
MULT 1/0

Users Manual , rev 3

Prelimi,nary



MULT I/O

The Mult I/O is a general purpose 8-100 utility card that
combines all the board level features needed to form the heart of
a powerful interrupt driven, real time, multi-user I/O system.

The board consists of the following I/O support sections:

- Three programmable serial I/O devices for communicating wi th
data terminal equipment (terminals, printers, etc.) or data
communications equipment (modems, computers, etc.).

- Three parallel ports (one input and two outputs) configured to
plug directly into the 50 conductor ribbon cable of a Diablo
compatible parallel 'Daisy Wheel' printer, and capable of being
interfaced to most any parallel computer peripheral.

- A real time clock/calendar chip with provision for battery
back-up, and the ability to cause timed interrupts at selectable
intervals for mUltiprocessing and time-sharing applications.

- A programmable interrupt controller (PIC) capable of resolving
eight levels of maskable, prioritized interrupts, five of which
are asserted by the board itself.

- Four Kbytes of 2716 Eprom or four Kbytes of high speed static
6116 Ram (in the same sockets) or two Kbytes of each. Both Ram
and Eprom are bank selectable and able to respond to all 24 8-100
address lines (extended addresses) as defined in the IEEE-696
buss specification.

The Mult I/O also provides a power-on-jump option which allows
eight bytes of code to be executed from on-board Eprom during
system power-on or reset.

The serial, parallel, clock and PIC devices on the Mult I/O are
all I/O mapped - tha tis, they are accessed through sw itch
selectable I/O port addresses. These devices may be programmed
to request an interrupt of the PIC based on a multitude of status
conditions. The 8259-A PIC can in turn issue to the CPU up to
eight maskable, prioritized interrupt service routine vectors.
AS the sole system I/O card, one Mult I/O board can be used to
support three terminals and a 'Daisy Wheel' printer while
furnishing a real time, interrupt driven environment with all
interrupt service routines optionally residing in on-board Ram
and Eprom. Alternatively, up to four Mult I/O cards may be
combined to accommodate as many as twelve terminals with full
interrupt support.

1



I/O Addressing - General

All devices on the Mult I/O, even Ram and Eprom, are
associated with an I/O port. In all, over 32 distinct I/O
registers are used to control the many device functions available
on the board. Yet the Mult I/O takes up only eight I/O port
addresses. To understand how so many registers can be accessed
through so few ports, it is helpful to think of the port
addressing scheme of the Mult I/O as 'bank-selected I/O'. As the
name suggests, this is analogous to conventional bank-selected
memory schemes, in that, several 'banks' of registers are allowed
to occupy the same area of consecutive I/O addresses while a
dedicated I/O port is used to enable one 'bank' at a time.

The Mult I/O is divided into four I/O 'banks', hereafter
called groups, with each group occupying the same seven I/O port
addresses, namely, addresses BASE to BASE+6. Port address BASE+7
is the GROUP SELECT port, and is used to establish which of the
four I/O groups will be active at any given time. This port is
also used to control several other functions (enabling memory,
interrupts and the printer port).

By sending a value between 0 and 3 to the GROUP SELECT port,
the user enables the corresponding group of functions between
BASE and BASE+6 for all subsequent I/O operations. To enable a
different group the user must send a different group value to
GROUP SELECT port BASE+7. While this port selection technique is
extremely efficient in conserving I/O space, it does impose upon
the user the responsibility of keeping track of which I/O group
is currently active, and what the contents of the remainder of
the GROUP SELECT port should be.

2



I/O Port addressing - Switch 7B

Switch 7B is used to determine the base address of the Mult
I/O groups. paddles 2 through 6 of switch 7B give the user
control over address bits A7 to A3, respectively, so that the
BASE port can be located at any eight byte boundary, starting at
o and ending at port F8H. The relationship between paddle number
and address bit is illustrated below:

DIP Switch 7B

Paddle Number Address Bit

2
3
4
S
6

·................·................·................·................·................

A7
A6
AS
A4
A3

'ON' = 0 and 'OFF' = I

When a switch is closed, a low address bit compares true;
when a switch is open, a high address bit compares true. When
all conditions are true, the I/O is selected. For example, with
all paddles 'ON' the l\1ult I/O would occupy I/O addresses 0
through 8. With all paddles 'OFF' it would occupy F8H through
FFH.

Group Select Port BASE+7

Once the BASE address has been established by setting
switches 2-6 of 7B, the addresses of all I/O functions on the
Mult I/O are determined, as outlined in the I/O MAP on the
following page. In order to gain access to a specific device
function, however, the group number of that device must first be
sent to I/O port BASE+7. The I/O group is selected by executing
an output instruction to port BASE+7 with data bits 0 and 1 set
as follows:

Group~-s-election bits within BASE+7

Data Bit I
o
o
I
I

Data Bit 0
o
I
o
I

Group Number
o
I
2
3

NOTE: Beware of modifying the remaining data bits of this I/O
port as these bits (DS-D2) control functions that have unique
effects on the rest of the system (namely, bank selection,
interrupt enable, and printer control).

3



As an example of using the GROUP SELECT port, suppose that
we want the I/O space taken up by the Mult I/O to extend from 80H
to 87H, and that we wish first to read ACE serial device #2 and
subsequently to read "DAISY PORT" #0. I/O port BASE can be set
to 80H by turning paddle 2 of switch 78 'OFF' and paddles 3, 4, 5
and 6 'ON'. This would assign the GROUP SELECT port the I/O port
number 87H. In order to read the data received buffer of the
second ACE serial device (serial device number 2), the user must
first set data bit 1 and clear data bit 0 of GROUP SELECT port
87H (to insure that I/O GROUP 2 is selected), and then read the
desired data from port 80H (assuming the serial device has been
properly initialized). To read the parallel 'Daisy' port, we
would first switch to I/O GROUP 0 by clearing data bits 1 and 0
of port 87H, and then read the desired data from port 80H.

The important thing to remember here is that the function of
I/O port 80H in our example changes from a serial device data
register to a parallel device status register depending on the
last byte we sent to the GROUP SELECT port, BASE+7.

The following page contains a general I/O map of the Mult
I/O. For greater detail, such as data bit assignments, refer to
the device data sheets included with this manual, and to the
section of this manual dealing with the device in question.

4



I/O MAP

GROUP CONTROL I/O PORT BASE+7.
THIS IS A WRITE ONLY PORT, NO STATUS CAN BE READ.

TO SELECT AN I/O GROUP, OUTPUT TO PORT BASE+7
WITH DATA BITS 0 AND 1 SET AS FOLLOWS:

Dl D0 GROUP# DEVICE(S)
-------1------1----------------------------------------------o 0 1 0 1 DAISY PORTS, 1991 CLOCK, 8259-A PIC
o 1 1 1 1 SERIAL PORT 1 (IC 2C, CABLE CONNECTOR Jl)
1 0 I 2 I SERIAL PORT 2 (IC 2B, CABLE CONNECTOR J2)
1 1 I 3 1 SERIAL PORT 3 (IC 2A, CABLE CONNECTOR J3)

ADDITIONAL CONTROL BITS OF BASE+7.
THESE BITS CONTROL BANK SELECT, INTERRUPT AND PRINTER ENABLES.

D5 D4 D3 D2 FUNCTION
---------------------1------------------------------------------

o 0 0 1 I IF 10B-2 IS 'OFF' RAM/EPROM IS ENABLED.
o 0 1 0 I ENABLES THE INTERRUPT CONTROLLER (PIC).
o 1 0 0 I TAKES PRINTER RESTORE (P4-13) LOW.
1 0 0 0 1 ENABLES ALL PRINTER OUTPUT LINES (P4).

ONCE A GROUP IS SELECTED, PORTS ARE ASSIGNED AS FOLLOWS:

GROUP 0

BASE
BASE+l
BASE+2
BASE+3
BASE+4
BASE+5
BASE+6
BASE+7

BASE
BASE+l
BASE+2
BASE+3
BASE+4
BASE+5
BASE+6
BASE+7

INPUT OUTPUT
-------------------------1----------------------------
DAISY0 IN 1 DAISY0 OUT

not used I DAISYI OUT
CLOCK IN I CLOCK OUT

not used 1 not used
8259-A A0=0 REGISTER 1 8259-A A0=0 REGISTER
8259-A A0=1 REGISTER I 8259-A A0=1 REGISTER

not used 1 not used
not used 1 SELECT ALTERNATE GROUP

GROUPS 1, 2, & 3
(8250 ACE Ser i al I/O ports)

INPUT OUTPUT
-------------------------1----------------------------
RECEIVE BUFFER/LSB BAUD 1 TRANSMIT BUFFER/LSB BAUD
INTERRUPT ENABLE/MSB BAUDI INTERRUPT ENABLE/MSB BAUD
INTERRUPT IDENTIFY I not used
LINE CONTROL REGISTER 1 LINE CONTROL REGISTER
MODEM CONTROL REGISTER I MODEM CONTROL REGISTER
LINE STATUS REGISTER 1 not used
MODEM STATUS REGISTER I not used

not used I SELECT ALTERNATE GROUP

5



Ram and Eprom - General

The Mult I/O is equipped to handle four Kbytes of high speed
static Ram memory or four Kbytes of 2716 Eprom or two Kbytes of
each. This memory occupies two sockets on the board, 50 and 60
(R0 and Rl respectively), and may be addressed to any 4K boundary
within a 64K memory segment within a 16 Megabyte address space
(see Extended Addressing). Ram/Eprom' always functions as bank
select memory (see Bank Selection), and is addressed as a single
4K unit.

NO wait state is ever generated when addressing Mult I/O
memory, which should be capable of running solid at up to 6 Mhz.
If, however, the customer should have slow Rams or Eproms, he may
either set his processor to generate wait states every cycle or
Ml cycle (if possible) or he may order a special PLA from Morrow
Designs which activates any number of wait states only on Eprom
reads.

Addressing

switches 3-6 of l0B control the addressing of the 4K block
of Ram/Eprom within a given 64K memory segment. The paddles
correspond to address bits as follows:

Memory Addressing
OIP Switch l0B

, Address Bit

AlS
Al4
Al3
Al2

Paddle *
3
4
5
6

'ON' = 0 and 'OFF' = 1

Thus, to set Ram to begin at C000H, paddles 3 and 4 should
be placed in the 'OF~ position, and paddles 5 and 6 should be
placed in the 'ON' position. This will cause the left socket to
occupy the address space from C000H to C7FFH. This same switch
setting would place the right socket from C800H to CFFFH. The
following table gives the 16 possible settings of the Ram/Eprom
address switch at l0B and the corresponding beginning and ending
addresses of the left and right sockets.

