alfalr 800 basie

C PERERENGE [IAMUAL

(-‘J_nﬁs.*rnc. 19777
Reprinted July, 1977 .

A sub v of Pertuc Camp Carporation

2450 Alamo §.E. /Albuquerque. New Mexico 87106

BASIC Reference Manual

Addenda, April, 1977

Page 33, sub-paragraph b:

LINE INPUT ["<prompt string>",]; <string variable name>
CHANGE TO:

LINE INPUT ["<prowpt string>";] <string varisble>

Page 40, Paragraph 5~3b, line 9:

The of the <integer expression» is the starting address of .
CHANGE TO:

The <integer expression> is the starting address of . . .

Page 41. Insert the following paragraphs between Paragraphs 3 and 4.
ADDITION:

The string returned by a call to USR with a string argument is that
string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

C$=USR{A$)

results in A$ alsc being set to the string assigned to C§. To avoid
modifying A$ in this statement, we would use:

C=USR{AS+" ')

so that the user's routine medifies the descriptor of a string temporary
instead of the descriptor for A3,

A string returned by a user's routine should be completely within
the bounds of the storage ares used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.

Page 49, last paragraph, line 7:

. leading $ signs, nor can negative numbers be output unless the sign
is forced to be trailing.

CHANGE TO:

. . . leading § signs.

BASIC Reference Manual Addenda, April, 1977
Page 2

5. Page 59, last line:
5§20 CLOSE #1
CHANGE TO:
520 CLOSE 1
6. Page 70, CLEAR [<expression>] explanation:
Same 23 CLEAR but sets string space to the value . . .
CHANGE TO:
Same as CLEAR but sets string space (see 4-1) to the value .
7. Page 70, CLOAD <string expression> explanation, second line:
« - . character of STRING expression> to be .
CHANGE TO:

. + « character of <STRING expression> to be . . .

8. Page T1:
CSAVE*<array name> 8K (cassette), Disk
CHANGE TO:
CSAVE*<array name> 8K (cassette), Extended, Disk

9. Page 75, Insert the following after LET and before LPRINT.
ADDITION:
LINE INPUT LINE INPUT “prompt string"; string variable name
Extended, Disk

LINE INPUT prints the prompt string on the terminal and assigns all
input from the end of the prompt string to the carriage return to
the named string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

10. Page 76, POKE explanation, second line:

. . If T is negative, address is 65535+I, .

CHANGE TO:

. If I is negative, address is 65536+I, .

1i.

12.

13,

14.

15.

16.

17,

BASIC Reference Manual Addenda, April, 1977

Page 3
Page 80, OCT$:
0CTS OCT$(X) 8K, Extended, Disk
CHANGE TO:
0CTS OCT$(X) Extended, Disk
Page BL:
SPACES SPACE${I) 8K, Extended, Disk
CHANGE TO: -
SPACES SPACES (I Extended, Disk

Page 91, line 4:
+ + . question (seec Appendix E).
CHANGE TO:
+ « . question (see Appendix H).
Page 95, first paragraph, line 3:
. For instructions on loading Disk BASIC, see Appendix E.

CHANGE TO:

. . For instructions on loading Disk BASIC, see Appendix H.
Page 103, line 11: ’
C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all cther functions.

Page 112, Paragraph 4, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal,

CHANGE TO:

USRIOQC for 4X and SK Altair BASIC version 4.0 is Ill octal.

Page 114, third paragraph, line 2:
. by the first character of the STRING expression>.

CHANGE TO:

C

18.

is.

20.

21.

22,

BASIC Refersnce Manual Addenda, April, 1877
Page 4

. by the first character of the <string expression>. HNote that the
program named A is saved by CSAVE™A™,

Page 119, last sentence bafore the NOTE:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by 16 and adding the position of the slot in the
sector (0-8) plus 1.

CHANGE TO:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by § and adding the position of the slot in the

sector (0-7) plus 1.
Page 122, Step 1, line 3:
. location 2=116 octal . .,

CHANGE TO:

« « location 2=077 octal . .
Page 126, line 6:
COP@,1 FROM & TO 17 YCARRIAGE return» DONE
CHANGE TO:
*COP@,1
FROM A TQ 1? Y<carriage return>
DONE
*
Page 126, lines 13 through 15:

. . . Example: *DATP (DAT is equivalent} TRACK? PSECTOR? ¢ 6f¢ Apd pap
7209 ppp PP PPP POP PP PPP PO PPD BPP etc.

CHANGE TO:

*DATH

TRACK? P

SECTOR? P

gap pop gpp PP p0p PEP PP PPP PPP PP PES PPP PPP etc.
Page 131, line 1 of program:

ORG 7G1

CHANGE TO:

ORG 719

BASIC Reference Manual Addenda, April, 1977
Page 5

23. Page 135, Step 7, line 2:
. . . the board type iz IOCHNWL, .
{HANGE TO:
. + the board address is IOCHNL, .
24. Index, line 12:
ADDITION:

L. 1 Y

C

PREFACE

The Altair BASIC language is a high-~level programming
language sgpecifically designed for interactive computing
systems. TIts simple English-like instructions are easily
understood and gquickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with provisions for editing and string
precessing as well as numerical computatilon.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALTAIR 8888 series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all versions. The
aextended versions provide additional features including
comprehensive file input/output procedures in the disk
version.

This manual will explain the features of the BASIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altalr BASIC interpreters, release 4.40.
For guick reference, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section 6. a
complete index is at the end of the manuval. In addition to
this reference manual, the programmer showeld have a good
BASIC text book on hand. A list of some suggested texts is
given in Appendix J.

gEnuary,

1877

2-2

CONTERTS

Some Introductory Remarks.

Introduction to this manual
a. conventions

b. definitions
Modes of Qperation

Formats

a, lines-AUTO and RENUM

b. REMarks

€. error messages

Editing -~ elementary provisions
a. single chatacters

b. lines

c. whole programs

Expressions and Statements

Expressions
a. constants
b. variables
1) names
2) typing
¢. arrays ~ the DIM statement
d. coperators and order of precedence
e. logical operations
f. the LET statement
Branching and Loops
a. branching
1} GOTO
2} IF...THEN...[ELSE]
3) ON...GOTO
b. loops - FOR,HEXT
¢. subroutines - GOSUB,RETURN statements
d. memory limitations
Input/Output, Data Handling
a. INPOT
k. PRINT
c. DATA, READ, RESTORE
1) DATA
2} READ
3) RESTORE
d. CSAVE, CLOAD
e, miscellaneous
1} WAIT
2} PEEK,POKE
3) oor, INP

Functions

Page 2

C

January,

1877 Page 3
i-1 1Intrinsic Functions
3-2 User-defined Functions - the DEF statement
4. Strings
4-1 String data
4-2 String operations
a. comparisons
b. LET statements
¢. input/output
1} INFUT, PRINT
2) DATA,READ
4-3 String Functions
5. Extended Features
5-1 Extended Statements
5~2 Extended Operators
5=-3 Extended Functions
5-4 EDIT Command
5-5 PRINT USING Statement
$—-6 Disk Operations
6. Tables and Directories
6-1 Commands
6=-2 Statements
6-3 Intrinsic Functions
6-4 Special Characters
6=5 Error Messages
6-6 Reserved Words
6=7 Index
. Appendices
A, ASCII Character Codes
B. Loading Altalr BASIC
C. Speed and Space Hinits
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface _
G. Converting BASIC Programs Not Written for the Altair Computer
d. Digk Information
I. The PIP Utility Progran
J. BASIC Texts
K. Using Altair BASIC on the
Intellec* 8/Mod 89 and MDS Systems
L. Patching altair BASIC's 1/0 Routines
M. Using Digk Altair BASIC: An Example
Index

January,

1977 Page 4

SOME INTRODUCTORY REMARKS

i.
1-1 Introduction to this Manual.

—r—

a, Conventiens. For the sake of simplicity, some
conventions will be followed in discussing the features of
the Altair BASIC language.

1. Words printed in capital letters must be written exactly
as shown. These are mostly names of instructions and
commands.

2. Items enclosed in angle brackets {<>} must be =supplied
as explained in the text. Items in square brackets ([]) are
coptional. TItems in both kinds of brackets, [<W>], for
exampla, are to be supplied if the coptional feature is used.
Items followed by dots {...) may be repeated or deleted as
necessary.

3. Shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key
and typing the indicated letter,

4. Bll indicated punctuation must be supplied.

b, Definitions. Some terms which will become
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the
terminal which causes the carriage, print head or cursor to
move to the beginning of the next line and to the command
that the carriage return key issues which terminates a BASIC
line.

Command Level: After Altair BASIC prints OK, it is at
the command level. This means it 1is ready to accept
commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided inte two <c¢lasses, Commands and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Operation, section 1-2). Some
commands, such as CONT,may only be used in direct mode since
they have no meaning as program statements. Some commands,
such as DELETE, are not normally uvused as proegram statements
because they cause a return to command level. But most
commands will find occasional use as program statements,
Statements are instructions that are normally used in
indirect mode. Some statements, such as DEFy, may only be
used in indirect mode.

Fanuacy, 1977 Page 5

Edit: The process of deleting, adding and substituting
(y/ lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as “editing.* The particular meaning in use will be clear
from the caontext.

Integer Expression: An expression whose valpe is
truncated t¢ an lnteger. The components of the expression
naed not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved

words and they may not be used in wvariable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these
are the following:

{caret) appears on some terminals as ‘ {up=arrow)
~ (tilde) does not appear on some terminals and prints
as a blank
_ {underline) appears on some terminals as -= (back-arrow).

String Literal: A string of characters enclosed by
guotation marks. {") which is to be input or output exactly
(_; as it appears. The guotation marks are not part of the
string literal, nor may a string literal contain guotation
marks, (“"HI, THERE“"is not legal.))

Type: While ¢the actual device uszed to enter
information into the computer differs from system to system,
this manual will use the word “type* to refer to the process
of entry. The user types, the computer prints. Type also
refers to the classifications of numbers and strings.

1-2 Modes of Qperation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct meode, the statements or
commands are executed as they are entered inteo the computer.
Results of arithmetic and logical overations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode ig useful for debugging
and for using Altair BASIC in a "calculator* mode for guick
computations which do not justify the design and coding of
complete programs.

In the indirect made , the computer executes
instructions from 2 program stored in memory. Program lines
are enterad into memory if they are preceded by a line

(J number, Execution of the program is initiated by the RUN

Januacy, 1957 Page 6

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN
commands,

1-3 Formats.

a. Lines. The line Is the fundamental unit of an
Altair BASIC program. The format for an Altailr BASIC line
is as focllows:

annnn <BASIC statement>[:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing. Line numbers must be in the range
A to 65529, A good programming practice 1is to use an
increment of § ¢r 10 between successive line numbers to
allew for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTC and RENUM commands. The AUTQO command provides for
automatic insertion of 1line numbers when entering program
lines. The format of the AUTO command is as follows:

AUTO({<initial line>[, {<incremenkt>]]
Example;

AQTO 140,19

149 INPUT X,Y

114 PRINT SQR(X"2+Y"2)

129 “c

CK

AUTQ will number every input line until Control/C is typed.
If the <initial line> is omitted, it is assumed to be 16 and
an increment of 14 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment
is specified, the increment last used in an AUTC statement
is assumed.

If AUTO generates a line number that already exists in
the program currently in wmemory, it prints the number
followed by an asterisk. This is ko warn the user that any
input will replace the existing line.

e q—

2) The RENUM command allows program lines to bhe "spread
out"® =¢ that a new line or lines may be inserted hetween
existing lines, The format of the RENUM c¢ommand is as
follows:

RENUM [<NN> [<MM>[,<II>]]]

where NN is the new number of the first line ¢to be
resequenced. If omitted, NN iz assumed to be 10. Lines
legs than MM will not be renumbered. If MM is omitted, the
whole program will be resequenced. II is the increment
betwaen the lines to be resequenced. If II is omitted, it
is assumed to be 1lA. Examples:

RENUM Renumbers the whole program to start at line
18 with an increment of 1¢ between the new line numbers.

RENUM 168,,1084 Renumbers the whole program to start
at line 109 with an increment of J@@.

RENUM 6008,5000,1008 Renumbers the lines from 5866
up sSo they start at 6800 with an increment of 1099.

NOTE

RENUM cannot be used to change the order of program
lines {(for example, RENUM 15,38 when the program has
three lines numbered 18, 28 and 38) nor to create
line numbears greater than 65529. An ILLEGAL
PUNCTICN CALL error will result.

All line numbers appearing after & GOTO, GOSUB, THEN,
OH...GOTO, ON...GDSUB and ERL<{relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does noi exist in the program, the message “UNDEFINED
LINE XXXXX IN YYYYY" will be printed, This line reference
{(XXXXX} will not be changed by RENUK, but line number YYYYY
may ke changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is reguired. This is particularly useful
in the use of the EDIT command. See section 5-4,

4) Following the 1line number, one or more BASIC
statements are writkten. The £first word of a statement
identifies the operations to be performed, The 1list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to} the

fanuary, 1977 Page 8

data which is to be operated upen by the statement. In some
important instructions, the operation to be performed ‘
depends upon conditions or options specified in the list.

Bach type of statement will be considered in detail in
sections 2, 3 and 4.

More than one statement can be written on cne 1line |{f
they are separated by cclons {:}. Any number of statements
can be joined this way provided that the 1line is no more
than 72 characters 1long in the 4K and 8K versions, or 255
characters in the Extended and Disk wversions. In the
Extended and Disk wversions, lines may be broken with the
LINE FEED key., Example:

199 IF 3<¥+37<line feed>
THEN 5 <line faad>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it is input
as one BASIC line,

b. REMarks. In many cases, a program can be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Aaltair
BASIC, the REM statement allows such comments to be included ‘
without affecting execution of the program. The format of
the REM statement is as follows: -

REM <remarks> : i

A REM statement is not executed by BASIC, but branching
statement=z may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

109 REM DO THIS LOCP;FOR I=1TOl¢ -the FOR statemsent
will not be executed
131 FOR I=1 TO 10: REM DO THEIS LOOP —-this FOR statement will

ke exscuted.

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
2 single guotation mark ('). Everything after the single
guote will be ignored.

¢. Errors. When the BASIC interpreter detects an
error that will cause the program to be terminated, it
Prints an error message, The error message formaks in
Altair BASIC are as follows:

Direct statement ?X¥ ERROR ‘

anuzacy, 1977 Page 9

Indirect statement ?XX ERROR IN nnnnn

L“’ XX is the error code or message (see section 6-5 for a Llist
of error c¢odes and messages) and nnnnn is the line number
where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These ercors will be discussed in the
description of the individual statements.

1-4 Bditing - elementary provisicns.

Editing features are provided in Altair BASIC so that
mistakes can be gorrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single “characters. If an incerrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline on
some terminals) or ,except in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
¢character. If there is no preceding character, a carriage
return is issued and a new line is begun, Once the unwanted

(_; characters are removed, they can be replaced simply by
typing the rest of the line as desired. . i

When RUBOUT is typed, a backslash (\) is printed and
then the <character to be deleted. BEach successive RUBOOT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.

Example:

198 X=\=X\¥=19 Typing two RUBOUTS deleted the ‘'a'
and '¥' which were subseguently
replaced by ¥= .

b. correcting 1lines. & line being typed may be
deleted by typing an at-sign (&) instead of typing a
carriage return. A carriage return is printed automatically
after the 1line is deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk versiong, typing <Control/a
instead of the carriage return will allow all the features
(/ of the EDIT command ({(except the A command) to be used on the

lanuary, 1977 Page 19

line currently being typed. See section 5-4.

|
|
¢. correcting whele programs. The NEW command causes d
the entire current program and all variazbles to be deleted.

NEW is generally used to clear memory space preparatory to
entering a new program.

2. STATEMERTS AND EXPRESSIOHNS.

2~-1. Expressions.

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants. Altair BASIC accepts integers or
floating point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numeric
constants follow:

123
3.141
#.6436
1.25E+85

Pata input from the terminal or numeric constants in & ‘
program may have any number of digits up to the length of a
line {see section 1-3a). In 4K and B8R Altair BASIC,
however, only the first 7 digits of a number are significant
and the sewventh digit is rounded up. Therefore, the command

PRINT 1.2345678903123
produces the following output:

1.23457 i
oK

In Extended and DRisk versions of BAltair BASIC, double
precision format allows 17 significant digits with the 1l7th
digit rounded up.

The format of a printed number is determined by the
following rules:

1. If the number is negative, a minus sign (=) is printed
tc the left of the number. If the number is positive, a
space is printed.

\nuary, 1977 Page 11

2. If the absolute value of the number is an integer in
(-, the range # to 999999, it is printed as an integer,

3. If the absolute value of the number is greater than or

equal to .Al and less than or equal to 3399%9%, it is
printed in fixed point notation with nc exponent.

4, In Extended and Disk versions, fixed point values up to
999959999999995%9 are possible,

5. If the number does not fall into categories 2, 3 or ¢,
scientific notation is used.

The formats of scientific notaticn are as follows:
S{.XARAXESTT single precision
SX . XXXARXXXXXXXAUXKDSTT double precision

where 5 stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read ".,.times ten to the power...."
Non-significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed for the mantissa. The

(d, exponent must be jin the range -~38 to +38., The largest
number that may be represented in Altair BASIC is
1.78141E38, the smallest positive number is 2.93878-38. The
following are examples of numbers as input and as output by
Altair BASIC:

Bumber Altair BASIC Output
+1 1

-1 -1

6523 6523

1E20 iE29 :
-12.34567E~-18 ~-1.23456E-99
1.2345678=-7 1.23457E-97
ladeaga 1E+@6

.1 .1

.61 .61

+H68123 1.23E-54
~25.460 -25.46

The Extended and Disk versions of Altair BASIC allow

numbers to be represented in integer, single precision or

(./ double precision form. The type of a2 number constant is
determined according to the following rules:

gnuary, 1977 Page 12

1. A constant with more than 7 digits or a 'D' instead of
'E* in the exponent is double precision.

2. A constant outside the range -32768 to 32767 with 7 or
fewer digits and a decimal point or with an 'E' exponent
is single precision.

3. A constant in the range =32768 to 32767 and no decimal
point is integer.

4. A constant followed by an exclamation peoint (!} 1s
single precisicn; a constant followed by a pound sign
(#) is double precision.

Two additional types of c¢onstants are allewed in
Extended and Disk versions of Altair BASIC. Hexadecimal
{base sixteen) constants may be explicitiy designated by the
symbol &H preceding the number. The c¢onstant may not
contain any characters other than the digits & - 93 or
letters A - F, or a BSY¥YNTAX ERROR will occur. Octal
constants may be designated either by &0 or just the & sign.

In al) formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current 1line. If not, it
iasues a carriage return end prints the whole number on the
next line, . .

b. Variables

1) A variahle represents symbolically any number which
is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as the
result of caleculations in a program. Before a variable is
assigned a value, its value is assumed to be zZero, In 4K ,
a wvarlable name c¢onsists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, hkut any alphanumeric characters
gfter the first two are ignored. The first character must
he a letter. No reserved words may appear as variable names
or within wvarizble names. The following are examples of
legal and illegzl Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:
A %A (first character must
be alphabetic.)
21 21A (variable name is too
long for 4K)

Cther versions:

C

anuary, 1977 Page 13

TE TQ {varizble names cannot
e reserved words}

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.)

In all bpbut 4K Altair BASIC, a wvariable may also
represent a string. Use of this feature is discussed in
section 4.

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision wvariables as well as
Single Precisicn and Strings. The kype of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (@ to 255 characters) $
Integers (=232768 to 32767} %
Single Precisioen {(up to 7 digits, exponent between
=38 and +38) 1
Double Precision (up to 16 digits, exponent between
=38 and +38)

Internally, BASIC handles all numbers in binary. Thexefore,
some 8 digit single precisicon and 17 digit double precision
numbers may be handled ceorrectly, If no type 1s explicitly
declared, type is determined by the first letter of the
variable name according to the type tahle. The table of
types may be modified with the following statements,

DEFINT ¢ Integer
DEFSTR ¢ String
DEFSNG ¢ Single Precision
DEFDBL ¢ Double Precision

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT I-N Variable names beginning with the let~
ters I-N are to be of integer type.

2@ DEFDBL D Variable names beginning with D are to
be of double precisicon type.

If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSWNG A-Z statement.

@nuary,

1977 Page 14

3) Integer variables should be used wherever possible
since they take the least amount of space in memory and
integer arithmetic is much faster than single precision
arithmetic.

Care must be exercised when single precision and douhle
precision numbers are mixed. Since single precisien numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable,

18 a=]1.41 single precision value

20 B#=A*13:C{=CDBL{A)*18% convert to double precision
30 PRINTA;B$#;C4$;CDBL(A) in various ways

RUN

1.91 19.100006628146973 19.49999999463257 1.0899999990463257

OF

In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example:

19 a=1.981
28 B#=VAL(STRS{A)):Ch=B§*154
38 PRINT A;B#;C#
RON
l.41 1l.81 18.1
OK

¢, Array Variables., It is often advantageous to refer
to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrizx separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpese, Altair BASIC provides subscripted variables, or
arrays. The Form of an array variable is as follows:

VV(<subscript>|[,<subscript>...]}

where VV is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
sguare brackets. A4n array wvariable may have only one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on & single line.
The smallest subscript is zero. Examples:

A{S} The sixth element of array &. The first
alement is A(8).

ARRAY (I,2*J) The address of this element in a Lwo-
dimensional array is determined by
evaluating the expressions in parenthe-
ses at the time of the reference to the

suary,

C

1977 Page 15

array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
gets all array elements to zero, The £form of the DIM
statement is as follows:

DIM VV{<subscript>[,<subscript>...])

where VvV is a legal variable name, Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement may apply to more
than one array varlable., Some examples follow:

113 DIM A{3), D$(2,2,2)

114 DIM R2%{4), B{1l4)

115 DIM Ql{N), Z#{2+1) Arrays may be dimensioned dy-
namically during program
execution, At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-—
cated to integer.

If no DIM statement has been executed bhefore an array
variable is £found in a program, BASIC assumes the variable
£o have a nmaximum subscript of 18 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT QUT OF RANGE
error message will be issued if an attempt is made to
reference an array element which is outside the space
allocated in its associated DIM statement. This can occur
when the wrong number of dimensions is used in an array
element referance. For example:

30 LET A(l,2,3)=X when A has been dimensioned by
13 pIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement £or an array is found after that array has been
dimensioned. This often cccurs when a DIM statement appeatrs
after an array has been given its default dimension of 14.

d, Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) logical
operators, The order of execution of operations in an
expression is always acceording to thelr precedence as shown
in the table beleow. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence

fanuary, 1977

same

l{
2.

3.
4.
5.

1d.
11.

12.
13.

14.

once

Page 16

Operators are shown here in decreasing order of precedence.
Operators 1listed in the same entry in the table have the

precedence and are executed in order from left to right

in an expression.

Expressions enclosed in parentheses (}

* exponentiatisn (net in 4X). Any number to the =zero

power is 1, Zerc to a negative power causes a /@ or
DIVISION BY ZERO error.

~ negation, the unary minus operator
*,/ multiplication and division

\ integer divigion {available in Extended and Disk

vergions, see section 5-2}

MCD {available in Extended and ©Disk versions. See

section 5=2)

+,=- addition and subtraction
relational operators
= agual
<> not equal
¢ less than
> greater than
{a,={ less than or egual %o
>=,=> greater than or equal to

{the logical operators below are not available in 4K)

NOT logical, bitwise negation

AND logical, bitwise disjuncticon

OR legical, bitwise conjunction

{The logical operators below are available only in
Extended and Disk versions.)

XOR logical, bitwise exclusive CR

EQV logical, bitwise equivalence

IMP logical, bitwise implication

In 4K Altair BASIC, relational operators may be used only

in an IF statement. In all other varsions, relational

enunary, 1977 ’ Page 17

operators may be used in any expressions. Relational
expressions have the value either of True (-1} or False (9).

(" @. Logical Operations. Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert ctheir
arguments into sixteen bit, signed, two's complement
integers in the range -~32768 to 32767. After the operations
are performed, the result is returned in the same form and
range. If the arguments are not in this range, an PFC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be terminated. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result cemputed one bit at a time. In
binary operations, bit 7 is the most significant bit of a
byte and bit & is the least significant.

AND

-
a
o

Ll -0 R -
= | e
meauan—-;

OR

s
[=]

S
]

= e
=W e

NOT

L0 -
=

XOR
X XOR ¥

o
S e
-

EQV

M
L1~

IMP

[~Y WS-
o ey

@nuary, 1977 Page 18

Some examples will serve to show how the logical operations

work:

63 AND le=lg 6i=binary 111111 and lé=binary 14664,
S0 63 AND lé6=lg .

15 AKD l4=14 15= binary 1111 and l4=binary 1114,
S50 15 AND l4=binary 1118=14,

-1 AND 8=8 =1=hinary 1111111111111111 and &=binary
1099, so -1 AND 8=8,

4 OR 2=6 d=binary 198 and 2=binary 18 so
4 OR 2=binary 118=6.

18 OR 18=12 binary 18106 OR'd with itself is 1818=
18.

-1 QR =2=-] =l=binary 11111i111111111]1 and =-2=

) 1111111113111114, 3¢ =1 QR ~2=-1,.
NOT 8=-1 the bit complement of sixteen zeros

igs sixteen ones, which is the two's
complement representation of -1.

HOT X==(X+1) the two's complement of any number is
the bir complement plus one.

A typical use of legical gperations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device, PFurther
applications of logical operations will be considered in the
discussion of the IF statement,

£. The LET statement. The LET statement 1is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>

where V¥V is a variable name and the expression is any valid
Altair BASIC arithmetic or, sxcept in 4K, logical or string
expression. Examples:

1864 LET v=X
118 LET I=I+1 the '=' sign heremeans 'is replaced
by!

The word LET in a LET statement is opticnal, so0 algebraic
egquations such as:

128 V=.5%{X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message 1is printed when BASIC
detects incorrect form, illegal characters in a line,
incorreet punctuation or missing parentheses. An OV or
OQVERFLOW error occurs when the result of a caleculation is

gnuary, 1977 Page 19

koo large to be represented by Altair BASIC's number
formats. All numbers must be within the range 1E-=38 to
(’, 1.78141E38 or -1E-38 to -1.70141E38. An attempt to divide
by 2ero¢ results in the /9 or DIVISION BY ZERO ertror message.

