alfair 8800 sasic
REFERENCE MANUAL

¢

8 MiTs, Inc, 1977 Qh FROESS e

First Printing, January, 1977 - 2450 Alamo §.E./Albuguerque, New Maxico 37108

PREFACE

The Altair BASIC language is a high-level programming
language specifically designed for intaractive computing
systems. 1Its simple English-like instructions are easily
understocd and quickly 1learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Aaltair BASIC has evolved into a
powerful language with provisions for editing and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the insktructions of
the BASIC language and diracts the ALTAIR 8808 series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all varsions. The
extended versiona provide additional features inclading
comprehensive £ile input/output procedures in the disk
version.

This manual will explain the features of the BASIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC interpreters, relsase 4.0.
For quick reference, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section §. A
complete index is at the end of the manuwal. In addition to
this referance manual, the programmer should have a good
BASIC text book on hand. A list of some suggested texts is
given in Appendix J.

-1

2-3

Fanuary, 1977

CONTENTS

Some Introductery Remarks.

Introduction te this manual
&, conventions

b. definitions

Modes of Operation

Formats

a. lines=-AUTO and RENUM

b. REMarks

C. €rroy messagesg
Editing - elementary provisions
a. single characters

b. lines

c. whole programs

Expressions and Statements

Expressions
&. constants
b. variables
1) names
2) typing
C. arrays -~ the DIM statement
d. operators and order of precedence
e. logical operations
£. the LET statement
Branching and Loops
a. branching
1) GoTo
2) IF.,.THEN...[ELSE]
3} ON...GOTO
b. loops ~ FOR,NEXT
c. subroutines - GOSUB,RETURN statements
d. memory limitaticons
Input/Qutput, Data Handling

a. INPUT

b. PRIHT

¢. DATA, READ, RESTORE
1) DATA
2} READ
3} RESTQRE

d. CSAVE, CLOAD
e, miscellaneocus
1) WAILIT
2) PEEK,POKE
3}y oUT, INP

functions

Page 2

Janvary, 1877 Page 3

Qu/ =1 Intrinsic Functicns
2 User-defined Functlions ~ the DEF statement

~1 String data
-2 String cperations
a, comparisons
b. LET statements
¢. input/output
1} INPUT, PRINT
2) DATA,READ
String Functions

3
k|
4, Strings
4
4

-
]
Lar

Extended Features

Extended Statements
Extended Qperators
Extended Functions
EDIT Command

PRINT USING Statement
Disk Operations

LﬂUlUltflUlUI wn
[W I U

i

Tableg and Diractories

1
=5 G e W R

Commands

Statements
Intrinsic Functions
Special Characters
Error Messages
Reserved Wards
Index

1 4

mma\ma'\a\m g

Appendices

A. ASCII Character Codes
8. Loading altair BASIC
C. Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
¥, Using the ACR Interface
G. Converting BASIC Programs Not Written for the Altair Computer
B. Disk Informaticn
I. The PIP Utility Program
J. BASIC Texts
K. Using Altair BASIC on the
Intellec* 3/Mod 88 and MDS Systems
L. Pateching Altair BASIC's I/0 Routines
M. Using Disk Altair BASIC: An Exzample

Index

1977 Page 4

SOME INTRODUCTQORY REMARKS

1.
1-1 Introduction to this Manual,

a.. Conventions. For the sake of simplicity,| some
conventions will be followed in discussing the features of
the Altair BASIC language.
1. Words printed in capital letters must be written exactly
as shown, These are mostly names of instructions and
commands.
2. 1Items enclosed in angle brackets {<>) must be supplied
as explained in the text. Items in sguare brackets ([]) are
optional. TItems in both kinds of brackets, [<W>»]/| for
example, are to be supplied if the optional feature iz |used.
Items followed by dots {...) may be repeated or deleted as
necessary.
3. Shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Contrdl key
and typing the indicated letter.

4. All indicated punctuation must be supplied,

. b. Cefinitions. Some terms which will become
important are as follows:

Alphanumeric character: all letters and numerals [raken
tocgether are called alphanumeric characters.

Carriage Return: Refers both to the key on| the
terminal which causes the carriage, print head or curspr to
move to the beginning of the next line and to the command
that the carriage return key issues which terminates a RASIC
line.

Command Level: After Altair BASIC orints OR, it i at
the command 1level, This means it is ready to apcept
commands,

Commands and Statements: Instructions in Altair ASIC
ara loosely divided into two classes, Commands| and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Qpoeration, section 1-2). |Some
commands, such as CONT, may only be used in direct mode since
they have no meaning 2s program statements. Some comm nds,
such as DELETE, are not normally used as program statements
because they cause a return to command level. But | most
commands will find occasional use as proaram statements,
Statements are instructions that are normally used in
indirect mode. &Some stataments, such as CEF, may only be
usad in indirect mode.

January, 1977 Page 5

LL/ Edit: The process of deleting, adding and substituting
lines in a program and that of preparing data for cutput
according t¢ a predetermined format will both be referred to
as "editing.” The particular meaning Iin use will be clear
from the context.

