Twin. The output of bit 5 of the
BRG latch is connected to pin 67 of the bus which controls the
switching of memory boards and video boards. In early versions
of the CPU board bit 5 of the BRG latch was controlled by bit 6
of the 8080. Later versions use bit 5. The system software, in
order to cover all the bases, uses both bits (60H) when
attempting to set bit 5 of the BRG. This is for information
only! Almost any attempt at changing the BRG latch is guaranteed
to put you into binary oblivion.

Interrupt Charaoter Prooessing

Following is the single user interrupt character processing
code extracted from the CPU ROMs. It is entered at the interrupt
level, with interrupts disabled. We enter at KBSB if the
character was a Ay , at KBSP for AZ, and at KBUB for the character
contained in SCHR. Note that characters from command files do
not follow this path, and cannot cause these interrupts.

KBSB LDA EFLGI is the Exec running?-
ANI EIC
JNZ Ioret ; jmp/don't do it!
INR A
STA SBRK ; set Ay flag non-zero
LHLD PVEC here's where we go

KBEV LDA DONT ; so do we or don't we?
ORA A
JNZ Ioret ; jmp/we dont, something happening
CALL Kill i ; abort command files and flush
PCHL ; follow the yellow br ick road •••

KBUB LHLD UVEC ; vector for UCHR int
STA UBRK ; set flag nonzero
JMP KBEV go to it.

KBSP LXI H,PANEL ; front panel code
JMP KBEV ; go to it.

This code shows the interactions and uses of the various
character interrupt cells. DONT completely masks these interrupt
characters if its contents is nonzero. EIC set in EFLGI masks
Ay. For both Ay and the user character SCHR, flag bytes are set
nonzero even if the resulting interrupt is masked by DONT.

* Interrupts, I/O Ports, and Switching *

9

)

~:

System 88 System programmer's Guide
Section 9 Page 231

Things become a little more complex in the TwinSystem.
Where control is transferred to the interrupt routine directly
from the interrupt service routine in the single user system, we
must stack the desired interrupt environment to be run the next
time this user is run. Additionally, character interrupts are

-masked out if the user is currently in Gfid, noted by possession
of the GFLOCK semaphore. As in the single user code, Kbsb is
entered for Ay, Kbub for SCHR, and Kbsp for AZ.

; Handle processing of interrupt characters. When we have
one, we build a phony environment on the user's stack
after picking up USP, and update USP so that we'll enter
the code the next time we run the user.

Kbsb LDA EFLG1
ANI EIC ; is the Exec running?
JNZ Kbxx jmp/don It do it!
INR A
STA SBRK mark we got a Ay
LHLO PVEC ; wher e is the wizard???

Kbev LDA DONT do we or don't we do it?
ORA A
JNZ Kbxx jmp/better not, something doing

Let's see if Gfid is locked. If it is, and we've got an
; interrupt from the user that has it locked, ignore 'em!

LDA GFLOCK
ORA A locked it is?
JZ Kbxy jmp/no
ANI PHANTOM ; by which user locked?
JZ Kbu13 by user 13

Kbul LDA BRG ; user 1 has lock
XRA B does user I want goose?
JZ Kbxy jmp/no, allow goose!
JMP Kbxx ; locked, ignore goose!

Kbu13 LDA BRG
XRA B ; does user 13 want goose?
JNZ Kbxy jmp/nope, allow it
JMP Kbxx ignore goose for locked user

Load user's stack pointer so we can build interrupt
environment on right stack, kill typeahead.

Kbxy XCHG
LHLD
SPHL

PUSH
LXI
PUSH

USP

D
H,Killi
H

addr to DE
; get user stack pointe

and load it in

the PC
; but go through Killi first!

first PC

* Interrupts, I/O Ports, and Switching *

Section 9

Kbub

Kbsp

System 88 System Programmer's Guide

LXI
PUSH
PUSH
PUSH
PUSH
DAD
SHLD
JMP

LHLD
STA
JMP

LXI
JMP

H,~

PSW
B
D
H
SP
USP
Kbxx

UVEC
UBRK
Kbev

; PSW
BC
DE
HL
and update saved SP in USP

then split.

where do we go from here?

Page 232

; set user break has occurred
; go do it.

H,Fpanel ; where we would like to go
Kbev ; Zoom off •••

The above code is straightforward, just littered with
details. The~atn-d~~~~n~e from the-single user is that we
don't want to compromise system performance by entering the
user's interrupt routine from the interrupt level. Especially if
Killi must abort a command file; this displays text on the
screen, and can cause the entire display to scroll, which takes a
good bit of processor time. This problem is solved by adding
another interrupt environment to the stack, containing not only
the address specified in the proper vector, but Killi as well.
When we pick up the resulting environment to run the user again,
we'll first call Killi, and Killi will return to the routine
specified in the interrupt vector.

* Interrupts, I/O ports, and Switching * J

~ .

System 88 System programmer's Guide
Section 10 Page 233

Section HJ

Volume Manager

Introduction

This is a description of what the volume manager is, how it
works, and how to talk to it. The volume manager allows the
System 88 to better allocate its non-volatile storage resources
(e.g. floppy disks, hard disks, magnetic tape, bubble memory).

History

In the beginning the number and type of non-volatile storage
resources that could be connected to the System 88 and addressed
through the system's DID utility was limited to three 5.25 inch
single sided single density floppy disks. There was no way,
aside from rewriting the system, to cpnnect any other devices to

me The dr--i-v--es--were a e-RR-a-nentl y ClQ-G+-e-sseQ
devices 1, 2, and 3. The code which drove these devlces res
in ROM, and there were no vectors in RAM which could be used
filter calls to DID.

As the system became more widely accepted for use in
business applications a need was realized for more storage. This
need was filled with the System 88/MS which could handle an
additional four 8 inch double or single sided floppy disks. Once
again the system was rewritten and the device drivers were burned
into ROM with no RAM vectors, effectively casting it in brass and
precluding any possible changes or additions to the device
drivers. These . drives were permanently allocated as devices 4,

. 5, 6, and 7.

Shortly after the introduction of the MS it was discovered
that with a few minor alterations the double density controller
which was previously used to run the 8 inch drives could be used
to run the new 5 inch double sided drives. These new drives,
which were just becoming available, would allow us to quadruple
the storage on five inch diskettes.

At this point it was becoming apparent to the designers of
the System 88 that as new and different physical devices became
available, we would want to be able to connect them to our
computer. ' For this reason, when the system was rewritten again
to handle the new drives, the DID calls were vectored through a
location in RAM so they could easily be changed. These new
drives replaced the single density drives (devices 1, 2, and 3)
in the device addressing. Another function was added to DID
which would return the number of sectors on any physical device
when called.

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 234

Now we come to the present. Technology has struck again
with Winchester fixed disks. It is desirable to enhance our
product line with these new devices. However, they present. two
rather tough problems to the system software. The first of these

_ is that the system only understands a single digit device number
(1-9) and most of these (1-7) are already used up. The second
problem is that the system is unable to address the entire fixed
disk. Re-writing the operating system to fix these limitations
would be a major undertaking and would obsolete much of the
already developed applications software. In addition, handling
devices of this size would be very unwieldy for the current
system. The solution to these problems is a volume manager.

Definition

What do we mean by the phrase "volume manager"? It is
easier to understand if you can think of the file specifier (e.g.
<4<HELLO) as a logical "ve-l-ume" number followed by a pat.fi---n-am-e
rather than a physical drive number followed by a path name. The
physical drive "4" may correspond to the logical volume <4<, but
does not necessarily have to.

Physical devices may contain more than one volume. For
example, we may decide to set up a hard disk so that different
areas on it appear to the system as volumes <6<, <7<, and <8<.
The volume manager is responsible for mapping logical volume ~:. ' . "
numbers onto physical devices. It figures out which physical ~
dev ice the vol ume is on, 'and where on tha t dev ice it res ides.

In the System 88 the volume manager resides as a filter on
the input of the DIO function. Instead of having the system talk
directly to the physical device drivers, it talks to the volume
manager. The volume manager then translates the system calls and
feeds them to the actual device drivers. This is the only part
of the volume manager which the end user sees, but is by no means
the only function of the volume manager code.

The volume manager is actually five programs. The first
program is the filter on the input of DIO which we just
discussed. The second program is the "Vmgr" overlay which allows
you to connect and disconnect both volumes and physical devices
to the system. The third program is called "Device-Configure".
It allows a physical device to be broken up into logical volumes
of any size, and then encodes that information onto the device.
The fourth is VLIST, that lists how the volumes are currently
assigned. The last program is called "Volume-Default" and is
used to configure the default setup of your system.

* Volume Manager *

System 88 System programmer's Guide
Section 10 Page 235

Bow It Works

Resident Code

The volume manager is essentially a table , driven device.
-When the system (with the volume manager connected) is passed a
request for 010 the volume control block for the volume specified
is indexed. Information from the block is used to translate the
parameters passed to 010 to the parameters which the device
drivers need. There is a volume control block for each of the
nine volumes which the system can access. Each volume control
block contains the following information:

Offset
o
2
4
6
8
8
C

Size
2
2
2
2
3
1
1

Use
"Busy" semaphore address
Device driver address
Parameter area address
Vol ume Si ze
Offset fro~-physical 00 on device
Physical ~rlve number
Volume status

The "Busy" semaphore address is the location in memory where
the flag is kept which indicates whether the controller for that
device is in the process of doing I/O. This is necessary so
that, in the TwinSyst~m, one user does not try to initiate an I/O
while the other tiser is in the process of "doing one.

The device driver address is the location in memory which is
called in order to do the actual Disk I/O after the parameters
have been translated by the volume manager.

The parameter area address is the location in memory where
the physical disk address is passed to the device driver. If
this field in the volume control block is ~000 then the physical
address is passed in HL. This is needed is in order to handle
devices which have physical address capabilities larger than
0FFFFH.

The volume size contains the number of sectors that the
volume contains for volumes with fixed sizes. An example of a
volume with a fixed size would be one of the volumes on a hard
disk. If the number contained is 0000 then the volume size is
variable, and the device driver must be called for the size. An
example of this would be an MS which can contain either a single
or a double sided diskette.

The offset from physical 0 is the amount which must be added
to the disk address to access the correct area on the physical
dev ice.

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 236

The physical drive number is the physical address which must
be passed to the device driver in order to access the device.