For a discussion of strings, string wvariables and
string operations, see saction 4.

2=2. Branching, Loops and Subroutines.

a. Branching. 1In addition to the seguential execution
of program lines, BASIC provides for changing the order of
execution, This provision is called branching ard is the
basis aof programmed decision making and loops. The
statements in Altair BASIC which provide for branching are
the GOTO, IF...THEW and ON...GOTO statements.

1} GOTC is an unconditiconal branch. Its form {5 as
follows:

GOTO<mmmmm>>

After the GOTO statement is executed, execution continues at
line number mmmmm.

(,, 2) IF...THEN is a c¢onditienal branch. 1Its form is as
follows: .

IF<expression>THEN<mmmmm>

where the expression is a valid arithmeti¢, relational or,
except in 4K, logical expressicn and mmmmm is a line number.
If the expression is evaluated as nen-zero, BASIC continues
at line mmmmm. Qtherwise, execution resumez at the next
line after the IF...THEN statement.

An alternate form of the IF...THEN statement is as
follows:

IF<{expression>THEN<{statement>

where the statement is any Altair BASIC statement.
bxamples:

19 IF A=10 THEN 48 If the expressicn A=10 is
true, BASIC branches to 1line 44. Otherwise,
execution proceeds at the next line.

15 IF A<B+C OR ¥ THEN 1P@ The expression after IF is
evaluated and if the wvalue of the expression Iis
non-zero, the statement branches to line 188.

HTIJALY ,

1977 Page 20

Otherwise, execution continues on the next line.

28 IP X THEN 25 If X is not zerc, the statement
branches to line 25,

390 IF X=Y THEN PRINT X If the expression X=aY is true
{its value is non~zero), the PRINT gstatement is
executed. Otherwise, the PRINT statement 18 not
executed. . In elther case, execution continues with
the line after the IF...THEN statement.

35 IF ¥=Y+3 GOTO 3% Eguivalent to the corresponding
IF...TEEN statement, except that GOTC must be
feollowed by a line number and not by another
statement.

Extended and Disk versions of Altair BASIC provide an
expanded IF...THEN statement of the form

IF<expression>THENKYY>ELSE<ZZ>

where YY and 2Z are wvalid line numbers or Altair BASIC
statements. Examples:

IF X>¥ THEN PRINT "GREATER" ELSE PRINT "NOT GREATER"

If the expression X>Y is true, the statement after THEN |is
exacuted; otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "ERRDR"
If the expression X=2*Y is true, BASIC branches to line 5;
ctherwise, the PRINT statement ls executed. Extended and
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting {s limited only by the length of the
line, Thus, for example: :

IF X>¥ THEN PRINT "GREATER®" ELS3E IF ¥>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

and

IF X=¥Y THEN IF ¥>Z TBEN PRINT "X>Z" ELSE PRINT "¥<=L"
ELSE PRINT "X<O>Y"

are legal statements. If a Iine does not contain the same
number of ELSE and TEEN clauses, each ELSE is matched with
the closest unmatched THEN., Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<{>C"

will not print "A<>C" when A<>B.

Lnuary, 1977 Page 21

C

C

3) ON...GOTQ {not in 4K) provides for another type of
conditional branch. 1Its form is as follows:

ON<expression»GOTO<1list of line numbers>

After the wvalue of the expression is truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number is Ith in the list. The statement may be
followed by as many line numbers as will fit on one line.
If I=8 or is greater than the number of lines in the list,
execution will continue at the next line after the ON...GOTO
statement. I must not be less than zero or greater than
255, or an PC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is often desirable to perform the same
calculations on different data or repetitively on the same
data. For this purpose, Altair BASIC provides the FOR and
NEXT statements. The form of the FOR statement is as
follows:

FOR<variable>={X>TO<Y> [STEP <Z>]

where X%,Y and 2 are expressions. When the FOR statement is
encountered for the £irst time, the expressions are
evaluated. The variable is set to the value of X which is
called the initial value, BASIC then executes the
statements which follow the FOR statement in the wusual
manner, When a NEXT statement is encountered, the step 2 is
added ko the variable which is then tested against the f£inal
value Y. If %, the step, is positive and the variable is
less than or equal to the final value, or iIf the step is
negative and the wvariable is greater than or equal te¢ the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Qtherwise,
execution proceeds with the statement following the NEXT.
If the step is not specified, it is assumed to bhe 1.
Examples:

19 FOR Ia2 TC 11 The locp is executed 19 times with
the variable I taking on each in-
tegral wvalue from 2 to 1ll.

28 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

38 FOR V=1@*N TO 3.4/2 STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval=-
uated only ance, before loop-
ing begins.

4@ POR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR...NEXT loops may be nested. That is, BASIC will execute

[anuary, 1977 Page 22

a FOR...NEXT loop within the context of another loop. An
example of two nested loops follows:

199 FOR I=1 TO 14
129 FOR J=1 TO I

138 PRINT A(I,J)

148 WEXT J

159 HEXT I

Line 139 will print 1 element of A for I=1l, 2 for I=2 and so
on. If loops are nested, they must have different loop
variakle names. The NEXT statement for the inside loop
variable (J in the example)} must appear before that for the
outside variable (I). Any numbker of levels of nesting is
allowed up to the limit of available memory.

The REXT statement is of the form:
NEXT{<variable>[,<variable>...]]

where each variable ls the loop variable of a FOR loop for
which the NEXT statement 1s the end point. In the 4K
version, the only form allowed is NEXT with one wvariable.
In all other wversions, NEXT without a variable will match
the most recent FOR statement., In the case of nested loops
which have the same end point, a single NEXT statement may
be used for all of them, except in 4K, The first wvariable
in the list must be that of the most recent loop, the second
‘of the next most recent, and sc¢ on. If BASIC encounters a
NEXT statement before 1its corresponding POR statement has
been executed, an NF or NEXT WITHOUT FOR error message is
issued and execution is terminated.

<. Subroutines., If the same operation or series of
operations are to be performed in several plagces in a
program, storage space requirements and programming time
will be minimized by the use of subroutines. A subroutine
is a series of statements which are executed in the normal
fashion upon beirg branched to by a GOSUB statement.
Execution of the subroutine 1is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format of the GOSUB statement is as
follows:

G05UB<line number>

where the line number is that of the first line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contzin a2 call to
another subroitine., Such subroutine nesting is limited only
by available memory.

ALy,

C

1977 Page 23

Except in the 4K version, subroutines may be branched
to conditionally by use of the ONW...GOSUB statement, whase
form is as follows:

ON <expression> GOSUB <list of line numbers>

The execution iz the same as ONW...GOTQ except that the line
numbers are those of the first 1lines of subroutines.
Execution c¢ontinues at the next statement after the
ON...GOSUB upon return from one of the subroutines.

d. 0OT QF MEMORY efrocrs. While nesting in loops,
subroutines and branching 1is nect limited by BASIC, memory
gize limitations restrict the size and complexity of
programs. The OM or QUT OF MEMORY error message iz issued
when a program requires more memory than is available. See
Appendix € for an explanation of the amount of memory
required to run programs.

2=3. Input/Output

a. INPUT. The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<1ist of variables>

The effect of the INPUT statement is to cause the values
typed on the terminal to be assigned to the variables in the
list. When an INPUT statement is executed, a guestion mark
{7} 1is printed on the terminal signalling a request for
information. The operator types the reguired numbers or
strings (or, 1in 4K, expressions) separated by commas and
types a carriage return. If the data entered 1is invalid
{strings were entered when numbers were reguested, etc.)
BASIC prints 'REDO FROM START?' and waits for the correct
data to be entered. 1I1f more data was requested by the INPUT
statement than was typed, ?? 1is printed on the terminal and
exeqution awaits the needed data. If more data was typed
than was requested, the warning "EXTRA IGNORED' is printed
and execution proceeds, After all the requested data is
input, execution centinues normally at the statement
following the INPUT. Except in 4K, an opticnal prompt
string may be added to an INPUT statement.

INPUT ["<prompt string>";]<variable list>

Execution of the statement causes the prompt string to be
printed before the guestion mark. Then all operations
proceed as above, The prompt string must be epclosed in
double guotatioen marks (") and must be separated from the

anuary,

1977 Page 24

variable list by a semicolon (;}. Example:

194 INPUT "WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THEE VALUE?

The requested values of X and Y are typed after the ?
Except in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the values
of the wvariables in the variable list unchanged, In 4K, a
SN error results,

b., PRINT., The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

which prints a carriage return. The effect is to skip a
line. The more usual PRINT statement has the following
form:

PRINT<1list of expressions>

which causes the values of the expressions in the list to be
pPrinted, string literals may be printed if they are
enclosed in doukle gquotation marks (").

The position of printing is determined by the
punctuation wused to separate the enkries in the list.
Altalr BASIC divides the printing line into =zones of 14
spaces each. A comma causes printing of the wvalue of the
next expression to begin at the beginning of the next 14
column zone. A semicolon {;) causas the next printing to
begin immediately after the last value printed. If a comma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same 1line according
te the conditions above, Otherwise, a carriage return is
printed,

c. DATA, READ, RESTORE

1) the DATA statement. Numerical or string data needed
in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements, The format of the DATA statement is as follows:

DATA<list>

where the entries in the 1list are numerical or string
constants separated by commas. In 4K, expressions may also

Arcaary,

@

1977 Page 25

appear in the list. The effect of the statement is to store
the list ¢f walues in memory in coded form for access by the
READ statement, Examples:

19 DaTA 1,2,-1E3,.04

29 DATA " LOG", MITS Leading and trailing spaces in
string values are suppressed unless the string 1is
enclosed by deuble guotation marks.

2} The READ statement. The data stored by DATA
statements is accessed by READ statements which have the
following form:

READ<1list of variables>

where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the corresponding variables
in the READ statement list. This is done one by one from
left teo right until the READ list is exhausted. If there
are more names in the READ list than walues in the DATA
lists, an OD or QUT OF DATA error message is issued. If
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement to be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement. :

An SN or SYNTAX ERROR message c¢an result from an
improperly formatted DATA list. In 4K Altair BASIC, such an
error message will refer to the READ statement which
attempted to access the incorrect data. In other versions,
the line number in the error message will refer to the
acteal line of the DATA statement in which the error
aoccurred,

3) RESTORE statement, After the RESTORE statement is
executed, the next pilece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re-READing the data.

d. <(BavEing and CLOADing Arrays (8K cassette, Extended
and Disk wersions only). Numeric arrays may be saved on
cassette or loaded from cassette using C3AVE* and CLOAD* The
Formats of the statements are:

CSAVE*<array named>

and

gnuary,

1977 Page 26

CLOAD*<array name>

The array is writtem out in binary with four octal 218
header bytes to indicate the start of data. These bytes are
searched for when CLOADing the array. The number of bytes
written is four plus:

B*<number of elements> for a double precision array
4*<{number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying
most guickly, the next leftmost second, ete:

DIM A(14)}
CBAVE*A

writes out A{@) ,A{l),...A{1d)

DIM A{1lQ,10)
CSAVE*A

writes out aA(d,d), A(l,B]...A(lﬂ,ﬂ),A[lﬂ,l)...&(lﬁ,lﬂ)

Ozing this fact, it is possible to write out an array as a
two dimensional array and read it back in as a saingle
dimensional array, ete. -

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is
not recommended. Useless values will undoubtedly be
returned.

e. Miscellaneous Input/Qutput

1) WAIT (not in 4K). The status of input ports can bhe
monitored by the WAIT command which has the following
format:

WAIT<I,d>[,<K>]
where I is the number of the port being monitored and J and

K are integer expressions. The port status is exclusive ORd
with ¥ and the «result is ANDed with J. Execution is

anuary, 1977 . Page 27

(vf suspended until a non-zeroc value results. J picks the bits
of port I to be tested and execution is suspended until
those bits differ £from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. 1f
K is omitted, it is assumed to be Zzero, I, J and K must be
in the range 8 to 255. Examples:

WAIT 28,6 Execution stops until either bit 1 or bit
2 of port 22 are equal to 1. (Bit @ is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 14,255,7 Execution stops untll any of the most significant
5 bits of port 18 are one or any of the least
significant 3 bits are zero. Execution
resumes at the next statement.

2} POKE, PEEK (not in 4K). Data may be entered into
memery in binary form with the POKE statement whose format
is as follows:

POKE <I,J>

where I and J are integer expressions. POKE stores the byte
J inte the location specified by the value of I. 1In 8K, I
must be less than 32768. In BExtended and Disk wversions, ¥
may be in the range @ to 65536. J must be in the range B teo
255. 1In 8K, data may be POKEd into memory above location
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To
POKE data into locatiogn 45080, for example, I 1is
45808-65536~~20536. Care must be taken not to PORKE data
into the storage area occupied by Altair BASIC or the system
may be PORKEd to death, and BASIC will have to be loaded
again.

The complementary functicn to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK {<I>}

where I is an integer expression specifying the address from
which a byte is read. 1T is chosen in the same way as in the
PORE statement. The value returned is an integer betwsen @
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines,

(_/ 31007, INP (not in 4K}, The format of the OQUT
statement is as follows:

nuary,

1977 Page 28

QuT <I1.,J3>

where I and J are integer expressions. OUT sends the byte
signified by J to output port I, I and J must be in the
range 9 to 255.

The INP function is called as follows:
INE(<I>)

INF reads a byte from port I where I is an integer
expression in the range # to 255, Example:

2§ IF INP(J}=16 THEN PRINT *ON"

3. FUNCTIONS

Altair BASIC allows functicns to be refarenced in
mathematical function notation. The format of a function
call is as follows:

<nameX (<argument>[,<argument>,,.]}
where the name is that of a previously defined function and
the arguments are one or more expressions, separataed by
commas. Only one argument 1is allowed in 4K and BK.
Function calls may be components of expressions, ac
statements like

12 LET T=(F*SIN(T}}/F and
20 C«SQR(A™2+B"2+2*A*B*COS(T))

are legal.

3=1. Intringi¢ Functions

Altair BASIC provides several frequently used functions
which may be called from any program without further
definition. A procedure is provided, however, whereby
unneeded functions may be deleted to save memory space. See
Appendix B, For a list of intrinsic functions, see section
6"3-

3-2. Dser-Defined Functions (not in 4K}.

ARary,

C

1977 Page 29

a. The DEF statement. The programmer may define
functicens which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF statement is as follows:

DEF<function name> (<variable list>)=<expression>

where the function name must be FN followed by a legal
variable name and the entries in the variable list are
'dummy’ variable names., The dummy variables represent the
argument variables or wvalues in the function call, In 8K
Altair BASIC, only one argument is allowed for a
user-defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited tc cone line. User-defined functions may
be of any type in Extended and Disk wversions, but
uger-defined string functions are not allowed in B8R If a
type 1Is specified for the function, the wvalue of the
expression is forced to that type before it is returned to
the calling statement, Examples:

10 DEF FNAVE{V,W)=(V+W)/2

11 DEF PNCONS({VS,W$)=RIGHTS({V$+W5,5) Returns the right
most 5 characters of the concat-
enation of VS and WsS.

12 DEF FNRAD{DEG)=3.14159/188*DEG When called with the
measure of an angle in degrees,
returns the radian eguivalent.

A function may be redefined by executing another DEF
statement with the same name. A DEP statement must ke
execited before the function it defines may be called.

b. USR. The PSR function allows ¢alls %o assembly
language subroutines. See appendix E.

3j=3. BErrots.

An FC or ILLEGAL FURCTICM CALL error results when an
inproper call is made to a function., Some places this might
occur are the following:

1. a negative array subscript. LET A(-1)}=8, for example.
2, an array subscript that is too large (>32787)

3. negative or zero argument for LOG

anuary,

1977 Page 38

4. Negative argument for SQR
5. A"B with A negative and B not an integer

6. a call to USR with no address patched for the machine
language subroutine.

7. improper arguments to MID$, LEFTS ,RIGHTS, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRING$, SPACES or
ON...GOTOQ.

b. An attempt to call a user-defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTION error.

€, A TM or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or wvice-versa.

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this
section.

4=1. S8tring Data,

A string is a list of alphanumeric characters which may
be from & to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by wvariables. String constants are delimited by gquotation
marks at the beginning and end. A string variable name ends
with a dellar sign (§}. Examples:

AS="ABCD" Sets the variable a5 to the four character
string "ABCD"

B95="144/56" Sets the variazble B93 to the six character
string "14A/56"

FOOFOOS="ES" Sets the variable FOOFO0S to the two charac-

ter string "ES"

Strings input to an INPUT statement need not be surrounded

RUAL Y,

<

1977 a Page 31

by quotation marks.

String arrays may be dimensicned exactly as any other
kind of array by usa of the DIM statement. Each element of
a string array is a string which may be up to 255 characters
long. The ' total number of string characters in use at any
point in the execution of a program must not exceed the
total allocaticn of string space or an QS or OUT OF STRING
SPACE error will result. String space is allocated by the
CLEAR command which 1s explzined in section 6-2.

4=2. String operations.

a, Comparison Operators. The comparison operators for
strings are the same as those for numbsrs;

= equal

<> not equal

< less than

7> greater than

#{,<{= lass than or egqual to
=>,>= greater than or equal to

Comparison is made character by character cn the basis of
ASCII codes until a difference is foynd. If, while
comparison iz proceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII codes
may be found in Appendix B. Examples: .

A<LZ ASCII A is 965, 2 is 998

1<a ASCII 1 is @48

" A">"A" Leading and trailing blanks are significant
in string literals.

b. String Expressions. String expressions are
compeged of string literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string
on the right side of the operator to the end of the string
on the left. If the result ¢f concatenation is a string
more than 255 characters long, an LS or STRING TOO LONG
error message will be issued and execution will be
terminated,

c. Input/Qutput. The same statements used for input
and cutput of normal numeric data may be used for string
data, as well,

fanuary, 1977 ' o Page 32

1) INPUT, PRINT. The INPUT and PRINT statements read
and wWwrite strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, 1leading
blanks will be ignored and the string will be terminated
when the first comma or colon is encountered. Examples:

18 INPUT 2008§,FO0S Reads two strings

29 INPUT X3 Reads one string and assigns
it to the wvariable X3.

38 PRINT X§,"HI, THERE® Prints two strings, including
all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string
data are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.

4-3, String Functions.

The format for intrinsic string function calls is the
same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Extended and Disk versions and may
be defined by the use of the DEF statement {see section
3-2). String function names must end with a dollar sign.

5., EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this
section. Some modifications to existing 4K and BK features,
such as the IF...THEN.,.ELSE statement and number typing
facilities, have been discussed in conjunction with the
other wversions. Check the index for references to those
features.

5=1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory tec be used for
other purposes. The format of the ERASE statement is as
follows:

AITRACY,

C

1977 Page 33

ERASE<array variable list>

where the entries in the list are walid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur., The arrays deleted in an BRASE statement may be
dimensioned again, but the old values are lost. Example:

18 DIM A(5,5) etc.

68 ERASE a
78 DIM A(1@d}

b, LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",]l:<string variable name>

The prompt string is a string literal that is printed on the
terminal before input is accepted. & guestion mark is not
ptinted unless it is ceontained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string variable, A LINE INPUT may
be egcaped by typing Contrel/C. At that point, BASIC
returns to command level and prints OK. Bxecutien may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input huffer, so the command may not be edited
by Control/ad for re-execution.

c. SWAP. The SWAP statement allows the éalues of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The walue of the second variable is assigned to the first
variable and vice-versa. Either or both of the wvariables
may be elements of arrays. If one or both of the variables
are npon—array varlables which have not had values assigned
te them, an ILLEGAL FUNCTION CALL error will result. Both
variahles must be of the same type or a TYPE MISMATCH error
will result. Example:

1p INPUOT F§,LS
28 SWAP F$,L$
36 PRINT F$,L$
RUN

anuvary, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each line in the program is printed as it is
executed. The numbers appear enclosed in sguare brackets
(1. The function 1is disabled by execution of the TROPF
statement. Example:

TRON axecuted in direct mode

0K printed by computer

18 PRINT 1:PRINT “A" typed by programmer

2p sTOP

RON

18] 1 line numbers and cutput printed by
A computer.

(281

BREAK 1IN 28

The NEW command will also turn off the trace flag.
e, IF...THEN...ELSE, See section 2-2,
f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSQLE, WIDTH. CONSOLE allows the conscle
terminal to be switched from one I/0C poart to another. The
format ¢f the statement is:

CONSOLE <I/0 port number>,<switch register setting>

The <I/0 port number> is the hardware port number of the low
order ({status)} port of the new I/0 board. This wvalue must
be a numeric expression between @ and 255 inclusive. If it
is not in this range, an ILLEGAL FONCTION CALL error will
occur. The <switch register setting> 1is alse a value
between # and 255 inclusive which specifies the type of I/0
port ({5I0, PIO, 4PIO etc) being selected. Appropriate
values of the <switch register setting> may be Efound in
Appendix B in the table of sense switch settings or in the
table below.

Ry LY,

1977 Page 35

Table of values for <switch register setting>:

I/0 Board Sense Switch
Setting
2510 with 2 stop bits %]
2510 with 1 stop bit 1
SIC 2
ACR 3
4PI0 4
PIO 5
HSR [
non-gtandard terminal 14
no terminal 1s

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal line, The format of the WIDTH statement
is as follows: .

WIDTH <integer expression>
Example:

WIDTH 8@
WIDTHE 32

The <numeri¢ formula> must have a value between 15 and 255
inclusive, or an ILLEGAL PUNCTION CALL error will occur.

h. Error Trapping. Bxtended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attempt to recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages, This facility has been
added to Altair BASIC through the use of the ON ERROR GOTC,
RESUME and ERROR statements amnd with the ERR and ERL
variables.

1} Enabling Error Trapping. The ON ERROR GOTC
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts., The format is
as follows:

ON ERROR GOTO <line number>

1977 Page 36

The ON ERROR GOTC statement should be executed before the
user expects any errors to ogcur. Once an ON ERRCR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will
occur.

Example:

19 ON ERROR GOTO 1848

2) Disabling the Error Routine. ON ERROR GOTO @
disables +trapping of errors so any subsequent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO @ statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
ON ERROR GOTC @ subroutine if an error is encountered for
which they have no recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the system error message will be
printed and executicon will be terminated. Error
trapping does not trap errors within the error trap
routine, i

3) The ERR and ERL Variables. When the errer handling
subroutine is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6=5 for a detailed dizcussion of
each of the errors and error messages.

ode Error
NEXT WITHQUT FOR
SYNTAX ERROR
RETURN WITHOUT GOSUB
QUT OF DATA
ILLEGAL FUNCTION CALL
OVERELOW
QUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT QUT OF RANGE

D OO R LN R Ld A DY

BOUALY »

C

1979 Page 37

16 REDIMENSIONED ARRAY

11 DIVISION BY ZERQ

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 OUT OF STRING SPACE

15 STRING TOO LONG

16 STRING FORMULA TOG COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION

149 UNPRINTABELE ERROR

20 NO RESUME .

21 RESUME WITHOUT ERROR
22 MISSING QPERAND

23 LINE BUFFER OVERfLOW

Disk Brrors

58 FPIELD QVERFLOW

51 INTERNAL ERROR

52 BAD PILE NUMBER

53 FILE NOT FOUMND

54 BAD FILE MODE

55 FILE ALREADY OPEN

36 DISK NOT MOUNTED

57 DIS®E I/0 ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
6B DISK ALREADY MOUNTED
a6l DISK FULL

62 INPOT PAST END

63 BAD RECQRD NUMBER

64 BAD FPILE NAME

65 MODE-MISMATCE

66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES

&8 OUT OF RANDOM BLOCKS

The ERL variable c¢ontains the line number of the line
where the error was detected. For instance, if the error
occuted in line 1940, ERL will be egual +to 1g38. If the
statement which caused the error was a direct mode
statement, ERL will be equal t¢ 65535 decimal., To test if
an error occurred in a direct statement, use

IF 65535=ERL THEN ...
In all other cases, usge

IF ERL=<line number> THEN...

anuary,

1977 Page 38

If the line number is on the left of the egquation, it cannot
be renumbered by RENUM (see section l-la).

4) Disk Error Values ~- The ERR function. The ERR
function returns the parameters of a DISK I/0 ERROR. ERR({2)
returns the number of the disk, ERR(l) returns the track
number (#-76]) and ERR({2) returns the sector number ({#-31)}.
ERR(3) and ERR{4) contain the low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used
te continue execution of the BASIC program after the error
recovery procedure has been performed., The user has three
eptiaons. The user may RESUME execution at the staktement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution

at the statement which caused the error, theé user should
usea:

RESUME
Qr
RESUME @

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT

Toe RESUME execution at a line dfferent than the one where
the error occurred, usea:

RESUME <line number>
Where <line number> is not equal to zero.

8} Error Routine Example, The following example shows
how a simple error trapping subroutine operates.

nzary,

C

1977 Page 39

14¢ ON ERROR GOTO 508

208 INPUT "“WEAT ARE THE NUMBERS TO DIVIDE";X,Y
218 Z=X/Y

22@ BRINT "QUOTIENT IS";zZ

230 GOTC 28¢

5¢d IF ERR=11 AND ERL=21% THEN 524

519 ON ERROR GOTO §

528 PRINT "YOU CANT HAVE A DIVISOR OF ZERQ!"
533 RESUME 284

7) The ERROR statement. 1In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statenent is to
allow the user to define his own error codes which ¢an then
conveniently be handled by a centralized error trap routine
as described above, The format of the ERROR statement is:

ERROR <integer expression>

When defining ertor codes, values should be picked which are
greater than the ones used by Altair BASIC. Since nmore
arror messages may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbets
to assure future compatibility. If the <numeric expression>
used in an ERROR statsment is less than zero or greater than
255 decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERROR statement may also be used to force SYNTAR
or other standard Altair BASIC errors. Use of an ERROR
statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR
message to be printed out.

5-2. Extended Operators.,

Two operators are provided that are exclusive to the
Extended and Disk versions.

da. Integer Division. Integer divizion, dencted by \
{backslash), feorges its arguments to integer form and
truncates the guotient to an integer. More precisely:

ANB= FIX(INT(A)}/IWT(B))
Its precedence is just after multiplication and floating

point divison. Integer division 1is approximately eight
times as fast as standard floating point division.

