1.0 CPU BOARD

GENERAL INFORMATION

The Nabu ACP-1101 CPU Board is designed to bring the full power of the Zilog 2-80A microprocessor to the S-100 bus. The CPU board has provision for up to three 2716 type EPROM's (for a total of 6 K bytes), and two 2114 type static RAM's (for a total of 1 K bytes). The base address of this memory block can be set using on-board jumpers. The board also performs an automatic jump to a user selected memory address on system start-up or reset. The clock frequency of the main processor is also selectable between 2 and 4 MHz . When the 4 MHz clock frequency is used, the board automatically inserts one wait state when the on-board EPROM or RAM is accessed.

When used in the Nabu 1100 computer system, the board operates at a 4 MHz clock rate, with one 2716 EPROM and two 2114 RAM's addressed from 5800 H to FFFFH.

Clock Frequency Selection

The Nabu ACP-1101 may be clocked either at 4 MHz or 2 MHz . The operating frequency is selectable with Jumper 8 (Jp-8). (Please refer to the board layout for the location of all jumpers). Connecting this jumper sets the operating clock frequency to 2 MHz . The standard CPU card is shipped with the jumper disconnected and runs reliably at 4 MHz .

Pin 98, labelled as FREQ, on the $S-100$ bus, is used by the Nabu system as an indicator line for the operating erequency. For 4 MHz operation the line will be high; for 2 MHz it is low.

Automatic Power-On Jump

When system power is turned on, or a reset signal is received, the CPU jumps to one of two hundred and fifty-six possible memory locations. The jump address is selected by the eight address jumpers JP-9 to JP-l6. Only the eight most significant address bits (Al5-A8) are used to decode the jump address. The eight least significant address bits (A7-A0) are taken as logic 0 as shown on the next page.

Power-On Jump Address:

The standard Nabu CPU board has the power-on jump address set at FCOOH (jumpers JP-15 and JP-16 installed).

On-Board Memory Selection

The Nabu CPU board offers a maximum of sixkilo-bytes of onboard memory, which consists of three $2 \mathrm{~K} \times 8$ (2716 type) EPROM's and two $1 \mathrm{~K} \times 4$ (2114 type) static RAM's. IC sockets are provided on the board for the memory chips.

The memory address for the on-board EPROM's and RAM's are grouped as a block. Within the block, the individual memory chips are allocated as follows:

	ROM 1 *
Base + 1 COOH	RAM 1 / RAM 2
Base + 1800 H	ROM 3
Base +1000 H	ROM 2
Base + 800H	NOT ASSIGNED

*Only the upper 1 K of ROM 1 is used.
The RAM is configured as 1024 x 4 bits (2ll4 type). RAM l stores data bits D0, D7, D6, and D5; and RAM 2 stores data bits D4, D3, D2, and D1.

The base address of the block is set by jumpers JP-l through JP-3. The three most-significant address bits are used to set the address of the block. Table 1 (on the following page), lists the possible base addressses of the block corresponding to each jumper connection.

$\begin{array}{cc}\text { JUMPERS } & \text { (JP) } \\ 1 & 2\end{array}$			STARTING ADDRESS (IN HEX) OF:			
			ROM 2	ROM 3	RAM 1/RAM	ROM 1
0	0	0	0800	1000	1800	$1 \mathrm{C00}$
0	0	1	2800	3000	3800	3 COO
0	1	0	4800	5000	5800	5C00
0	1	1	6800	7000	7800	$7 \mathrm{C00}$
1	0	0	8800	9000	9800	9 CO 0
1	0	1	A800	B000	B800	BCOO
1	1	0	C800	D000	D800	DC0 0
1	1	1	E800	F000	F800	FC00

'l' represents 'Jumper is connected'
'0' represents 'Jumper is disconnected'
TABLE 1: Jumper Connection And Starting Address of Memory

The enabling of these memory chips is done by connecting jumpers $\mathrm{JP}-5, \mathrm{JP}-6$, and $\mathrm{JP}-7$ in the selection area $\mathrm{S}-1$. JP-5 enables ROM 2, JP-6 enables ROM 3, and JP-7 enables ROM 1 and RAM 1/ RAM 2, as seen in the figure below. (Note that ROM 1 and RAM $1 /$ RAM 2 are enabled together, and so both must be used together).

Selection 00000000
Area S-1

In addition, enabling on-board RAM's and EPROM's renders any external devices or memory at the selected address-block inaccessible to a read instruction. However, a write operation will write into all devices located there.

The standard Nabu ACP-llol is shipped with the following memory setting:

Selection Area S-1
$\begin{array}{llllllll}\text { Jumpers (JP) } & 1 & 2 & 3 & 5 & 6 & 7\end{array}$

The memory map corresponding to the standard setting would be:

When both the 4 MHz operating frequency, and the on-board EPROM's and RAM's are chosen, (as in the standard Nabu ACP-liol setting), one wait-cycle is automatically inserted by the cPu logic circuitry.

