Tafr 8800 basie
RERERENGERMANAL
WERSION 4.1

air 8500 hasie

RIEFERENIGLE ARTAL
WERSIL] 4.1

OMITS, Inc. 1977,
Third Printing, Julyv, 1977

2450 Atamo S.E./Albuquerque, New Mexico 87106

PREFACE

The Altair BASIC language 1is a high-level Drogramming
language specifically desianed for interactive computing
systems., Its simple Enaglish-like instructions are easily
understoed and auicklv learned and its interactive nature
allows instant feedback of results and diagnostics. Degpite
its simplicity, however, Altair BASIC has evolved into a
powerful language with wprovisions for editing and string
processing as well as numerical computation,

The Altair BASIC intervreter reads the instructions of

 the BASIC language and directs the ALTAIR 88089 series

microcomputaer to exacute them, Altair BASIC includes manv

useful diagnostic and editing features in all versions. The

extended versions provide additional features including

comprehensive file input/ocutnut procedures in the disk
versicon.

This manwval will explain the features of the BASIC
langusge and the special orovisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC intervreters, release 4,1. For
aquick referencs, a table of Altair BASIC instructions,
diagnostics and functions are orovided 1in Section 8. A
comolete index is at the end of the manual,

§—

BASIT 4.1

April, 1977

o8

1.

1-1

=~
|
L

2-3

CONTENTS

Some Introductory Remarks. - 4
Introduction to this manual 4
a. Conventions
b. Definitions
Modes of Operation 5
Formats 6
a. Lings-aU7T0 and RENUM
h, REMarks
c. Error Messages

Editing - elementarvy »rovisions 9
a. Correcting Single Characters
b. Correcting Lines

~

-~ .

Correctinag . whole Prograns

Expressions and Statements 10

Expressions 10

a
B

cl

G'
e.

£

Constants

Variables

Array Variables - the DIM Statement
QOrerators and Precadence

Logical Oreraticns

The LET Statement

Branching and Loops 19

a

b.

c

dl
Input/Output 23

a..

s}
c
d

2

Branching

1) GOTO

2) IF...THEN...[ELSE]

3) ON...GQTO

Loops - FOR and NEXT Statements
Subroutines - GOSUZ and RETURN Statements
Memory Limitations

INPUT

PRINT

DATA, READ, RESTOPRE
CEAVE, CLOAD
Miscellansous

1) WAIT

2) PEEK,POKE

3y ¢uT, INP

BASIC 4.1

April, 1977

3. Functions 28
3-1 Intrinsic Functions 28
3-2 User~Defined Functions - the DEF Statement 28
3=-3 Errors 29
4. Strings - 30
4-1 String Data 30
4~2 String Operations - 30

a. Comparison Operators

b. String Expressions

¢. Input/Output
4-3 String Functions 31
5., Extended Versions 32
5-1 Extended Statements 32
5-2 Extended Omperators 38
5-3 Extended Functions 39
5-4 The EDIT Command 41
5=5 PRINT USING Statement 46
5-6 Disk File Operations 51
6. Lists and Directories 69
-1 Commands ' 69
6=-2 Statements 72
=3 Intrinsic Functions 77
f-4 Special Characters 82
6-3 Error Messages 84
6-6 Reserved Words 91
Appendices
A, ASCII Character Codes 93
8, Loading Altalr BASIC 95
C. ©Speed and Space Hints 106
D, Mathematical Functions 109
E. Altair BASIC and Machine Languadge 112
. Using the ACR Interface 114
G. Converting BASIC Programs Not Written for the Altalr Comouter 116
H. ©visk Information 118
I. The PIP Utility Program 124
J. RSTLESS Versions of BASIC 128

XK. ©Using Altair BASIC on the

Intellec* 8/Mod 3% and MDS 3ystems 129
L. Patching Altair BASIC's I/0 Routines 132
‘M. Using Disk Altair BASIC: An Example - 137

Index \ 143

L}

BASIC 4,1

April, 1977

l. SOME INTRODUCTORY REMARKS

1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicitv, some
conventions will be followed in discussing the features of the
Altair BASIC language.

1. Words vprinted in cavital letters must be written exactly

as shown. These are mostly names of instructiens and
commands. _

2. 1Items enclosed in angle brackets (<>} must be supplied as
explained in the text, Items in sguare brackets ([]) are
opticnal. Items in both kinds of brackets, [<W>], for

axample, are to be supplied if the ortional feature is used.
Items followed by dots (...) may be reneated or deleted as
necessary.

3. shift/ or Control/ followed by a letter means the
character 1s tvped by holding down the Shift or Control key
and typing the indicated letter.

4, All indicated ounctuation must be supvlied.

b. Definitions. Some terms which will become important
are as follows:

d1lphanumeric character: all letters and numerals takesn
together are called alvhanumeric characters.

Carriage Return: Refers beth to the kev on the termwinal
which causes the carriage, print head or cursor to move to the
beginning of the next line and to the command that the
carriage return key issues which terwminates a BASIC line.

Command Level: After Altair BASIC orints 0K, it is 1in
the command level. This means it is resady to accent commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and Statements.
Commands are instructions ncormally used only in dirsct mode
{see Modes of Operation, section 1-2). Some commands, Such as
CONT, may only bhe used in direct mode since thev have no
meaning as program statements. Some commands, such as DELETE,
are not normally used as program statements because they cause
a return to command leavel. But most commands will find
occasional use as onrogran statements. Statements are
instructions that are normallv used in indirect mode. . Some
statements, such as DEF, mav onlv be used in indirect mode.

Edit: The ovrocess of deleting, adding zand substituting
lines in & worogram and that of preparinag data for ocutput
according to a nredetermined format will both be referred to
as "editing.” The particular meaning in use will be clear from
the context.

BASIC 4.1

sprii, 1977

Integer Expression: An expression whose value is
truncated to an 1integer. The components of the expression
need not be of inteqer typve.

Reserved Words: Some words are reserved by BASIC for use
as statements and commands. These are called reserved words
and they mav not be used in variable or function names.

Special Characters: Some characters aopear differentlv
on different terminals. Some of the most important of these
are the following:

(carat) appears on some terminals as } (up-arrow)
~ (tilde) does not apvear on some terminals and vrints
as a blank
{underline) avvears on some terminals as -=(back-arrow)

String Literal: A strinaga of characters enclosed by
guotation marks (") which is to be invut or output exactly as
it avpears. The quotation marks are not part of the stiring
literal, nor may a string literal contain quotation marks.
(""HI, THERE""is not legal.)

Type: While the actual device used to enter information
into the computer differs from svstem to system, this manual
will use the word “type” to refer to the wprocess of entry.
The user types, the computer nrints. Tyme also refers to the
classifications of numbers and strings. The meaning will be
clear from the context,. '

1-2 Modeas g£ Coeration.

Altair BASIC provides for overation of the computer in
two different modes. In the direct mode, tha statements or
commands are executed as they are entered into the computer,
Results of arithmetic and logical overations are displaved and
stored for later use, but the instructions themselves are lost
after execution. This mode is useful for debugging and for
using Altair BASIC in a “calculator"” mode for gquick
computations which de not Jjustify the desisn and codinag of
complete orograms. ‘

In the indirect mode, the computer executass instructions
from a worogram stored in memorv. Program lines are entered
into memorv if they are vreceded bv a line number. Execution

of the program is usually initiatad bv the RUN command.

HASIC 4,1 3

April,

1a7T

=5y

1-3 Formats.

a. Lines - ADTQ and RENUM. The line is the fundamental
unit of an Altair BASIC program The format for anh Altair
BASIC line is as follows: : '

nnnnn <8ASIC statement>{:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and indicates
the order in which the statements in the line will be executed
in the wvprogram. It also provides for branching linkages and
for editing. Line numbers must be in the range 8 to 65529. &
good mwrogramming wpractice 1is to use an increment of 5 or 1§
between successive line numbers to allow for insertions.

1) Line numbers mav be generated automatically .in the
Extended and Disk versions of Altair BASIC by use of the AUTO
and RENUM commands. The AUTO command provides for automatic
insertion of line numbers when entering vrogram lines. The
format of the AUTO command is a2s follows:

AUTO[<initizl line>[, {<increment>]]
Examole;

AUTO 163,149

199 INPUT X,Y

119 PRINT SQR(X™2+Y"2)

129 “C

OK

AUTO will number evervy input line until Contrel/C 1is typed.
If the <initial line> is omitted, it is assumed to be 19 and
an increment of 10 is assumed if <increment> is omitted. I1f
the <initial line> is followed by a comma but no increment is
specified, the increment last used in an AUTO statement 1is
assumed,

If AUTO generates a line number that already exists in
the program currently in memory, it orints the number followed
bv an asterisk. This is to warn the user that any input will
replace the existing line.

2} The RENUM command allows vrogram lines to be ‘“"spread
out” so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
fellows:

RENUM [<NN>[,<MM>[,<II>]]]

wherz HNM is the new number of the £first 1line to be
reseguencead. If omitted, NN is assumed to be 16. Lines less

“

BASIC 4.1

April, 1977

than MM will not be renumbered. If MM is omitted, the whole
program will be resequenced. II is the increment between the
lines to be resequenced. If II is omitted, it is assumed to
be 16. Examnles:

RENDM ~ Renumbers the whole program to start at line 1%
with an increment of 10 between the new line numbers. :

RENUM 164,,108 Renumbers the whole program to start
at line 106 with an increment of 1¢4.

RENUM 6000,5000,1638 Renumbers the lines from 3809 up
so thev start at 6080 with an incremen: of 1298.

NOTE

RENUM cannot be used to change the order of program
lines (for examvle, RENUM 15,39 when the program has
three lines numbered 16, 29 and 39) nor to create line
numbers 4greater than 65529, An ILLEGAL FUNCTION CALL
error will resulkt.

All 1line numbers appearing after a GOTO, GOSUB, THEN,
ON...GOTO, ON...GCSUB and ERL<relational operator> will be
properly changaed by RENUM to raference the new line numbers.
If a line number appears after one of the statements above but
does not exist in the program, the message "UNDEFINED LINE
XXXXX IN YYYYY" will be oprinted. This line reference {XXXXX}
will not be changed bv RENUM, but line number YYYYY mav be
changed., .

3) In the Extended and Disk versions, the current line
number may be designated bv 2 vperiod (.) anvwherz 2 line
number reference is reguired. This is varticularly useful in
the use of the EDIT command. See section 5-4,

4) Following the 1line number, g¢ne or more 3A51IC
statements are written. The first word of &z statement
identifies the operations to be performed. The 1list of
arquments which follows the identifyving word serves sevaral
ourposes. It can contain {or refer symbolically to) the data
which 1is to be operated umon by the statement. 1In some
important instructions, the operation to be performed depends
upon conditions or ovticns smecified in the list,

Each type of statement will be c¢onsidered in detail in
sections 2, 3 and 4.

BASIC 4.1 7

April, 1877

More than one statement can be written on one 1line if
they are separated by celons (:). Any number of statements
can be joined this wav provided that the line is no more than
72 characters long in the 4K and 8K versions or 255 characters
in the Extended and Disk versions. In the Extended and Disk
versionsg, 1lines may be broken with the LINE FEED kevy.
Example:

196 IF ¥<¥+37<1line feed>
THEN 5 <lines feed>
ELSE PRINT({X)<carriage return> .

The line is shown broken inte three lines, but it is input as
one BASIC line,

b. REMarks. In many cases, a program can be more easily
understecod if it contains remarks and explanations as well as
the statements c¢f the program vroper. In Altair BASIC, the
REM statement allows such comments to be ingcluded without
affecting execution of the program. The format of the REM
statement is as follows:

REM <remarks>

’

A REM statement is not execvuted by BASIC, but branching
statements may link inte it., REM statements are terminated by
the carriage return or the end of the line but not bv a coloen.
Example: : :

169 REM OO THIS LOOP:FOR I=1TO1d -the FOR statement

will not be executed

131 FOR I=1 TO 16: REM DC THIS LOCP -this FOR state-
ment will be execu-
ted.

In Extended and Disk versions, remarks may be added to the end
of a orogram line separated from the rest ¢of the line by a
single cuotation mark ('}. Evervthing after the single guote
will be ignored. ‘

¢. Brrors. When the BASIC interpreter detects an error
that .will «causs the program to be terminated, it prints an
2rror message. The error message formats in Altair RASIC are
as follows:

Direct zstatenent ?XX ERROR
Indirect stateament ?¥¥ ERROR IN nnonnn

XX is the error code or message (see saction 6-3 for a list of
error codes and messages) and nnonn is the line number where
the error coccurred. Each statement has its own varticular
vossible errors in addition to the general errors in syntax.

8ASTC 4.1

April, 1977

These errors will be discussed in the description of the
individual statements. ,

1-4, Editing - Elementarvy provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the <program. If
necessary, the whole program may be deleted., Extended and
Disk Altair BASIC have expanded editing facilities which will
be discussed in section 5.

a. Correcting §Single Characters. If an incorrect
character is detected in a line as it is heing tvoped, it can

be corrected immediately with the backarrow (, underline on
some terminals) or ,except in 4K, the RUBQOUT key. Each stroke
of the key delstes the immediately vreceding character. If

there 1is no vrecasding character, a carriage return is issued
and a new line is bequn. Once the unwanted characters are
removed, thev can be replaced simply bv typing the rest of the
line as desired.

When RUBOUT is typed, a backslash ({\) is printed and then
the character to be deleted. Each successive RUBOUT vrints
the next character to be dJdeleted, Typing a new character
prints another backslash and the new character. All
characters between the backslashes are deletzd.

Example:

19¢ X=\=xX\¥=13 Tveing two RUBQUTS Jdeleted the '=?
and 'X' which were subsequentlv
replaced by Y= .

b, Correcting Lines. A line being tyved may be deleted
by typing an at-sign (&) instead of typing a carriage rsturn.
A carriage return is printed automatically after the line 1is
deleted. Except in 4K, tvoping Control/U has the same effect.

In the Extended and Disk versions, typing Control/A
instead of the carriage return will a2llow all the features of
the EDIT command (except the A command) to be used on the line
currently being tyved. See section 5-4,

c. Correcting Whols Programs. The NEW command causes
the entire current oprogram and all variables to be deleted.
NEW is generally used to clear memory svace preparatory to
entering a new vrogram.

35SIC 4.1 9

April, 1977

10

2. EXPRESSIONS AND STATEMENTS.

2-1l. Expressions.

The simplest BASIC exvressions are single c0nstaﬁts,
variables and function calls.

a. Constants. Altair BASIC accepts integers or floating
point real numbers as constants. All but the 4K version of
Altair BASIC accept string censtants as well. See section
4-1, Some examples of accevtable numeric constants follow:

123
3.141
#.0436
1.25E+85

Data input from the terminal or numeric constants in a vrearam
may have any number of digits up to the length of a line ({see
section 1-3a). 1In 4K and 8K Altair BASIC, however, only the
first 7 digits of a number are significant and the seventh
digit is rounded up. Therefore, the command

PRINT 1.234567898123
vroduces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17th
digit rounded up.

The format of a printed number is determined by the
following rules:

1. If the number is negative, a minus sign (-) 1s orinted to
the 1left of the number. If the number is vositive, a
space is printed.

2. If the absolute value of the number ig an integer in the
range @ to 9999998, it is printed as an intedqer.

3. 1If the absolute value of the number 1is greater than or

equal to .61 and 1less than or equal to 989999, it is
printed in fixed point notation with no exponent.

4, In Extended and Disk versions, fixed vpoint values up to
9999999999999999 are vossible,

BASIC 4.1

April, 1977

BASIC

April,

5. If the number does not £f£all into cateqorlas 2, 3 or 4,
scientific notation is used.

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX . XXXXAXRXKXKXXLXXXDSTT double vrecision

where S stands for the signs of the mantissa and the exponent
{they need not be the same, of course), X for the digits of
the mantissa and T for the digits of the exnonent. E and D
may be read “...times ten to the vower...." Non-significant
zeros are suppressed in the mantissa, but two digits are
always printed inr the exponent. The gign convention in rule 1
is followed for the mantissa. The exponent must be in the
range =38 to +38. The largest number that may be represented
in Altair BASIC is 1.70141E38; the smallest nositive number
is 2.9387E-38. The following are examples of numbers as inout
and as output by Altair BASIC:

Number Altair BASIC Output
+1 1

-1 -1

6523 6523

1E29 1E249
-12.34567E-19 -1.23456E-49
1.2345678E-7 1.23457E-07
1996944 1E+486

A0 .1

.91 .61

806123 1.23E-04
-25.468 -25.46

The Extended and Disk wversions of Altair BASIC allow
numbers to be represented in integer, sinale precision or
double precision form. The type of a number constant is
determined according to the following rules:

1. A constant with more than 7 digits or a 'D' instead of '2'
in the exponent is double precision.

2. A constant outside the range -32768 to 32767, with 7 or
fewer digits and a decimal voint or with an 'E' exvoonent
is single precision. :

3. A& constant in the range =-32768 to 32767 and no decimal
oolnt is integer.

3,1 11

1877

4, A constant followed by an exclamation voint (!} is single
precision; a constant followed by a pound sign (%) is
double vrecision.

Twe additional tyeces of constants are allowed in Extended
and Disk versions of Altair BASIC, Hexadecimal (base sixteen)
constants may be explicitly designated by the symbol &H
precading the number. The constant may not contain any
characters other than the digits @ - 9 or letters A - F, or a
SYNTAX ERROR will occur. Octal constants may be designated
either by &0 or just the & sign.

In all formats, a svace is printed after the number. In
all but the 4K version, Altair BASIC checks to see if the
antire number will fit on the current line. 1If not, it issues
a carriage return and prints the whole number on the next
line.

b. Variables. A variable represents svmbolically any
number which is assigned to it. The wvalue of a variable may
be assianed exwlicitly by the programmer or may be assigned as
the result of calculations in a orogram. Before a variable is
assigned az value, its value is assumed to be zero. 1In 4X , a
variable name consists of one or two characters. The first
character is any letter. The second character must be a
numeral. In other versions of Altair BASIC, the variable name
may be any length, but any alphanumeric characters after . the
first two are ignored., The first character must be a letter.
No reserved words may appear ag variable names or within
variable nanes. The following are examples of legal and
illegal Altair BASIC variables:

Legal Tllegal
In 4K and 8X Altair BASIC:
A $A (first character must
be alvhabetic.)

721 Z1A (variable name is too
long for 4K) :
Qther versions;:
TP T™C {variable names cannot
be reserved words)

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.)

In all but 4X Altair BASIC, a variable may also revpresent
a string. Use of this feature is discussed in section 4.

April, 1977

1} Extended and Disk versions of Altair BASIC allow the
use of TInteger and Double Precision variables as well as
Single Precision and Strings. The tyoe of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the svymbols in the table below as the
last character of the variable name.

Type Symbol
Strings (8 to 255 characters) 3
Integers (-32768 to 32787) %
Single Precision {(up to 7 digits, exvonent between
-38 and +38) !
Double Precision (up to 16 digits, exvonent between
-38 and +38) 4

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double oprecision
numbers may be handled correctly. If no type i3z explicitly
declared, type 1is determined by the first letter of the
variable name according to the type table. The table of tynes
may be modified with the following statements: .

DEFINRT r Integer
DEFSTR r String
DEFSNG ¢ Single Precision
DEFDBL ¢ Double Precision

where r is a letter or range of letters toc be designated.
Examples: ' :

15 DEFINT I-N Variable names beginning with the let-
. ters I-N are to be of intzsger type.
2¢ DEFDBL D Variable names heginning with D are to
be of doubls vrecision tyne.

If no type definition statements are encountered, BASIC
vroceeds as if it had executed a DEFSNG A-2 statement.

2) Integer variables should be used wherever wnossible
since they take the 1least amount of sgpace in memory and
integer arithmetic 1is much faster than single worecision
arithmetic, -

Care must be exercised when single precision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits +than will be ©printsd, a
double precision variable set to a single ovrecision value mav
not vrint the same as the single precision variabla.

18 a=1.61 single mrecision value
20 B#=Aa*17:C4=CDBL(A) *10% convert to double wrecision

BASIC 4,1 i3

April, 197

14

38 PRINTA;B#;C#;CDBL({A) in various wavs
RUN

OK

In order to assure that double precision numbers will pfint
the same as single oprecision, the VAL and STRS functions
should be used. For example:

i A=).41 :
29 B#=VAL(STRS(A)) ;Cé=8*10%
30 PRINT A;B#%;C#H

RUN
1.1 1.81 14.1
)24 :
c. Array Variables - The DIM Statement. It is often

advantageous to refer to several variables by the same name.
In matrix calculations, for example, the computer handles each
element of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC wprovides subscrivnted variables, or
arrays. The form of an array variable is as follows:

VV (<subscript>{,<subscriot>...1)

where VV is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
sguare brackets. An array variable may have only one
dimension in 4K, but in all other versions of Altair BASIC it
may have as many dimensions as will fit on a single line. The
smallest subscrint is zero. Examples:

s

a((3) The sixth element of arrav A, The first
element is A{(3).

ARRAY (I,2*J) The address of this element in a two-
dimensional array is determined by
evaluating the exvpressions in parenthe-
ses at the time of the reference to the
array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form o¢f the DIM

- statement is as follows:

DIM VV(<subscriot>[(,<subscrint>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript for
that dimension. Each DIM statement may aoply to more than one
array variable. Some exzamples follow:

BASIC 4.1

April, 1877

1.81 10.100608838146973 10.869999994463257 1.009999999463257

113 DIM A{(3), 0S{(2,2,2)
114 DIM R2%{4}, B(1l0)

115 DIM QL (N}, Z#(2+T1) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to inteqger.

If no DIM statement has been exzcuted before an arrav variable
is found 1in a program, BASIC assumes the variable to have a
maximom subscript of 18 (11 elsments) for each dimension in
the reference. A B85S or SUBSCRIPT OUT OF RANGE error message
will be issued if an attempt is made to reference . an arrvay
element which is outside the space allocated in its associated
DIM statement. This can occur when the wrong number of
dimensions 1s used in an array element reference, For
axample:

36 LET A(1,2,3)=X when A has been dimensioned by
12 DIM a(2,2)

& DD or REDIMENSIONED ARRAY error occurs when a DIM statement
for an array is found after that arrav has been dimensioned.
This often occurs when a DIM statement avpears after an array
has been given its default dimension of 18.

d. Operators and Precedence. Altair 3ASIC provides a
full range of arithmetic and (exceot in 4X) logical overators.
The order of exacuticn of owerations in an expression 1is
always according to their ©precedence 2s chown in the table
below. The order can be svecified exnlicitly bv the use of
parentheses in the normal algebraic fashion.

Table 9£ Pracaedence

Operators are shown heras in decreasing order of orecedence.
Overators listed in the same entrv in the table have the same
precadence and are executed in order from left to right in an
a@xpression. '

1. Expressions enclosed in pmarsntheses ()
2. " exponentiation (not in 4K). AaAny number to the zero
power 1is 1. - Zero t0 a negative power causes a /§ or

DIVISION BY ZERO error.

3. - negation, the unary minus operator

2ASIC 4,1 13

April, 1977

“ 4, *,/ multiplication and division

S. \ integer division {(available in Extended and Disk
versions, see section 5-2)

6. MOD (available 1in Extended and Disk versions. Seea
section 5-2)

7. +,- addition and subtraction

8. relational operators
= egual
<> not egual
< less than
> greater than
<=,=< less than or equal to
>=,=> greater than or ecual to

{(the logical operators below are not available in 4K}

9. NOT logical, bitwise negation
1a. AND legical, bitwise disjunction
11. OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR
13. EQV logical, bhitwise eguivalence
14, IMP logical, bitwise implication

In 4% Altair BASIC, relational operators may be used only once
in an IF statement. In 2ll other versiong, relaticnal
overators mav be used 1in any expressions, Relational
expressions have the value either of True (-1) or False (2).

. e. Logical Operations. Logical onerators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, X0R, EQV and IMP operators convert their
arguments 1into sixteen bit, signed, two's complement integers
in the range =32768 to 32767, After the ovperations are
performed, the result is returned in the same form and range.
If the arguments are neot in this range, an PFC or ILLEGAL
FUNCTION CALL error message will be printad and execution will
ba terminated. Truth tables for the logical owverators apvear
below. The overations are verformed bitwise, that 1is,

BASIC 4.1

ApTil, 1977

corresponding bits of each argument are examined and the
result computed one bit at a time., In binary ovperations, bit
7 is the most significant bit of a bvte and bit @ is the least
significant.

AND
b4 Y X AND ¥
1 1 1
1 g g
2 1 2
4] g]
OR '
X Y X 0rR ¥
1 1 1
1 4] 1
g 1 1
] 7] @
NGT
X NOT X
1 3
g 1
X0R
X ¥ X XCR ¥
1 1 é
1 g 1
& 1l 1
g 4] g
EQV
b4 Y X EQV ¥
i 1 1
1 @]
il 1 8
g @ 1
IMP
X Y X IMP ¥
1 1 1
1 g i
g 1 1
2 2 1
Some examples will serve to show how the logical overations
work:
63 AND 1lé=16 63=binary 111111 znd lé=binary 19040,
. so 63 AND 15=16
15 AND 14=]14 15=binarv 1111 and l4=binary 1114,
so 15 AND l4=binary 1119=14.
-1 AND 8=8 -l=binary 1111111111111111 and S=binarv
1998, so -1 AND 8=3.
4 OR 2=§ 4=binary 16 and 2=binary 14, so
4 OR Z2=binary 118=%6.
18 CR lo=1g binary 141% OR'd with itself iz 1914d=
BASIC 4.1 17

April, L3277

i8

19.

-1 OR ~2=-1 -l=binary 1111111111111111 and -2=
1111111111111116, so -1 OR -2=-1.
NOT f=-1 the bit comvplement. of sixteen zeros

is sixteen ones, which is the two's _
complement revresentation of -1.
NOT X==~(X+1) the two's complement of any number is
' the bit complement plus one.

A typical use of logical operstions is ‘'masking’', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's inout ports and would
then reflect the condition of some external device. Further
applications of logical overations will be considered in the
discussion of the IF statement.

£. The LET statement. The LET statement is wused to
assign a value to a variable, The form is as follows:

LET <VV>=<expression>

where VV is a wvariable name and the expression 1is any valid
Altair BASIC arithmetic or, excent in 4X, logical or string
expression, Examples:

1340 LET V=X
118 LET I=I+1 the '=' sign here means 'is revlaced
by°

The word LET in a LET statement is optional, sc algebraic

~aedquations such as:

128 V=.5*%{X+2)
are legal assignment statements.

A SN or SYNTAX ERROR wmessage 1is wrinted when BASIC
detecgts incorrect form, 1illegal <characters in 2 1line,
incorrect wpunctuation or missing parentheses. an OV or
OVERFLOW error occurs when the result of a calculation is too
large to be represented by Altair B3AS5IC's number formats. All
numbers must be within the ranae 1E-38 to 1.78141E38 or -1E-38
to -1.70141E38. An attemnt to divide by zero results in the
/8 or DIVISICON BY ZERO error message.