[angary,

1977 Page 40

b, Modulus Arithmetic - the MOD operxator. A MOD B
gives the 'remainder' as A is divided by B, More precisely:

A MOD B=INT(A)-(INT(B)* (A\B))

If B=8, a DIVISION BY ZERO error occurs, The precedence of
MOD is just below that of integer divisicn.

5=3, Extended Functions

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other wversions. For a 1list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as followsa:

DEFUSR[<digit § through 9>]=<integer expression>
Example:

DEFUSR1=&12004d4
DEFUSR2=313%6
DEFUSRY9=ADR

The of the <integer expression> is the starting address of
the USR routine specified. When the USR subroutine is
entered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argqument type:

Value in A Meaning

2 Two byte signed two's complement integer.

3 String.

4 Single precision four byte floating peint number.
8 Double precision floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the f£loating point accumulator (FAC).
The [E,L] registers contain the address of FAC-3.

If the value in the FPAC is a single precision floating point
number, it is stored as folliows:

FAC=3: Lowest 8 bits of mantissa.
FAC=2: Middle 8 bits of mantissa.
FAC-1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (9
positive, 1 negative).

anuary,

C

1977 Page 41

FAC: Exponent excess 209 octal. If the contents of FAC is 248,
the exponent is . If contents of FAC is 8,the number is

ZELO.

If the argument is double precision flecating point, the
FAC~7 to FAC-4 contain £four more bytes of mantissa, low
order byte in FAC-7, etc., If the argument is an integer,
FAC=3 contains the 1low order byte and FAC-2 contains the
high order byte ©f the signed two's complement value, if
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

Byte Use

2 Length of string #-255 decimal.

i=-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may pelnt into
program text if argument is a string literal).

Normally, the wvalue returned by a USR function will be the
same type (integer, string, =single or double precision
floating point) as the argument which was passed to it.
However, c¢alling the MAKINT routine whose address is stored
in location 6 will return the integer in [H,L] as the value
of the function, foreing the value returned by the function
to be integer. Execute the following sequence to return
from the function:

PUSH H $SAVE VALUE TO BE RETURNED

LELD 6 ;GET ADDRESS OF MARINT ROUTINE
XTHL ;SAVE RETURN ON STACEK &

) ;GET BACK [H,L]
RET ¢+ RETURN

The argument of the function may be forced to an integer, no
matter what its type by c¢alling the FRCINT routine whose
address is lecated in location 4 to get the integer value of
the argument in [H,L]:)

LXI #,5UB1 ;GET ADDRESS QF SUBROUTINE
+ CONTINUATION

pPUSH H ;PLACE ON STACK

LHLD 4 +GET ADDRESS OF FRCINT

PCHL ;CALL FRCINT

SUBl:

5~4. The EDIT Command.

[anuary, 1977 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most c¢ommands may be preceded by an optional numeric
repetition factor which may be used to repeat the command a
number of times. This repetition factor should be in the
range 8 to 255 (§ is egquivalent to 1), If the repetiticn
factor 1is omitted, it is assumed to be 1. In the following
examples, a lower case "n" bhefore the command stands for the
repetition factor. In the folleowing description of the EDIT
commands, the "gursor" refers to a pointer which is
positioned at a character in the line being edited,

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return, The line number of the
line being EDITed will be printed followed by a space. The
cursor will now be positioned to the left of the first
character in the line.

ROTE

The best way of getting the "feel" of the EDIT
command is to try EDITing a few lines yourself,.

If a command not recognized as an EDIT command is entered,
the computer prints a bell (control/G) and the command is
ignored.

In the following examples, the lines labelled "computer
prints" show the appearance of the line after each command.

a. Moving the Cursor, Typing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubcout causes the immediately previous character to be
printed effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

pavary,

C

1377

Page 43

Character ingertion is stopped by typing Escape
{for Altmode on some terminals). <Control/C will not
interrupt the EDIT command while it is 1Iin Insert
mode, but will be inserted into the edited line.
Therefore, Contrel/C should not be used in the EDIT
command.

It is possible using EDIT %o «create a line
which, when 1listed with its line number, is longer
than 72 characters. Punched paper tapes containing
such lines will not read properly. Bowever, such
lines may be CSAVEd and CLOADed without error.

I Inserts new characters intoc the line being
Each character typed after the I is inserted at
the current cursor position and printed on the
terminal., Typing Escape (or Altmode on some
terminals) stops character insertion, If an
attempt is made to insert a character that will
make the line longer than 255 characters, a
Control/G {bell) ig sent t¢ the terminal and
the character is not printed.

A backarrow (or Rubout) typed during an in
commznd {or=-) will delete the character te the

of the curser. Characters up to the beginning
the 1line may be deleted in this manner, a
backarrow will be echoed for each chara
deleted. However, if there are no character

edited,

sert
left

of
nd a
cter
3 to

the left of the curscr, a bell is echoed instead of

a backarrow. If a carriage return is typed du
an insert command, it is as i1If an escape and
carriage return were typed. That is,
characters to the right of the curser will
printed and the EDITed line will replace
original line.

ring
then
all
be
the

X is similar to I, except that all characters to

the right of the curscer are printed, and the ¢u
moves to the end of the line., At this point

TS0r
! it

will automatically enter the insert mode (see I

command). X is most useful when new statements are
to be added to the end of an existing line. For
example:

Oser types EDIT 5@ (carriage return)

Computer prints 5@

User types X

Computer prints 5¢ X=X+l

User types tY=¥+1 (CR)

Computer prints 58 XaX+l:Y¥=Y+1

anuary,

1977

Page 44

In the above example, the original line #5¢ was:
58 X=X+

The new line §58 now reads:

5¢ X=X+l:Y=y+l

H is the same as X, except that all characters to
the right of the cursor are deleted {they will not
be printedj. The insert mode (see I command} will
then automatically be entered. H is most useful
when the last statements on a line are to be
replaced with new ones.

Deleting Characters

nD deletes n characters te the right of the

cursor. If n is ommitted, it defaults to 1. If
there are less than n characters to the right of
the cursor, characters will be deleted only to the
end of the line, The curser is positicned to the
right of the last character deleted. The
characters deleted are enclosed in backslashes (\}.
For example:

User types 26 X=X+1:REM JUST INCREMENT X
User types EDIT 28 (carriage return)
Computer prints 28

User types 8D (carriage return)

Computer prints 28 \X=X+1:\REM JUST INCREMENT X

The new line §28 will no longer contain the characters

which are enclosed by the backslashes.

Searching.

The nSy command searches for the nth occurrence of the

character y in the line. W defaults to 1. The
search skips over the first character to the right
of the c¢ursor and begins with the second character
to the right of the cursor. All characters passed
over during the search are printed. 1f the
character is not found, the curser will ke at the
end of the line. If it is found, the curgor will
stop to the right of the character and all of the
characters to its left will have been printed. For
example

User types
User types

P

EDIT 3@

5% REM INCREMENT X

kngacry, 1977 Page 45

(w’ Computer prints 5@
User types 25E
Computer prints 58 REM INCR
K nky is equivalent to § except that all of the

characters passed over dJduring the search are
deleted. The deleted characters arz enclosed in

backslashes., For example:

User types 1@ TEST LINE
User types EDIT 18
Computer prints 13

Jser types RL
Computer prints 1@ \NTEST \

e. Text Replacement,

C A character in a line may be changed by the use of
the command Cy which changes the character to the
right o¢f the cursor to the character y. Y is
printed c¢n the terminal and the <ursor is advanced

one position. nCy may be used to change n
characters in a line as they are typed in from the
terminal. {See example below.}) If an attempt is
(_/ made to change a character which does not exist,

the change mode will he exited. Example:

User types 16 FOR I=1 TO ld@

User types EDIT 14

Computer prints 14

User types 251

Computer prints 18 FOR I=]1 TG

Usar types 3C258

Computer prints 13 FOR I=1 TO 2356

£. Ending and Restarting

Carriage Return Terminates editing and prints the re-
mainder of the line. The edited line replaces the
original line.

E E is the same as a carrcriage return, except the
remainder of the line is not bprinted.

Q Q restores the criginal line and causes BASIC to
return to command leveal. Changes do not take
effect until an E or carriage return is typed, so Q
allows the wuser to restere the original 1line
without any changes= which may have heen made.

L L causes the remainder of the line to pe printed, and
then prints the line number and restarts editing at

anuary,

1977 Page 46

the beginning of the 1line. The cursor will be
pogitioned to the left of the first character in
the 1line. L allows wmonitering the effect of
changes on a line. Example:

User types 5¢ REM INCREMENT X
User types EDIT 58
Computer prints 5@
User types 28M
Computer prints 58 REM IWCRE
User types L
Computer prints 58 REM INCREMENT X
59
A A causes the original line to be restored

and editing t0 be restarted at the beginning of the
line. For example:

User types 13 TEST LINE

User types EDIT 16

Computer prints 1@

User types 18D

Computer prints 18 \TEST LINE\

User Lypes A

Computer prints 1d \TEST LINE\
lg

In the above example, the user made a mistake when

he deleted TEST LINE. suppose that he wants to

type "1D" instead of 19D, As a result of the A

command, the original line 18 is reentered and is
- ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASIC will automatically begin EDITing
the line that caused the arror as if an EDIT c¢ommand had
been typed., Example:

18 APPLE

RUN

SYNTAX ERRCR IN 18
1g

Compiete editing of a 1line causes the line edited to be
reinserted, Reinserting a line causes all variable wvalues
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the {§ gommand after
the 1line number is printed. If this is done, BASIC will
return to command level and all variable values will be
preserved.

anzary, 1977 Page 47

(#. The features of the EDIT command may be used on the
line currently being typed. Te do this, type Control/2
instead of Carriage Return. The computer will respond with
a carriage return, an exclamaticn point (1) and a space.
The cursor will be positioned at the first character of the
line. At this point, any of the EDIT subcommands except
Control/A may be used to correct the line. Example:

User types 18 IF X GOTO #"/A
Computer prints {

User types St 2C12
Computer prints ! 16 IF X GOTO 12

The current line number may be designated by a periocd
{.} In any command requiring a line number. Examplesg:

User types 14 FOR I= 1 TO 19

Usar types EDIT .
Computer prints 14

5-5, PRINT USING statement.

The PRINT USING statement can be employed in situations
whera a specific output format is desired. This situation.
might be encountered in such applications as printing
payroll checks or accounting reports. The general format
for the PRINT USING statement is as follows:

PRINT USING <string>;<vazlue list>

The {string> may be a string variable , string expression or
a string constant which is a precise copy of the line to be
printed. All of the characters in the string will be
printed Jjust as they appear, with the exception of the
formatting characters. The <value list> is 2 1list of the
items to be printed. The string will be repeatedly scanned
until: 1} the string ends and there are no values in the
value 1list or, 2) a field is scanned in the string, out the
value 1list 1is exhausted. The string is constructed
according to the following rules:

a. String Fields.

! specifies a single character string field,
{The string itself is specified in the wvalue list.)
\n spaces) Specifies a string field consisting of 2+n char-
(_/ acters. Backslashes with no spaces between them

rancary, 1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etg.

In both cases above, if the string has more characters than
the field width, the extra characters will be ignored. 1If
the string has fewer characters than the field width, extra
spaces will be printed to f£ill out the entire field. Trying
toe print a number in a string field will cause a TYPE
MISMATCH error to occur, Example:

19 AS="ABCDE" ;BRS="FGH"
29 PRINT USING ™|";AS;BS§
3@ PRINT USING "\ \";B$;AS

{the ahove would print out)

AF
FGE ABCD

Note that where the "I" was used only the first letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed {an extra
space was printed for BS which has only three characters).
The extra characters in the first case and £for A% in the
second case were ignored,

b. HNumeric Fields, With the PRINT USING statement,
numeric printouts may be altered teo sult almoest any
application. Strings for formatting numeric £fields are
constructed from the following characters:

¥ . Numeric fields are specified by the ¢ sign, each of

i which will represent a digit positien. These digit
positions are always filled. The numeric f£ield
will be right justified; that is, {if the number
printed 1s to¢ small to £ill all of the digit
positions specified, leading spaces will be printed
as necessary to f£fill the entire field.

. The decimal point may be specified in any position
in the field. Rounding is performed as necessary.
If the field format specifies that a digit is to
precede the decimal point, the digit will always bhe
printed {(as © if necessary).

The follewing program will help illustrate these rules:

Rriuary,

_

1977

§s

Page 49

18 INPUT AS,A
28 PRINT USING A$;A
38 GOTO 14
RUN
7 ##,12
12

7 444,12
12
T o4, 12
12
Tk H#,12

7 $44%.,12
12

7 $.348,.82
§.628
T#4.4,2.36
2.4
7448 ,-12
=12
PR H4,~.12
-.12
PHE#E,-12
=12

The + sign may be used at either the beginning or
end of the numeric field, if the number is
positive, the + sign will be printed at the
specified end of the number. If the number is
negative, a - sign will be printed at the specified
end of the number.

The - sign, when used to the right of the numeric
field designaticn, will force the minus sign to be
printed to the right of the number if it is
negative. If the number is positive, a spaca is
printed.

The ** placed at the beginning of a numeric field
designaticon will cause any unused spaces in the
leading portion of the number printed out to be
filled with asterisks. The ** also specifies
positions for 2 more diglts. (Termed “asterisk
£i11*)

When the $5 is used at the beginning of z numeric

field designation, a2 $ sign will be printed in the
space immediately preceding the number printed.
Note that $3 also specifies positions for two more
digits, but that the § itself takes up one of these
spaces. Exponential format cannoet be used with
leading $ signs, nor can negative numbers be output

phuary, 1977

**s

-~

Page 50

unless the sign is forced to be trailing.

The **$§ used at the beginning of a numeric field
designation causes both of the above (** and §§) to
be performed on the number being printed cut. ALl
of the previous conditions apply, except that **§
allows for 3 additional digit positions, cne of
which is the § sign.

A comma appearing to the left of the decimal point
in a numeric field, designation will cause a comma
to be printed to the left of every third diglt to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position. A comma to the right of the decimal
point in a numeric fleld designation is congidered
a part of the string itself and is treated as =a
printing character.

i ‘llon some terminals) Exponential Format.

If exponential format is desired in the printout,
the numeric field designation should be followed by
“*** (allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left justified and the exponent is adjustad.
Unless a leading + or a trailing + or - is used,
one positicon to the left of the decimal point will
be uzed to print a space or minus sign. Examples:

PRINT USING *[$##""""]"; 13,17,-8

{ 1E+813}(2E+81] [-BE+@8]

OK

PRINT USING " [.&4#3%#4""""=3; 12345,-12345%6
[.123458E+85]{.123456E+96=]

OK

PRINT USING "[+.84#7"""1"; 123,-126
[+.12E+83] {-.13E+23]

OK

If the number to be printed cut is larger than the
specified numeric field, a % <character will be
printed followed by the number itself in standard
Altair BASIC format., ({The user will see the entire
number.} If rounding a number causes ii to exceed
the specified £field, the % character will be
printed followed by the rounded number. If, for
example, 3<=,999, then

PRINT USING ".#3",A

will print

pnuary, 1977 - Page S1

L“‘ $1.08.

If the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error wilill oecur.

The following program will help illustrate the
preceding rules.

Program: 1@ INPUT A$,A
28 PRINT USING A$:A
38 GOTO 18
RUN

The c¢omputer will start by typing a ?. The numeric field
designator and value list are entered and the output is
displayed as follows:

? +%#,9
+9

2?2 +%,18
¥+10

? ##:-2
-2

? +E¥,-2
-2

? #:_2

-2

P ok R4, .92

+.820

? #¥34.%,108
190.8

? o##+,2
2+

? THIS IS A HUMBER ##,2
THIS IS A NUMBER 2
? BEFORE #3% AFTER,12
BEFORE 12 AFTER
? 444%,44444
344444
7T OFRREL]
***l
? ORFEEL,12
**12
? okAig 123
*123
? *rEE,1234
1234
7 o*%aE 12345
$12345
(_, FE LI |
*x]
P k% 22

pnuacy,

1377

22

7 **.4%,12
12.0@

? OWRREEE,D

!l
{(note: not floating §)

{note: floating §)

?7 $,6.9

7

? $.§,6.99
7.8

? ##-:2
2

? oFR~,-2
p

? #4+,2
2+

? 44,2
2_

T HTTTT,2
2E+38

LT I I
1E+@1

?OERAMELBAETTTT,2.45678

2456, 7805-03
7 48447777 ,123
@.123E+83

? L4777, 123

-.12E+83

P THEEEd, EEH.4",1234567.89

1,234,570.9

? SEE44.44,12.34
$ 12.34
? SSHE44.44,12.56
$12.56
? §$9.84,1.23
$1.23
? $3.48,12.34
$312.34
? $3544#,08.23

$6

? SSERiE. .0
$0.88

? *R5R4E.84,1.23

*AAES1.23

7 OANS. 44,1.23

*$1.23

RS £ 5 PR

*iﬂisl

Typilng Control/C will stop the program.

5-5.

Disk file operations.

Page 52

Anuary,

C

1877 Page 53

As many as sixteen floppy disks may be connected to a
gingle ALTAIR disk controller. These disks have bean
assigned the physical disk numbers § through 15. Users with
one drive should address the drive at zerc, and users with
two drives shoulé address them at zerc and one, etc.

In the following descriptions, <disk number> is an
integer expression whose wvalue is the physical number of one
of the disks in the system. If the <disk number> is omitted
from & statement other than MOUNT or UNLOAD, the <disk
number> defaults to 8. If the <disk number> is omitted from
a MOUNT or UNLOAD statement, disks @ through the highest
disk number specified at initialization are affected.

a. Opening, Closing and Waming Files. To initialize
disks for reading and writlng, the the MOUNT command is
issued as follows:

MOUNT [<disk number>[,<disk number>...}}
Example:

MOUNT 4
Mounts the disk on drive zera, and

MOUNT 4,1
Mounts the disks on drives zerc and one. If there is
already a disk MOUNTed on the specified drive(s} a
DISK ALREADY MOUNTED message will be printed. Before
removing a disk which has been used for reading and writing
by- Disk &altair BASIC, the user should give an UNLOCAD
command :

UHLOAD [<disk number>[,<disk number>...]]
UNLOAD ¢loges all the files open on a disk, and marks the

disk as not mounted., Before any further I/0 is done on an
UNLOADed disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or any other disk command may be used
as a program statement,

All data and program files on the disk have an associated
file name,. This name is the result of evaluating a string

[aneary, 1977 Page 54

expresslon and must be one to eight characters in length.
The £first character of the file name cannct be 2 null (8)
byte or a byte of 255 decimal. An attempt &o use a null
file name {zero characters in length) , a file name over &
characters in length or containing a ¢ or 255 in the first
character position will cause a BAD FILE NAME error. Any
other sequence of one to eight characters is acceptable.

Examples aof valid file names:

ABC

abc {Not the same as ABC)
filename

file.axt

12345678

INVNTORY

PILE#$22

NCTE

Commands that reguire a file name will use <file
name> in the appropriate position. Remember that a
<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>
Example:
FILES {prints directory of files on disk 8}
STRTRK PIP CURFIT CISASM
Execution o¢f the FILES command may be interrupted by typing
Control/C. A more complete listing of the information

stored in a particular file may be obtained by running the
PIP utility program (see Appendix I}.

c. S5AVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

anuary.,

C

1577 Page 55

SAVE <file name> [,<disk number>[,A]]

Example:

SAVE "TEST".,8
ar

SAVE "TEST"

would save the program TEST on disk zero. Whenever a
program is SAVEd, any existing copy of the program
previously SAVEG will be deleted, and the disk space used by
the previous program is made available. See section 5-6d
for a discussion of saving with the 'A' option.

The LOAL statement reads a file from disk and loads it
intc memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>[,R]]
Correspondingly:
LOAD "TEST”,6 or LOAD "TEST"

loads the program TEST from disk zero. If the file do#&s not
exist, a FILE NOT FOUND error will occur. :

LOAD “TEST",d,R
[0):9

LOADs the program TEST from disk zero and runs it. The LCAD
command with the "R" option may be used to chain or segment
programs into small pieces if the whole program is too large
to fit in the computer's memory. All variables and program
lines are deleted by LCAD, »ut all data files are kept
QPEN{see below} if the "R" option is used. Therefore,
information may be passed between programs through the use
of disk data files. If the "R" option is not used, all
files are automatically CLGSEd (see below} by a LOAD.

Example:

NEW
1¢ PRINT "FOO1":LOAD "FOO2",d,R
SAVE "FCO1",8

OK
18 PRINT "FOQ2°:LOAD "FOOL",8.R
SAVE “FQO2",8

@nuary.,

1977 Page 36

OK

RUN
FOO2
FOOL
FOO2
FOOL
PR % A

{Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FOQ2 prints the
message "F002" and then calls the program FOOl on disk,.
FOOl prints "POOQl" and calls the program FOC2 which prints
"FOR2Y and so on indefinitely.

RUN may also be used with a file name to load and run a
program, The format of the command iz as follows:

RUN<file name>[,<disk number>[,R]]

A1l files are closed unless ,R is specified after the disk
number,

d. SAVEing and LOADing Program Files in ASCII, Often
it 1is desirable to save a program in a form that allows the
program text to be read as data by ancther program, such as
4 text editor or reseguencing program., Unless otherwise
specified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and loads
very guickly. To save a program in ASCII, specify the "A"
option on the SAVE command:

save "TEST",d,A

OK

LOAD "TEST",d

QK

Information in the file tells the LOAD c¢ommand the

format in which the file is te be loaded. The first
character of an ASCII file is never 255, and a binary
program f£ile always starts with 255 (377 octal). Remember,

loading an ASCII file is much slower than loading a binary
file.

nuary, 1977 Page 57

(u/ &. The MERGE Command. Sometimes it is very useful to
put parts of two programs together to form a naw program
combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE
statement iz as follows:

MERGE <file named[,<disk number>]
Example:

MERGE "PRINTSUR",l
OK

The <file name> specified is merged into the program already
in memory. The <flle name> must specify an ASCII format
saved program or a BAD FILE MODE error will occur. If there
are lines in the program on disk which have the same line
numbers as lines in the program in memory, the 1lines frem
the file on disk will replace the corresponding program
lines in memory. It is as if the program lines of the file
on disk were typed on the user terminal.

£. Deleting Disk Files, The KILL statement deletes a
file from disk and returns disk space used by the file to
free disk space. The format of the ERILL statement 1is a2
follows:

RILL <file name>[,<disk number>]

If the file does not exist, a FILE NOT FQUND error will
occur. If a KILL statement is given for a file that is
currently QPEN (see below), a FILE ALREADY QOPEZN error
oCouUrsS.

g. Renaming Files - the NAME Statement. The NAME
statement is used to change the name of a file:

BAME <old file name> AS <new file name>[,<dilsk number>]
Example:
NAME "OLDFILE"™ AS “WEWFPILE"
The <old file name> must exist, or a FILE NOT FOUND error
will occur. A file with the same name as <new £ile name>

(” must not exist or a FILE ALREADY EXISTS error will coccur.
After the NAME statement is executed, the file exists on the

Fanuary, 1977 Page 58

same disk in the same area of disk space. Only the name is
changed.

h. OPENing Data Files, Before a program can read or
write data te a disk file, it must first OPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

QPEN <mode>, [#]<file number>,<file name>[,<disk number>]

<mode>» is a string expression whose first character is one
of the following:

Specifies sequential output mode
Specifies sequential input mode
Specifies random Input/Cutput mode

LB O

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read
Erom and write to the terminal. Random files are divided
inte groups of 128 characters called records. The nth
record of a file may be read or written at any time, Random
files have other attributes that will be discussed later in
more detail.

<file number> is an integer expression between one and
fifteen. The number is associated with the file being
OPENed and is used to crefer to the £file in later 1I/0
cperations.

Examples:

OPEN "O",2,"QUTPUT",d
CQPEN "I",1,"INPUT"

The above two statements would open the file OUTPUT for
segquential output and the file INPUT for sequential input on
disk zero.

OPEN M$,H,F$,D

The above statement would open the file whose name was in
the string F§ in mode M$ as file number N on disk D.

i. Sequential ASCII £file I/0 Segquential input and
output files are the simplest form of disk input and cutput
since they involve the use of the INPUT and PRINT statements

BUALY ,

“

1377 Page 5%

with a file that has been previously OPENed.
INPUT is used to read data from a disk file as follows:

INPUT #<file number>,<{variable list>

where <file number> represents the number of the file that
was OPENed for ipput and <variable list> is a list of the
variables to be read, as in a normal INPUT statement. When
data is read from a2 sequentizl input £ile wusing an INPUT
statement, no gqueation mark {7) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
terminal. When reading numeric values, leading spaces,
carriage returns and line feeds are ignored. When a
non-space, non-carriage return, non-line-feed character is
found, it is assumed to be part of a number in Altair BASIC
format, The number terminates on a space, a carriage return
s line~feed or a comma.

When scanning for string items, leading blanks,
carriage returns and line-feeds are alsc ignored. When a
character which is not a leading blank, carriage return or
line~feed 1is found, it is assumed to¢ be the start of a
string item.If this filrst character iz a gquotation mark (")
the item 1is %taken as being a gquoted string, and all
characters betwesn the first double gqueote (") and a matching
double guote are returned as characters in the string wvalue.
This means that a quoted string in a file may c¢ontain any
characters except double quote. If the first character of a
string item is not a guotation mark, then it is assumed to
be an unguoted string constant. The string returned will
terminate on a comma, carriage return or line feed. The
string is immediately terminated after 255 characters have
been read.

For both numeric and string items, if end of file (ECF)
is reached when the item is being INPUT, the item is
terminated regardless of whether or not a closing gquote was
seen.

Sequential I/0 commands destroy the input buffer so
they may not be edited by Control/A for re-—executicn.

Example of sequential I/0 (numeric¢ items):

548 OPEN ®*G",1,"FILE",D
518 PRINT #1,X,Y,Z
52¢ CLOSE #1

mnuary, 1977 Page 64

539 OPEN "I1",1,"FILE",D
548 INPUT #1°,X,Y,Z2

Hote that CLOSE is used so that a file which has just been
written may be read, When FILE 1is re-0OPENed, the data
pointer for that file is set back to the beginning of the
file so that the first INPUT on the file will read data from
the start of the fila.