6



Memory Address Settings
(Within a 64K segment)

A15 A14 A13 A12 Left Left Right Right
10B-3 10B-4 10B-5 10B-6 Begin End Begin End
----------------------------------------------------------------
0 0 0 0 0000 07FF 0800 0FFF
0 0 0 1 1000 17FF 1800 1FFF
0 0 1 0 2000 27FF 2800 2FFF
0 0 1 1 3000 37FF 3800 3FFF
0 1 0 0 4000 47FF 4800 4FFF
0 1 0 1 5000 57FF 5800 5FFF
0 1 1 0 6000 67FF 6800 6FFF
0 1 1 1 7000 77FF 7800 7FFF
1 0 0 0 8000 87FF 8800 8FFF
1 0 0 1 9000 97FF 9800 9FFF
1 0 1 0 A000 A7FF A800 AFFF
1 0 1 1 B000 B7FF B800 BFFF
1 1 0 0 C000 C7FF C800 CFFF
1 1 0 1 D000 D7FF D800 DFFF
1 1 1 0 E000 E7FF E800 EFFF
1 1 1 1 F000 F7FF F800 FFFF

Extended Addressing

Extended addressing as applied to S-100 memory devices is
simply the ability of memory to decode more than 16 address bits.
The 4K block of Ram/Eprom on the Mu1t I/O may be switched to
decode 24 rather than 16 address lines - the extra 8 address
lines being defined by the IEEE-696 buss specification. This
extended addressing feature allows the Ram/Eprom on the Mult I/O
to occupy any even 4K block within a 16 Megabyte address space.
To enable the decoding circuitry, switch 1 of 10B must be placed
in the 'OFF' position. Since most CPU boards currently in use do
not generate address lines A23 - A16, many users will wish to
disable this feature. This is done by setting switch 1 of 10B to
the 'ON' position, and removing the IC at location 3D (25LS2521)
from its socket.

With extended addressing enabled (switch 1 of 10B 'OFF', 3D
installed), the DIP switch at location 2D determines the 64K
segment in which the 4K of the Ram/Eprom will reside. The
following table illustrates the settings of the switches at 2D
and their corresponding extended address bits. The S-100 buss pin
numbers assigned by the IEEE-696 buss specification to these
extended address bits are given in parentheses.

7



Extended Addressing
DIP Switch at 2D

A23 ( 16) 1
A22 (17) 2
A2l (15 ) 3
A20 (59) 4
A19 ( 61) 5
Ala ( 62) 6
A17 ( 63) 7
A16 ( 64) a

, ON' = 0 and 'OFF' = 1

Extended
Address
Bit

S-100
Bus
Pin i

DIP Switch
lD Paddle i

DP Switch l0B-l must
h 'OFF, and the Ie at
3) installed to enable

ex·.ended addressing.

For example, to set Ram/Eprom to begin at l0C000H, set
switch 1 of l0B 'OFF' to enable extended addressing, set the
lower 16 bits (the C000 part of this address) of DIP switch 10B
as per the instructions on the previous page, and set switch 4 of
2D 'OFF', and switches 1-3 and 5-8 'ON'. In this way, the left
socket will respond to all memory accesses from l0C000H to
l0C7FFH, while the right socket will be active from l0C800H to
l0CFFFH. When so addressed, Ram/Eprom will NOT respond to memory
accesses to the area from 0C000H to 0CFFFH, and so would in
effect be permanently disabled in any system incapable of
generating extended addresses.

Bank Selection

The Ram/Eprom block on the Mult I/O is bank selectable
memory - that is, an I/O instruction can cause the memory block
to become enabled or disabled. In the case of the Mult I/O, when
the host processor executes an output instruction to I/O port
BASE+7 of any group, the Mult I/O board will examine data bit 2
and render its memory accessible or inaccessible according to
whether it is high or low. If the bit is high and switch 10B-2
is 'ON', the Ram/Eprom will not respond to any further memory
access unless:

1) Th e s y s t e m i s res e t (a n d s witchI 0B-2 is' 0 N' ), 0 r

2) A BASE+7 output occurs with data bit 2 low, or

3) Switch l0B-2 is turned 'OFF'.

Switch 108-2 allows the user to determine whether or not
Mult I/O Ram/Eprom will be selected after system power-up or
reset. The setting of this switch also determines whether BASE+7
bit 2 will be active high or active low. If Switch 108-2 is in
the 'ON' position, then the Mult I/O Ram/Eprom bank will be
enabled upon system power-up or reset, and BASE+7 bit 2 will have

8



to be low to enable memory, and high to disable it. If Switch
l0B-2 is 'OFF', the Mult I/O Ram/Eprom bank will be disabled upon
system power-up or reset, and will not be accessible until an
output is made to port BASE+7 with bit 2 high. Thus l0B-2 'ON'
causes the bank enable bit to be active low, and 'OFF' causes it
to be active high.

PORT # DATA BIT I I/O GROUP NUMBER
=====:==~==========~==================~=========

BASE+7 2 I ANY

When disabled by bank de-selection, Mult I/O Ram/Eprom will
'disappear' from the bus, and so will not interfere with other
system memory occupying an identical address. Therefore other
bank select memory boards may be swapped in and out of memory
along with Mult I/O Ram/Eprom. Of course, memory cards which are
to be swapped in and out along with Mult I/O Ram/Eprom must
themselves be capable of being disabled through some software
mechanism. (Mult I/O memory is perhaps unique in that it can
utilize extended address and bank select memory simultaneously.)

For example, if Mult I/O is set to begin at Port 48H, and if
switch 2 of l0B is turned 'ON', then the Ram/Eprom can be enabled
with the following routine:

;
; This subroutine does not modify the presently selected group.
;

bank: Ida
ori
sta
out
ret

seldat: db

seldat
4
seldat
4f

o

;Recall old group select data.
;Throw bank select bit high.
;Save altered group select data.
;Send to group select port
; with nothing but bank altered.

CAUTIONI

The I/O devices (as opposed to the memory devices) on the
Mult I/O board are not directly affected by bank selection or de­
selection. However, since inadvertent selection or de-selection
of Mult I/O Ram/Eprom could be disastrous, system programs using
the Mult I/O should make some provision to avoid altering all
BASE+7 devices when it is desired to alter only one of them.
Inputting from port BASE+7 will NOT return the current status of
selected group so some storage location should be used to hold
current status, and routines which alter the group select should
be sure to keep this storage location updated and to use its
contents to mask out those bits which are not to be changed.
The above routine, for example, sets BANK high without altering
the previous selection.

9



Phantom Enable

Switch 1 of 78 is the phantom Enable switch. When placed in
the 'OFF' position, the Mult I/O will ignore 'phantom/ r (buss pin
6 7) • In the ' ON' po sit ion, t his s witc h c a use S the Ra m/ Epro m
section of the Mult I/O board to become disabled and logically
removed from the system buss whenever Phantom is active. Certain
systems rely on the Phantom line to temporarily disable Ram
memory in order to execute a special system start-up routine from
Eprom. Once. this routine is executed, the Eprom holding the
routine vanishes and the phantom line returns high to allow Ram
memory to be accessed. Mult I/O memory is compatible with such a
scheme.

Power-on Jump

Switch 10B-7 controls the power-on jump circuitry of the
Mult I/O. When placed in the 'ON' position, this switch will
cause the Mult I/O to force the host processor to execute the
last 8 instructions of a Mult I/O Eprom.

For the power-on jump feature to be used, there must be at
least one Eprom in either socket. Upon a reset or power-on, the
board will point to the last eight bytes of Eprom to find a jump
instruction to the users bootstrap routines. Switch 10B-8
determines which of the sockets will be used for the power-on
jump code. The left socket (R0, at 5D) will be selected if this
switch is 'ON' and the right socket (Rl, at 6D) will be selected
if it is 'OFF'.

Since the POJ circuitry of the Mult I/O can only jump to its
own Eprom, this feature cannot be used unless:

1) The Eprom is enabled (10B switches 1 and 2, see above).

2) Switch 108-8 is set to enable the correct Eprom socket.

3) The POJ switch is closed (108-7 'ON').

4) There is an Eprom installed in the correct socket containing
the desired jump routine in the last eight bytes.

10



Serial Ports

The Mult I/O has three 8250 programmable Asynchronous
Communications Elements (ACE'S) which may be connected to RS-232
devices via three 26 pin ribbon cable connectors. All three
ACE's are configured as Data Communications Equipment (DCE) from
the factory, and so may be connected with standard RS-232
terminals and printers. All may be re-strapped to act as Data
Terminal Equipment (DTE), if they need to be connected to a modem
or another computer. This eliminates the need to buy a custom
cable for every new piece of equipment to be interfaced.

Each ACE has an I/O group dedicated to it - namely, groups
1, 2 and 3. The ACE's are completely programmable and so must
be initialized in software before they can be used.
Initialization includes setting the baud rate, word length,
number of stop bits, parity, and interrupt conditions. Each ACE
can be programmed to generate an interrupt in response to several
conditions (data available, transmitter buffer empty, clear to
send, etc.). The interrupt is sent directly to the Mult I/O PIC
which may, in turn, pass it on to the host cpu. The interrupt
handling routine may then interrogate the interrupt status
register of the ACE responsible for generating the interrupt, and
is thereby able to determine the precise cause of the interrupt.

The following chart gives the vital statistics of the ACE
devices on the Mult I/O, including the location of the 8250 on
the circuit board, the location of the 26 pin ribbon cable
connector associated with each ACE, the I/O GROUP controlling
each ACE, and the interrupt level assigned to each device by the
8259-A PIC.

ACE VITAL STATISTICS

I/O 26-pin Board
GROUP * connector location

ACE i 1 1 PI 2C
ACE i 2 2 P2 2B
ACE i 3 3 P3 2A

Interrupt
Level

3
4
5

pI is the connector on the top left corner of the board; P2 and
P3 are the next two connectors to the right of Pl.

The pins on ribbon cable connectors Pl-P3 are numbered so
t hat the fir s t 25 pins cor res po n d e x act1 y to the n u mb e r i ngo f a
standard DB-25 connector. Cables with flat ribbon cable
connectors at one end and DB-25 connectors on the other are
available off the shelf from many vendors.

Just below each serial connector is an array of seven jumper
headers labeled Jl, J2 and J3. They are configured with six slip
on jumpers (wire wrap may be used for custom applications), and
thei r main function is to select a DCE channel o-r----a DTE channel.
Configuration of these headers is illustrated below:

11



p1-P3 Connector Pinout (top view)

back

14 15 16 17 18 18 20 21 22 23 24 25 26
left right

1 2 3 4 5 6 7 8 9 10 11 12 13

front

J1, J2 and J3 - Serial Channel Set-up

As Data Communications Equipment (standard) •

A B C D E F G

* * * * * * *
I I
* * * * * * *
H I J K L M N

AS Data Terminal Equipment.

A B C D E F G

* * * * * * *
I I I I

* * * * * * *
H I J K L M N

J1, J2 and J3 pin Designations

EIA RS-232C pin # J1, 2 or 3 pin
------------~-------I-~----------~-----

2 - TXD
3 RXD
4 RTS
5 CTS
6 DSR
8 DCD

20 DTR

ACE pin & signal

10 - sin
11 - sout
32 - rts
36 - cts
37 - dsr
38 - rlsd
33 - dtr

A
I
M
G
E
C*
K

H
B
F
N
L
J*
D

To cross reference a
a software bit of the
ACE with a physical
hardware line at the
connector, just find
the header pin letter
associated the hardware

or software signal
your interested in,
then look at the
header of the port
concerned. That
letter should be
j umpered to it's
alternate in the table.

* These pins are hardwired together.