Refresh Enable

Dynamic RAM's periodically require a refresh to maintain the data stored within the memory cell. The Nabu CPU board brings the memory-refresh signal from the zilog z -80A microprocessor to the $s-100$ bus. Pin 66 on the $S-100$ bus is designated by Nabu as the memory-refresh signal, RFSH. The memory request signal from the z -80A processor is also brought out to the s-100 bus. Pin 65 (named as MREQ), is used to indicate a valid memory address on the address bus.

NABU ACP-1101 CPU BOARD RARTS LIST

Integrated circuits

UI-U4	2114	1024×4-bit NMOS static RAM
U5	74 LSI 136	Quadruple 2-input NOR with open-
		collector outputs
U6	74LS42	4-line-to-10-line decoder
U7	74LS20	Dual 4-input NAND
U8, U9, U28,		
U30-U34	74LS241	Octal buffer/line-driver with 3-state outputs
U10	74LS175	Quadruple D-type flip-flop
U11	74LS123	Dual retriggerable monostable multivibrator with clear
U12, U17, U20,		
U23, U24	74LS74	Dual D-type rising-edge-triggered flipflop with preset and clear
U13	74LS132	Quadruple 2-input NAND with Schmitttriggered inputs
U14, U21	74 LSO 4	Hex inverter
U15	$74 \mathrm{LSO8}$	Quadruple 2-input AND
U16	74LS32	Quadruple 2-input OR
U18	Z-80A-CPU	Central processing unit (4 MHz)
U19	74LSl57	Quadruple 2-line-to-l-line multiplexer
U22, U25, U35	74LS02	Quadruple 2-input NOR
U26	74 LS367	Hex non-inverting bus-driver
U27	74LSl4	Hex inverter with Schmitt-triggered inputs
U29, U36	74LS368	Hex inverting bus-driver
U37, U38	7805	5 V positive voltage regulator
ROM1-ROM3	2716	2716 EPROM with bootstrap program

Transistors:
Q1
Q2
2N4124 NPN silicon transistor
2N4126 PNP silicon transistor
Diodes:
Dl, D2 1 N914A Silicon switching diode

Capacitors:

Cl-C10, Cl3-Cl5,
C19-C24, C25,
C26, C30, C31
C11, Cl 8
C12
C16, C27-C29
Cl7

```
0.1 \muF
33 pF disc
22 \muF, l6 V tantalum electrolytic
10 \muF, 16 V tantalum electrolytic
l0 nF
```


Resistors:

| R1, R2 | |
| :--- | :--- | :--- |
| R3, R5-R7, R11 | |
| R4 | |
| R8 | |
| R9 | |
| R10 | |
| RN1-RN3 | |

```
10 k\Omega
1 k \Omega
100\Omega
220\Omega
22\Omega
100 k\Omega
9-resistor pack of l k\Omegaresistors with
common pin #l
```

Crystal:

XTAL

```
Quantity
```

16 7
4
8
3
1
1
6
6
1
8.000 MHz parallel-resonant

Description

14 pin socket
16 pin socket
18 pin socket
20 pin socket
24 pin socket
40 pin socket
Delta 680-0.5-220 Heatsink
\#6-32 x 3/8" machine screw
\#6-32 nuts
p.c. board

NOTE: The following 11 pages have been reproduced by permission of Zilog, Inc. (C) 1979, 80, 81. This material shall not be reproduced without the written consent of zilog, Inc.

Z-80A is a trademark of zilog, Inc., with whom the publisher is not associated.

Product Specification

March 1981

Featural

- The instruction set contains 158 instructions. The 78 instructions of the 8080A are included as a subset; 8080 A sotware compatibility is maintained.
- Six MHz, 4 MHz and 2.5 MHz clocks for the Z80B, Z80A, and 280 CPU result in rapid instruction execution with consequent high data throughput.
- The extensive instruction set includes string, bit, byte, and word operations. Block searches and block transfers together with indexed and relative addressing result in the most powerful data handling capabilities in the microcomputer industry.
- The ZBO microprocessors and associated family of peripheral controilers are linked by a vectored interrupt system. This system
may be dêisy-chained to allow implementation of a priority interrupt scheme. Little, if any, additional logic is required for daisy-chaining.
- Duplicate sets of both general-purpose and flag registers are provided, easing the design and operation of system software through single-context switching, background-foreground programming, and single-level interrupt processing. In addition, two 16 -bit index registers facilitate program processing of tables and arrays.
- There are three modes of high speed interrupt processing: 8080 compatible, non-Z80 peripheral device, and Z80 Family peripheral with or without daisy chain.
On-chip dynamic memory refresh counter.