2) PRINT and PRINT USING statements are used to write
data into a segquential output file. Their formats are as
follows:

PRINT #<file number>,<expression list>

or

PRINT #<file number>,
USING <string expression>;<expression list>

Example of sequential I/0 {guoted string items):

549 OPEN "0",1,"FILE"
518 PRINT #1,CHRS (34);X$;CHRS({34);

515 PRINT $#1,CHRS{34);Y$;CHERS (34) ;CERS (34);2$;CHRS (34)
520 CLOSE 1

534 OPEN "I*,1,"FILE",d

548 INPUT $1,X$,YS,Z8

In this example, the strings being cutput (X%, ¥$, Z§) are
surrounded with double guotes through the use of the CHRS
function to generate the ASCII value for a double gquote.
This technique must be wused if a string which is being
vutput to a seguential data file contains commas, cartiage
returns, line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, carriage returns or line-feeds in the strings to be
output, it 1is sufficient to insert commas between the
strings being cutput as in the following example:

5886 QPEN "O",l,"FILE"

514 PRINT #1,X$;",";¥S;",";58
528 CLOSE 1

%39 OPEN "I",1,'FILE",d

543 INPUT #1,X$,Y5,Z5

3} CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [«<file number>{,<file number>...}!

\mnuwary, 1977 Fage 61

K./

CLOSE is wused to finish I/0 to a particular Altair BASIC
data file. After CLOSE has been executed for a (file, the
file may be reOPENed for input or cutput on the same or
different <file number>. A CLOSE for a sequential ocutput
file writes the final buffer of ocutput. A CLOSE te any OPEN
file finishes the connection between the <file number> and
the <file name> given in the OPEN for that file. It allows
the <file number> to be used again in anether QPEN
statement.

A CLOSE with no argument CLOSEs all OPEN files.

NOTE

A FILE can be OPENed for sequential input or random
access on mere than one <file number> at a time but
may be OPEN for output on only one <file number> at
a time.

END and WEW always CLOSE all disk files automatically. STOP
(dr does not CLOSE disk files. .

4) LINE INPUT. Often it is desirable to read a whole
line of a file intc a string without using quotes, commas or
other characters as delimiters. This is especially true 1if
certaln filelds of each line are being used to contain data
items, or if a BASIC program saved in ASCII mode is being
read as data by ancther program. The facility provided to
perform this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string wvariabled>

A LINE INPUT from a data file will return all characters up
to a c¢arriage return in <string wvariable>. LINE INPUT then
skips over the following carriage return/line-feed sequence
sa that a gubsequent LINE INPUT from the £ile will return
the next line.

5} End of File {EOF) Detection. When reading a
sequential data file with INPUT statements it is usually
desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the EOF
function:

X=EQF(<file number>}

EOF returns TRUE (=1) when there is nc more data in the file
and FALSE (8) otherwise. 1If an attempt is made to INPUT

anuary, 1977 Page 62

past the end af a data file, an INPUT PAST END error will .
OCCUr. ‘

Example:

186 QPEN "I",1,"DATA",Q
119 1=4

129 IF EOF(l) THEN 168
139 INPUT %1,A(I)

149 IaI+l

158 GOTO 124

160 cienen

In this example, numeric data from the seguential input file
DATA is read into the array Aa. When end of £ile 1is
detected, the IF statement at line 129 branches to line 164,
and the variable I "points™ one beyond the last element of A
that was INPUT from the file,

The following is a program that will calculate the
number of lines in a BASIC program file that has been SAVEd
in ASCII mode:

19 INPUT "WBAT IS THE NAME OF TEE PROGRAM";P$
29 OPEN "1",1,P%,8

30 I=0 ‘
‘49 IF EQF (L) THEN 74
58 I=I+1:LINE INPUT #1,L$.
68 GOTO 44

78 PRINT "PROGRAM ":P$;" IS ";I;" LINES LONG"

80 END

This example uses the LINE INPUT statement to read each line
of the program into the "dummy" string L$ which is used just
to INPUT and ignore that part of the file,

6) Finding the Amount of Free Disk Space (DSKF). It is-
sometimes necessary to determine the amcunt of free disk
space remaining on a particular disk before allocating
(writing) a £ile. The DSKF function provides the user with
the number of free groups left on a given disk, after the
disk has been MOUNTed. A group is the fundamental unit of
file allocation. That is, files are always allocated in
groups of eight sectors at a time. Each sector contains 128
characters (bytes). Therefore, the minimum size for a file
is 1824 bytes.

Syntax for the DSKF function:
DEKF{<disk number>)

Example: ‘

Anuary,

L

1977 Page 63

PRINT DSKF({#)
209

The above example shows that there are 200*1024=204800
characters (hytes) that can still be stored on disk zero.

3. RANDOM FILE I/0. Previously, we have discussed how
data may be PRINTed or INPUT from seguential data files.
However, it is often desirable to access data in a random
faghion, for instance to retrieve information on a
particular part number or customer from a large data base
stored on a floppy disk. If sequential files were used, the
whole file would have to be scanned from the start until the
particular item was found. Random files remove this
restriction and allow a program to access any record from
the first to the last in a speedy fashion. Alsc, random
files transfer data from variables to the disk cuput records
and vice versa in a much faster, more efficient fashion than
sequentlal files. Random file I/0 iz more complex than
sequential I/0, and it is recommended that beginners &ry
sequential I/0 first.

-

1) OPENing a FILE for Randem I/Q. Random I1/0 files are
OPENed just like sequential files. . .

OPEN "R",1,"RANDOK",@

When a file 1s OPENed fof random I/0, it is always OPEN for
poth input and cutput simultaneously.

2) CLOSING Random Files, Like sequential files, random
files nmust be ¢losed whan I/0 operations are finished. To
CLOSE a random fiie, use the CLOSE command as described
previously.

CLOSE <file number>[,<file number>...]

3) Reading and writing data to a random file -~ GET and
PUT. Bach random file has associated with it a "random
buffer™ of 128 bytes, When a GET or PUT operation is
performed, data is transferred directly from the buffer to
the data file or from the data £file +to the buffer. The
syntax of GET and PUT is as follows:

anuary, 1977 Page 64

PUT [#)<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or PUT is read into the random buffer. Initially a GET or
PUT without a record number will read or write the {first
record. The largest possible record number is 2846. If an
attempt is made to GET a record which has never been PUT,
all zeroes are read into the record, and no error QCcurs.

4} LOC and LOF. LOC iz used to determine what the
current record number is for random files. In other words,
it returns the record number that will be used if a GET or
PUT is executed with the <record number> parameter omitted.

LOC{<file number>}

PRINT LOC(1l)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used ke determine the last record number written teo a
random file:

LOP(<Eile number>)

PRINT LOF({2}
284

An attempt to use LOF on a sequential file will cause a BAD
FILE MCODE error.

The value returned by LOPF is always 5 MOD 8. That is , when
the wvalue LOF returns is divided by 8, the remainder is
always 5. Therefore,the values returned by LOF are 5, 13,
21, 29 ete. This is due to the way random files are
allocated.

Jamuary, 1977 Page 63

NOTE

It is important to note that the value returned by
LOF may be a record that has never been written in
by a user program. This 18 because of the way
random files are pre-extended.

5) Moving Data In and Out of the Random Buffer. So far
we have described techniques for writing (PUT} and reading
{GET) data from a file into its associated random buffer.
Now we will describe how data from string variables is moved
to and from the random buffer itself. This is accemplished
through the use of the FIELD, LSET and RSET statements.

6} FIELD. The FIELD statement associates some ar all
of a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string wvariables which have been PIELDed into the
buffer will automatically have their contents read or
written. The format of the PIELD statement is:

FIELD [#] <file number> ,<field size> A5 <string wvariable>{...]

<file number> is used to spescify the file number of the file
whose random buffer is being referenced. If the file is not
a random file, & BAD FILE MODE error will occur. <field
size> sets the length of the string in the random buffer.
<string wvariable> 1is the string variable which is associated
with a certain number of characters (bytes) in the buffer.
Multiple fields may be associated with string variables in a
given FIELD statement. Each successive string wvariable is
assigned a successive field in the random buffer. Example:

FIELD 18 AS A$, 28 AS B§, 30 As C$

The statement above would assign the first 1@ characters of
the random buffer to the string wvacriable A$, the next 28
characters +to B$ and the next 3J characters to the variable
Cs. It is important to note that the FIELD statement does
not cause any data to be transferred toc or from the random
buffer. It only causes the string wariables given as
arguments to "point" into the random buffer.

Often, it is necessary to divide the random buffer inte
a number of sub-records to make more efficient use of disk
space. For instance, it might be desirable to divide the
128 character record into Etwc identical subregcords. To
accomplish this a "dummy variable" would be placed in the
FIELD statement to represent cne ¢f the subrecords. One af
the following statements would be executed depending on
whether the first or second subrecord were needed:

franuary,

1877 Page 56

FIELD #1,64 AS D$, 28 AS NAMES,
28 AS ADDRESSE$, 24 AS OCCUPATIONS

or

- FIELD #1,20 AS NAMES, 20 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS D$

where the dummy variable D$ is used to skip over one of the
subracords, Another way to do the same thing would be to
set a variable I that would select the £irst or second
subrecord.

FIELD %#1,64*(I-1) AS DS,
20 AS NAMES, 28 AS ADDRESSS, 24 AS QCCUPATIONS

Here, If the variable I is one, I-1 *64 =@ characters will
be skipped over, selecting the first subrecord. If I is
two, 64 characters will be skipped owver, selecting the
second subrecord. Another technique that is wvery useful is
to use & FOR...NEXT loop and an array to set up subrecords
in the random buffer:

1486 FOR I=1 TO 16

1818 PIELD %1, {(I-1}*8 AS D$, 4 AS AS${I),
4 A8 BS{I) .

1828 NEXT I

In this example, we have divided the random buffer inte 16
saprecords composed of two fields each. The first
4~character field iz in A$(X) and the second 4-character
field is in B3(X,) where X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It deces not cause any
allocation of string space. The only space
allocation that occurs is for the string variables
menticoned in the FIELD statement. These string
variables have a one byte count and two byte pointer
set up which points inte the random buffer for the

specified file.

o

anuary,

1977 Page 67

7) Using Numeric Values in Random Plles: MEKIS, MESS,
MKD$ and CVI, CVS, <CVD. As we have seen, data is always
stored in the random buffer through the use of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
praovided.

To convert between numbers and strings:

MKI3 (<integer wvalue’) Returns a two byte string

{FC error if wvalue is not

>==32768 and <=+32767.

Fractional part is lost)
MESS (<single precision valued) Returna a four byte string
MED$ {<double pracision value>) Returns an eight byte string

To convert between strings and numbers:

CVI(<two byte stringd)} Returns an integer value
CVS (<four byte string>} Returns a single precision valw
CVD(<eight byts string>} Returns a double precision wvalue

CVi, CVS, and CVD =ll give an ILLEGAL FUNCTION CALL ervor if
the string given as the argument is shorter than required.
If the string argument is leonger than necessary, the extra
characters are ignored. These functions are extremely fast,
since they convert between Altair BASIC's internal
representations ¢f integers, single and double precision
values and strings. Conventional seguential I/0 must
perform time-~consuming character scanning algorithms when
converting between numbers and strings.

8. LSET and RSET. When a GET operation is performed,
all string variables which have been FIELPed into the random
buffer for that file automatically have values assigned teo
them., The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric values,
When going the other way, i.e. inserting strings into the
random buffer before performing a PUT statement, a problem
arises. This is because of the way string assignments
usually take place, For example:

LET A5=B%

When a LET statement is executed, B is copied into string
space, A$ is pointed to the new string and the string length
of A% is modified. Howevar, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the string variable
was FIELDed. 1In order to do this, two special assignment

gnuary,

1977 Page 68

statements have been provided, LSET and RSET:
LSET <string variable>=<{string expression>
RSET <string variable>=<{string expression>

Examples:
LSET A§=MKS$S (V)
RSET B§="TEST"
LSET C$(I)=MKDS${D#)

The difference between L3ET and RSET concerns what happens
if the string wvalue being assigned is shorter than the
length specified for the string variable in the FIELD
statement. LSET left justifies the string, adding blanks
{octal 40, decimal 32) to pad out the right side of the
string 1f it is too short. RSET right justifies the string,
padding on the left. If the string value is tco 1long, the
extra characters at the end of the string are ignored.

NOTE

Do not use L3SET or RSET on string variables which
have not been mentioned in a FIELD statement, or a
SET TQ NOM DISK STRING errcr will occur,

k. The ©DSKI$ and DSEKO§ Primitives. Ooften it |is
necessary for the user to perform disk I/0 aperations
directly without using any of the normal file structure
features of Altair BASIC. Te allow this, two special
functions have been provided. These are the DSKIS function
and the DSKO$ statement. First we will give examples of how
to perform simple disk I/0 commands wusing Altair BASIC
statements,

To Enable disk d:
ouT 8,49
To Enable disk N:
ouT 8,8
TO step the disk head ocut one track:

WAIT 8,2,2:00T 9,2

anuary,

C

1977 Page &%

To step the disk head in one track:
WAIT 8,2,2:00T 9,1
To test for track @:
IF (INP(8) AND 64)=0 THEN <statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track @. This is the
oudtermost track on the disk.

Te read sector Y (Y may be any expression, minimum sector
=@, maximum = 3]1):

AS=DESKI§ (¥)

The statement
DSKCS <string expression)>,{sector expression>

writes the string expression on the sector specified. The
high order bit (moet signifigant) of the first character
output will always be set to one when the string iz written
an the sector, and thus will always be one when the sector
is read back in using DSKI$. A maximum of 137 characters
are written; giving a string whose length exceeds 137
characters will cause an ILLEGAL FUNCTION CALL error. If
the string argument is less than 137 characters in length,
the end of the string will be padded with zercs to make a
string of length 137.

anuary, 1977 Page 78

LISTS AND DIRECTORIES

6.
f—

l. <Commands.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints
'OK' and is at command level. The table below lists the
commands in alphabetical order. The notation to the right
of the command name indicates the versicns to which it
applies.

Command Version(s)

CLEAR all

Sets all program variables to zero.

CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the wvalue of the
expression. If no argument 1i$ given, string space will
temain unchanged. When Altair BASIC is loaded, string space
is set to 50 bytes in 8K and 2080 bytes in extanded.
CLOAD<string expression> 8K (cassette), Extended, Disk
Causes the program on cassette tape designated by the first
character of STRING expression> to be loaded into memory. A&
HEW command is issued before the program is loaded,
CLOADY<string expression> 8K {cassette], Extended, Disk
Compares the program in memory with the file on cassette
with the same name. If they are the same, BASIC prints OK.
If not, BASIC prints NO GOOD.

CLOAD*<array name> 8K {caszette), Disk

Loads the specified array from cassette tape. May be used
as a program statement

CONT 8K, Extended, Disk

Continues program execution aftsr a Control/C has been typed
or a STOP or END statement has bean executed, Execution
resumes at the statement after the break occurred unless
input from the terminal was interrupted. 1In that case,

anuary, 1977 Page 71

execution resumes with the reprinting of the prompt ({7 or
prompt string}. CONT is useful in debugging, especially

(_/ where an 'infinite loop' is suspected. &n infinite loop is
a series of statements E£rom which there is no escape.
Typing Control/C causes a break in execution and puts BASIC
in command level., Direct mode statements can then be used
to print intermediate wvalues, change the values of
variables, etc. Execution can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line
number.

In 4K and 8K Altair BASIC, execution cannot be
continued 1If a direct mode error has occured during the
break. In all versions, execution cannot continue if the
program was modified during the break.

CSAVE<string expression> BK (cassatte), Extended, Disk

Causes the program currently in memory to ke saved on
cassette tape under the name specified by the first
character of <string expression>.

CSAVE*<array name> BK (cassette), Disgk

Causes the array named to be saved on cassette tape. May be
(d' used as a program statement.

DELETE<line number> Extended, Disk

Deletes the line in the current program with the specified
number. If no such line exists, an ILLEGAL FUNCTION CALL
BLTOr OCCULS.

DELETE-<line number> Extended, Disk

Delates every line of the current preogram up to and
including the specified line. If there is no such line, an
ILLEGAL FUNCTION CALL error occurs.

DELETE<1line number>=<line number> Extended, Disk

Deletes all lines of the current program from the first line
number to the second inclusive. ILLEGAL FUNCTICON CALL
ogeurs 1f no line has the second number,

EDIT<line number> Extended, Disk

Allows editing of the line specified without affecting any

other 1lines. The EDIT command has a powerful set of
sub-gommands which are discussed in detail in section 5-4.

ranuary, 1977 Page 72

LIST all

Lists the program currently in memory stacrting with the
lowest numbered line. Listing is terminated either by the
end of the program or by typing Control/C.

LIST{<line number>] All

In 4K and 8K, prints the current program beginning at the
specified line. 1In Extended and Disk, prints the specified
line if it exists.

LISTi{<line number>}[-<line number>] Extended, Disk
Allows several listing options.

1. If the second number is omitted, lists all lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all lines from
the beginning of the program to the specified line,
inclesive.

3. If both line numbers are used, lists all lines from the
first numbher to the second, inclusive.

LLIST[<line number>] [-<line number>] Extended, Disk

Same as list with the same options, except prints on the
line printer.

NEW All

Deletes the current program and e¢lears all variables. Used
before entering a new program.

NULL<integer expression> 8K, Extended, Disk

Sets the number of nulls to be printed at the end of each
line. For 18 character per second tape punches, <{integer
expression> should be >=3. For 38 ¢ps punches, it should be
>=3. When tapeés are not being punched, <integer expression>
should be 8 or 1 for Teletypes* and Taeletype compatible
CRT's. It should be 2 or 3 for 38 c¢ps hard copy printers.
The default value is #. In the 4K version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

* Teletype i3 a registered trademark of the Teletype
Corporation,

C

ABLACY ,

1977 Page 73

RUN{<line number>] All

Starts execution of the program currently in memory at the
line specified. If the line number is omitted, executicn
begins at the lowest line number. Line number specification
is not allowed in 4K. :

6~2. Statements.

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. In the table, X
and ¥ stand for any expressions allowed in the version under
consideration. I and J stand for expressicns whese values
are truncated to integers. V and W are any variable names.
The format for a Altair BASIC line is as follows:

<nnnnn> <statement>[:<{statement>...]
where nnnnn is the line number.

Name Pormat Version
CONSOLE CONSOLE <I>,<d> Extended, Disk

Allows terminal c¢onsole device to be switched. I is the I/0
port number which is the address of the low order channel of
the new I/0 becard. J is the switch register setting (see
section 5-1 for the list of settings). @&<=I,J<=255."

DATA DATA<list> All

Specifies data to be read by a READ statement. List
elements can be numbers or, except in 4K, strings. 4K
allows expressions, List elements are separated by commas,

DEF DEF FNV{<W>)=<{ZX> 8K, Extsnded, Disk

Defines a user-defined function. Puncticon name is FN
followed by a legal wvariable name. Extended and Disk
versions allow user-~defined string functions. befinitions
are restricted to one line (72 charactzrs in 4K and 8K, 255
characters in extended wversions).

DEFUSR DEFUSR{<digit>]a<{X> Extended, Disk

anuary, 1977 ' - Page 74

Defines starting address of assembly language . subroutine,
Up to ten subroutines are allowed,

DIM DIK <V¥>(<I>[,3...])[s+..] &ll

Allocates space for array variables. In 4K, only one
dimension is allowed per variable. More than one variable
may be dimensicned by one DIM statement up to the 1iimit of
the line. The wvalue of e¢ach expression gives the maximum
subscript possible. The smallest subscript is é. Without a
DIM statement, an array is assumed to have maximum subscript
of 13 for each dimension referenced. For example, A(I,J} is
assumed to have 121 elements, from A(2,8) to A(lB,19) unless
otherwise dimensioned in a DIM statement.

END _ END All

Terminates execution of a program. Closes all files in the
Disk version.

ERASE ERASECV> [,<W>...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made availlable for other uses.

ERROR ERRORCI> Extended, Disk

Forces error with code specified by the expression, Used
primarily for user-defined error codes.

FOR FOR<CVO>={X>TOKY> [STEPLZ>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT
is encountered. Z is added to V, then, IF Z<@ and V>=¥, or
if %>8 and V<=Y, BASIC branches back to the statement after
FOR. Otherwise, execution continues with the statement
after NEXT.

GOTO GOTC<nnann> All

Unconditional branch to line number

GOSUB GOSUB<nnnnn> all

Unconditional branch to subroutine beginning at line nnnnon.
IF...GOTO IF <X> GOTC<nnrnn> 8K, Extended, Disk

Same as IF...THEN except GOTO can only be followed by a line
number and not another statement,

inuary,

C

1977 Page 75

IF...THEN [ELSE] IF<X>THEN<X>[EBLSE<¥>] All
or IP<X>THEN<statement>[:statement...]
[ELSE<statement> [:statement...]

If value of X<>@, branches to line number or statement after
THEN. Ctherwise, branches ko the line number or
statement{s) after ELSE. If ELSE is omitted, and the wvalue
of X=@8, execution proceeds at the line after the IF,...THEN.
In 4K, X can only be a numeric expressicon. The ELSE <¢lause
is only allowed in Extended and Disk Altair BASIC,

INPOT INPOT<V> [, <W>...] all

Causes BASIC to reguest input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<{X> All

Assigns the value of the expression to the wvariable. The
word LET is optional.

LPRINT LPRINT X[,¥...] Extended, Disk

Same as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A& carriage return is printed
automatically after the 88th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING, but prints on the line printer. For a
detailed descriptlon, see section 5-5.

MIDS MID$(<X$>,<I>[,<JSI}=YS Extended, Disk

Part of the string X$ is replaced by Y3. Replacement starts
with the 1Izh character of X§ and proceeds until ¥$ is
exhausted, the end of X5 is reached or J characters have
been replaced, whichever comes first. 1If I is greater than
LEN{X$), an ILLEGAL FUNCTION CALL error results.

NEXT MEXT ([<V>,<W>...] All

Last statement of a2 FOR loop. V¥ is the variable of the most
recent loop, W of the next most recent and s¢ on. Only one
variable is allowed in 4K. Except in 4K, WNEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERRCR GOTO<line number> Extended, Disk

When an error occurs, branches to line specified. Sets
variable ERR to error code and ERL to line number where the

knuary, 1977 Page 76

error occured. See section 6-5 for a list of error codes. .
ON ERROR GOTO ¢ (or without number) disables error trapping. ‘
Oo¥...GOTQ ON<I>GOTO<1list of line numbers> BX, Ext., Disk
Branches to line whose number is Ith in the list. List

elements are separated by commas. If I=8 or > number of

elements in the list, execution continues at next statement.

If I<@ or >25%, an error results,

ON...GOSUB ON «<I> GOSUB <list> 8K, Extended, Disk

Same as ON...G0TQ except list elements are initial line
numbers of subrocutines,

ouT QUTCI> , <J> 8K, Extended, Disk
Sends byte J to port I, @<=1,J<=255.

POKE POKE<I> ,<J> 8K, Extended, Disk
Stores byte J in memory logation derived from I.

B<=J¢=2585;=-32768<I<65536, If I iz negative, address is
65535+I, if I is positive, address=I.

PRINT PRINT<H> [,<¥>..n] All
Causes values of expressions in the list to be printed on .
the terminal. Spacing is determined by punctuation. :
Punctuation Spacing - next printing begins:

' at beginning of next 14 column zone

; immediately

other or none at beginning of next line

String literals may be printed if enclosed by ("} marks.
String expressions may be printed in all but 4K,

FRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the walues of the expressions in the 1list edited
according to the string. The string is an expression which
rapresents the line to be printed. The 1list contains the
constants, variable names or expressions to be printed.
List entries are separated by punctuation as in the PRINT
statement. For a 1list of string characters and their
functions, see section 5-5.

READ READSVS [, <W>. ..] All

Assigns values in DATA statements to variables. Values are
assigned in seguence starting with the first wvalue in the ‘

a?:?ry, 1977 Page 77

first DATA statament,
REM REM([<remark>] all

Allows insertion of remarks, Net executed, but may be
branched into. In axtended versions, remarks may be added
to the end of a line preceded by a single gquotation mark

{('y.
RESTORE RESTORE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement,

RESUME RESUME[<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine, If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes

resumption at the statement following the statement where
the error was made,
(?z RETURN RETURN all

Terminates a subroutine. Branches to the statement after
the most recent GUSUB.

STOP STOP All

Stops program execution. BASIC enters command level and,
axcept in 4K, prints BREAK IN LINE nnnnn, Unlike END, STOP
does not close files.

SWAP SWAP <V>,<W> Extended, Disk

Exchanges values of the variables named., Variables must be
af the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by TRON
{see below}. NEW also turns off the trace flag.

TRCHN TRON Extended, Disk

Turns on trace flag. Prints number of each line in square
(u‘ brackets as it is executed.

WAIT WAIT<I> ,<d> [, <K>] 8K, Extended, Digk

Status of port I dis XOR'd with K and AND'ed with J,

anuary, 1977 Fage 78

Continued execution awaits non-zero resuylt. K defaults to
A. B<=1,J,K{=255,

6=3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definitien. If the functions are not
required for a program, they may be deleted when BASIC is
loaded to conserve memory Space. The functions in the
foliowing table are 1listed in alphabetical order. The
notation to the right of the Call Format is the versions in
which the function is available. As usual, X and ¥ stand
for expressions, I and J for integer expressions and X§ and
¥$ for string expressions.,

Function Call Format Version

ABS ARS (X) all

Returns absolute value of expression X. ABS(X)=X if ZX>=@,
=X if x<4.

ASC ASC{XS) 8K, Extended, Disk

Returns the ASCIL code of the first character of the string
X$., ASCII codes are in appendix a.

ATN . ATN (X} BK, Extended, Disk

Returns arctangent{X). Result is in radians in range -pi/2
to pi/2.

The feollowing functions are available in Extended and Disk:

CINT CINT(X) Converts ¥ to integer.
CSHNG CENG (X} Converts X to singles precision.
CDBL CDBL(X) Converts X to double precision,

If the argument iz in the range =32763 to 32767, the
CINT(X)=INT(X). Ctherwise, CINT will produce an QVERFLOW
error.

CHRS CHRS (I} 8K, Extended, Disk

Returns a string whese one element has ASCII code I, ASCII

anuary,

L

1977 Page 7%

codes are in Appendix A.

cos COs{x) 8K, Extended, Disk
Returns cos(X). X iz in radians.