The volume status tells us if there is a device plugged onto
the other end of this volume. If this byte is 0 then the volume

-is not in use. Non-zero status tells us there is a device mapped
onto this volume. Other codes are reserved for future use such
as read-only or other protective status.

CAUTION: These volume control tables are
sacred! They are not designed to be written
into. If you want to re-configure the system
use the Vmgr overlay. That's what it's there
for. Any tampering with these tables is
likely to cause a disastrous loss of data on
your disk.

Vmgr Overlay

The function of the "Vmgr" overlay is to set up the tables
in the resident portion of the code in a way that nothing gets
stomped on. There are five function codes which can be passed to
the overlay. They are:

Code Function
0H

l0H
llH
l2H
l3H

Initialize I/O drivers and VCB tables
Return a pointer to the specified VCB in HL
Connect a volume
Get device definition block
Disconnect a volume

,

Commands are passed to the overlay in the A register.

The initialize function (command 0) is called by the
88 executive when the system is reset. There are two
things that the overlay must initialize. The first set
device driver(s) and the second is the default hookups
volume control table. The initialization of the device
is done differently for single and twin systems.

Single User Driver Initialization

System
sets of
is the
for the
drivers

The first thing the overlay does is look for a file on the
disk called "Driver.DD". This file contains the hard disk
driver, any other device drivers the user may have, and the
volume manager filter. If the file does not exist, "Vmgr" will
return with an error code of 0lDSH (No device driver). No other
initialization will be done in this case.

If the file exists, it will be relocatably-loaded to just

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 237

below the top of RAM, and executed. This execution will perform
the initialization of the device driver itself. After the device
initialization is performed, the program jumps to the volume
control block initialization code.

-TwinSystem Driver Initialization

In the TwinSystem initialization the overlay also looks for
a file called "Driver.DD". THIS IS NOT THE SAME AS A SINGLE USER
Driver.DD FILE. This file only contains any optional device
drivers. This file is also not relocatable, but has a fixed load
and start address of FA00H. If the file exists and looks OK, it
will be loaded and executed. This execution does driver
initialization. When the driver code returns the routine will
jump to the volume control block initialization code.

If no "Driver.DD" file exists, device initialization will be
skipped, and it will jump directly to the volume control block
i~-i-za--t.i-on-c.OOe. No-error code will be retllrned in this
case.

VolUme Control Block Initialization

The last thing the initialization function does is to set up
the volume control blocks with their initial values. It does
this by repetitively calling the connect function with the
default values that the user has set up for his nine volumes.
Any errors encountered during these hookups will be reported back
to the Exec.

The return
number which is
control block.
earlier in this

a pointer function
passed in register
The volume control
disc uss ion.

(command l0H) takes the volume
C and points HL to that volume
block contents are defined

The connect function (command llH) can be invoked in two
ways. It can either be called to hook up a named volume, or it
can be called to hook up the next available volume on a physical
device. To invoke the command, the overlay is called with the
volume number in C, and the physical device number in B.
Optionally, a string of 8 characters may be pointed to by HL when
hooking up a named device. If HL = 0 (no name pointed to) then
it will be assumed that the user wants to connect the next
available volume on that physical device.

* Volume Manager *

System 88 System programmer's Guide
Section 10 Page 238

There are five possible errors that the "Vmgr" can return
when trying to hook up a device. They are:

01D0H:
01D1H:
01D2H:
01D3H:
01D4H:
01DSH:

That drive is already connected.
That volume is already connected.
I can't find that volume. (for named volumes)
No vol urnes av ai lable. (fo r unnamed vol urnes)
That device has no volumes defined.
No device driver.

The volume manager will not connect a new volume while an
old volume is connected to the requested number. In addition it
will not duplicate any volumes. For example, volumes <4< and <5<
would not be allowed to point at the same spot on one physical
device. If the volume manager allowed this the system interlocks
would not work, and files would be scrambled.

In order to allow different volume sizes on a physical
device and not foul up the pointers to different volumes on that
device, each volume-separable device has information regarding
its configuration encoded on the device. This information is
stored on the first physical sector of the device. This sector
is not accessible via system calls to DIO. The volume manager
uses this information when connecting a volume to assure that the
pointers to different areas of the physical device remain secure.

The read device definition block command (12H) makes this
information available · to the user. The reg ister setup for thi s
command is: B contains the physical device number of the device
being interogated; HL points to the memory area where the device
definition block is to be placed. The format of the device
definition block is as follows:

Si ze
1

Value
1-19

Defini tion
Number of logical volumes
contained on this device.

* The following is a sample entry. This entry is
repeated for each logical volume contained here.

2
3
8

100-65535
0-(dsize-100)
ASCII chars.

Vol ume si ze
Offset from physical 00
Vol ume name

The disconnect volume (13H) function is passed the volume
number in C. Before the volume is disconnected, it checks to see
if the volume is busy. This will assure that one user does not
disconnect a volume while the other user is using it. The only

* Volume Manager *)

System 88 System programmer's Guide
Section 10 Page 239

error that this function can return is 01C2H: That device is
busy.

Device-Confisure program

The purpose of the device configuration program is to set up
the device definition block on a physical device. The device
definition block was discussed in the previous section. When the
program is run it first comes up and warns the invoker that it is
about to zero the data on the entire device. It then asks him
for a device number. The selected device is then formatted with
error mapping enabled.

After the initialization is complete the program begins
,asking the user for volume names and sizes. This process is
terminated in one of three ways. It will terminate when there is
no more room for a volume, when the maximum number of volumes
(19) has been reached, or when the user answers the size question
with-a-null (j-US-t--hi-ts return) .------At that point the program will
construct the devIce defInItion block and wrIte It to the fIrst
physical sector of the device.

Volume-Default program

The volume default program sets up the
for volume hookup which the "Vmgr"
initialization.

default definitions
overlay uses on

NOTE: This program modifies the "Vmgr" overlay to
accomplish its task. This means that each system disk
which is used on the system can have a different set of
default v.a1ues for volume hookup. This should not be
confused with the Drive Configure program which
permanently sets up a physIcal device. Care should be
taken that you make all system disks with volumes
defaulted compatible with the physical device setups
which the program will be connected to.

When the program is invoked it will ask you, sequentially
for each volume number 1-9, what physical device you want
connected to that volume. If that device has more than one
logical volume on it the program will then display a list of the
volume names for your selection. If you don't select a name the
program will connect the next available logical volume on that
dev ice.

After you have made your selections for all the volume
mapping the program will ask you which volume you wish your
system to "boot" from. When the program has all this information
it will rewrite the last sector of the "Vmgr" overlay back out to

* Volume Manager *

System 88 System Programmer's Guide
Section 10 Page 240

the disk with the new information in it. This works in much the /
same way as the printer driver'S "Setup" works. .,

connecting New Dev ice Dr Ivers

If the system programmer wishes to connect new devices and
their associated software drivers (e.g. cartridge tape drives,
other hard disk types, etc.) to the system, a mechanism has been
provided in the volume manager code to allow this. The mechanism
is different for the single user system and for the TwinSystem.

In either system, when the "Vmgr" overlay is asked to
connect a new volume to the system it gets information from the
resident portion of the volume manager as to where the memory
locations are that it needs to hook up the driver. The table
contains twenty entries which correspond to the twenty physical
devices which are possible to connect to the system. The entries
in the table are the existence flag, the type flag, and locations

----~1t-.n m e1Dl>--yy:=irf t be" ev ice i"trtv e r, pa ram e t era rea, a n t"l=t1Le..-----'bk..-.lJ--s~y.----'------
flag. This table is called the driver definition table. Entries
in the table are organized as folows:

Si ze
1
2
2
2

Offset
o
1
3
5

Definition
Existence Flag
Busy Flag Address
Device Driver Address
Parameter Area Address

The existence flag tells the "Vmgr" overlay whether a device
driver exists for the physical device. If none exists, then the
overlay will refuse to connect a volume to it.

The busy
the TwinSystem
used. It is
basis to avoid
data.

flag address is the one
can look to see if the
necessary to have these

I/O collisions and their

byte flag in memory where
device driver is being
flags on a per-controller
consequent destruction of

The device driver address is the address in memory where the
code exists, which will do transfers of data from physical sector
numbers. The format of the parameters passed to the driver code
will be the same as for 010 with the possible exception of the
disk address. For devices which are incapable of being divided
into logical volumes, the disk address will be passed in HL just
as it is in 010. On devices which are capable of being divided,
the disk address will be placed in the three byte buffer in
memory which is pointed to by the next table entry. This memory
address will also be passed in HL to the device driver.

The parameter area address is the three byte buffer in

* Volume Manager *)

System 88 System Programmer's Guide
Section 10 Page 241

memory where the physical disk address is passed to device
drivers which are capable of having disk addresses larger than
65535 (0FFFFH). These are also the devices which can be broken
up into logical volumes. If· the device is not of this type the
entry in the table for this field will be 0.

The base of the table just described is pointed to by the
system variable DRVADTAB which can be referenced in the SYSTEM.SY
symbol table file.

Single User Device Driver Addition

In order to add a device driver to the single user system
you must modify the device driver software in the "Driver.DD"
program. This modification entails adding your driver code to
the code which is already there, adding the initialization code
for your driver to the initialization code already there, and
making entries into the driver definition table which specify the
variableS-for your driver. Th.e-a..r..i¥..e-r:-definition-table for the
single user system is part of the "Drlver.DD" file which is being
mod if ied.

A source disk and listing for the "Driver.DD" file for a
single user system is available from polyMorphic Systems.

TwinSystem Device Driver Addition

In order to add device drivers to the TwinSystem you must
write the "Driver.DD" program yourself. This program should be
assembled to run at FA00H. The initialization code for your
dev ice should be jumped to by a vector at the beg inning of the
code. One of the tasks which must be performed by your
initialization routine is to insert the appropriate addresses and
flags into the driver definition table. The size of the driver
code which you can add to the TwinSystem is limited to 1/2 K (two
sectors) •

Your driver will be automatically loaded into the
appropriate slot in memory when the initialize code is fed to the
"Vmgr" overlay by the system executive. You can even have the
volume tables defaulted to it.