Figure 1. Pin Functlons

Figure 2. Pin Aagignments

General Description

The 280 280A, and $280 B$ CPUs are third generation single-chip microprocessors with exceptional compulational power. They offer higher system throughpu: and more efficient memory utilization than comparable secondand third generation mecroprocessors the internal registers contain 208 bits of read/write memory that are accessible to the programmer These registers include two sets of six general. purpose registers which may be used individually as ether 8 -bit registers or as 16 -bit register pairs. In addition, there are two sers of accumulator and flag registers group of "Exchange' instructions makes el: er set of main or alternate registers accessible to the programmer. The alternate set allows operation in foreground-background mode or it may
be reserved for very fast interrupt response
The $Z 80$ also contains a Stack Pointer, Program Coun•er, two index registers, a Refresh register (counter), and an Interrupt register. The CPU is easy to incorporate into a system since it requires only a single +5 V power source, all output signals are fully decoded and t:med to control standard memory or peripheral circuits, and is supported by an extensive farnily of peripheral controllers. The internal block diagram (Fiqure 3) shows the primary functions of the 280 processors.
Subsequent text provides more detail on the Z80 I/O controller family, registers, instruction set, intermpts and daisy chaining, and CPU timing.

Figure 3. 280 CPU Block Diagram
Z80 Micro-
processor
Family

The Zilog Z 80 microprocessor is the central element of a comprehensive microprocessor product family. This family works together in most applications with minimum requirements for additional logic, facilitating the design of efficient and cost-effective microcomputerbased systems.
Zilog has designed five components to provide extensive support for the 780 micro processor. These are:

- The PIO (Parallel Input/Output) operates in both data-byte I/O transfer mode (with handshaking) and in bit mode (without handshaking). The PIO may be configured to intertace with standard parallel peripheral devices such as printers, tape punches, and keyboards.
- The CTC (Counter/Timer Circuit) features four programmable 8-bit counter/timers,
each of which has an 8 -bit prescaler. Each of the four channels may be configured to operate in either counter or timer mode.
- The DMA (Direct Memory Access) controller provides dual port data transier operations and the ability to terminate data transfer as a result of a pattern match.
- The SIO (Serial Input/Output) controller offers two channels. It is capable of operating in a variety of programmable modes for both synchronous and asyn" chronous communication, including Bi-Synch and SDLC.
- The DART (Dual Asynchronous Receiver/ Transmitter) device provides low cost asynchronous serial communication. It has two channels and a full modem control interface.

280 CPU Registore

Figure 4 shows three groups of registers within the 780 CPU . The first group consists of duplicate sets of 8 -bit registers: a principal set and an alternate set (designated by ' [prime], e.g., A'). Both sets consist of the Accumulator Register, the Flag Register, and six general-purpose registers. Transfer of data between these duplicate sets of registers is accomplished by use of "Exchange" instructions. The result is faster response to interrupts and easy, efficient implementation of such versatile programming techniques as background-
foreground data processing. The second set of registers consists of six registers with assigned functions. These are the I (Interrupt Register), the R (Retresh Register), the IX and IY (Index Registers), the SP (Stack Pointer), and the PC (Program Counter). The third group consists of two interrupt status flip flops, plus an additional pair of flip-flops which assists in identifying the interrupt mode at any particular time. Table ! provides further information on these registers.

Flgure 4. CPU Regiaters

Z80 CPU Registers (Continued)	Hegiatar		Size (Bits)	Remarks
	A, A^{\prime}	Accumulator	8	Stares an operand or the results of an operation.
	F, F'	Flags	6	See Instruction Set.
	B. B^{\prime}	General Purpose	8	Can be used peparataly or as a 16 -bit reqister with. C.
	C. C^{\prime}	General Purpose	8	See B, above.
	D D^{\prime}	General Purpose	8	Can be used separately or as a 16 -hit register with E.
	E, E^{\prime}	General Purpose	8	See D, above.
	H. H^{\prime}	General Purpose	8	Can be used separately or as a 16 -bit register with L .
	L, L'	General Purpose	8	See H above.
				Note: The (B, C), (D, E), and (H, L) sets are combined as iollows; B - High byte C-Low byte D -- High byte E - Low byte H -... High byte L -.. Low byte
	I	Interrupt Register	8	Stores upper eight bits of memary address for vectored interrupt processing.
	R	Refresh Register	8	Provides user-transperent dynamic memory retresh. Automaticaliy incremented and placed on the address bus during each instruction fetch cycle.
	IX	Index Register	16	Used lor indexed addressing.
	IY	Index Register	16	Same as IX, above.
	SP	Stack Poirter	16	Stores addresses or data temporarily. See Push or Pop in instruction set.
	9 C	Program Counter	16	Hoids address oi next instruction.
	$\mathrm{IFF}_{1}-\mathrm{IFF}_{2}$	Irterrupt Enable	Flip Flops	Set or reset to indicate interrupt status (see Figure 4).
	IMFa-IMFb	Interrupt Mode	Flip.Fiops	Reflect Interrupt mode (see Figure 4).