ERL Extended, Disk

Returns the number of the 1line in which the last error
cocurred,

ERR Extended, Disk

Returns the error code of the last error.

ERR ERR{I) Disk

Returns parameters of disk errors. After a DISK I1/0 ERROR,
ERR{#) retutns numbezr of the disk, ERR(l) returns the track
number (8-76) , ERR(2) returns the sactor number, ERR(3) and
ERR(4) return the low and high order 8 bits of the
cumulative count of disk errors respectively.

EXP EXP (X) 8K, Extended, Disk
Returns e to the power ¥X. X must be <=87.33165.

FIX FIX(X) Extended, Disk

Returns the truncated Integer part of X. FIX (X} is

equivalent to SGN{X)*INT(ABS(X)). The major difference
between FIX and INT is that FIX doces not rekturn the next
lower number for negative X.

FRE FRE{@) 8K, Extended, Disk
Returns number of bytes in memory not being used by BASIC,
If argument is a string, returns number of free bytes in
string space.

HEXS HEXS$(X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

INP INF(I} BK, Extended, Disk
Reads a byte from port I.
INSTR INSTR([I,]XS,¥S) Extended, Disk

Searches for the first occurcence of string ¥5 in X% and

anuary, 1977 Page 8@

returns the position. Optional offset I sets position for
starting the search. #¢=I¢=255, If I>LEN{X$)}, 1f X§ is
null or if ¥$ cannot be found, INSTR returns #. If Y§ is
null INSTR returns I or 1. Strings may be string wvariable
values, string expressions or string literals.

INT INT (X) All "

Returns the largest integer <=%

LEFTS LEFTS (X$,I) 8K, Extended, Disk
Returns leftmost I characters of string X§.

LEN LEN{X$) BK, Extended, Disk

Returns length of string X§. Non-printing characters and
blanks are counted,

LOG LOG (X) 8K, Bxtended, Disk
Returns natural log of ¥. X>8

LPOS LPOS (X) Extended, Disk

Returns the current position of the line printer print ™ head
within the line printer buffer. Does not necessarily give
the physical position of the print head. The expression X
must be given, but the value is ignored.)

MIDS$ HIDS(X$,1[,J1) 8K, BExtended, Disk

Without J, returns rightmost characters from X$ beginning
withh the Ith character. If I>LEN(X$), MIDS returns the null
string. #<I<255. With 3 arguments, returns a string of
length -J of characters from X5 beginning with the Ith
character. TIf J is greater than the number of characters in
X§ to the right of I, MIDS returns the rest of the string.
g<=J<=255,

QCTS OCTS (X} 8K, Extended, Disk

Returns a string which represents the octal wvalue of the
decimal argument,

RND RND{X} all

Returns a random number between A and 1, X<# starts a new
sequence of random numbers. X>8 gives the next random
number in the seguence. X=8 gives the last number returned.
In 8K, Extended and Disk, seguences started with the same
negative number will bhe the same.

ruary, 1977 Page 81

C

PCS POS(T) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =4,

RIGHTS RIGETS (X$,1} BR, Extendsd, Bisk

Returns rightmost I characters of string X$. If I=LEN(XS$),
returns X$,

SGN SGR{X) Al

If X>9, returns 1, if X=@ returns @, if X<@&, returns -1.
For example, ON SGN(X)+2 GOTQ 106,299,388 branches to 1843
if X is negative, 26@ if X iz # and 309 if X is positive.
SIN SIN(X) All

Raturns the aine of the value of X in radians.
COS (X)y=SIN{¥+3,1415%/2).

SPACES SPACES(I) BK, Extended, Disk
Q,' Returns a string of spaces of length I.
8PC SPC(I) 8K, Extended, Disk
Prints I blanks on terminal. @<=I<=255, |
SQR SCR({X) All
Returns square root of ¥, X must be >=g
STRS STRS (X) 8K, Extended, Disk
Returns string representation of value of X,
STRINGS STRINGS (I,J) Extended, Disk

Returns & string of length I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB TAB(I) All

Spaces to position I on the terminal, Space § is the
leftmost space, 71 the rightmost. If the carriage is
already beyond space I, TAB has n¢ effect. @<=l<=2253, May
only be used in PRINT and LPRINT statemants.

TAN TAN{X) All

Returns tangent(X}. X is in radians.

Lmua:y, 1977 Page 82

usk USR(X) all

Calls the user's machine language subroutine with argument

VAL VAL {%X$) BR, Extended, Disk

Returns numerical value of string X$. If first character of
X5 is not +,-,&'ora digit, VAL{%S)=d.

VARPTR VARPTR({V) Extanded, Disk

Returns the address of the variable given as the argument.
If the wvariable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error
will occur. The maln use of the VARPTR function is to
obtain the address of variable or array so it may be passed
ko an assembly language subroutine, Arrays are usually
passed by specifying VARPTR(A[A]) so that the lowest
addressed element of the array is returned.

NOTE
All simple variables should be assigned values in a
program before calling VARPTR for any array.

Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change,

6-4. Special Characters

Altair BASIC rscognizes several characters in the ASCII
font as having special functions in carriage <ontrel,
editing and program interruption. Characters such as
Contreol/C, Control/5, etc, are typed by holdingy down the
Control key and typing the designated letter. The special
characters in the table are Jlisted in the order of the
versions to which they apply, starting with those common to
all versions and ending with those that apply only to
2xtended versions.

Tyved as Printed as

The following Swpecial <Characters are available im ALL
versions.

anuary, 1977 Page 83

(_/ a e

Erases current line and executes carriage return.

{backarraw)

Erases last character typed. If there is no last character
types a carriage return,

_{underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.
Control/C “C {in extended)

Interrupts execution of current program or list command.
Takes effect after execution of the current statement or
after listing the current line, BASIC goes to command level
an types OK., CONT command resumes execution. See section

(g; 1 :

Separates statements in a line.

The following special characters are available in 38K,
Extended and Disk versions only.

Control /G “0 (in extended}

Suppresses all output until an INPUT statement is
encountered, ancther Contrel/C is typed, an error oCCUrs or
BASIC returns to command lavel,

2 ?
eguivalent to PRINT statement.
Rubgut see explanation

Deletes previcus character on an input line, First Rubout

prints \ and the last character to be printed., Each

successive Rubout prints the next character to the left.

Typing a new character causes another \ and the new

character %o be printed. All characters between the
(ﬂ, backslashes are deleted.

anuary, 1977) Page B84

Control/uU . O (in extended)
Same as @
Control/S

Causes program execution to pause until Control/Q or
Control/C is typed.

Control/Q

Causes execution te resume after Control/s. Contreol/s and
Control/Q have no effect if ne program is being executed.

The following special characters are available in Extended
and Disk versions conly.

Control/m

Allows use of the EDIT command an the line currently being
typed. Control/A is typed instead of Carriage Return. See
secticn 5-4.

Control/1 1l to 8 spaces

Tab character. Causes print head or gurser to move to the
beginning of the next 8 column field. Fields begin at
celumns 1, 9, 17, etc. The tab character is especially
useful for formatting lines broken with line feeds. ’]

108<tab>FOR I=1 TO 1@&:<line feed>
<tab><tab>FOR J=1 TO 1l@:<line feed>
<tab><tab><tab>aA(I,J)=0:<line rfeed>
<tab>NEXT J,I<carriage return>

lists as:
129 FOGR I=1 TC 1@:
FOR J=1 TO 1%:
A{I,3)=4:
REXT J,1
Control/G bell

Rings terminal's bell

LINE FEED

Breaks a long line into shorter parts. The rezult is still
one BASIC line.

NMUELY,

_

1977 Page 85

Denotes the number of the current Iline, May be used
wherever a line number is to be specified.

[,1 [r]

Brackets are interchangable with parentheses as delimiters
for array subscripts, .

Lower Case Input

Lower case alphabetic characters are azlways echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper casa if the lower c¢ase characters are not part
of string llterals, REM statements or single quote (')
remarcks.

6-5. Errcr Measages.

After an error occurs, BASIC returns to command level and
types OK. Variable wvalues and the program text remain
intact, but the program cannot bhe continue by the CONT
command. In 4K and 8K versions, all GOSUB and FOR context
iz lost. The program may be continued by direct mode GOTO,
nowever. When an error occurs in a direct statement, neo
line number is printed, Format of error messages:

Dirsct Statement ?XX ERROR
Indirect Statement 74X ERROR IN ¥YYYYY

where XX is the error code and YYYYY is the line number
where the error occurred., The following are the possible
error ccdes and their meanings:

ERROR CCDE EXTENDED ERROR MESSAGE NUMBER

The following error codes apply in ALL versions.

B3 SUBSCRIPT OUT QF RANGE 9

An attempt was made tp reference an array element which is
¢utside the dimensions of the array. In the 8K and larger
versions, this error c¢an occur if the wrong number of
dimensions are used in an array reference. For example:

LET a(l,1,1)=2

fanuary, 1977 Page 86

when & has already been dimensioned by DIM A(ld,10)
bD REDIMENSIONED ARRAY 12

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 1§ and
later 1in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5

The parameter passed to a math or string function was out of
range. FC errors ¢an ocour due tod

1. a negative array subscript (LET A{-1}=0)

2. an unreasonably large array subscript {(>32767)
3. LOG with negative or zero argument

4, SQR with negative argument

5. A"B with A negative and B not an integer

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls teo MIDS, LEFTS, RIGHTS, INP, O©OUT, WAIT, PEEK,
POKE, TAB, SPC, STRING:S, SPACES, IWETR or ON...GOTD with
an improper argument,

i ILLEGAL DIRECT 12

INPUT and DEP are illegal in the direct modes. In extended
versions, however, INPUT is legzl in direct.

NF NEXT WITHOGUT FOR

The wariable in a NEXT statement correspeonds to no
previously executed FOR statement.

oD QUT OF DATA 4

A READ statement was aexecuted but all of the DATA stataments
in the program have already been read. The program tried to
read too much data or insufficient data was included in the

program.

\uary,

C

1977 Page 87

OM OuT OF MEMORY 7

Program ls too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See

Appendix C.
ov QVERFLOW

The result of a calculation was too large to be represented
in Altalr BASIC's number format. If an underflow occurs,
zero is given as the result and execution continues without
any error message being printed.

SH SYNTAX ERROR . 3

Missing parenthesis in an expression, illegal character in a
line, incotrect punctuation, etc,

RG RETURN WITHOUT GOSUR 3

A RETURN statement was encountered before a previous GOSUB
statement was executed.

UL UNDEFINED LINE g

The line reference in a GOTQ, GQSUB, IF..,.THEN...ELSE ot
DELETE was to a line which does not exist,

/8 DIVISION BY ZERC

Can occur with integer division and MOD as well as floating
point division. @ to a negative power alse causes a
DIVISION BY ZERQ error. :

The following error messages apply to
8K, Extended and Disk versions only

CH CAN'T CONTINUE 17

Attempt to continue a program when none exists, an error
occured, or after a modification was made to the program.

Ls ETRING TQO LONG 15

An attempt was made ¢to ¢reate a string more than 255
characters long,.

0s QUT OF STRING SPACE 14

String variableg exceed amount of string space allocated for

11

anuary, 1977 . Page B8
them. Use the CLEAR command to allocate mere string space
ar use smaller strings or fewer string variables.

5T STRING FORMULA TOO COMPLEX 16

& string expression was too long or too complex. Break it
into two or more shorter ones. :

) ™ TYPE MISMATCH 13

The left hand side of an assignment statement was a numeric
variable and the right hand side was & string, or
vice-versa; or a function which expected a string argument
was given a numeric one or vice-versa.

ur ONDEFINED USER FUNCTION 18
Reference was made to a user defined function which had

never been defined.

The following error messages are available in
Extended and Disk versions onlv.

MISSING OPERAKD) 22

=

During evaluation of an expression, an operator was found
with no operand following it, -

NG RESUME _éo}

BASIC entered an errcor trapping routine, but the program
ended before a RESUME statement was encountered. i

RESUME WITHCUT ERROR 21

A RESUME statement was encounterad, but no error trapping
routine had been entered.

UNPRINTABLE ERROR 1y
An error condition exists for which there is no error
message available. Probably there 1is an ERROR statement
with an undefined error code.

LINE BUFFER OVERFLOW 23
An attempt was made to input a program or data line which

has to¢ many characters to be held in the line buffer.
Shorten the line or divide it inte two or more parts.

nuary,

C

1977 Page B89

Digk Altair BASIC Error Messages

FIELD OVERFLOW

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR

Internal error in Disk BASIC. Report conditions under which
error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds
of disk I/0 errors.

BAD FILE NUMBER

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Digsk altair BASIC initialization
dialog.

FILE NOT FOQUND

Reference was made in a LOAD, KILL or OPEN statement to a
file which did not exist on the disk specified.

BAD FILE MODE 54,
An attempt was made to perform a PRINT to a random file, ko
QPEN a random file for sequential output, to perform a PBUT
or GET on a seguential f£ile, to load a random file or to

execute an OPEN statement where the file mode is not I, O,
or R.

FILE ALREADY QFEN 55

A seguential output mode OPEN for a file was issued for a
£file that was already OPEN and had never been CLOSEd or a
KILL statement was given for an OPEN file.

DISK NOT MQUNTED 56

An 1/0 operation was lssued for a file that was not MOUNTed.
DISK I/0 ERROR 59

An I/0 error occured on disk X. A sector read (checksum)
error occurred eighteen (18) congecutive times.

SET TO NOWN-DISK STRING

58

31

52

53

58

[Eanuary,

1977 Page 948

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD stabtement.

DISK ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 69

All disk storage is exhausted on the disk. Delete some old
disk files and try again.

INPUT PAST END

An INPUT statement was executad after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function
to detect End Of File will avoid this error.

BAD RECORD NUMBER 62

In a2 PUT or GET statement, the record number is either
greater than the allowable maximum (2@46) or egqual to zero.

BaADl FILE NAME 63

A file name of @ characters (null) or a file name whose
first byte was & or 377 octal (255 decimal) or a £ile name
with more than B characters was used as an argument to LOAD,
SAVE, KILL or OPEN.

MODE-MISMATCH 64

Sequential OPEN for outpu:t was executed for a file that
already existed on the disk as a random (R} mode file, or
vice versa.

DIRECT STATEMENT IN PFILE 65

A direct statement was encountered during a LQOAD of a
program in ASCII format, The LOAD is terminated.

TOO MANY FILES

4 BAVE or OPEN (0 or R} was executed which would create a
new f£ile on the disk, but all 255 directory entries were
already full. Delete some files and try again.

QUT OF RANDOM BLOCKS 67

61

66

anuary, 1977 Page 91

L_,.
An attempt was made to have more randem files OPEN at once
than the number of random blocks that were allocated during
initialization by the response to the
"NUMBER OF RANDCM FILES?" guestion (see Appendix E).

FILE ALREADY EXISTS 68
The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try
a different name.

FILE LINK ERROR

During the reading of a file, a sector was read which did
not belong to the file,

6=6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc, and thus may
not be used for variable cr function names. The reserved

(_J words are listed below in order of the versions for which
they are reserved, starting with those reserved in all
versions and ending with those reserved only in Disk Altair
BASIC. Words reserved in larger versions may be used in
smaller wversions, although one may want to aveoid all
reserved words in the interest of compatibility. In
addition to the words listed below, intrinsic function names
are reserved words in all wversiona in which they are
available,

RESERVED WORDS

wWords reserved in all wversions.

CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REM
GOSUB RETURN
GOTO RON
IF STOP
IHPUT TO
LET TAB
LIST THEN
USR

Words reserved in 8K, Extended and Disk versions. All the above
plus:

Tanuary, 1977 Page 92

BND ON
CONT OR i
DEF ouT ‘
N POXKE
NOT SPC
NULL WAIT
Words reserved in Extended and Disk versions. All the above plus:
AUTO LINE
CONSOLE kL LLIST
DEFDBL LPRINT
DEPINT MOD
DEFSNG RENUM
DEFSTR RESUME
DELETE SPACES
EDIT STRINGS
ELSE SWAP
TROFF
ERASE TRON
ERL VARPTR
ERR WIDTH
InpP X0R
INSTR
Wards reserved in Disk. Aall the above plus:
CLOSE LSET _
DSKIS MERGE A
DSKO$ MOUNT |
FIELD NAME
FILES OPEN
GET PUT
KILL RSET

LOAD UNLOAD

o

January, 1977

Paga 93

APPENDIX A
ASCII R CODES

DECIMAL- CHAR, DECIMAL CHAR. DECIMAL CHAR.
a4de NUL 43 ¥ {1 v
gal sS0B 444 . as7 L)
a2 STX a9458 - gas X
283 - ETX a46 . 243 '
aa4 EoT 847 / 458 2
aas ENQ 848 a a9l [
aa6 ACK a49 1 92 \
837 BEL 859 2 893 1
498 BS a5l 3 934
ad9 BT . @52 4 a95 <
a1a LF- ! @53 5 996 '
811 v 854 [297 a
BgL2 FP - .7 @53 7 a9a b
Bl = CR&%T 956 8 299]
814 50 as7 9 14a d
ais St g58 H 181 a
die DLE 859 3 132 t
a17 ocl a6d < 133 g
gig oC2 g6l = 184 h
alg 03 #62 > 185 i
924 nC4 63 ? 186 j
821 NAR ge4 a 137 k
B22 SYN - @45 A 1g8 1
g23 ETB 66 B 189 m
a24 CaN a67 o 1lla n
a425 EM 858 D 111 o]
326 SUB 469 E 112 =}
427 ESCAPE A7a@ F 113 q
#28 s a71 a 114 r
G29 @S 72 H 115 s
432 RS 473 I 116 x
931 us 74 J 117 u
832 SPACE a75 X 118 v
433 i 2876 L 113 W
834 " @77] 12a X
835 7 478 | 121 ¥
36 $ 879 o 122 z
237 ¥ a8d P 123 {
g3g & 81 Q 124
8439 ! 832 R 125
gdn { 283] 125
241 } a84 T 127 DEL
942 * 285 u
LF=Line Feed TI'=forn Fead CRwCarriage Return DELaRubout

January, 1977 Page 94

Using ASCII codes =-- the CHRS function,

CHR§ (X) returns a string whose cne character is that
with ASCII code X. ASC(XS) cenverts the first character of
a string to its ASCII decimal value,

One of the most commoen uses of CHR§ is to send a
special character to the user's terminal. The most oftan
used of these characters is the BEL (ASCII 7). Printing
this character will cause a bell o ring on some kterminals
and a beep on many CRT's. This may be usad ag a preface to
an error message, as a novelty, or just to wake up the user
if he has fallen asleep. Example:

PRINT CHRS$(7):

Another major use of special characters is on those
CRT'g that have cursor pesitioning and other special
functicns (such as turning on a hard copy printer}. For
axample, on most CRT's a form feed (CHR$(12)) will cause the
screen to erase and the curser to "home" or move to the
upper left corner.

Some CRT's give the user the capability of drawing
graphs and curves in a special point-plotter mode. This
feature may easily be taken advantage of through use of
Altair BASIC's CHRS functlen.

January, 1977 Page 95

_ APPENDIX B
LOADING AND INITLALLZING BASIC

A. Loading BASIC from paper tape or c¢assatta,

This appendix details the procedure for loading BASIC
in 4K, 8K and Extended versions from paper tape or taps
cassette. For instructions on lcading Disk BASIC, sgee
appendix .

The programs below are enterad into memory threugh the
front panel switches. Rather than specify the switch
pesitiens as "up” and “down”, it is convenient to denote the
up position as 1 and the down position as @. Taken in
groups of three, then, the switches can represent octal
digits. To save space, the switch positions in the
following loader program listings are shown in octal
notation. The 1leftmost two sSwitches in an 8 bit set are
represented by the first digit, the next three by the sacond
digit and the low-order three switches by the last digit.

For example, if we wish to enter octal 315 on the data
(_/ switch register, the switches would have the following
positions: :
7 6 L 4 3 2 1 2
up up down down up up dowh up
3 1 5

For data entry, only the rightmost 8 -switches of the 16
switches on the ALTAIR 880F front panel switeh register are
used. All 16 switches would be used to enter a memory
address.

The folleowing is the procedure for loading BASIC from
paper tape or cassette.

1. Turn the power switch on.

2. Raise the STOP switch and RESET =switch simultaneously

3. Switch the terminal to LINE

4. Enter one of the following programs on the front panel
switches. The 88-MBL Multi-Boot Loader PROM contains
the necessary loader programs, S0 it is not necessary to

enter a loader from the front panel if it is installed.
(_/ Refer to the 88-MBL manual for more information.

January, 1977 Page 56

a. loading from paper tape with the SI0 board { REV 1)

Qutal Address Octal Data
2904 C 41

ant 3g2

ag2 Oxx {17 for 4K, 37 for 8K, 77 for
243 g6l Extended & Disk)
904 22

gas 9aa

gde 333

a7 aae

a1a p17

911 338

a1z 333

Bl3 a1

214 2758

a1s 318

216 a35

BLY 187

a2p 3¢a

#21 351

a22 aa3

423 God

b. loading from cassette

QOctal Address Cctal Data

Aog a41

gal 382

gg2) fxx (17 for 4K, 37 for 8K, 77 for
ge3 g6l Extended and Disk)
694 422

3as 1)

#as 333

87 306

gia 217

911 338

212 333

gl3 Ga7

314 275

#1l5 310

214 ’ 855

217 167

220 304

321 351

22 243

23 Jag

Jc:Fary, 1277

C.

" loading with the 88 PIO board

Page 97

Qctal Addrass Octal Code
aaa B4l

agl g2

ga2 Bxx {17 for 4K, 37 for 8K, 77 for
aa3) aal Extended and Disk)
084 223

a#s 049

aae 333

aav pa4

ai3 146

gll pal

412 318

a13 332

a14 385

dls 275

als 314

917 @55

aza 167

az21 309

422 351

423 282

924 400

lecading with the 2510 board

Gctal Address Qctal Data

989 878

dael BB3

a2 323

A83 429

PB4 976

35 921 (=2 stop bits, 825=1 stop bit)
286 323

aa7 228

a14 241

211 3g2

a12 Axx (17for 4K, 37 for 8K, 77 for
a13 961 Extzsnded and Disk)
414 a32

pls aga

ple 333

a17 a20

320 ar7

921 328

B22 333

Bp23 a2l

024 275

B25 3la

B26 855

827 le7

January,

1977

@38
431
a32
233

3éa
351
al3
gag

loading with the 4PIQ board

Octal Address
209
BBl
a0z
83
4d4
285
206
a7
gig
81l
alz
813
gl4
g1s5 -
dls
al7

628

g2l
622
@23
824
25
@28
227
g3a
a3l
332
g33
834

Qctal Data
257

323

248

323

B4

a76

454

323

240

a4l

382

Bxx (17 for 4K, 37 for BK,
#6861 Extended and Disk)
933

gan

333

3449

987

332

333

241

275

310

@55

167

3ad

351

Bl4

gaa

Loading with the High Speed Tape Reader

Octal 2ddress
aga
adl
ag2
a3
304
@85
dda
ag7
a1a

Qctal Data
257
323
244
323
345
323
#46
357
323

Page 98

77 for

.

ALYy

1977

g1l
gla
Bl3
gl4
@15
al6
L7
8248
221
g22
a23
24
825
326
27
83p
a31
932
833
a34
835
416
837
a4
441
842
443
d44
445
346
a7
a5d

047
76
214
323
244
876
a4
323
g46
323
247
a4l
382
Ixx
g8l
47
qad
333
g4a4
346
139
313
333
445
275
318
455
167
iaa
351
827
20g

Toe enter these programs,

1.

{17 for 4K, 37 for BK,
Extended and Disk)

Put switches 8 to 15 in the down positions

Raise EXAMINE

Page 99

77 for

Put the data for address zero in switches @ through 7.

Raise DEPOSIT

Put the data for the next address in the switches

Depress DEPQSIT NEXT

Repeat steps 5 and 6 until the whole lcader is toggled

in

Januarcy, 1977 .Page 188

g. Put gwitches @ through 15 in the down position
9. Raise EXAMINE

1. Check to see that the lights D@ through D7 show the
data that should be in location B88. Light onm =1, light
off = p. If the correct value is there, go to step 13,
if not go to ll.

il. Put the correct value in the switches

1z2. Raise DEPOSIT

13. Depress EXAMINE NEXT

14. Repeat steps 1¢ through 13 to check the entire loader

15. If there were any mistakes, check the entire loader
again to make sure they were corrected.

1a. If a paper tape ils being loaded, put it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section 6f &tape at the
beginning with 302 octal punched in each column. If an
audic cassette is being loaded, put it in the cassette
recorder and make sure it iz fully rewound.

17. Lower switches § through 15
13. Raise EXAMINE

19, Enter the sense switch settings. See the table in
section B,

g, If loading is through a SICA, B or C eor an 88PIO, turn
on the tape reader and then depress RUN. If a cassette
is being leoaded, turn on the recorder, put it in PLAY
mode and wait 15 seconds. Then press RUN on the
computer. If loading is through a 4PIO, 28I0 or High
Speed Tape Reader, depress RUN and then start the read
device,

21. Wait for the tape to read, Paper tape takes about 25
minutes for Extended, 12 minutes for 8R and 6 minutes
for 4K. Cassettes take about & minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

22. If a loading error occurs, the loading procedure must
start over from step 1. See section C bhelow for error
conditions.

q;/uary, 1977 . Page 101

23. When the tape 1s read, BASIC should start up and print
MEMORY SIZE? Sem section D below for what to do next.

24. If BASIC will not load from cassette, the ACR module
may need realignment, The Input Test Program described
in the ACR Manual, pages 22 and 28 may be used to test
tite ACR.

8. ©Sense Switch Settings

Sense switches (switches A8 through Al3) must be sat
before tape or cassette loading begins., The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four swltches gontain the load bhoard
setting and the high order four switches contain the
terminal board setting. In the table below, the setting is
given for each /0 board cption. As above, the setting is
an octal number which signifies the switch positions. The
Terminal Switch and Load Switch columns show the switches
that are raised for each of the lecad and terminal device

(_, opticns.
Sense Switch Terminal Load
Device Setting Switches Switches Channels
2810 [*} nene none 28, 21
(2 stop bits)
28IC 1 al2 Al 28, 21
{1 stop bit))
SIO 2 Al3 a9 g, 1
ACR 3 ali,alz A% ,AB 8, 7
4PIO 4 aAl4 ald 46, 41, 42, 43
PIO 5 al4,alz Ald, A8 4, 5
HSR 6 al4,al13 ald,as 46, 47
non-standard 14
terminal

no terminal 15
Examples:

Input from audio cassette through ACR and CRT terminal
through 2510 with 1 stop bit.