Integer Expression: an expression whose value |is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use a3 statements and commands. These are called reserved
words and they may not be used in wariable or functiecn
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these

are the follewing:

{caret) appears on some terminals as 4 {up-arrow)
~ {tilde) does not appear on some terminzls and prints

as a blank
- {underline) appears on some terminals as - (hack-arrow).

String Literal: A string of characters aenclosed by
(L/ gquotation marks. (") which is to be input or output exactly
as it appears. The gquotation marks are not part of the
string literal, nor may a string literal contain guetation
marks. (""HI, THERE""is not legal.)

Typa: While +the actual device used to anter
information into the computsr differs from system to system,
this manual will use the word “type" to refer to the process
of entry. The user types, the computer prints. Type also
refars to the classifications of numbers and strings.

1-2 Modes of Operation.

Altair BASIC provides for operaticon of the compuker in
twe different modes. In the direct mode, the statement:z or
commands are exacuted as they are entered into the computer.
Results of arithmetic and logical cparations are displayed
and stored for later use, but the instructicons themselves
are lost after execution. This mode is useful for debugaing
and for using Altair BASIC in a "calculator™ mode for quick
computations which do not justify the design and coding of
complete programs.

In the indirect mode, the computet exacutes

instructions from a program stored in memory. Program lines

(L/ are entered into memory If they are preceded by a line
number. Execution of the program is initiated by the RUN

January, 1977 Page 6

In the indirect mecde, the computer executes
instructions from a program stored in mEmGry. Program lines X
are entered into memory if they are preceded by & line \‘
number. Execution of the program is initiated by the RUN
commands.

1-3 Formats.

a. Lines. The line is the fundamental unit of an
Altair BASIC program. The format for an Altair BASEC line
is as follows:

Rannn <BASIC statement> [:<BASIC statement>...]

Bach Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing, Line numbers must be in the! range
8 to 65529, A good programming practice is to use an
inerement of 5 or 14 between successive line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and 0isk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTO command prevides for
automatic insertion of line numbers when entering program u
lines. The format of the AUTO command is as follows:

AUTQO[<initial line>[, [<increment>]]
Exanmple;

AODTO 168,18

148 INPOT X,Y

118 PRINT SQR{X"2+¥"2)

128 "¢
OK

AUTO will number every input line until Contrel/C is typed.
If the <initial line> is omitted, it is assumed to be 18 and
an increment of 14 is assumed if <increment> is omittef. If
the <initial line> is followsd by a comma but ne increment
is specified, the increment last used in an AUTO statement
is assumed, :

If AUTO dgenerates a line number that already exists in
the program currently in memory, it prints the numbier
followed by an asterisk. This is to warn the user that any
input will replace the existing line. ‘

January,

P

1577 Page 7

2) The RENUM command allews program lines to be "spread
out” so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
follows:

RENUM [<NN>[<MM>[,<II>]]}]

where NN is the new number of the Ffirst 1line to be
resequenced, If omitted, NN i3z assumed to be 1B, Lines
less than MM will not be renumbered., If MM ils omitted, the
whole program will be resequenced, II is the increment
between the lines to be resequenced. 1If II is omitted, it
is assumed to be 1P. Examples:

RENUM Renumbers the whole program to start at line
18 with an increment of 1€ between the new line numbers.

RENUM 164¢,,14d0 Renumbers the whole program to start
at line 1P8 with an increment of 1688.

RENUM 6800,54¢8,1998 Renumbers the lines from 54069
up so they start at 6d09 with an increment of 1084.

NOTE

RENUM cannot be used to change the order of program
lines (for example, RENUM 15,39 when the program has
three lines numbered 1¢, 20 and 38) nor te create
line numbers greater than 65529, An ILLEGAL
FUNCTION CALL error will rasult,

All line numbers appearing after a GOTO, GOSUB, THEW,
ON...GOTO, ON...GOSUB and ERL<relational cperator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message “UNDEFINED
LINE XXXXX IN YYYYY" will be printed. fThis line refersnce
(XXXXX} will not be changed by RENUM, but line number YYYYY
may be changed.

3} In the Extended and Dick versions, the current line
number may be designated by a period (.) anywhere a line
number referance iz required. This is particularly useful
in the use of the EDIT command. See ssation 5-4.

4) Following the 1line number, one or more BASIC
statements are written. The Ffirst word of a statement
identifies the operations to be performed. The 1list of
arguments which follows the identifying word serves several
purposes. It can contain {or refer symbolically to) the

January, 1977 Page 8

data which is to be operated upon by the statement, In some

important instructions, the operation to be per formed
depends upon conditions or options specified in the 1list.

Bach type of statement will be consideredmin detail in
sections 2, 3 and 4.

More than one statement can be written on one line if
they are separatad by colons (:). Any number cf statements
can be joined this way provided that the line is no more
than 72 characters long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

188 IF X<¥+37<line feed>
TEEN 5 <line feed>
ELSE PRINT(X)<carriage return)

The line is shown broken into three lines, but it is input
as one BASIC line.

b, REMarks. In many cases, a program c¢an be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair
BASIC, the REM statement allows such comments to be included
without affecting execution of the program. The format! of
the REM statement is as follows: :

REM <remarcks>

A REM statement is not executed by BASIC, but branching
statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

136 REM DO THIS LOOP:fQR I=1TClJ -the FOR statement
will not be executed

131 FPOR I=1 TD 18: REM DC THIS LOOP =this FOR statement will
be executed.’

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the liné by
2 single guotation mark {'). Everything after the single
quote will be ignored.