12



The pin assignment of the serial connector when the channel
is configured as data terminal equipment (DTE - looks like a
terminal) is described below:

Direction I Connector I RS-232 Function.
I Pin * I (EIA Standard)

----------------~----------------------~~~--~~~---

DeE DTE 1 I Frame ground
<- 2 I Txmtd. data
-) 3 I Rcvd. data
<- 4* I Request to send
-) 5 I Clear to send
-) 6 I Data set ready

7 I Signal ground
-) 8** I Carrier Detect

I
<- 20 I Data term. rdy

All names are
wi th respect

to DTE.

* Request To Send (RS-232 Pin 4) is implemented only on ACE *
1 and 2, and NOT on ACE * 3.

** Carrier Detect (RS-232 Pin 8 - ACE Received Line Signal
Detect) is hardwired to be an INPUT to the board on all three
channels, and so will sense a terminal's Carrier Detect line, but
cannot be strapped to drive a modem's Carrier Detect line.

Also, Ring Indicator, RS-232 pin 22, is not implemented.
Though this function has a dedicated line on the 8250 ACE and
has its own status bit in the Modem Status Register, the 8250 RI
pin (31) is tied high on the Mult I/O, and so sampling it would
be meaningless.

programming the 8250

An ACE device on the Mult I/O can be accessed only if its
I/O GROUP is currently selected. Once a 1, 2 or 3 has been sent
to GROUP SELECT port BASE+7, ACE device number 1, 2 or 3 can then
be accessed. Each ACE contains internal 8 bit registers which
occupy the first 7 I/O ports of the Mult I/O I/O space - BASE to
BASE+6. The list below identifies all the internal registers of
the 8250 and the I/O port address assigned to those registers by
the Mul t I/O:

13



I/O PORT

BASE

BASE+l

BASE+2

BASE+3

BASE+4

BASE+5

BASE+6

8250 ACE Register

If bi t 7 of Line Control Register is 0,
Receiver Buffer (Read) or
Transmitter Holding Register (Write)

If bit 7 of Line Control Register is 1,
Baud Rate Divisor Latch low byte (R/W)

If bit 7 of Line Control Register is 0,
Interrupt Enable Register (R/W)

If bit 7 of Line Control Register is 1,
Baud Rate Divisor Latch high byte (R/W)

Interrupt Identification Register (R/O)

Line Control Register (R/W)

MODEM Control Register (R/W)

Line Status Register (R/O)

MODEM Status Register (R/O)

The user should familiarize himself with the 8250 ACE data
sheets provided with this documentation.

Baud Rate

The 8250's on the Mult I/O are completely programmable,
including the baud rate. There is a 16 bit divisor latch within
each ACE that divides the reference frequency into 65,535
possible rates, quite a few of which are precisely the standard
EIA RS-232 transmission and reception baud rates. All ACE's have
been hard wired so that the baud rate for data coming in is the
same for data going out. The crystal used to provide the
reference frequency for the three ACE devices is 1.8432 MHz. The
data sheets give a broad sample of the divisors which must go
into the Divisor Latch in order to generate the most common baud
rates, and any baud rate may be generated from DC (this will
inhibit all data transmission) up to 38,400 baud.

The formula for determining the divisor constant to produce
a given baud rate is:

DIVISOR = 1.8432 M/(BAUD RATE X 16)

Although in most applications the user will simply look up
the baud rate divisor in the data sheet table, there are
instances when 'odd ball' baud rates may be useful - if, for
example, an ACE is being used solely to generate interrupts at
timed intervals based on the Transmitter Holding Register Empty
interrupt (see Serial Device Interrupts).

14



Initialization

Though the reset pin (MR) of each 8250 will be asserted
during power-on or reset, no assumptions should be made about the
contents of any 8250 register unless that register has been
previously initialized. Keep in mind that an on-board ACE cannot
be accessed, far less initialized, unless its I/O group is
selected. The Line Control, Modem Control, Interrupt Enable and
Divisor Registers should be initialized before any data is
transferred to or from an 8250.

The following three software routines are bare bones samples
of how a Mult I/O ACE device could be driven in a CP/M* type
environment. All of these routines adhere to CP/M* I/O protocol.
The INIT routine sets up ACE i 1 to run at 9600 baud with an 8
bit word, no parity and 2 stop bits. The Interrupt Enable
Register will be set to generate no interrupts, and the Modern
control/Status Registers will be ignored. This initialization
would be appropriate for most RS-232 CRT terminals in a non­
interrupt driven environment. Assume that the Mult I/O has been
set to begin at 48H. The comments included with these routines
may be used as a general flow analysis of ACE programming.

* CP/M is a trademark of Digital Research.

15



groupl
base
grpctl
dll
dIm
ier
lcr
lsr
rbr
thr
dlab
thre
dr
baudl
baudh
wls0
wls1
stb
imask

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

1
48h
base+7
base
base+1
base+1
base+3
base+5
base
base
80h
20h
1
12
o
1
2
4
o

sample I/O Routines

;code for first ACE (attached to Jl)
;base I/O address set by 7B 2-6
;board group control port
;ACE baud rate divisor (lsb)
;ACE baud rate divisor (msb)
;ACE interrupt enable register
;ACE line control register
;ACE line status register
;ACE receiver buffer register
;ACE transmitter holding register
;divisor latch access bit
;line status register THRE bit
;line status register DR bit
;divisor latch low byte - 9600 baud
;divisor latch high byte - 9600 baUd
;word length select bit 0
;word length select bit 1
;stop bit count - 2 stops
;interrupt mask - disable all

;The following routine initializes the ACE as described above

lcr
rbr
a,imask
ier

init: mvi
out
mvi
out
mvi
out
mvi
out
mvi

out
in
mvi
out
ret

a,group1 ;set up desired I/O group.
grpctl ;select first serial device.
a,dlab ;open divisor latch access bit.
lcr ;base reg is now Isb baud rate reg.
a,baudl ;low byte of baud rate divisor
dll ;into low baud rate register.
a,baudh ;high byte of baud rate divisor
dIm ;into high baud rate register.
a,wls0+wls1+stb ;set up transmission format

;and close dlab.
;send to line control register.
;clear data ready flag in line status.
;interrupt mask set up.
;base+l now interrupt mask - not baud.
;end of initialization routine.

;The following routine will return in the accumulator any new
;character typed to ACE # 1

conin: mvi a,group1 ;select group one.
out grpctl
mvi a,wls0+wls1+stb ;make sure dlab is clear.
out lcr

coninl: in lsr ;check line status register.
ani dr ;any new data from terminal?
jz conin1 ;no, wait.
in rbr ;get data.
ani 7fh ;strip parity.
ret

16



;The following routine will send the character in Register C
ito ACE # 1

conout: mvi a,groupl ;select group one.
out grpctl
mvi a,wls0+wlsl+stb jmake sure dlab is clear.
out lcr

conoutl: in lsr jcheck line status register.
ani thre jis ACE ready to transmit?
jz conoutl jno, wait.
mov a,c jCP/M sends character in ' c' •
out thr jsend to terminal.
ret

;The following routine will return an FF in the Register A if ACE
;device # 1 has received a new character (i.e., DR is set in the
;ACE line status register). Otherwise, return a 0.

jyes.

jcheck line status register.
j data ready?
jno.

status: mvi
out
in
ani
rz
cma
ret

a,groupl ;select group one.
grpctl
lsr
dr

In the above examples, it should be noted that the GROUP
SELECT port is re-initialized at the beginning of every routine.
This is done to insure against inadvertently sending serial I/O
instructions to the wrong serial port or the clock, parallel
ports or interrupt controller. It should be further noted that
before accessing the ACE data register, the format word is again
sent to the Line Control Register. This is done so that port
BASE of GROUP 1 will be interpreted as a data port rather than as
a divisor port. This guards against a situation such as losing
access to the console device due to a careless reading of the
Divisor Latch (from a monitor or front panel, for example)
without subsequently clearing DLAB.

17



Serial Device Interrupts

The three 8250 ACE devices on the Mult I/O each have a
dedicated interrupt request line on the 8259 PIC. The chart
below describes the PIC interrupt level assigned to each ACE:

ACE Interrupt Assignments on 8259 PIC

serial Device PIC Interrupt
Request Line

ACE # 1 IR3
(I/O Group 1)

ACE # 2 IR4
(I/O Group 2)

ACE # 3 IR5
(I/O Group 3)

ACE Interrupt programming

As explained in the data sheet on the 8250, each ACE device
can be programmed to generate an interrupt on any of four general
conditions. These conditions are, in order of descending
priority: Receiver Line Status, Received Data Available,
Transmitter Holding Register Empty, and Modem Status. The
Received Data Available and the Transmitter Holding Register
Empty interrupts can be identified directly from the Interrupt ID
Register of the source ACE. The remaining two interrupts must
use the Interrupt ID Register to point to either the Receiver
Line Status Register or the Modem Status Register. These two
registers each have four interrupt flags which can be read to
identify the source of an ACE generated interrupt. (The third
interrupt of the Modem Status Register - The Trailing Edge of
Ring Indicator, or TERI - is not supported by the Mult I/O, since
the Ring Indicator line of each ACE is tied to +5V.) Because the
8250 prioritizes its interrupts, the Interrupt ID Register will
'freeze' the highest priority interrupt pending by ignoring all
further interrupts until the previous interrupt has been
serviced. For detailed information of the interrupt structure of
the 8250 see the data sheets.

When using the 8250's ACE devices on the Mult I/O to
generate interrupts, it is advisable to set the 8259-A PIC to
operate in level mode, rather than edge mode. In edge mode, it
is possible under certain circumstances for an ACE generated
interrupt to be 'lost' - that is, to go unrecognized.

18



The Parallel "DAISY PORT"

General

The Mult I/O contains parallel I/O ports configured to
accommodate a standard DIABLO type daisy wheel R/O printer.
These ports are brought out to the 50 pin ribbon cable connector
at P4 for easy attachment to a Diablo style printer. The pin
assignments of P4 correspond exactly to those of an internal
Diablo 50 conductor flat cable connector, so simply tying the
Diablo to the Mult I/O via a ribbon cable with female sockets at
either end is the only hardware requirement for interfacing the
two devices.

Altogether, two latched output ports (plus an extra latched
output bit) and one transparent input port are used to
communicate with the Daisy Wheel printer. Of course, these ports
may be used with practically any parallel device (e.g., a
centronics style printer or a keyboard) provided that the I/O
lines are properly routed from the Mult I/O connector at P4 to
the target device. This additional cabling burden is to be
expected in parallel I/O interfacing, and so should not be
considered a major disadvantage by those using the DAISY PORT
with a non-Diablo parallel device.

The Mult I/O DAISY PORT occupies I/O ports BASE and BASE+I
plus a part of BASE+7 - all within I/O GROUP 0. A single input
line (BASE+0 bit 5, or the Print Wheel Ready line when
interfacing with a Daisy Wheel printer) is, after going to the
DAISY PORT, inverted and then brought to IRQ 6 of the 8259-A
interrupt controller, and so can be used to generate an interrupt
whenever it goes to a low logic state. The eight input lines
brought to DAISY PORT BASE are also pulled up to +5V through 180
Ohms (nominal), and so may be used with open-collector devices.
These eight input lines are inverted by an input buffer, and so
if left unconnected will appear to software to be low.

BASE+7 bit 5 enables all DAISY PORT output drivers. If this
bit is low, DAISY PORT output lines controlled by I/O ports BASE,
and BASE+l will all remain at a high impedance state regardless
of any software commands.