Switch 1s 14 13 12 11 18 9 8

Position # 2] 1 d g 1 1

Input from high speed paper tape reader, terminal

through 5I0.
(_/ Switch 15 14 13 12 11 18 9 8
Position @ a 1 8 g 1 1 a

January, 1877 Page 1l@2

€. Error Detaction

The checksum loader turns on the Interrupt Enable light
on the front panel when a loading error occurs. The ASCII
code of the error letter 18 stored in location 4. Iin
addition, the error letter is sent out over all the terminal
channels and so will appear on whatever terminal is
connected to the terminal. The error letters are as
follows:

C checksum error. Bad tape data.

M memory error. Data won't store praoperly.
The address of the bad memory location is stored
in lecatiens 1 and 2.

G overlay error. Attempt was made to leoad data on top
of the loader.

I invalid load device. Invalid setting on the
sense switches.

D, Initialization Dialecg
Upsn starting, BASIC prints
MEMORY SIZE?

To this, the user responds by typing the number of bytes of
memory to be used by BASIC and BASIC programs, Remember
that the BASIC interpreter itself takes 3.4K in the 4K
version, 6.2K in 8K and 14.6K in Extended. If the response
is just a carriage return, BASIC will use all the memory it
can find, starting at location zero up to the last byte of
read/write memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the printing
line of whatever output device is in use. Typing a carriage
return sets the terminal width to 72, Extended and Disk
Altair BASIC set the terminal width through the WIDTH
command, so the TERMINAL WIDTH guestion 1is not asked at
initializatien and an initial width of 72 is assumed. 1In
4K, the response to MEMORY SIZE? and TERMIWAL WIDTH? must
ke less than 6 digits.

At this peint BASIC asks several guestions about
mathematical functions. The Ffunctions may be kept if needed
or deleted to save space, 4K asks,

SIN? hnswer Y to save SIN, SQR and RWND
answer N to delete SIM and see the

J

ary, 1977 . Page 183

next guestion
SQR? ¥ keeps SQR and RND

N deletes SQR, asks next guesticn
RND? ¥ kaeps END

N deletes RND

8K and Extendad BASIC ask,
WANT SIN=-COS-TAN-ATN? keeps all four

delates all four

deletas only —

{in ext:ench«.-cl)"p’gg’i:?f?i%‘<

CONSOLE functicon. Any

other answer deletes
CONSOLE.

Qe

HNow BASIC prints,
XXXX BYTES FREE

ALTAIR BASIC VERSIONW 4.8
[FOUR-K VERSION]

Qor
[EIGHT-K VERSIOH]
ar
[EXTENDED VERSION]
QR

BASIC is now in command level and is ready for use,

E. Echo Routines.

The Altair input/cutput channels work in a full-duplex
mode. This means that characters entered on an input/output
terminal will not, as a rule, be printed as they are entared
unless the computer 1s programmed to return them, The
following acho programs may be used to test the input/output
devices. Te test an input-only device, dump the echced
characters on an output device or sktore them in memory for
later examination. To test an output—only device, send the
echo characters through the front panel switches or send a
constant character, Be sure to check the ready=-to-receive
bit of the output terminal before attempting cutput. If the
eche program works, but BASIC deoes not, make sure the load
device's I/0 board is strapped for 8 data bits and that the
ready-to-recleve bit is set properly on the terminal device.

88-PIC

OCTAL ADDRESS "OCTAL CODE
agl ag4
agz 346

293 gal

Janvary,

1977

994
a5
286
a7
ala
g1l
812
813
814
815

2310
OCTAL ADDRESS
ad4a
agl
942
883
d04
eas
gds
267
a1o
a1l
#l2
gl2
g14
B15
al6
a17
G249
821
422
223
924

42I0

OCTAL ADDRESS
ada
g@l
gg2
ga3
264
aes
836
aa7
ala
Bgll
12
813
gl4
615
gle

312
a84g
860
333
945
323
285
383
aag
4048

OCTAL CODE

876
883
323
328
875
921
323
B28
333
a2
817
22
glo
8¢
333
821
323
g3l
303
a1¢
aga

{(flag ch.)

(2 stop bits,
425=1 stop bit)

{data channel)

CCTAL CODE

257
323
40
323
g4l
323
242
437
323
A43
276
354
323
840
322

Page 144

“a

January, 1977

C

a17
828
g21

422

#23
224
825
B26
az27
a3a
a31
432
433
34
@35
a3s
837
844
a4l
842
@43
A44

g42
333
40
346
284
312
228
gaq
333
842
346
2049
32
az27
age
333
a4l
323
943
383
az2o
A48

Page 145

January, 1977 Page 1066

APPENDIX C
SPACE AND SPEED HINTS

A. Space Allocation i

The memery space raguired for a program depends, of
course, on the number and kind of elements in the program.
The following table contains information on the space
teguired for the various program elements.

Element Spage Regquired

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
6 bytes in 4K and 8%
double precision 11 bytes
string 6 bytes

Arrays
integear {# of elements)*|2
single precision 4
double precision a
string 3

8K and 4K

strings and floating pt. |6 |+|5

+16 |+({% of dimensions}*2 bytes

Functions
intrinsic 1 byte for the call (2 bytes in Extended and Disk)

user-defined 6 bytes for the definition

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Cther Characters

1 byte sach
Stack Space
active FOR
loap 17 bytes in Extended and Disk,

16 bytes in 4K and 8K
active GOSUB 5 bytes
parentheses 6 hytes each set
temporacy
result 12 bytes in Extended and Disk
12 bytes in 4K and 8K

January, 1977 Paga 187
: BASIC itself takes about 3.4K in the 4K version, 6.2K
(_/ in 8K, 14.6K in Extended and 2§ K in Disk.

B. Space Hints

The space required to run a program may be
significantly reduced without affecting exectuien by
following a few of the following hints,

1. Use multiple statements per line. Each line has a 3§
byte overhead for the]line number, etc., so the fewer
lines there are, the lass storage is required,

2. Delete unnecessary spaces, Instead of writing

1a PRINT X, Y, Z
use
19 PRINTX,Y,Z

3. Delate REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4. Use variables instead of costants, expecially when the

(_/ same value 1s used several times. For example, using
the constant 3.1413% ten times in a program uses 4§
bytes more space than assigning

12 P=3.14159

once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneeded wvariables instead of dJdefining new
variables.

7. Use subroutines instead of writing the same code
several times,

3. Use the smallest version of BASIC that will run the
Program.

9. Use the zero elements of arrays. Remember the array
dimensioned by

148 DIM A(1®)

has eleven elements, A(#) through A(l@).

January, 1977

18.

Page 108

In Extended and Disk, use integer wariables wherever
possible.

Speed Hints

Deleting spaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the wvariable at aach
reference. WVariahles at the head of the table take lass
time teo search for than those at the end. 5S¢, reuse
variatle names and keep the list of variables as short
as possibla.

In 8K, Extended and Disk use NEXT without the index
variable.

8K, Extended and Disk have faster £loating point
arithmetic than 4K, If space is not a limitation, use
the larger versions,

The math functiens in 8K, Extended and Disk are faster
than those in 4K.

In the 4K and 8K versions, wuse variables instead of
constants, especially in FPOR loops and other code that
must be executed repeatedly.

In Extended and Disk use integer wvariables wherever
possible.

RNUArLY,

C

1977] : Fage 189

APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions

The following functions, while net intrinsic €o ALTAIR
BASIC, can be calculated using the existing BASIC functions.

Funetion: BASIC equivalent:

SECANT SEC(X} = 1/C08(X)

COSECANT CSC{X) = 1/SIN(X)

COTANGENT COT(Z) = 1/TAN(X)

INVERSE SINE ARCSIN({X} = ATN{X/SCR({=-X*X+1))

INVERSE COSINE ARCCOS{X) = —ATN X(X/SQR{=-X*d+1))
+1.5788

INVERSE SECANT ARCSEC{X) = ATN{iASQR(X*X-1})
+3GN (SGN (X) =-1) *1.5708

INVERSE COSECANT ARCCSC({X) = ATN(1/SQR(X*¥X~1})
+{SGM{X1=1)*1.5798

INVERSE COTANGENT ARCCOT(X) = ATN(X)+1.5708

HYPERBQLIC SINE SINH(X) = {EXP{X)~EXP(«X))/2

HYPERBOLIC COSINE COSH(X) = {EXP({X)+EXP(-X})}/2

HYPERBOLIC TANGENT TANH{X} = EXP{-X}/EXP(X}+EXP(-X}))
*2+] ‘

SYPERBOLIC SECANT SECH{X}) = Z/(EXP(X)+EXP(=X)}

EYPEREQLIC COSECAHT CSCH({X}) = 2/(CHP (X} ~-EXP(-X}}

BYPERBOLIC COTANGENT COTE(X) = EXP(-X)/(BXP{X)-EXP({-X})
*24]

INVERSE HYPERBQLIC

SINE _ ARCSINH(X) = LOG(X+SQR(X*X+1})

INVERSE HYZERBOLIC

COSINE ARCCOSH(X) = LOG(X%+SQR(X*X+-1})

INVERSE HYPERBOLIC

TANGENT ~ ARCTANE(X) = LOG((1+X)/(1l-X))/2

INVERSE HYPERBOLIC

SECANT BRCSECE(X) = LOG{{SQR(=X%"X+1}+1)/X)

INVERSE HYPERBOLIC

COSECANT ARCCSCH(X) = LOG((SGN(X)*

SOR(X*A+1)+1) /X
INVERSE HYPERBCOLIC
COTANGENT ARCCOTH(X) = LOG{{X+1L)/{%-11)/2
“£2. Simulated Math Punctions.\&

The following subroutines are intended for 4K BASIC users

January, 1977 Page 11@

who want to use the transcendental funections neot built inte
4K BASIC. The corresponding routines for these functions in
the 8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
purposes only, and should not be typed in because they take
up a large amount of memory. The following are the
subroutine calls and their 8K equivalents:

8K EQUIVALENT 4¥K SUBROUTINE CALL
P9=X3"¥9 GOSUB 64034
LO=LOG(X3) GUSUB 68090
ES=EXF (X9} GOSUB 68169
Co9=CO8 (X5} GOSUB 60241
T9=TAN (X9} GOSUB 565288
AS=ATN (X9} GOSUD 66318

The unneeded subroutines should not be typed in. Plaase
note which wvariables are used by each subroutine. Also note
that TAN and COS reguire that the SIN function be retained
whan BASIC is loaded and initialized.

63080 REM EXPONENTIATION: F9=X9°v¥9
60012 REM NEED: EXP, LOG
60829 REM VARIABLES USED: A%,B9,C9,E9,L9,P9,X9,Y%
688290 REM P9 =1 ; E9=d : IF ¥9=9 THEN RETURN
69040 IF X9<# THEN IF INT(Y9)=Y9 THEN P9=1-2+¥9+4*INT{¥9/2)
3 H9=-X9
63356 IF X9<>§ THEN GOSUB 60090 : X9=Y9*LO : GOSUB 63160
60860 PI9=PY*E9 : RETURN
68078 REM NATURAL LOGARITEM: L9=LOG (X9)
68034 REM VARIABLES USEDR: AY9,RB9,C9,E9,L9,X9
68099 E9af : IF X9<=2 THEN PRINT "LOG PC ERROR"; : STOP
69100 A9=1: B9=2; C®=.,5: REM THIS WILL SPEED THE FOLLOWING
6901168 IF X9>=A9 THEN X9=C9*X9 : E9=£9+a9 : GOTO 5010d
60120 X9={X9-.707187)}/(X9+.7877187} : LI=X9*%X9
668130 L3={((.598979*L9+,.961471)*L9+2.88539) *XI+E9=.5)*
. 633147
68135 RETURN
66149 REHM EXPONENTIAL : E9=EXP(X9)
6915@ REM VARIABLES USED: A9,E9,L9,X9
68160 LY9=INT(1.4427*X9)+1 : IF L9<127 THEN 60187
69170 IF X9>0 THEN PRINT "EXP OV ERRORY; : 5TOP
60175 E%=8 : RETURN
60180 E9=,893147%L9-X9 : A5=1.32938E-3-1.41316E=-4*E9
60130 RA9=({AY*E9=B.30136E~3)*EI+4,.16574E-2) *E9
69195 E%=((A9-.166665)*E9=-1) *E?+]1 1 A5=2
68197 IF L9<=8 THEN A%=.5 : L9=-19 : IF L9=F§ THEN RETURN
58288 FOR X%=1 TO L9 : E9=A9*E9 ; NEXT X9 : RETURN
69218 REM COSINE: C9=COS(X9)
68226 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME
682390 REM VARIABLES USED: C9,%X%

Januacy,

(bz

1977

60248
69258
60260
68270
60289
602948
60368
60318
69328

68338
64340

Page 111

C9mSIN(X9+1.5708) : RETURN

REM TANGENT: T9=TAN{X9)

REM NEEDS COS. {SIN MUST BE RETAINED AT LOAD-TIME)

REM VARIABLES USED: C9,T9,X9

GOSUB 68249 : T9=SIN(X9),/C9 : RETURN

REX ARCTANGENT : A9=ATN (X9)

REM VARIABLES USED: A9,B9,C9,T9,X9

TO9=SEN (X9) : X9=ABS(X9) :C9=8: IF X»1 THEW C9~1: X9=1/X9

A9=X9%%9 : BO=((2.86623E~3%A%-1,61657E~2) *A9
+4.29096E-2) *A9

BO=({({BY9=7.5289E-2) *A9+.1d6563) *A%-.1142085) *A9+,199935) *A9

A9a{ (B9~.333332) *A9+1}*X% : IF C9=]1 THEN AS=1.5788-A%

Januvary, 1%77 Page 112

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All wversions of Altair BASIC have provisions for
interfacing with assembly language routines. The US®
function allows Altair BASIC programs to call assembly
language subroutines in the same manner as BaSIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside
mMeRery sSpace, When BASIC asks, MEMORY SIZE? during
initialization, the response should be the size of memory
available, minus the amount needed for the assembly languaga
routine. BASIC uses all the bytes it can find from location
zero up, 3¢ only the topmost locations in memory can be used
for user supplied routines. If the answer to the MEMORY
SIZE? question is too small, BASIC will ask the question
again until it gets all the memory it needs. See Appendix

The assembly language routine may be loaded into memory
from the front panel switches or from a BASIC program by
means of the POKE statement.

The starting address of the assembly language routine
gees in USRLOC, a two byte location in memory which varies
from versien to version. USRLOC for 4K and 8K Altair BASIC
version 4.8 is 111 ccTAce . In Extended and Disk, USRLOC
need not be known explicitly since it is defined
avtomatically by DEFUSR. See section 5-3b. The function
USR calls the routine whose address is in USRLOC.
Initially, USRLOC c¢ontains the address of ILLFUN, the
toutine which gives the FC or ILLEGAL FUNCTIOMN CALL error,
which is what happens LIf USR is called with no assenmbly
language routine having been loaded,

When USR is called, the stack pointer is set up for 8§
levels (16 bytes) of stack storage, If more stack space is
needed, BASICs stack can be saved and a new stack set up for
use by the assembly language routine., BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly language routine. Cf wcourse, memory
locations within BASIC ought not to be changed, nor should
more bytes be popped off the stack than were put on it.

USR i3 called with a single argument. The assembly
language routine can retrieve this argument by calling the
routine whose address is in locations 4 and 5 decimal, The

Fanuary, 1977 Page 113

C

low=ocrder byte of the address is in 4 and the high-order in
5. In 4K and 8K, this routine (DBINT) stores the argument
in the register pair [D,E]. In Extended, the acgument is
passed in pair {H,L]. The argument is truncated tc integer
in 4K and BK, and if it is not in the range -32768 to 32767,
an FC error occurs3, In extended, the register pair [H,L]
contains a pointer tc the Ploating Peoint Accumulator where
the argument is stored (see section 5-3b. for nore
information).

Toe pass a vresult back from an assembly language
routine, load the value in register pair [A,B] in 4K and 8K,
or [H,L] in Extended. This value must be a signed, 16 bit
integer as defined abovae. Then c¢all the routine whosa
address iz in locations & and 7. If this routine is not
called, USR{X) crceturns X. To return to BASIC, then, the
assembly language routine executes a RET instruction.

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user supplied interrupt handling routine.
Location 56 initially holds a RET, so it must be set up by
the user or an interrupt will have no effect.

all interrupt handling routines should save the stack,
registers A-L and the PSW. They should also reenable
interrupts before returning since an interrupt automatically
disables all further interrupts once it is receilved.

There is only one way to ¢all an assembly language
routine in 4K and 8K, but this does not limit the programmer
to only cne assembly language routine. The atgument of USR
can be used to designate which routine is being called. 1In
8%, additicnal arguments can be passed through the use of
POKE and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may be
called with the USRE - USR9 functions. For meore information
onh this feature, see section 5-3b.

OTE, THE
ROGE AM
VAMED A IS
WMED BY

LsaveE "a

January, 1977 ' Page 114

APPENDIX F
USING THE ACR INTERFACE

HCTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed en
cassette, and in Extended and Disk versions. 8K
BASIC on paper tape will give the user about 254
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands,

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in either direct or
indirect mode, and its format is as follows:

CSAVE <string exprassion>

The program currently in memory is saved on cassette undet
the name specified by the Ffirst character of the STRING

ZLexpression>. CSAVE writes through channel 7 when the Write

Buffer Empty bit {bit 7) of channel & is low. After CSAVE
is completed, BASIC always returns to command level.
Programs are written an tape in BASIC's internal
represantation. Variable values are mnot saved on tape,
although an indirect mode CSAVE does not affect the variable
values of the program currently in memory. The number of
nulls (see NULL command) has no affect on the operation of
CSAVE. Before using CSAVE, turn on the caszette recorder,
make gure the tape is in the proper position and put the
racorder in RECORD mode.

Programs may be loaded from cassette tape by means of
the CLOAD command, which has the same format as CSAVE. The
effect of CLOAD is to execute a NEW command, clearing memory
and all variable values, and locading the specified file into
memory. when done reading and leoading, BASIC returns to
command level. LOAD reads a byte from channel 7 when the
Read Data Ready bit {bit @) in channel & iz 1low. Reading
continues until 3 consecutive zeros are read, BASIC will
not return to command level after & CLOAD if it could not
find the requested file or if the File was found but did not
end with 3 zeros, 1In that case, the computer will continue
to search until it is stopped and restarted at location 4.

January, 1977 Page 115

C

In the 8K cassette and Extended versions of ALTAIR
BASIC, data may be read and written with the CSAVE* and
CLOAD* commands. The formats are as follows:

CSAVE*<array variable name>
and
CLOAD*<array variable name>

See saction 2-4d for a discuyssicn of CSAVE* and CLOAD* for
array data.

CLOAD?<string expreasion’ compares the program
currently in memory with the specified file on cassette. If
the two EFiles match, BASIC prints OK. If not, BASIC prints
NO GOOD.

Data may also be read from and written on cassette in
the papar tape version of 8K Altair BASIC. To writa data,
execute a WAIT 6,128 statement to check flor the Write Buffer
Empty bit and then write with an OUT 7,<byte> statement. To
raad, execute a WAIT 6,1 to check for Read Data Ready and
then read with an INP{7}. The end of a block of data may be
conveniently designated by a special character. Data should
be stored in array form since there is no time during
reading and writing for computation.

January, 1977] : Page 116

APPENDIX &

CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTATR COMPUTER

Though implementations of BASIC on different computars
are in many ways similar, there are some incompatibilities
between ALTARIR BASIC and the BASIC used on other computears.

1) Strings.

A number of BASICs require the length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the prodram. In some of
these BASICs, a declaration of the form DIM A$(I,J) declares
2 string array of J elements each of which has a length I,
Convert DIM statements of this type to equivalent ones in
Altair BASIC: DIM A$(J). Altalr BASIC uses " + " far
string concatenation, not " , " or " g." ALTAIR BASIC uses
LEFT$, RIGHT$ and MIDS to take substrings of strings. Some
other BASICs wuse A$(I} to access the Ith character of the
string AS$, and AS{I,J} +to take a substring of AS from
character positien I to character position J. Convert as
follows:

QLD NEW
AS(I} MIDS(AS,I,1)
AS(L,J) MIDS (AS,I,J-I+1)

This assumes that the reference to a subscript of A% 1is in
an expression or is on the right side of an assignment, If
the reference to A$ is on the 1left hand side of an
assignment, and X$ is the string expression used to replace
characters in A%, convert as follows :

in 4K and 3K

OLD NEW
AS{I)=X3 AS=LEFTS (AS,I-1) +X$+MIDS (AS,I+1}
AS({I,J}=X3 A$=LEFTS (A§,I-1)+X$+MIDS {AS,T+1)
Extended and Disk

QLD HEW

AS{I}=¥§ MIDE (AS,1,L1)=XS

AS{I,JI=XS§ MIDS (AS,1,J-I+1)=X$

C

January, 1977 Page 117

2) Multiple assignments.
Some BASICs allow statements of the form:
588 LET B=(C=@

This statement would set the variablas B and C to zero,. In
8K Altair BASIC this has an entirely different effect. all
the " = " gigns to the right of the £first one would be
interpreted as logical comparison gperators. This would set
the variable B to =1 if C egualed @. If C 4id not egqual @,
B would be zet to P. The easiest way to convert statements
like this one is to rewrite them as follows.

509 C=0:B=C

3) Some BASICs use ™ \ " instead of " 1 " to delimit
multiple gtatements on a line, Change each " \ " o " : "
in the program.

4) Paper tapes punched by other BASICs may have no nulls at
the end of aach line, instead of the three per line
recommended for use with Altair BASIC., To get arcund this,
try to use the tape feed control on the Taletype to stop the
tape from reading as soon as Altair BASIC prints a carriage
return at the end of the line. Wait a moment, and then
continue feeding in the tape., When reading has finished, be
sure to punch a new tape in Altair BASIC's format.

A program for converting tapes to Altair BASIC's format
was published in MITS Computer Notes, November 1976, p. 25.

3) Programs which use the MAT functions available in some
BASICs will have to be re-written using FOR...NEXT loops to
perform the appropriate operations.

January,

1377 - Page 118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allccatioen:

Tracks Use

@8-5 . Disk BASIC memory image.

6-69 Space for either random or sequential files.
78 Directory track. See below.

71-76 Space for sequential files only.

Format of DISK BASIC Memory Image (Tracks 9=5):

BASIC is loaded starting at track @ secter 8@ then track 4
gector 1, etc. Bach sector contains 128 bytes of BASIC.
The first 128 bytes are loaded first, second 128 second,
atc.

- Sector format (Tracks @-5}:

Byte Use
[Track Number+128 dacimal.
1-2 Sixteen bit address of the next
higher byte of memory than the highest memory location
saved on this sector.
3-139 128 bytes of BASIC,
131 255 decimal stop byte.
132 Checksum - sum of bytes 3-134 with nc carry in 8 bits.

Sector format (Tracks 6-76):

Byte Use
a Most Significant Bit always on.
Contains track number plus 20@ octal.
1 Sector number * 17 MOD 32.
2 File number in directory. Zerc file number means

that the sector is not part of any file. If the
sector is the first file of a group of 8 sectors
g means the whole group of 8 sectors iz free.

January, 1977 Page 119

C

3 Number of data bytes written (# to 1238) . Always
128 for random filas, [Except for the random file

index blocks in which case this byte indicates how many

groups are allocated to the file.)

4 Checksum. The sum of all the data on the sector
except for the track number, the sector
numbar and the terminating 255 byte.

5,8 Pointer te the next group of data. This Is set up for
random files and saquential files, and ia even valid
in the middle of a group. If it is zero it means there

1s no more data in the file., The track ig the first byte

and the sector number iz the second byte.

7=-134 Data

135 A 255 {octal 377) to make sure the right number
of data bytes were read.

136 Unused,

Directory Track {78) Pormat:

Bach sec¢tor of the directory (which is all of track 78)
is composed of up to 8 file name slots, 16 bytes per slot.
Bach slot can contain a file name (8 bytes), a link to the
gstart of £ile 3ata {2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
bytas are not currently used. Any slot which has the first
filename byta equal to zer¢ containg a file which has been
deleted., [f the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond
the "stopper” are garbage, File numbers are calculated by
multiplying the sector number of the directery track the
£ile is in by ¥ and adding the position of the slot in the
sector (#-7) plus l.

NOTE

The ith logical sector on a track is actually mapped
te the i*i7 MOD 32 physical sector to improve
latency in BASIC I/0 cperations.

Format of Random Files

Each random file starts with twe random index blozks. The
"number of data bytes® field in the first block indicates
how many groups are currently allccated teo this random file.
The next 256 bytes in the twe random index bloecks give the
location of each group in the random file in order of their
position in the file, The upper two bits give the group
number , and the lower six bits give the track number = 6.

Januvary, 1377

Page 120

Assembly Code to Read and Write a Sector

The following code has been provided to help users write
assembly language subroutines to read and write

their own

data on the Eloppy disk.
used - has already been enabled and positioned to the correct

track. Tweo data bytes are always read or written at a time

so that

the CPU can

It is assumed that the disk being

up with the data rate (32

microseconds/byte) of the floppy disk. Rfter two bytes are
read or written, the CPU re-synchronizes with the next 'byte
ready’ status from the floppy disk controller.

. el e

DSEO: MOV
MVI
sUB
MOV
CALL
MVI
ouT

i
OHLDSK :
uvI
CRA
MOV
ux
NOTYTD:
ANA
JNZ
ADD
cur
MoV
INX
HOov
INX
DCR
JZ
DCR
ouT
JNZ
ZRLOP:
ANA
JHZ
ouT
DCR

AND [B,L]

C.a
A,130
c

B,A
SECGET
A,128
9

CALL WITH NUMEER OF DATA BYTES TO WRITE IN [a]
AND POINTER TO DATA BUFFER IN [B,L]
ALL REGE DESTROYED.