¢. Errors. When the BASIC interpreter detects. an
error that will cause the program to be terminated, it
prints an error message. The error message formats. in
Altair BASIC are as follows:

Direct statement 7XX ERROR

January, 1977

L

Page 9

Indirect statement 7XX ERROR IN nnnnn

XX is the error code or message {see section 6-5 for a list
cof error codes and messages) and nnnnn is the line number
where the error occurred. Each statement has 1its oawn
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the
description of the individual statements.

1-4 Editing - elementary provisions.

BEditing features are provided in Altair BASIC so that
mistakes c¢an be corrected and featurea can be added and
deleted without affectipng the remainder of the progran, I1f
necessary, the whole program may be deleted. Extended and
Disk Altalr BASIC have expanded editing facilities which
will be discussed in section 5.

&, Correcting single "characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline ¢n
gsome terminals} or ,except in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a2 new line is begun. Once the unwanted
characters are removed, they c¢an be repliaced simply by
typing the rest of the line as desired. i

When RUBOUT is typed, a backslash (\) Iz printed and
then the character to be deleted. Each successive RUBOUT

prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.

Example:

198 X=\=X\Y=10 Typing two RUBQUTS deleted the '=!
and 'X' which weres subsequently
replaced by ¥= .

b. correcting 1lines,. A line being typed may be
deleted by typing an at-sign (@) instead of typing a
carriage return. A carriage return is printed automatically
after the 1line iz deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk wversions, typing Control/A
instead of the carriage return will allow all the Ffeatures
of the ZDIT command (except the A command) to be used on the

Fanuary, 1977 Fage 14

line currently being typed. See section 5—4.-

¢. correcting whole programs. The NEW command causes
the entire current pregram and all variables to be deldted.
HEW is generally used to clear memory space preparatory to
entering a new program.

2. STATEMENTS AND EXPRESSIONS.

2-1, Expressions.

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants, Altair BASIC accepts integers i or
floating point real numbers as constants. All but thie 4K
version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numkric
constants follow: :

123

3.141

2.8416 '

1.25E+85 ;

|

Data input from the terminal or numeric <constants ih a
pregram may have any number of digits up to the length pf a
line (see section 1=3a). In 4K and &K Altair BABIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up, Therefore, the comhand

PRINT 1.234567898123
produces the following output:

1.23457
OK

In Extended and Disk wversions of Altair BaSIC, double
precision format alleows 17 significant digits with the }7th
digit rounded up.

The Format of a printed number is determined by ‘the
following rules:

1. If the number is negative, a minus sign (-} is printed
to the left of the number. If the number is positivd, a
space is printed. .

Jannary, 1977 Page 11

kL/ 2. If the absolute value of the number is an integer in
the range 8 to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or
equal to .81 and less than or egual to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versicns, fixed point values up to
9999999999999999 are possible.

5. If the number does not fall into categories 2, 3 or 4,
scientific netation iz used.

The formats of scientific notation are as follows:
SX.XXXXKESTT single precision
SX . XXXLARXAXXXXLXXDSTT double precision

where 3 stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read *",,.times ten to the poweg.,..."
Non-significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign

(L/ convention in rule 1 is followed for the mantissa. Tha
exponent must be in the range =38 to +38. The largest
number that may be representad in Altair BASIC is
1,76141E38, the smallest positive number is 2.9387E-38., The
following ara examples of numbers as input and as output by
Altair BASIC:

Number Altair BASIC Output
+1 1

-1 -1

6523 6523

128 1E28
-12.34567E-14 -1.23456E-09
1.234567E-7 1.23457E-27
l1gdaeea 1E+G6

.1 W1

.81 .a1

608123 1.23E-04
-25.469 =-25.48

The Extended and Disk versions of Altair BaASIC allew

numbaers to be represented in integer, single precision or

(L/ double precision form. The type of a number constant is
determined according to the following rules:

Tanuwary, 1977 Pafe 12

1. A constant with more than 7 digits or a 'D' insteadl of
'E' in the exponent is double precision. ;

2, & constant cutside the range -32768 to 12767 with!7 or
fewer digits and a decimal peint or with an 'E' expénent
is gingle precision. :

3. A constant in the range -32768 to 32767 and no dedimal
point is integer, !

4, A constant followed by an exclamation point (!} is
sxngle precision; a constant followed by a poundls1gn

i#) is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadedimal
(base sixteen) constants may be explicitly designated by the
symboel &H preceding the number. The constant may not
contain any characters other than the digits 8 - or
letters A - P, or a SYNTAX ERROR will occur. ctal
constants may be designated either by &0 or just the & slign.
|

In all formats, a space is printed after the numFer.
In all but the 4K version, Altair BASIC chacks tc sea if| the
entire number will fit on the current line. If npot, it
issues a carriage return and prints the whole number on the
next line,. i .

b. Variables

1) A variable represents symbolically any number which
is assigned to it, The value of a variable may be assigned
explicitly by the programmer or may bhe assigned as | the
result of calculations in a program. Before a variable is
assigned a wvalue, its value is assumed to be zero. In 4§
a variable name <consists of one or two characters. ; The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character rust
be a letter. No reserved words may appear as variable names
or within wvariable names. The follewing are examples of
lagal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altazir BASIC:
A 3A (first character mmst
be alphabetic,) .
z1 Z1A (variable name 1s'too
long for 4¥) !