The parallel ports have no special facility for generating a
strobe on output or latching a strobe on input. All data lines
operate as levels, so strobes must be generated in software.

The following page depicts the parallel lines available on
the Mult I/O, including the I/O port and bit number controlling
each line and the function assigned to each line on a standard
parallel Diablo type interface. Remember that these functions
have no inherent meaning to the Mult I/O, which simply sees so
many latches, and so do not preclude interfacing the Mult I/O
with parallel devices other than Daisy Wheel printers.

19



DAISY PORT Signals and I/O Map

I/O GROUP 0

I/O
port

Input BASE

(these 8
input lines
pulled up
to +5V by
180 Ohms
& inverted)

Output BASE

output BASE+1

output BASE+7 I

Data Mult I/O and
Bit Diablo pin #

-----1--------------
o 1 4
1 I 3
2 I 5
3 I 34
4 I 26
5 I 27 *
6 12
7 28

0 37
1 36
2 39
3 33
4 40
5 42
6 43
7 45

0 46
1 1
2 9
3 10
4 15
5 17
6 21
7 23

4 13

Diablo Function

End of Ribbon (-)
paper Out (-)
Cover Open (-)
paper Feed Ready (-)
Carriage Ready (-)
Print Wheel Ready (-)
Check (-)
printer Ready (-)

DataBi t 1 (1 ) ( - )
DataBi t 2 (2) ( - )
Da taBi t 3 ( 4) ( - )
Data Bit 4 (8) (-)
DataBitS (16) ( - )
Data Bit 6 (32) (-)
Data Bit 7 (64) (-)
Da ta Bit 8 (128) ( - )

Da taBi t 9 (256 ) (- )
Da taBi t 10 (512) ( - )
Data Bit 11 (1024) (- )
DataBi t 12 ( 2048) (- )
paper Feed Strobe (-)
Carriage Strobe (-)
Print Wheel Strobe (-)
Ribbon Lift (-)

Restore (-)

* In addition to being associated with bit 5 of Input Port
Base, pin number 27 of P4 (the Diablo print Wheel Ready line) is
also connected through an inverter to Interrupt Request line 6
(pin 24) of the 8259-A PIC. Thus this line may be used to
generate an interrupt whenever any external device brings it low
(e.g., when the print wheel is ready).

The following lines on Mult I/O connector P4 are tied to
ground as perscribed by the Diablo Interface: 2, 8, 11, 14, 18,
20, 22, 25, 30, 31, 32, 35, 38, 41, 44, 47. Line 24, defined by
Diablo as Select/, is also grounded.

Line 48 of Mult I/O connector P4 is defined by Diablo as +5V
(Reference Out). This line is not used by the Mult I/O board and
is open. Also left open are lines 6, 7, 29, and 50.

20



DAISY PORT P4 Connector pinouts (top view)

back

left
49 47 45 43

50 48 46 44 •••

753 I

864 2
right

front

programming the DAISY PORT

As with all I/O devices on the Mult I/O, the user must be
careful, when accessing the DAISY PORT, to initialize the correct
I/O group - in this case, GROUP 0. Once the proper I/O Group has
been selected, all data sent from the CPU to the parallel ports
will be latched. By latched, it is meant that the data sent to a
parallel port will appear on the appropriate pins on the P4
connector, and will remain there until either different data is
sent to the port in question or until DRIVER ENABLE (port BASE+7
bit 5) is taken low. When this occurs all 17 parallel output
pins of connector P4 will enter a high impedance state.

The 8 input lines of the DAISY PORT are available to the CPU
through an inverter, so that when an input instruction is
directed at DAISY PORT 0, the CPU will read the complement of
whatever data is on the appropriate lines of connector P4 at the
time the input instruction is executed. There is NO provision
for strobing data into a parallel input 'buffer' for later
examination after the data to be read has gone away.

The Mul t I/O DAISY PORT inverts its input lines but does NOT
invert its output lines. Daisy Wheel printers use negative
logic, so that a low signal is taken as active. Thus to assert,
or make active, any output line when talking to a Daisy Wheel
printer, the software must put the line low. Input lines from a
Daisy Wheel printer, on the other hand, are inverted in hardware,
and so will appear to software to be active high.

Generating an Output Strobe

To generate an output strobe to any of the parallel output
ports, it is necessary to use a software mask. The line to be
strobed must be output three times in succession, changing state
each time, while the data lines associated with the same port
must be allowed to remain unchanged. For example, to send a
positive going strobe (low-high-Iow) on bit 4 of port BASE+7
(Restore/) without changing the other 7 bits being sent from that
port, the following routines could be used. Note that this
happens to be the group select port we are strobing, but any
parallel output bit may be used.

21



set:

enbl:

pulse:

seldat

mvi a,data
out base

Ida seldat
ori 30

ani 0fch
out base+7

ani 0efh
out base+7
ori 10h
out base+7
sta seldat
ret

db 0

;Set up data to be sent to port.
;Data is latched, but not asserted until
; the output ports are enabled.
; and not strobed until Restore/ makes
; a low-to-high transition.

;Get previous group select data.
;parallel output ports enabled and
; Restore/ (to be strobed) set low,
; the group selected (0)
; and sent to the group select port.

;Take Restore/ high.
;The data at the parallel port is sent.
;Bring Restore! low again.
;No other bits are affected.

The DAISY PORT and Interrupts

The Print Wheel Ready status line of the DAISY port (P4
connector pin 27, BASE input port bit 5) is brought through an
inverter to Interrupt Request line 6 of the 8259-A PIC. The PIC
can therefore generate an interrupt whenever this line goes to an
active (i.e. logic low) state. To take full advantage of this
interrupt option when interfacing with a Daisy Wheel printer, and
to exploit the Diablo printer's ability to buffer motion
commands, printer driver software should be written so that the
Print Wheel Strobe (P4 pin 21, BASE output port bit 6) is not
activated until all carriage positioning commands have first been
sent to the printer. Print after space will execute
significantly faster than space after print. When the Print
Wheel Ready line goes active the printer should be able to accept
another motion-then-print sequence.

A sample Diablo printer driver for the Mult I/O can be found
in the Appendix of this manual.

22



Calendar Clock/Timed Interrupt Generator

The 1990C CMOS Clock/Calendar/Interrupt Timer at location
15D supports a multi-user environment by providing two functions:

1) A calendar clock accessible from software and able to run off
a battery when power to the system is shut down, and

2) A timed interrupt generator able to provide interval
interrupts, with four possible programmable interval lengths.

The clock uses six bits of output port BASE+2 in GROUP 0 for
setting the time and the interrupt interval. The clock also uses
input port BASE+2 to reset its timed interrupt line, which is
tied through a latch to Interrupt Request LIne 7 (the lowest
priority interrupt) of the on-board 8259-A PIC. The chart below
shows the Mult I/O ports and data bits used by the 1990, and
indicates the correspondence between data bit and 1990 pin
number/function.

1990 CALENDAR-CLOCK I/O MAP

I/O Port
BASE+2

BASE+2
Bit #

1990 pin i
& mnemonic

1990 Function

Input
to CPU

9 - Data Out Output of 40 bit shift register

Output
from CPU

o
1
2
3
4
5

6 - Data In
8 - Clk
3 - C0
2 - Cl
1 - C2
4 - STB

Input of 40 bit shift register
Shift clock for 40 bit register
Command input bit 0
Command input bit 1
Command input bit 2
Strobe input

Clock programming

The data sheets on the 1990 chip should be studied before
attempting to program this device. The 1990 stores the time of
day, day of week, and month of year in an internal 40 bit shift
register which is accessible to the Mult I/O user through bit 0
of I/O port BASE+2 of GROUP 0. Commands to set or read time must
be strobed into this port using bit 5 as the strobe bit, and the
40 bits of time data must be clocked in or out using bit 1 as the
clock bit. The format of this internal 40 bit shift register is
seven four-bit binary coded decimal nibbles and, for the month of
the year, one hex nibble. The 40 bit shift register is a FIFO ­
first in, first out - and begins with the least significant bit.
Thus the first bit in or out of the 40 bit FIFO is always the
least significant bit of the single seconds nibble, and the last
bit out is always the most significant bit of the month of the
year nibble. Note in the following table how each individual
nibble seems to be coded backwards.

23



Time Format of the 1990 40 Bit FIFO

(Bits are given in the order they should be written,
and in the order they will be read.)

Bits 1 to 8

seconds units

Seconds (0 to 59)

tens of seconds

1990 bits 1 2
Isb

3 4
msb

5 6
Isb

7 8
fisb

example: 38 seconds would be stored as follows:

1990 bits 1 2 3 4 5 6 7 8

logic level 0 0 0 1 1 1 0 0

interpretation 8 3

Bits 9 to 16 Minutes (0 to 59)

minutes units tens of minutes

1990 bits 9 10 11 12 13 14 15 16
Isb msb Isb msb

example: 41 minutes would be stored as follows:

1990 bits 9 10 11 12 13 14 15 16

logic level 1 0 0 0 0 0 1 0

interpretation 1 4

Bits 17 to 24 Hours (0 to 23)

hours units tens of hours

1990 bits 17 18 19 20 21 22 23 24
Isb msb Isb msb

example: 11 o'clock p.m. (2300 hours) would be stored as follows:

1990 bits 17 18 19 20 21 22 23 24

logic level

interpretation

1 1

3

o o

24

1

2

o o



Time Format of the 1990 40 Bit FIFO continued

Bits 25 to 32 Day of Month (1 to 31)

day units tens of days

1990 bits 25 26 27 28 29 30 31 32
Isb msb Isb msb

example: the 14th of the month

1990 bits 25 26 27 28 29 30 31 32

logic level 0 0 1 0 1 0 0 0

interpretation 4 1

Bits 33 to 36 Day of the Week (0 to 6)

1990 bits 33 34 35 36 Sunday = 0
Isb msb garbage bit Monday = 1

Tuesday = 2
• • .

example: Thursday Saturday = 6

1990 bits 33 34 35 36

logic level

interpretation 4

1

Bits 37 to 40 Month of the Year (0 to B Hex)

1990 bits 37 38 39 40
Isb msb garbage bit

example: July

January = 0
February = 1
March = 2
• . •
November = A Hex
December = B Hex

1990 bits 37 38 39 40

logic level

interpretation

1 1

7

1

25



Idiosyncracies of the 1990 Calendar Clock

Once the 40 bit shift register of the 1990 has been set with
the desired time and date, it will automatically increment the
time and date for later reference. Note, however, that the 1990
considers all months to have 31 days, so September, April, June
and November - and certainly February - require a special update
at the end of the month in order not to throw the calendar off.

Strobe and Clock Timing

The 1990 is not capable of reading or writing serial data
fast enough to keep up with the CPU unless the clock and strobe
bits are prolonged for about 700 micro-seconds. This can be
easily accomplished in software.

Software Flow for Writing the Time/Date to the 1990

Writing the time to the 1990 requires a four step procedure:

1: Select I/O GROUP 0 of the Mult I/O.

2: Strobe the Register Shift Command to I/O port BASE+2

3: Clock forty consecutive bits to the Data In pin of the 1990.
Each bit should be sent via three output instructions to I/O
port BASE+2, with suitable delays in between, in which the
Data Bi t (bi t 0) stays the same, the Strobe Bi t (bi t 5) stays
low, and the Clock Bit (bit 1) is first high, then low, then
high again (see note below).