;SAVE ¢ OF BYTES IN C

;CALCULATE NUMBER OF ZEROS TC WRITE
;SUBTRACT THE NUMBER OF DATA BYTES
;NUMBER OF ZEROS+1

; LATENCY

{ENABLE WRITE WITHEOUT SPECIAL CURRENT

CALL WITH [B]=NUMBER QF IERQS [C]=NUMBER OF DATA BYTES

POINTING AT OUTPUT DATA

MvI L.l
A,128

;SETUP A MASK (READY TO WRITE)
;HIGE BIT (D7) ALWAYS ON IN FIRST BYTE
:OR ON DATA BYTE
;SAVE FOR LATER
; INCREMENT BUFFER POINTER

;GET WRITE DATA READY STATUS
;TEST STATUS BIT
;NOT READY TO WRITE, WAIT
;ADD BYTE WE WANT TO SEND TO ZERO
;SEND THE BYTE
;GET NEXT BYTE TO SEND
:MOVE BUFFER POINTER AHEAD
;GET NEXT DATA BYTE
:MOVE BUFFER POINTER AHEAD AGAIN
;DECREMENT COUNT OF CHARS TQ SEND
;IF DONE, QUIT & GO TO IRLOP
;DECREMENT COUNT OF CHARS AGAIYN
;SEND TEIS BYTE
;STILL MORE CHARS, DO THEM,

sGET READY TO WRITE
;13 1T READY
;1F NGT, LOOP
:KEEP SENDING FINAL BYTE
sDECREMENT COUNT OF BYTES TO SEWD

1

Januvary, 1977

C

the PROM

PROM shou

highest position

Page 121

sKEEP WAITING
sRE~ENABLE INTERRUPTS
s UNLOAD BEAD

FSEND COMMAND

;s DONE

UT ROUTINE. ENTER WITH POINTER

JNZ ZRLOP
EI
MV a,8
ogT 9
RET
; DISK INP
DSKL: CALL SECGET
MVI C,137
READOX : IN a
ORA A
JM READOE
IN 12
MOV M,a
INX B
DCR C
JZ RETDC
DCR ¢
NOP
N 12
MOV M,8
INX H
JNZ READOE
(‘/ RETDO: E1
MV a,8
ouT - 9
RET
SECGET: MVT A4
ouUT 9
DI
SECLE2: IN 9
RAR
JdG SECLPZ
aNI 31
CMP E
INZ SECLE2
RET .

+ OF 137 BYTE BUFPER IN {H,L]. ALL REGS DESTROYED,

+PQINT TO RIGHT SECTOR

;GET # OF CHARS TO READ
1GET DISK STATUS

+READY TO READ BYTE

;READ THE STUFF

;SAVE IN BUPFER

;BUMP DESTINATION POINTER
;LESS CHARS

;IF QUT OF CHARS, RETURN
; DECREMENT COUNT OF CHARS
;DELAY INTO NEXT BYTE
:GET NEXT BYTE

:SAVE BYTE IN BUFFER
;MOVE BUFFER POINTER

;IF CEARS STILL LEPT, LOOP BACK
JRE-ENABLE INTERRUPTS

;UNLOAD HERD
:SEND COMMAND

;LOAD THE HEAD

;DISABLE INTERRUPTS

;GET SECTOR INFO
;FIX UP SECTOR %
;IF NQT, KEEP WAITING
;GET SECTOR 4
;IS IT THE ONE WE WANTED
;TRY TO FIND IT

The Disk PROM Bootstrap Loader

the black finned heat sink.

l1d be in the

The Disk bootstrap loader PROM must be installed in
on the PROM beard and the PROM board must
be strapped at the proper address, The proper position
IC socket on the coppeosite side of the becard from

The black dot or 'l' on
upper left c¢orner, The address
(‘j jumpers on the PROM board must be in the 'l' position.

January, 1977 Page'lzz

To use the Disk bootstrap loader, turn the computer's power
on. Raige RESET and STOP simultaneously. Lower RESET and
then STOF. EXAMINE location 177480 (address switches Al5-A8
up, rest down) and then get the sense switches for the
terminal I/0 board as explained in Appendix B, Deptress the
RUN switch. BASIC should print {or display):

MEMCRY SIZE?

For the rest of the initialization procedure, see below.
Using the Cassette and Paper Tape Bootstraps

If the Disk Bootgtrap PROM is not in use, a paper tape or
cassette program must be loaded which then reads in BASIC
from the disk, This 1ls done by following the procedure

below;

1. Key in the applicable paper tape or cassette bootstrap
loader from the listings in Appendix B. Make
location 2=077 octal. Set the sense switches for the
terminal

2. Btart the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in the
instructions for loading BASIC from paper tape Efrom
cassette as given in Appendix B.

BASIC should respond:

MEMORY SIZE?

for the rest of the initialization procdure, see below.

Disk Initialization Dialog

The initialization dialog has been expanded to allow the
user to select the proper amount of memory needed to use tha
disk{s) on the system. After the the MEMORY 3IZE gquestion

is answered, BASIC will ask:

HIGHEST DISK NUMBER?

The user sghould answer with the highest physical disk
address in the system or with carriage return to default to
3. Each additional disk uses 40 bytes of memory.

Example:

C

Januzary, 1977

Page 123

HIGHEST DISK WUMBER? 1

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and
sequential files, If the user types carriage return, the
default is zero., Each file allocated requires 138 bytes for
buffar space. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many randem files are to be OPEN at
one time. The amount of memory allocated is the anawer*257.
This mamcry space is used to keep track of the location cn
the floppy disk where groups cf a random file reside. Thus,
the tokal memory reguired for each randem file is
138+257=395 bytes, Example:

AOW MANY RANDOM FILES? 1
A typical dialeog might appear as follows:

MEMORY SIZE? <carriage return>

HIGHEST DISE NUMBER? <carriage return> -
HOW MANY FILES? 2 <carriage returny

HOW MANY RANDOM PFILES? 1 <carriage return>

XXXxXx BYTES FREE

altair BASIC REV. 4.8

[DISK EXTENDED VERSION]
COPYRIGHT 1978 BY MITS INC.

OK

January, 1977 Page 124

APPENDIX I

E PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such
such common functions as printing directories, initializing
disks, copying disgks etc.

NOTE

Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering
the "BOW MANY FILES?" question with a value greatet
than 2ere, If an attempt is made to perfrom a LIS
or DIR without following this procedursa, a
BAD FILE NUMBER error will ocour.

Once the BASIC disk has been mounted, type the following
command :

RUN "PIP"<carriage return>
{PIP will type}
- .

PIZ is npow ready to accept commands, To exit PIP, type a
carriage return to the prompt asterisk. Te initialize the
Eloppy disk in drive @, type:

*INIG

PIP will type "DONE" when it is finished. Any disk number
may be substituted for the 9 in the above command and PID
will format the disk in that drive. Any previous files on
the disk initialized will be lost. If you wish to use blank
disks with Disk BASIC, they must be initialized in this
fashion before they can be MOUNTed.

NOTE
DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC

ON IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON
THE DISE.

January, 1977 Page 125
(bd Printing a Directory

Giving PIP the command:

*DIR<disk number>
prints ocut a directory ¢f the files on the specified disk.
The name of each file is printed, aleong with the file's
*mode” (8§ for sequential, R for random), and the starting
track and sector number of the first bleock in the file.

SRT<disk number>
prints a gorted directory of the files on the specified
diszk.

LISting Seguential Piles

The LIS c¢ommand 1s used to list the contents of a sequential
data file on the terminal:

Syntax:
(-’ LIS<disk nomber>,<file name>
Example:
*LISA,PIPA user types

7 CLEAR 10944 computer prints

COPying Disks

The COP ccmmand is used to copy a disk placed in one drive
ta a disk on another drive. Neither disk need be MOUNTed
for the COP command o work properly.

Syntazx:

COP<old disk number>,<{new disk number>

January, 1977 Page 126

Before the copy is done, PIP verifies the actionn by
printing the following massage:

PROM<disk number>TO<disk number>
Typing Y followed by a carriage return causes execution to

proceed, Any other responce aborts the command., Exampie:
*COPB,1 FROM B 10 17 Y<£CARRIAGE return> DONE * -

The DAT command
The DAT command is used to dump out a particular sector of
the disk in octal.
Syntax:
DAT<disk number>
When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. Example: *DATE@

TRACK? @ SECTCR? 0 @69 d08 @Pg 009 0P AH0
40d 999 A9F 497 40 909 EOE etc.

The TNV command

CNV converts disks written under Altair BASIC version 3.4
and 3.3 to a format useable by version 4.8. The format of
the command is as follows:.

CNV<disk number>

CNV makes sure that the next to last byte of each sector is
285, .

Other Programs Provided on the System Disk

Program Hame Use
STARTREK Plays game based on TV serieas,

Jan uary.,

C

1977 Page 127

APPENDIX J
BASIC TEXTS

Below are a few of the many texts that may be helpful

in learning BASIC.

1) BASIC PROGRAMMING, John G. Kemeny, Thomas E, Kurtz,
1867, 145pp.

2) BASIC, Alhrecht, Finkel and Brown, 1973

3) A GUIDED TOUR 0OF COMPUTER PROGRAMMING IN BASIC, Thomas A.
Dwyer and Michael $. Faufman; Boston: Houghton Mifflin

Co., 1973
Bocks numbered 1 and 2 may be obtained from:

People's Computer Company
P.O, Box 318
Menlo Park, California 944825

They also have other books of interest, such as:

161 BASIC GAMES, Dawvid Ahl, Ed., 1974, 258pp.
WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF

COMPUTER GAMES
COMPUTER LIE AND DREAM MACHINES, Theodore H. Nelson, 1974,

l18&6pp.

January, 1977 Page 128

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* 8/MOD Eﬂ AND MDS SY¥STEMS.

This appendix covers procedures for leading and
operating Altair BASIC on Intellec and MDS development
systems.

A. Loading BASIC. To load Altair BASIC, put the hex
paper tape of BASIC in the system ra2ader device. WNow enter
the System and assign the CONSOLE 1/C davice as desired (see
Section 4.2.1 of the Intellec 8/Mod 80 Operator's Manual).
Now read in BASIC with the following R command.

+R(Cr)

The BASIC tape will be 1locaded into memory and the
gystem monitor will type a period on the CONSOLE device., 1If
you are only using contiguous RAM memory below the system
menitor (38@@H) or are using BASIC on a MDS System, proceed
to step 2. If you have RAM memory above the PROM Intellec
monitor which you wish BASIC to use for program and variable
storage, you must patch the two locations known as INTLOC to
point to the bottom (lowest address) of memory. The iZ most
easily accomplished by using the System Monmitor 8§ command.
INTLOC is given below under "Memory Requirements.™

-SXAXX @8 48 (Cr) .

The above 5 command would make INTLOC point to RAM, starting
at 16K.

NOTE

If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentilally, this means that the WANT
SIN-COS-TAN-ATN? guestions asked by BASIC's
initialization dialeg should be answsred by a Y(Cr).
Also, you must answer the MEMORY SIZE? guestion
with the highest decimal or RAM address in your
system,

January, 1977 Page 129

C

' Start BASIC hy giving the monitor GOTO command

.GApgd<carriage return>

NOTE

Once BASIC has been started, it' may always be
restarted by depressing the RESET switch on the
Intellec 8 console.

when BASIC types MEMORY SIZE?, Typing carriage return will
cause BASIC to use all the RAM memcry it can f£ind above the
end of BASIC. Otherwige, if you wish to specify an ezxact
amcunt of memory, type the decimal address of the highest
byte ¢f memory in the computer and type carriage return,.

B. BASIC /0.

The system devices used for tarminal I/0 in BASIC are
CI, CO and CSTS.

C. Saving and Loading Programs.

To save a program on paper tape, re-enter the PROM
moniter and reassign the CO device to the paper tape punch
or other cutput device. Then restart BASIC by using the
GA98A command and type LIST(Cr). The characters of the LIST
command will net be echoed, but the BASIC program currently
saved in memory will be put on the output device.

To load a program enter the system monitor, re-assign
CI to the input device where the program resides, and then
start BASIC with a GO69A. When the program has been
completely read in, reassign CI to the user console. Then
re-enter BASIC with a G9@Pd, and start the I/0 device. The
program will be echoed on CO as it is read in.

D. Memory Reguirements

BASIC uses locations FOOOH-PAD3H and
g@l9H-approximately 190FH in the 8K version, and §@19H-2FPEH
in the Extended version. For Intellec 8K and MDS 8K BASICs,
INTLOC 1s 6528 decimal. For MDS Extended, INTLOC is 14257
decimal.

E. Calling Assembly Language Routines

January, 1977 ' Page 13¢

USRLOC for 8K BASIC is 2055H. ADR(DEINT) is stored in
* locations @@43H, ADR(GIVACF) is stored in location BP45H.
In the Extended version these locaticns contain the
addresses of FRCINT and MARINT, respectively. Interrupt
driven subroutines using RST 7 are not allewed in the
Intellec/MDS version of Altair BASIC. See Appendix C. for
further information on calling assambly language
subroutines,

* Intellec is a registered trademark of the Intel
Corpeoration.

January,

C

1977 Page 131

APPENDIX L
PATCHING BASIC'S 1/0 ROUTINES

BASIC's 1/0 routines may be changed bto accommodate
non-gatandard terminal equipment. After BASIC i3 loaded and
before it has been initialized, 1lecation 71 contains a
pointer to a list of addresszses. These addresses contain the
I/0 routines of BASIC:

ORG 248
W ICLST 1TWQ BYTE ADDRESS QF ADDRESS LIST
IQLST: DW TRYQUT ;ADDRESS OF QUTPUT RCOUTINE
oW TRYIN s CHARARCTER INPUT RCUTINE
bW ISCNTC ;POLL FOR CONTROL/C CHECK
oW HEWSTT :FAST POLL FOR CONTROL/C CHECK
+8K AND LARGER ONLY
oW IN25I0 +ADDRESS QF INITIARLIZATIONR
:ROUTINE FOR 2SI0 BOARDS
oW IN4P10 ;ADDRESS OF INITIALIZATION ROUTINE FOR
('; +4P1IC BOARDS
DW LPTCOD +ADDRESS OF LPT ROUTINE (IN EXTENDED
+AND DISEK ONLY.)
DW LBTCD2 ;2ND LET ROUTINE
oW LETCD3 33RD LPT ROUTINE
oW IOCHNL ;ADDRESS OF I/0 RESET LOCATION
; (IN EXTENDED AND DISK ONLY}
TRYCUT: IN '] ;GET DEVICE STATUS
ANI 208 sAND OFF BIT 7
JINZ TRYOUT sWAIT UNTIL TERMINAL CAN QUTPUT
PCY BSW +GET CHARACTER TOQ QUTPUT OFF STACK
ouT 1 sTRANSMIT IT
PUSH PSW 1SAVE CHARACTER BACK COH STACK
NOP sCHANGED TO "IN 41" FOR 4FPIC BOARDS
WOP
POP PSW 1GET CHARLLTER BACK OFF STACK
RET sALL DONE WITH CHARALCTER CQUTEFOT ROUTINE
TRYIN: I g :GET TERMINAL STATUS
ANI 1 s CHARACTER READY?
JH2 TRYIN +HO, REEP WAITING

fanuary, 1977

IN
ANI
CPL

RNZ

ISCNTC: IN

127
CONTO

11

Page 132

;READ IN TEE CHARACTER
7GBT RID OQF PARITY EBIT
s CONTROL/ 07

+RETURN IF NWOT

;READ TERMINAL STATUS

sHAS THE TERMINAL A CHARACTER

3 TO SEND?
sNO, RETURN

;FOLLO&ING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
+AND IS EXECUTED FCR EACH STATEMENT

NEWSTT: IN
ANI
cz

L3

IN2SI0: CPI
RNC
ADI
PUSH
MVI
CALL
POP
JMP

IN4PIO: MVI
DCR
CALL

LPTCOD: LDA
ORA
Jz
POP
PUSH
CPIL
JNZ

MORSPL: MVI
CUTCHR
LDA
ANI

g
1
CNTCCN

2%4

21
PSW
Ard
DOIO28
PEW
DO1028

A,540
M
DoIo248

PRTFLG
A
TTYCHR
PSW
PEW
9
NOTABL
A,32

LPTPOS
7

+READ TERMINAL STATUS
+TEST BIT @
:YES, SEE IF CEARACTER CONTROL/C

;IS IT 2810
;NO, OTHER GO DIRECTLY TO SETIO
;GET PROPER INITIALIZATION BYTE
:SAVE IT
; INITIALIZE THE 2510

:GET BACK SECOND INITIALIZATION BYTE
s PROGRAM TO DATA AND STOP BITS

s+RESET FOR DATA TRANSFER
s+ CHANNEL=22

;SEE IF WE WANT TO TALK T0 LPT
;TEST BITS
:+IF ZERQ THEW NOT
;GET BACK CHAR

; TAB
NG

1 GET SPACE
$+SEND IT

;GET CURRENT PRINT POSIT
+AT TAB STOP?

C

January, 1977 ' Page 133

JNZ MORSPL ;GO BACK IF MORE TO PRINT
BOP PSW 1BOP OFF CHAR
RET ;RETURN
NOTABL:
POP PSW ;GET CHARACTER WE WANT TO PRINT
PUSH PSH
CPI 13 ;I8 IT CARRIAGE RETURN?
cz PRINTW sFORCE OUT A LINE
CPL 13 1GET COWDITION CODES BACK
JC PPSWRT ;1F PUNNY CONTROL CHARACTER
7 (LF), DO NOTEING
LDA LPTPOS sWHERE ARE WE?
CPI LEPTLEN=1 - tARE WE AT END OF LINE?
JINZ NOTELP ;H0, JUST SEND CHAR
MV a1 ;SET LPTLST=1 AND LPTPOS=0
CALL FINLP2
DCR A sMARE SURE LPTPOS ZERO.
NOTELE: INR A
STA LPTPOS
LPTWAT: IN 2
ORI 245
INR A
INZ LPTWAT
BOE ESW
ouT 3 sSEND QOT CHAR
RET s RETURN

yTHIS ROUTINE IS CALLED 70 FORCE QUT A PARTIAL BUFFER
+FOR THE LINE PRINTER, IT ALSO RESETS PRTFLG SO ALL
;FURTHUR I/0 GOES TO THE USER'S TERMINAL

FINLPT: XRAR A $RESET PRINT FLAG SC OUTPOT .
STA PRTFLG +G0ES TO THE TERMINAL
LDA LPTROS '3EE IF ANY LEFTOVERS MUST BE
ORA A ; FORCED QUT
RZ ;BY LOOKING AT LPTPOS

;THE ROUTINE PRINTW IS CALLED TC FORCE CUT A LINE CURRENTLY
:IN THE LINE PRINTER BUFFER. THE CARRIAGE RETURN/LINE FEED
;OQUTPUT SUBROUTINE CALLS PRINTW

PRINTW: IN 2 tMAKE SURE LAST PRINT
ORI 245
INR A
JHEZ PRINTW :BIT
y SEE IF BUFFER MUST BE EMPTIED
LDA LPTPUS
ORA A sCHARACTERS IN THE BUFFER?
JINZ PRINTR ;IF SO DON'T CLEAR THE BUFFER
LDA LPTLST ;PRINT BLANK LINE.
tCHECK IF PRINT WAS LAST
CRA A ;IF 50, DO SPECIAL DELAY BECAUSE
sOF DESIGHN
Jz NTEXDL ; PROBLEM
PUSH H ;SAVE [H,L]
LXI H,190€8 ;DELAY COUNT

January, 1977 ’ Page 134

LPTDLY: DCX i $COUNT DOWN
MoV AH N
ORA L ;UNTIL ZERC
JNZ LPTDLY
POP H ;RESTORE [H,L] REGS
STA LPTLST ;RECORD LINE FEED LAST
NTEXDL: MVI A,2 ;SEND A LINE FEED COMMAND
QuT 2
XRA- A ;RETURN WITH @ &CC'S=4
RET
PRINTR: MVI A,l JTELL LPT TQ PRINT
ouT p ;3TATUS REG
FINLP2: STA LPTLST
BCR A ;[A]=0
STA LPTPOS JRESET LINE PRINTER PQSITICHN
RET
LPTCD2: LDA LPTPOS ;GET CURRENT L2T PRINT HEAD PQSITION
ADD M ‘
CPIL LPTLEN sWILL THIS NUMBER OVERLAP?
JMP LINCHR
LPTCD3: LDA LPTPOS ;GET LIWE PRINTER POSITION .

sNOTE: COLUMN WIDTH (CLMWID)=
;14 CHARACTERS
NLPPOS EQU { ((LPTLEN/CLMWID)—-1) *CLMWID) ; POSITION BEYOND
sWHICH THERE ARE
;NO MORE COMMA FIELDS, 30

CPI NLPPOS ;COMMA JUST DOES A "CRDO"
JUP CHECOM ;USE TELETYPE CHECR
IQCHNL: 4 s DEPOSIT BOARD TYPE HERE
[i CHANNEIL GETS DEPOSITED HERE.
ICREST: LXI H, IQCHYL ;GRAB PCINTER TC IT
CALL HELPIO ;58T P THE NEW CONSOLE LEVICE
CALL STHKINI JMAKE STACK QK
JMP READY JAND TYPE "QK" HOPEFULLY ON GOCD CONSQOLE:

To patch the I/0 routines, stop the machine after loading
BASIC and insert the patches using the front panel switches
or read in a tape containing the patches. Restart BASIC at
location zero with all sense switches up. This will prevent
BASIC from medifying the I,/0 routines. In general, these :
guidelines should be followed in writing I/0 routines: .

C

January, 1977 : Page 135

1. TIngert a JMP at TRYOUT to the custom cuptput routine, Be
Eure kthe PSW that is saved on the stack when the routine
is entered is preserved. Make sure all registers are
laft unchanged when the routine iz exited.

2. Insert a JMP at TRYIN to the customr input routine.
Return the input character in the A register and do not
change any of the other registers. The PSW may be
changed, '

3. To modify ISCNTC insert a CALL to the custom poll
routine. This routine returns a non-zero condition zode
setting if no character is present, and zero If a
character is present. The A register and the coadition
codes may be changed.

4. To change the initialization of the 28I0 board, change
the “ADI 23Q" to “MVI A,XXXY where XXX is the new
initialization hyte.

5. To change the initialization of the 4PI0 board, change
the "MVI A,54Q" to a "MVI A,XXX" where XXX is the new
initialization byte.

6. To patch in a new line printer driver change the code at
LETCCD, Note that PRINTW is also called by the routine
which prints a carriage return line feed. The code at
LPTCD2 and LPTCL3 must be changed if the line printer is
nct 86 characters wide.

7. To recover from an incorrect CONSOLE command, deposit
the board ATpRess in IOCHNWL, the board type in IOCHNL+1,
and start the machine at IOCHNL+2.

Patching Disk BASIC - the PTD program, After Disk
BASIC is 1loaded, deposit the desired patches in memory.
Then examine and run PTD at location 5480¢ octal. After two
or thrae seconds, the patched version of BASIC will be saved
on disk, The save is complete when the Disk Enable light on
disk drive zero goes ocut.

To save a patched version of BASIC on a disk which did
not previously contain release 4.0 Altair BASIC, track 4
must be copied from a 4.8 disk.

PID may also be used to save programs other than BASIC
on tracks B-4 of a diskette by loading the program after
BASIC ig loaded and running pPTD. All memory locations
between @ and 46869 octal will be saved on tracks d-4 gn
diskette zero.

January,

1977 _ Page 136

APPENDIX M
USING ALTAIR DISK BASIC

An Example

The following i{s a discussion of how o program a
typical application in BASIC. The example is the MITS
in-house inventory system which is designed te rumn on the
following hardware:

Altair 8880k computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 25I0 serial
1/0 board

Two disk drives

24~-line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an
application 1is setting up the files. Files that are
correctly set up will be easy to use and maintain. Poorly
set up files will be a perpetual headache, causing either an
eventual rewrite or, more likely, abandonment of the system.

The first listing at the end of the appendix, INVEN,
contains modules from the main program in the inventory
system. INVEN shows how the central file (a randem file) in
the system is set up and how it is handled., The INVEN
listing also shows the use of another random £ile and a
sequential file, The CALC listing shows how %o read
programs as data files. CODEl is a partial 1listing of a
program that will be read az a data file.

The INVEN modules listed were includeé tec show the
following fratures:
1. program startup initialization and comments about the
filas used by the program (lines 1-35)

2. what the complete program does (lines 69~10d8)

3. an example of how to modify records in & random file
{lines 90P-18449)

4. an example of how sequential files are used (lines
1890-1868 and 2749@-2828)

January,

.

1977 Page 137

5. one approach to the probles of handling a random file
that spans more than one disk (lines 2080-2830)

6. three subroutines {lines 306-~-349, 9¢94~9492¢ and
9269-9228) that are c¢alled by the INVEN modules.

The function PNY ({line 6} is used to round dellar
amounts to thousandths of & cent, FNQ (line 7) is used to
round quantities to thousandths and to convert single
precision amounts to double precision.

INV3 is flelded once in the program initialization, but
INV1I and INV2 are repeatedly fielded by calls to the
subroutine at line 2@88. The IP F>255 {line 6§@) avoids the
possikility that the program can be stopped by an illegal
function call at line &1.

POT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory
module, etc. This pravents epdating one file but not the
other. {This could happen if PUT 2, Rl was at line 14814d.)

Line 2098 sets Z to 1 and Rl to N if the itam wanted,
N, is 1less than 28@0l. It sets 2 to 2 and Rl to N=-2008 if
the item wanted is greater than 200@. Line 2828 then sets
the pointerz £or the variables in the £field statement to
point into either the buffer for INV1 or the buffer for
INV2, depending on whether the item wanted is less than 2081
or greater than 2009,

The CALC listing is a program which determines if there
are encugh parts in inventory to meet projected demands.
Line 88 waits while the disk gomes up to speed 8o the
message “ENABLE DISK 1" will not be printed on the terminal.
Lines 19¢-149 input up to fifty different product codes and
the number of each product to be built, Line 170 opens a
file for each product that contains the parts required for
the product. Lines 228-25%8 build up a report heading
extracting the product description contained in line 18 of
each file.

Lines 12@=150 accumulate the number of parts required
for each product inte the array @, If more than 32767 of a
part is reguired, & peointer is set in the array Q and the
number ¢f the part is accumuulated in the array Q!. This
maneuvering is necessary since the system does not have
encugh memory to dimension Q as single precision instead of
integer.