Other wversions:

January,

(P

1977 Page 13

P TO {variable names canhnct
be reserved words)

PSTGS

COUNT RGOTO (varlable names can-
not contain reserved
words.)

In all but 4K Altair BASIC, a wvariable may also
represent a string. Use of this feature is discussed in

section 4.

2} Extended and Disk versions of Altair BASIC allew the
use of Integer and Double Precision variables as wall as
Single Precision and Strings. The type of a varlable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table helow as the
last character of the variable name.

Type Symbol
Strings (9 to 255 characters) &
Integers (-32768 to 32767) %
Single Precisicn (up to 7 digits, exponent between
=38 and +38) !
Double Precision {up to 16 digits, exponent between
=28 and +38)

Internally, BASIC handles all numbers in binary. Therefors,
sgme B digit single precision and 17 digit double precision
numbers may be handled c¢orrectly, If ne type is explicitly
declared, type is determined by the first letter of the
variable name according to the type table. The tabkle of
tyves may be modified with the following statements.

DEFINT r Integer

DEFSTR ¢ string

DEFSNG ¢ dingle Precision
DEFDBL r Double Precision

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT I-N Variable names beginning with the let-
ters I-N are to be of integer type.

28 DEFDRL D Variable names beginning with D are to
ve of double precision type.

If no type definitien statements are encountered, BASIC
proceeds as If it had executed a DEFSWG A-2 statemant.

ranwary, 1977 Paée 14

3) Integer variables should be used wherever posqible
since the¥ take the least amount of space in memory and
integer arlthmetic is much faster than single precision
arithmetic. :

Care must be exercised when single precision and & uble
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a sxngle precision value
may not print the same as the single precision variablea

19 a=1.81 single precisien valum

20 B#=A*1Q:C3=CDBL(A)*10% convert to double preclisicn
36 PRINTA;B#;C#;CDBL{A) in various ways |

RUN

CK

In order to assure that double precision numbers will lent
the same as single precision, the VAL and STRS functhons
should be used. For example:

10 A=1.01 i

28 B§=VAL(STR$(A)) tC#=B4*10%

38 PRINT A:B#;C¥

RUN

1.9 1.41 18.1

0K

¢. Array Variables. It is often advantageous to refer
to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for |the
pregrammer to refer to the whele matrix as a unit., Por this
purpese, Altair BASIC provides subscrlpted varmables* ~14
arrays. The form of an array variable is as follows

VVi<{subscript>[,<subscript>...]) !

where VV is a variable name and the subscripts are intdger
expressions. Subseripts may be enclosed in parentheses or
sguare brackets,. An array variable may have only |one
dimension im 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on a single line.
The amallest subscript is zero, Examples:

A(S) The sixth element of array A. The finst
element is A(d). !

ARRAY (I,2*J) The address of this element in a two=-
dimensional array is determined by
evaluating the expressions in parenthe-
ses at the time of the referance to the

I
1.81 14.16060038146973 10.69995996463257 1.3699B9993463257

s

January, 1977

e

Page 15

array and truncating to integers. If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements Lo 2zero. The form of the DIMX
gtatement is as follows:

DIM V¥(<subscript>[,<subscript>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest peossible subscript
for that dimension. Each DIM statement may apply teo more
than one array variable. Some examples follow:

113 DIM A{3}, D$(2,2,2)

114 DIM R2%(4)}, B(1@}

115 DIM Ql{N), ZR(2+I) Arrays may be dimensioned dy-
namically during program
execution. At the time the
DIM is exscuted, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an arrcay
variable is f£found in a program, BASIC assumes the variable
to have a maximum subseript of 18 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued If an attempt is made to
reference an array element which 1is outside the space
allecated in its associated DIM statement, This can ogour
when the wrong number of dimensions is used in an array
element reference, For example:

3@ LET A{l,2,3)=X when A has been dimensioned by
19 DIM A{2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This often occurs when a DIM statement appears
after an array has been given its default dimension of 18.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetie and ({axcept in 4K} logical
cperators. The order of exscution of operatiens in an
expression i3 always according to their precedence as shown
in the table below, The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table ¢f Precedence

1.
2‘

1lad.
i1.

12.
i3.

14.

In

Fanuary, 1977

Page lé

QOperators are shown here in decreasing order of precedenca,
Operators 1listed in the same entry in the table have the
same precedence and are executed in order from left to right
in an expression.

Expressions enclosed in parentheses ()

“ expenentiation (not in 4K). Any number to the zero
power 1is 1. Zero to a negative power causes a /0 or
DIVISION BY ZERQ error.