4: Strobe the Set Time Command to I/O port BASE+2.

Software Flow for Reading the Time/Date from the 1990

Reading the time also requires a four step procedure:

1: Select I/O GROUP 0 of the Mult I/O.

2: Strobe the Read Time Command to I/O port BASE+2

3: Strobe the Register Shift Command to I/O port BASE+2

4: Clock forty consecutive bits from the Data Out pin of the
1990. Each bit should be read via three input instructions
from I/O port BASE+2, with suitable delays in between, in
which the Strobe Bit (bit 5) stays low, and the Clock Bit (bit
1) is first high, then low, the high again (see note below).

The appendix contains a source listing of program which can write
the time to the clock or read it back.

26



It is a good idea to have interrupts disabled when writing
to or reading from the clock, since a lengthy interrupt service
routine could cause the data read or written to be inaccurate.

The Timed Interrupt Generator

In addition to being a calendar/clock, the 1990 is capable
of generating interrupts at timed intervals. The interrupts
generated by the 1990 are routed to Interrupt Request number 7 of
the 8259-A PIC. In order for these interrupts to be received
properly, the PIC must be set to operate in level, rather than
edge, mode. Three interval times are available and are selected
under software control. The intervals are:

1) once every 0.488 milliseconds, or 2048 interrupts per second;
2) once every 3.9 milliseconds, or 256 interrupts per second;
3) once every 15 milliseconds, or 64 interrupts per second;
4) once every 30 milliseconds, or 32 interrupts per second.

Generating a Timed Interrupt

As indicated in the data sheet on the 1990, the TP (Timed
pulse) output, which is the source of the 1990 interrupts, can be
programmed to oscillate with a 50% duty cycle at one of three
frequencies. These frequencies are selected by strobing the
appropriate data into Mult I/O port BASE+2.

An example of how to set

tprate: Ida seldat
ani 0fch
out base+7
sta seldat

mvi a,lch

stb:

seldat:

out base+2
xri 20h
out base+2
ret

db

the Timed Pulse to the desired interval:

;Get previous group select data.
;Select group 0 without changing the
; remaining control bits.
;Save new group select data.

;In this case, the test mode which
; generates a 32Hz interval.
;Other rate values:
;10h = 64Hz, l4h = 256Hz, 18h = 2048Hz.
;Send to the clock chip data latch.
;Set the STB high, retaining rate data.
;Data is strobed on the positive edge.

port data

lCh
10h
14h
18h

TPFrequency

32 Hz
64 Hz
256 Hz
2,048 Hz

27

TimeBetweenlnterrupts

30 msec.
15 msec.
3.9 msec.
0.488 msec.



clearing the Timed Interrupts

An input instruction directed at I/O port BASE+2 will clear
the interrupt request generated by the 1990. This clears the
flip-flop through which the 1990 TP output is latched (and thus
held at a constant level) before reaching the 8259-A PIC.

Generating Interrupts at Non-standard Intervals

If the interval selection available on the 1990 does not fit
the user's application, a broader selection is possible by using
an on-board 8250 ACE - simply by programming the ACE to generate
an interrupt whenever the Transmitter Buffer is empty.

Battery Back-up for the 1990 Clock

The Mult I/O allows for the clock to retain it's information
when the system power is turned off. The three prong plug at l4D
(P6), is a non-polarized power supply connector for a 3 volt
battery pack with the two outside pins grounded and the center +3
volts. Two 1.5 batteries, (AA cells for example) will keep the
clock running without system power for very close to their shelf
life, due to the very low current drain of the CMOS 1990C chip.
The supply voltage of the 1990C is unlike other CMOS in that it
must be between 1.8 and 3.6 volts, therefore, different batteries
(say, 9 volt) must be dropped by an appropriate resistor which
may be installed at l5D.

28



The 8259-A PIC

General

Interrupts are a method of directing the CPU to execute
specified segments of code in response to events, rather than as
a result of the 'natural' progression of the program counter
through a sequential program. A great advantage of an 'interrupt
driven' system as compared with a non-interrupt system is that
the CPU is freed from spending much of its execution time merely
'polling' I/O devices - i.e., repeatedly reading status registers
to determine whether a byte of data is ready to be processed.
with interrupts, the CPU can do some useful task until an I/O
device 'tells' the CPU, without being asked, of an important
change in status, and then vectors the CPU off to an appropriate
service routine. The improvement in CPU performance made
possible through interrupts is particularly evident in a multi­
user system, where several users share a single CPU. In fact, a
multi-user environment using currently available microprocessors
but without the use of interrupts is scarcely feasible.

The advantage of interrupts, then, is speed and efficiency,
realized by an increase in throughput. The penalty is a
corresponding increase in the complexity of both hardware and
software. The Mult I/O board is designed to provide all the
hardware necessary to implement on the S-I~0 buss a powerful
interrupt driven system, while at the same time minimizing the
software burden normally associated with interrupts.

Interface Between PIC and Other Devices

The 8259-A programmable Interrupt Controller (PIC), is the
heart of the Mult I/O. Interrupts generated by the three on­
board ACE serial devices, the Print Wheel Ready line of the
parallel ports, and the Timed Pulse (TP) signal of the Real Time
Clock, are hard wired to the PIC Interrupt Request lines 3 to 7.

The on-board interrupt controller may also monitor any three
vectored interrupt lines and can assert either the generalized
interrupt request line (PINT/) or any vectored interrupt line
(selected by the user). Thus interrupts generated from three
off-board devices may be routed to the Mult I/O PIC using the
vectored interrupt lines (master mode), or the Mult I/O PIC can
send its interrupt requests over the vectored interrupt lines to
another interrupt controller (slave mode).

Multiple Mult I/O boards may be cascaded in this way. A
four pin connector next to the PIC at IIA is used to cascade
multiple Mult I/O interrupt controllers, allowing up to three
additional boards (slaves) to be installed in the buss. This
facilitates 12 serial ports, four parallel printer ports, four
interrupt timers and five active vectored interrupt lines. The
cascade cable is used to significantly reduce interrupt software
overhead.

29



This illustration shows the interface of the PIC with on­
board I/O devices and with the S-100 bus. In this example, the
PIC is set up as master with one slave.

Interface of PIC With On-board and Off-board I/O

1-----CAS2--- \ Cascade lines
I 1---CAS1--- > to additional
I 1 I-CAS0--- / Mult I/O's.
I I I 1---< Slave INTR.
I I 1 1

* S-100
1 BUS

-IRQ0

B-1
I
I
I
1----IRQ4-

I
ACE #2 I-INT

1

I
ACE #1 I-INT A----I

1 1
---------- 1

1
1
1
I
I
I-IRQ3-

I -INTR-*- -PINT/ [73]
ACE #3 I-INT C------IRQS- PIC

I - -V0/ [4]
---------- 1----IRQ6-

I -IRQl-*- - -Vl/ [5]
I I-IRQ7-

T I I I -IRQ2-*- - -V2/ [ 6]
I DAISY I-PWR---I I
I PORT I I --------- *---- - -V3/ [7]
I I I
---------- I *---- - -V4/ [8]

I
I *---- - -V5/ [9]

I I
CLOCK I-TP-------I *---- - -V6/ [ 10]

I
---------- *---- - -V7/ [ 11]

* Asterisks represent user installable jumpers.

Configuring the PIC

The 8259-A PIC can be used in two general modes - master or _
slave. In master mode, the PIC not only generates an interrupt
but also provides a CALL instruction (and the address of a
service routine jump table) to the CPU. In slave mode, a PIC
does not request an interrupt of the CPU, but of the master which
asserts the CALL instruction and not the address. The slave then
supplies the CPU with the address of the jump table.

In order to determine the PIC jumper configuration most
appropriate for a particular application, it is necessary to
understand how the Mult I/O card uses the 8259-A PIC to generate

30



interrupts. When used as the system master interrupt controller,
the PIC will issue its interrupt vectors to the CPU through a
four step sequence:

1) The PIC will assert its INT line in response to a valid
interrupt request on one of its eight IRQ lines. As a master,
J5-B is jumpered to the PINT/ line of the 8-100 buss· (at J5)
which will be driven low, requesting an interrupt of the CPU.

2) If interrupts are enabled (an EI instruction has been
executed and has not been cancelled by a subsequent DI
instruction), the CPU will complete its current instruction and
assert the INTA (Interrupt Acknowledge) buss line during the next
Ml (instruction fetch) cycle. The address lines asserted by the
CPU at this time will point to the next byte of data to be
fetched. Fortunately, standard memory boards will not respond to
any read cycle occuring when INTA is asserted.

3) The Mult I/O board will use the INTA pulse to clock out of
the PIC the first byte of a CALL instruction (CD) over the 8-100
Data In lines. Because of the assertion of the INTA line, no
other device should be driving the Data In lines at this time.

4) The CPU will read this CALL instruction and attempt to read
two additional bytes of data to form a -16 bi tca11 address. Most
CPU's will not assert INTA during either of these subsequent
fetches, so that these last two read cycles will appear to any
memory board to be standard memory read cycles, and the address
lines normally ass~rted by the CPU will again be those that would
have been asserted had there been no interrupt. The Mult I/O
board will allow the PIC to send the two address bytes to the CPU
during these two fetches.

If configured as a master, the Mult I/O will generate the
address of its own Eprom (which is temporarily disabled) for
three consec utiveread cycles whenever it receives an INTA. The
Address Disable buss line will be asserted by the Mult I/O board
whenever the PIC is generating its interrupt vectors. This
places the 8-100 address lines in a known state during an
interrupt sequence. As long as no system memory occupies the
same address space as Mult I/O Eprom, no memory conflict will
occur.

Jumper Area J5

If the Mult I/O is to be used as the master interrupt
controller, The interrupt request line of the PIC (J5-B) must be
connected to the 8-100 buss interrupt line PINT/ (in J5 area).

If the Mult I/O is to be used as a slave, the interrupt line
from the PIC (J5-B) should be routed to one of the eight vectored
interrupt request lines (VI0-7) to be sensed by the master. The
vectored interrupt line to be used depends on which line the
master expects to see a slave. J5 pads C,D and E are the three
available inputs to the PIC. They are etched to VI 0,1 and 2

31



respectively and may be altered by the user. In order to prevent
a slave from responding to it's own interrupt requests, the VI
line that the slave uses should be cut from it's own input, or
the slave must be prevented from ever responding to that input
by the software.

Disabling Mult I/O Interrupts

To disable all interrupts from the Mult I/O card, J4 (at
l2C) should have A - B jumpered and B - C open. This prevents
the address buss from being asserted by the Mult I/O (thus, the
CALL instruction and address are never found). This does not,
however, prevent any Mult I/O from asserting it's interrupt
request on PINT/ or the vectored interrupt lines. This is
accomplished in hardware by simply cutting J5 pads A and B away
from any other pad in the J5 area. A not so simple approach in
software is to NEVER set bit 3 of BASE+7 to a high state, or to
be safe, initialize the master's interrupt controller to ignore
all requests by setting all bits of OCWI high.

Summary of PIC Related Jumpers.

Jumper Area J5

A = Single slave int.
B = Int. req. from PIC.

A B C D E C = PIC input IRQ 0.
* * * * * D = PIC input IRQ 1.