Table 1, 280 CPU Register:

Interrupts: General Operation	The CPU accepts two interrupt input signals: $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{NT}}$. The $\overline{\mathrm{MM}}$ is a ron maskable interrupt and has the highest priority. INT is a lower priority intermpt since it requires that interrupts be enabled in software in order to operate. Either NMI or INT can be connected to multiple peripheral devices in a wired-OR configuration. The Z80 has a single response mode for interrupt service for the non maskable inter rupt. The maskable interrupt, INT, has three prograrnmable response modes available. These are:	Mode 1 -- Peripheral Interrupt service, for use with non-8080/Z80 systems. - Mode 2 - a vectored interrupt scheme, usually daisy-chained, for use with Z80 Family and compatible peripheral devices. The CPU services interrupts by sampling the $\overline{\mathrm{NMI}}$ and $\overline{\mathrm{INT}}$ signals at the rising edge of the last clock of an instruction. Further interrupt service processing depends upon the type of interrupt that was detected. Details on interrupt responses are shown in the CPU Timing Section.

Interrupts: Ceneral Operation (Continued)

Non-Meskable Intorrupt (NMI). The nonmaskable interrupt cannot be disabled by program control and therefore will be accepted at at all times by the CPU. NMI is usually reserved for servicing only the highest priority type interrupts, such as that for orderly shutdown after power failure has been detected. After recognition of the NMI signal (providing BUSREQ is not active), the CPU jumps to restart location 0066 H . Normally, software starting af this address contains the interrupt service routine.
Maskable Intertupt (INT). Regardless of the interrupt mode set by the user, the 280 response to a maskable interrupt input follows a common timing cycle. After the interrupt has been detected by the CPU (provided that interrupts are enabled and BUSREQ is not active) a special interrupt processing cycle begins. This is a special fetch (M1) cycle in which IORQ becomes active rather than $\overline{M R E Q}$, as in a normal $\overline{M 1}$ cycle. In addition, this special M1 cycle is automatically extended by two WAIT states, to allow for the time required to acknowledge the interrupt request and to place the interrupt vector on the bus.
Mode 0 Interrupt Operation. This mode is compatible with the 8080 microprocessor interrupt service procedures. The interrupting device places an instruction on the data bus, which is then acted on six times by the CPU. This is normally a Restart Instruction, which will initiate an unconditional jump to the selected one of eight restart locations in page zero of memory.
Mode 1 Interrupt Operation. Mode 1 operation is very similar to that for the NMI. The principal difference is that the Mode 1 interrupt has a vector address of 0038 H only.
Mode 2 Interrupt Operation. This interrupt mode has been designed to ulilize most effectively the capabilities of the $280 \mathrm{microproc}-$ essor and its associated peripheral family. The interrupting peripheral device selects the starting address of the interrupt service routine. It does this by placing an 8 -bit address vector on the data bus during the interrupt acknowledge cycle. The high-order byte of the interrupt service roufine address is supplied by the I (Interrupt) register. This flexibility in selecting the interrupt service routine address allows the peripheral device to use several different types of service routines. These routines may be located at any available
location in memory. Since the interrupting device supplies the low-order byte of the 2-byte vector, bit 0 (A_{0}) must be a zero.
Interrupt Priorily (Dalsy Chainiag and Neated Interruptin). The interrupt priority of each peripheral device is determined by its physical location within a daisy-chain conliguration. Each device in the chain has an interrupt enable input line (IEI) and an interrupt enable output line (IEO), which is fed to the next lower priority device. The first device in the daisy chain has its IEI input hardwared to a High level. The first device has highest priority, while each succeeding device has a corresponding lower priority. This arrangement permits the CPU to select the highest priority interrupt from several simultaneously interrupting peripherals.

The interrupting device disables its IEO line to the next lower priority peripheral until it has been serviced. After servicing, its IEO line is raised, allowing lower priority peripherals to demand interrupt servicing.

The 280 CPU will nest (queue) any pending interrupts or interrupts received while a selected peripheral is being serviced.
Interrupt Enable/Disable Operation. Two flip-flops, IFF_{1} and IFF_{2}, referred to in the register description are used to signal the CPU interrupt status. Operation of the two flip-flops is described in Table 2. For more details, refer to the Z80 CPU Technical Manual and 280 Assembly Language Manual.

Action	HFF_{1}	1FF\%	Cornmanat
CPU Reset	0	0	Maskable interrupt INT disabled
DI instruction execution	0	0	Maskable interrupt INT disabled
EI instruction execution	1	1	Maskable interrupt INT enabled
LD A, I instruction execution	*	*	$\mathrm{IFF}_{2} \rightarrow$ Parity flag
LD A,R instruction execution	*	-	$\mathrm{IFF}_{2} \rightarrow$ Parity flag
Accept $\overline{\text { NMI }}$	0	IFF_{1}	$\mathrm{IFF}_{1} \rightarrow \mathrm{IFF}_{2}$ (Maakable interrupt INT disabled)
RETN instruction execution	IFF_{2}	-	$\mathrm{IFF}_{2} \rightarrow \mathrm{IFF}_{1}$ at completion of an NMI service routine.