For a discussion of strings, string variables and string
overations, see section 4. '

BASIC 4.1

dpril, 1977

2-2. Branching, Locvs and Subroutines,

a. Branching. In addition to the sequential execution
of vrogram lines, BASIC vrovides for changing the order of
execution, This vrovision is called branching and 1is the
basis of programmed decision making and loops. The statements
in Altair BASIC which preovide £or branchina are the GOTO,
IF,..THEN and ON...GOTC statements. -

1} GOTO is an unconditional branch, Its form is ag
follows:

SO0TO<mmmmm>

After the GOTO statement is executed, execution continges at
line number mmnmm.

2) IF,..THEW is a conditional branch. Its form 1is as
follows:

IF<expression>THEN {mmmmm>

where the expression is & valid arithmetic, relational or,
except in 4K, logical expression and mmmmm is a line number.
~ If the expression is evaluated as non-zero, BASIC continues at
line nmmmmm. Otherwise, execution resumes at the next line
after the IF...THEN statement,.

An alternate form of the IF,...THEN statement 1is as
follows:

IF<expression>THEN<Kstatement>
where the statement is any Altair BASIC statement. Examples:

19 IF A=10 THEN 43 If the expression aA=18 is
true, BASIC branches to line 48. Otherwise, =xecution
procesds at the next line.

15 TIF A<B+C OR X THEN 143 The expression after IF is
evaluated and 1f the walue of the expression is
non-zero, the statement hranches to 1line 1488,
Otherwise, execution continues on the next line.

20 IF X THEN 25 ' If ¥ is not zero, the statement
branches to line 25.

38 IF X=Y THEM PRINT X If the exvression ¥=Y is true
{its wvalue 1is non=-zero}, the PRINT statement is
axecuted. Otherwise, the PRINT statement 1is not
executed. 1In either case, exacution continues with
the line after the IF...THEM statement.

35 IF X=Y+3 GOTO 39 Eguivalent to the correswvonding
IF...THEN statement, excenit that GOTO must bhe followed
by a line number and not by another statement.

‘_J
O

BASIC 4.1

April, 1877

Extended and Disk versiocons of Altair BASIC vrovide an expanded
IF...THEN statement of the form

IF<expression>THENKYY>ELSE<KZZ>

where YY and 7% are wvalid 1line numbers or Altair BASIC
statements. Examples: : :

IF X>Y THEN PRINT "“GREATER" ELSE PRINT “NOT GREATER"

If the expression X>Y is true, the statement after THEN is
executed. Otherwise, the statement after ELSE 1is exescuted.

IF X=2*Y THEN 5 ELSE PRINT “ERROR"

If the expression X=2*Y is true, BASIC branches to line 5.
Qtherwise, the PRINT statement is executed, Extended and Disk
Altair BASIC allow a comma before THEN.

IF statements méy be nested in the Extended and Disk
versions, Nesting is limited only by the length of the line,.
Thus, for example:

IF X>Y THEN PRINT “GREATER" ELSE IF Y>X<line feed>
THEW PRINT "LESS THAN" ELSE PRINT "EQUAL"

and _

IF X=Y THEN IF Y>Z7 THEN PRINT “X>%" ELSE PRINT "¥<=2“ <line feed>
ELSE PRINT "X<>Y™

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, sach ELSE is matched with the
closest unmatched THEM. Examplza:

IF A=3 THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<L>C“
will not orint "aAdO>C" when A<>B.

3) ON...GOTO (neot in 4K) vrovides for another tvoe of
conditional branch. Its form is as follows:

ON<expression>GOT0<list of line numbers>

After the value of the expression is truncated to an integer,
gsay I, the statement causes BASIC to branch to the line whose
number is Ith in the list. The statement may be followed by
as many line numbers as will fit on one line. If I=% or is
greater than the number of lines in the list, execution will
continue at the next line after the ON...GOTO sktatement. 1
must not be less than zero or greater than 255, or an FC ot
ILLEGAL FUNCTION CALL error will result. '

BASIC 4.1

-

dpril, 1977

b. Loops - FOR and NEXT. It is often desirable to
verform the same calculations on different data or
repetitively on the same data. For this nurmose, Altair BASIC
provides the FOR and NEXT statements. The form of the FOR
statement is as follows:

FOR<variable>=<X>TOKY> [STEP <Z>]

where X,Y and 2 are expressions. When the FOR statement 1is
encountered for the first time, the expressions are evaluated,
The variable is set to the value of X which 1is c¢alled the
initial value, BASIC then executes the statements which
follow the FOR statement in the usual manner, When a NEXT
statement 1s encountered, the step Z is added to the variable
which is then tested against the final value VY. If Z, the
step, 1s positive and the variable is less than or soual to
the final value, or if the step is negative and the wvariable
is greater than or egual to the final value, then RASIC
branches back to the statement immediately followinag the FOR
statement, Otherwise, execution proceeds with the statement
following the NEXT. f the ster is not specified, it 1is
assumad to he 1. Ezxamples:

19 FPOR I=2 TO 11 The loovr is executed 19 times with
the variable I taking on each in-
tegral value from 2 to 11.

290 FOR V=1 TO 9.3 This loon will execute 9 times un-
kil V is greater than 9.3

38 FOR V=16*N TO 3.4/Z STEP SQR({(R) The initial, final
and step expressions need not be
integral, but thev will be eval-
uated only once before locop-
ing begins.

49 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FCR...NEXT loopns may be nested. That is, BASIC will execute a
FOR.,..NEXT 1loop within the context of another 1loon. An
examole of two nested loowns follows:

149 FOR I=1 TO 18
120 FOR J=1 TO I
139 PRINT A(I,Jd)

149 NEXT J

154 NEXT I
Line 136 will orint 1 element of A for I=1, 2 for I=2 and so
on. If 1loops are nested, they mwmust have different loov
variable names. The NEXT statement for the inside loop
variable - (J in the example) must acpear before that for the
outside variable (I}. Any number of levels of nesting 1is

allowed uv to the limit of available memorv.

BASIC 4.1

Apr";l , 1577

22

The NEXT statement is of the form:
NEXT [<variable>{,<variable>...]]

where each variable is the loop variable of a FOR loor for
which the NEXT statement is the end roint. In the 4K version,
the only form allowed is NEXT with one variable. In all other
versions, NEXT without a variable will match the most recent
FOR statement. 1In the case of nested loows which have the
same end point, a single NEXT statement may be used for all of
them, except in 4K. The first variable in the 1list must be
that of the most rtecent loop, the second of the next most
recent, and so on, If BASIC encounters a NEXT statement
before 1its corresponding FOR statement has been executed, an
NF or NEXT WITHOUT FOR error messagde is issued and execution
is terminated.

c. Subroutines - GOSUB and RETURN Statements. If the
same = operation or series of owverations are to be pverformed in
gseveral places in a program, storage space reguirements and
programming time will be minimized by the use of subroutines.
A subroutine is a series of statements which are executed 1in
the normal fashion wupon being branched to by a GOSUB
statement. Execution of the subroutine is terminated by the
RETURN statement which branches back to the statement after
the most recent GOSURB. The format ¢f the GOSUBR statement 1is
as follows:

GOSUB<line number>

where the line number is that of the first line of the
subroutine. A subroutine may be called from more than one
place in a prodgram, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

Except in the 4K version, subroutines may be branched to
conditionally by use of the ON...GOSUB statement, whose form
is as follows:

ON <expression> G0SUB <list of line numbers>

The execution is the same as ON...G0T0O excevot that the 1line
numbers are those o©0f the first 1lines of subroutines.
Execution continues at the next statement after the ON...GOSUB
upeon return from one of the subroutines.

d. Memory Limitations. While nesting in loops,
subroutines and branching is not limited by BASIC, memory size
limitations restrict the size and complexity of programs. The
CM or OUT OF MEMORY error message is issued when a prodgram
regquires more memory than is available, See Avvendix C for an

BASIC 4.1

April, 1977

explanation of the amount of memory required to run programs.

2-3. Input/CQutrpuat

a. INPUT., The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<1list of wvariables>

The effect of the INPUT statement is to cause the values typed
on the terminal to be assigned to the variables in the list,
When an INPUT statement is executed, a cuestion wmark (?) is
orinted on the terminal signalling a request for information,
The operator tvpes the required numbers or strings {or, in 4X,
exwpressions} separated bv commas and types a carriage return.
If the data entered is invalid (strings were entered. when
numpers were requested, etc.) BASIC prints 'REDO FROM START?'
and waits for the correct data to be entered. If more data
was requested by the INPUT statement than was typed, ?2? is
printed on the terminal and execution awaits the needed data.
If more data was typed than was requested, the warning 'EXTRA
IGNORED' is printed and execution proceeds. After =z11 the
requested data 1is input, execution continues normally at the
statement following the INPUT. Except in 4X, an opticnal
prompt string may be added to an INPUT statement.

INPUT{"<prompt string>";]<variable list>

Execution ¢f the statement causes the prompt string to be
printed before the guestion mark. Then all overations wnrocsed
as above. The vprompt string must be enclosed in double
quotation marks (") and must be separated from the variable
list by a semiceoleon {;). Example:

169 INPUT “WHAT'S THE VALUE";X,Y causes the following
cutput:

WHAT'S THE VALUE?

The requested values of X and ¥ are tyved after the ? Excent
in 4X, a c¢arriage return in resoonse to an INPUT statement
will cause execution to continue with the wvalues of the
variables 1in the variable list unchanged. In 4K, a SN error
results.

b, PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

BASIC 3.1 _ 23

April, 1977

24

which prints a carriage return. The effect is to skip a line,
The more usual PRINT statement has the following form:

PRINT<list of expressions>

which causes the values of the expressions in the list to. be
printed, String literals may be printed if they are enclosed
in quotation marks (").

The position of printing is determined by the punctuation
used to separate the entries 1in the 1list., Altair BASIC
divides the printing line into zones of 114 spaces each. A
comma causes printing of the value of the next expression to
begin at the beginning of the next 14 column zone. A
semicolon (;) causas the next printing to begin immediately
after the last wvalue printed. If a comma or semicolon
terminates the 1list of expressions, the next PRINT statement
begins pvrinting on the same line according to the conditions
above., Otherwise, a carriage return is printed.

¢. DATA, READ, REZTORE

1) The DATA statement. Numerical or string data needed
in a vprogram may be written into the program statements
themselves, input from perirheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATAKlist>

where the entries in the list are numerical or strinag
constants separated by commas. In 4K, expressions may also
apgear in the list. The effect of the statement is to store
the 1list of values in memory in coded form for access by the
READ statement. Examples:

l¢ paTa 1,2,-1E3,.284

2% DATA " LOO", MITS Leading and trailing svaces in
string values are suporessed unless the string 1is
enclosed by double quotzation marks.

2) The READ statement. The data stored by DATA
statements is accessed by READ statements which have the
following form:

READ<1list of variables>

where the entries in the list are variable names sepvarated by
COMMas. The effect o©f +the READ statement is to assign the
values in the DATA lists to the corresvonding variables in the
READ statement list, This 1is done one by one from left to
right until the READ list is exhausteg. If there are nores
names in the READ list than values in the DTATA lists, an OD or

BASIC 1.1

April, 1977

OUT OF DATA error message is issued. 1If there are more values
stored in DATA statements than are read by a READ statement,
the next READ statement to be executed will begin with the
next wunread DATA list entry. 4 sinagle READ statement mav
access more than one DATA statement, and more than one READ
statement may access the data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. In 4K Altair BASIC, the error
message will refer to the READ statement which attemvted to
access the incorrect data. In other versions, the line number
in the error message will refzsr to the actual line of the DATA
statement in which the arror occcurred.

3) The RESBTORE statement. After the RESTQORE statzment is
exacuted, the next pisce of data access=ed by a READ statement
will be the first entry of the first DATA list in the rrogran.
This allows re-READing the data.

d. CSAVE and CLOAD (8K cassette, Extended and Disk
versions only). Numeric arrays mavy be saved on cassette or
loaded from cassette usinc CSAVE* and CLOAD*, The formats of
the statements are:

CSAVE*<array name>
and
CLOAD*<array name>

The array is written out in binary with four octal 219 header
bytes to indicate the start of data. These bvtes are gearched

for when CLOADing the array. The number of bvtes written is
four plus:

8*<number of elements> for a double nrecision array
~4*<{number ¢f elements)> for a single precision array
2*<number of elements> for an integer array

When an array 1s written out or read in, the slements of the
arravy are written out with the leftmost subscript varving most
guickly, the next leftmost second, etc:

DIM A(149)
CSAVE*A

writes out A(9) ,A{1),...A(18)

DIM a{l1d,18)
CSAVE*a

BASIC 4,1 _ 25

ApzTil, 1377

26

writes out A(4,9), A(1,0)...A(18,0),A(16,1)...2(10,18)

Using this fact, it 1is vossible to write a3 two dimensional
array and read it back in as a single dimensional arrav, etc.

NOTE

Writing out a2 double vrecision array and readinag it
back in as a single vrecision or integer array is not
reconmended. Useless values will undoubtedlvy be
returned.

e. Migscellaneous Input/Output

1) WAIT (not in 4K). The status of input ports c¢an be
monitored by .the WAIT command which has the following format:

WAIT<I,JI>[,<X>}

where I is the number of the port being monitored and J and K
are integer expressions. The ©vport status is exclusive ORd
with K and the result is ANDed with J. Executicn is suspended
until a non-zero value results, J picks the bits of port I to
be tested and execution is suspended until those bits differ
from the corresvonding bits of K. Execution resumes at the
next statement after the WAIT. If X is omitted, it i3z assumed
to be zero. I, J and X nmust be in the ranage 6 to 255,
Examples:

WALT 29,6 Execution stoovs until either bit 1 or bit
2 of vort 29 are =saual to 1. (Bit 9 is
lzast significant bit, 7 is the most sig-
nificant.) Execution resumes at the newt
statement. :

wAIT 19,255,7 Execution stops until any of the most
significant 5 bits of vort 10 are one or
any of the least significant 3 bits are

zaero. Execution re=sumas at the next statsment.

2) POKE, PEERK (not in 4K). Data may be entered into
memorvy in binary form with the POKE statement whose forwmaht is
as follows:

POKE <I1,Jd>

BASIC 1.1

ApTil, 1877

where I and J are integer expressions. POXE stores the byte J
into the location specified by the value of I. In 8K, I must
be less than 32769. 1In Extended and Disk versions, I may be
in the range 4 to 65535. J must be in the ranae 4 to 255. 1In
8%, data may be POKEd into memory above location 32763 by
making I 2 negative number. In that case, I is computed by
subtracting 65536 from the desired address. To POKE data into
location 45864, for example, I is 458008-65536=-=28536. Care
must be taken not to POKE data into the storage area occunied
by Altair BASIC or the svstem may be PCKEd to death, and BASIC
will have to be loaded again.

The complementary function to POXKE is PEEXK. The format
for a PEEK call is as follows:

PEEK {<I>)

where I is an integer expression specifving the address from
which a byte is read. 1I is chosen in the sameé way as in the
POKE statement. The value teturned is an integer between 2
and 255. A major use of PEEK and POXE is to rass arguments
and results to and from machine languade subroutines.

3)OUT, INF (not in 4X). The format of the OUT statement
is as follows:

QuUT <I,3>
where I and J are integer expressions. QUT sends thes Evte
signified by J to output port I. I and J wmust be in the range
1 to 255.

The INP function is called as £follows:

INP(<I>)

-

INP reads a byte from vort I where I is an integer expression
in the range @ to 255. Etxample:

29 IF INP(J)=16 THEN PRINT “ON"

BASIC 4.1 27

April, 1977

28

3. FUNCTIONS.

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function call
is as follows: -

<name> (<argument>[,<argument>...])
where the name is that of a previously defined <function and
the arguments are one Or more expressions separated by commas,
Only one argument is allowed in 4X and 8K. Function calls may
be components of expressions, so statements like

19 LET T=(F*SIN(T))/P and
20 C=SQR(A24+B 2+2*A*B*C0OS (T))

are legal.

3-1. Intrinsic Functions

Altair BASIC vrovides several frequently used functions which
may be called from any program without further definition. 2
procedure is provided, however, whereby unneeded functions may
be deletad to save memorv space. See Appendix B, For a list
of intrinsic functions, see section 6-3.

3-2. User-Defined Functions = the DEF Statement (not in 4X}.

d. The BDEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the DEPF
statement is as follows:

DEF<function name> (<{variable list>)=<expression>

where the function name mnmugt be FN followed by a legal
variable name and the entries in the variables list are 'dummv’
variable names. The dummy variables represent the argument
variables or values in the function c¢all. 1In 8K Altair BASIC,
only one argument is allowed for & user-defined function, but
in the Extended and Disk versions, any number of arguments is
allowed. Any expression may appear on the right side of the
equation, but it must be limited to one line. User-defined
functions may be of any type in Extended and Disk versions,
but user-defined string functions are not allowed in B8K. If a
type 1s specified for the function, the wvalue of the
expression is forced to that typoe before it is returned to the
calling statement. Examnplesg:

3ASIC 4.1

April, 1977

19 DEFP FNAVE(V,W)s(V+W)/2
11 DEF FNCONS (VS,WS)=RIGHTS (VS+WS$S,5) Returns the riaght
' most S5 characters of ‘the concat-
: enation of V$ and WS,
12 DEF FNRAD(DEG)=3.14159/189*DEG When called with the
: measure of an angle in degrees,”’
returns the radian egquivalent.

A function may be redefined bv executing another DEF statement
with the same name. A DEF statement must be executed before
the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See apvendix E,

3-3. Errors.

d&. An FC or ILLEGAL FUNCTION CALL error results when an
improper call 1is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET a(-1)=8, for example.
2. an array subscript that is too large (>32767)

3. negative or zero arqument for LOG

4, Negative argument for SQR

5; A3 with A negative and B not an integer

G. a call to USR with no address wpatched £for the machine
language subroutine,

7. improper arguments to MIDS, LEPTS ,RIGHTS, INP, OUT,
WaIT, ©PEER, PQOKE, TABR, SEC, INSTR, STRINGS, SPALCES or
ON...GOTC.

b. 2an attemvt to call a user-defined function which has
not wpreviously appeared in a DEF statement will cause a UF or
UNDEFINED USER FUNCTION error.

c. A TM or TYPE MISMATCH error will occur if a function
‘which expects a string argument is given a numeric value or
vice-versa.

BASIC 4.1 29

April, 1877

4. STRINGS

In all Altair BASIC versions except 4X, expressions mav
either have numeric wvalue or may be strings of characters.
Altair BASIC provides a complete complement of statements and
functions for manioulating string data. Many of " the
statements have already been discussed; so ,only their
particular application to strings will be treated in this
section. -

4-1, String Data.

A string is a list of characters which may be from & to
255 characters in length. Strings mav be stated explicitly as
constants or referred to svymbolically by variables. String
constants are delimited by quotation marks at the beginning
and end. A string variable name ends with a dolliar sign (S).
Examplesg:

AS="ABLCD" Sets the variable &% to the four character
string "ABCD"

B9S="14A/56" Sets the variable B9S to the six character
string “"14A/56" _

FOOFQOOS$S="ES" Sets the variable FOOF00$ to the two charac-
ter string “"ES$“

Strings input to an INPUT statement need not be surrounded by
quotation marks.

String arrays may be dimensioned exactly as any other
Kind of array by use of the DIM statement. Each element of a
string array is a string which may be up te 2535 characters
long. The total number o¢f string characters in use at any
point in the execution ¢f 2 vrogram must not exceed the total
allocation of string space, or an 0S5 ot QUT OF STRING SPACE
error will result. String space is allocated by the CLEAR
command which is explained in secticn 6-2.

4=-2. String Operations.

a. Comparison Overators. The comparison operators for
strings are the same as those for numbers:

= equal

<> not equal

< less than

> greater than

=<{,<= lags than or egqual to
=>,>= greater than or egqual to

Comparison is made character by character on the Dbasis of

BASIC 4.1

April, 1977

ASCIT codes until a difference is found. 1If, while comparison
is proceeding, the end of one string is reached, the shorter
string 1s considered to be smaller. ASCII codes may be found
in Appendix A. Examples:

A<Z ASCII A is @65, Z is G906

1<a ASCII 1 is @249

" A">"AY Leading and trailing blanks are significant
in string literals.

b. String Expressions. String expressions are composed
of string literals, string variables and string function calls
connectad by the concatenation operator (+). The =effect of
the catenation operator is to add the string on the right side
of the operator to the end of the string on the left. If the
result of concatenation is a string more than 255 charactars
long, an LS or STRING TOQ LONG error mesaage will be issued
and execution will be terminatsd.

¢. Input/Qutput. The same statements used for inout and
output ©of neormal numeric data mav also be used for gtring
data.

1) INPUT, PRINT. The INPUT and PRINT statements read and
write strings on the terminal. Strings need not be enclosed
in quotation marks, but if they are not, leading blanks will
be ignored and the string will be terminated when the first
comma or colon is encountered. Examples:

19 INPUT Z00QS5,F00S Reads two strings

29 INDUT XS Reads one string and assions
it to the variable XS.

39 PRINT XS$,“HI, THERE" Prints two strings, including

all spaces and wnunctuation
in the second.

2) DATA, READ. ©DATA and READ statements for string data
are the same as for numeric data. For format conventions, see
the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls 1is the
same as that £for numeric functions. Fer the list of string
functions, see section 6-3, Special user~defined string
functions are 2llowed in Extended and Disk versions and may be
defined by the use of the DEF statement (see section 3-2),.
String function names must end with a dollar siagn” '

BASIC 4.1 3L

32

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair RASIC wprovide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. -For
clarity, these features are grouped together in this section.
Some modifications to existing 4K and BK features, such as the
IF...THEN...ELSE statement and number typing facilities, have
been discussed in conjunction with the other versions. Check
the index for references toc those features.

5-1. Ezxtended Statements

a. ERASE. The ERASE statement eliminates arrays from a
program and allows their space in memory to be used for other
purposes. The format of the ERASE statement is as follows:

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arravs and
not arrav elements. If a name appears in the 1list which 1is
not used 1in the program, an ILLEGAL PFUNCTION CALL error wilil
occur. The arrays deletad in an ERASE statement may be
dimensioned again, but the 0ld values are lost.

Example:

18 DIM A(5,5) etc.

60 ERASE A
79 DIM A(1l88)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of cuotation marks and
other delimiters., LINE INPUT worovides this facilitv. The
format of the LINE INPUT statement is as follows: '

LINE INPUT ["<prompt string>"l;:;<string variable name>

The nrompt string is a string literal that is printed on the
terminal before inout 1is accepted. A auestion mark is not
printed unless it is contained in the orommt string. A1l
input from the end of the vrompt string to the carriage return
igs assigned to the string wvariable. A LINE INPUT may be
escaped by typing Control/C. At that point, BASIC returns to
command level and orints OK. Execution may be resumed at the
LINE INPUT by tvping CONT. LINE INPUT destrovs the inout
buffer, so the command may not be edited by Control/A £for

3a51C 4.1

April, 1977

BASIC «.1

re—-execution.

c. SWAP. The SWAP statement allows the wvalues of two
variables to be exchanged. The format is as follows:

SWaP <variable,variable>

The wvalue of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables may
be elements cf arravys. If one or both of the variables are
non-array variables which have not had values assigned to
them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

18 INPUT FS,LS
20 SWAP F35,LS
30 PRINT FS,LS

RUON
?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF, As a debugging aid, two statements are
provided to trace the execution of program instructicns. When
the trace flag is turned on by the TRON statement, the number
of each line in the prodgram is printed as it is executed. The
numbers avwvear enclosed in square brackets ([]). The function
is disabled bv execution of the TROFF statement. Example:

TRCN exacuted in direct mode

0K printed by computer

19 PRINT 1:PRINT "&" typed bv programmer

248 sSTOP

RUN

(18] 1 line numbers and outout printed bv
A comoputer.,

[28]

BREAK IN 28
The NEW command will also turn off the trace flag.

e, IF...THEN...ELSE. Seg section 2-2.

f. DEFINT, DEFSNG, DEFDEL, DEFSTR. See section 2-1

g. CONSQLE, WIDTH. CONSOLE allows the consols terminal
to be switched from one I/0 gort to another. The format of

the gtatement is:

CONSQLE <I/0 vort number>,<switch reaistsr zztting>

Lad
|99

April, 1977

34

The <KI/0 ©port number> is the hardware port number of the low
order (status) port of the new I/0 board. This value must be
2 nuneric expression between @ and 255 inclusive. 1If it is
not in this range, an ILLEGAL FUNCTION CALL error will occur.
The <switch register setting> is also a value between § and
255 inclusive which svecifies the type of I/0 port (810, PIO,
4PTO0 etc) beinag selected. Aporopriate values of the <switch
register setting> may be found in Appendix B in the table of
sense switch settings or in the table below.

Table of values for <switch register setting>:

I1/0 Board Sense Switch
Setting

28I0 with 2 stop bits
2510 with 1 stov bit
StO0

ACR

4P1I0

PIC

HSR

non-standard terminal
ne terminal '

Neonn oo

T

WIDTH Statement

The WIDTH statement sets the width in <characters of the
printing terminal line. The format of the WIDTH statement is
as follows:

WIDTH <intsger expression>
Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, ¢r an ILLEGAL FUNCTION CALL error will occur.

h. Error Trameing. Extended and Disk Altair BASIC make
it possible for the user to write error detection and handling
routines which can attemot to recover from errors or ©provide
more complete exolanation of the cause of errors than the
simple error messadges. This facility has been added to Altair
BASIC through the use of the ON ERROR GOTO, RESUME and ERROR

BASIC 4.1

April, 1977

statements and with the ERR aﬁd ERL wariables.

1) Enabling Error Trapping. The ON ERROR GOTO statement
specifies the 1line of the Altair BASIC vrogram on which the
error handling subroutine starts. The format is as follows:

ON ERROR GOTO <line number>

The ON ERROR GOTO statement should be executed before the user
expects any errors to c¢ccur. Once an ON ERROR GOTO statement
has been executed, 21l errors detected will cause BASIC to
start execution of the swecified error handling routine, If
the <line number> specified in the ON ERROR GOTO statemant
does not exist, an UNDEFINED LINE error will occur.

Example:

1¢ ON ERROR GOTO 1098

2) Disabling the Error Routine. ON ERROR GOTO § disables
travping of errors so any subsequent error will cause BaASIC to
print an error messadge and stop program execution. If an
CN ERROR GOTC @ statement arpears in an error trapoing
subroutine, it will cause BASIC to stoo and wvrint the error
message which caused the trap. It is recommended that all
error trapring subroutines execute an ON ERROR GOTQO 8
subroutine if an error is encountered for which they have no
recovery acticn.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be printed
and sxecution will be terminated. Error trapping does
not trap errors within the error tram rvoutine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the wvariable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
cach of the errors and error messages.