* Volume Manager *

System 88 System Programmer's Guide
Section Hl Page 242

* Volume Manager *

[)

l

20 eA*ie~ of·' (1)) I
0) 2-

(3) 2.
(.s12

V"(UM,L-l);V;siblc. cbv,'CIZ,! b;o ("etll!> witt SIt- IlL ~ f'6Cnt~. Q&ld~ss
{Ild,,,;si(,{.e.: ilL ~tJ!> f'"sic4(Sec.~r /hl~'er; /;Iu- .0,0.

(()) z.
(z) 2
(tf) 2.
(') 2-
(v 3
(g) I
(e) I

'U.f7 .fIj ~dJ,AI!ss f c~l/e"'~ q'~
devlCL 'ih~ 44IJl't!.Ss ~cJn'j 'Cc"MI!c./'
f'4Afll(ekr- 4"t!~ e:u:lJ,feS S

v~/",fC.L siz...e... (~,..~tf.#lS .,,'-. &lev. driW!r)

oasd ~M f't.\ ~ 41-"\ ,hvr'£e.

fl.15 d~vl'cL 1/:
IhduMoL s-f.t-lvs (FP =-;/1. Vk, ~tI =- ~.,+)

System 88 System Programmer's Guide
Section 11 Page 243

Section 11

CP/M Implementation on the System 88

. CP/M Switching: The CP/M Line.

CP/M requires RAM at address 0-2000H where all the System 88
ROM and controllers and video board live. In order to have the
RAM available, a "soft-switch" was created which turns off the
CPU ROM and RAM, the controllers, and the video board, and
changes the address of the 8K RAM board at E000H to 0. When CP/M
needs to access a controller or the video board the CBIOS uses
port 8 to allow access and then uses port 0CH to switch back.
Bus pin"16 is used for this switching and is called CPM- (read as
"CPM Not") •

All I/O in CP/M is done through code called the BIOS (Basic
I/O System). This code along with the modified System 88 printer
dr-4ver is the heart of Poly' s imp~mentation of CP/M. 'fhe code
is written to be both easily understood and modified although
some words of caution must be mentioned here.

When CP/M runs, it takes over the entire machine. It grabs
all the Poly SRA vectors (to handle interrupt processing when
doing I/O). The coding ftir the ISRs which are installed at 0000H
in the bottom 8K was written to reduce stack nesting during
interrrupt processing to the absolute minimum (2 bytes, namely
the return addr). The interrupt service routines share an
internal temporary stack called IntStack so therefore do not
enable interrupts during the middle of an ISR.

To accomplish automatic booting of CP/M a System 88
directory is left in sectors 0-3 of all CP/M disks. This
directory has the strangeness of having an Exec.OV in sector I of
the directory. This was done to save space for the 5"
single-density disks which only have 350 sectors. The directory
is created by the CP/M program INIT.COM. Note that the directory
is completely full (NFOA is SBUFI+3FFH) and that the disk is also
full (NFA is Osize). The directory is also inconsistent (NFOA
does not coincide with the first zero byte) which will guarantee
that the disk cannot be touched by the System 88 (Exec/93 or
later). The Exec.OV program is very simple, it simply calls the
ROMs to "Runr" Boot.GO on the SYSRES drive and if the first
instruction is C3H (a JMP), it blindly leaps into it. The code
it jumps to is the program Boot.TX. This code is contained on
the CP/M "boot track" and is a minimal BIOS which calls the ROMs
to do its disk I/O. The code looks on the CP/M file structure
using standard CP/M BOOS functions and initializes the MS
controller by loading CACHE.S88 and gets the real BIOS into
memory by loading BIOS.S88. It moves this real BIOS on top of
itself and jumps to it.

* CP/M Implementation *

System 88 System Programmer's Guide
Section 11 Page 244

The code which it jumps to is finally the real BIOS. Up to C-'
this point we have used the Root Roms to do all of the disk I/O
(which possibly writes allover RAM between 2800H and 2C00H).
The final BIOS contains a driver for the single density disks

_ (both the North Star read/write and Poly 5" SSSD), but still
calls the ROMs for 8" MS and 5" DO disk I/O.

Disk Structure

The disks' I/O routines were written to make them appear as
IBM 3740 disks with no sector skewing. Thus when a file is
looked at with SZAP, the bytes are contiguous.

The disks are mapped in CP/M because the BOOS written by
Digital Research assumes you will alway boot off of logical drive
o while this system boots off of either 1 or 4. The mapping is
described in the addendum to the CP/M manuals published by
Digital R~~

The console I/O routines came partially from the Root ROM
code, with several enhancements. The keyboard routines have
basically remained unchanged, and unlike most CP/Ms this one has
typeahead. The console out (display driver), however, has been
almost entirely rewritten and enhanced to include cursor movement
and direct cursor positioning character codes as well as a flash
facility. NormallY the cursor doesn't flash but when it appears
on top · of a non-blank character -it alternates between the ~
character and the ever-famous brick. Note: systems with the old
ROMs (not one-size fits all) 'may exhibit irregular cursor flash
ra tes.

CP/M is not supported on the hard disk.

Special Copy Program - PCOPY.COM

A special program, PCOPY.COM, was developed
of files to/from the Poly directory structure
directory structure. It runs under CP/M and
follows:

A>PCOPY B:FILENAME.TXT

CP/M (--) Poly Xfer vl.0 (01/19/81)

From Poly or CP/M (P or C)? P
Enter Poly Filename: <2<SUB<FILE.TX
Is this correct? (Y/N) Y
Working ••• please wait.
Success! Finished.

where the bold portions are the user responses.

* CP/M Implementation *

to allow copying
from/to the CP/M
is operated as

)

System 88 System Programmer's Guide
Section 11 Page 245

The 'FILENAME.TXT' on the command line is the CP/M filename.
The direction of the copy is determined by the ,~, or 'C' answer.

NOTE: Care should be exercised in the case of copying to the CP/M
disk, as any file with the same name will replaced.

Note: CP/M is a trademark of Digital Research.

* CP/M Implementation *

System 88 System Programmer's Guide
Section 11 Page 246

* CP/M Implementation *)

System 88 System Programmer's Guide
Section 12 Page 247

-=> Section 12

Exec/94 System Symbol Tables

The following are the val ues contained in the SYSTEM.SY
-files for both Single and Twin User systems. They are listed in
both al phabetical order and value order.

Single User Macro Definitions:

db gfid overlay

Single User Label s in Al phabet ical Order:

BUGS 2DFC BUSIES 0C6E CBUF 2C00 CMDA 2D8C
CMDD 2D89 CMDF 2D88 CMDN 2D8E CMDP 2D8A
CMND 2D40 CMPTR 2DC7 Ckdr 0433 Command 0C4C
DBARF 13020 DEFPATH 2E27 DEOUT 11J3Dl DEVMASK 0011JF
DONT 2D90 DRVADTAB I1JC7E Deout .03Dl Dhalt 13409
tHo e4e6 DioA eC66 DioBsy eC6C DioDn eC6B
DioDrv 0C69 DioHL 0C67 DirAddr 2E02 EERR 0040
EFLGI 2DC9 EFLG2 2DCA EIC 0080 ERROR 2D9A
EXECSP 2DAF Err 040F FILE 2DCB Flip 042D
Flush 11J4lE Fold 042A Gover 0415 Iexec 0436
Ioret 0064 JOBST 2D9E KBD 0018 KBEX 2D86
KBIG 2D84 KBIP 2D82 KBUF 2D00 Killi 04lB

~
LERR 2D9C LUSER 2DC6 Look 0421 MEMTOP 2D80
MTO 2DA2 MUNGI 2DA7 MUNG2 2DA9 MUNG3 2DAB
MUNG4 2DAD MemAdd 0C49 Msg 040C NDRIVES 2D9F
NFA 2E00 NFCK 2DAI NFDIR 2DA0 ONCE 2DC5
OVBC 2DCl OVDE 2DBF OVENT 2004 OVHL 2DBD
OVMEM 2E53 OVNM 2DB6 OVPSW 20C3 OVRLY 213013
Ovrto 0412 PATH 2E04 POS 0CI1JE PVEC 2D93
Pagesl 0C4B Rlgc 0430 Rlwe 0427 Rtn 0418
Runr 0424 SBRK 2D9l SBUFI 2800 SBUF2 2900
SBUF3 2A011J SBUF4 2B00 SCENO 0ClE SCHR 2098
SCREEN 181313 SCRHM 0ClF SINT 2DB3 SRAI 0C10
SRA2 0C12 SRA3 0C14 SRA4 0C16 SRA5 0C18
SRA7 0ClC STACK 1000 SYSRES 2092 TIMER 0C00
UBRK 2D97 UCHR 2099 USER 32013 USERS 0001
USTATS 20Bl UVEC 2D95 VCBTAB 0C63 VERLOC 0439
Version 0081 WAKEUP 0ClA WH0 0C20 WHI 0C24
WH2 0C28 WH3 0C2C WH4 0C30 WH5 0C34
WH6 0C38 WH7 0C3C WH8 0C411J WH9 0C44
Warm 0403

* System Symbol Table *

System BB System Programmer's Guide
Section 12 Page 24B

Single User Label s sorted by Val ue: ~.-,

USERS 1313131 OEVMASK eJeJeJF KBO 0eJ1B OBARF 130213
EERR 1313413 Ioret 131364 EIC 1313813 Version 131381
Oeout 0301 OEOUT 13301 Warm 13403 oio 0406

·Ohalt 134139 Msg 04eJC Err eJ4eJF OVrto 13412
Gover 13415 Rtn 13418 Kil1i eJ41B Flush eJ41E
Look 13421 Runr 0424 R1we 13427 Fold eJ42A
Flip 13420 R1gc 134313 Ckdr 13433 Iexec 13436
VERLOC 13439 TIMER eJC 013 POS eJC13E SRAI 13Cl13
SRA2 13C12 SRA3 eJC14 SRA4 0C16 SRA5 eJC18
WAKEUP 13CIA SRA7 eJC1C SCENO eJC IE SCRHM eJC1F
WHeJ 13C2eJ WH1 eJC24 WH2 0C28 WH3 0C 2C
WH4 13C 30 WH5 eJC34 WH6 0C38 WH7 eJC3C
WH8 13C 40 WH9 eJC44 MemAdd 0C49 Pagesl eJC4B
Command 13C4C VCBTAB eJC63 OioA 0C6G DioHL 0C67
OioOrv 0CG9 OioDn 13CGB OioBsy eJC6C BUSIES 0C 6E
ORVAOTAB 13C7E STACK 101313 SCREEN 18130 OVRLY 213130
OVENT 2 til1t4::SB-tlF 1 2 81tit:ABi1F 2 tiU SBUF3 2A--0til
SBUF4 2B 013 CB UF 2C 1313 KBUF 201313 CMNO 20413
MEMTOP 20813 KBIP 2082 KBIG 2084 KBEX 2086
CMOF 2088 CMOD 2089 CMOP 208A CMOA 208C
CMON 208E OONT 20913 SBRK 2091 SYSRES 2092
PVEC 2093 UVEC 2095 UBRK 2097 SCHR 2098
UCHR 2099 ERROR 209A LERR 209C JOBST 209E
NORIVES 209F NFOIR 20AeJ NFCK 20Al MTO 20A2
MUNGI 20A 7 MUNG2 20A9 MUNG3 20AB MUNG4 20AO