I I I E = PIC input IRQ 2.
I I I
* * * * * * * * *

VI 0 1 2 3 4 5 6 7 PINT/

When the cascade cable is installed, [A] may be used to
route a single slave's interrupt request [B] to one of the master
PIC inputs. In this way, none of the S-100 vectored interrupt
lines need be used. This only applies to a master and one slave,
additional Mult I/O slaves must send their interrupt requests
down any of the vectored interrupt lines of the buss.

If, for example, the system were to contain a master with
only one slave on IRQ2, the slave would have [B] connected to [A]
and the master would have [A] connected to [E] and [E] cut away
from VI2. The master (in order to BE a master) must also have [B]
connected to PINT/. The PIC inputs [C] and [D] should only be
connected on one of the boards so that the two controllers don't
respond to the same VI line.

A system containing four Mult I/O boards (one master and
three slaves) is similar in concept. Here is an example set-up.

we will use the three VI lines (0, 1 and 2) to send slave
interrupt requests to the master. These inputs (C, D and E) must

32



be cut from all PIC's except the master to prevent slaves from
responding to other slave's, or their own, vectored interrupt
requests. Each slave should then have it's interrupt assertion
line [B] routed to a distinct VI line (to give them names, slave
zero's interrupt line would be connected to VI0, slave one's to
VII and slave two's to VI2). The only jumper on the master then,
is [8] to PINT/ since the VI lines are already strapped to the
master PIC inputs.

Jumper J4

A - * - Ground

B - * - To address control.

C - * - From Interrupt logic.

Connect B to C when using on-board 8259-A PIC as master or
slave interrupt controller. Connect A to B when the 8259-A is not
to be allowed to generate interrupt vectors. Jumper J4
determines whether or not the Mult I/O may issue vector
information (a CALL instruction or address) in response to the
CPU's Interrupt Acknowledge line.

Connector P5 - the Cascade Lines

*
I

To/From
Area J5-A

*
I

To PIC
CAS 2

*
I

To PIC
CAS 1

*
I

To PIC
CAS 0

Using Several Mult I/O Boards in Master/Slave Configuration

If multiple Mult I/O boards are to be used in a system, one
board should be configured as the master interrupt controller and
the others as slaves. The slaves may communicate with the master
through the vectored interrupt lines V0, VI, and V2. A four
board interrupt system is illustrated below:

33



--IRQ 2

I
J5-B --1-- - -VII ------ --IRQ 1

I

Slave #1

1 ACE 5--\
I ACE 6--PIC

ACE 6 -/

Slave #2

I ACE 7--\
I ACE 8--PIC
I ACE 9--/

Slave #3

I ACE 10-\
I ACE II-PIC
I ACE 12-/

S-100
Buss

I
J5-B --1-- - -VI 0

I

I I I
I I I
I I 1

I I I
1 1 1
I 1 I

I
J5-B --1-- - -VI 2

I

Master
----------------

IRQ 3 -(ACE 0)

IRQ 4 -(ACE 1)

IRQ 5 -(ACE 2)

--IRQ 0

CAS0-2

I 1
1 I Cascade lines 0-2
1 ------------------------------

In the configuration above, the master Mult I/O board should
have it's interrupt request pad (J5-B) connected to the PINT/
line of the buss, while slaves should have this pad jumpered to
the appropriate VI lines. Slaves should also have all three
board traces beneath the pads marked C, D and E in J5 cut open.

programming the PIC

Before attempting to program the 8259-A PIC the user should
become familiar with the data sheet included with this
documentation. The PIC monitors eight interrupt request lines
(IRQ 0 to IRQ 7). These IRQ lines are maskable and prioritized.
By maskable it is meant that, through software, it is possible to
determine which if any of the IRQ lines will be monitored by the
PIC at any given time. By prioritized it is meant that in case
more than one unmasked IRQ line is asserted at a given moment,
the one with the highest priority (normally corresponding to the
one with the lowest IRQ number) will be serviced first. The
conditions under which various devices will request service from
the PIC are, in the cases of the ACE serial devices and the Real
Time Clock, determined in software when the devices in question
are initialized. Refer to the appropriate section of this manual
to see how these I/O devices are initialized.

34



The PIC services valid interrupt requests which appear on
its IRQ lines by forcing the CPU to read a three byte CALL
instruction. The CALL instruction directs the CPU to a jump table
located somewhere within either a 32 byte or a 64 byte block of
system memory. Each IRQ line is associated with a unique
location, or interrupt vector, within this block of system
memory. IRQ 0 is dedicated to the first location of the block,
and each succeeding IRQ line controls a vector either 4 or 8
bytes away from the preceeding one. The user determines the
address of the first vector (limited to an even 32 or 64 byte
boundary) and the space, whether four or eight bytes, between
each successive vector. Below is an I/O map of the PIC and a
list of the devices associated with each IRQ line.

The PIC can be accessed through Mult I/O ports BASE+4 and
BASE+5 of GROUP 0. The numerous registers of the PIC are
accessed through only these two I/O ports, since context plays a
large part in selecting a specific PIC register. The PIC pin A0
equals 0 when addressing port BASE+4, and 1 when addressing
BASE+5.

PIC I/O Map and I/O Device Priorities

priority

Highest

Lowest

PIC Address
A0=0
A0=1

IRQ 0
IRQ 1
IRQ 2
IRQ 3
IRQ 4
IRQ 5
IRQ 6
IRQ 7

Mult I/O Port Address
GROUP 0, BASE+4
GROUP 0, BASE+5

Vectored Interrupt 0 \
Vectored Interrupt 1 >­
Vectored Interrupt 2 /
ACE Serial Device 1
ACE Serial Device 2
ACE Serial Device 3
DAISY PORT P.W.R. line
Real Time Clock TP line

S-100
Buss
Lines

Initializing the PIC

Only four PIC registers need be initialized in order to
implement a powerful interrupt system. More complicated
initialization schemes are left up to the imagination of the
user. The recommended use of this board requires that three
Initialization Command Words (ICW's), and one Operation Control
Word (OCW) be written during the PIC initialization sequence.

ICW1 and ICW2

ICW1 and ICW2 are used 1) to set four flags which determine
certain selectable operational characteristics of the PIC, and 2)
to set the eight vector addresses which the PIC will cause the
CPU to CALL when the PIC receives one of the eight possible
interrupts. The four flags are set through bits 0 to 3 of ICW1,
and the vector addresses are set through bits 5 to 7 of ICW1 and

35



through all eight bits of ICW2. ICWI is accessed by sending
the proper flag and vector information to Mult I/O port BASE+4 of
GROUP 0 while data bit 4 is set. ICW2 is accessed by sending
the remainder of the vector information to Mult I/O port BASE+5 of
GROUP 0 immediately after accessing ICWI. The only way ICW2 is
distinguished by the PIC from OCWl is by the fact that ICWl has
just been accessed - that is, by context.

The flag bits set in ICWI have the following functions:

ICWl FLAG BITS

IC4
(data 0)

SNGL ­
(data 1)

ADI
(data 2)

LTIM ­
(data 3)

This bit determines whether or not it will be necessary
to initialize ICW4. It is, on the Mult I/O, so this
bit should be set high.

This bit is used to inform the PIC of other interrupt
controllers in the system. If this bit is high, ICW3
is not needed as there this is the only PIC in the
system. See section on Configuring the PIC as a slave.

This bit determines the CALL address interval. If
cleared low, the CALL vectors generated by the PIC
will point to memory locations seperated by eight
bytes. If set high, the vectors will point to memory
locations separated by four bytes.

This bit determines whether the IRQ lines of the PIC
will be edge triggered or level triggered. For the
Mult I/O board to function properly, this bit should be
set, or put to a high, thus selecting the level mode.

36



Address Initialization - ICWI & ICW2

In addition to setting the four flag bits in IeWl, the user
must initialize the interrupt vector address of the PIC. The
address where the PIC will vector the CPU during the IRQ0
interrupt is the only address that must be programmed, since the
other seven addresses must follow automatically at intervals of
either four bytes (if ADI=l) or eight bytes (if ADI=0). If ADI=l,
then bits 5 through 7 of ICWI must be set to match address bits 5
through 7 respectively of the IRQ0 vector. If ADI=0 , then bits
6 and 7 of ICWI must be set to match address bits 6 and 7 of the
IRQ0 vector. In both cases, ICW2 must be set to match the high
byte of the IRQ0 vector. Note that the memory address block
pointed to by the PIC's CALL instructions must begin on an even
32 byte boundary if ADI=l (an address divisible by 20H), and on
an even 64 byte boundary if ADI=0 (an address divisible by 40H).

Sample Initialization of ICWI and ICW2

To initialize the PIC to operate as a single controller, in
level triggered mode with an address interval of four, and to
cause the PIC to vector the CPU to location 0C180H upon receipt
of IRQ0, the following sequence must be followed:

1. Set bit 3 of port BASE+7 and select GROUP 0 to enable the
controller.

2. Send a 9Fh to port BASE+4 (ICWI since data bit 4 is set).

3. Send aClh to port BASE+5 (ICW2 since last output was to
ICWl).

4. Send a 0Ch to port BASE+5 (ICW4. ICW3 was skipped because
SNGL was high indicating a single controller). This sets the
buffered mode (bit 3) turning pin 16 of the PIC into an output
instead of an input. The input function of this pin is to tell a
PIC whether it is a master or slave. With this pin now being
used to gate data through the Mult I/O buffers, the determination
must be made in software. Bit2 of ICW4 being high sets the
master buffered mode and when low sets the slave buffered mode.

The .above sequence will cause the PIC to issue CALL's to
location C180h as response to a valid IRQ0, to C184h for IRQl, to
C188h for IRQ2,and so on up to location C19Ch for IRQ? Thus is
ACE il generated a valid interrupt, the PIC would issue a CALL to
location C18Ch.

OCWI - The Interrupt Mask

After ICWI and ICW2 have been initialized, the port address
occupied by ICW2 becomes dedicated to OCWl, which controls the
interrupt mask register of the PIC. The use of this port is
quite simple. The IRQ lines 0 through 7 are made to correspond
to d a tab its 0 t h r 0 ug h 7 respee t i vel y 0 f th i s reg i s t e r • An 0 UT
instruction to this register with any data bit set, or high, will

37



mask out the corresponding IRQ line, so that the PIC will ignore
that line until the appropriate mask bit is re-enabled. For
example, to allow the PIC to monitor the three Mult I/O ACE
devices and to ignore all other IRQ lines, one would send a C7H
to port BA8E+5 of GROUP 0. This would enable IRQ lines 3, 4 and
5 and disable the other four lines. If this register is not
initialized, all IRQ lines are cleared and, hence, enabled. The
correspondence between OCW1 data bits and Mult I/O devices is
shown below:

OCW1 Mask Bits and Corresponding Devices/Lines

data bit IRQ Line physical Device priority

0 0 V0 (8-100 pin 4) * 0
1 1 VI (8-100 pin 5) * 1
2 2 V2 (8-100 pin 6) * 2
3 3 8250 ACE t 1 3
4 4 8250 ACE t 2 4
5 5 8250 ACE t 3 5
6 6 DAISY PORT PWR line 6
7 7 RT Clock TP line 7

* These connections may be altered by the user.