Code Error
.‘J -
1 NEXT WITHOUT FOR
2 SYNTAX ERROR
BASIC 4.1 - 35

April, 1977

36

3 RETURN WITHOUT GOSUB
4 CUT OF DATA

5 ILLEGAL FUNCTION CALL
6 OVERFLOW

7 QUT OF MEMORY

8 UNDEFINED LINE

9 SUBSCRIPT OUT OF RANGE
13 REDIMENSIONED ARRAY

11 DIVISION BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 OUT OF STRING SPACE

15 STRING TOC LONG

16 STRING FORMULA TOQ COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION
19 NQ RESUME

20 MISSING OPERAND

21 RESUME WITHOUT EPROR

22 UNPRINTABLE ERROR

23 LINE BUFFER OVERFLCW

Disk Errors

54 FIELD OVERFLOW

51 INTERNAL ERROR

52 BAD FILE NUMBER

53 FILE NOT FOUND

54 BAD FILE MODE

55 FILE ALREADY QPEN

56 DISX NOT MOUNTED

57 DISK I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TC NON-DISX STRING
69 DISK ALREADY MOUNTED
61 DISK FULL

62 INPUT PAST END

63 BAD RECORD NUMBER

64 BAD FILE NAUNE

63 MODE-MISMATCH

66 DIRECT STATEMENT IN FILE
67 TCO MANY FILES

68 CUT OF RANDOM BLOQCKS

The ERL variable contains the line number of the line
where the error was detected, For instznce, if the error
occured in line 14¢8, ERL will be equal to 1460, I£ the
statement which caused the error was a direct meode statement,
ERL will be =sgual to 65535 decimal. To test 1if an error

BASIC 4,1

aprii, 1977

BASIC

April,

occurred in & direct statement; usa
IF 65535=ERL THEN ...

In all other cases, use
IF ERL=<line number> THEN...

If the line number is on the left of the eguation, it cannot
be renumbered by RENUM (see secticn 1-la).

4) Disk Error Values -~ The ERR function. The ERR
function returns the parameters of a DISK I/0 ERROR. ERR(%)
returns the number of the disk, ERR{l) returns the track
number (6-76) and ERR(2) returns the sector number (8-31).
ERR{3} and ERR(4) contain the low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded. -

NOTE

Weither ERL nor ERR may avpear to the left of the =
sign in a LET or assiganment statement.

5) The RESUME statement. The RESUME statement is used to
continue execution of the BASIC program after the arror
recovery procedure has been performed, The wuser has three
options., The user may RESUME execution at the statement that
caused the error, at the statament after the one that caused
the error or at some other line. To RESUME execnution at the
statement which caused the error, the user should use:

RESUME
or
RESUME 9

To RESUME execution at the statement immediatelv after the one
which caused the error, the user should use: :

RESUME NEXT

To RESUME execution at a line dfferent than the one where the
2rror occurred, use:

4.1

1977

38

RESUME <line number>
Where <line number> is not egqual to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates. -

168 ON ERROR GOTO 544

209 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
219 Z=X/¥Y '

22¢ PRINT "QUOTIENT IS";Z

238 GOTO 20@

589 IF ERR=11 AND ERL=216 THEN 520

519 ON ERRCOR GOTO @

529 PRINT “YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 240

7} The ERRCR statement. In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to allow
the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine as
described above. The format of the ERROR statement is:

ERRQOR <integer expression>

When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more error
messages mav be added to Altair BASIC, user-defined error
codes should be assigned the highest available numbers to
assure future compatibility. If the <numeric expression> used
in an ERROR statement is less than zeroc or areater than 255
decimal, an ILLEGAL FUNCTION CALL error will occur., Of
course, the ERROR statement may also be used to force SYNTAX

. or other standard Altair BASIC errors. Use of an ERROR

statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR message
to be printed out.

5-2. Extended Overators.

Two operators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. 1Integer division, denocted by \
{backslash), forces its arguments to integer form and
truncates the guotisnt to an integer. More precisely:

A\B= FIX(INT{(A)/INT(B))

BASIC 4.1

-April, 1977

Its precedence is just after multiplication and floating point
divison. Integer division is aonrox1mately elght times as
fast as standard flocating point division.

b. Modulus Arithmetic - the MOD operator. A MOD B gives
the 'remainder® as A is divided by B. More preciselv:

A MOD B=INT(A)- (INT(B)* (a\B))
If B=§, a DIVISION BY ZERC error cccurs. The ovrecedence of

MOD is just below that of integer division.

5-3, Extended Funcikions.

a. Intrinsic Functions. Extended and Digk Altair BASIC
provide several intrinsic functiecns which are not available in
the other versicns. For a list of these functions and a
description of their use, see section 6-3.°

b. The DEFUSR statement. Up to £fen assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR([<digit @ through 9>]=<integer exvression>
Example;

DEFUSR1=41G0000

DEFUSR2=310896

DEFUSRY=ADR

The <integer expression> is the starting addrese of the USR

~routine specified. When the USR subroutine is antered, the A

register contains the tyve of the argument which was given to
the USR function. This is also the length of the descriptor
for that argument tvpe: ,

Value in A Meaning

2 Two bvte signed two's complement integer.

3 String.

4 Single precision four byte floating woint number.
8 Bouble vprecision fleoating pecint number.

When the USR subroutine.is entered, the [H,L] reaister mpair
contains a pointer to the floating wvoint accumulator - (FAC).

‘The [H,L] registers contain the address of FAC-3.

If the value in the FAC is 3 single precision floating point
number, it is stored as follows:

FAC=3: Lowest 8 bits of mantissa.
FAC-2: Middle 8 bits of mantissa.

FAC-1l: Highest 7 bits of mantissa with hidden (implied)
leading one. Bit 7 is the sign of the number (¢
positive, 1 negative).

FAC: Exvonent excess 288 octal, If the contents of FAC is 249,
the exponent is #. If contents of FAC 1is 9,the number is
ZRro. o

If the argument is double precision floating voint, the FAC-7
to FAC~4 contain four more bytes of mantissa, low order byte
in FAC~7, etc., 1If the argument is an integer, FAC-3 contains
the low order byte and FAC-2 contains the high order bvyte of
the sianed two's complement value. If the argqument is =a
string, [D,E] vpoints to a string descriptor of the arqument,
whose form is:

Byte Use
g Length of string §-255 decimal.
1-2 Sixteen bit address pointer to first bvte of

strings text in memory (Caution - mavy point into
program text if argument is a string literal).

The string returned by a call to USR with 2 string argument is
the string the user's routine sets up in the descrintor.
Modifying [D,E] does not affect the returned string. For
example, C$=USR(AS) results in C$ and A$ being set to the same
string. The statement C$=USR(AS+" ")} avoids modifying AS
since the user's routine modifies the descriptor of the
temporary string AS+" *, -

A string returned by the user's routine should lie
withing %the storage area occupied by the argument string.
Increasing the length of a string in a wuser's routine is
guaranteed to cause trouble.

Normally, the value returned by a USR function will be
the same -tyve ({(integer, string, single or double precision
floating rvoint) as the argument which was vassed to it,.
However, calling the MAKINT routine whose address is stored in
location 6 will return the integer in {H,L] as the wvalue of
the function, forcing the value returned by the function to be
integer. Execute the following sequence to return from the
function:

PUSH H ;SAVE VALUE TO BE RETURNED
LHLD] ;GET ADDRESS OF MAKINT ROUTINE
XTHL $ SAVE RETURN ON STACK &
;GET BACK [#H,L]
RET r RETURN
pr :

The argument of the function may be forced to an integer, no
matter what its tywe by calling the FPRCINT rcutine whose

BASIC 4,1

April, 1877

address is located in location 4 to get the integer value of
the argument in [H,L]:

LXI H,SUB] ;GET ADDRESS OF SUBROQUTINE
;s CONTINUATION

PUSH H 1PLACE ON STACK

LELD 4 ;GET ADDRESS OF FRCINT

PCHL ;CALL FRCINT

SUBl: ceaae

5-4., The EDIT Command.

The EDIT command allcws modifications and additions to be
made to existing oprogram lines without having to retype the
entire line each time. Cocmmands typed in the EDIT mode are,
as a rule, not echoed. That is, they usually do not appear on
the terminal screen or printout as they are typed. Mcst
comnands may be preceded by an optional numeric repetition
factor which may be used to rzveat the command & number of
times. This repetition factor should be in the range @ to 255
(9 is eguivalent to 1). If the repetition factor is omitted,
it is assumed to be 1. 1In the following examples, a lower
case “n" before the command stands for the revetition factor.
In the following description of the EDIT commands, the
“cursor" refers to a pointer which is opositioned at a
character in the line being edited. -

To EDIT a line, tyve EDIT followad by the number of the
line and hit the carriage return. The line number of the line
being EDITed will be printed followed by a space. The cursor
will now Dbe vositioned to the left of the first character in
the line.

" NOTE

The best way of getting the "feel" of the EDIT command
is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered, the
computer prints a bell (control/G) and the command is ianored.

In the following examples, the lines labelled “computer
prints"” show the apovearance of the line after each command.

a. Moving the Cursor. Typing a space moves the cursor
to the right anéd «ceuses the character npassed over to be
printed. A number preceding the space (n<space>) will cause

BASIC 4.1 41

April, 1977

42

the cursor to pass over and print out n characters. Typing a
Rubout causes the immediately previous character to be printed
effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

Character insertion is stopped by typing Escape
{or Altmode on some terminals). Control/C will not
interrupt the EDIT command while it is in Insert mode,
hut will be inserted into the edited line. Therefore,
Control/C should not be used in the EDIT command.

It is possible using EDIT to create a line which,
when listed with its line number, is longer than 72
characters. Punched paper tapes containing such lines
will not read ©proverly. However, such lines may be
CsSAVEd and CLOADed without error.

I Inserts new characters into the line being edited.
Each character typed after the I is inserted at the
current cursor vposition and printed on the terminal.
Typing Escape {or Altmode on some terminals) stops
character insertion. If an attempt is made to insert
a character that will make the line 1longer than 255
characters, a Control/G (bell) is sent to the terminsal
and the character is not vrinted.

A backarrow {or Rubout) typed during an insert command
{or-) will delete the <character to the left of the cursor.
Characters up to the beginning of the line wmav be deleted in

. this manner, and a backarrow will be echoed for each character

deleted. However, if there are no characters to the left of
the cursor, a bell 1is echoed instead of a backarrow., If a
carriage return is typed during an insert command, it ig ag if
an escape and then carriage return were typed. That is, all
characters to the right of the cursor will be printed and the
FDITed line will replace the original line.

X ¥ is similar to I, except that all characters to

the right of the cursor are printed, and the cursor
moves to the end of the line. At this point, it will
auteomatically enter the insert mode (see I command).
X is most useful whén new statements are to be added
to the end of an existing line. For example:

BASIC 4.1

April, 1977

User tyves EDIT 54 (carriage return)

Computer wprints 56

User types X

Computer prints 59 X=X+1

User types :¥=Y+1 (CR)
Computer prints 58 X=X+1:Y=¥+1

In the above example, the original line #5¢ was:
5 X=X+1 |
The new line #58 now reads:

50 X=X+1l:Y=Y+1]

H is the same as X, except that all characters to

the right of the cursor are deleted (they will not be
printed). The insert mode (see I command) will then
automaticallv be entered. H is most useful when the
last statements on a line are to be replaced with new
ones.,

Deleting Characters

nb deletes n characters to the right of the cursor.
If n is ommitted, it defaults to 1., If there are less
than n characters to the right of the cursor,
characters will be deleted only to the end of . the
line, The cursor 1is positioned to the right of the
last character deleted. The characters delated are
enclosed in backslashes (\). For example:

User types 20 X=¥X+1:REM JUST INCREMENT X
User types EDIT 28 (carriage return)
Computer prints 26

User types 6D (carriage return)

Computer prints 20 \X=X+1:\REM JUST INCREMENT X

The new line 28 will no longer c¢ontain the characters which
are enclosed by tHe backslashes. '

BASIC 4.1

April, 1877

d-

Searching,

The nSy command searches for the nth occurrence of
the character v in the line, N defaults to 1. The
search skips over the first character to the right of
the cursor and bhegins with the second character to the
tight of the cursor. 311 <characters passed over
during the search are vrinted. If the character is
not found, the cursor will be at the end of the line.
If it is found, the cursor will stop to the right of
the character and all of the characters to its left

43

will have been printed. For example:

User types . 5@ REM INCREMENT X

User tyves EDIT 50
Computer prints 54 -
User itypes 28E
Computer prints 5@ REM INCR
K nky is eguivalent to S except that all of the char-

acters passed over during the search are deleted., The
deleted characters are enclosed in backslashes. For

example:
User types 19 TEST LINE
Iser types EDIT 16
Computer prints 1@
User tyves KL
Computer prints 14 \TEST \

e. Text Replacement.

C A character in 2 line may be changed by the use of
the command Cy which c¢hanges the character to the
right of the cursor to the character y. Y is printed
on the terminal and the «cursor is advanced one
position. nCy may be used to change n characters in a
line as they are typed in £from the terminzl. (See
example below.) TIf an attempt 1is made to change a
character which does not exist, the change mode will
be exited. Example:

User types - 19 FOR I=1 TO 148@
User tyves - EDIT 19

Computer orints 19

User types 251

Computer vrints i1g FOR I=1 TC :
User types 3C256
Computer prints 13 FCR I=1 TO 2546

. £, Ending and Restarting

Carriage Return Terminates editing and orints the re-
mainder of the line. The edited 1line revlaces the
original line. '

£ E is the same as a carriage return except the
remainder of the line is not printed.

2 Q restores the original line and causes BASIC to
return to command level., Changes do nof take effect
until an E or carriage return is tyved, so Q allows
the user to restore the original 1line without any

changes which may have been made.

L L causes the remainder of the line to be printed,
and then prints the line number and restarts editing
at the beginning of the 1line, The cursor will be
positioned to the left of the first character 1in the
line. L allows menitoring the effect of changes on a
line. Example:

User types 56 REM INCREMENT X

User tvypes EDIT 5@
Computer wrints 59
User tyvpes 28M
Comouter prints 54 REM INCRE
User types L
Computer orints 58 REM INCREMENT X
58
A A causes the original line to be rastored

and editing to be restarted at the beginning of *%he
line. For example:

User types 19 TEST LINE
User types EDIT 14

Computer prints 13

User tvpes 14D

Computer prints 1¢ \TEST LINE\
User tvpes A
Computer prints 14 \TEST LINE\

: 18

Suppose in the above exampnle, that the user made a
mistake when he dzleted TEST LINE. As a result of the
A command, the original line 18 is reentered and is
ready for further editing.

IMPORTANT :
Whenever a SYNTAX ERROR is discovered during the execution of
‘a source nrogram , BASIC will automatically beqgin EDRITina the
line that caused the error as if an EDIT command had been
typed. Example:

13 APPLE

RUN

SYNTAX ERROR IN 1@
19

Complete editing of a 1line causes the 1line edited to be
reinserted. Reinserting a line causes 21l variable values to
be deleted. Tc vpreserve those values for examination, the
EDIT command mode may be exited with the § command after the

BASIC 4.1 45

ApTil

1977

g &2

46

line number is printed. 1If this is done, BASIC will return to
command level and all variable values will be preserved.

The features of the EDIT command may be used on the line
currently being typed. To do this, type Control/A instead of
Carriage Return. The computer will respond with a carriage
return, an exclamation woint (!} and a space. The cursor will
be positioned at the first character of the 1line, At this
point, any of the EDIT subcommands except Control/3A may be
used to correct the line. Example:

User types 19 IF X GOTO #"/A
Computer prints !

User tynes S% 2Cl2
Computer prints ! 14 IF X GOTO 12

The current line number may be designated by a period ({.)
in any command reguiring a line number. Examples:

User tyves i@ FOR I= 1 TO 14
User types EDIT .
Computer prints 18

5-5. PRINT USING Statement.

The PRINT USING statement can be emploved 1in situations
where a swvecific output format is desired. This situation
might be encountered in such aoplications as printing payroll
checks or accounting reports. The general format for the
PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string variable , string expression or a
string counstant which 1is &2 precise copy of the line to be
printed. All of the characters in the string will be ©orinted
just as they appear with the exception of the formatting
characters. The <value list> is a list of the items to be
vrinted., The string will be reveatedly scanned until: 1) the
string ends and there are no values in the value list or, 2) a

field 1is scanned in the string, but the wvalue 1list is

exhausted. The string 1is constructed according to the
following rules:

BASIC 4.1

April, 1977

47

a. String Fields.

! specifies a single character string field. The string itgelf

is specified in the value list.

\n spaces\ specifies a string field consisting of 2+n char-
acters. Backslashes with no 'spaces between thenm
indicates a field 2 characters wide, one space between
them indicates a field 3 characters wide, etc.

In both cases, if the string has more charzcters than the
field width, the extra characters will bhe ignored, TIf the
string has fewer characters than the field width, extra svaces
will be printed to f£ill out the entire field. Trving to vrint
a number in a string field will cause a TYPE MISMATCH error to
occur, Example:

16 A$="ABCDE":BS="FGH"

20 PRINT USING “1";AS$;8$

3¢ PRINT USING "\ \";B$;A$
RUN

{the above prints out)

AF
FGH ABCD

Note that where the "!" was used only the first letter of each
string was printed. Where the backslashes enclosed &two
spaces, four letters from each string were orinted (an extra
space was vprinted for B$ which has only three characters).
The extra characters in the first case and for AS in the
second case were ignored.

b, HNumeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost anvy
application. Strings for formatting numeric fields are
constructed from the following characters:

Numeric fields are specified by the # sign, each of
which represents a digit position. These digit
rositions are always filled. The numeric field is
right justified; that is, if the number oprinted 1is
too small to fill all of the digit vpositions
specified, leading spaces are printed as necessary to
£ill the entire field.

The decimal voint mayv be specified in any vosition

in the field. Rounding is performed as necessary. If
the field format svecifies that a digit is to vrecede
the decimal point, the digit is always printed f{as @
if necessarvy).

BASIC 4.1

April, 1977

The following program will help illustrate these rules:

* %

$s

48

1¢ INPUT AS,A
28 PRINT USING AS;A
3¢ GOTO 19
RUN
? ##,12
12
? ###,12
12
? #dR##,12
12
3% .4%,12
12.96
? F#%.,12
12.
? ¥.vd#,.02
2.620
TEE.#,2.36
2.4
PHE#,-12
-12
?F.EF,-.12
-.12
24%4#,-12
-12

The + sign may be used at either the beginning or

end of the numeric field. If the number is vositive,
the + sign 1is printed at the specified end ¢f the
number. If the number is negative, a - sign 1is
printed at the specified end of the number.

The - sign, when used to thz2 right of the numeric
field designation, forces the minus sign to be printed
to the right of the number if it is negative. If the
number is vositive, a space is printed.

The ** placed at the beginning ¢f a numeric field
designation causes anv unused svaces in the 1leading
portion of the number printed out to be filled with
agsterisks., The ** also svecifies positions for 2 more
digits., (Termed "asterisk £ill")

When the $S is used at the beginning of a numeric
field designation, a $ sign is orinted in the space
immediately preceding the number printad. WNote that
$3 also specifies positions for two more digits, but
that the § itself takes up one of these snaces,.
Exponential format cannot be usad with leading §
signs.

BASIC 4.1

April, 1977

**s

-

The **5 used at the beginning of a numeric field
designation causes both of the above (** and $$} to be
performed on the number being printed out. All of the
vrevious conditions apply, except that **$ allows for
3 additional digit wpositions, one of which is the §
sign. -

A comma appearing to the left of the decimal point

in a numeric field designation causes a comma to be
vrinted to the left of every third digit to the left
of the decimal point in the number being nrinted. The
comma also specifies another digit position. A comma
to the right of the decimal voint in a numeric field
designation is considered a part of the string itself
and is treated as a printing character.

(444} on some terminals) Exponential Format.

If exponential format is desired in the printout, the
numeric field designation should be followed by ~7°7
{allows space for E+X¥). any decimal point
arrangement is allowed, The significant digits are
left justified and the exponent is adjusted. Unless a
leading + or a trailing + or - is used, one position
to the left of the decimal point is used to orint a
space or minus sion. Examples:

PRINT USING “"[247°"71"; 13,17,-8

[1E+611[2E+01]([-8E+8d]

OK

PRINT USING " [.2##43#4777"=],; 12345,-123454
{.12345@GE+05][.1234568+06-]

OK

PRINT USING “[+.%%£""""]"; 123,-126
{+.12E+83] [-.13E+03]

OK

If the number to be printed out is larger than the
specified numeric field, a % character 1is oprinted
followed by the number itself in standard Altair BASIC
format. (The entire number is printed.) If rounding a
number causes it to exceed the specified field, the %
character is nrinted followed by the rounded number.
If, for examwle, A=,999, then

PRINT USING ".%#",A
prints
%$1.89.

If the number of Adigits swecified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur.

The following program will help illustrate the preceding
rules.

Program: 18 INPUT AS$,A
20 PRINT USING AS;A
39 GOTO 19
RUN

The computer will start by typing a ?. The numeric field
designator and value 1list are entered and the output is
disvlayed as follows:

? +%,9
+9
7 +%,19
%+10
? ##;-2
-2
? +,-2
-2
? #,-2
3-2
? +.n%%,.02
+.828
? #4%+.4,100
190.8
? ¥E+,2
2+
? THIS IS A NUMBER %##,2
THIS IS A NUMBER 2
? BEFORE #+ AFTER,12.
BEFORE 12 AFTER
? ##+#%#,44444
%44444
? *Egd,l
Rk K]
7 kxdE,12
*k17
? **34,123
*123
? OkkES, 1234
1234
? *xp g, 12345
212345
? k%1
*1
T k% 22
22
?ORF #4,12
12.04
D ORREEER,
kkdkkx]

BASIC 4,1

spril, 1977

(note: not floating $)

(note: floating $)

1E+81

T OREELELE44TT77,2.45678

2456 ,780E-33

? OEL4#27777,123
G.1238+33

? O%,#37777 ,-123
~-.12E+33

? O REFRd,RFF .97 ,1234567.89

1,234,570.9

? SHsEE.EH,12.34
§ 12.34
? $SEESY. 44,12.56
$12.56
? SS.##,1.23
$1.23
? $$.44,12.34
$512.34
? $S#%4,0.23
$2
? SSE434.44,0
 $0.40
? RASEEE . 43,1.23
x%S1 23
? **3.44,1.23
*$1.23
? **$324,1
****Sl

Typing Control/C will stop the program.

5=-6,

Disk File Operations.

As many as sixteen flopev disks may be

single ALTAIR disk controller.

the physical disk numbers ¢ through 15.

ehcould drive at zero,

JASIT 4.1

April, 1977

address the

connected

41}

&

These disks have been assigned
Isers with one
and users with two drives

drive

32

should qddress them at zero and one, etc.

In the following descrivticons, <disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. 1If the <disk number> is omitted
from a statement other than MOUNT or UNLOAD, the <disk number>
defaults to 4. If the <disk number> is omitted from a MQUNT
or UNLOAD statement, disks @ through the highest disk number
specified at initialization are affected.

a. Opening, Closing and WNaming Files. To initialize
disks for reading and writing, the the MOUNT command is issued
as follows:

MOUNT [<disk number>[,<disk number>...]!

Example:
MOUNT @

mounts the disk on drive zero, and
MOUNT 4,1 |

mounts the disks on drives zero and one. If there is already
a disk MOUKTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before removing
a disk which has been used for reading and writing by Disk
Altair BASIC, the user should give an UNLOAD command:

UNLOAD [<disk number>{,<disk number>...]]

UNLOAD closes all the files open on a disk, and marks the disk
as not mounted. Before any further I/0 is done on an UNLOADed
disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or anv other disk command mav be used as
a program statement.

All data and program files on the disk have an associated file
name. This name 1is the result of evaluating a string
expression and must be one to eight characters in length. The
first <character of the file name cannot be a null . (9} bvte or
a byte of 255 decimal. An attempt to use a null £file nane
(zero characters in length} , a file name over 8 characters in
length or containing a @ or 255 in the first character

BASIC 4.1

April, 1977

positioh will cause a BAD FILE NAME error. Any other sequence
of one to eight characters is accentable.

Examples of valid file names:

ABC

abc (Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE#%#22

NOTE

Commands that require a file name will use <file name>
in the appropriate position. Remember that a <file
name> can be any string expression as long as the
resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>
Example:

FILES {(prints directory of files on disk 4)

STRTRK PIP CURFIT CISASM
Execution of the FILES command may be interrupted by tyning
Control/C. A more complete listing of the information stored

in a vparticular file may be obtazined by running the PIP
ucility vrogram (see Appendix I).

c. SAVEing and LOADIing proqgrams. Once a Dorogram has
been written, 1t is often desirable to save it on a disk for
use at a lzater time. This is accomplished by issuing a SAVE
command :

SAVE <file name>[,<disk number>{,3]]
Example:

SAVE “TEST", @

3ASIC 4.1 - 53

April, 1977

54

or

SAVE "TEST"
would save the program TEST on disk zero. Whenever a program
is SAVEd, any existing copy of the program vpreviously SAVEQd
will be deleted, and the disk space used by the previous

program is made available. See section 5-6d for a discussion
of saving with the *A* option.

The LOAD statement reads a file from disk and loads it
into memory. The svyntax of the LOAD statement is:

10AD <file name>{,<disk number>[,R}]
Correspondingly:

LOAD “TEST",0 or LOAD “TEST"

loads the oprogram TEST from disk zero. If the file does not
exigst, a FILE NOT FOUND error will occur.

LOAD “TEST",0,R
CK

LOADs _the program TEST from disk zero and runs it. The LOAD
command with the "R" option may be used to chain or segment

-programs into small pieces if the whole program is too large

to fit in the computer's memory. All variables and oprogram
lines are deleted by LOAD, Dbut all data files are kept
OPEN{see below) 1if the "“R" option 1is used. Therefore,
information mav be passed between programs through the use of
disk data files. If the “R" optiocn is not used, all files are
automatically CLCSEd@ (see below) by a LOAD.

Example:

NEW
13 PRINT “FOOQOL":LOAD "FOO2",84,R
SAVE "FOO1",8

CK ,
14 PRINT "FOC2":LOAD "FOO1",4,R
SAVE "FQO02",9

OK
RUN
FOGC2
FOO1
FOQ2

BASIC 4.1

April, 1997

FOO1
T.esetc.

(Contrel/C may be used to stov exascution at this point)

In this example, program FOG2 is RUN. FCC2 nrwrints the
message “"FOO2" and then calls the vroagram FOCl on disk. FGCO1
prints "FOOl" and calls the program FOO2 which prints *“FO02“
and so on indefinitely.