-~ negation, the unary minus operator

*,/ multiplication and division

\ integer division (available in Extended and Disk
versions, see section 5-2)

MOD {available in Extended and Disk versions. See
saction 5=2)

+,- addition and subtraction
relaticnal operators
= aqual
<> not egual
< less than
> greater than
<=,=< less than or equal to
>=,=> greater than or equal to

{the logical operators below are not available in 4Kj

NOT logical, bitwise negation

AND logical, bitwise disjunction

CR logical, bitwise conjunction

{The logical operators below are available only in
Extended and Disk versions.)

XOR logical, bitwise exclusive OR

EQV logical, bitwise equivalence

IMP logical, bitwise implication

4K Altair BASIC, relational operators may be used only

once in an If statement. 1In all other versions, relational

J

s

C

Januvary, 1977

Page 17

OpFerators may be used in any expressgions. Relational
expressions have the valye either of True (-1) or False (g}.

2. Logical Operations, Logical operators may be yszed
for bit manipulatien and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMF operators convert their
arguments into sixteen bit, signed, two'sg complement
integers in the ranges -32768 to 312767. After the operations
are performed, the result is returned in the same form and
range. If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be tarminatad. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time. In
binary operations, bit 7 is the most significant hit of a
byte and bit € iz the least significant.

AND

b1 k4 X AND ¥

1 1 1

1])

8 1 a

g g g
OR

X ¥ XCOR Y

i 1 1

1 2 1

a i i

a g 2
NOT

X NOT X

1]

a 1
XOR

X ¥ XXOR Y

1 1)

1 g 1

a2 i 1

a 2] a
EQV

X Y X EQV ¥

1 1 1

1 @ g

d 1 @

a a 1
IMp

S s e by
LR e
o

Hanuary, 1977

WOLK:
83 AND 16=1¢
15 AND 14«14
-1 AND 8=38
4 QR 2=6
12 OR l@=12
-1 QR =2=-]

NOT g=-1

NOT Xa-(X+1)

expression. Exampleas:

1886 LET V=X
1lg LET I=I+l

equations such as:

120 v=.5% (X+2)

Page 18

Some exanmples will serve to show how the logical operations

63=binary 111111 and lé=binary 13008,
g0 63 AHND lé=16

15= binary 1111 and ld=binary 1118,
50 15 AND ld=binary 1llo=14.
-l=binary 1111111111111111 and S=binary
188, so -1 AND 8«38,

4=binary 190 and 2=binary 14 so

4 OR 2=binary 11d=6.

binary 1818 OR'd with itself is 1dlg=
1d.

=labinary 1111111111111111 and -2=
1111111111111113, so =1 QR =32==1,

the bit complament of sixteen zeros
is sixteen ones, which is the two's
complement representation of -1.

the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits, Such
numbers might come from the computer®s input ports and would
then reflect the condition of some external device. Purther
applications of logical operations will be considered in the
discussion of the IF statement.

£. The LET statement., The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression is any valid
Altair BASIC arithmetic or, except in 4K, logical or string

the 'a’ gign hersmeans 'is replaced
Y s...!

The word LET in a LET statement is opticnal, so -algebraie

are legal assignment statements.

A SN or 3SYNTAX ERROR message 15 prioted when BASIC
detects incerrect form, 1illegal characters in a line,
incerrect punctuation or missing parentheses, An OV or
OVERFLOW error occurs

when the result of a calculation is

e

January, 1977 Page 19

too large to be represented by Altair BASIC's number
formats, All numbers mUSt be within the range 1EB-38 tg
1.70141E38 or ~1E-38 to -1.79141838, an attempt to Jdivide
by zero resultg in the /9 or DIVISION BY 2ERO arror message.

For a discussion of strings, string wvariablas and
string operations, see section 4.

2=2. Branching, Loops and Subroytinag,
Fnl' T} === =2Horoutines,

a. Branching. 1n addition to the Sequential execution
of program lines, BASIC Provides for changing the order of
execution., Thisg Provision is callag branching apnd g the
basis of Programmed decision making and loops. The
Statements in Alzajir BASIC which provide for branching ara

the GoTO, IP...THEN and OH...GoTO statements,

1) GOTO is an unconditional braneh. Its form is asg
follows:

GOTO<mmmmm>

After the gOTO Statement is executed, execution continues at
line number .

2} IF.,.THEN is a conditional branch. 1Its form iz zs
follows: .

IF<expression>THEN<mmmmm>

where the exprassion is a valig arithmetiec, relational o,
except in 4K, logical expression and mmmmm ig 3 line number,
If the expressiaon 1s evaluated as nen-zera, BASIC continpes
at line mmmmm. Otherwise, execution resumes at the next
line after the IF...THEN statement.

An alternate form of the IF...THEN statement ig ag
follows:

IF<expression>THEN<statement)

where the statement is any Altair BASIC statement,
Examples:

18 IF A=18@ THEy 48 If the expression A=10 is
true, BASIC branches to line 44, Ctherwise,
execution proceeds ar the next lipe,

15 IF A<B+C OR x THEN 199 The expression after ir is
evaluated and if the value of the expression ig
non-zero, the Statement branches o line 14p.