~ EXECSP 20AF USTATS 20B1 SINT 20B3 OVNM 20B6
OVHL 20BO OVDE 20BF OVBC 20Cl OVPSW 20C3
ONCE 20C5 LUSER 20C6 CMPTR 20C7 EFLG1 20C9
EFLG2 20CA FILE 20CB BUGS 20FC NFA 2EeJeJ
OirAddr 2EeJ2 PATH 2EeJ4 OEFPATH 2E27 OVMEM 2E53
USER 321313

Twin User Macro Oefini tions:

ALIGN clrp clrt db
dequ devlock dw enter
gfid giveup gover ioret
leave lock overlay overto
print ralign rddef rds
rorg setp sett show
unlock userpgm vcb vect
verdate

* System Symbol Table *)

System 88 System Programmer's Guide
Section 12 Page 249

Twin User Labels in Alphabetical Order:

BHA E135F BOOTVOL 2D92 BRG 13C60 BRGEN 1313134
BUGS 2EB4 BUSIES 13C6E Byte E13SA CBUF 2CI313
CHUNK 2EFE CMDA 2E82 CMDD 2E7F CMDF 2E7E

'CMDN 2E84 CMDP 2E813 CMND 2E3C CMPTR 2E7C
Ckdr Er32D Cold EI3I313 DBARF 1313213 DEFPATH 2D8f21
DEVMASK f211313F DONT 2E8E DRVADTAB 13C7E Deout E134S
Devlock E136F Dio 2E3f21 DioA 13C66 DioBsy 13C6C
DioDn r3C6B DioDrv 13C69 DioHL 13C67 Di r Addr 2EA7
EERR 1313413 EFLGI 2EBf21 EFLG2 2EBI EIC 1313813
ERROR 2EB7 EXECSP 2EBD Enter Er34E Err E1313C
FILE 2EBF Fdfp E1375 Flip Ef212A Flipem Er339
Flush E131B Fold E1327 Fpanel Er378 GFLOCK Ef217E
Gdfp E1372 Gfid E1342 Giveup E133C Gover Er312
IOIP 13C62 Iexec E03f21 Ioret Ef2166 JOBST 2EB2
KBEX 2E38 KBIG 2E36 KBlP 2E34 KBMODEl 2E3A
KBMODE2 2E3B KBUF 2DC13 Killi E018 LERR 2EB9
LOCK 2-E-8F LUSER 2££3 Leave E-0S1 Lock E-0-48
Look Ef211E MEMTOP 2EBB MUNG I 2E9F MUNG2 2EAI
MUNG3 2EA3 MUNG4 2EAS MUNGP 2Dr313 Mfos E1363
Move E06C Moven E1369 Msg E1306 Mtos E 1360
NDRIVES 2,EA9 NFA 2EAD NFCK 2EAC NFDIR 2EAB
ONCE 2EAF OVBC 2E9B OVDE 2E99 OVENT 2004
OVHL 2E97 OVNM 2E913 OVPSW 2E9D OVRLY 201313
Ovrto E013F PATH 2D413 PHANTOM 1313613 PMASK EeJSD

~
P~S 2E13A PVEC 2E87 Pmsg Ef21139 Print E1336
Rlwe E024 Rtn E13l5 Runr. E~21 SBRK 2E86
SBUFl 28013 SCEND 2E138 SCHR 2E8C SCRHM 2E139
SRAl 13Cl13 SRA2 13C12 SRA3 13Cl4 SRA4 f21Cl6
SRA5 0C 18 SRA7 2EEC SRA71 13CIC SUWH13 0C2f21
SUWHl 13C24 SUWH2 13C28 SUWH3 13C2C SUWH4 0C313
SUWHS 13C34 SUWH6 f21C38 SUWH7 f21C3C SUWH8 13C4f21
SUWH9 f21C44 SYSRES 2EAA Show E033 TIMER 2E132
Tic ker E133F UBRK 2E8B UCHR 2E8D USER 2F13f21
USERS 13002 USP 2E00 USRNAME 2EEE USTATS E135E
UTIME 2E132 UVEC 2E89 Unlock E04B VCBTAB 0C63
Vmgr E1354 Vti 'E0S7 WAKEUP 2E06 WH13 2E13C
WHl 2El13 WH2 2El4 WH3 2El8 WH4 2ElC
WH5 2E20 WH6 2E24 WH7 2E28 WH8 2E2C
WH9 2E313 WHICH 0C6l Warm E0133 XTIMER 0C00
cmdf ""01 excl 0007 fupd 1313134 gLook E07B
mung 130135 rd 00132 wlock 00136 wrt 130133

* System Symbol Table *

System 88 System Programmer's Guide
Section 12 Page 2513

Twin User Labels sorted by Value: ,;~
cmdf 11'1311'1 rd 1313132 USERS 1313132 wrt 1313133
fupd 11'1304 BRGEN 0004 mung 13005 wlock 0006
excl 00137 DEVMASK 000F DBARF 0020 EERR 0040

. PHANTOM 11'060 ErC 131380 XTlMER f3C00 SRAI f3C10
SRA2 f3C12 SRA3 0C14 SRA4 f3C16 SRAS 0C18
SRA7l 0ClC SUWH0 0C20 SUWHI f3C24 SUWH2 0C28
SUWH3 0C2C SUWH4 f3C3f3 SUWHS 13C34 SUWH6 f3C38
SUWH7 13C3C SUWH8 0C4f3 SUWH9 f3C44 BRG f3C60
WHICH 0C6l lOIP f3C62 VCBTAB f3C63 DioA 0C66
DioHL 0C67 DioDrv 0C69 OioOn 0C6B OioBsy f3C6C
BUSIES 13C6E ORVAOTAB 0C7E OVRLY 20130 OVENT 21304
SBUFI 2800 CBUF 2C0f3 MUNGP 2000 PATH 2040
OEFPATH 2D8f3 BOOTVOL 2092 KBUF 20C0 USP 2E00
UTIME 2E02 TIMER 2Ef32 WAKEUP 2Ef36 SCEND 2E08\
SCRHM 2Ef39 P~S 2E0A WHf3 2Ef3C WHI 2E10
WH2 2E14 WH3 2El8 WH4 2ElC WHS 2E20

. W1l6 2824 WH7 . 21320 WIlO 2E2C WH9 2839
Dio 2E30 KBlP 2E34 KBIG 2E36 KBEX 2E38
KBMODEl 2E3A KBMOOE2 2E3B CMNO 2E3C CMPTR 2E7C
CMDF 2E7E CMOO 2E7F CMOP 2ES0 CMDA 2E82
CMDN 2E84 SBRK 2E86 PVEC 2E87 UVEC 2E89
UBRK 2ESB SCHR 2E8C UCHR 2ESD OONT 2E8E
LOCK 2ESF OVNM 2E90 OVHL 2E97 OVOE 2E99
OVBC 2E9B OVPSW 2E9D MUNGI 2E9F MUNG2 2EAl
MUNG 3 2EA3 MUNG4 2EA5 Oi rAddr 2EA7 NDRlVES 2EA9 ~ SYSRES 2EAA NFOlR 2EAB NFCK 2EAC NFA 2EAD
ONCE 2EAF EFLGI 2EB0 EFLG2 2EBl JOBST 2EB2
LUSER 2EB3 BUGS 2EB4 ERROR 2EB7 LERR 2EB9
MEMTOP 2EBB EXECSP 2EBD FILE 2EBF SRA7 2EEC
USRNAME 2EEE CHUNK 2EFE USER 2F0f3 Cold Ef3f30
Warm Ef3f33 Msg E006 Pmsg E009 Err E00C
Ovrto E0f3F Gover E0l2 Rtn Ef3lS Killi E0l8
Flush E0lB Look E01E Runr E02l Rlwe Ef324
Fold E027 Flip Ef32A Ckdr E020 Iexec E 13313
Show Ef333 Print E036 Flipem Ef339 Giveup E03C
Ticker E03F Gfid Ef342 Deout E045 Lock E048
Unlock E04B Enter Ef34E Leave E05l Vmgr Ef354
Vti Ef357 Byte E05A PMASK E05D USTATS E0SE
BHA E05F Mtos E060 Mfos Ef363 Ioret E066
Moven E069 Move E06C Oevloc k E06F Gdfp E072
Fdfp E075 Fpanel E078 gLook E07B GFLOCK E07E

* System Symbol Table *)

Fj
"

System 88 programmer's Guide
Se.ction 13 Page 251

Section 13

Disk I/O in Assembly Programs

The code in this section is the disk I/O code used to open
-input and output files, and to read and write on the disk.

***** DISK I/O *****

Read from HL buffer to get file names to open for
; both input and output (respectively).

OPEN CALL NXTC ;read command line
JNZ OPEN ;Scan to delimiter
XRA A ;clear input/output file
STA INFLG
STA OTFLG
CALL OPIN jOpen input file
JC Err ;Retl error - mall out.
MOV A,M ;is next character a CR
CPI CR
RZ ;Output file is optional.
LXI B i 'GO' ;Oefault extension.
CALL OPOUT ;Open output file.
JC Err
RET

flags

&.. * Oi sk I/O in Assembl y Prog rams *

System 88 Programmer's Guide
Section 13 Page

DAD 0 i --> FDA slot in FDE
SHLD IFDP ;save Input File Disk Po inter.
LXI D, IFDA i rn File Disk Address
MVI B,4

OPLP MOV A,M
STAX 0 iCOPY disk address & length
INX H
INX D
OCR B
JNZ OPLP iCOPY FDE good stuff.
LHLD IFDA ;Initialize REWIND variables.
SHLD REWI i disk address
LHLD INBS ;file leng th
SHLD REW2 ;sector counter
LXI H,INBUF+0FFH ;disk buffer
SHLD IPTR ; input pointer
POP H ;Restore H to ptr
RET

;
Open an output file. BC=Default Extension.