RUN may alsc be used with a file name to load and run a
program. The format of the command is as follows:

RUN<Kfile nzame>[,<disk number>{,R]]

All files are closed unless ,R is specified after the disk
number.,

d. ©SAVEing and LQADing Program Files in ASCITI., Oftsn it
is desirable to save a program in a form that allows the
program text to be read as data by another program, such as a
text editor or resequencing prodgran. Unless otherwize
specified, Altair BASIC saves its oprogramg in a compressed
binary format which takes a minimum of disk space and lcads
very quickly. To save a vrogram in ASCII, svecifv the "a*
option on the SAVE command: -

SAVE "TEST",¢,A
0K
LOAD “TEST",2

0K

Informaticn in the file tells the LOAD command the format
in which the file is to be loaded. The first character of an
ASCII file is never 255, and a binary vprogram £file alwavs
starts with 255 (377 octal). Remember, loading an ASCII file
is much slower thazn loading a binarv file.

e. The MERGE Comnmand. Sometimes it is wverv useful to
put parts of two programs together to form a new wrogram
combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE cocmmand has
been executed, 3BASIC returns to command level. Therefore, it
is more 1likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE

BASIC 4,1 55

Appil, 1977

56

statement is as follows:
MERGE <file name>[,<disk number>]
Example:

MERGE "PRINTSUB",1l
CK

The <file name> specified is merged intc the vprogram already
in memory. The <file name> must specify an ASCII format saved
program or a BAD FILE MODE error will occur, If there are
lines in the program on disk which have the same line numbers
as lines in the program in memory, the lines from the file on
disk will revlace the corresponding program lines in memory.
It is as if the program lines of the file on disk were typed
on the user terminal,

f. Deleting Disk Files. The XILL statement deletes a
file from disk and returns disk space used by the file to free
disk space. The format of the KILL statement is as follows:

KILL <file name>[,<disk number>]}

If the file does not exist, a FILE NOT FQUND error will occur.
If a KILL statement is given for a f£ile that is currently OPPN
{see below), a FILE ALREADY OPEW error occurs, .

9. Renaming Files - +the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <o0ld file name> AS <new file name>[,<disk number>]
Example:
NAME "OLDFILE" AS “NEWFILE"®

The <0ld file name> must exist, or a FILE NOT FOUND error will
occur. A file with the same name as <new file name> must not
exist or a FILE ALREADY EXISTS error will occur. After the
NAME statement is executed, the file exists on the same disk
in the same area of disk space. 0Onlyv the name is changed.

h, OPENing Data Files. Refore a orogram can read or

write data to a disk file, it must first QPEN the file on the

approvriate disk in one of several modes. The general form of
the COPEN statement is:

OPEN <mode>,[4]<file number>,<file named>[,<disk number>]

3a5IC 4.1

April, 1977

<mode> 1is a string expression whose first character is one of
the following:

0 Specifies sequential output mode
I ' Spvecifies sequential input mode
R Specifies random Input/Output mode

A sequential file is a stream of characters that 1is read or
written in order much 1like INPUT and PRINT statements read
from and write to the terminal. Random files are divided into
grouns of 128 characters callied records. The nth record of a
file may be read or written at any time, Random files have
other attributes that will be discussed later in more detail.

<file number> 1is an integer expression between one and
fifteen. The number iz associated with the file being OPENed
and is used to refer to the file in later I/0 operations.

Examples:

OPEN "OQ",2,"CUTPUT",8

QPEN "“I",1l,*INPUT"
The above two statements cven the file QUTPUT for sequential
output and the file INPUT for seguential input on disk zero.
The following statement cowvens the file whose name is in the
string F$ in mode M$ as file number N on disk D.

OPEN M§,N,FS,D

i. Seguential ASCII file I/0 Secquential input and output
files are the simplest form of disk input and output since
they involve the use of the INPUT and PRINT staztements with a
file that hss been previously OPENed.

1) INPUT is used to read datz from a disk file as
follows:

INPUT #<file number>,<variable list>

where <file number> represents the number of the file that was
OPENed for input and <variable 1list> is a 1list of the
variables to be read, as in a2 normal INPUT statement. When
data is read from a sequential input file wusing an INPUT
statement, no gquestion mark (?) is orinted on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the terminal.

ASIC 4.1 ' 57

ipril, 1977

58

When reading numeric values, leading spaces, carriage returns
and 1line feeds are ignored. When a non-space, non-carriage
return, non-~line-feed character is found, it is assumed to be
part of a number in Altair BASIC format. The number
terminates on a space, a carriage return, line-feed or a
COmma. g

Leading blanks, carriage returns and line-feeds are also
ignored when scanning for string items. When a character
which is not a leading blank, carriage return or line-feed 1is
found, it is assumed to be the start of a string item.If this
first character is a quotation mark ("), the item is taken as
being a guoted string, and all characters between the first
guctation mark (") and a matching guotation mark are returned
as characters 1in the string value. This means that a quotad
string in a file may <contain any characters except double
guote. If the £irst character of a string item is not a
guotation mark, then it is assumad to be an unguoted string
constant. The string returned will terminate on a comma,
carriage return or line feed. The string is immediately
terminated after 255 characters have been read.

_ For both numeric and string items, if end of file ({EOF)
is reached when the item 1is being INPUT, the item 1is
terminated regardless of whether or not a closing aquote was
seen.

Sequentiasl I/0 commands destroy the input buffer so .they
may not be edited by Control/a for ra-execution.

Example of sequential I/0 {(numeric items)}:

598 OPEN "0O*,1,"FILE",0
519 PRINT #1,X,Y,%

520 CLOSE 1

539 OPEN "I",1,"FILE",d
549 INPUT #1*,X,Y,2

Mote that CLOSE is used so that a file which has Just been
written may be read. When FILE is re-CPENed, the data pointer
for that file is set back to the beginning of the file so that
the first INPUT on the file will read data from the start of

‘the file,

2) PRINT and PRINT USING statements are used to write
data into a sequential output file. Their formats are as
follows:

PRINT 2#<file number>,<expression list>

BASIC 2,1

April, 1977

ot

PRINT 4<fiie number>, <line feed>
USTING <string expression>;<expression list>

Example of sequential I/0 (quoted string items):

509 OpPEN "“0Q",1,"FILE"®

516 PRINT #1 CHR$(34) XS ;CHRS (34} ;

515 PRINT #1,CHR$(34);Y$;CHRS (34); CHR$(34),Z$ CHRS (34)
520 CLOSE 1

53¢ OPEN "I",1,"FILE",G

546 INPUT #1,XS,Y$,Z$

In this example, the strings being output (XS, ¥$, 28) are
surrounded with doubkle aguoctes throuah the ugse of the CHRS
function to generate the ASCII value for a double guote. This
tachnique must be used if a string which is being outnut to a
sequential data file contains commas, carriage returns,
line-feeds or 1leading blanks that are significant. When
leading blanks are not significant and there are no commas,
carriage returns or line~feeds in the strings te be ocutput, it
is sufficient to insert commas between the strings being
output as in the fellowing example:

5@8 OPEN “O“flr“FILE“
51@ PRINT #1,XS5;",";¥S:",":3$
528 CLOSE 1

536 OPEN "*I",1,'FILE",OQ

540 INPUT #1,XS,YS$,2$

3) CLOSE. The format of the CLOSE statement 1s as
follows:

CLOSE ([<file number>!{,<file number>...}]

CLCSE 1is used t¢ finish I/0 to a varticular Altair BASIC data
file. After CLOSE has been executed for a file, the file may.
be reOPENed for input or output on the same or different <file
number>. A CLOSE for a secuential outwnut file writes the
final buffer cf output. A CLOSE to anv CPEN file finishes the
connection between the <file number> and the <£file name> given
in the OPEN for that file. It allews the <file number> to be
used again in another OPEN statement,

A CLOSE with no argument CLOSEs all OPEN files.

BASIC 4.1

oy

April, 1877

60

NOTE

A FILE can be OPENed for sequential input or random
access on more than one <(file number> at a time but
may be OPEN for output on only one <file number> at a
time.

END and NEW always CLOSE all disk files automatically. STOP
does not CLOSE disk files.

4) LINE INPUT. It is often desirable to read &a whole
line of a file into a string without using guotes, commas or
other characters as delimiters. This is especially true if
certain fields of =each 1line are being used to contain data
items, or if a BASIC program saved in ASCII mode is being read
as data by another orogram. The facility provided to perform
this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variabls>

A LINE INPUT from a data file will return all characters up to
a carriage return in <string variable>. LINE INPUT then skips
over the following carriage return/line-feed segquence so that
a subsequent LINE INPUT from the file will return the next
line.

5} End of File (EOQOF) Detection, When reading a
sequential data file with INPUT statements, it is usually
desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the EQF
function:

X=EOF (<file number>)

EQOF returns TRUE {-1) when there is no more data in the file
and FALSE (#) otherwise. If an attempt is made to INPUT rast
the end of a data file, an INPUT PAST END error will occur.

Exanmple:

148 OPEN "I",1,"DATA",D
119 I=9 ‘
129 IF EOF{l1) THEN 1l&d
1349 INPUT #1,A(I)

129 I=I+1

158 GOTO 129

160 eeenee

‘In this example, numeric data from the sequential innut file

DATA is read into the array A. When end of £ils is detected,
the IF statement at line 120 branches to line 168, and the
variable I "points" one beyond the last element of A that was
INPUT from the file.

BASIC 4.1

April, 1877

The following is a program that will calculate the number
of lines in a BASIC program file that has been SAVE4 in ASCII
node:

18 INPUT "WHAT IS THE NAME OF THE PROGRAM";PS
20 OPEN °“I",1,PS,4

39 I=8

4 IF EOF(l) THEN 70

5@ I=I+1:LINE INPUT #1,LS

6@ GOTO 44

78 PRINT "PROGRAM ":PS;" IS “;I:;" LINES LONG"
8¢ END

This example uses the LINE INPUT statement to read each 1line
¢f the program into the “dummy" string LS which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Swpace (DSKF). It is
sometimes necessarv to determine the amount of free disk svace
remaining on a varticular disk befors writing a file. The
DSKF function provides the user with the number of free groups
left on a given disk after the disk has been MOUNTed. A groun
is the fundamental wunit of f£file allocation. That is, files
are always allocated in groups of eight sectors at a time.
Bach sector contains 128 characters (bvtes). Therefore, the
minimum size for a file is 1024 bytes.

Syntax for the DSKXF function:
DSKF (<disk number>)
Example:

PRINT DSKF (@)
208

The above example shows that there are 200*%1024=204840
characterg (bvtes) that can still be stored on disk zero.

j. RANDOM FILE I/O0. Previously, we have discussed how
data may be PRINTed or INPUT from seguential data files.
However, it is often desirable to accegs data in a random
fashion, for instance, to retrieve information on a particular
part numper or customer from a large data base stored on a
floppy disk. If secuential files were used, the wheole file
‘would have to be scanned from the start until the marticular
item was found. Random files remove this restriction and
allow a program to access any record from the first to the
last in a swveedy fashion. Also, random files transfer data
from variables to the disk ouput records and vice versa in &
much faster, more efficient fashion than sequential files.

s
-

BASIC 4.1

April, 1877

62

Random file I/0 is more complex than sequential I/0, and it is
recommended that beginners try segquential I/0 first.

1) OPENing a FILE for Random I/0. Random I/Q files “are
OPENed just like sequential files.

OPEN “R",1,"“RANDOM",0

When a file 1is OPENed for random I/0, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, rvandom
files must ke closed when 1/0 overations are finished. To
CLOSE a random file, use the CLOSE c¢ommand as described
previously. '

CLOSE <file number>{,<file number>...]}

3) Reading and writing data to a random file - GET and
PUT. Each random file has associated with 1t a "random
buffer" of 128 bvtes. When a GET or PUT operation is

pverformed, data is transferred directly from the buffer to the
data file or from the data file to the bhuffer.
The syntax of GET and PUT is as follows:

PUT [#]<file number>[,<record number>]
GET [#]<£file number>{,<record number>}

If <record number> is omitted from a GET cor PUT statement, the
record number that is one higher than the previcus GET or PUT
is read into the random buffer. Initially a GET or PUT
without a record number will read or write the first record.
The largest possible record number is 2846, If an attempt is
made to GET a record which has never been PUT, all zeroes are
r2ad into the record, and ne error occurs.

4) LOC and LQOF. LOC 1is wused to determine what the
current record number is for random files. In other words, it
returns the record number that will be used if a GET or PUT is
executed with the <record number> parameter omitted.

LOC(<file number>)}

PRINT LOC{1l)
15 '

LOC is also valid for sequential files, and gives the number
of sectors (128 Dbyte blocks) read or written since the QPEN
statement was executed.

LOF is used to determine the last record number written to a
random file: :

LOF{<file number>)

PRINT LOF(2)
209 ’

An attempt to use LOF on a seguential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is , when
the value LOF returns is divided by 8, the remainder is alwavys
5. Therefore,the values returned bv LOF are 5, 13, 21, 29
etc., This is due to the wav random files are allocated.

NOTE

It is important to note that the value returned by LOF
may be a record that has never been written in by a
user program., This 1s because of the way random files
are pre-—-extended.

5} Moving Data In and Out of the Random Buffer. So far
we have described technigues for writing (PUT) and reading
(GET) data from a file into its associated random buffer. Now
we will describe how data from string variables is moved to
and from the random buffer itself. This 1is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The PIELD statement assgociates some or all of
a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the buffer
will automatically have their contents read or written. The

8ASIC 4.1 63

April, 1277

64

format of the FIELD statement is:
FIELD [#] <file number>,<field size> AS <string variable>[...]

<file number> 1is used to specify the file number of the file
whose random buffer is being referenced. If the file is not a
random file, a BAD FILE MODE error will occur. <field size>
sets the length of the string in the random buffer. {string
variable> 1is the string variable which is associated with a
certain number of characters (bytes) in the buffer. Multiple
fields may be associated with string variables in a given
FIELD statement. Each successive string variable is assigned
a successive field in the random buffer. Examole:

FIELD 18 AS AS§, 20 AS B3, 30 AS Cs

The statement above would assign the first 13 characters of
the random buffer to the string wvariable AS$, the next 20
characters to B$ and the next 308 characters to the variable
C$. It is important to note that the FIELD statement does not
cause any data to be transferred to or from the random buffer.
It only causes the string variables given as arguments to
"voint” into the random buffer.

Often, it is necessary to divide the randem buffer into a
number of sub-records to make more efficient use of disk
space. For instance, it might be desirable to divide the 128
character record into two identical subrecords. To accomplish
this a "dummy variable" would be vlaced in the FIELD statement
to represent one of the subrecords. One of the following
statements would be executed, devending on whether the first
or second subrecord were necded: :

FIELD #1,64 AS D$, 20 AS NAMES,
29 AS ADDRESSES, 24 AS OCCUPATIONS

Qor

FIELD #1,20 AS NAMES, 24 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS DS .

where the dummy variable D$ is used to skip over one of the
subrecords. Another way to do the same thing would bhe to set
a variable I that would select the first or second subrecord:

FIELD #1,64*(I-1) AS DS,
283 AS NAMES, 20 AS ADDRESSS, 24 AS OCCUPATIONS

Here, if the variable I is ons, I-1 *64 =F characters will be
skipped over, selecting the first subrecord. TIf I is two, 64
characters will be skipped over, selecting the second

BASIC 4.1

April, 1977

subrecord., Another wuseful technique is to use a FOR...NEXT
loop and an array to sst uv subrecords in the random buffer: .

1468 FOR I=1 TO 15

1919 FIELD #1, (I-1)*8 AS D$, 4 AS AS(I),
4 AS BS(I)

1620 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first 4-character
field is .in AS(X) X is the subrecordé number,

NOTE

The FIELD statement may be executed any number of
times on a given file, It does not cause any
allocation of string space. The only space allocation
that occurs is for the string variables mentioned in
the FIELD statement. These string wvariables have a
one byte count and two byte vointer set up which
points into the random huffer for the specified file.

7) Using Numeric Values in Random Files: MKI$, MKSS,
MKD$ and CVI, CVS, CVD. - As we have seen, data is always
stored in the random buffer through the wuse of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
orovided.

To convert between numbers and strings:

MRIS (<integer value>) Returns a two bvte string
(FC error if value is not
>==32768 and <=+32747.
Fractional vart is lost)

MKSS (<single precision value>) Returns a four bvyte string

MKDS (<double wrecision value>) Returns an eight byte string

To convert between strings and numbers:

CVI({two byte string>) Returns an integer wvalue

BASIC

Ap=il,

CVS{<four bvte string>) Returns a single precision value
CVD (<eight byte string>) Returns a double vprscision value

CvIi, CVs, and CVD all give an ILLEGAL FUNCTICN CALL ercor if

1.1 : - 65

1877

the string given as the argument is shorter than required. If
the string argument 1is longer than necessary, the extra
characters are ignored. These functions are extremely fast
since they convert between Altair BASIC's internal
representations of integers, single and double precision
values and strings. Conventional sequential I/0 must verform
time-consuming character scanning algorithms when converting
between numbers and strings.

8) LSET and RSET. When a GET operation is performed, all
string variables which have been FIELDed into the random
buffer for that file automatically have wvalues assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric wvalues.
When going the other way, i.e. inserting strings into the
random buffer before performing a PUT statement, a problem
arises., This is because of the wavy string assignments usually
take place. For example:

LET AS$=38S

When a LET statement 1is executed, B3$ is copied into string
space, AS is pointed to the new string and the string length
of A$ is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the strinag variable
was FIELDed. In order to do this, two special asgssignment
statements have been provided, LSET and RSET: '

LSET <string variabled>=<string expression>
RSET <string wvariable>=<string expressicn>

Examples:
LSET AS=MKSS$ (V)
RSET BS="TEST"
LSET CS5(I)=MXDS$ (D#)

The difference between LSET and RSET concerns what hapvens 1f
the string wvalue being assigned is shorter than the length
svecified for the string wvariable in the FIELD statement.
LSET left justifies the string, adding blanks (octal 440,
decimal 32) to pad out the right side of the string if it 1is
too short. RSET right justifies the string, vadding on the
left. If the string wvalue is too long, the extra characters
at the end of the string are ignor=ad.

JASIC 4.1

April, 1977

NQOTE
Do not use LSET or RSET on string variables which have

not been mentioned in a FIELD statement, or a SET TO
NON DISK STRING error will occur.

K. The DSKIS and DSKOS Primitives. Often it is
necessary for the user to verform disk I/0O operations directly
without using anv of the normal file structure features of
Altair BASIC. To allow this, two special functions have been
provided. These are the DSKIS function and the DSKOS
statement. Pirst, examples will be vrovided on how to perform
simole disk I/0 commands using Altair BASIC statements.

To Enable disk 9:

QuUT 8,0
To Enable disk N:

Q0T 8,N
TO stewn the disk head out one track:

WAIT 8,2,2:0UT 9,2
To step the disk head in one track:

WAIT 8,2,2:00T 9,1
To test for track 9:

IP (INP(8) AND 64)=@ THEN <statements or line number>
The above will execute the statements or branch to the line

number if the head is positioned at track 8. This 1is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector =§,
maximum = 31}):

AS=DSKIS (Y)
The statement

DSKOS <string exnression>,<sector expression>

8ASIC 4.1 67

April, 1977

68

writes the string expression on the sector swpecified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written on
the sector and will always be one when the sector is read back
in using DSKIS$. A maximum of 137 characters are written;
giving a string whose length exceeds 137 characters will cause
an ILLEGAL FUNCTION CALL error. If the string argument 1is
less than 137 characters in length, the end of the string will
be padded with zeros to make a strinag of length 137.

6. LISTS AND DIRECTORIES

6-1. Commanas.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints °‘OK°
and is at command level. The table below lists the commands
in alphabetical order. The notation to the right of the
command name indicates the versions to which it applies.

Command Version(s)

CLEAR ALl

Sets all program variables to zero.
CLEAR[<expression>] 8K, Extended,lnisk

Same as CLEAR but sets string space to the wvalue of the
expression. .If no argument is given, string space will remain
unchanged. When Altair BASIC is loaded, string space 1is set
to 50 bytes in 8K and 202 bytes in Extended and Disk.

CLOAD<string expression> 8K {cassette), Extended, Disk

Causes the program on cassette tape designated by the first
character of BSTRING expression> to be loaded into memory. A
NEW command is issued before the program is loaded.

CLOAD*<array name> 8K (cassette), Disk

Loads the specified array from cassette tape. May be used as
a program statement,.

CLOAD?<string expression> 8K (cassette), Extended, Disk

Compares the program in memory with the corresponding file on
cassette tape. 1If the files are the same, CLOAD? prints CK.
If not, it prints NGO GOOD. The <string expression> must be
given, but it is ignored.

CONT 8K, Extended, Disk

Continues program execution after a ControlAC has been typed
or a STOP or END statement has been executed. Execution
resumes at the statement after the break occurred unless input
from the terminal was interrupted. In that case, execution
resumes with the reprinting of the prompt (? or prompt
string). CONT is wuseful in debugging, especially where an

BASIC 4.3 . - : : 69

April, 1977

*infinite loop' is suspected. An infinite loop is a series of
statements from which there is no escape. Typing Control/C
causes a break in execution and puts BASIC in c¢ommand level.
Direct mode statements can then be used to print intermediate
values, change the values of variables, etc. Execution can be
restarted by typing the .CONT command, or by executing a direct
mode GOTC statement, which causes execution to resume at the
specified line number.

In 4K and 8K Altair BASIC, execution cannot be continued
if a direct mode error has occured during the break. In all
versions, execution cannot continue #f the program was
modified during the break.

CSAVE<string expression> 8K (cassette), Extended, Disk
Causes the program currently in memory to be saved on cassette

tape under the name specified by the €£first character of
{string expressicn>.

CSAVE*<array name> 8K (cassette), Disk

70

Lauses the array named to be saved on cassette tape. May be
used as a preogram statement.,

DELETE<line number> . Extended, Disk

Deletes the line in the current program with the specified

number. JIf no such 1line exists, an ILLEGAL FUNCTION CALL
Error occurs.

DELETE-<line number> Extended, Disk

Deletes every line of the current program up to and including
the specified 1line. If there 1is no such line, an ILLEGAL
FUNCTION CALL error occurs.

DELETE<line number>-<line number> Extended, Disk

Deletes all lines of the current program from the £first line
number to the second inclusive. ILLEGAL FUNCTION CALL occurs
if no line has the second number.

DSKINI<drive number> Disk

Initializes diskettes on the specified drives by marking all
sectors in tracks 6 - 77 as free. If no disk number is given,
all disks are initialized beginning with the highest disk
number. CAUTION: DSKINI destroys all files on the disk. Use
with utmost caution.

J -
EDIT<1line number> Extended, Disk

BASIC 4.1

April, 1977

Allows editing of the line specified without affecting any
other lines. The EDIT command has a powerful set of
sub~commands which are discussed in detail in section 5-4. -

LIST All

Lists the program currently in memory, starting with the
lowest numbered line. Listing is terminated either by the end
of the program or by typing Control/C.

The LIST command may be used to save programs on paper
tape. Simply type LIST and turn on the teletype's paper tape
punch before typing carriage return. Be sure the nulls have
been set (see NULL command) to 3 before punching the program.
To load a program from vpaper tape, vput the tape in the
teletype's reader and turn it on, The program loads as if it
were being typed from the terminal. The NEW command may be
used to clear old program lines before loading the new
program.

LIST[<line number>] All

In 4K and 8K, prints the current oprogram beginning at the
specified line. In Extended and Disk, prints the specified
line if it exists,

LIST{<line number>] [-<line number>] Extended, Disk

Allows several listing options.

1. If the second number is omitted, lists all :lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all lines from the
ceginning of the program to the specified line, inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.
LLIST{<line number>] [~<line number>] Extended, Disk

Same as list with the same opticns, except prints on the line
printer.

NEW All

Deletes the current program and clears all wvariables. Used
before entering a new program.

NULL<integer expression) BK, Extended, Disk

9A5IC 4.1 ; ' 71

April, 1977

Sets the number of nulls to be printed at the end of each
line. For 14 or 30 character per second tape punches,
<integer expression> should be >=3. When tapes are not being
punched, <integer expression> should bhe § or 1 for Teletypes>
and Teletype compatible CRT's. It should be 2 or 3 for 38 cps
hard copy printers. The default wvalue 1is @. In the -4K
version, the same affect may be achieved by patching location
46 octal to contain the number of nulls plus 1.

* Teletype is a registered trademark of the Teletype
Corporation.

RUN{<line number>] All
Starts execution of the program currently in memory at the
line specified. If the 1line number is omitted, execution

begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statemnents.

The following table of statements is listed in alpahabetical
corder. The notation in the Version column designates the
versions to which each statement applies. 1In the table, X and
Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values are
truncated to integers. V and W are any variable names. The
format for an Altair BASIC line is as follows:

<npnnnn> <{statement>[:<statement>...]
where nnnnn is the line ndmber.

Name Format " Version
LONSOLE LONSQLE <I>,<J> Extended, IDisk

Allows terminal conscle device to be switched. I is the I/0
port number which is the address of the low crder channel of
the new I/0 board. J is the switcn register setting (see
saction 5-1 for the list of settings). 0<=I,J<=255.

DATA DATAGIistD> ALl
& - -
Specifies data to be read by a READ statement. List elements
can be numbers or, except in 4K, strings. 4R allows
BASIC 4.1

April, 1877

expressions. List elements are separated by commas.
DEF DEF FNV (<W>)=<X> 8K, Extended, Disk

Defines a user-defined function. Function name is FN followed
by a 1legal variable name. Extended and Disk versions allow
user-defined string functions. Definitions are restricted to
one line (72 characters in 4X and 8K, 255 characters in
extended versions).

DEFUSR DEFUSR{<digit>]=<X> Extended, Disk

Defines starting address of assembly language subroutlne. Up
to ten subroutines are allowed.

DIM DIM <VO>{KI>[,J...1)[,...] All

Allocates space for array variables. in 4K, only one
dimension is allowed per variable. More than one variable may
be dimensioned by one DIM statement up to the 1limit of the
line. The value of each expression gives the maximum
subscript possible. The smallest subscript is 4. Without a
bIM statement, an array is assumed to have maximum subscript
of 18 for each dimension referenced. For example, A(I,J) |is
assumed to have 121 elements, from A(%,8) to A(l6,18) unless
otherwise dimensioned in a DIM statement.

END END All

Terminates execution of a program. .Closes all files in the
Disk version. _

ERASE ERASECV> [, <W>...] Extended, DRisk
Eliminates the arrayé specified. The arrayé' may be
redimensioned or the space made available for other uses.
ERROR ERRORKI> Extended, Disk

forces error with code specified by £he expression. Used

primarily for user-defined error codes.

BASTC 4.1 : 73

April, 1377

FOR _ FORKV>=<X>TOKY> [STEPKZ>] All

Allows repeated execution of the same statements. First
execution sets Vv=X. Execution proceeds normally until NEXT is
encountered. 2ZI is added to V, then, IF Z<8 and VvV>=Y, or 1if
Z>3 and V<=Y, BASIC branches back to the statement after FOR.
Qtherwise, executicn continues with the statement after NEXT.

GOTO GOTO<nnnnn> all

Unconditional branch to line number.

GOSUB GOSUB<nnnnn> Al;

Unconditional branch to subroutine beginning at line nnnnﬁ.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk .

Same as IF...THEN except GOTO can only be followed by a line
number and not another statement.

JIP...THEN [ELSE] IF<X>THENKY> [ELSE<Z>] All
or IF<X>THEN<statement>{:statament...]
[ELSE<statement>[:statement...]

If value of X<>@, branches to line number or statement after
THEN. Otherwise, branches to the line number or statement(s)
after ELSE. If ELSE 1is omitted, and the value of X=0,
execution proceeds at the line after the ,IF...THEN. .In 4K, X
can only be a numeric expression. The ELSE clause 1is only
allowed in Extended and Disk Altair BASIC.

INPUT INPUTKV> [,<W>...] All

Causes BASIC to request input from terminal. Values (or, 1in
4K, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The word
LET is optional.