Note that in order to prevent ANY interrupt from being
generated by the PIC, simply send an FFh to OCWI. Remember that
priority Level 0 is the highest priority level, meaning that an
IRQ0 interrupt takes precedence over, say, an IRQ3 interrupt.

Sending EOI (End of Interrupt) to OCW2

It is recommended that the 8259-A PIC on the Mult I/O be
initialized with the ICW4 and LTIM flags high in
ICWI. This means that the PIC should be operated in the level
mode and that the user must terminate all Interrupt Service
Routines (ISR's) by sending the PIC an End of Interrupt command
(EOI). This means that once the PIC generates an interrupt, it
will recognize no further interrupts until it receives an EOI
command. The EOI command can be sent by sending a 20H to I/O
port BA8E+4 of GROUP 0. This port will be taken as OCW2 by the
PIC.

The Interrupt Status Register - OCW3

Occasionally it is desirable to read the Interrupt Status
Register (I8R) of a PIC in order to determine the cause of an
interrupt. First, GROUP 0 must be selected for the MultI/O board
whose PIC is to be examined. Then a 0BH must be sent to port
BA8E+4 of the Mu1t I/O board in question. Finally, that same
port must be read. The data thus read will correspond to the
priority levels being serviced by the PIC. These bits
correspond to devices and IRQ lines as indicated in the above
illustration on the Interrupt Mask Register.

38



Interrupt Software Using the 8259-A PIC

A typical interrupt service routine used with the Mult I/O
PIC should perform the following four functions:

1. Service the device causing the interrupt.

2. Send an EI instruction to the CPU. This is necessary
because interrupts are automatically disabled whenever an
interrupt is received, so failure to terminate an ISR
(Interrupt Service Routine) with an EI instruction would
prevent any further interrupts from being serviced. Once an
EI instruction is executed, higher priority interrupts than
the one currently being serviced are able to interrupt the
cur rent ISR.

3. Send an EOI to the PIC (send a 20H to the Mult I/O port
BASE+4 of GROUP 0). This will allow the current ISR to be
interrupted by an interrupt of the same or lower priority.

4. Execute a RET instruction. Since the ISR was evoked through
a CALL it must be exited with a RET or the stack pointer
will not be positioned correctly.

Some Notes and Cautions

In situations where an ISR is to be allowed to be
interrupted by another ISR, care should be taken to preserve CPU
registers which might be altered so as to sabotage the
interrupted service routine. By the same token, routines that
are in any way time dependent should be written very carefully to
preserve their integrity in case they are interrupted. For
example, if two routines use the same ACE device, it is possible
for a routine to check, say, the TBE status bit, find the device
to be ready, prepare to Send data to the device, get interrupted,
and proceed, when control is regained, to send data to a device
that may no longer be ready.

The CP/M * operating system contains a utility program, DDT,
which is very useful in developing software. This program was
intended by the writers to be used in an interrupt environment.
When the IG I or IT' command is used, DDT temporarily disables
interrupts (with a DI) in preparation for the run or trace, and
then RE-ENABLES INTERRUPTS. This makes life difficult when one
doesn't want interrupts enabled at all.

The following page gives a graphic illustration of the
program flow which occurs when a program is interrupted and the
ISR which results is itself interrupted.

* CP/M is a trademark of Digital Research

39



Illustration of Two Levels of priority Interrupts

main program --)
---------------------Al----------------------)

/ \
/ \

/ \
/ \

/ \
/ \

/ \
/ ISR A --) \

/ \
/--A2--A3-Bl---A4---A5

/ \
/ \

/ \
/ \

/ \
/ \

/ \
/ ISR B --) \

/ \
/--B2--B3------B4---B5

AI: Main program is interrupted by Interrupt Request A and PIC
vectors program off to Interrupt Service Routine A (ISR A) •

A2: ISR A removes the cause of its interrupt.

A3: ISR A issues an EI (Enable Interrupts) command to the CPU.
This permits the servicing of a HIGHER priority interrupt.

Bl: IRQ B (Interrupt Request B), a higher priority than IRQ A,
causes ISR A to be interrupted, and the PIC vectors the
program off to ISR B.

B2: ISR B removes the cause of its interrupt.

B3: ISR B issues an EI command to the CPU. ISR B may now in
turn be interrupted by a higher priority IRQ.

84: ISR B issues an EOI (End of Interrupt) command to the PIC.
ISR B may be interrupted by SAME or LOWER priority IRQ.

85: ISR B exits its service routine with a RET instruction.
Control returns to ISR A.

A4: ISR A issues an EOI command to the PIC.

A5: ISR A exits its service routine with a RET instruction.
Control returns to the main program.

40



SWITCH SETTINGS

SWITCH 20: Extended addressing of Ram/Eprom
(left)

I - A23
2 - A22
3 - A21
4 - A20
5 - A19
6 - Ala
7 - A17
a - A16

SWITCH 78:
(middle)

'OFF' = 1
'ON' = 0
Example:
If base address of Ram/Eprom is
0F000H, all 'ON' except 4 (A20)
will give Ram/Eprom the extended
address 10F000H.

I/O Port Address, Phantom response,
Ram write enable.

1 - Phantom

2- A7 \
3 - A6 \
4- A5 >
5 - A4 /
6 - A3 /

7 - R0W
a - RIW

'ON' allows board to
respond to phantom.

I/O Po r t Add ress.
'OFF' = I
'ON' = 0

Ram ,~, (50) 'ON' enables write.
Ram 'I' (6D) 'ON' enables write.

SWITCH 10C:
(right)

Ram/Eprom Address, Extended address disable
Bank preset, Power-on jump, Ram/Eprom Exchange.

1 - Ext. addr. disable.

2 - Ram/Epromenabl e.

3 - A15 \
4 - A14 \
5 - A13" /
6 - A12 /

Note: Chip at location (3D)
must be removed when 'ON'.
'ON' sets Ram/Eprom to respond
regardless of extended address

'ON' enablesRam/Epromon reset.

Ram/Eprom Address.
'OFF' = 1
'ON' = 0

7- Power-onj ump.

a -POJ Eprom select.

'ON' enables POJ to Eprom.

'ON' = R0 (50), 'OFF' = Rl (60).

41



2

PAGE 1 of 5REV. 3

MEM ENBL

Vec

10
LS75

2 118
SOUT 45 0,

Q1 OUTPUT

SINP 46 3
O2 Q2

14
INPUT

LSll4

MSTB 3 7A 4 4
GB

Q4
9

S8
DO a 36 7

04 Q4
8 Sa

Q3
11

S1
35

6
DO 1 0 3 - 11

Q3 S1

8
READ

13 GA

VCC
33"Il

LS175

Q3
111 BANK12

DATA 2 03

148
2

4 Q1 ENBL INT
DATA 3 01

DATA 4
13

04 Q
4

14 RESTO"R

DATA S S 02 6
Q2 DVR ENBL

MSTB 9 CLK
CLEAR

RESET
1

s~1 LSll2 13 MODE

"S 12 11 C
s

WAIT ENBL

PRDY

A 14 B2 T2

A 13 B3 T3

A 12 B5

14
T6 E 9

J33 PF

3.3 Klt

VCC~ 4~SIl4,",
PHANTOM [§l>--O~ PHTM

78 . SIP

8131 TYP 3.3 K.Jt.

2 2
BAN K B1 T1 1-=--4--'----4--=-=--o

10C
A 15 B4 T4

LS42
S

0 4 DSY 1 INA

98 Q
2

3 DSY 8 OUT
B _

11Q9 DSY 1 OUT

C as 7 CiJ<iN
Q1

2
CLK OUT

0 18Q
8 ENBL INTR

Q
7

9
ENBL CONT

08 MSfB

as 6
ENBL RI

Q3
4

ENBL R1

BUFF ENBL

ENBL CNT

WAIT ENBL

13

PHTM ----!.o 16

108

331Il LSll4

1Cr'--4~-- RESET~ RES..-E_T ---..1

MULT - I/O INTERFACE

2

SIP
TYP 3.3 KIt

F5 ~1~2-4- ...:.1=-t2

FI 1-=-1.=..,8.....,..::.....-_+-_...:.1:..f5

F6 ~1...:..1-4-__+-_~1~4

VCC

CE 19

SIP
TYP 3.3 K.Jl.

8131
2

B1 T1 ....,::2=-+__~=-o

88 14
B6 T61--+---1--O

1 - - L.:1..;;.9 ----.
EI EO r-

25LS2521

3 B1 A1 2

3D 17
B8 As

B5

B3

1"
T4 E 9 10 ENBL

11 B4 7

SIP V
82S1"8 TYP3.3 Kll. CC

18 16

8A F2

19
F7

1"

114
F4

13

118
F3

15

IS

12

17

3
16

23
112

2"
115

5
14

22
113

6
13

9
II

8
1,

A 6

A 16

10

VCC

A3

PHTM

A 21

A4

AS

A 2"

A17

A7

A 18

A 19

A23

A 22

PSYNC

HOLDA

A 11

A 2

A 1

AI

SINTA

PWR

REAi)

10

MEM ENBL

10 ENBL

MODE 1

5 - CONTA

3 - CNT "

3 - CNT 1

PRESET 75

POC 99

BOARD SELECT & DEVICE SELECT LOGIC ©1981 G. MORROW



A 21

A17

A19

A23

A16

- EA 7 ---2-tIN1 OUT1 ~1=--a --164

17 40 3
1 - EA 6 ---,INS OUTa A 22

1 - EA 5 15 IN7 OUT7 5 62

- EA 4 13 IN6 OUT6 A 28

1 - EA 3 11 IN 5 OUT5 9 59

- EA 2 4 IN2 OUT2 16 A 18

1 - EA 1 6 IN3 OUT3 14 17

1 - EA 8 8 IN4 OUT4 12

1 ENBLA
___-19,ENBI:

B

LS244

3 - ADDR ENBL

LS244
DATA 7

DATA 6

DATA S

DATA 4

DATA 3

DATA 2

DATA 1

DATA 8

Vee

18 KJl

9

11

08 17

07 16

1S
06

14
05

13
04

03

02 18

01

83

2716

37 ,",-_...;.19"-1 AU'