Skip the first char, assuming it is a delimiter.

OPOUT MVI
CMP
INX
JNZ
LHLD

TWOFDS LXI
MVI
g fid

JNC
PUSH
LXI
CALL
POP
JNZ

A,CR
M
H
TWOFDS
FSTPTR
D,OFDE
A,60H

ER0702
H
H,0300H
DCMP
H
FAIL

:HL-> 2nd FD if there
:jmp/ two FD'S given
;--> First FD in buffer.
;Setup for Gfid
;Lookup function.
;call Gfid with Macro.
iDefault EXT passed in BC as
ia parameter by caller.
iIf already there, report.

;Must get a 300H error
inormally.

iIf not 300H, ret CARRY.

; For two user systems only, get MUNG access to device.

IF
LOA
ANI
MOV
sett
JC
ENDIF

USERS=2
OFDE
15
C,A
mung
FAIL

MVI A,l

device #

see if we can MUNG it
crap out if we can't

* Disk I/O in Assembly Programs *

252

~ .~

Section 13

;

STA
LXI
LXI
MOV
ANI
ADD
MOV
DAD
SHLD
LXI
MOV
STAX
INX
INX
MOV
STAX
LX!
SHLD
LXI
SHLD
RET

System 88 Programmer's Guide

OTFLG
H,OFDE+1
D,3
A,M
IFH
E
E,A
D
OFDP
D,OFDA
A,M
D
H
o
A,M
o
H,0
ONBS
H, OTBUF
OPTR

;--) output FOE

;mask name length

;--) FDA in putput FDE
;Save pointer

;copy FDA

Page 253

;Clear output number sectors.

;Clear output buffer pointer.

Get a character from disk input file.
;
GETC

;

CALL
RC
ORA
JZ
STC
CMC
RET

GETBYTE LDA
ORA
JZ
PUSH
PUSH
PUSH
LHLD
INR
JZ
SHLO

GTGNG
GOAWY

;
GTBUF

MOV
POP
POP
POP
RET

LHLO
MOV

GETBYTE

A
GETC

INFLG
A
ER0703
B
o
H
IPTR
L
GTBUF
IPTR
A,M
H
D
B

INBS
A,H

;Get a binary byte.
;If empty file, ret CARRY.
;Skip zeroes.

;Ret NO CARRY.

;No input file.

;Bump bottom byte (!!!!RLD).
; jmp/ fi 11 tank

;Sector counter.

* Disk I/O in Assembl y Programs *

System 88 Programmer's Guide
Section 13 Page

ORA L
JNZ GTBF1 i jmp/ more out there.
STC
JMP GOAWY i Ret CARRY on EOF.

-GTBF 1 DCX H
SHLD INBS ibump sector ctr.
LHLD IFDA
INX H
SHLD IFDA iInc disk address.
DCX H
LDA IFDE
ANI 15 iUnit ft
MOV C,A
MVI A,l il sector
LXI D, INBUF
MOV B,A iRead
CALL Dio
JC Err ,OQFs.
LXI H, INBUF
SHLD IPTR iReset ptr
JMP GTGNG

Put a character to the output file • . ,
PUTC PUSH

PUSH
PUSH
MOV
PUSH
LDA
ORA
JZ
LHLD
MOV
INR
SHLD
JNZ
LHLD
LDA
ANI
MOV
LXI
MVI
MVI
CALL
JC
LHLD
INX
SHLD

B
D
H
B,A
B
OTFLG
A
PTAWY
OPTR
M,B
L
OPTR
PTAWY
OFDA
OFDE
15
C,A
D,OTBUF
A,l
B,0
Dio
Err
OFDA
H
OFDA

iIs there an output file?
iJmp/ nope.

i jmp/ not full
ioutput disk address

iUnit number
; in C.
iFlush out buff.
iTell Dio to move 1 sector.
;Write command.

; OoPS!

iInc output disk address.

* Disk I/O in Assembly Programs *

254

:-,

)

Section 13

-PTAWY

;

LHLD
INX
SHLD
XRA
;
POP
MOV
POP
POP
POP
RET

System 88 Programmer's Guide

ONBS
H
ONBS
A

B
A,B
H
D
B

Page 255

;and output file sector ctr.
;Set zero flag.

iSave A but not flags.

; Rewind the input file.
i
REWIND PUSH

LHLD
SHLD
LHLD
SiU.-D

;

LXI
SHLD
POP
RET

H
REWl
IFDA
REW2
INBS
H,INBUF+0FFH
IPTR
H

; Close output file.
;
SHUT

SHUT2

SHUT3

SHTLP

LDA
ORA
RZ
LHLD
DCR
INR
JZ
XRA
CALL
JNZ
LDA
ANI
ORI
STA
LHLD
INX
INX
LXI
MVI
LDAX
MOV
INX
INX
DCR

OTFLG
A

OPTR
L
L
SHUT3
A
PUTC
SHUT2
OFDE+l
31
20H
OFDE+l
OFDP
H
H
D,ONBS
B,6
D
M,A
H
D
B

;Ignore if no output file.
;Clear rest of buffer.

iSet Z according to L.
iIf already full, quit.

;put zeroes until full.

;Get name length.
;Leave only name length.
;Set the 'new' bit.

; -->FDA slot

;--> NBS slot
;--> source block

;Move NBS, LA & SA to FDE.

* Disk I/O in Assembly Programs *

System 88 Programmer's Guide
Section 13

JNZ SHTLP
i

LXI H, OFDE
MYI A,1

;

g fid
JC

IF
LDA
ANI
MOY
c1rt
JC
ENDIF

RET

Err

USERS=2
OFDE
15
C,A
mung
Err

Di&k I/O I.1t i In 1 es •
;
NXTC

i

MOY
INX
CPI
RZ
CPI
RZ
CPI
RZ
CPI
RET

A,M
H
CR

TAB

, ,

, , ,

; Disk I/O errors.
;
ER0702

ER0703

ER0705

MYI
DB
MYI
DB
MYI
MYI
STC
RET

E,2
2lH
E;3
2lH
E,5
D,07H

Error processing
;
FAIL
;

JMP

; Data Area
i
INFLG
OTFLG

DS
OS

Err

1
1

· ** ,

· ** ,

· ** ,

;ENTER function
ica11 Gfid with Macro

ifor two user
ic1ear mung access

Output file al read y ex ists

No input file specified **
Input file does not exist

iReturn waving the flag.

;input file flag
;output file flag

* Disk I/O in Assembly programs *

Page 256

**

**

J

System 88 Prog rammer's Guide
Section 13 Page 257

~ FSTPTR DS 2 ;pointer save location

. For Input File ,
IFDE DS 44 ;dir entry buffer
IFDP DS 2 ;disk pointer

' IFDA DS 2 ;disk address
INBS DS 2 ;sector length
IPTR DS 2 ;read pointer
REWI DS 2 i rewi nd pointer disk address
REW2 DS 2 irewind pointer sector counter
INBUF DS 256 ;disk sector buffer
i
i For Output File
OFDE DS 44 ;dir entry buffer
OFDP DS 2 idisk pointer
OFDA DS 2 ;disk address
ONBS DS 2 isector leng th
OFLA DS 2 i load address
OF SA DS 2 j-s-t--a-rt-a-d-elf'-e-s s
OPTR DS 2 iread pointer
OTBUF DS 256 idisk sector buffer

END

* Disk I/O in Assembly programs *

System 88 programmer's Guide
Section 13 Page 258

* Disk I/O in Assembly Programs * }

System 88 System Programmer's Guide
Section 14 Page 259

Section 14

Sample Assembly program

The following program is a sample of an assembly language
-program that does disk I/O. This particular program is included
on the system programmer's disk as RECOVER.GO. Refer to Section
4, Utilities for the System Programmer, for instructions on this
program.

000D

3200
3200

3200
3203

C3F833
C3F833

.*** ,
· * * ,
· * I

· * I

· * I

; *
· * I

Version 1.0
03/99/81

RECOVER

Donald Moe

;* Copyright (c) 1981, Interactive Products
;* Corporation dba PolyMorphic Systems
· * ,
· * ,

460 Ward Dr., Santa Barbara, CA. 93111

*
*
*
*
*
*
*
*
*

.*** ,
i

;
CR
;

emsg
tL

msg
#L

i

;

REFS
REF

SYSTEM ;get system symbol file

EQU 13

MAC LIST 0

MACRO
CALL
db
ENDM

MACRO
LXI
CALL
ENDM

Gover
'Emsg'

H,tl
Msg

MACLIST 0

ORG
IDNT

JMP
JMP

USER
$,$

START
START

isuppress listing of
imacro expansions

* Sample Assembly Program - RECOVER *

Section 14

33FE
33FF

34~2
34~S
34~7
34{3A
34~B
34~C
34~F
3411
3414
3417

34213
3423
3425

AF
32BE35

l12C32
~E~5
CD~A3S

7D
B7
CA1434
FE~A

DA1734
C38B34
32C735

117432
0E06
CD~A3S

System 88 System programmer's Guide

;
+He1lo db

db
+Msg0 db
+Hexmsg db ·

db
+Msg1 db

db
+Msg2 db

db
+Msg3 db

db
+Msg4 db

db
+MsgS db

db
+Msg6 db

db
+.li4sg7 db

db
+Msg8 db
+Errmsg db

db
+Outerr db

db

'File Recovery Program. '
'Version 3/5/81',0

Page 260

CR,'Enter Disk Drive Number: ',13
CR,'Enter the following numbers'
, in Hexadecimal.',0
CR,'Enter Starting Sector'
, Numbe r: ',0
CR,'Enter Ending Sector'
, Numbe r: ',13
CR,'Enter Program Load'
, Ad d res s: " 0
CR,'Enter Program Start'
, Address: ',13
CR,'Enter New Filename with'
, Extension: ',~

'Working ••• please stand by.'
CR,0
CR,'RQcovQry Completed.'
, Another (Y/N)? ',13
, At Se c tor: " 0
CR,'* * Illegal answer.'
, Reenter. * *',0
'* * Output file already'
, exists. * *',0