LINE INPUT LINE .INPUT[eprompt strings;]<iine feed>
' <string variable name> Extended, Disk

LINE .INPUT prints the prompt string on the terminal and
assigns all input from the end of the prompt string to the
carriage return to the named string variable. No other prompt
is printed if the prompt string is gmitted. LINE INPUT may
not be edited by Control/A.

BASIC 4.1

April, 1977

LPRINT LPRINT X[,Y...] Extended, Disk

Same as PRINT, but prints on the 1line printec. Line feeds
within strings are ignored. A carriage return is printed
automatically after the 80th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING but prints on the 1ine ©printer. For a
detailed description, see section 5-5.

MIDS MIDS (X8> ,KI>{,<Jd>])=¥3 Extended, Disk

Part of the string X3 is raplaced by ¥3. Replacement starts

with the .Ith character of X$ and proceeds until Y$ is
exhausted, the end of %$§ is reached or J characters have been
replaced, whichever comes first. If I 1is greater than
LEN{X$), an .ILLEGAL FUNCTION CALL error results.

NEXT NEXT [<V>,<W>...] All

Last statement of a .FOR loop. V is the variable of the most
recent 1loop, W of the next most recent and so on. Only one
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERROR GOTO<Kline number> Extended, Disk

When an error occurs, branches to 1line specified. Sets
variable ERR to error code and ERL to line number where the
error occured. See section 6-5 for a list of error codes. ON
ERRCR GOTO @ (or without number} disables error trapping.

ON...GOTO ONCI>GOTO<1list of line numbers> 8K, Ext., Disk
Branches te¢ line whose number 1is Ith in the list. List
elements are separated by commas. If ,I=8 or > number of

elements in the list, execution continues at next statement.
.If \I<® or >2535, an error results.

ON...GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON...GOTO except 1list elements are initial 1line
numbers of subroutines.

QuT QUTKI>,<J> , 3K, Extended, Disk
Sends byte J to port I. £<=I,J3<=255.
EQKE PORKE<KI> ,KI> 8K, Extended, Disk

Stores byte J in memory location derived from I.

IASIC 4.1 75

April, 1977

F<=J<=255;-32768<I<65536. " If I 1is negative, address is
65536+I. If I is positive, address=I.

PRINT - PRINTZX> [,<Y¥>...] aAll

Causes values of expressions in the list to be printed on the
terminal. Spacing is determined by punctuation.

Punctuation Spacing -~ next printing begins:
’ at beginning of next 14 column zone
: immediately
other or none at beginning of next line

String literals may be printed if enclosed by quotation marks
{(*}. String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>»;<list> Extended, Disk

Prints the values of the expressions in the 1list edited
according to the string. The string is an expression which
represents the line to be printed. The list contains the
constants, variable names or expressions to be printed. List
entries are separated by punctuation as in the PRINT
statement. For a 1ist of string characters and their
functions, see section 5-5.

READ READKV> [,<W>. ..} All

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first wvalue in the
first DATA statement.

REM REM[<remark>]} aAll

Allows insertion of remarks. Not executed, but may be
branched into. In Extended and Disk versions, remarks may be
added to the end of a line preceded by a single guotation mark
[

RESTORE RESTORE all

Allows data from DATA statements to be reread, Next READ
statement after RESTORE begins with first data c¢f first data
statement. '

RESUME RESUME [<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes resusiption
at the statement following the statement where the error was
made .,

3A51IC 4.1

dpril, ISFT

RETURN RETURN All

Terminates a subroutine. Branches to the statement after the
most recent GOSUB.

STOP STOP : all

Stops program execution, BASIC enters command -level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STCP
does not close files.

SWAP SWAP <V>,<W> Extended, Disk

Exchanges values of the variables named. Variables must be of
the same type. -

TROFF TROEFF Extended, Disk

Turns ©ff trace flag. The trace flag is turned on by TRON
{see below). NEW also turns ¢ff the trace flag.

TRON TRON ’ Extended, Disk

Turns on trace £lag. Prints number of each 1line 1in square
brackets asg it is executed.

WAIT WAITLI> , <JI> [,<K>} 8K, Extended, Disk
Status of port I is XOR'd with K and AND'ed with J. Continued

execution awaits non—zero result. K defaults to 4.
#<=1,J,K<=255,

6=3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic and
string <functions which may be called from any program without
further definitien. If the functions are not required for a
program, they may be deleted when BASIC is loaded to conserve
memory space. The functions in the following table are listed
in alphabetical order. The notation to the right of the Call
Format is the version(s) in which the function 1is available.
As usual, X and Y stand for expressions, .I and J for integer
expressions and X$ and ¥$ for string expressions.

Function Call Format Version
ABS ABS (X) All
3ASIC 4.1 77

Agril, 1977

Returns absoclute value of expression X. ABS(X)=X if X>=0, =X
if X<@.

ASC ASC(XS) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
%X$. ASCII codes are in appendix A.

ATN ATN{(X) 8K, Extended, Disk

Returns arctangent(X). Result is in radians in range =-pi/2 to
pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer.
CSNG {LSNG(X) «Lonverts X to single precision.
CDBL CDBL (X) Converts X to double precision.

If the argument is 1in the range -32768 to 32767, the

CINT({X)=INT(X). Otherwise, CINT will produce an OVERFLOW
error.

CHR$ CHRS (I) , 8K, Extended, Disk

Returns a string whose one element has ASCII code I. ASCII
ccdes are in Appendix A.

Cos _ L0858 (X} 8K, Extended, Disk
Returns cos{X). X is in radians.
ERL | Extended, Disk

Returns the number of ¢the line in wnich the last error
occurred.

ERR ' Extended, Disk

Returns the error c¢ode of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/0 ERROR,
ERR{S) returns number of the disk, ERR{1l) returns the track
number (3-76) , ERR(Z2) returns the sector number, ERR(3) and
ERR{4) return the low and high order 8 bits of the cumulative
count of disk errors respectively.

EXP EXP (X) 8K, Extended, Disk

Returns e £to the power X. X must be <=87.3365.

BASIC $.1

April, 1877

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X) is eguivalent
to SGN(X)*INT{(ABS(X)). The major difference between FIX and
INT ig that FIX does not return the next lower number for
negative X. -
FRE FRE (@) 8K, Extended, Lisk
Returns number of bytes in memory not being used by BASIC. If
argument is a string, returns number of free bytes in string
space. -

HEXS HEXS (X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument. .

INP INP(I) ' 8K, Extended, Disk
Reads a byte from port I.

INSTR INSTR([I,}1%5,¥8), Extended, Disk
Searcnhes for the first occurrence of string ¥$ in %S and
returns the position. Optional offset I sets position for
starting the searcn. #<=I<=255. ,If IDLEN{(X$), if X$ is null
or 1if ¥$ cannot be found, INSTkK returns 6. .If ¥$ is null,
INSTR returns I or 1. Strings may be string variable values,
string expressions or string literals.

INT INT(X) All

Returns the largest integer <=X

LEFTS LEFTS (%5 ,.1) 8K, Extended, Disk
Returns leftmost I characters of string XS.

LEN . LEN(X5S) 8%, Extended, Disk

Returns length of string XS. Non-printing characters and
blanks are counted.

LOG LOG (X) 8K, Extended, Disk
Returns natural log ¢f X. X>¢
LPCS LPOS (X) - Extended, Disk

Returns the current position of the line printer print head
within the line printer buffer. Does not necessarily give the

BASIC 4.1 _ 79

April, 1977

physical position of the print head. The expression X must be
given, but the value is ignored. '

MIDS MIDS (XS,I[,J]) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning with
the Ith character. If IDLEN(XS), MIDS$ returns the null
string., ©<I<255. With 3 arguments, returns a string of
length J of characters from X$§ beginning with the Ith
character. 1If J is greater than the number of characters in
X$ to the right of I, MIDS returns the rest of the string.
P<=J<=255.

QcTs QCTS (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument. :

RND RND (X) All

Returns a random number between 8 and 1. X<@ starts a new
sequence of random numbers. X>f gives the next random number
in the seguence. X=8 gives the last number returned. In 8K,

Extended and Disk, seguences started with the same negative
number will be the same.

BCS POS{I) 8K, EBExtended, Disk

Returns present column position of terminal's print head.
Leftmost position =3. ‘

RIGHTS RIGHTS (X$,1I) 8K, Extended, Dizk

Returns rightmost .I characters of string XS. If I=LEN{XS),
returns X§.

SGN SGN (X) “ All

If X>¢9, returns 1, if X=§ returns @, if XK@, returns -1. For
example, ON SGN(X)+2 GOTC 106,290,30¢ branches to 188 if X is
negative, 286 if X is @ and 389 if X is positive.

SIN SIN(X) All

Returns the sine of the value of X in radians.
LOS{X)=SIN(X+3.14159/2).

SPACES SPACES (I) Extended, Disk

Returns a string of spaces of length I.

BASIC 4.1

April, 1977

SPC SPC(I) 8K, Extenéed, Disk
Prints I blanks on terminal. #<=I<=255.

SQR ' SQR{X) ‘ All

Returns square root of X. X must be >=§

STRS | STRS (X) 8K, Extended, Disk
Returns string representation of value of X.

STRINGS STRINGS (I,J) Extended, Disk

Returns a string of length I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB) TAB(I) All -

Spaces to position I on the terminal. Space 6 is the leftmost
space, ‘1 tne rightmost. If the carriage is already beyond
space I, TAB has no effect. @<=I<=255. May only be wused 1in
PRINT and LPRINT statements.

TAN TAN(X) All

Returns tangent{X). X 1is in radians.

USR USR({X) All

Calls the user's machine languzge subroutine with argument X.
VAL VAL (X§) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
X§ is not +, -, or a digit, VAL(XS$)=0. -

VARPTR VARPTR (V) Extended, Disk

Returns the address of the variable given as the argument. If
the wvariable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error will
occur. The main use of the VARPTR function is to obtain the
address of variable or array so it may be passed to an
assembly language subroutine. Arrays are usually passed by
specifying VARPTR(A[#]) so that the lowest addressed element
of the array is returned.

ASTC 4.1 8l

NOTE

All simple variables should be assigned wvalues 1in a
program before calling VARPTR for any array.
Otherwise, allocation of a new simple wvariable will
cause the addresses of all arrays to change.

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCILI
font as having special functions in carriage control, editing
and vprogram interruption. Characters such as Control/C,
Control/S, etc. are typed by holding down the Control key and
typing the designated letter. The special characters in the
table are listed in the order of the versions to which they
apply, starting with those common to all versions and ending
with those that apply only to extended versions.

Typed as: Printed as:

The folliowing Special Characters are available in ALL
versions.

@ @
Erases current line and executes carriage return.
e i

Erases last character typed. If there is no last character
types a carriage return.

- _{underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.
Control/C ANC (in Extended and Disk)

Interrupts execution of current program or 1list command.
Takes effect after execution of the current statement or after

listing the current line. BASIC goes to command level and
types OK. CONT command resumes execution. See section 6-1.

Separates statements in a line.

9a8IC 4.1

April, 1877

——

The following special characters are available in 8K, Extended
and Disk versions only.

Control/0 N0 (in Extended and Disk)

Suppresses all output until an .INPUT statement is encountered,
another Control/0 1is typed, an error occurs or BASIC returns
te command level.

? | ?
Equivalent to PRINT statement.
Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the 1last character to be printed. Each
successive Rubout prints the next character to the left.
Typing a new character causes another \ and the new character
to be printed. All characters between the backslashes are
deleted.

Control/U AU (in extended)
Same as @.
Control/S

Causes program execution to pause until Control/Q or Control/C
is typed.

Control/Q

Causes execution to resume after Contrel/S. Control/S anad
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended and
Disk versions only.

Control/A

Allows use of the EDIT command on the Lline currently being
typed. Control/A 1is typed instead of Carriage Return. See
section 5-4.

Control/I l to 8 spaces

Tab character. Causes print head or curser to move to the
ceginning of the next 8 column field. Fields begin at columns

3ASIC 4,1 83

April, 1977

1, 8, 17, etc. The tab character 1is especially useful for
formatting lines broken with line feeds.

138<tab>FCR I=1 TO l@:<line feed>
<tab><tab>FCR J=1 TO l#:<line feed>
<tab><tab><tab>A(I,J)=g:<1line £feed>
<tab>NEXT J,I<carriage return>

lists as:

140 FOR .I=1 70 18:
FOR J=1 TO 16:
AlI,J)=0:
NEXT J,I
Control/G bell

Rings terminal's bell.
LINE FEED

Breaks a long .line into shorter parts. The result is still
one BASIC line.

Denotes the number of the current line. May be used wherever
a line number is to be specified.

{s]]

Brackats are interchangeable with parentheses as delimiters
for array subscripts.

Lower (ase Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower

- case to upper case i1f the lower case characters are not part

of -string literals, REM statements or remarks delineated by
single queotation marks (').

6-5., Error Messages.

After an error occurs, BASIC returns to command level and

‘types OK. Varilable values and the program text remain intact,

84

put the program canncot be continued by the CONT command. In
4K and 8K versions, all GOSUB and FOR context is lost. The
program may be continued by direct mode GOTO, however. When

3asIC 4.1

-an

ApTil, 1877

an error occurs in a direct statement, no line number is
printed. Pormat of error messages:

Direct Statement ?XX ERROR -
Indirect Statement ?7¥XX ERROR IN YYYYY

where XX is the error code and YYYYY is the line number where
the error occurred. The following are the possivle error
coqaes and their meanings:

ERROR CODE EXTENDED ERRCR MESSAGE NUMBER

The following error codes apply in ALL versions.

BS SUBSCRIPT OUT COF RANGE 9

An attempt was made to reference an array element which 1is
outside the dimensions of the array. In the 8K and.larger
versions, this error <can occur if the wrong number of
dimensions are used in an array reference. TFor example:

LET A(1,1,1)=2
when A has already been dimensioned by DIM A(18,18)

oD REDIMENSIONED ARRAY 1g
After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 18 and
later in the ©program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5

The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. 3 negative array subscript (LET A(-1)=0)

2. an unreasonably large array subscript (>327%67)

3. LOG with negative or zerc argument

4, SQR with negative argument

S. A4B with A negative and B8 not an integer

BASIC 4.1 85

April, 1977

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to MID$, LEFT$, RIGHTS$, INP, OUT, WAIT, PEEK, POKE,

TAB, &8PC, STRINGS, SPACE$, INSTR or ON...GOTQ with an
improper argument.

1D ILLEGAL BIRECT 12

JINPUT and DEF are illegal in the direct mode. In extended

ge

versions, however, INPUT is legal in direct.
NF NEXT WITHCUT FOR 1

The variable in a NEXT statement corresponds to no previously
executed FOR statement.

oD QUT OF DATA, 4
A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to

read too much data or insufficient data was included in the
program.

CM QUT CF MEMCORY 7

Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See
Appendix C.

ov OVERFLOW 6

The result of a calculation was too large to be represented in
Altair BASIC's number format. If an underflow occurs, zerc is
given as the result and execution continues without any error
message being printed.

SN SYNTAX ERRCR 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSUB 3

A RETURN statement was encountered before a previous GCSUB
statement was executed.

UL UNDEFINED LINE 8

The line reference in a GOTO, GCSUB, IF...THEN...ELSE or
DELETE was to a line which does not exisc.

845IC 3,1

April, 1977

/9 DIVISION BY ZERO 11

Can occur with integer division and MOD as well as £floating
point divisien. 6 to a negative power also causes a DIVISION
BY ZERO error. .

The following error messages apply to
8K, Extended and Disk versions only

CN CAN'T CONTINE 17

Attempt to continue a program when none exists, an error
occurred or after a modification was made to the program.

LS STRING TOO LONG 15

An attempt was made to create. a string more than 255
characters long.

s CUT OF STRING SPACE 14

String variabies exceed amount of string space allocated for
them. Use the CLEAR command to allocate more string space or
use smaller strings or fewer string variables.

5T STRING FORMULA TOO COMPLEX 16

A string expression was too long or too complex. Break it
into two or more shorter ones.

™ TYPE MISMATCH 13

The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or vice-versa;
or a function which expected a string argument was given a
numeric one or vice-versa.

Ur UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had never
been defined.

The following error messages are availabkle in Extended and
Disk versions only. :

MISSING OPERAND 29
Curing evaluation of an expression, an operator was found with

BASIZ 2,1 ' 87

April, 1877

no operand following it.

NO RESUME D 19

BASILIC entered an error trapping routine, but the program ended
before a RESUME statement was encountered.

RESUME WITHOUT ERROR 2l

A RESUME statement was encountered, but no error <trapping
routine had been entered.

UNPRINTABLE ERROR 22
An error condition exists for which there is no error message
available. Probably there 1s an ERRCR statement with an
undefined error. code.

LINE BUFFER OVERFLOW . 23
An attempt was made to input & program or data line which has

toc many characters to be held in the line buffer. Shorten
the line or divide it into two or more parts.

Disk Altair BASIC Error Messages
FIELD OVERFLOW 59

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR 51

:Internal error in Disk BASIC. Report conditions under which

error occurred and all relevant data to MITS software
department. This error can alsc be caused by certain kinds of

disk :I/C errors.

88

BAD FILE 52

An attempt was made to use a file number which specifies a
file that is not QPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog. :

FILE NOT FGUND 53

BASIC 4.1

April, 1977

FILE NOT FQUND 53

Reference was made in a LOAD, KILL or QPEN statement to a flle
which did not exist on the disk specified. :

BAD FILE MODE ' 54

An attempt was made to peprform a PRINT tc a random file, to
QOPEN a random file for sequential output, to perform a PUT or
GET on a sequential file, to load a random file or to execute
an OPEN statement where the file mode is net I, C, or R.

FILE ALREADY OPEN | 55

A sequential outpdt mode QPEN for a file was issued for a file
that was already OPEN and had never been CLOSEd or a KILL
statement was given for an OPEN file.

DISK NOT MOUNTED 56

An 1/0 operation was issued for a file that was not MOUNTed.

DISK I/C ERROR 57

An I/0 error occured on disk X. A sector read (checksum)
error occurred eighteen (1l8) consecutive times.

SET TO NON-DISK STRING 58

An LSET or RSET was given for a string variable which had not
previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED : -

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLCADed.

DISK FULL _ 60

All disk storage is exhausted on the disk. Dslete some old
disk files and try again.

INPUT PAST END 61

Ann INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT 1is
executed for a null (empty) file. Use of the EOF function to
detect End Of File will avoid this error.

BASIC 4.1 ' g9

o¢

BAD RECORD NUMBER 62

In a PUT or GET statenent, the record number is either greater
than the allowable maximum (2046) or equal to zero.

BAD FILE NAME : 63

A file name of # characters (null) or a file name whose first
byte was @ or 377 octal (255 decimal} or a file name with more
than 8 characters was used as an argument to LOAD, SAVE, KILL
or QPEN,.

MOPE-MISMATCH ' 64

Sequential OPEN £for output was executed for a file that
already existed on the disk as a random {(R) mode file, or vice
versa.

DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LCAD of a program
in ASCII format. The LOAD is terminated.

TCO MANY FILES 66

A SAVE or OPEN (0 or R) was executed which would create a2 new
fiile on the disk, but all 255 directory entries were already
full. Delete some files and try again.

OUT OF RANDOM BLOCKS 67

An attempt was made to have more random files OPEN at once
than the number of random blocks that were allocated during
initialization by the response to the
"NUMBER OF RANDOM EILES?" guestion (see Appendix H).

FILE ALREADY EXISTS 68

The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try a
different name.

FILE LINK ERROR 69

During the reading of a file, a sector was read which did not
belong to the ftile.

BASIC 4.1

April, 1977

b=6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc. and thus may not
be used for variable or function names. The reserved words

are listed below in order of the versions for which they are
reserved, starting with those reserved in all versions and
ending with those reserved only in Disk Altair BASIC. Words
reserved in larger versions may be used in smaller versions,
although one may want to avoid all reserved words in the
interest of compatibility. In addition to the words listed
below, intrinsic function names are reserved words in all
versions in which they are available.

RESERVED WORDS
Words reserved

. .CLEAR
DATA
DIM
END
FOR
GOSUB
GOTG
iF
INPUGT
LET
LIST

Words reserved
plus;:

AND
{CONT
DEF
FN
NOT
NULL

Words reserved

AUTO
CONSCLE
DEFDBL
DEEINT
DEFSHNG
DEFSTR
DELETE
EDIT
ELSE

BASIC 4.1

~oril, 1977

in all versions.

NEW
NEXT
PRINT
READ
REM
RETURN
RUN
STOP
TG
TAB
THEN
USR

in 3K,

ON
OR
ouT
POKE
SEC
WAIT

in Extended and bisk

LINE
LLIST
LPRINT
MOD
RENUM
RESUME
SPACES
STRINGS
SWAP

Extended and Disk

varsions.

versions.

All the above

211 the szbove plus:

91

ERASE
ERL
ERR
IMP
INSTR

Words

CLOSE

DSKIS
DSKQS
FIELD
FILES
GET
KILL
LOAD

92

TROFF
R:ON
VARPTR
WIDTH
X0R

reserved in Disk. All the above plus:

LSET
MERGE
MOUNT
NAME
QOPEN
PUT
RSET
UNLOAD

BASIC 4.1

Apzil, 1977

DECIMAL
009
gal
gg2
ga3
264
BB5
ga6
aa7
pas
89
Big
gll
612
Bl3
g14
215
glé
a17
218
819
829
221
822
223
824
225
026
a27
28
g29
39
g31
832
@33
P34
B35
836
37
938
@39
849
g41
g42

LF=lLine Feed

EASIC 4,1

-

April, 197%

CHAR.
NUL
SOH
STX
ETX
ECT
ENQ
ACK
BEL
BS
HT
LF
v
FF
CR
SC
SI
BLE
BCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
3
GS
RS
Us
SPACE
]

e L I TS

APPENDIX A

ASCII CHARACTER CODES

£
100

DECIMAL
g4a3
244
845
246
247
243
749
853
351
852
@53
654
255
856
457
858
258
gead
961
P62
663
64
g&5
g6s
fe7
ge8
069
870
71
p72

- 973

874
875
376
@77
278
879
g84@
881
882
83
@84
@85

FF=Form Feed

CHAR.

+

R

W0~ 3 U s G R RN e

CHRBUOWOERCCROQHTIOAEWMMUOOO P@DV I A oo

deta
' Dﬂ«ij{v
figlos

DECIMAL
286
887
288
289
90
291
392
293
294
295
896
897

498

299
1a9
191
192
123
124
195
1d86
197
igs8
149
119
111
112
113
114
115
115
117
118
116
123
121
122
123
124
125
126
127

CR=Carriage Return

-

NS W ES Ot QOO F RO R o O

DEL

DEL=Rubocut

83

94

Using ASCII codes -- the CHRS function.

CHRS$ (X) returns a string whose one character is that with
ASCII code X. ASC(X$) converts the f£first character of a
string to its ASCII decimal value.

One of the most common uses of CHRS is to send a special
character to the user’'s terminal. The most often used of
these characters is the BEL (ASCII 7). Printing this
character will cause a bell to ring on some terminals and a
beep on many CRT's. This may be used as a preface to an error
message, as a novelty, or just to wake up the user if he has
fallen asleep. Example:

PRINT CHRS(7);

Another major use of CHR$S is on those CRT's that have
cursor positicning and other special functions (such as
turning on a hard covoy printer). For example, on most CRT's a
form feed (CHR$(12)) will cause the screen to erase and the
cursor to “home" or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs
and curves in a special point-plotter mode. This feature may
easilv be taken advantage of through use of Altair BASIC's
CHR$ function.

BASIC 4,1

April, 1877

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This avpendix details the procsdure for loading BASIC in
4K, 8K and Extended versions from paper tape or tape cassette.
For instructions on loading Disk BASIC, sgee appendix H.

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
nositions as "up" and “down"; it is convenient to denote the
up position as 1 and the down position as 4. Taken in groups
of three the switches can represent octal digits. To save
space, the switch positions in the following .loader program
listings are shown in octal notation, - The leftmost two
switches in an 8 bit set are represented by the first digit,
the next three by the sacond digit and the low-order three
switches by the last digit.

For example, if we wish to enter octal 315 on the data
switch register, the switches would have the following
positions:

7 5 3 4 3 2 1 g
up up down down uv up down up
3 1 5 ‘

For data entry, only the rightmost 8 switches of the 16
switches on the ALTAIR 8899 front vanel switch register are
used. All 16 switches would be used ta enter a memory
address.

_ The following is the procedure for loading BASIC from
paper tape or cassette:

1. Turn the power switch on

2. Raise the STOP switch and RESET switch simultaneouslv

3. Switch the terminal to LINE

4, Enter one of the following programs on the front panel
switches. The 88-MBL Multi-Boot Loader PROM contains the
necessary loader programs, so it is not necessary to enter

a loader from the front vanel if it is installed. Refer
to the 88-MBL manual for more informatiocn.

BASIC 4.1 95

,4
1=

-
i

april,

loading from paper tave with the SI0 board (REV 1)

Cctal Address
098
a1
242
ga3
g@4
a85
346
aa7
g19
g1l
a12
@413
214
a15
Ble
@17
328
g21
@22
823

QOctal Data

g41

392 T
gxx (17 for 4K, 37 for 8K, 77 for
g6l Extended & Disk)

922

Gag

333

ga0

817

3309

333

841

275

310

gs5s

167

3g4

351

G603

aaa

loading from cassette

Octal Address
2340
ga1
682
aa3
294
Bés5
706
ge7
gld
gll
312
£13
314
215
Ble
217
329
g21
222
p23

Octal Data

gdl

392 :
gxx (17 f£or 4K, 37 for 8K, 77 for
g6l Extended and Disk)
az2

gag@

333

gas5

317

330

333

8a7

275

316

@55

157

3049

351

443

aaa¢

SASIC 4.1

April, 1977

BAZIC 4.1

April, 1977

loading with the 88 PIO board
Cctal Data

Qctal Address
396
go1
ga2
293
Q64
aas
gg6
aa7
318
g1l
g12
213
a14
g1s
gle
g17
g29
g21
@22
B23
224

gal
3g2
oxx
g6l
@23
aaa
333

994

348
a1
312
333
gas
275
31¢
@55
167
309
351
@93
Begé

{17 for 4X, 37 for 8K, 77 for

Extended and Disk)

loading with the 2SI0 board

Cctal Address

Q9@
691
a2
893
g4
B85
246
ga7
918
11
@12
13
Bl4
@15
@16
a17
024G
921
822
B23
224
825
626

Qctal Data

#a76
2a3
323
a28
a76
a21
323
@24
g4l
392
Gux
gal
G132
Gag
333
820
a17
323
333
321
275
3143

- @55

{=2 stop bits, 825=1 stop hit)

{17for 4R, 37 for 8K,
Extended and Disk)

77 for

97

23

827
B3g
p31
832
233

167
389
351
f13
003

loading with the 4PIO board

Qctal Address
pag
A613
332
aa3
B34
385
2a6
g8a7
gla
g1l
g12
@13
A14
Gl5
gle
17
B28
321
§22
923
g24
G25
326
gz7
g3@
A31
232
333
34

Qctal Data

. 257

323
4@
323
ga41
876
854
323
gag
841
392
gxx (17 for 4K, 37 for 8K, 77 for
#61 Extended and Disk)
B33
4849
333
G40
aa7
338
333
941
275
319
355
187
3gp
331
g1r4
Bao

Loading with the High Spe=2d Tape Reader

QOctal Address
Aga
391
982
g93
gg4
Aas
Boe
aa7
616

Ocktal Data
257
323
g44
323
45
323
G46
857
323

BASIC 4.1

april, 1977

gl1 a47

g12 @76
813 g14
gl4é 323
#15 @44
g1s 476
a17 aa4
g26@ . 323
g21 g4s
922 323
223 ga7
a24 ga1
425 352
Aze6 ¢xx (17 for 4X, 37 for 8K, 77 for
g27 : #6) Extended and Disk)
836 a47
G331 ’ aa9
g32 333
@33 g4
@34 348
d35 1009
d36 3149
437 333
§44 g45
G4l 275
g42 314G
g43 @55
gad . 167
345 300
g46 351
347 827
G549 pag

To enter these programs:

3ASIT 4.1

CAprii, 1977

Put switches @ to 15 in the down nositions

'Raise EXAMINE

Put the data for address zero in switches 2 through 7
Raise DEPOSIT

Put the data for the next address in the switches
Depress DEPOSIT NEXT

Reveat steos 5 and 6 until the whole loader is toggled in

i0
\o

100

8.
9'
1ﬂ.

il1.