Table 2. State of Flip-Flopa

[^0]

NOTES: (1) Pivilag in Ot the moull of $\mathrm{EC} \cdot \mathrm{i}=0$ ontherwise By . I

Jump Group (Continued)	Himmonale	$\begin{aligned} & \text { Ifraballa } \\ & \text { Oparation } \end{aligned}$	8	7		$\begin{aligned} & \text { Flase } \\ & H \end{aligned}$	P/V	W	c	Opeode 7454510		No.ol Dytat	Fo.ed M Crales	Mo.ed T fituen	Commpatip
	P (IV)	$\mathrm{PC}-\mathrm{YY}$	-		X				-	$\begin{array}{llll} 11 & 11 & 101 \\ 11 & 101 & 001 \end{array}$		2	3	8	
	DPNZ.	$B-B-1$ $\mathrm{HB}=0$ continue	-	-	x			-	-	$\begin{array}{r} \infty 010000 \\ -\quad-2 \rightarrow \end{array}$	10	2	2	8	H8=0
		$\begin{aligned} & \text { If } B * 0, \\ & P C-P C+0 \end{aligned}$										2	3	13	$1 i 3 * 0$

- -2 in the opoode provideo an effective addrant oi pe to so FC in incremsented
by 2 priter te the addition of e

NOTE: 'RETN icad IFF $_{2}-$ IFF $_{1}$

NOTE: (1) It the rosuit of $\mathrm{B}-\mathrm{t}$ in zero the Z flag is eet, otherwise it is rewet

Pin Descriptiona

$\mathrm{A}_{0}-\mathrm{A}_{15}$. Address Bus (output, active High, 3 -state). $A_{0}-A_{15}$ form a 16 -bit address bus. The Address Bus provides the address for memory data bus exchanges (up to 64 K bytes) and for I/O device exchanges.
BUSACK. Bus Acknowledge (output, active Low). Bus Acknowledge indicates to the requesting device that the CPU address bus, data bus, and control signals $\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}$. $\overline{R D}$, and $\overline{W R}$ have entered their highimpedance states. The external circuitry can now control these lines.
BUSREQ. Bus Request (input, active Low). Bus Request has a higher priority than NMI and is always recognized at the end of the current machine cycle. BUSREQ forces the CPU address bus, data bus, and control signals $\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$ to go to a highimpedance state so that other devices can control these lines. $\overline{\mathrm{BUSREQ}}$ is normally wireORed and requires an external pullup for these applications. Extended $\overline{B U S R E Q}$ periods due to extensive DMA operations can prevent the CPU from properly refreshing dynamic RAMs.
$\mathbf{D}_{\mathbf{0}}$ - \mathbf{D}_{7}. Data Bus (input/output, active High, 3 -state). $D_{0}-D_{7}$ constitute an 8 -bit bidirectional data bus, used for data exchanges with memory and I/O.
MALT. Halt Stote (output, active Low). HALT indicates that the CPU has executed a Halt instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While haited, the CPU executes NOPs to maintain memory refresh.
INT. Interrupt Request (input, active Low). Interrupt Request is generated by I/O devices. The CPU honors a request at the end of the current instruction if the internal softwarecontrolled interrupt enable flip-flop (IFF) is enabled. INT is normally wire-ORed and requires an external pullup for these applications.
IORQ. Input/Output Request (output, active Low, 3-state). $\overline{\mathrm{ORQ}}$ indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. $\overline{\mathrm{IORQ}}$ is also generated concurrently with $\overline{\mathrm{M}}$ during an interrupt acknowledge cycle to indicate that an interrupt response vector can be
placed on the data bus.
M1. Machine Cycle One (output, active Low). \bar{M}, together with MREQ, indicates that the current machine cycle is the opcode fetch cycle of an instruction execution. $\overline{\mathrm{Ml}}$, together with $\overline{\mathrm{ORQ}}$, indicates an interrupt acknowledge cycle.

MREQ. Memory Request (output, active

 Low, 3 -state). MREQ indicates that the address bus holds a valid address for a memory read or memory write operation.NMI. Non-Maskable Interrupt (input, active Low). NMI has a bigher priority than INT. $\overline{\mathrm{NMI}}$ is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop, and autornatically forces the CPU to restart at location 0066 H .
$\overline{\mathrm{RD}}$. Memory Read (output, active Low, 3 -state). RD indicates that the CPU wants to read data from memory or an I / O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.
RESEI. Reset (input, active Low). $\overline{\text { RESET }}$ initiclizes the CPU as follows: it resets the interrupt enable flip-flop, clears the PC and Registers I and R, and sets the interrupt status to Mode 0 . During reset time, the address and data bus go to a high-impedance state, and all control output signals go to the inactive state. Note that RESET must be active for a minimum of three full clock cycles before the reset operation is complete.
$\overline{\text { RFSH. Refresh (output, active Low). } \overline{\text { RFSH }} \text {, }}$ together with MREQ, indicates that the lower seven bits of the system's address bus can be used as a refresh address to the system's dynamic memories.
WAIT. Woit (input, active Low). WAIT indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter a Wait state as long as this signal is active. Extended WAIT periods can prevent the CPU from refreshing dynamic memory properly.
Wh. Memory Write (output, active Low, 3 -state). WR indicates that the CPU data bus holds valid data to be stored at the addressed memory or I/O location.