+Sectmsg db CR,'* * Starting sector greater'
, than Ending sector. * *',~

+Busy
;

+START

+

; ask
MSGI3

MSG~1

MSG132

;

db
db

msg
XRA
STA

for drive
LXI
MVI
CALL
MOV
ORA
JZ
CPI
JC
JMP
STA

msg

'* * Output device busy. * *',0

Hello
A
OTFLG

number
D,Msg0
C,S
NUMB
A,L
A
MSG01
10
MSG02
MSGERR
DRIVE

;sign on
iclear output flag

idrive number message
;five chars
iget drive number
iPut into A
;is it zero
iyep/ not legal
;is it less than 113
;nope/ not legal
;display error message
;save it

Hexmsg ;display hex message

ask for starting sector number
MSG1 LXI D,Msgl ;start sect * msg

MVI C,6 ;six chars
CALL NUMB iget sector number

* Sample Assembly Program - RECOVER *

section 14

3428 22C835

3428
342E

-3430
3433

3436
3437
343A
343B
343E

119432
I2IEI2I6
CDI2IA35
22CA35

EB
2AC835
EB
CD4135
D24A34

3447 C3212134

344A
344D
344F
3452

3455
3458
345A
345D

346121
3463
3466
3469

3472
3475
3478
347B

3485
3488

11B232
I2IEI2I6
CD13A35
22FE35

l1D032
I2IEI2I6
CD13A35
22121036

21EF32
11CC35
1315854
3EE0

D29434
2113003
CD4135
CAA634

DA I3F134
C36034

3491 C313234

System 88 System Programmer's Guide

+

+

+

Page 261

SHLD STSECT ;save it

; ask for ending sector number
MSG2 LXI D,Msg2 i end sect # msg

MVI C,6
CALL NUMB
SHLD ENSECT

;

;get sector number
isave it

;check for start <= end
XCHG

sector number
;put endsect into DE
;get start sector
;swapem back
;compare them

;

LHLD STSECT
XCHG
CALL DCMP
JNC MSG3 ;no carry =) Ok

msg
JMP

Sectmsg ;disp1ay error message
MSG1 i go try ag ai n

; a s k----£-o r f i 1 e Load Address
MSG3 LXI

; ask
MSG4

i
i ask
MSG5

i

MVI
CALL
SHLD

for file
LXI
MVI
CALL
SHLD

for new
LXI
LXI
LXI
MVI

gfid
JNC
LXI

.CALL
JZ
emsg
JC
JMP

D,Msg3 ;load addr message
C,6
NUMB
LOADADR ; save it

Start Address
D,Msg4 istart addr message
C,6
NUMB
STADR ;save it

filename
H,Msg5
D,OFDE
B,'TX'
A,I3EI3H

MSGERR1
H,3013H
DCMP
READIT

Err
MSG5

through Gf id
;fi1ename prompt
;buffer
idefault extension TX
;read from user,
;look it up,
; default extension
;call Gfid
;file already there
;check for 312113 error
;compare them
;yep/ Ok
;call Emsg
;if error now, abort
;loop back

; Illegal answer message
+MSGERR msg Errmsg

JMP . MSG13
;
; Output file exists message

* Sample Assembly Program - RECOVER *

Section 14

349A C36034

-34A3 C36034

34B2
34B5
34B8
34BB
34BC
34BF
34C0
34Cl
34C4
34C7
34CA
34CB
34CC
34CF.

- 3400
3403

3406
3409
340C
340F
34E2
34E5
34ES
34EA
34EO

34F0
34F0
34Fl
34F2
34F4
34F7
DE
34F8
34FB
34FE

C04735
OA9034
2ACA35
EB
2AC835
E5
05
COF034
C06635
.CD7735
Dl
El
CD4135
23
C2BF34
C09C35

113033
21BF35
010200
C02704
IlBF35
C03935
FE59
CAF833
C30304

ES
05
3E20
CD240C
EB

CD0103
2A 0E 0C
367F

System 88 System Programmer's Guide
Page 262

+MSGERRl msg
JMP

Outerr
MSG5

i
i Device busy message

+FAIL msg Busy
JMP MSGS

i Now we have the file looked up, and the
i sector numbers and addresses determined.
i Let's now start reading it.
i

+REAOIT msg
msg
CALL
JC
LHLO
XCHG
LHLO

Msg6
Msg8
OUTSET
FAIL
ENSECT

iPut out working message
idisplay "at sector"
isetup output indexes
iif carry, device busy
iget ending sector

+

READLP

i
AGAIN

i

PUSH
PUSH
CALL
CALL
CALL
POP
POP
CALL
INX
JNZ
CALL

LXI
LXI
LXI
CALL
LXI
CALL
CPI
JZ
JMP

i Show current
SECTOISP

PUSH
PUSH
MVI
CALL
XCHG

CALL
LHLO
MVI

STSECT
II
o
SECTOISP
GETIN
PUTOUT
o
H
DCMP
H
REAOLP
SHUT

iswap into DE
iget start sector

ishow sector
;get sector
;put it out

;compare them
;increment sector number
;loop until done
iclose output file

D,Msg7 idisplay end message
H,RLWEBUF ibuffer
B,02 i2 chars, echo CR
Rl we i read from user
D,RLWEBUF ipoint to buffer
LCFLD iconvert to upper case
'Y' iyes
START
Warm ie1se no

sector being processed

H
o
A,' ,
WHI

Oeout
POS
M,127

isave regs

iPut out space

iPut sector number into

idisplay it
iget cursor location
iblank it

* Sample Assembly program - RECOVER *)

Section 14

3500
3503
3504
3507
3508

-3509

350A
350D
350F
3512

3515
3518
3519
351C
351D
351F'
3520
3522
3524
3527
3529
352B
352C
352E
352F
3530
3531
3532
3533
3534
3535
3536

3539
353A
353B

11FBFF
19
220E 0C
D1
E1
C9

21BF35
0601
CD2704
l1BF35

2HJ000
4D
CD3935
47
FE30
D8
D630
FE0A
DA2F35
D607
FE0A
08
FE10
00
0C
29
29
29
29
B5
6F
C31935

1A
13
FE60

System 88 System Programmer's Guide

LXI
DAD
SHLD
POP
POP
RET

D,-5
D
POS
D
H

Page 263

; back up 5

ireset for next pass

; Hex input routines
i
i NUMB read s a
; On Entry:
i
i On Ex it:
i
NUMB

i

LXI
MVI
CALL
LXI

hex number using Rlwe
DE points to prompt string
C number of chars to read,
HL contains hex number

max

H,RLWEBUF iwhere to put chars
B,l idon't echo term char
R1we i read from user
D,~EBUF ;p~t at buffer

ifa11 into conversion
i
i HEXC converts a variable length hex number in
; RLWEBUF
i
HEXC

NXNYB

NXNB1

;
LCFLD

LXI
MOV
CALL
MOV
CPI
RC
SUI
CPI
JC
SUI
CPI
RC
CPI
RNC
INR
DAD
DAD
DAD
DAD
ORA
MOV
JMP

LDAX
INX
CPI

H,0
e,L
LCFLD
B,A
, 0 '

, 0 '
10
NXNBI
7
10

16

C
H
H
H
H
L
L,A
NXNYB

o
o
060H

izero conversion buffer

iget case-folded char
jsave it
ireturn if less than '0'

iconvert to binary

;return if not hex

;return if not hex
iincr count of chars
ishift over result

ior in next digit

jget next char
; bump pointer
iif upper case, skip it

* Sample Assembly program - RECOVER *

Section 14

353D
353E
3540

D8
0620
C9

-3541 7C
3542 BA
3543 C0
3544 7D
3545 BB
3546 C9

3547

3547
354A
354D
354E
3550
3551
3552
3553
3556
3559
355A
355B
355C
355D
355E
355F
3562
3565

3566
3569
356A
356C

21CD35
110300
7E
E61F
83
5F
19
22F835
11FA35
7E
12
23
13
7E
12
210000
22FC35
C9

3AC735
4F
3E01
110436

System 88 System Programmer's Guide

RC
SUI
RET

20H ifo1d it to upper

i Compare DE to HL for equality
DCMP MOV A, H

CMP D
RNZ
MOV A,L
CMP E
RET

i

***** DISK I/O *****

Page 264

; For two user systems only, get MUNG access to
; device.
OUT~ET

i

i

IF
LOA
ANI
MOV
sett
RC
ENDIF

LXI
LXI
MOV
ANI
ADD
MOV
DAD
SHLD
LXI
MOV
STAX
INX
INX
MOV
STAX
LXI
SHLD
RET

USSRS-2
OFDE
15
C,A
mung

device #

; see if we can MUNG it
if carry, we can't

H,OFDE+l ;--> output FOE
D,3
A,M
1FH ;mask name length
E
E,A
D
OFDP
D,OFOA
A,M
D
H
D
A,M
D
H,0
ONBS

;--> FDA in output FDE
;Save FDE pointer

;copy FDA

iClear number sectors.

get next sector from input disk
; HL has sector number to read
GET IN LOA DRIVE ;Unit #

MOV C,A
MVI A,l ;1 sector
LXI D,OTBUF ;buffer to read into

* Sample Assembly Program - RECOVER *)

System 88 System Programmer's Guide
Section 14 Page 265

£) 356F 47 MOV B,A iRead
3570 CD0604 CALL Dio ido disk I/O
3573 DA0F04 JC Err iOOpS.
3576 C9 . RET

Put a sector to the output fi Ie.
i

3577 2AFA35 PUTOUT LHLD OFDA ioutput disk address
357A 3ACC35 LDA OFDE
357D E60F ANI 15 iUnit number
357F 4F MOV C,A ;in C.
3580 110436 LXI D,OTBUF i Fl ush out buff.
3583 3E01 MVI A,l i do 1 sector
3585 0600 MVI B,0 iWrite command.
3587 CD0604 CALL Dio
358A DA0F04 JC Err i Oops!
358D 2AFA35 LHLD OFDA
3590 23 INX H
3S~H 22E~-35 SHtC OFDA :lm~ dis~ ad~ss.
3594 2AFC35 LHLD ONBS
3597 23 INX H
3598 22FC35 SHLD ONBS iPut file sector ctr.
359B C9 RET

;
; Close output file.
;