17.
is.

19.

20.

21.

22.

Put switches ¢ through 15 in the down position
Raise EXAMINE

Check to see that the lights D@ through D7 show the data
that should be in location @69. Light on =1, light off =
@. If the correct value is there, go to step 13; if not,
go to 1l1.

Put the correct value in the switches

Raise DEPROSIT |

Depress EXAMINE NEXT

Repeat steps 19 through 13 to check the entire loader

If there were any mistakes, check the entire loader adgain
to make sure they were corrected.

1f a paper tape is being loaded, nput it intc the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 382 octal punched in each column. If an
audio cassette is being loaded, put it in the cassette
recorder and maks sure it is fully rewound.

Lower switches § through 15
Raise EXAMINE

Enter the sense switch settings. See the table 1in
section B.

If loading is through a SIOCA, B or C or an 88PI0, turn on
the tape reader and then depress RUN. If a cassette is
being loaded, turn on the recorder, put it in PLAY mode
and wait 15 seconds. Then press RUN on the computer. If
loading is through a 4PI0O, 2SI0O or High Speed Tape Reader,
depress RUN and then start the read device.

Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes for
4X., Cassettes take about 8 minutes £or Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

If a loading error occurs, the locading procedure must
start over from step 1. See section C below for error
conditions.

BASIC 4.1

april, 1377

23. When the tape is read, BASIC should start up and orint
MEMORY SIZE? See section D below for what to do next.

24. If BASIC will not load from cassette, the ACR module may
need realignment. The Input Test Program described in the
ACR Manual, pages 22 and 28, may be used to test the ACR.

B. Sense Switch Settings

Sense switches (switches A8 through AlS5) rmust be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the load bhoard
setting, and the high order four switches contain the terminal
poard setting. - In the table below, the setting is given for
each I/0 becard option. As above, the setting is an octal
number which signifies the switch positions. The Terminal
Switch and Load Switch columns show the switches that are
raised for each of the load and terminal device ontions,

Sense Switch - Terminal Load
Device Setting Switches Switches Channels
2810 @ none none 28, 21
(2 stop bits) '
2810 1 al2 A8 26, 21
(1 stop bit)
SI0 2 Al3 A% g, 1
ACR 3 Al3,al12 A9,A8 6, 7
4PIC 4 al4 a1ld 49, 41, 42, 43
PIO 5 Ald,Arl2 Al9, AR 4, §
HSR 6 Al4,Al13 Alg,A9 46, 47
non~standard)4
terminal
no tarminal 15

Examples:

Input from audio cassette through ACR and CRT terminal
through 2SI0 with 1 stop bit,

Switch 15 14 13 12 11 18 9 8

Position @ g a 1]] 1 1

Input from high speed paper tape reader, terminal
through SIO.

Switch 15 14 13 12 11 12 9 8

Position @ 2 1] g 1 1 a

l_l
o
'._.1

- BASIC 4,1

April, 1977

102

C. Error Detection

The checksum loader turns on the Interrupt Enable liaht
on the front panel when a loading error occurs, The ASCII
code of the error letter is stored in Jlocation #. In
addition, the error letter is sent out over all the terminal
channels and appears on whatever terminal is connected to the
terminal., The error letters are as follows:

C checksum error, Bad tame data.

M memory error. Data won't store properly.
The address of the bad memory location is stored
in locations 1 and 2.

0 overlay error., Attempt was made to load data on toe
of the loader.

I invalid load device. Invalid setting on the
sense switches.

D. Initialization Dialog
Upon starting, BASIC orints
MEMORY SIZE?

To this, the user responds by tyoing the number of bytes of
memory to be used by BASIC and BASIC programs. Remenmber that
the BASIC interpreter itself takes 3.4K in the 4K version,
6.2k in 8K and 14.6K in Extended. If the response is just a
carriage return, BASIC will use all the memory it «can find,
starting at location =zero up to the last byte of read/write
memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user resvonds with the width of the printing line
of whataver output device is in use. Typing & carriage veturn
sets the terminal width to 72. Extended and Disk Altair BASIC
set the terminal width throuah the WIDTH command, so the
TERMINAL WIDTH questlon is not asked at initialization and an
initial width of 72 is assumed.

in 4K, the response to MEMORY SIZE? and TERMINAL WIDT3I?

must be less than 6 digits.

The Extended and Disk versions now ask what kind of line
printer is in use.

LINEPRINTER?

The user answers with O if the 8GLP orinter is in use, C for

BASIC <.1

April, 1977

the C708 and Q for the Q70. One of these letters must be
typed whether or not a lineprinter is connected £o the system.

At this point .BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks, '

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the
next question

SQR? Y keeps SQR and RND
N deletes SQR, asks next question

RND? Y keevs RND
N deletes RND

8K and Extended BASIC ask,

WANT SIN-COS~TAN-ATN? keeps all four
deletes all four
deletes only ATN

{in extended) retains
CONSOLE and all other
functions. Other an-

swers delete CONSOLE.

QX o

Now BASIC prints,
XXXX BYTES PREE

ALTAIR BASIC VERSION 4.0
[FOUR-K VERSION]

or
[EIGHT=-K VERSION]

or
[EXTENDED VERSION]
COPYRIGHT 1977 8Y MITS, INC.
OK

BASIC is now in command level and is readv for use.
E. Echo Routines,

The Altair input/ocutput channels work in a full-duplex
mode, This means that characters entered on an input/output
terminal will not, as a rule, be printed as thevy are entered
unless the computer is programmed to return them. The
following echo programs may be used to test the inout/output
devices. To test an input-only device, dump the echoed
characters on an outout device or store thenm in memory for
later examination. To test an output~only device, send the
echo characters through the front ranel ,switches .or send a
constant character, Be sure to check the ready-to-reczive bit

2ASIC 4.1 103

April, 1977

of the output terminal before attempting output.
program works, but BASIC does not, make sure the load device's

I/0 board 1is

strapped for 8 data bits

and

If the echo

that the

ready-to-recieve bit is set properly on the terminal device.

88-PIO

OCTAL ADDRESS
281
g2
a3
994
285
o0 6
237
216
@11
912
813
14
313

2810
OCTAL ADDRESS
690
291
902
083
904
P65
n06
007
g19
911
912
213
pi4
915
P16
817
328
921
822
823
624

-4PI0

OCTAL ADDRESS
gog
261
ga2
003
ag4

OCTAL DATA
po4
346
g9 1
312
agg
paa
333
985
323
885
393
2898
aao

OCTAL DATA
a76
293
323
826 (flag ch.)
276
@zl (=2 stop bits,
323 §25=1 stop bit)
228
333
229
817
322
9193
age
333
@21 (data channel)
323
g21
383
014
Ged.

CCTAL DATA
237
323
5K 30}
323
nal

BASIC 3.1

April, 1877

105

205
906
087
619

S 81l

212
913
g14
215
gle
817
020
221
822
923
g24

@25

826
@27
039
31
932
B33
634
935
836
637
G40
g4l
942
@43
244

323
p42
a57
323
243
876
954
323
349
323
242
333
249
346
280
312
620
2909
333
a42
346
2649
312
627
pgg
333
pal
323
643
363
820
629

BASIC 4.1

April, 1977

106

APPENDIX C
SPACE AND SPEED HINTS

A, Space Allocation

The memory space required for a program depends, of
course, on the number and kind ¢f elements in the program.
The following table contains information on the space reguired
for the various program elements.

Element Space Required

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
6 bvtes in 4K and 8K
double precision 11 bvytes
string 6 bytes

Arrays .
integer {# of elements)*{21+[6{+(% of dimensions}*2 bytes
single precision 4
double precision 8
string 3
8K and 4K
strings and flocating pt. [6]+|5]

Functions
intrinsic 1l byte for the call (2 bytes in Extended and Disk)
user-defined 5 bvtes for the definition
Reserved Words 1 bvte each _
2 bytes for ELSE in Extended and Disk

Other Characters

1 byte each
Stack Svace
active FOR
loop 17 bytes in Extended and Disk,

16 bytes in 4K and 3K
active GOSUB 5 bytes
parentheses 6 bytes each set
temporary
result 12 bytes in Extended and Disk
15 bytes in 4K and 8K

BASIC 4.1

April, 1977

BASIC itself takes about 3.4K in the 4K version, 6.2K in
8K, 14.6K in Extended and 29 X in Disk.

B. Space Hints

The space required to run a program may be significantly
reduced without affecting execution by following a few of the
following hints:

1. Use multiple statements per line. Each line has a 5 byte
overhead for the 1line number, etc., so the fewer lines
there are, the less storage is reguired.

2, Delete unnecessary spaces. Instead of writing

18 PRINT X, Y, Z

use

19 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4, Use variables instead of constants, expecially when the
same value is used several times. For example, using the
constant 3.14159 ten times in a program uses 49 bytes more
space than assigning

18 P=3.1415%
once and using P ten times.

5. Using END as the last statement of a ©program is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
variables.

7. Use subroutines instead of writing the same code several
times,

3, Use the smallest version of BASIC that will run the
program.

9. Use the zero elements of arrays. Remember the array
dimensicned by

196 DIM A(10)

ol

has eleven elements, A{#) through A(18).

EASIC 4.1

April, 1977

108

1g.

In Extended and Disk, use integer variables wherever
possible.

Speed Hints

Deleting spaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the vrogram,
BASIC searches the table for the variable at each
referencs. Variables at the head of the table take less
time to search for than those at the end. Therefore,

‘reuse variable names and keern the list of variables as

short as possible.

In 8%, Extended and Disk use NEXT without the index
variable.

8K, Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use the
larger versions.

The wmath functions in 8K, Extended and Disk are faster
than those in 4K.

In the 4K and 8K versions, use variabhles instead of
constants, especially in FOR loops and other c¢ode that
must be executed repeatedlv.

In Extended and Disk, use integer variablass wherever
possible.

String variables set up a descripter which contains the
length of the string and a pointer to the first memory
location of the string. As strings are manipulated,
gstring space fills up with intermediate results and
wextraneous material as well as the desired string
information. When this hampens, BASIC's "garbage
collection” routine clears out the unwanted material. The
frequency of gargbage collection is inversely vroportional
to the amount of string svace. The more string space
there 1is, the lonager it takes to fill with garbage. The
time garbage collection takes 1is proporticonal to the
square of the number of string variables. Therefore, to
minimize garbage collection time, make string space as
largge as possible and use as few string variables as
nossible.

BASIC 4.1

April, 1377

'APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions.
The following functions, while not intrinsic to ALTAIR BASIC,
can be calculated using the existing BASIC functions:

Function: BASIC eguivalent:

SECANT SEC(X) = 1/C0S(X)

COSECANT CSC(X) = 1/SIN({X)

COTANGENT COT (X) = 1/TAM(X)

INVERSE SINE ARCSIN (X) = ATN(X/SQR{~-X*X+1))

INVERSE COSINE ARCCQOS(X) = -ATN X({X/SQR(-X*X+1})
+1.5708

BRCSEC(X) = ATN(XSQR(X*X-1))
+SGN (SGN{X)-1)*1.5768

INVERSE SECANT

INVERSE COSECANT

ARCCEC(X) = ATN(1l/SQR({X*X-1))
+({SGN(X)-1)*1.578@8

INVERSE COTANGENT ARCCOT (X) = ATN(X)+1.57@8
HYPERBOLIC SINE SINH(X) = (EXP(X)=-EXP(~-X))/2
HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(~-X))/2
HYPERBOLIC TANGENT TANH(X) = EXP(=X)/EXP(X)+EXP(~X)}
: *24+]
HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(=X))
HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)=-EXP(-X))
HYPERBOLIC COTANGENT COTH (X} = EXP(-X)/(EXP(X)-EXP{(~X))
%24}

INVERSE HYPERBOLIC

SINE ARCEINH(X) = LOG(X+SQR(X*X+1}))
INVERSE HYPERBOLIC

CCSINE ARCCOSH({X) = LOG(X+SQR{X*X+=1)}
INVERSE HYPERBOLIC

TANGENT ARCTANH (X) = LOG({{1+X)/{1-X))/2
INVERSE HYPERBOLIC

SECANT ARCSECH (X} = LOG((SQR{-X*X+1)+1}/X)
INVERSE HYPERBOLIC :
COSECANT ARCCSCH(X) = LOG((SGN(X)*

INVERSE HYPERBOLIC
COTANGENT

SQR(X*X+1)+1)/X

ARCCOTH (X)

2. Simulated Math Functions.

= LOG((X+1)/(X-1))/2

The following subroutines are intended for 4K BASIC users who

want to use the
BASIC.

BASIC 4,1

april, 1977

transcendental functions not built into 4X
The corresponding routines for these functions in the

109

110

8K version are mnuch faster and more accurate. The REM
statements in these subroutines are given for documentation
ourvoses only, and should not be tyoved in because they take unp
a large amount of memorv. The £ollowing are the subroutine
calls and their 8K egquivalents: :

8K EQUIVALENT 4K SUBROQUTINE CALL
P9=¥97Y9 - GOSUB 60030
L9=L0G (X9) GOSUR 6008942
E9=EXP (X9) GOSUB 64160
C8=C0S (X9) GOSUB 68248
T9=TAN (X9) GOSUB 502386
A9=ATN (X9) GOsSUB 66319

The unneeded subroutines should not be tvped in. Pleasz note
which wvariables are used by each subroutine. Also note that
TAN and COS require that the SIN function bbe retained whean
BASIC is loaded and initialized.

6A90% REM EXPONENTIATION: P9=X9°Y9

6800168 REM NEED: EXP, LOG

60929 REM VARIABLES USED: A%,8B9,C9,E9,L9,P9,%¥9,YS

A0338 REM P9 =1 : ES=4 ; IF YY9=f THEN RETURN

60045 IF X9<0 THEN IF INT(Y9)=Y9 THEN P9=1-2%Y3+4*INT (Y3/2)

X9=-X9

50056¢ IF X9<>@ THEN GOSUB 58099 : X9=Y9*L9 : GOSUR 68153

66660 P9=P9*E9 : RETURN

60878 REM NATURAL LOGARITHM:“L9=LOG{X9)

bG7A89 REM VARIABLES USED: A9,B9,C9,E9,19,X9

60699 E9=8 : IF X9<=% THEN PRINT "LOG FC ERROR"; : STOP

60139 A9=1: B9=2; C9=.5: REM THIS WILL SPEED THE FOLLOWING

68113 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 68100

60120 X9=(X9-.767187)/(XS+.7877187) : LI=X9*X9

686139 LO=(((.598979*L9+.961471) *L9+2.88539) *X9+E9~.5) *
693147

68135 RETURN '

60140 REM EXPONENTIAL : E9=EXP (X9)

63158 REM VARIABLES USED: A9,E9,19,X9

60169 LO=INT(1.4427*X9)+1 : IF L9<127 THEN 60188

68179 IF X9>6 THEN PRINT “EXP OV ERRCR": : STOP

6A175 E9=9 : RETURN

606180 E9=.693147*L9-X9 : A9=1.32988E-3-1.41315E-4*E9

60198 AS=({AS*E9-8.30136E~3)*E9+4.16574E=2) *E9

66195 E9=((A9-.1666565) *E9~1) *E9+1 : A9=2

60197 IF L9<=0@ THEN A9=.5 : L9=-L9 : IF L9=0 THEN. RETURN

68298 FOR X9=1 TO L9 : E9=A9%ESQ : NEXT X9 : RETURN
50219 REM COSINE: C9=COS(X9)

G822 REM N.B. SIN MUST BE RETAINED AT LOAD=-TIME
69239 REM VARIABLES USED: C9,XS

60240 C9=8SIN(X9+1.5768) : RETURN

60258 REM TANGENT: T9=TAN (X9)

BASIC 1.1

April, 1977

60268
60278
60280
60294
6034849
66317
68329

64330
60349

BASIC 4.1

April, 1377

REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD~TIME)

REM VARIABLES USED: C9,T9,X9

GOSUB 60240 : T9=SIN(X9)/C9 : RETURN

REM ARCTANGENT : A9=ATN(X9) ‘

REM VARIABLES USED: AS%,8%,C9,T9,X9

T9=5GN(X9): X9=ABS(X9):C9=0: IF X>1 THEN CY9-1l: ¥9=1/X9

AQ=X9*¥9 : BY9={(2.86623E~-3*A9-1.61657E~2) *A¢ -
+4.29896E-2) *A9

BO=((({B9~7.5289E-2) *A0+.106563) *A0-.11420689) *A9+,199936) *A9

A9=((B9~.333332)*A%9+1)*X9 : IF C9=1 THEN A9=1.5738-A9

11l

112

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All wversions of Altair BASIC havea provisions for
interfacing with assembly language routines. The USR function
allows Altair BASIC programs to call assembly language
subroutines in the same manner as BASIC functions.

The £irst step in setting up a machine language
subroutine for an Altair BASIC program is tc set aside memorv
space. When BASIC asks, "MEMORY SIZE?“ during initialization,
the response should be the size of memory available minus the
amount needed for the assembly language routine. BASIC uses
all the bytes it can find from location zero up, so only the
topmost locations in memory can be used for user supplied
routines. If the answer to the MEMORY SIZE? question is too
small, BASIC will ask the question again until it gets all the
memory it needs. See Appendix C for altair BASIC's memory
requirements.

The assembly language routine may be loaded into memory
from the front wmanel switches or from a BASIC nrogram hy means
of the PCXE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies
from version to version, USRLOC for 4K and 8K Altair BASIC
version 4.9 is 111 octal. In Extended and Disk, USRLOC need
not be known explicitly since it is defined automatically by
DEFUSR (section 5-3b}. The function USR calls the routine
whose address is in USRLOC. 1Initially, USRLOC contains the
address of ILLFUN, the routine which gives the FC or ILLEGAL
FUNCTION CALL error. If USR 1is called without an address
loaded in USRLOC, an ILLEGAL FUNCTION CALL error results,

When USR is called, the stack vointer is set up for 3
levels (16 Dbyvtes) of stack storage. If more stack space is
needed, BASIC's stack can be saved and a new stack set up for
use by the assembly language routine. BASIC's stack must be
restored, however, before raturning from the user routine.

211 memory and all the régisters c¢an be changed nv a
user's assembly language routine, Of course, memory locations
within BASIC ought not to be changed, nor should more bytes be

ropned off the stack than were put on it.

SR is called with a single argument. The assembly
language routine can retrieve this a2rgument by calling the
routine whose address is in loczations 4 and 5 decimal. The
low-order byte of the address is in 4 and the high~order in 5.
In 4X and 8K, this routine (DEINT) stores the argument in the
register opair ([D,E]l. In Extended and Disk, the argument is

BASIC 4.1

April, 1977

pvassed in pair [H,L]. The argument is truncated te integer in
4%¥ and 8K, and if it is not in the ranage -32748 to 32767, an
FC error occurs. In Extended and Disk, the register wpair
{H,L] contains a vointer %o the Floating Point Accumulator
where the argument is stored (see section 5-3b. for nmiore
information abcut use of the Floating Point Accumulator).

To pass a result back from an assembly language routine,
load the value in register pair [A,B] in 4K and 8K, or [H,L]
in Extended., This value must be a signed, 16 bit integer as
defined above. Then call the routine whose address is in
locations 6 and 7. If this routine is not called, USR(X)}
returns X. To return to BASIC, then, the assembly language
routine executes a RET instruction.

Assembly language routines c¢an be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JWMP
instruction to a user supplied interrupt handlina routine.
Lecation 56 initially holds a RET, so it must be set up by the
user or an interrupt will have no effect.

All interrunt handling routines should save the stack,
registers A-I. and the PSH. They should also reenzble
interrupts before returning since an interrupt automatically
disables all further interruots once it is received,

There is only one way to call an assembly language
routine in &K and 8K, but this does not limit the programmer
to only one assembly language routine. The = araument of USR
can be used to designatz which routine is being called. 1In
8K, additional arguments can be passed through the use of POKE
and values may be passed back by PEEK.

In Extended and Disk BASIC, un te ten routines may be
called with the USRY - USRS functions., For more information
on this feature, seé section 5-3b.

BASIC 4.1 113

April, 1977

114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette fezatures , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassekte and in Extended and Disk wersions. 8K BASIC
on paper tave will give the user about 256 additional
bvtes of free memory, but it will not receognize the
CLOAD or CSAVE commands.

Programs mayv be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in either direct or indirect
mode, and its format is as follows:

CSAVE <string expregsion>

The program currently in memory is saved on cassette under the
name specified by the first character of the <string
expression>. CSAVE writes through channel 7 when the Write
Buffer Empty bit (bit 7) of channel & is low. &after CSAVE is
completad, BASIC always returns to command lavel. Programs
are written on tape in BASIC's internal representation.
Variable values are not saved on tave, althocugh an indirect
mode CSAVE does not affect the variable values of the wrogram
currently in memory. The number of nulls (see NULL command)
has no affect on the overation of CSAVE. Before using CSAVE,
turn on the cassettes recorder. Make sure the tape is in the
vroper rosition then put the recorder in RECORD moaqe.

Programs may be loaded from cassette taps by means of the
CLOAD command, which has the same format as CSAVE. The effect
of CLOAD is to exacutes a NEW command, clearing memory and all
rariable wvalues and loading the specified file into memory.
Wwhen done reading and loading, BASIC returns to command level.
CLOAD reads a byte from channel 7 when the Read Data Ready bit
{bit) in channel & is low. Reading c¢ontinues until 3
consecutive zeros are read. BASIC will not return to command

level after a CLOAD if it could not find the regquested file,

or 1if the file was found but did not end with 3 zeros., In
that case, the computer will continue to ssarch until it isg
stopped and restarted at location 4.

BASIC 4.1

april, 1977

In the 8K cassette and Extended versions of ALTAIR BASIC,
data may be read and written with the CSAVE* and CLOAD*
comnands. The formats are as follows:

CSAVE*<array variable name>
and
CLOAD*<array variable name>

See section 2-44 for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression> compares the proaram currentlv
in memory with the spacified file on cassette., If the two
files match, BASIC prints OK. If not, BASIC ovrints NO GOOD.

Data may also be read from and written on cassette in the
paper tape version of 8K Altair BASIC. To write data, execute
a WAIT 6,128 statement to check for the Write Buffer Empty bit
and then write with an OUT 7,<hvte> statement. To read,
2Xecute a WAIT 6,1 to check for Read Data Ready and ther read
with an INP(7). The end of a block of data may be
conveniently designated by a special character. Data should
be stored in array form since there is no time during reading
and writing for computation.

BASIC 4,1

April, 1977

APPENDIX G
CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers

are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers,

1) Strinas.

A pnumber of BASICs reguire the length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
thess BASICs, a declaration of the form DIM AS(I,J) Jdeclares a
string array of J elements each of which has a lenath I.
Convert DIM statements of this tvpe to eguivalent ocnes in
Altair BASIC: DIM AS{(J). Aaltair BASIC uses " + " for string
concatenation, not * , " or * & ." ALTAIR BASIC uses LEFTS,
RIGHTS and MIDS to take substrings of strings. Some other
BASICs use AS({I) to access the Ith c¢haracter of the strinag AS§,
and AS$(I,J) to take a substring of A$ from character vposition
I to character position J. Convert as follows:

CLD NEW
AS(I) MIDS (A8,I,1)
AS{I,J) MIDS (AS,I,J-I+1)

This assumes that the reference to a subscript of A5 is in an
expression or 1is on the right side of an assignment. If the
reference to AS is on the left hand side of an assignment, and
X$ is the string exvression used to rsplacs characters in AS,
convert as follows:

In 4¥X and 8K

QLD NEW

AS(I)=XS AS=LEFTS (AS,I-1)+XS+MIDS (AS,I+1)
AS(I,J)=X% AS=LEFTS (AS,I-1)+XS+MIDS (AS,TJ+1)
Extended and Disk .

QLD NEW

AS (I)=XS MIDS (AS,1,1)=X$

AS(I,J)=X$ MIDS(AS,I,J-I+1)=X

2) Multiple assignments.
Some BASICs allow statements of the form:

58¢ LET B=C=0§

116 FASIC 4,1

april, 1977

This statement would set the variables B and C to zero. In 8K
Altair RASIC, this has an entirely different effect. 2all the
“ = " signs to the right of the first one would be interoreted
as logical comparison orerators. This would set the variable
B to -1 if C equaled @. If C did not egual 2, B would be sat
to B. The easiest way to convert statements like this oné is
to rewrite them as follows.

560 C=g:B=C
3) Some BASICs use * \ " instead of " : " fo delimit multiole
statements on a line. Change each " \ " to " : " in the
program.

4) Paper tapes punched by other BASICs may have noe nulls at
the end of each line instead of the three per line recommended
for use with Altair BASIC. To get around this, trv to use the
tape feed «c¢ontrol on the Teletvpe to- stop the tave from
reading as soon as Altair BASIC prints a carriage return at
the end of the line. Wait a moment, 2nd then continue feeding
in the tape. When readinag has finished, be sure to punch a
new tape in Altair BASIC's format.

A program for converting taves to Altair BASIC's format
was published in MITS Computer Notes, November 1976, ©. 25.

5) Programs which use the MAT functions available in some
BASICs will have to be rewritten using FOR...NEXT loops to
perform the apvropriate overations.

BASIC 4.3} . ' 117

April, 1977

iig

APPENDIX H
DISK INFORMATION

Format of Altair Ploppv Disk

Track Allccation:

Tracks Use

g-5 Disk BASIC memory image.
6~65 Space for either random or seaquential files.
79 Directory track. See below.

71-786 Space for seguential files only.

FPormat of DISK BASIC Memory Image (Tracks 9-5}:

BASIC is lcaded starting at track # sector © then track @
sector 1, etc. Each sector contains 128 bytes of BASIC. The
first 128 bvtes are loaded first, second 128 second, =tc.

Sector format {(Tracks 3-5):

Byte Use
a Track Number+l1l28 dacimal.
1-2 Sixteen bit address of the next

higher byte of memory than the highest memory location
saved on this sector.