1977 Page 28

Otherwise, execution continues on the next line

20 IF X THEN 25 If X is not zero, the statdment

branches to line 25,

38 IF X=Y THEN PRINT X If the expression X=Y is t1
{its value is non-zero), the PRINT statement
executed. Otherwise, the PRINT statement is
executed. - In either case, execution continues
the line after the IF...THEN statement,

35 IF X=Y+3 GOTO 39 Equivalent to the correspondin
IF...THEN statement, except that GOTC mnust
followed by a line number and not by ang
statfement,

Extended and Disk wversions of Altair BASIC providd
expanded IF...THEN statement of the form

IF<expression>THENCKYY>ELSE<ZZ>

where YY and %2 are wvalid 1line numbers or Altair B
statements., Examples:

IF X>Y THEN PRINT "GREATER" BLSE PRINT "NQT GREATER

If the expression X>Y is true, the statement after THEN
executed; otherwise, the statement after ELSE i5 execut

IF X=2*Y THEN 5 ELSE PRINT "ERROR"
If the expression X=2*Y is true, BASIC branches to line
otherwise, the PRINT statement is executed. Extended
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and
versions. Nesting is limited only by the length of
line. Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

and

I K=Y THEN I ¥>F THEN PRINT ™X>I" ELSE PRINT "YY<=

ELSE PRINT "X<>%"

are legal statements. If a line does not contzin the

number <¢f ELSE and THEN clauses, each ELSE is matched w

the cleosest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "a<>d

will not print "A<OC" when A(>B.

ue

is

nat
with

be.

ther

an

BSIC

is

ed,

and

nigk
the

ame
ith

January, 1977 Page 21

3) oN...coTo (not in 4K) provides for anothsr Lype of
conditional hraneh. Its form is as follows:

ON(expression>GOT0<list of line numbers>

After the valuye of the expression ig truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number ig ith in the list. 1The statement may be
followeg bY as many line numbers as will fit gpn one line,
If Ia9 or iz greater than the number of lines in the list,
execution will continge at the next line after the ONW...GOTO
statement., I must noct be less than Zero or greater than
255, or an FC or ILLEGAL PUNCTION CALL error will resule.

b. Loops. It is often desirable to Perform the same
calculations on different datas or repetitively on the same
data. For this Purpose, Altair BASIC provides the FOR ang
NEXT statements. The form of the FOR statement is ag
follows:

FOR<variab1e>=<X>TO<Y)[STEP <2>]

where X,Y and 2 dare exprassions. When the FOR statement is
encountered for the first time, the expressions are
evaluated, The variable is set to the value of % which ig
called the initial value, BASIC then executes the
statements which fallow the rFOR statement in the usual
manner., When a NEXT statement is encountersd, the sStep Z ig
added to the variable which is then tested against the final
value Y. If 2, the step, is positive and the variable is
lesgs than or equal to the final value, o if the step is
Negative and the variable is greater than or equal to the
final value, then BASIC branches back to the statement
immediately fallowing the FOR statement. Otherwiza,
execution proceeds with the statement feliawing the wExT,
I€ the step is not specified, it ig assumed to phe 1,
Examples:

12 POR I=2 70 11 The loop iz executed 18 timas with
the variable I taking on each ip-
tegral value from 2 to 11.

28 FOR v=1 70 9.3 This loop will @xecute 9 times un-
£il ¥ is greater than 9.3

38 FOR velg#y TO 3.4/2 sTED SQR{R} The initial, final
and step eXpressions need not be
integral, but they will be eval-
vated only once, before loop-
ing begins,

40 FOR v=3 mQ] STEP -1 Thig locp will he executed 9
times.

FOR..,.NEXT loops may be nested. That iz, 3asIC will execute

Fanuary, 1977 Page 22

a FOR...NEXT loop within the context of another loop. An
example of two nested loops follows:

129 POR I=1 TOQ 18
129 FOR J=1 TO I
139 PRINT A(I,J}
148 NEXT J

158 NEXT I

Line 128 will print 1 element of A for I=l, 2 for I=2 and so
on. If loops are nested, they must have different loop
variable names. The MEXT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels of nesting is
allowed up to the limit of available memory.

The NEXT statement is of the form:
NEXT{<variable>[,<variable>...]]

where each variable is the lcop variable of a FOR loop for
which the NEXT statement is the end point. In tha 4K
version, the only form allowed is NEXT with one variable.
In all other versions, NEXT without a wvariable will match
the most recent FOR statement. In the case of nested loops
which have the same end point, a single NEXT Statement: may
be used for all of them, except in 4K. The first variable
in the list must be that of the most recent loop, the second
of the next most recent, and so con. If BASIC encounters a
NEXT statement before 1its corresponding FOR statement: has
been executed, an NF or NEXT WITHOUT FOR error message: is
issued and execution is terminated.

¢. Subroutines. 1If the same operation or series: of
operations are to be performed in several places in a
program, storage space rtequirements and programming time
will be minimized by the use of subroutines. A subroutine
is a series of statements which are executed in the nogmal
fashion upoen being branched to by a GOSUBE statement.
Execution of the subroutine is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUBR. The format of the GOSUR statement is as
follows:

GOSUB<line number>

where the line number is that of the £irst line of the
subroutine. A subroutine may be called from mece than one
place in a program, and a subroutine may contain a call to
ancther subroutine. Such subroutine nesting is limited only
by available memory.