~ 359C 2AF835 SHUT LHLD OFDP ;--)FDA slot
359F 23 INX H
35A0 23 INX H i--) NBS slot
35Al IlFC35 LXI D,ONBS i --) source block
35A4 0606 MVI B,6
35A6 lA SHTLP LDAX D ;Move NBS, LA & SA

ito FDE.
35A7 77 MOV M,A
35A8 23 INX H
35A9 13 INX D
35AA 05 DCR B
35AB C2A635 JNZ SHTLP

35AE 2lCC35 LXI H,OFDE
35B 1 3E0l MVI A,l

+ gfid iENTER it
35BA DA0F04 JC Err

;
0000 IF USERS=2 ifor two user system

LDA OFDE ; clear mung access
ANI 15
MOV C,A

'c1rt mung
JC Err ;if carry, we can" t
ENDIF

~\
* Sample Assembly program - RECOVER *

System 88 System programmer's Guide
Section 14

35BD C9

35BE
35BF

35C7
35C8
35CA

35CC
35F8
35FA
35FC
35FE
3613f3
36132
36f34

RET

Data Area
;
OTFLG DS
RLWEBUF DS
; . For Input ,
DRIVE DS
STSECT DS
ENSECT DS

i For Output
OFDE DS
OFDP DS
OFDA DS
ONi5 DS
LOADADR DS
STADR DS
OPTR DS
OTBUF EQU

1
8

File
1
2
2

File
44
2
2
2
2
2
2
$

Page 266

;output file flag
;input buffer for Rlwe

;drive number
istarting sector number
;ending sector number

;dir entry buffer
;disk pointer
;disk address
,ii8ctQr length
ifile load address
;file start address
;read pointer
;disk sector buffer

37134
;
end EQU OTBUF+256

END

Error total =

Macros defined in this assembly:

db emsg gfid msg
overlay

Labels defined in this assembly:

AGAIN 34D6 BUGS 2DFC BUSIES f3C6E Busy 33DC
CBUF 2C 1313 CMDA 2D8C CMDD 2D89 CMDF 2D88
CMDN 2D8E CMDP 2D8A CMND 2D413 CMPTR 2DC7
CR 0013D Ckdr 13433 Command f3C4C DBARF 0020
DCMP 3541 DEFPATH 2E27 DEOUT 133D1 DEVMASK 0130F
DONT 2D913 DRIVE 35C7 DRVADTAB 0C7E Deout 03D1
Dha1t 04139 Dio 13406 DioA 0C66 DioBsy 0C6C
DioDn 0C6B DioDrv 13C 69 DioHL 13C67 DirAddr 2E 132
EERR 0040 EFLG1 2DC9 EFLG2 2DCA EIC 013813
ENSECT 35CA ERROR 2D9A EXECSP 2DAF Err r2J4r2JF
Errmsg 3361 FAIL 349D FILE 2DCB Flip r2J42D
Flush 041 E Fold 042A GETIN 3566 Gover 13415

* Sample Assembly Program - RECOVER *)

System 88 System Programmer's Guide
Section 14 Page 267

~ HEXC 3515 Hello 3206 Hexmsg 3247 Iexec 0436
loret 0064 JOBST 2D9E KBD 0018 KBEX 2086
KBIG 2D84 KBlP 2D82 KBUF 2D00 Killi 041B
LCFLD 3539 LERR 2D9C LOADADR 35FE LUSER 2DC6
Look 0421 MEMTOP 2D80 MSG0 34132 MSG131 3414

-MSG02 3417 MSG1 3420 MSG2 342B MSG3 344A
MSG4 3455 MSG5 3460 MSGERR 348B MSGERR1 3494
MTO 2DA2 MUNG1 2DA7 MUNG2 2DA9 MUNG3 2DAB
MUNG4 2DAD MemAdd 0C49 Msg 040C Msg0 322C
Msg1 3274 Msg2 3294 Msg3 32B2 Msg4 32D0
Msg5 32EF Msg6 3314 Msg7 3330 Msg8 3355
NDRIVES 2D9F NFA 2E 1313 NFCK 2DA1 NFDIR 2DA0
NUMB 3513A NXNB1 352F NXNYB 3519 OFDA 35FA
OFDE 35CC OFDP 35F8 ONBS 35FC ONCE 2DC5
OPTR 3602 OTBUF 3604 OTFLG 35BE OUTSET 3547
OVBC 2DCI OVDE 2DBF OVENT 2004 OVHL 2DBD
OVMEM 2E53 OVNM 2DB6 OVPSW 2DC3 OVRLY 2000
Outerr 3383 Ovrto 0412 PATH 2E04 POS 0C0E
PUTOUT 3-57-r---£YEC 2n-9-:L:Pa gesl Ol~ 34Ai5
READLP 34BF RLWEBUF 35BF R1gc 13430 R1we 0427
Rtn 0418 Runr 0424 SBRK 2D9l SBUFI 2800
SBUF2 2900 SBUF3 2A00 SBUF4 2B00 SCEND 13C IE
SCHR 2D98 SCREEN 1800 SCRHM 0ClF SECTDISP 34F0
SHTLP 35A6 SHUT 359C SINT 2DB3 SRAI 0C10
SRA2 0C12 SRA3 0C 14 SRA4 0C 16 SRA5 0C18
SRA7 0ClC STACK 1000 STADR 3600 START 33F8

~ STSECT 35C8 SYSRES 2D92 Sectmsg 33A 7 TIMER 0C00
UBRK 2097 UCHR 2D99 USER 3200 USERS 0001
USTATS 20Bl UVEC 2095 VCBTAB 0C63 VERLOC 0439
Version 0081 WAKEUP 0CIA WH0 0C20 WHI 0C24
WH2 0C28 WH3 0C2C WH4 0C 30 WH5 0C34
WH6 0C38 WH7 0C3C WH8 0C40 WH9 0C44
Warm 0403 end 3704

* Sample Assembly Program - RECOVER *

System 88 System Programmer's Guide
Section 14 Page 268

* Sample Assembly Program - RECOVER *)

Index
System 88 System Programmer's Guide

ALIGN •••••••••••••
Allocating Space •••
Architecture •••
ARISE •••••••••••••
Auth.OV •• • •

BASIC

·

INDEX

·

.
Overlays ••

Bdir.Ov.
Berr.OV ••
Bfun.OV.
Bslv. OV ••
Xref.OV.

. . .

Page 269

•• 51
• • 13
.29

• ••• 199
.194

• ••••• 171
• ••••• 171
• 171,

. . . .
209
171

.171

.171
BHA •• • •••••• • 74
Boot Sequence ••

Single User ••••••
TwinSyste~~.

BOOTVOL.
BRG •••
BRGEN ••••
BUGS ••
BUSIES ••••••••
Byte.

CBUF •••
Ckdr ••••• '
CLEAN ••
c1rp ••
clrt ••

. ·

.
.

CMDA ••••••••••••••••••

·
· ·

.

CMDD ••
CMDF ••
cmdf ••
CMDN ••
CMDP.
CMND ••
CMPTR.
Cold ••• · ·

.219

.220

.223
• • 88
..82
•• 31

•• 103
..85

• ••••• 151

.63
119
199
.40

• •• 39
.65

• .64
· •••.• • 63

• ••• 32
.65

• .64
• •• 96
..96
.115
..81

• • 198
Command •••
COMPARE ••
COMP-DISK.198

.243 CP/M Implementation ••

DATA AREAS ••
db •.......
DBARF •••••
Debugger (RDB)
DEFPATH ••
DEOUT ••••

* Index *

..
• .56

.55
• •• 35

.189
• .99
.151

Index
System 88 System Programmer's Guide

Page 270

· 151 Deout.
dequ ••
Device

.
Conf ig ure ••

• ••••• • 48
• ••...•••.• . 239

Devlock••.••...•.•..•. . . . 157
• •• 158

158
Clear Allocation •••••••
Grant Allocation ••••

devlock •• •••• 41
DEVMASK.
Dhal t ••
Dio •••••

· · "
Assembly Code •••
Disk-I/O •••••
Error Codes ••
Single User •••

· . · . . ·
TwinSystem.

· · ..
· . · .

.33
121

• • 122
• • 251
..122
• .122
• .125

.126
• ••••. • 84 DioA •••

DioBsy ••• · .85
DioDn •••••• ..
DioDr v. .. I·'...... « ••• DioHL ••
DirAddr •••••
DIRCOPY •••
Directory Checksum •••
Disk Directories ••
Disk Name •••
Disks •••••
DISPLAY.
Dname ••
DONT ••••••••
DRVADTAB ••
DUMP •••
dw ••• . ' .
EERR •••••

·
·

· · ... ·
· . . · · ·

. • •• 84
• •••••• 84

..84
• •••. • 93

..199
• ••••• • 11

. .•.••• • 10

. .
.12
.7
.5

• •• 12
.79
.83

• • • • 5
• •• 55

• ••••• 35
..102 EFLG 1. ••

EFLG2. .102
• 36

.174
..205, 213

EIC •••••
EMEDIT ••
Emsg. OV •••
Enter
enter •••••••
EQUATES.
Err ••••
ERROR. . .
Erro r Messag es ••
exc1 ••••
EXECSP ••

Fdfp ••••
FILE •••.
File Descriptor

. ...
• .I ·

. ·
· . . .

·

.......
Bloc k ••

* Index *

• • 155
.43
.30

.130

.104
• •• 205

· •••. . 32
• •••••••• • 92

163
..92
• • 15

Index
System 88 System Programmer's Guide

Page 271

File Directory Entries •••
Extension ••••••••

. . . . • .8

First Disk Address (FDA)
Byte •••••• Flag

File
File
Load

Name ••••••••••••
Size (DNS)
Address (LA)

Name Leng th •••
Start Address (SA)

File System ••
Files ••
Fl i P •......••.....•
Flipem.
Fl ush ••
Fold.
fupd •••
FUTIL ••

.
..

Gd fp
Get Flle Identlfier ••

Description •••
Enter/Replace Use ••
Error Codes •••••••••
Examples ••••••
Extended File Descriptor
Extension Interaction •••
Functions ••••
History •••••••••
Look Function •••
Macro •••••••••••
Original File Descriptor
Reg ister Setup ••
Single User •••••
System Symbol •••
Termination Characters ••
TwinSystem •••••••••••••••
TwinSystem Invalidating
Updir Function ••
<?> Processing
<I> Processing

g fid •••
GFID-DEMO ••
GFLOCK ••
Giveup ••
giveup.