3-138 128 hvtes of RBASIC.

131 255 decimal stop byte,

132 Checksum ~ sum of bytes 3-138 with no carrv in 8 bits.

Sector format (Tracks 6-76):

Byte Use

] Most Significant Bit alwavs on.
Contains track aumber nlus 2089 octal.
Sector number * 17 MOD 32.

1 .
2 File number in directorv. Zero file number means

that the sector is not vart of any £file. If the
sector is the first file of a qroup of 8 sectors
g means the whole group of 8 sectors is free,.
3 Number of data bytes written (9§ to 128) . Alwavs
128 for random files. (Except for the random file
index blocks in which case this byte indicates how many

BASIC 4.1

April, 1877

groups are allocated to the file.)

4 Checksum. The sum of all the data on the seactor
except for the track number, the sector
number and the terminating 255 bvte.

5,6 Pointer to the next group of data. This is set up for
random files and sequential files, and is even valid
in the middle of a group. If it is zero it means there
is no more. - data in the file. The track is the first byte

] and the sector number is the second bvte. :
7-134 Data

135 A 255 (octal 377) to make sure the right number
of data bytes were read.
136 Unused.

Directory Track (7@) Format:

Each sector of the directory (which is all of track 7@)
is composed of up to 8 file name slots, 16 bvtes per slot,
Each slot can contain a file name (8 bytes), a 1link to the
start of file data (2 bytes) and a byte which specifies the
mode of a file (Random=4, Segquential=2). The remaining 5
bytes are not currently used. Any slot which has the first
file name byte egual to zero contains a file which has been
deletead. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond the
"stopver™ are garbage. File 'numbers are calculated by
multlplylng the sector number of the directory track the file
is in by 8 and adding the position of the slot in the sector
(9~7) plus 1.

NOTE

The ith logical sector on a track is actually mapped
to the 1i*17 MOD 32 physical sector to shorten access
time in BASIC I/O operations.

. Pormat of Random Files

Each random file starts with two random index blocks. The
"number of data bytes" fisld in the first block indicates how
many groups are currently allocated to this random Ffile. The
next 256 Dbytes in the two random index blocks give the
location of each group in the random file in order of +their
position in the file. The wupper two bits give the group
number , and the lower six bits give the track number - 6.

.
BASIC 4.1 113

120

Assembly Code to Read and Write a Sector

The following code has been provided to helv users write their

own assembly

the floppy d

the floppy 4
re-synchroni

floppy disk contreller.

- we W

ALL REGS D

DSKO: Mov
MV
5UB
MOV
CALL
MVI
ourT

CALL WITH
AND {H,L]

HLDSK: MVI
MVI
ORA
Mov
INX
NOTYTD: IN
ANA
JNZ
ADD
ouT
MOV
INX
MOV
INX
DCR
JZ
DCR
ouT
'JNZ
ZRLOP: 1IN
ANA
JNZ
ouT
DCR

language

subroutines to read and write data on

isk. It is assumed that the disk being used has
already bheen enabled and positioned to the correct track. Two
data bytes are always read or written at a time so that the
CPU can keepn up with the data rate (32 microseconds/byte) cf
isk. After two bvtes are read or written, the CPU

zes with

ESTROYED.

C,A
A,136
C

B,A
SECGET
a,128
g

'byte ready' status from the

CALL WITH NUMBER OF DATA BYTES TO WRITE IN [3]
AND POINTER TO DATA BUFFER IN ([H,L]

:SAVE # OF BYTES IN C

:CALCULATE NUMBER OF ZEROS TO WRITE

+ SUBTRACT THE NUMBER OF DATA 2YTES
sNUMBER OF ZERCS+1
;s LATENCY

; ENABLE WRITE WITHOUT SPECIAL CURRENT

[B]=NUMBER OF ZEROS [{]=NUMBER OF DATA BYTES
POINTING AT OQUTPUT DATA

Dfl
A,128
yl
E,A

1@
NOTYTD
8

D
ZRLOP
1g

B

;SETUP A MASK (READY TO WRITE)

+HIGH BIT (D7) ALWAYS ON IN FIRST BYTE

;OR ON CATA BYTE

1+ SAVE FOR LATER

; INCREMENT BUFFER POINTER

+GET WRITE CATA READY STATUS
;TEST STATUS BIT

s NOT READY TO WRITE, WAIT

;ADD BYTE WE WANT TO SEND TC ZERC
s SEND THE BYTE

;GET NEXT BYTE TO SEND

sMOVE BUFFER POINTER AHEAD

;GET NEXT DATA BYTE

;MOVE BUFFER POINTER AHEAD AGAIN
; DECREMENT COUNT OF CHARS TO SEND
;IF DONE, QUIT & GO TC ZRLOP

; DECREMENT COUNT OF CHARS AGAIN
; SEND THIS BYTE

;STILL MORE CHARS, DO THEM.

;GET READY TO WRITE

;IS IT READY

;IF NOT, LOOP

;KEEP SENDING FINAL BYTE
yDECREMENT COUNT OF BYTES TO SEND

BASIC 4.1

April, 1877

; RE-ENABLE INTERRUPTS .

JNZ ZRLOP +XEEP WAITING
EI

MVI 3,8 ;UNLQAD HEAD

ouT S ;s SEND COMMAND
RET : DONE

DISK INPUT RQUTINE. ENTER WITH POINTER

; OF 137 BYTE BUFFER IN ([H,L].

ALL REGS DESTROYED.

;IF CHARS STILL LEFT, LOOP BACK

DSKI: CALL SECGET :POINT TO RIGHT SECTOR
MVI c,137 ;GET % OF CHARS TO READ
READOK: IN 8 ;GET DISK STATUS
ORA A :READY TO READ BYTE
JM READOK
IN 19 s READ THE STUFF
MOV M, A s SAVE IN BUFFER
INX H ;BUMP DESTINATION POINTER
DCR c : LESS CHARS
Jz RETDO ;IF QUT OF CHARS, RETURN
DCR c s DECREMENT COUNT OF CHARS
- NOP ;DELAY INTO NEXT SYTE
N 19 ;GET NEXT BYTE
MOV M, A s SAVE BYTE IN BUFFER
INY i ;MOVE BUFFER POCINTER
INZ READOK
RETDO: EI ; RE-ENABLE INTERRUPTS
_ MVI A,8 ; UNLOAD HEAD
ouUT 9 ; SEND COMMAND
RET
SECGET: MVI 3,4 : LOAD THE HEAD
ouT 9
DI s DISABLE INTERRUPTS
SECLP2: IN 9 ;GET SECTOR INFC
RAR ;FIX UP SECTOR %
Ic SECLP2 : IF NOT, KEEP WAITING
ANI 31 ;GET SECTOR #
cHMp E ;IS IT THE ONE WE WANTED
JNZ SECLP2 :TRY TO FIND IT
RET

The Disk PROM Bootstrap Loader

The Disk Bootstrap Loader PROM must be

highest mwosition on the PROM board and the
strapped at the oproper address. The proper
PROM IC socket on the opposite gside of
olack finned heat sink. The black dot or

should be . in the upper left corner. The
the PRCM board must be in the '1' position.

BASIC 4.1

April, 1977

installed in the
PROM board must be
position 1is the
the board from the
1 on the PRCOM
address jumpers on

121

To use the Disk Bootstrap Leader, turn the computer's power
on. Raise RESET and STOP simultanecusly. Lower RESET and
then STOP. EXAMINE location 1774080 (address switches AlS-AS8
up, rest down} and then set the sense switches for the
terminal I/0 board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or display): .

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Using the Cassette and Pawer Tape Bootstraps

If the Disk Bootstrap Loader PROM is not in use, a paper tape
or cassette program must be loaded which then reads in BASIC
£rom the disk. This is done by following the procedure below:

1. Xey in the apwvlicable paper tape or cassette bootstran

loader from the listings in Avpendix B. Make
location 2=877 octal. Set the sense switches for the
terminal.

2. Start the pawver tape or cassette {labeled DISK LOADER}
reading, and then start the computer as in the
instructions for loading BASIC from naper tape from
cassette as given in Appendix B. b

BASIC should respond:

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Disk Initialization Dialog

The initialization dialog has been expanded to allow the user
to select the proper amount of memory needed to use the
disk{s} on the system. After the the MEMORY SIZE gquestion 1is
answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user should answer with the highest physical disk address

in the system or with a carriage return., The default 1is 4.
Each additional disk uses 40 bytes of memorvy.

BASIC 4.1

April, 1977

Example:

HIGHEST DISK NUMBER? 1

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and sequential
files. If the user types carriage return, the default is
zero. Each file allocated requires 138 bvtes for buffer
svace. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257,
This memory space is used to keep track of the location on the
floppy disk where groups of a random file reside. Thus, the
total memory reguired for each random £ile is 138+257=395
bytes., Example:

HOW MANY RANDOM FILES? 1
A typical dialog might appear as follows:

MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriage return>

HOW MANY FILES? 2 <carriage return>

HOW MANY RANDOM FILES? 1 <carriage return>

XXXXX BYTES FREE

ALTAIR BASIC REV. 4.8

[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

BASIC 4.1 _ 123

April, 1977

124

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such éuch
common functions as printing directories, initializing disks,
copying disks etc.

NOTE

Some of the PIP commands {LIS, DIR) require that one
<file number> be configqured during the Disk BASIC
initialization dialog. This is done by answering the
“HOW MANY FILES?" guestion with a value greater than
zero., If an attempt is made to perform a LIS or DIR
without following this procedure, a BAD FILE NUMBER
error will occur.

Once the BASIC disk has been mounted, type the following
command :

RUN "PIP"<carriage return>
(PIP will type)
*

PIP 1is now ready. to accept commands. To exit PIP, type a
carriage return to the prompt asterisk. To 1initialize the
floppy disk in drive 4, type:

*INIG

PIP will tyve "DONE" when it is finished. Any disk number may
be substituted for the 4 in the above c¢ommand and PIP will
format the disk in that drive. Any vrevious files on the disk
initialized will be lost. If vou wish to use blank disks with
Disk BASIC, they must be initialized in this fashion before
they can be MOUNTed.

NOTE

DC NOT INITIALIZE THE DISX WITH DISK EXTENDED BASIC ON
IT. THIS WILL WIPE OUT ALL THE FiILES PROVIDED ON THE
DISK.

BASIC 4,1

April, 1977

Printing a Directory

Giving PIP the command:

*DIR<disk number>
prints out a directory of the files on the specified disk.
The name of each file is printed along with the file's “mode"
(S for sequential, R for random) and the starting track and
sector number of the first block in the file.

SRT<disk number>

prints a sorted directorv of the files on the specifisd disk.
LISting Sequential Files

The LIS command is used to list the contents of a sequential
data file on the terminal:
syntax:
LIS<disk number>,<file name>
Example:

*LISE3,PIPA user types
. 7 CLEAR 1d@@ computer prints

COPying Disks

The COP command is used to copy a disk placed in one drive to
a disk on another drive. Neither disk need be MOUNTed for the
COP command to work properly.

Syntax:

COP<0ld disk number>,<new disk number>

BASIC 4.1

April, 1877

Before the copy is done, PIP verifies the action bv printing
the following massage:

FROM<disk number>T0<disk number>

Typing Y followed by a carriage return causes execution to
proceed. Any other response aborts the command. Example:

*Copr4,1

FROM @ TO 1? Y<carriage return>
CONE
#r

The DAT command
The DAT command is used to dump out a varticular sector of the
disk in octal.
Syntax:
DAT<disk number>

When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. Example:

*DATH " (DAT is eqguivalent)
TRACK? 8

SECTOR? 0

060 960 903 090 000 @00 2908 2890

00¢ 629 800 909 26d etc.

The CNV command

" CNV converts disks written under Altair BASIC version 3.4 and
3.3 to a format useable by version 4.6. The format of the
command is as follows:

CNV<disk number>
CNV makes sure that the next to last byte of each sector 1is
-255.

Other Programs Provided on the Svstem Disk

JASIC 4.1

Agril, 1577

Program Nama
STARTREK

BASIC 4.1

April, 1977

Use
Plays game based on TV series.

128

APPENDIX J

RSTLESS VERSIONS OF BASIC

Altair BASIC uses the so-called RST locations (locations
8 through 188 octal) at the bottom of memory. This saves
memory space, but precludes the use of the Vector Interrupt
board for real-time programming applications. Special.
versions of Altair BASIC are available which do not use the
RST locations, however., These versions leave the RST
locations free to be used for assembly language routines in
the same was as any other locations in high memorv.

To restart the standard versions of Altair BASIC, it 1is
necessary simply to actuate the RESET switch on the computer's
front panel. This causes a Jjump to location 4. In the
RSTLESS version, BASIC is restarted by jumping to location 1498
octal. The usual procedure for doing this is as follows:

1. Raise STOP and RESET simultanecusly, then release them
2. Raise switch A6

3. Actuate EXAMINE

4, Push RUN

BASIC restarts and prints “OK.*

BASTIC 4.1

April, 1977

APPENDIX K

USING Altair BASIC ON THE
‘INTELLEC* 3/MOD 80 AND MDS SYSTEMS

This appendix covers procedures for loading and owverating
Altair BASIC on Intellec and MDS development systems.

3, Loading BASIC.

To load Altair BASIC, put the hex paper tape of 3ASIC in
the svstem reader device. Enter the System and assign the
CONSOLE I/0 device as desired (see Section 4.2.1 of the
Intellec 8/Mod 8@ Operator's Manual). Now read in BASIC with
the following R command.

«R(Cr}

The BASIC tape will be loaded into memory, and the svstem
monitor will type a period on the CONSOLE device., If you are
only using contiquous RAM memory below the svstem monitor
{(3809H) or are using BASIC on a MDS System, proceed to step 2.
If yvou have RAM memory above the PROM Intellec monitor which
vyou wish BASIC to use for orogram and variable storage, vou
must patch the twe locations known asg INTLOC to point to the
bottom (lowest address) o¢f memory. The is most easily
accomplished by using the System Monitor S command. INTLOC is
given below under "Memory Reguirements."

.SXXXX 60 49 {(Cr)

The above 3 command would make INTLOC voint to RAM, starting
at 1leK.

NOTE

if you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization tine (see
Appendix B8). Essentiallv, this means that the WANT
SIN-COS~TAN-ATN? gquestions asked by BASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? question with
the highest decimal or RAM address in your svystem.

BASIC 4.1

April, 1977

Start BASIC by giving the monitor GOTO command.

.GBB3B<carriage return>

NOTE

Once BASIC has been started, it may always be
restarted by depressing the RESET switch on the
Intellec 8 console.

When BASIC types MEMORY SIZE?, typing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to specify an exact
amount of memory, type the decimal address of the highest byte
of memory in the computer and type carriage return,

B. BASIC I/0.

The system devices used for terminal I/0 in BASIC are CI,
CO and CSTS. ,

C. Saving and Loading Programs.

To save a Drogram Oon paper tape, re-enter the PROM

monitor and rezassign the CO device to the paper tape punch or

130

other outout device. Then restart BASIC by using the Gg@G§2
command and type LIST{Cr). The characters of the LIST command
will not be echoed, but the BAaASIC vrogram currently saved in
memory will be put on the ocutput device,

To load a2 program, enter the svstem monitor, re-assign CI
to the input device where the program resides, and then start
BASIC with a Gg@d9. When the program has been completely read
in, reassign CI to the user conscole. Then re-~-enter BASIC with
a G@@g6B, and start the I/0 device. The program will be echoed
on CO as it is read in. .

D. Memory Recuirements

BASIC uses locations (@0dH-0803H and @8ldH-approximately
19DFH 1in the 8K wversion, and 0810H-2F9EH in the Extended
version. For Intellec 8K and MDS 8K BASICs, INTLOC is 6524

decimal, For MDS Extended, INTLOC is 14257 decimal.

E. Calling Assembly Language Routines

USRLOC for SK BASIC is @§55H. ADR(DEINT) 1is stored 1in
leocations 9@43H. ADR(GIVACF) 1is stored in location 8845H. In
the Extended version, these locations contain the addresses of

BASIC 4.1

April, 1977

FRCINT and MAKINT, respectively. Interrupt driven subroutines
using RST 7 are not allowed in the Intellec/MDS version of
Altair BASIC. Sea Avvendix C for further information on
calliing assembly language subroutines.

* TIntellec is a registered trademark of the Intel
Corporation. '

2ASIC 4,1 131

SApril, 1977

APPENDIX L
PATCHING BASIC'S 1/0 ROUTINES

BASIC's I/0 routines may be changed to accommodate
non~-standard terminal equipment. After BASIC is loaded and
before it has been initialized, location 71 contains a pointer
to a list of addresses, These addresses contain the I/0
routines of BASIC: '

CRG 7Q1
DW IOLST ;TWO BYTE ADDRES3S OF ADDRESS LIST
IOLST: DW TRYIN ; CHARACTER INPUT ROUTINE
DW TRYOUT :ADDRESS OF OUTPUT ROUTINE
DW ISCNTC ;POLL FOR CONTROL/C CHECK
DW NEWSTT s FAST POLL FOR CONTROL/C CHECK
;3K AND LARGER ONLY
DW IN23I0 . tADDRESS OF INITIALIZATION
; ROUTINE FOR 2SIO BOARDS
DW IN4PIC +ADDRESS OF INITIALIZATION ROUTINE FOR
:4PI0 BOARDS
DW LPTPOS ;ADDRESS OF LPT CODE FLAGS
DW LPT3CD ; START OF LPT CODE
DW - ENDLPT +END OF LPT CODE
DwW IOCHNL +ADDRESS OF I/0C RESET LOCATION
; 7 (IN EXTENDED AND DISX ONLY)
TRYQUT: IN 8 ; GET DEVICE STATUS
ANI 299 ;AN OFF BIT 7
JNZ TRYOUT ;WAIT UNTIL TERMINAL CAN OUTPUT
POP PSW ;GET CHARACTER TO OUTPUT OFF STACK
ouT 1 s TRANSMIT IT
- PUSH PSW ; SAVE CHARACTER BACK ON STACK
NOP : CHANGED TO "IN 41" FOR 4PIO BOARDS
NOP
POR PSW :GET CHARACTER BACK OFF STACK
RET ;ALL DONE WITH CHARACTER OUTPUT ROUTINE
TRYIN: IN 2 ;GET TERMINAL STATUS
ANT 1 ;CHARACTER READY?
JNZ TRYIN ;NC, KEEP WAITING
IN 1 ;s READ IN THE CHARACTER
ANI 127 ;GET RID OF PARITY BIT

BASIC 4.1

April, 1977

ISCNTC:

couro

; CONTROL/C?
s RETURN IF NOT

s READ TERMINAL STATUS

sHAS THE TERMINAL A CHARACTER

:TO SEND?
;NO, RETURN

i FOLLOWING ROUTINE IS IN 3K AND LARGER VEPSIONS ONLY
EXECUTED FOR EACH STATEMENT

sAND I3

NEWSTT:

IN2SIO:

IN4PIO:

N
ANI
CZ

CPI
RNC
ADI
PUSH
MVI
CALL

POP
JMP

MVI
DCR
CALL

2
1
CNTCCN

2%4

21

PSW
Ar3
DQIO248
PSW
DOIC29

A,54Q
M
DOIO2%

' + READ TERMINAL STATUS
: TEST BIT @
;YES, SEE IF CHARACTER CONTROL/C

+IS IT 23510

;NQ, OTHER GO DIRECTLY TO SETIO
;GET PROPER INITIALIZATION BYTE
;SAVE IT '

s INITIALIZE THE 2810

GET BACK SECOND INITIALIZATION BYTE
; PROGRAM TO DATA AND STOP BITS

s RESET FOR DATA TRANSFER
s CHANNEL=22

The pointers LPTPOS, LPTCD3 and ENDLPT refer to the
following sections of lineprinter code:

A. LPT code flags.

LPTLST:

LPTPOS:
PRTFLG:

EASIC 4,1

April, 1977

DB

DB
uB

i

;9 MEANS LAST LPT OPERATION

;WAS LINE FEED

;1 MEANS LAST LPT OP'N WAS PRINT

; CURRENT LOGICAL POSITION OF LPT HEAD
;9 MEANS OUTPUT TO CONSOLE

;1 MEANS OQUTPUT TO LPT

;2 MEANS LLIST OUTPUT TO LPT

133

iy

QPOS: pB @ : CURRENT Q790 PRINT HEAD POSITICON
DB 2 sIN 1/126 INCH INCREMENTS
QMOV: DB B ;NUMBER OF INCREMENTS TO MOVE Q7%
;PRINT HEAD IN ADDITION TO CHARACTER
LPTLEN: D3 @ s MAX. NUMBER OF LPT COLUMNS
NLPPOS: DB 3 ;COLUMN BEYOND WHICH THERE -ARE NO MORE

: "COMMA FIELDS"

A comma in a LPRINT statement causes the printhead to move to
the beginning of the next 14 column field. If LPTPOS is
greater than NLPPOS, a carriage return line feed seguence is
executed before printing. NLPPOS is <calculated by the
following relation:

NLPPOS=INT(((LPTLEN/14)~1)*14)

LPTLST is used onlv by the 8fLP printer. QPOS and QMOV
are used only by the Q74. The user should not modify the
PRTFLG flag since it is modified and referred to in several
places in BASIC. Changing it in a USR routine has
unpredictable results.

B, Start of LPT cocde.

LPT3CD: JMP - FINLPT
JMP PRINTW

body of LPT code

The main body of LPT code iz entered whenever PRIFLG is
determined to be non~zero. The character to be output must be
at the top of the stack,. Upon exit from LPT code, the
character must be removed f£rom the stack and should be loaded
into the Accumulator. This 1s because BASIC checks the
Accumulator for the last character printed.

PFINLPT is entered whenever BASIC returns to command
level. FINLPT calls PRINTW for a carriage return/line feed
sequence, if necessary, and resets PRTFLG to zero,.

PRINTW does the carriage return/line feed.

FINLPT and PRINTW both return with zero loaded in the
Accumulator and all the condition codes set to zero,

BASIC 4.1

April, 1977

C. Bnd of LPT code

ENDLPT is the physical end of the 1linevrinter driver
code.

The following routines are used in with all terminal

devices:
IOCHNL: 9 :DEPOSIT BOARD TYPE HERE
| + CHANNEL GETS DEPOSITED HERE.
IOREST: LXI H, ICCHNL :GRAB POINTER TO IT
CALL HELPIC s SET UP THE NEW CONSOLE DEVICE
CALL STKINI s MAKE STACK OK

_JMP READY ;AND TYPE "OK" HOPEFULLY ON GOOD CONSOL

To modify the I/0 routines, stop the machine after
loading BASIC and insert the changes using the front panel
switches, or read in a tape containing the. wvatches. Restart
BASIC at location zero with all sense switches up. This will
prevent BASIC from modifyving the I/0 routines. in general,
these quidelines should be followed in writing I/O routines:

1. Insert a JMP at TRYOUT to the custom ocutput routine. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Make sure all registers are left
unchanged when the routine ig exited.

2. 1Insert a JMP at TRYIN to the custom input routine, Return
the input character in the A register and do not change
any of the other reqgisters. The PSW may be changed.

3. To modify ISCNTC, 1insert a CALL to the custom poll
routine. This routine returns a non-zero conditicon code
setting if no character is present and zero if a character
is present. The A register and the condition codes may be
changed.

4. To change the initialization of the 2SI0 board, changé the
“ADI 23Q" to UMY T 4,XHX" where XXX 1is the new
initialization bvte.

3. To change the initialization of the 4PIO board, change the
C"MVI A,54Q" to a "MVI A,XXX" where XXX is the new
initialization bvte. '

6. To patch in a new line oprinter driver, chanae the code at

) LPT A hat PRINTW is also v—the roukine—
which prints iag 1 line feed. The code at
LPTCDZ ~ahd LPTCR3 must be cha 1f the line printer is
nok-89% characters wide.

BASIC 4,1

April, 1877

136

7. To recover from an incorrect CONSOLE command, deposit the
board type in IOCHNL, the board type in IOCHNL+1l, and
start the machine at IQCHNL+2.

Patching Disk BASIC - the PTD program.

After Disk BASIC is loaded, depcosit the desired patches
in memorvy. Then examine and run PTD at location 54460 octal.
After two or three seconds, the patched version of BASIC will
be saved on disk. The save is complete when the Disk Enable
light on disk drive zerc goes out.

To save a patched version of BASIC on a disk which dig
noct previously contain release 4.8 Altair BASIC, track @ must
be copied from a 4.9 disk.

PTD may also be used to save programs cother than BASIC on
tracks 0-4 of a diskette by loading the program after BASIC is
loaded and running PTD. All memory locations between @ and
46008 octal will be saved on tracks 9-4 on diskette zero,.

BASIC 4.1

ApTil, 1977

APPENDIX M
USING ALTAIR DISK BASIC
An Example

The following is a discussion of how to program a typical
application 1in BASIC. The example 1is the MITS in-house
inventory system which is designed to run on the following
hardware:

Altair 88@fb computer with 32K memory, PROM memory board
with the Disk PROM Bootstrao lecader and a 25I0 serial
I/0 board

Two disk drives

24-line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an avplication
is setting up the files. Files that are correctly set up will.
be easy to use and maintain., Poorly set up files will be a
perpetual headache, causing either an eventual rewrite or,
more likely, abandonment of the systen.

The first listing at the end of the appendix, INVEN,
containg modules from the main proaram in the inventory
gsystem. INVEN shows how the central file (a random file) in
the system is set up and how it is handled. The INVEN listing
also shows the use of another random file and a sequential
file. The CALC 1listing shows how to read programs as data
files. CODEl is a partial listing of 2 program that will be

read as a data file.

The INVEN modules listed were included to show the
following features: '

1. wprogram startup initialization and comments about the
files used by the program (lines 1-35)

2. what the complete program does (lines 69-1898)

3. an example of how to modify records in a random Ffile
{lines 9%90-1441)

4. an example of how sequential files =zare used {lines
18609-1868 and 27906-2828)

5. one approach to the problem of handling a random file that
spans more than one disk (lines 28489-2038)

BASIC 4,1

Xpril, 1977

138

6. three subroutines (lines 3G0-349, 9888-9029 and 9203-9224)
that are called by the INVEN modules.

The function FNY {line 6) 1s wused to round dcllar
amounts to thousandths of a cent. FNQ (line 7) is used to
round dquantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INvi and INV2 are repeatedly fielded by calls to the
subroutine at line 2064. The IF F>235 {line 68) avoids the
possibility that the oprogram can be stopped by an illegal
function call at line 6l. _

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory module,
etc. This prevents updating one file but not the other.
{This could hapven if PUT Z, Rl was at line 1918.)

Line 2600 sets 2 to 1 and Rl to N if the item wanted, N,
is 1less than 2061. It sets %2 to 2 and Rl to N-2889 if the
item wanted is greater than 2086, Line 28022 then sets the
pointers for the wvariables in the field statement to point
into either the buffer for INV1 or the buffer £for INV2,
depending on whether the item wanted is less than 2991 or
greater than 2064€49.