Janvary, 1977 Page 138

The parts lists for a product are programs saved with

" the A optlon., Since they are programs, their maintenance is

very easy. For example, suppose that part 1871 in the 88a8b

is toe marginal and . that from now on part 1173 should be

used instead., With the parts lists disk mounted on drive #,
the following sequence will update the 8860b file:

LOAD "CODELl®
l6d,1,1173
SAVE "CODE1",d,A

The preogrammer wheo is cramped for memory will find that
programs can still ke documented adequately if comments are
set up as separate files. The memory used for wvariables
when a program runs can be used for comments if the comments
area merged in when the program is to ke ligted.
Alternatively, the program could be listed in two or more
parts. Additional memory can be obtained by bringing BASIC
up without optional functions and with no files.

The main inventory program is set up so that a carriage
return typed in responce to any prompt cause the program te
dump the function descripticns on the CRT and te return to
the FUNCTION NUMBER prompt. If the program were to ke run
on a printing terminal, instead of a 966@ baud CRT, it would
not be set up to print the descriptions every time the
operator wanted to get back to the FUNCTION NUMBER prompt.
The list of function descripticons might be taped on the wall
naxt te the terminal instead.

Listing of INVEN

DEFINT P-N
DEFINT R

DEFINT 3

DEFDBL P

DEF FNY#{Q8#)=INT(QB#*A4+.54) /A

DEF FNQ#(Q9!)=INT(VAL(STRS(Q9!))*10604+.54) /16904
A§=MEKDS (d) :BS=MKS5 (@) :A$=100000%

18 DIM Q8(2),P$(2)

1

€0 ~) h UL b

INV]l ON DRIVE # HOLDS ITEMS 1-2098

INV2Z ON DRIVE 1 HOLDS ITEMS 2881-4889

INV? ON DRIVE 1 BOLDS SUMS LOGGED IN AND QUT BY DEPARTMENT
12

WERLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING:

CONTAIN TEE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY
ggB'WEEKL!,MOHTHLY RESETS.

Q5 ()} <=> THREE OW HAND {TY FOR: P$() <=> THREE PRICES

January, 1977 oo Page 139

C

[P{8#) QLDEST, P(l) NEXT COLDEST, Q(@)<>d IF Q(1}<>8,
Q(1)<>8_IF Q(2)<>8]

DS <=> DESCRIPTION LEPTS(D$,3)="$$$" <=> INACTVE ITEM §
15

11§ <=> WEEBKLY QTY¥ IN

123 <=> MONTHLY QTY IN

015 <=> WEEKLY QTY OUT

02§ <=> MONTHLY QTY QUT

T§% <=> REQORDER LEVEL

DI1$ <=> WEEKLY § IN

ID2$ <=> MONTHLY §$ IN

DOL§ <=> WEEKLY § OUT

QD25 <=> HONTHLY § OUT

17 -

DT1$ <=> WEEELY DEPT § TAKEN

DX2§ «<=> HONTHLY DEPT § TAKEW

DG1§ <=> WEEKLY DEPT § GIVEN

DY2§ <=> MONTELY DEPT § GIVEN

20 OPEN "R",#1,"INV1"®

39 OPEN "R",$2,"INVZIv,1

32 OPEN "R",#3,"INV3",1

35 FIELD §3,8 AS DT1$,8 AS DX2$,8 AS DGIS,3 AS DY2S

8¢ PRINT:F=8:INPUT"FUNCTION NUMBER® :P:IFPFM»2Z255THENGD

C 6l ON F GOTO 218,358,350,1968,686,960,1768,

2708,2500,2300,24049,1838,29568"
23 4 5 8 7 g ¢ 14 11 12 13

14 15 16
63 PRINT"L ENTER NEW ITEM"
64 PRINT"2 LIST ITEM ON CRT {SHORT FORM)"
95 BRINT"3 LIST ITEM ON CRT (LONG FORM)"
66 PRINT™4 PRINT ITEMS QW LINE PRINTER

68 PRINT"6 REMOVE FROM INVENTORY"

6% PRIWT"7 PRINT WEEKLY DEPT DOLLAR RECORD ON LINE PRINTER
78 PRINT"S PRINT WEEKLY ACTIVE ITEMS LIST CH LINE PRINTER
71 PRINT"S WEEKLY RESET

72 PRINT"18- PBRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRIWT"1l- PRINT MOWTHLY ACTIVE ITEMS LIST ON LINE PRINTER
T4 PRINT"12- MONTHLY RESET

75 PRINT"13- RESET OQRDRER LEVELS

76 PRINT"14- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"15- DELETE OLD ITEH

78 PRINT"l6~ ERRORS BACKOQUT

l@@ GOTO&D

298 !

*

67 PRINT"S - ADD TO INVENTORY"

SUB - INPUT PART # & GET RECORD
x*

38@ PRINT:PRINT:N=8:INPUT"PART HWUMBER";N:IFN<1THENRETURN
(ﬂr 310 IFU>400ATHENPRINT:PRINT™''f% TOO HIGH''":GOTO 3ap
320 GOSUBZ968:GETI,R1

January, 1977 Page 144

330 IFLEFTS(DS§,3)a"S$§S"THENPRINT:
PRINT" ' 'NC INFORMATION ON PART''";N:GOT0384

348 RETURN

g9@ !

*

F=& = REMGVE FROM INVENTORY
*

98¢ GOSUBR328:IFN=0GOT063
92¢ DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN : IFDNw~LTHENG3
958 IFCVS(QS (8))+CVS(Q${1))+CVS(QS$(2) } <DNTHENPRINT"
ATTEMBT TC REMOVE MORE THAN ON HAND":BRINT:GOTQ63
968 D@=DN:P=g
978 IFDELCVS (QS (@)) THEN
P=DP+FNQ# (D@) *CVD(PS (@)) : LEETQS (9) =MRS$ (CVS (0S5 (8)) ~DF} :
GOTO128d
980 P=P+FNO# (CVS(Q${0))) *CVD(F$(d}) :DF=DA-CVS(Q$(d)) 2
LSETQS(9) =Q$ (1) tLSETQS (1) =Q$ (2) s LEETQS (2) =B§:
LSETPS (B) =P$ (1) 1LSETPS {1} =P$ (2) : LSETPS {2) =A$: [FDATHEN
GOTC978
1098 LSETOL$=MESS (CVS(C1§)+DN) :LSETO25=MESS (CVE (028} +DN) :
LSETDOL§$=MKDS (CVD (DC1§) +P) : LSETODZS=MKDS (CVD (CD2$) +P)
1628 GOSUBS20%: IFCE2=1GOTO63
1036 LSETDTLS*MEDS (CVD{DTL$)+P} :LSETDX2S=MKD$ (CVD (DX2$) +P)
1044 PUT3,C%:PUTZ,R1:G0TO900 :
1799 °*
*

F=9 - WEEKLY RESET

¥*

180@ PRINT"7 - WEBRKLY DEPARTMENT RECORD

1862 PRINT"8 - WEEKLY ACTIVE ITEMS

1844 Z$="":INPUT"HAVE THE ASOVE BEEN LISTED FOR TODAY";Z$

1818 IFPLEFTS{25,1)<>"¥"THENPRINT:PRINT
"WEEELY RESET NOT PERFORMED":GOTO&3

1343 OPEN"I", 4, "WEKLYRST"

1845 IFEOF {4) THENCLOSE4:KILL"WEKLYRST" :GOTO1862

185 INPUT#4,N:IF l<=NANDN<=437§ THENGOSUB2398:GETZ,R1
ELSEPRINTN;"OUT OF BOUNDS. RESET ABORTED.":END

1855 LSETIL$=BS$:LSETO1$=B§:LSETDILS=A$:LSETDOLSmAS PUTT,RL

185¢ GOTO1845

1862 FORI=1T020

1864 GET3,I:LSETDT1$=AS:LSETDG1$=A$:PUT3,I

1866 NEXT

1868 GOTOG#

1399

*

SUB - GET %,R1 FOR N AND FIELD TO INV]1,2

*

2809 Z=1-(N>2908) :R1=W+{%=2)*2008

2828 FIELD 4,4 AS Q${0),4 A5 Q5(1).,4 AS Q5(2), 8 AS P5{D).

8 AS P$(1),8 AS PS{2),4@ AS D$,4 A5 Il$5,4 AS I2§,
4 AS Q15,4 AS Q2%,8 AB DI1S,8 AS ID23,d AS DO1§,3 AS OD28

J-gacy, 1977 Page 141

-

2838 RETURN
2698 '
*

F=8,11 - WEERLY MONTHLY ACTIVE ITEMS LIST
W

2798 N=1:G0SUBR2@8@ :GOSUR2855

2783 IPF=ATEENOPEN"Q",4,"WEKLYRST"ELSEQPEN"Q", 4, "MONTHRST"

2785 IT4=Q:0T4#=):TT4=0

2713 FORI=1TQ2808 _

2728 GETZ,I:IFLEFTS${D$,3)="5"THEN284Q

2723 Q4=CVS(Q5(9)) :1Q1l=CVS(Q$ (1)) :Q2=CVS{Q5(2))

2725 IFFPagTHENI!=CVS(I15):Q!=CVS(015) :I4=CVD(DI1$) :04=CVD{DOLS)
ELSEI!=CVS (I25) :01=CVS (025) : I#=CVD(ID2F) :O#=CVD{0OD2S)

2737 TTH=TTH+CVD(P$ (§)) *QA+CVD{PS (1)) *QL+CVD(PS{2)) *Q2

27390 IPI[+0|=@THEN2808

2733 PRINT#4,N+I-1

2735 IT#=IT#+14:0T4=0T§+04%

2749 IFL9>S59ANDER=8THENGOSUB2858

27580 LPRINTUSING™ #4&3#4";999991+N+I;

2778 LPRINTUSING™34#,%é4,544":11,0!,Q0+01+Q2,Q0+Q3+02+01=1!;

27808 LPRINTUSING"SS, 844,383,484 14,04

2796 L9=L9+]

2795 KKwER+1:I1FKK=5THENLPRINT:L9=19+1:XK=d

2894 NEXT

(J 2818 IFN=]THENN=2061:GOSUB2680:G0TO0Z718

2811 CLOSE4

2813 LPRINT:LPRINTUSING"TQOTAL INVENTORY COST =5S##, 444,843, ##".TT#

2815 REM *GOTO2828 IN F=7,1d

2820 LPRINT:LPRINTUSING" TOTAL IN = $Si3, 634,404 847 1TH#

2838 LPRINTUSING"TOTAL QUT =5S5id, 844, 844.88";0T4

2837 LPRINT:LPRINT

2840 @OTOSE

2850 FORI=LITO66:LERINT :NEXT

2855 IFF=8TRENLPRINT"WEEELY";:ELSELPRINT"MONTELY";

2860 LPRINT™ ACTIVE ITEMS LIST";::GOSUBSED4

2865 LPRINTTAB(39):;"STARTED"

2878 LPRINT"ITEM 3 QTY-IN QTY-OUT OQN-HAND MO-WITH
DOLLARS-IN DOLLARS-QUT"

2884 LPRINT:KEK=28:L9=6:RETURN

8999 7

L

SUB - PRINT TODAY'S DATE
x
9048 IFTD$=""THENLINEINPUT"TODAY'S DATE 7?";TDS:IFTDS=""THENG6]
9013 LPRINT" ";TDS
2915 LPRINT
3920 RETURN
9199
*
(-/ INPUT DEPARTHMENT # AND GET TOTALS

) *

9208 C%=-1:INPUT"ENTER DEPARTMENT CCDE";C%:IPC3$«=1THENRETURN

January,

1977

321
g22

5
13
28
94
104d
11g
122
1l3g
144
158
164
178
189
1919
208

14
29
3@
42
548
60
9B
95
INP
*kk
lga
112
124

120
148
145

Page 142

§ IF1<=C3ANDCY<=20THENGET],C%:RETURN u
@ PRINT"INVALID CODE":GOTQ92¢0

Listing ¢f CODEl

CODEL
PARTS LIST FOR: 8889B
oCT 3a,1976
REM THIS IS THE -START OF DATA
(11,1842
¢3,1134
+4,1840
+1,1028
,1,1021
fL,1824
11,1971
1,1874
+1,2185
24,348
(2,328

Listing e¢f CALC

CLEARGHA
DEFINT A~3 ‘
DIM CW(49) ,NU(49),Q(4888) ,0! (296)

CLOSE: UNLOADL

INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";GS
FORK:=1TO566%: NEXT + MOUNTL

LINEIWPUT"TODAY'S MO/DA/YR ";DTS$:4%(9)=DT$+" PARTS AVAILABLE FOR:"

1

UT QUANTITY OF EACH PRODUCT REQUIRED
*x .

INPUT*"CODE NUMBER(# WHEN FINISHED)";CHN(I)

IF CN{I)=9 THEN 158

IF CN{I)<l OR S5@<CV¥(I} THEN PRINT"INVALID CCDE NUMBER":
GOTO 198

INFUT"NUMBER OF UNITS TO BE MADE";NU(I)

I=I+1:IF I<58# THEN 124

L

ACCUMULATE QUANTITY OF EACH PART REQUIRED

LEX]

150
led
170
180
190
208
2lp
228

ok

FOR K=8 TO I-1
ONERRORGOTO518
OPEN"I",41,"CODE"+MID$ (STRS (CN(K}) ,2),1
ONERRORGOTOB
LINEINPUT#1,AS:IFAS=""THENL %8

IFLEPTS (AS$,3)="9¢ "THEN264

IFLEFTS {A$,3)<>"18 “THEN19@

IFKTHENHS (HK} =AS [HK} +"," i

January, 1977) Page 143

C

230 HHS$=STRS (NG(K) }+5TRS (CN(K) } +"={"+MIDS (A4, 20) +*)"

246 IFLEN({HHS)+LEN (85 {HR))}>72THENHR=HE+1

250 HS (HK)=H$ {BK) +HHS :GOTOL90

260 ONERRCRGOTO634

27¢ IFEOF(1)THEN31A

23¢ INPUT $1,A,QN,PN

298 IFQ(PN)<BTEENQ! (-Q(PN))=Q! (-Q{PN}) +NU[K) *QN
ELSEQ(PN) =Q { PN} +NU (K} *OQN

300 cOTO279

310 ONERRQORGOTQQ:CLOSE L:MEXT K

315 ¢

GET SECOND HALF OF INVENTORY BACK ON LINE

e e i

328 CLOSE:UNLOAD1

3338 INPUT*

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT";G$

340 FORI1=1TOSPAM :NEXT:MOUNT1

360 OPEN"R",#$2,"INV1®

379 FIELD 42,4 AS Q15,4 AS 02%,4 AS (35,24 AS GS$,40 AS 0§

375 !

PRINT REPORT

LEE S X

3180 GOSUBS574 .

398 FOR I=1 TO 4440

(J 408 IF Q(I)=0 THEN 530

418 QQI=Q(I):IFQ{I)<STEENQQ!=0!{-Q(I}))

429 IFL9>59ANDRE=JTHENGOSUBSEH

438 L9=L9+1

444 RN=I

450 IFICZPGATHEN46OELSERN=RN-288¢: IFFLAG=ATHEN
CLOSE2:0PEN"R", %2, "INV2",1:FLAG=1:
FIELD#2,4 AS Ql$,4 AS Q2%,4 AS 03$,24 A5 G$,48 AS DS

460 GET #$2,RN

478 IFLEFTS(D$,3)="3$5 " THENLPRINTI+130404!;
PhrkkkERRNE NO INFORMATION ON BART **dakwdxh,.
LPRINTUSING" ##, $#¢#4¢"; Q0! :GOTCS 28

488 QHI=CVS(0135)+CVS(Q25)+CVS(Q35) :QD!=QH!-QQ!

568 LPRINTI+1806Q@:;:D5;" ";

512 LPRINT USING "4#%,#44844":;00!;Q81;:Q0!

528 EX=KK+1:IFKK=STHENKK=@:LPRINT:L9=L3+1

530 NEXTI:CLOSE:END

560 FORR={3T066: LPRINT : NEXT

565 !

PRINT PAGE HEADING

L2 E X X3

57& FORK=¢TOHK:LPRINTHS (K) :NEXT

584 LPRINT:LPRINTTAB(S52);"NEEDED ON HAND EXCESS":LPRINT

599 KR=@:L9=5+HK:RETURN

6g5 !

(‘} TRAF ROUTINE: BabD CODE NUMBER

LEE X

619 IFERR=53THENPRINT:PRINT"NC CODE";MIDS (STRS (CN(K)},2);" FILE"

January, 1977 Page 144

620 ONERRORGOTOB

625 !

TRAP ROUTINE: ACCUMULATE INTC Q OVERFLOWED
LE 2 F 3]

630 IFERR<>GORERLC>290THENONERRORGOTOA

640 NO=HQ+1:Q) {NQ)=Q (PN} +NU (K) *QN:Q (PN) =—NQ
670 RESUME274

ml

January, 1977) : Page 145
(#} INDEX
- O N
ABS . . 4 s s 4 s 4 s s o= o« 4 18
ACR interface ., « . L14
AND & 4 v s v 4 4 4 s o« o= o4 4 17
Array variables 14
ABC 4 4w 4 s s s 4 4 s s+ uw s . 18
ASCII character codes 93
ATN & 4 & 4 s » » 2 2 » 2 + « 18
AUTO o v 4 4+ & o 2 o 2 2 + + o &
Backarrow . . . « « « =« « . . 83
BASIC texts .« &+ + + « « « » » 127
Boot loadears 98
Branch, conditionmal 19
Branch, unconditicnal 19
Branching . + + + + = = = « » 19
(-/ Carriage RetUrn . + + « « « o+ 4
Carriage return - - .+ 83
Character, alphanumeric . . . 4
CH t % e s e e o om e e s . 78
CLEAR + 4 &+ ¢« = w s s = » «» = 78
CLOAD . & 4 « » s s o 2 s« « &+ 18
CLOAD* for arrays . . « - » » 25
CLOAD? v &+ & o 2 s = » = = = . 18 °
CLOSE . + & s+ + « = +» « v &+ » 0B
CLOSE, random files B3
Command Level + « 4
Commands List . . «« . 74
CONSOLE &+ & + & « « s = s s o+ 34
Consgtants . . + + » & « . . «» 1B
CONT v & &« & & & o « =« = = « » 18
Contrel/a v s o« o= 18
Control/C . .+ + « « + + & +» » 83
Control/I o« « & o « + = « « . B4
Conteal/0 & v & & o + « 4 » . 83
Control/Q .« & + & « « « + « . 84
Control/S « & + + & « « « « « B4
Contrel/T . + v v« « 4 . . . 18
Conversion from non=-Altair BASIC 116
COS & & & i s v s s v v s e s T8
CSAVE® far arcrays . . « + « «» 25
CVD 4 4 v w s 2 o o 2 s = » » 87
L/ CVI v 2 v v 4 o s s s v s o« . 87
CVS 4w 4w v 4 4 s s o 2+ 4 x « B7

January, 1977

DATA . + +
DEF . . .« &
DEFDBL . . .
Definitions
DEFINT . .
DEFSNG . .
CEFSTR . .
DEFGSR . .
LELETE . .
DIM . . .
Dimensions
Direct Mode
Disk format
Disk number .
Disk operations .

LI I
- o+ .
. s .
s 0w
. s
" v ow
. o+
[]
. a0
* & a
. s
LI I

P N

P R R

L L T R T L

Disk PROM bootstrap lcader
Disk read and write, assembl

Divislon,integer . .
Doulkle precision . .
DSKF . . .

DSKI§ and DSKO$ prlmltives

Eche routines . . .

Error trapping . . .
EXP 4 4 4 s v s s

Expressicn, integer

EDIT . . .+ [
Edit, definition . e .
Editing, elementary pro
END & v v « « « = » &
EOF & v v 2 s « » =« &
EQV v v 4 4 4 o o o .
EBASE . ¢ v o« &+ & = &
ERL . + v & & « &+ « =
ERR . . e s e e
Brror codes . . P
Error message format “
Error nmessages, disk .
ERROR statement . . .

Expressions, string
FIELD . + + +
Fields, numeric
Fields, string
File name . .,
FILES command
FIZ . .« . .
FOR . . . -
FRCINT . . .+ .
FRE ., . . .
Fung¢tioens ., . .+ . .
Functicns, derived .

L3

P4 4 & e s s oa
e kN %+ a4 o ow

LI T B Y

Punctions,
Punctions,
Fungtions,

extended
intrinsic
simulatad

e L T O

2}

L

. .

-

Qe & & » 5 2 & & =

n

.
.
.
vi
.
.

.ooono-u.ou'llﬂcoo

-

a e = o= B s o= oa

f

I L L T I T T B R

...on-.o-ou-Oo-o

[T T T T S

L T . I T S TR

au-.an-.ooocl-lﬂo-u

= A s o

zode

Page 146

24
29
13
4
13
13
12
48
71
15
14
5
118
53
53
121
129
39
11
62
68

133
44
5

9
61,
61
13
32
36
36, 79
36

8

89

35

35

79

5

3l

74

&5
48
47
54
54
79
2l
41
79
28
129

4@
28
129

January, 1877

Functions,

Functions,

GET .
GOSUB
GOTO .

HEXS§ .

Hexadecimal

IF...GOTC

IF...THEN
IF...THEN...ELSE

IMEP

string . .
user~defined

constants

Indirect Mode
Injitialization
Initialization
Initializing

INe .
INFPUT
INPOT,
INSTR
INT .

disk

Intellec

KILL .

LEFTS
LEN .
LET .
Line

LINE FEED

L}
.
.

LINE INPUT

LINE INPUT, d
Line LENGTH
Line Number

LIST .

Ligts and Dir

LLIST
Loap .

LI R A I

s

[~

P e T]

Loader arrors
Loading BaSIC

e .

LOF . .+ &

LoG .
Loops

Lower case

LPOS .

-

LPRINT .

LPRINT USIN

L3ET .

.

MAKINT .

MERGE
MIDS .

.

i
G

npu

-

+ 0 v o
+ .

*

"o e s .

4 & a

dialo
dialeg,
disk

LI T 3

fl v +» 2 =2 &

s, Alt

LR T TN

L R

ories

N .2
N TR

LI . T T R R o S S T R S S
[

P oh s s P e ow
L T

a2 v 4 ke e

+
d
.
b

i

LI e L L T T T T T T)

v e s e s+ 4 ¢ » W v o 2 a3
x

L A L

=

e » o« ¢ = =
i

L

L L N T R T T T T,

LI T T T S R

P a e kBt B e a a e 4w £I% * = » & 01 3 5 b 2 a4 u &

T L

fage 147

on. 128
57

88
88
18

34
61

72
7@
72

1a2
95
64
64

21
85
ad¢
75
75
67

41
57
75

January, 1977

MIDS$ func
MEDS . .
MKIS . .
MESS . .
MOD opera
MOONT .

NAME . .
HEW . .
NEW in di
NEXT .
NOT . .
NULL
ocTs . .
Qctal con
ON ERROR
ON...GOSU
ON. . .GOTO
OPEN . .
OPEN, ran
Operators
OFPERATORS
JOperators
Operators
Operators
Operators
OR . . .
ogrT ..

PEEK . .
PIP utili
PIP, CNV
PIF, COP
PIP, DAT
BPIP, DIR
PIP, INI
21p, LIS
PIP, SRT
POKE . .
P05 .,
Frecedenc
PRINT .
PRINT UEI
PRINT, di
frompt st
PTD progr
PUT .

Random bu
Random Fi
Randeom fi
READ ,
Remarks
RENUOM .
Reserved

WORDS .

tion
tor

= = o= o w
L S T
LI R T
LR R
L
L R

. a
LI

sk

a a4 = s o=
LI A R A
LI T
LI T T
LRI T Y
L I T Y

stants
GOTO .
B « «

L
[TR
LI I Y

LI T R

dom files . .

L e]

, extended and
, logical . . .
¢, precedence of
, Telational

, String . . .

= & & & & & 3 u

ty program
command . .
command
command
command
command
command
command

LI T T

Ao om 4w
P T T T
LR T

A s 2 a2 omom oW

e, table aof

NG .+ « 4 a4
=3,
ring “ e s
2m P
ffer . . .« .
le /O
les . o + + - &

LI I B

L3

. e x s o+ o0m

aisk

* s s s a4

T

L3

I Y

I

R

T Y

Page 143

125
125

81
16
24
47
68
23
135
63

63
63
54

oh o

Jamuary, 1577

Reserved words

RESTORE
RESTME
RESUME
RETURN
RIGHTS
RND .
RSET .
RUBOUT
Rubout

RON . .
RON, disk

SAVE -

NEXT

[T)

-

i

.
-
.
-
-
[}
-
»
-
L]
e

files

*

Scientific not

F O % & w4 s oE oo A

M I L L T I I

atian

& & & o & % A % B ¥ B

.

% 4 = % B &% = & = &

Sense switch settings
Sequential File 1/0
Saequential meode .

SGN . « « & v &
BIN o s v v e
Single precisicn
Space allocation

Space hints
SPACES . . -
SPC . + & s

.

-

Special Characters

Speed hints
SQR . . .
Statements .

Statements, extende

STOP .
STRS .

String Literal

STRINGS
Strings

Subroutines

.

*

Subroutines,

SWAP .

TAR .
TRN -

machin

+

. o oW o»

d

.
e

s s+ * 4 ¥ » 8 & = & 4 & & » = & & & = 24

i)

PO P I L T L T R R L I R S L L

TROFF . . &« & « » 3
TROH & & o o ¢ + o
Type of constants .
Type of variables .
Type,definition . .

TRLOAD & « » +» « « =
USE . & & & o » o« =+

VAL . + « « »

Variable types . . . »
Wariables . . ¢ « +
YARPTR o o + o« 2 « + =

FEE T T R T T T T R

u}

P - N T R I T T L I I I I L L L

P R O R A O L I]

L T T T T

+ v v

™

W Ok ® 4 W = ¥ ¥ ¥ o8 oE

P L s U e v & & & 4 &+ B B S e E oA E o oAsom oo
1]

P A I T T B L

a8 & a4 B B o8 = = w8 @

s 0+ o a

61, 77

Page 149

January, 1977

WAIT
WIDTH

XOR

26

i5
18
a3

. 83

Page 150