CPU Tìming

The 280 CPU executes instructions by proceeding through a specific sequence of operations:

- Memory read or write
- 1/O device read or write
- Interrupt acknowledge

He basic clock period is reterred to as a T time or cycle, and three or more T cycles make up a machine cycle (M1, M2 or M3 tor instance). Machine cycles can be extended ether by the CPU automaticatly inserting one or more Wait sitates or by the insertion of one or more Wat states by the user.

Instruction Opcode Fetch. The CPU places the contents of the Program Counter (PC) on the address bus at the start of the cyclo fligure 5). Approximately one hai clock weie beter. MREQ goes active. The falling edge of MRFO can be used dirently as a Che trimble to dym. mic memories. When active, RD indteates that the memory data can be enabled ont: the CPU
data bus.
The CPU samples the WĀTT input with the rasiria edge of clock state T3. During clock states T3 and T4 of an M1 cycle dyramic RAM refresh can oncur while the CPU starts decoding and executing the instuation. When the Keirest Controi signal beromes active. refreshng of cymmit memory oan take place.

Figure 5. Instruction Opcode Felch

CPU Timing (Continued)

Memory Read or Write Cycles. Figure 6 shows the timing of memory read or write cycles other than an opcode tetch (M1) cycle. The MREQ and $\overline{\mathrm{RD}}$ signals function exactly as in the fetch cycle. In a memory write cycle, MREQ also becomes active when the address
bus is stable, so that it can be used directly as a Chip Enable for dynamic memories. The WR line is active when the data bus is stable, so that it can be used directly as an R / \bar{W} pulse to most semiconductor memories.

CPU Timing

 (Continued)Input or Output Cycles. Figure 7 shows the timing for an I/O read or $1 / O$ write operation. During I/O operations, the CPU automatically
inserts a single Wait state (T_{w}). This extra Wait state allows sufficient time for an I/O port to decode the address and the port address lines.

NOTE: $T_{W^{*}}$-. One Wat cyce automatcali\% userted by CPU
Figure 7. Input or Output Cycles

Interrupt Request/Acknowledge Cycle. The CPU samples the interrupt signal with the rising edge of the last clock cycle at the end of any instruction (Fiqure 8). When an interrupt is accepted, a special $\overline{\mathrm{Ml}}$ cycle is generated.

During this M1 cycle, $\overline{\mathrm{IORQ}}$ becomes active (instead of $\overline{\mathrm{MREQ}}$) to indicate that the interrupting device can place an 8 -bit vector on the data bus. The CPU automatically adds two Wait states to this cycle.

NOTE: 1) $\mathrm{T}_{2}=$ Last state at previous instruction.
2) Two Wat eyctes nutomaticaily inserted by CPU(*).

Figure 8. Interrupt Aequent/Acknowledge Cycle

CPU	Non-Maskable lnterrupt Request Cycle.	that of a normal memory read operation except
Timing	NMI is sampled at the same time as the	that data put on the bus by the memory is
(Continued)	maskable interrupt input INT but has higher	ignored. The CPU instead executes a restart
	priority and cannot be disabled under software	(RST) operation and jumps to the NMI service
	control. The subsequent timing is similar to	routine located at address 0066 H (Figure 9).

- Although NMI is an asyocrmoncus inpur, fo guamitee sus bemo recogrized on the following machat oycie NMI's lailiug exce
must oncur :us ber than the rising edge of the clow cycle precering TLAST.

Figure 9. Non-Maskable Interrupt Request Operation

Bus Request/Acknowledge Cycle. The CPU samples BÜSREQ with the rising edge of the last clock period of any machine cycle (Figure 10). If BUSREQ is active, the CPU sets its address, data, and $\overline{\mathrm{MREO}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$
lines to a high-impedance state with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and 1/O devices.

Figure 10. Bus Request/Acknowledge Cycle

CPU
Timing
(Continued)

Halt Acknowlodge Cycle. When the CPU
receives a HALT instruction, it executes NOP states until either an INT or NMI inpui is
received. When in the Halt state, the HALT output is active and remains so until an interrupt is processed (Figure 11).

NOTE: INT will also force a Hait ext?
-See rote, Figure 9

Figure 11. Halt Acknowledge CYcle

Reset Cycle. $\overline{R E S E T}$ must be active for at least three clock cycles for the CPU to properly accept it. As long as RESET remains active, the address and data buses float, and the control outputs are inactive. Once RESET goes
inactive, two internal T cycles are consumed before the CPU resumes normal processing operation. $\bar{R} E S E T$ clears the PC register, so the first opcode fetch will be to location 0000 (Figure 12)

Figure 12. Hemet Cycle

*For clock periods othar than the minimums shown in the table
calculate parameters using the expressions in the table on the
following page.