L

January, 1977 Page 23

to conditionally bY use of the ON...Gosus Statement, whose
form is as follows:

ON <expression> GOSUB <list of line numbersy

numbers are those of the first 1lineg of subroutines,
Execution continues at tpe next statement after the
ON...GOSyUR UPon reaturn from one of the subroutinesg,

d. ouT gF MEMORY errors, While nesting in loops,
subroutines and branching ig not limited by BasIC, memory
Size limitatians restrict the gize and complexity of
Programs, The oM or ogr CF MEMORY error message iz isgued
when a Program requires more memory than ig available, See
Appendix ¢ for an explanation of the amount of memory
required to rup programs,

2=3. Ingut(OutEut

a. INPUT. The INPUT statement cayses data input to be
Fequested from the terminal, The format of the INPUT
Statement is ag fallows:

-

INPUT<1ist oFf variablesy

The affect of the INPUT statement ig to cause the values
typed on the terminal to be assigned to the variables in the
list. when ap INPUT statement is executad, a guestion mark
(?) is printed on the terminal signalling a request for
information. The operator tyYpes the Fequired numbarsg or
strings ({er, in 4K, @xpressions) separateqd by commas and
types a carriage return, If the data entered is invalid
(8trings wera entered when numbers ware fequested, ate,)
BASIC prints 'REDO FROM START?' apd waits for the corract
data to be entered. If pore data was tequested by the INpUT
Statement than wag typed, 27 ig printed on the terminal and
execution awaits the needed data. If more data wag typed
than was regquested, the warning 'EXTRA IGNORED' igs Printed
and executjaop Procaeds. After all the requested data is
input, execution continyes normally at the statement
following the INPUT. Except in 4K, an optional prompt
String may be added to an INPUT Statement.

INPUT["<prompt stfing)";](variable list>

Execution of the Statement cayuses the prompt string to pe
printed before the question mark, Then all Cperations
Proceed as above, The PIOmMPt string muse be enclosed ip
double quotation marks (") and must be separated from the

Tancary,

1577 Page 24

variable list by a semicolon {:). Example;

199 INPUT “WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and ¥ are typed after the 7
Except in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the valuas
of the wvariables in the variable list unchanged. In 4K, a
SN error results. '

b. PRINT. The PRINT statement causes the terminall to
print data. The simplest PRINT statement is:

PRINT

which prints a carriage return. The effect is to skip a
line. The more wusual PRINT statement has the following
form:

PRINT<list ¢f expressions>

which causes the values of the expressions in the list to be
printed. String Lliterals may be printed if they 'are
enclosed in double guotation marks ("3, '

The position of printing is determined by . the
punctuation used to separate the entries in the list.
Altair BASIC divides the printing 1line into zones of,; 14
spaces gach. A comma causes printing of the value of the
next expression to begin at the beginning of the next: 14
¢olumn zone. A semicolon (;}) causes the next printing to
vegin immediately after the last value printed. If a cdmma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line according
te the conditions above, Otherwise, a carriage return is
grinted,

c. DATA, READ, RESTCRE

1} the DATA statement., Numerical or string data negded
in a program may be written into the program statements
themsalves, input from peripheral devices or rsad from IATA
statements. The format of the DATA statement is as follows:

DATACList>

where the entries in the 1list are numerical or strﬁng
constants separated by commas. In 4K, expressions may also

J

L

¢

Jamaary, 1377 Page 25

appear in the list. The effect of the stakemenkt is to store
the list of values in memory in coded form for access by the
READ statement. Examples:

18 DATA 1,2,-1E3,.84

29 DATH " LOO", MITS Leading and trailing spaces in
string values are suppressed unless the string is
enclosed by double guotation marks.

2} The READ statement. The data steored by DATA
statements is accessed by READ statements which have the
fellowing forms

READ<list of wvariables)>

where the entries in the list are variable names separated
by commas. The effect of the READ statament is tc assign
the walues in the DATA lists to the corresponding variables
in the READ statement list. This is done one by one from
left to right until the READ list is exhausted. If there
are more names im the READ list than wvalues in the DATA
lists, an OD or OUT OF DATA error message 1s issued. £
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement to be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement.

An SN or SYNTAX ERROR message can rasult from an
improperly formatted DATA list. In 4K Altair BASIC, such an
error message will refer to the READ statement which
attemptad £0 access the inceorrect data., In other versions,
the line number in the ercror message will refer to the
actual line of the DATA statement iIn which the error

ocgurread.