. . .
.

g Loo k •••
Gover
gover

Iexec
Index

. . . .

* Index *

....
...

. ...

• • • • 9
• • 10

• •••• 8
• • • • 9

10
.10
.11
.10

· . • • • • • • • . . • 7 • •••••• 7
.......... . 118

. .

Bloc k.

• • 143
• •• 11 7

118
..32

• ••..•••••• . 187

· . . . · . .
· . . · ...

• IS,

22,
.23,

163

.

148
19

.23
25
25

.16

.21

Bloc k.

· . . . · . . ·
. .

• • 17
• ••• 1'5

• .26
••• 53

• .16
18

.149
•••••• 148 • .22

• ••••••• 149
Directories ••••••• 150

• •••• 28 . . . 20
••••••• 20

• •••••••• • 53
• .16
• .75

· ..••..•• • 143
• .50
.121
• 131

..•••. • 46

.140

.269

Index
System 88 System Programmer's Guide

Initialized Di sk ••••••••••••••••••••••••
INTERRUPT CHARACTER
Interrupts, I/O Ports

PROCESSING ••••
& Switching

Introduction •• ·
·

IOIP ••
Ioret
ioret

...

Page 272

• •• 12 . . . ••• 230
• •• 227

• •• 1
•• 83

• •••• 160 · . . .50

JOBST. 103

KBD ••
KBEX.
KBIG •••••
KBIP •••••••
KBMODEl ••••••••••
KBMODE 2 •••••••
KBUF ••••
Keyboard processing •••
1<111i •••••• • -. ••••••••

.34 · • •• 70 ·
· · · .. ·

• • •• •

• •• 67
• .67

• •• 71
·• . 71

. •••.•• • 66
.66
117

Leave ••
leave ••
LERR ••••
LOCK ••
Lock ••
lock ••

· ·156
.43
104
100

. . . . ·

Look. . .
LUSER •••••••

MACROS •••
MemAdd •••
Memory Map ••
MEMTOP ••••••
Mfos ••
Move •••
Moven ••••
Msg •••

........
.

MTO ••
Mtos ••
mung ••••
MUNG1.
MUNG2 •••••
MUNG3.
MUNG4 •••
MUNGP •• . .
Nda •••
NDRIVES ••
Nf ••
NFA.

...
NFCK •••••••

. . .

. . . .
.

· . . .

. .
·

.153
.44

~.134
103 ·

.
· . . .
.

· . . · . . .

• .37
.81
.29

• •• 92
• .120
• .161

161
• •• 116

• .89
.120

• •••• 32
• •• 95

• .•...•• . 95

. . .

* Index *

..95
· .•.• . 95

••• 88

• • 12
• •• 89
..12

12, 101
• •.•• • 94

Index
System 88 System Programmer's Guide

Page 273

NFDIR •• 94

ONCE ••
OVBC.
OVDE ••
OVENT ••
overlay ••••••
Overlay processing
Overlays •••••••••••
overto ••

. . · · ... ·
· · · . . . · · ... · ..

•• HH
• • ~ •• . 72

• .72
.86

..54
131

.164
• •••• 46

OVHL ••
OVMEM ••

. • •••• 72

OVNM ••
OVPSW •••
OVRLY ••

..
Ov rto •• ·
pages 1. •• • • ••
PATH ••••••
PCOPY.COM.
PHANTOM ••••••
PMASK •••••••••
Pmsg •••••••••
por favor ••
POS ••••
Print
print

...... . . .

. . . .
......

Printer Driver ••
PVEC •••••••••••••

ral ign ••
rd ••••
ROB ••••
rddef •• · ..
rds •••

. .

· • • 100 · • .72
• .72 . . • • • •• 86 ·131

. . . . • •••• 81-. . . .--.-9.9 · • • 244
••• 33 · • e , •• · ••••• • 74

· .. .116
·6

· . . . · ••••••• 99
...•••.••••• • 142 · .. • •• 4.5

.201 · . . . ~ .. .76

· . . · ••••• • 52 • .32
.'. • •• 188 . .. • ••••• • 51

.52 ·200 •••••.•••• . 121
RECOVER.
Rlgc
Rlwe · •••••• 139
rorg ••••••
Rtn •••
Runr •••

Sample
Sample
SBRK ••
SBUFl.
SBUF2.

·
Assembly Program.
System OVerlay.

SBUF3 ••••••••

· · · . . . · ..
. . . .

· ...
.

SBUF4 ••
SC.END.
SCHR ••

.... · · · . . .
* Index *

.52
• .133

.137

.259
••• 213

• .76
• .87
• .87

.87
• •• 87

• .98
• •• 78

Index
System 88 System Programmer's Guide

SCOPY ••
SCREEN.
SCRHM ••
SERVICE VECTORS.
SET ••••••••••

·
· . . · ...

· . . · . .

· · · . . . · . . · · . . · .. · .. · . . · ·

Page 274

•••••• 185

· .. .86
• .98
.1136
• • • 6

• ••••• • 40 setp •••••••
Set Sys •••••
sett ••

. · • •••• 5 · . . ·39
Show ••••••••••••••••••••• · . . . · • •• 141
show •••••• ·
SINT •••••••••••••
Sniff ••
SPACE ••
SRA1.

.
. .

·
· .. · . · .

.
· ·

SRA2.
SRA3 •• · .
SRA4 ••••••
SRA5 ••••••• . ..

.45
· ••••. • 89

· . . •• 5
198
.613

• •• 613
• •• 613

• .60
• .61

~ ... •• 105
SRA 71 ••••••• ·
STACK ••••• · . . .
SUWH0 ••••••• · ·
SUWH1.
SUWH2 •••••••
SUWH3 ••••
SUWH4 •••••
SUWH5 •••••

. · · . . . · ·
SUWH6 •••••••••••• ·
SUWH7. ·
SUWH8 ••••••••••••••••••••••••••
SUWH9 ••••

· .

Symbol Tables •• ·
SYSRES •••••••••

BOOT SEQUENCE ••
DATA AREAS •• ·
EQUATES ••••••

SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

ERROR MESSAGES.
INTERRUPTS, I/O PORTS

· · . .
MACROS ••••••••
OVERLAYS ••

Amsg .OV ••
Bdir.OV.
Berr.OV •••••••

& ·
. · ..

SWITCHING. · .

·

· . . • ••• 61
•• 85

• .128
· ..•... • 128

· . . .

• •• 129
..129

• ••• 129

. . .

.129
.,.129

.129

..62

.129
247
.93

.219
.56

• •••.••• • 30
•••• 205
•••• 227

.37
••••••• 164

· ..

.170

.171
171
171 Bfun.OV ••

Bs1v.OV •••
Dfn 1. OV •• • ••• 171

• ••••• 167
Dfn2.0V.
Dfn3.0V ••••••••••
Efun .OV ••
Emsg. OV.
Exec.OV.

* Index *

. . .
• .167

.168

.169
• •• 167

167

Index
System 88 System Programmer's Guide

Page 275

Gfid.OV ••••••
Mfun.OV ••••••
Pac k. OV ••

·169
169

SYSTEM
SYSTEM
SYSTEM
SYSTEM

· .
Prnt.OV •••••• ·
Vmgr .OV.
Xref.OV ••••••••

PRINTER DRIVER. ·
SERVICE VECTORS & ROUTINES ••
SYMBOL TABLES ••••
VOLUME MANAGER ••

·
Connecting New Drivers ••

Single User •••••
Twin User ••••••••

Control Block Initialization ••
Device Configure.
Error Codes ••••••
Volume Default •••

· . . .
· · .

SZAP •••• ·
Characters •• · .. · . . . ·

...
. • • • • . 169

· · . .
• • 169

170, 233
••• 171

• .••••• . 201
· . .

.106
247
233

• .240
• ••••• 241

·241
.237

• ••••• 239 · • .238
• ••• 239 · • .178

• e ' • •••• 22
• • 145

• ••••• • 91
• •••••• 198

Termination
Ticker ••
TIMER •••
TWID •••
TwinSystem User Switching · · . .230

UBRK •••
UCHR ••••
Unlock.
unlock ••
Updating
USER •••••

. · .
Directory.

· ...

·
·

·

. •• 77
• ••• 78

·154
· •.••. • 44

•• 13
•• 73

userpgm •••
USERS ••

·47
..31

USP ••••
USRNAME ••
USTATS ••••
UTILITIES ••

.
· . . .
· . . . · ..

· .. • •••.• • 90 · · •••••• • 90 · · . • •• 75 · . . .173
ARISE •••••••••
Auth.OV •••••••

· . · · ••••••.•.. . 199

CLEAN ••••
COMPARE.
COMP-DISK ••••••

.
· · . . . · .

DIRCOPY ••••••••••••••
EMEDIT ••
FUTIL ••
RDB ••••
RECOVER ••
SCOPY ••
SPACE ••
SZAP.
TWID.

· ·
.

* Index *

• •••• 194
• .199

• •• 198
.198

• • 199
.174

187
• ••• 189

.200
• ••• 186 ·

• .198
.178

• ••••• 198

Index
System 88 System programmer's Guide

UTIME. , •
UVEC ••

vcb ••
VCBTAB.

WAIT.
.

Page 276

· . .198
• •••• . 91 · .. · . . · . • .77

· · . • •••••.•• . 4283 · •••••• 49 · · .
.42

• .80

vect ••••
verdate •••
VERLOC •••
Version •••34
Vrngr •••••••••••
Volume Manager •••
Vt i

. . WAIT •••••••
WAIT.GO ••••••••••
WAKEUP •••
Warm •••
WHICH. • •• ••

· .
• • • •

. . . .
· ..

. . .
· ...

·
·
· . ·

• • • • • • • • • •
· . .
• • • • • •

• 162, 236
233

• ••••• 111

• .6, 159
•• 198

.97
• •••••• 115

• •••• S=-3 • wlock.
Wormholes ••

WH0 ••
WHl.

· • • 32

wrt ••••

WH2 •••
WH3.
WH4 ••
WH5.
WH6.
WH7 ••••••
WH8 •••••
WH9.

· ... • •• 109 . · • •• 109 III113
· •••••••••••••••• • 113

. · ·

• ••••• • 113
.114, 201

• •••..•.•• • 114 · . . . · . · .
.114
..62

• ••••• 122
.32

XTIMER •• • 8~

YAK ••• 6

* Index *