AC Characteristics (Continued)	Number	Symbol	Parameter	$\begin{array}{ll} \text { Z80 } & \text { CPU } \\ \text { Min } & \text { Max } \\ (\mathrm{ns}) & (\mathrm{ns}) \end{array}$		280A CPU Min Max (nB) (nB)		$\begin{aligned} & \text { Z80B CPU } \\ & \operatorname{Min}_{\text {Max }}^{\text {Min }} \\ & (\mathrm{ns}) \end{aligned}$	
	39	ThBUSREQ(Cr)	BUSREO Hold Time after clock	0		0	\cdots	0	...
	$40-\mathrm{TdCr}(\mathrm{BUSACKf})$-Clock 1 in SUSACK 1 Delay - $120-100-\ldots 0$								
	$4]$	TdCt(BUSACKr	Clock 1 to BUSACK 1 Deldy		110		100	\cdots	90
	42	TdCr($\mathrm{Dz}^{\text {) }}$	Clock 1 to Data Float Delay	\ldots	90	---	90	---	80
	43	$\mathrm{TdCr}(\mathrm{CTz})$	Clock 1 to Control Outputs Float Delay (MRFQ, $1 \overline{\mathrm{P} Q}$. $\overline{\mathrm{BD}}$, and WR)		110	--	80	-	70
	44	$\operatorname{TdCr}(\mathrm{Az})$	Clock 1 to Adaress Float Delay		110	-.	90	-	80
	46	TsRESET(Cr)	FESEIṪ to Clock I Setup Time	90	--	60	-	60	-
	47	ThRESET(Cr)	MESET to Ciock 1 Hold Time	--	0	---	0	-	0
	48	Tinticme	in't to Clock 1 Setue Time	80	\cdots	80	\cdots	70	
	49	ThinTriCri	Int to Cook : Hold Time	-	0	\cdots	0	---*	0
	51	TdCf(1OROf)	Cock 1 to IORC. Delay		110	\cdots	85	--	70
	52	TeffiorQr)	Clock Ito MRO I Delay	-	100		85	---	70
	53	TdCt(D$)$	Cock ito Daia Vald Delay		230	\cdots	150	-	130

Footnotes to AC Characteristics

Number	Symbol	280	Z80A	280B		
1	TcC	$\mathrm{TwCr}+\mathrm{TwCO}+\mathrm{TrC}+\mathrm{TK}$	$\mathrm{TwCl}+\mathrm{TwCl}+\mathrm{TrC}+\mathrm{THC}$	$\mathrm{TwCh}+\mathrm{TwCl}^{+}+\mathrm{Tr}_{\mathrm{r}} \mathrm{C}+\mathrm{TfC}$		
2	TwCh	Although static by destgn TwCh of greater than $200 \mu s$ is not quaranteed	Although static by design, TwCh of arester than $200 \mu \mathrm{~s}$ is mot quaranteer	Although static by desian, T'w Ch of greater than $200 \mu \mathrm{~s}$ is not guaranteed		
7 - TdA MREO - - TWCH + T6C- $75-\mathrm{m}$			$\begin{aligned} & T w C t+T C-80 \\ & T w C h+T C-20 \end{aligned}$	$\mathrm{TwCh}+\mathrm{TIC} 50-\ldots$		
10	TwMREQh	TWCh + TEC - 30				
11	TwMFEO	TCC-40	Tcc - 30	TCO-30		
26	TIAMOROf)	Tcc - 80	$\mathrm{TCO}-70$	TCC - 55		
29	TdD(WR!)	TLC - 210	Tsc - -170	TCC- 140		
31 -TwWR - TcC -- 40 -						
33	TdD($\mathrm{W}_{\text {Pt }}$)		$\operatorname{Tr}[1]+\operatorname{TrC}-140$	$\mathrm{TwCi}^{+}+\mathrm{TrC}-140$		
35	TdWRe(D)	$\mathrm{TwCl}+\mathrm{TwC} \times 80$	$\mathrm{Tw} \times 2 \mathrm{l}+\mathrm{Tr} \mathrm{C}-70$	$\mathrm{Tw}(\mathrm{O})+\mathrm{Tr} \mathrm{C}-55$		
45	TdCTimi	TwCl $+\mathrm{TO} \mathrm{C}-4 \mathrm{C}$	$\mathrm{TwCl}+\mathrm{Tr}_{\mathrm{r}} \mathrm{C}-50$	$\mathrm{Tw}_{\mathrm{w}} \mathrm{Cl}+\mathrm{Tr}_{\mathrm{C}}-50$		
50	TdMltaOHOf)	$2 \mathrm{TCC}+\mathrm{TwCh}+\mathrm{TiC}-80$	$2 \mathrm{TCC}+\mathrm{TwCh}+\mathrm{THC}-65$	$2 \mathrm{TCC}+\mathrm{TwCh}+\mathrm{TlC}-50$		
ACP Test Conditors:$V_{\text {gH }}=2.6 \mathrm{~V}$						
$\mathrm{V}_{I I}^{[I I}=0.8 \mathrm{~V}$		$\begin{aligned} & \mathrm{VGL} \\ & \mathrm{FEAT}-8 \mathrm{~V} \\ & 50: V \end{aligned}$				
$\mathrm{V}_{\mathrm{IC}}=\mathrm{VCC} \text { 但 } \mathrm{V}$						