5D
34 ~__22.....· 1.9

A8

A5

AI,

29 ""'___3..... AS

4
38 ""'--- A4

A 3 31 """'"--__5..... A3

1.9

1.18

1.7

1.6

A 13

A 15

A 11

AS

A1

A 9

1.3

1.7

AS

Vee

3 - ADDR ENBL

5 4 6
4

LS125

Vee 2 IN1 OUT1 ~1~8------1a3
8C 16

Vee 4 1N2 OUT2 A 6

Vee 11 INs OUTs 9 29

Vee 15 IN7 OUT7 SAl,

Vee 8 IN4 OUT41-'1.=2------131

3 - FOUR _--6"-tIN3 OUT3 14 A 2

3 - TWO 17 INa OUTa 3 a8

3 - ONE 13 IN6 OUT6
.---__1, ENBLA

3 - ADDR ENBL _-.......-_1_9...,E"NBLB

1 - JA 15 __---'-11, TN 5 OUTS 1-'9::..------132

6 9C 14Vee 1 - JA 14 ---.., IN3 ,OUT3 A 14

1 - JA 13 .8 IN4 OUTI, 12 85

1 - JA 12 13 1N6 OUT6 7 A 12

a ~~9~_--------4""IN2 OUT216 87

r10B Vee 2 IN1 OUT1 18 A 18

Vee 17 INa OUT8 3 34

Vee 15 IN7 OUT7 A a

1 ENBLA
___19-; EN'B'L

B

LS2H

DATA 7

DATA 6

DATA 5

DATA 4

DATA 3

DATA 2

DATA

DATA 8

1 - READ

1 - READ

7~PWR
7B

Vee

OE 28

OE 28

V 21
pp

18 es

A 2 81 """'"--__6-0 A
2

A 1 88 ~__7..... 1.1

A 8 79 ""'___8..... A8

A 8 84 23..... 1.8

A 3 31 "'-_......5.... 1.3

A 2 a1 ,-__6-0 1.2

A 5 29 ~__3..... AS

A 1 88 ~__7-t' A1

2
A 6 82 '---1.6

8
A 8 79 ""'--- 1.'1

18 B

2716
.--------,17

1.18 37 19..... 1.18 08

22 60 07 16
A 9 34 ""'--- 1.9 15

°6L..-::---

Os 14

04 13

11

4
1.4 38 '---A4

1 - ENBL R8

1 - ENBL R1

LS244

DATA 7 _--2~IN1 OUT1 ~1~8 -;43

DATA 6 17...... INa12 ~UT a 3

DATA 5 15 IN7 OUT1 ~5:.....------l92

DATA 4 13 IN6 OUT6 1

DATA 3 11 INS OUTS 1-=9:""'-----;42

DATA 2 8 IN4 OUT4 12

DATA 1 6 IN3 OUT3 1-'1...:..4 ..., 94

DATA S 4-; IN
2

OUT
2

16

1 ENBLA

__.-......:.:19~ E'NiiL
B1 - BUFF ENBL

DATA 7

DATA 6

DATA 5

DATA 4

DATA 3

DATA 2

DATA 1

DATA B

a1LS95
2 3

DO 7 98 ">-----IIN1 OUT1

DO 6 4B '>- ~1..,8IN8 OUT 8 17

DO S 39'---..:.,,16:...1IN
7

OUT
7

15

DO 4 38'>------14-; IN 6 OUT6 13

DO 3 89 ,,>--1-2-t INs OUTS 11

a 9
002 88>--------1IN4 OUT4

DO 1 35 ,,>---6-tIN 3 OUT3 7

DO 8 36'>------4-;IN 2 OUT2 5

110
1 ENBLA

>- ----....1_9, ENBLB

MULT - I/O INTERFACE REV. 3 PAGE 2 of S

ADDRESS & DATA BUFFERS. MEMORY ©1981 G MORROW



D1liJ

DB

42 D6

os
D4

if2

PI.

ADDR EN8L

LS374
8

04 a4
13 14A

Os as
14

06 a6
17

07 a7
18

08 a8

01 a1

02 a2
5

OJ a3

ClK

EN8L

LS374
P4

8
04 a4

13 Os 13A
as

14
0 6

15

17 0 7

18
08

3
01 a1

4
0 2 a2

7
03 a3

11 ClK

1 ENBL

C>""'---------I13 RESTORE

~ ~
P6

DATA 8

EN8l ABUFF--()
C

1 - RESTOR

CNTI
DATA 7

DATA 6
CNTO DATA S

DATA 4

DATA 3

DATA 2

DATA 1

DATA 8

1 - OSY 1 OUT

r----.... 13
aAr-=--....-- ClK INTR

·138 '
lS84 lS399

___........ 9"'-fl.l~;:~8'-----'1~4 CLR

ONE

TWO

FOUR

1- ClK IN

l5398

B
a8

5

138
6

ac

ClR

4

2

l539B

x:>-_..;;15-f A a 0 t-9~......-:-<>

12 B QA 13

13C Q8 11

14 ClR ac 18

l5liJ4

CNT.I ~CNTI

1 - RESET

1 - EN8l eNT

1 - ENBl INTH

81 LS96
12

INS OUTS
11

DATA 7

8 15A
9

IN4 OUT4 DATA 6 DATA 7

6 IN 7 DATA 6
OUT3 DATA S3 DATA 5

4 S
DATA 4IN 2 0UT2 DATA 4

2 IN1
DATA 3

OUT1 DATA 3
DATA 2

18
INa OUT8

17 DATA 2 DATA 1

16 1S DATA £I
IN7 OUT 7 DATA 1

14 13 1 - DSY 8 OUT
IN6 OUT6 DATA B

1 EN8LA
1 - DVR ENBl

19
EN8L8

'---..J,~-_5~CS OE T .1~Fd
6 13 28pF ~

I---'--+---..J'\.,---IDI 150 l----'--+---1~
1---+-__--J,I.r-_--t8 CLK 12 c::::::J 28pF 32.768 KHz

1-=+-__--",r-_~3C8
2 1&8 Kit

~+-~--"\'r--~C1 VCC l5125

~+----J'I,r--__11C2 DO ~ 9 8

1--+------",,.---'--IST8 _18J 8"K._ll_ vcc 111

7 VSS TP t-1~8...... -+- ---+~

1998

1 - READ --.-;;;.;

51 P (8 PIN x2)
TYP 1801l. VCC

1 - DSY £I IN --.....,:..:;:;

PI.

PAPER

CAR ROY

PNTR ROY

R5KnVCC

4.7Kll 2N3986
SIP

TYP1ggKit

LS174

DATA £I
14

06 a6
15

13 158 12
DATA 1 0 5 a 5

DATA 2
11

04 a4
18

3 2
DATA 3 01 a1

DATA 4
4

02
5

a2

DATA 5 6 7
°3

1 - ClK OUT
9

VCC

1 - RESET

MULT - I/O INTERFACE REV. 3 PAGE 3 of S

CLOCK & PRINTER LOGIC ©1981 G. MORROW



P1 J1 P1 1489 8258

II> A H 4 6 6 1S
SINSERIAL IN 0

ROUTA ---!o ol-----[!> SERIAL OUT A2 81 26
A2

2C
1489

SIGNAL OETECT II> Co J 1 6 3 38 RLSD

ROTRA
0 ~ DTREADY A1 88 27 A SOUT

11
OUTA~

1489 . 1

DATA SET READY l!> Eo L 111 C 8 37
DSR

F ~ READY TO SEND AS 79 28
ASRRTSA~ 1489

CLEAR TO SEND [D GO N 13
6C

11 36 -CTS

OATA 7 8 07 DTR
33

DTRA
REFERENCE

7 06DATA 6
3.3Kfi

VCC
DATA 5 05

7
ROUTA DATA 4 5

04

OUTA DATA 3
4

D3 RTS
32

RTSA

DATA 2
3

02

3 DATA 1 :2 01

RDTRA DATA " 1 DB
DTRA 12 3B

1 - S8 CSl.J INTR INTRA

1 - 51
13

CS1

5 1 - 10 ENBL
14

CS2
7

RRTSA 1 - READ
21

DlSTR BOUT
15

P1
RTSA

PWR 77
18

DOSTR RCLK 9

~
1 - RESET

35
MR DISTB

22
1.5 Kll

BAUD CLK
16

XTAL1 DOSTB 19
5 -

VCC
39 Ri ADS

25

P2 J2 P2 1489 8258

SERIAL IN [D A
o 'H 4

6B 11'
SIN

ROUTB ---!o o-!.---..Q>. SERIAL OUT A2 81 26
A2

28
1489

SIGNAL DETECT [D C J 1 6B 3 38 RLSD0

RDTRB -.E.o ~DTREADY A1 8B 27
A1 SOUT

11
OUTB1489

DATA SET· READY I:!> Eo L 1B 6B 8 37 DSR

RRTSB ---Eo oM.---fI> READY TO SEND All 79 28
A81489

CLEAR TO SEND [D GO N 13
6B

11 36
CTS

DATA 7
8

D7 DTR
33

DTRB

DATA 6
7

06
3

REFERENCE DATA 5
6

05
ROUTB 5

OUTB DATA 4 04

4 32
DATA 3 D3 RTS RTSB

DATA 2
3

02

DATA 1
2

017

DTR B

RDTRB
DATA B 08

1 - S9 12
CSl.J INTR

38
INTRB

1- S1
13

CS1

1 - 10 ENBL 14
CS2

RRTSB
1 - READ 21

DISTR 15
me BOUT

PWR 77 18
DOSTR RCLK

9
P2

1 - RESET 35 MR DlSTB 22

~
5 - BAUD CLK

16
XTAL1 DOSTB

19

VCC
39

RI ADS
25

MULT - IIO INTERFACE REV. 3 PAGE 4 of 5

SERIAL PORTS A & B ©1981 G MORROW



P3 .J3 P3 1489 8259

SERIAL IN II>
A H 4 6 6 10 SiN0

ROUTC~ oL----r:I:> SERIAL OUT
26

A2
2A

1489 A2 81

SIGNAL DETECT II> C J 1 6A 3 38 RLSD0

RDTC C ----Po ~DTREADY A1 89 27
A1 sour 11 OUTe1489

DATA SET READY ID Eo L 10
6A

8 37 i5SR

~ READY TO SEND A8 79 28
AS1489

ED Go N 13 6,6; 11 36
CTSCLEAR TO SEND

DATA 7 8 07 DTR
33

DTR C

DATA 6 7 06

6 - REFERENCE DATA 5 6 05
ROUTC

DATA 4 5 04
OUTe

DATA 3
4

03

DATA 2 3
~2

DATA 1
2

01

6
RDTCe P3 DATA 8 1 08

DTR e

~
12 39

1- S9 CS9 INTR INTRc
1- S1

13
CS1

1-10 ENBL
14

CS22IJH

1- READ
21

DISTR BOUT
15

0 PWR 77
18

DOSTR RCLK 9

112 pF
LS398

1- RESET
35

MR DISTB
22

56 pF
2 CLR 7

~ ~
Do 16 19

BAUD CLK XTAL1 DOSTB
13C

VCC
39 RI ADS 25

11 18 4 -B
LS84

1 A 3
DA BAUD CLK

Vce

8259 1- ENBL INT 13
LS38 11

17 12 7C
1 - ENBL CONT cs INT

10A
INTRA

21
IRQ3 EN 16 CONTA

22
IRD4 4

23 DB7 DATA 7

P4 IRQS 5
DB6 DATA 6

PW ROY 24
IRQ6 DB5

6
DATA 5

25 DB4 DATA 4
3 - CLK INTR IRQ7 8DB3 DATA 3

DB2
9

DATA 2

DB1
11 DATA 1

DBS
11

DATA 1
PS

~
I I

CAS2
15 I I

AS 79 27
C/O

I I
13 I I

CAS1 I I
1- READ 3 RD CASS

12 I I
L.:J

PWR 77 2 WR IRD2
29 18 7A 11

LSI4

IRD1
19 6 7A 5

LS84

1 - ENBL INTR
26 lACK IRQS

18 8 'A 9

SIP
3.3Klt

18

A
B o---f!!> PINT

o-----f!!> Vf7

Js o-----IT!> VI 6

o------II> VIS

o-----lI> VI 4

o-----{L> VI 3

E o-----{L> Vl2

0 0----1}> VI1

C o----IT> VI9

MULT - I/O INTERFACE REV. 3 PAGE 5 of 5

SERIAL PORT e & CONTROLLER LOGIC ©1981 G MORROW