The CALC listing is a program which determines if there
are enough parts in inventory to meet projected demands. Line
68 waits while the disk comes up to speed so the message
“ENABLE DISK 1" will not be printed on the terminal. Lines
199-146 input up to fifty different product codes and the
number of each product to be built., Line 178 ovens a file for
each product that contains the pvarts required for the product.
Lines 228-25¢ build up a renort heading, extracting the
product description contained in line 18 of each file.

Lines 120~158 accumulate the number of parts required for
gach product into the array Q. If more than 32757 of a part
is required, a pointer is set in the array Q and the number of
the part is accumulated in the array Q!. This maneuvering is
necessary since the system does not have enough memory to
dimension Q as single precision instead of integer.

The parts lists for a product are programs saved with the

A option. Since they are vprograms, their maintenance is very

easy. For example, suppose that part 1971 in the 888db is too
marginal and that from now on part 1173 should be usad
instead. With the parts lists disk mounted on drive @, the
following sequence will update the 8840b file:

BASIC 4.1

April, 1977

LOoAD “CODEL"
169,1,1173
SAVE “CODEl",%,3

The programmer who is cramped for memorv will find that
programs can still be documented adequately if comments are
set up as separate files. The memory used for variables when
a program runs can be used for comments if the comments are
merged in when the program is to be 1listed. Alternatively,
the program could be listed in two or more parts. Additional
memory can be obtained by bringing BASIC up without ovptional
functions and with no files,

The main inventory program is set up so that a carriage
return typed in response to any prompt causes the program to
dump the function descriptions on the CRT and to return to the
FUNCTION NUMBER prompt. If the progqram were to be run on a
printing terminal, instead of a 9646 baud CRT, it would nct be
set up to print the descriptions every time the opsrator
wanted to get back to the FUNCTION NUMBER prompt. The list of
function descriptions might be taped on the wall next to the
terminal instead.

Listing of INVEN

DEFINT F-N
DEFINT R

DEFINT 2

DEFDBL P

DEF FNY#(Q8#)=INT(Q8#*a4+.54) /A%

DEF FNQ# (Q9!)=INT (VAL (STRS (Q91))*10034%+.54) /18060%
AS=MRDS (9) :BS=MKS$ (8) :A$=1000004%

1d DIM Q$(2) ,P$(2)

11

o ~1 o b po

INV1 ON DRIVE ¢ HOLDS ITEMS 1-2060

INVZ ON DRIVE 1 HOLDS ITEMS 2801-404¢9

INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 ! :

WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MCONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM #S THAT NEED TO BE RESET:; AND ARE READ BY
THE WEEKLY,MONTHLY RESETS.

14

Q$() <=> THREE ON HAND QTY FOR: PS$() <=> THREE PRICES
[P(9) OLDEST, P(l) NEXT OLDEST, Q(9)<>@ IF Q(l)<>@,
Q{L)<>0 IF Q(2)<>a]

_DE f=> DESCRIPTION LEFTS(D$,3)="$$$" <=> INACTVE ITEM #
1

Il$ <=> WEEKLY QTY IN

I28 <=> MONTHLY QTY. IN

0l$ <=> WEEXLY QTY OUT

3A5IC L.l 139

April, 1877

140

029
TS

DIl
ID2
DC1
oD2
17

. bT1

DX2
DG1
DY?2

24
39
32
35
60
61

63
64
65
66
67
68
659
79
71
72
73
74
75
76
77
78
1g4
298
*
SUB
*
369
319
3248
336

349

89¢
*

F=6

*

<=> MONTHLY QTY OQUT
{=> RECRDER LEVEL

$ <=> WEEKLY $ IN

$ <=> MONTHLY $§ IN

§ <=> WEEKLY $ OUT

$ <=> MONTHLY $ OUT

$ <=> WEEKLY DEPT § TAKEN
$§ <=> MONTHLY DEPT $ TAKEN
S <=> WEEKLY DEPT $§ GIVEN
§ <=> MONTHLY DEPT $§ GIVEN

OPEN "R",#1,"INV1"
OPEN "R",#2,"INV2Y,1
QPEN “R",#3,"INV3",1l
PIELD #3,8 AS DT1S,8 AS DX2$,8 AS DG1S,8 AS DY2S
PRINT:F=0: INPUT"FUNCTION NUMBER";F:IFF>255THENSG3
ON F GOTO 214,354,350,1909,600,960,17948,
2769,25908,2308,2400¢,1888,2946"

2 3 4 5 & 7 8 9 ip

11 12

13

14 15 16

PRINT”1 - ENTER NEW ITEM"

PRINT"2 - LIST ITEM ON CRT (SHORT FORM)"

PRINT"3 - LIST ITEM ON CRT (LONG FORM}™

PRINT"4 -~ PRINT ITEMS ON LINE PRINTER

PRINT"5 - ADD TO INVENTORY"

PRINT"6 REMOVE FROM INVENTORY"

PRINT"7 PRINT WEEKLY DEPT DOLLAR RECCRD ON LINE PRINTER
PRINT"S PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
PRINT"S WEEKLY RESET

PRINT"18~ PRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
PRINT"1l- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
PRINT"12- MONTHLY RESET

PRINT"13- RESET ORDER LEVELSE

PRINT“14~ PRINT LISTNG OF ITEMS NEEDING TO BE RE-~-ORDERED
PRINT"15~ DELETE OLD ITEM

PRINT"16- ERRORS BACKCUT

GOTO62
1

- INPUT PART # & GET RECORD

PRINT:PRINT:N=7:INPUT"PART NUMBER";N:IFN<ITHENRETURN

IFN> 4000 TEENPRINT : PRINT" ' '# TOO HIGH''":GOTO 346

GOSUB28¢8:GETZ,R1

IFLEFTS (DS,3)="S$$$ " THENPRINT:
PRINT"''NO INFORMATION ON PART''";N:GOTO3G%
RETURN

- REMCOVE FROM INVENTORY

BASIC 4.1

April, 1977

90% GOSUB38@:IFN=8G0TO63
920 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN: IFDN=-1THEN&3
950 IPCVS(QS(9))+CVS(QS(1})+CVS{QS(2))<DNTHENPRINT"
ATTEMPT TO REMOVE MORE THAN ON HAND" : PRINT:GOTO&3
968 DE=DN:P=9
979 IFDOKCVS(QS(3)) THEN)
P=P+FNQ# (D@} *CVD (PS$(0)) :LSETQS (J) =MKSS (CVS{Q$(3)) ~-Dg) : -
GOT01389
980 P=P+FNQ# (CVS(QS$(9)))*CVD(PS$ (D)) :DI=DA-CVS (QS (¥)) :
LSETQS () =Q$ (1) :LSETQ$ (1) =0$ (2} : LSETQS (2) =BS:
LSETPS (#) =P$ (1) :LSETPS (1) =P$ (2) : LSETPS (2)=AS : IFDATHEN
GOT0974 :
1900 LSETOl$=MKSS$ (CVS(01$)+DN) :LSETO25=MKSS (CVS(023) +DN) :
LSETDOLS=MKDS$ (CVD (DO1$) +P) : LSETOD2$=MKDS (CVD(OD2S) +P)
1826 GOSUB9200:IFC%=-1GOTO63
1239 LSETDT1$=MKD$ (CVD(DT1S)+P) :LSETDX2$=MKDS (CVD (DX23$)+B)
1949 PUT3,C%:PUTZ,R1:GOTO940
1799 : .
*

F=9 - WEEKLY RESET

*

1849 PRINT“7 - WEEKLY DEPARTMENT RECORD

1802 PRINT"8 - WEEKLY ACTIVE ITEMS

1884 Z$="":INPUT“HAVE THE ABOVE BEEN LISTED FOR TODAY";Z$

1819 IFLEFTS (2$,1)<>"Y“THENPRINT:PRINT
“WEEKLY RESET NOT PERFORMED" :GOTO63

1843 OPEN"I",4,"WEKLYRST"

1845 IFEOF (4) THENCLOSE4:RILL"WEKRLYRST*:GOTOL862

1850 INPUT#4,N:IF 1<=NANDN<=4400 THENGOSUB2800:GETZ,R1
ELSEPRINTN; "OUT OF BOUNDS. RESET ABORTED.":END

1855 LSETI1$=8§:LSETO1$=B$:LSETDI1$=A$:LSETDO1$=AS$:PUTZ,R1

1866 GOTO1845

1862 FORI=1T020

1864 GET3,T:LSETDT1S$=A$:LSETDG1S$=AS:PUT3, I

1866 NEXT

1868 GOTO60

1999

®

SUB - GET Z,R1 FOR N AND FIELD TO INV1,2
*

2008 Z=1-{(N>2008) :R1=N+{2=2)*2000
2929 FIELD Z,4 AS Q$(@),4 AS Q$(1),4 AS QS$(2), 8 AS PS(9),
8 AS PS(1),8 AS P$(2),40 AS DS,4 AS I1S$,4 AS 128,
4 AS 01%,4 AS 025,8 AS DI1$,8 AS ID2$,8 AS DOlS,8 AS ODZS
2930 RETURN
2699

*

F=8,11 - WEEKLY,MONTHLY ACTIVE ITEMS LIST
* : .

2708 N=1:GOSUB28¢5:GOSUR2855
2783 IFF=8THENOPEN"O",4,"“WEKLYRST"ELSEQPEN"0", 4, “MONTHRST"

BASIC 4.1 . ') 141

April, 1877

142

2705 IT4é#=0:0T¢=0:TT#=0
2718 FCRI=1T02800
2720 GETZ,I:IFLEFTS(DS,3)="353"“THEN28JG

2723 Qﬂ—-cvs(QS(@)) Ql=CVS(Q$(l))-:Q2=CVS(Q$(2))

2725 IFF=8THENI|=CVS(I1l$):0!=CVS(01§):I#=CVD(DI1§) :04=CVD(DO1S)
ELSEI{=CVS(I2$):0!=CVS(028) :I#=CVD(ID2S) :04=CVD(0D23)

2727 TT#=TT#+CVD(P$(5))*QB+CVD(P$(1))*Q1+CVD(P$(2))*Q2

2730 IFI!+0O!=0THEN2864

2733 PRINT#4,N+I-1

2735 IT#=IT#+14:0T#=0T#+0%

2740 IFL9>59ANDKK=4THENGOSUB28549

2750 LPRINTUSING"####4#";99999!4+N+I;

2779 LPRINTUSING“#%,###,$#$4";1!,0!1,Q0+Q01+02,Q0+01+Q2+0!-1I!;

2780 LPRINTUSING"SS,##4,%#%.%3"1%,0%

2798 LS9=L9+1

2795 KK=KK+1:IFKK=S5THENLPRINT:L9=L9+1:KK=]

- 2880 NEXT

2810 IFN=1THENN=2001:GOSUB28089:G0TOQ2719

2811 CLOSE4

2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$S##,4##,#%%. 43" ;T4

2815 REM *GOTO2820 IN F=7,18

2820 LPRINT: LPRIWTUSING"TOTAL IN = SS§#,#33,743.83" ;1T

2830 LPRINTUSING"TOTAL CUT =S#%,#F%, 254 .%#5" ;0T

2837 LPRINT:LPRINT

2848 GOTOS#H

2858 FORJ=LSTO66:LPRINT:NEXT

2855 IFF=8THENLPRINT"WEEKLY";:ELSELPRINT“MONTHLY";

2860 LPRINT" ACTIVE ITEMS LIST";:GOSUBSZ2M

2865 LPRINTTARB(39);"STARTED" :

287¢ LPRINT"ITEHM # QTY~-IN QTY-OUT ON-HAND MO-WITH
DOLLARS~IN DOLLARS-QUT"

2888 LPRINT:XK=0:L9=6:RETURN

8929 !

*

SUB -~ PRINT TODAY'S DATE
*

$¢90 IFTDS="*THENLINEINPUT"TODAY'S DATE ?";ID$:IFTD$=""THENG3
9419 LPRINT" ";TDS

9915 LPRINT

5928 RETURN

9198 !

INPUT DEPARTMENT # AND GET TOTALS

929@ C%=-1:INPUT"ENTER DEPARTMENT CODE":C%: IFC%=-1THENRETURN
9210 IF1<=C3%ANDC%<=20THENGET3,C%:RETURN

9220 PRINT"INVALID CODE" : GOTQ92449

Listing of CODEl
&
5 CODEl

BASIC 4.1

April, 1977

19 PARTS LIST FOR: 88603
20 OCT 30,1976

99 REM THIS IS THE START OF DATA
169 ,11,1042

11 ,3,1134

120 ,4,1849

139 ,1,1929

149 ,1,1621

156 ,1,1624

legd ,1,1871

170 ,1,1674

188 ,1,2145

194 ,24,348

269 ,2,326

Listing of CALC

16 CLEAR6G

20 DEFINT A~

36 DIM CN(49),NU{49),Q(4AGE),Q! (280)

48 CLOSE:UNLOAD]

50 INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";GS

60 FORKI=1TOS508%:NEXT:MOUNT1 |

9¢ LINEINPUT“TODAY'S MO/DA/YR “;DT$:4$(8)=DTS+* PARTS AVAILABLE FOR:"

95

INPUT QUANTITY OF EACH PRODUCT REQUIRED

REkk Kk

160 INPUT“CODE NUMBER(J WHEN FINISHED)";CN(I)

119 IF CN(I)=8 THEN 150

129 IF CN(I)<1 OR 50<CN(I) THEN PRINT"INVALID CODE NUMBER":
GOTO 184

13¢ INPUT"NUMBER OF UNITS TO BE MADE";NU(I)

14¢ I=I+1:IF I<5¢ THEN 140

145

ACCUMULATE QUANTITY OF EACH PART REQUIRED

* Kk kR

138 FOR K=8 TO I-1

160" ONERRORGOTO614

17@ QPEN"I",#1,"CODE"+MIDS (STRS (CN(K)),2),1

188 ONERRORGOTOO

190 LINEINPUT#1,A$:IFAS=""THEN1S0

200 IFLEFTS (AS,3)="99 “THEN269

219 IFLEFTS (A$,3)<>"10 “THEN190

229 IFKTHENHS (HK)=HS (HK)+*, "

230 HHS=STRS (NU (X)) +5TRS (CN (R}) +"= (“+MIDS (AS, 20) +") »

'240 IFLEN (HH$)+LEN (HS (HK)) >72THENHK=HR+]1

250 HS (HK)=HS (HK) +HES : GOT01940

264 ONERRORGOTO634

276 IFEOF (1) THEN319

280 INPUT #1,A,QN,PN

298 IFQ(PN)<OTHENQ! (~Q(PN))=Q! (~Q(BN)) +NU (K) *ON

l-.-l
b
(V]

BASIC 4.1

Aprii, 1977

. ELSEQ({PN)=Q{PFN) +NU (K) *QN

309 GOTO279

312 ONERRORGOTO®:CLOSE 1:NEXT K

315 ! ‘

GET SECOND HALF OF INVENTORY BACK ON LINE

* %k kk

320 CLOSE:UNLOADL

338 INPUT®

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT";GS

340 FORI!=1TOS5890 :NEXT:MOUNT]

360 OPEN“R",#2,"INV1"

370 FIELD #2,4 AS Q1$,4 AS Q2%,4 AS Q3$,24 AS G$,48 AS DS

375 °

PRINT REPORT

Ak kk*x

389 GOSuUBS579

3484 FOR I=1 TO 4004

4GB IF Q(I)=0 THEN 538

410 QQ!=Q(I):IFQ(I)<ITHENQQ!=Q! (-Q(I})

429 IFL9>59ANDKK=0THENGOSURS56#H

430 L9=L9+1

449 RN=I :

450 IFI<208@THEN46GELSERN=RN-2000:IFFLAG=0THEN
CLOSE2:0PEN"R",#2,"INV2",1:FLAG=1:

FIELD#2,4 AS Q13,4 AS Q28,4 AS Q33,24 AS G$,40 AS DS

468 GET #2,RN _

470 IFLEFTS(DS,3)="SSS"THENLPRINTI+100806!;
kkdkkekkkkx NO INFORMATION ON PART ***&xdkkk&il, .
LPRINTUSING" #% ,#%3#44";QQ! :GOT0529

488 QH!=CVS(Q1S$)+CVS(Q238)+CVS(Q3$) :0D!I=CH!-QQ!

500 LPRINTI+1406G98!;DS:" “;

519 LPRINT USING "#%,###3%##";QQ!;QH!;QD!

529 KK=XK+1:IFKK=5THENKX=@:LPRINT:L9=L3+1

53¢ NEXTI:CLOSE:END

568 FORK=LSTO66:LPRINT:NEXT

565 !

PRINT PAGE HEADING

kk*R*k

578 FORR=ZTOHEK :LPRINTHS (K) :NEXT

588 LPRINT:LPRINTTAB{52);"NEEDED ON HAND EXCESS" : LPRINT

590 KX=0:L9=5+HK:RETURN

695 !

TRAP ROUTINE: BAD CODE NUMBER

kR

610 IFPERR=53THENPRINT:PRINT"NC CODE";MIDS$(STRS{CN(X})),2}:;" FILE"

623 ONERRORGOTOY

625 ¢

TRAP ROUTINE: ACCUMULATE INTO {Q OVERFLOWED

*kkkk

638 IFERR<>60RERL<>299THENCONERRORGOTO?

640 NQ=NQ+1:0Q! (NQ)=Q (BN)+NU(K) *QN:Q (ZN) =-NQ

679 RESUMEZ278@

144 BASIC 4.1

April, 1877

INDEX

@ - L - - . - - - - - - - . " 9

ABS.,

ACR interface e+ e« a . o« . 114
AND . . 4 4 e e e e e e . 17
Array variables . . . 14
AST it it i e e e e e e . 78
ASCII character codes ., . . . 93
ATN . & v ¢ i e e v s 4w . . 78
R

Backarrow . . .« . 4 v 4 +« . . B2
Boot lcocaders . « +« + + « « . . 95
Branch, conditional 19
Branch, unconditicnal 19
Branching 19

Carriage Return . . ., 4, 82
Character, alphanumeric . . 4

CHRS v v v w 0 v v v i w00 qg
CLEAR L] - - L] - - - - - - - - 69
CLOAD - - - L] - - - - - - - - 69

CLOAD* for arrays 25
CLOAD? . . & ¢ ¢« &« « v v « « . 69
CLOSE . & & 4 4 ¢« v v o « » « B9
CLOSE, randeom files 62

Command Level, . . . 4
Commands List« . . o 69
CONSCOLE . . . « « + . . « . 34
Constants . . . « . +« 10
CONT . . T e a4 s s s e w w 69
Control/A 9
Contrel/C . . &« v v v « v o . 82
Contrel/I . . . ¢« .+« v v « « . 83
Contrel/0 + +« « « . 83
Control/Q « + . 83
Control/s « + .« 83
Control/U . . « & &« v & o o« . 9
‘Conversion from non-Altair BASIC 116

CSAVE. . . + v v ¢« v 4 v « « . 89
C0s 78
CSAVE* for arrays 25
CVD . & v v v v 4 s v v« . . 65
CVI & v v v s e i v e v v . . B5
CVS . . . « ¢ . v v 4 B85

BASIC 4.1 -

AsTil, 1977

o

DATA . .
DEF . .
DEFDBL .

Definitions .

DEFINT .
DEFSNG .
DEFSTR .
DEFUSR .
DELETE .
DIM . .
Dimension

L] - L] -
L] - L] - 4
- =
*
L] L] * L] L] -

.

-

- - - -
.

L] * - L]

s

L] L] - L[]
*
L]
-
*
L]
*
»
L]
L]

Direct Mode . e e e e e e
Disk format . .+ ¢ & a o « s &
Disk number . + « « « o« = =+

Disk oper

ations v = . e .

Disk PROM Bootstrapn Loader .
Disk read and write, assembly code

Division,
bouble or
DSKF . .
DSKI$ and

integer . . + o+ .
ecigion

L]
-

- - L] L] +* - L] - -
-

DSKO$ nrlmltlves

Fcho routines .o « « « & « «

EDIT . .

L] - - - L] - - - - » -

Edit, definition . . .« . s+ . .

Editing,
END . .
EQF . .
BQV. . .
ERASE .
ERL . .
ERR . .

elementary provisions

Error codes « .« o & o o o s s
Error message format
Error messages, disk« .

ERROR sta

tement .+ .+ & & s 4 .

Error trapping . . « « « « & =«

EXPp . .

L] - - - - L] - L] - - -

Expression, integer
Expressions, string . . « . .

FIELD .

- L] - L] - - - - - L] -

Fields, numeric . . « + « « o
Fields, string . . . + « « + .

File name

- - - - - - - L] L] -

FPILES command . .+ « +« « « o« =

FIX . .

FCR . .

FRCINT .
FRE .
Functions
runctions
Functions

Functions, intrinsic . .
Functions, simulated (for 4

, derived
, extended .

24
28
13
4
13
13
13
39
70
14
14
5
118
52
51
121

35,

63
47
47
52
53
79
21

A
T

79

199
39
28
1@9

126

78

BASIC 4.1

April, 1877

Functions, string
Functions, user-~defined

GET
GOSURB
GOTO

HEXS

Bexadecimal constants

- - L] - -

- - - L] - -

IF...G0TQ0 . . .
IF. - .THEN - - -
I¥...THEN...ELSE

IMP

Indirect Mode .

Initialization

Initi
Initi
INP

INFUT
INPUT
INSTR
INT

Intel

KILL

LEFTS
LEN
LET
Line
LINE
LINE
LINE
Line
Line
LIST
Lists
LLIST
LOAD
Loade

L]

dialog

alization dialog,

alizing a disk

. disk . .,

- - L] - - -

lec systems,

- - - L] - =

FEED . . .
INPUT . . .
INPUT, disk
Length . .
Number , .

- - L] -

and Directories

- - * - L]

T @rrors .

Loading BASIC .
Loading programs

LOC
Lor
LOG
Loops
Lowsr
LPOS
LPRIN
LPRIN
LSET

BASIC 4.1

April, 1977

case input
T - - - - -
T USING ., .

31
28

62
" 22
19

On.

54
1a2
95

from paper tape 71

52
62
79
21
84
79
75
75
84

129

[

=1

MARINT . o +v o o s =« s o o .0 48
MERGE v « « ¢ o = = s « s 55
MIDS « v « o o » s s o o « « o 15
MIDS function 880
MEDS « =« « o o « o s s s « « o« 85
MKIS o « o« o« o = s s o o o « o 865
MESS « « o o « o » o s« = « « o« B3
MOD operator . . e o« = o o . 39
MCUNT & ¢« & » e « +« o » « 52
NAME o & o a « o = = & . . 56
NEW & « « o o + o s & o 2 % = 71
NEW in disk I 1%
NEXT e e e = s s e e« e o« » 22
NOT e s s e = + 17
NULL e = e . . 71
CCTS .+ & & o o . o« s . . 89
Octal constants . « +« « « o« » 12
ON ERROR GOTC « o + o o & & 35
ON...GQSUB . . e e e s 4 « . 22
ON...GQOTO . . e e e e e s . 208
OPEN 4 & « a o s » o o . » 56
QPEN, random £files « B2
Operators .« « o« « « « o o « = 15
Operators, extended and disk . 38

Operators, logical 16
Operators, vrecedence of . . . is
Operators, relational 16
Operators, string 30
OR v v o « & = o o o o s o« o o 17
OUT v v o o o o s o o o o« o 27

PEEK . + « e e s e e s e s 27
PIP utility oroqram e o o o2 . 124
PIP, CHNV command e « + « = . 128
PIP, COP command . . .« + =« . 125
PIP, DAT command 126
PIP, DIR command . . . 125
PIP, INI command - . 124
PIP, LI5 command 125
PIP, SRT command . . .« « . « . 125
POKE &« o o o o » o o & « s + o+ 286
POS 4 « « » o 2 a « o o« » + s+ 080
Precedence, table of 15
PRINT 4+ & a o » o 2 « =« - 23
PRINT USING & v « & « o o & 44
PRINT, disk e e m e s e = e 59

Prompt string . . « + + o & 23
PTD Program . « « « « « » » o L1386
PUT - L] - - - - - L] - - - - - 52

148 3ASIC 4.1

April, 1977

Random buffer
Random File I/0 . . .
Random files
BEAD 4 v v ¢ 4 o o o
Remarks . . . ¢« 4 v & « « o« . 8
RENUM
Reserved wWords ., .

RESTORE s e s e w . e « =

.
»
-
-
.
a
wn

-

RESUME
RESUME NEXT . . e o o« o« o« . 37
RETURN « ¢« & + o o & . 22
RIGHTS « + + 88
RND . . ¢« ¢ . o o v & 4 . . . 88

RSET . ¢« . + + .« .
RSTLESS versions 138
Rubout « . . 9,/
RON v v v s 4 e v e s e s a o T2
RUN, disk files 55

3
+
N
h

SAVE o ¢« 4 . 0 v 4 0 0 4 4 . . B3
Saving programs on paper tape 71
Scientific notation
Sense switch settings 141
Sequential Fils I/0 57
Seguential mode 57
SGN . . . v 4 v s e 4 4 . . . BB
SIN & &« v v v v 4 v 4 « + . . 80
Single precisicen, . 11
Space allocation 186
Svace hints 187
SPACES . . « + + 4+ &« 4« » « . . 8
SPC . v 4 s s h e e . .. 81
Special Characters 82
Speed hints 188
SOR . v v i 4 e e 4w 81
Statements 12

Statements, extended 32
STOP - - L] L - . L] L] - - - - [] 6@ r
STR - - * - L - L] L] L L L] - 81

String Literal 5
STRINGS . &+ 4 4 ¢ o « « +» « . 81
Strings . . 4« v v 4.« .« . . 38
Subroutines 22
.Subroutines, machine language 112
SWHAP & v 4 & 4 4 o « « « o« o o 133

SASIC 4.1

April, 1977

TAB « o « o &
TAN & o « & »
TROFF .« .« .« »
TRON . . .« «

Tvpe of constant
Type of variables

Type,definition

UNLOAD . . .« .
USR v & « « &

VAL . « + +
Variable types
Variables . .
VARPTR . . .

WAIT . + o« «
WIDTH

XOR - - - - [

L] » L] -

« 8 B & 8 % 8

» »* L] L]

L} * - * L] L[] -

L] - L] L] L] L3

L3 Ll L] - []

81
8l
33
33
11
13

52
81,

81
13

81

26
34

17

82
82

112

BASIC 4.1

April, 1877

2450 Alamo S.E.
Atbuquerque, New Mexico 87106

USER’S DOCUMENTATION REPORT

In order to improve the quality and usefulness of our pubhcatlons, user feedback 15
necessary. Your comments will help us effectively evaluate our documentation.

Please limit your remarks to the document, giving specific page and line references
when appropriate. Specific hardware or software questions should be directed to the MITS
Customer Service or Software Departments, respectively.

NAME OF PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT:

ERRORS: e

Name R Date

Organization

Street. . : .
City ' N .. State Zip

— First Fold Here — — — ——

—_ — —_— Second Fold Here and Staple —

No pastage Siomp
Necessary it Mailed in
the United States

—-=BUSINESS REPLY MAIL

First Class Permit No, 2114, Albugquerque, New Mexico

Postage Wil be Paid by: MITS, Inc.
2450 Alamo S.E.

Albuquerque, New Mexico 87106

Imnt's

2450 Alamo SE
Albuquerque, NM 87106

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153