Absolute Maximum Rating:	Storage Temperat under Voltages outputs Power Di	perature $\quad .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Specified operating range all inputs and respect to ground . -0.3 V to +7 V ation. 1.5 W	Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.			
Standard Test Conditions	The ch following otherwise GND (0 reterence temperat - $0^{\circ} \mathrm{C}$ to $+4.75$ - $-40^{\circ} \mathrm{C}$ $+4.75$ - $-55^{\circ} \mathrm{C}$ $+4.5$	cteristics below apply for the ndard test conditions, unless ted. All voltages are referenced to Positive current flows into the in. Available operating ranges are: $\begin{aligned} & 70^{\circ} \mathrm{C} \\ & \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\ & +85^{\circ} \mathrm{C} \\ & \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\ & +125^{\circ} \mathrm{C} \\ & =\mathrm{V}_{\mathrm{CC}} \leq+5.5 \mathrm{~V} \end{aligned}$	All ac parameters assume a load capacitance of 50 pF . Add 10 ns delay tor each 50 pF increase in load up to a maximum of 200 pF for the data bus and 100 pF for address and control lines.			
DC Character- istics	Symbol	Parameter	Min	Max	Unit	Test Condtion
	$\mathrm{V}_{\text {II, }}$ C	Clock Input Low Voitage	-0.3	0.45	V	
	V_{HC}	Clock Input Figh Voltage	$\mathrm{V}_{\mathrm{Cc}} .6$	$\mathrm{v}_{\mathrm{CO}}+.3$	V	
	V_{IL}	Input Low Voltage	0.3	0.8	V	
	V_{IH}	Input High Voltage	2.0	v_{Cc}	V	
	V_{OL}	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}$
	V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
	l_{CC}	$\begin{aligned} & \text { Power Supply Current } \\ & \text { Z80 } \\ & \text { Z80A } \\ & .280 \mathrm{~B} \end{aligned}$		$\begin{aligned} & 150^{1} \\ & 200^{2} \\ & 200 \end{aligned}$	$\begin{aligned} & m A \\ & m A \\ & m A \end{aligned}$	
	I_{LI}	Input Leakage Current		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{T}}=0$ to V_{CC}
	$\mathrm{I}_{\text {LEAK }}$	3-State Output Leakage Current in Float	-10	10^{3}	${ }_{\mu} \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4$ to $\mathrm{V}_{\text {CC }}$
	i. For miltary grade ports, iCcis 200 mA 2. Typural sate fo: $280 \mathrm{~A}=90 \mathrm{tin}$.					
Capacitance	Symbol	Parameter	Min	Max	Unit	Note
	Colock	Clock Capacitance		35	pF	Unmeasured pins returned to ground
	$\mathrm{C}_{\text {IN }}$	Input Capacitance		5	pF	
	$\mathrm{C}_{\text {OUT }}$	Output Capactance		10	pF	

[^1]| Ordering Information | Product Number | Package/ Temp | Speed | Description | Product Number | Package/ Temp | Speed | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 78400 | CE | 2.5 MHz | $280 \mathrm{OPU}(40-\mathrm{pin})$ | 28400 A | DE | 4.0 MHz | 280A CPU (40-pin) |
| | 28400 | CM | 2.5 MHz | Same as above | 284009 A | LS | 4.0 MHz | Same as above |
| | Z8400 | CMB | 2.5 MHz | Same as atrove | 78400 A | PE | 4.0 MHz | Same as above |
| | 78400 | CS | 2.5 MHz | Same as above | 28400A | PS | 4.0 MHz | Same as above |
| | 78400 | DE | 2.5 MHz | Same as above | 28400B | CE | 6.0 MHz | Z80B CPU (40-pin) |
| | 28400 | DS | 2.5 MHz | Same as above | 28400 B | CM | 6.0 MHz | Same as above |
| | 28400 | PE | 2.5 MHz | Same as above | 28400 B | CMB | 6.0 MHz | Same as above |
| | 28400 | PS | 2.5 MHz | Bame as above | Z8400B | CS | 6.0 MHz | Same as above |
| | Z8400A | CE | 4.0 MHz | 780 A CPU (40-min) | 28400 B | DE | 6.0 MHz | Same as above |
| | Z8400A | CM | 4.0 MHz | Sanme as above | 28400 B | DS | 6.0 MHz | Same as above |
| | Z8400A | CMB | 4.0 MHz | Same as above | 28400 B | PE | 6.0 MHz | Same as above |
| | 28400A | CS | 4.0 MHz | Same as above | 78400 B | PS | 6.0 MHz | Same as above |
| | ML-STD. 883 Cides $\sqrt{6}$ proressina : | | | | | | | |

[^0]:
 copeed ino the $\mathrm{p}-\mathrm{F} \| \mathrm{lla}$
 For an expuratioe al flat notatica and symbols lor

 Icllwang tabes.

[^1]: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{i}=1 \mathrm{MH}$