3) RESTORE statement., After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re=READing the data.

d. CBAVEing and CLOADing Arrays (3K cassette, Extended
and Disk wversions anly). Numeric arrays may be saved on
cassette or leaded from cassette using CSAVE* and CLOAD* The
Eormats of the statements are:

CSAVE*<array hame>

and

Tanuary, 1977 Page 2§

CLOAR*<array name>

The array is written out in binary with four octal 218
header bytes to indicate the start of data., Thesa byteg are
searched for when CLOADing the array. The number of hytes
written is four plus: '

8*<number of elements> for a double precision array
4*<number of elements> for a single precisioen array
2*<number cf elements> for an integer array :

When an array is written out or read in, the elements of the
array are written out with the leftmast subscript varying
most guickly, the next leftmost second, etc:

DIM A{l1l9)
CSAVE*A

writes out A(@),A(l},...A(14)

DIM A(18.,18)
CSAVE*A

writes out A{#,9), A(l,d)...A{19,8),A(1d,1)...A(20,10)

Using this fact, it is possible to write out an array as a
two dimensional array and read it back in as a single
dimensional array, etc. : -

NCTE

Writing out a deuble precisicn array and reading it.
back in as a single precision or integer array is
rot recommended., Useless values will undoubtedly be !

returned.

e. Misgellaneous Input/Qutput

1} WAIT (not in 4K). The status of input ports can . be
menitored by the WAIT command which has the following
format:

WALITCI I [, <K>)
where I is the number of the port being monitored and I ‘and

K are integer expressions. The port status is exclusive ORd
with ¥ and the result is ANDed with J. Execution is

J

L

ot e Aunlwelie the ones wningt bume
cappters, Welre ina pun Tect pusitian
e b tesic date nevided 10
poaosel ol scgnerios of ahe
a1 0l houes compaices 61 ule
v Farc il We'lie gt dawn in
e trengdns, on the Trond Yines of the
ohentagis 1 eewolalion, The
[eTsOT N our sogicty feeerd
aul Cemputers in e 50 sow
st esed in the spave flights of the
wistits, ot handol swraps of
asiyzat i lhe Torm el Lank, ssatements
1otk midddle sisbics, bocdme an isgat
Tu the daa Banths of ahe lule sisvies
angtoeorly sevamdies; oo pew B the

e
ot

comen What's g
happen®
Wrire

| stk alivonl

v
LT

Ackion T 0L Hrecon, T
Haik, 193,

.o an- The Sfanr
P O N B LT

2

Y hrats Liwn
Crmgutaeited 5.

MrE bws TRE
WAL OF CORRTES

T

ich Whippie John Amold
305 Clenson Thiv
Tyler TX T57H1

RASIC FORLUM

(MATA TO & FROM CASSETTLE)

In Lhis memlh's BASIC FORUM, we
will fiscuss a question submitsed by
George 1aller of Naples, Flovida. He s
terasted AN ekpl ion of u
camtewent he fourd i dhe Afteir
BASME Relerenee Murmad!* indicatng
Lha L BASIC progrum data can be saved
rn edsseite tape fur futore use So,
we're porng lu discuss how dhes s
[ULLTN

Thy siofiware used 1o deive a LART
e Caselle 1ape systom s penerafly
nootn machine hwnanzge o o
achieve mansm daks rate advanlage,
I ix possible [and perhaps & Ll
eepiciel fowrite the caweile nwafines
in 9ASIC [salf. Since BARC stale-
penls Lake lnnger oo exgwuty, the
wretall daka rate will be lower,

[n eider 1o read and weite the dats
seluws ko the system O poils, the
YASIC interpreter used must have
ceiin specialized statements. Altair
KK RALIC for instance, has the IMP,
COUT, and WALT stalements that cam
T Anendin ¥ of the 5K Altsh e
re Manuil.

e SeiLe sulne
ae vl

be wied for thes porp
roeaders mpy ot B L
staterents, weo will presend o dnief
duscription ef cach in Frogam A

Cansides {wst the prollzn ol
wEiling daba b 2 cavaelle tape Letus
Tirsl eaninag 1t M Lol e inborface
fuay twa parts. oas a status pad, 1he
athier g data report. e, aisame
bit 7 i the statay parm is conbeled
L the Tramitesr Bafler Empty
[TBE) flag wf the UART. Thus, when-
ever the WARL 1.
new data byte for tranunissdian, kit ¥
will gor to logic 1. % AT 1
transmisting a data bt il ¥ owall Le
lowr. When writiog o BASIL progrean
b cutput date o the casserte intae
fare, some ma nits b pravuded re
hald-sp caucution TEBE
stat flig is haw This s easily dine
with ali: WAIT conmmand, Suvppase
the wtaties prt & Goand the duls pind
in 7. The BASIC progeans [Preg. R)
will putput 4 2n bere 1o thie Lesselie
Aztin ard g,

T prograes, whea cxeooed, pooe
ceeds i 1hiy manaer . Stalement §oacts
the ASCIL valoe for 1re hoter & info

romly booreceive a

wlnle the

25% deeimal. (2554
walue of an § bit

N0 LT
T and J must have
fecimal.

SATT 1,0,K:

cxelpsin

WA

bits whose value

ISPCTY: A funcelon that Teads the dala hyie
svailahle at the loput port specified
by the wvariable (ov consLancy I. The
input data value wlll renge from D te

The data byte J Is outpur lo purt I, doth

This statement inputs Jare frvom port 1
»-Dfs ir with K,
the result, The sratement following obe

is delayed until the logical operations
produce a nouzere value. K is optichal aod
when nob present is assuged to be zere
AND pperation is uscd to select the
iz to he mon
pxcluelve-GR is used (o selectively
blis within the lopurted wotd, T,.0,
wust hawve valves bhetwee

Frogioem A

is the taximon decival
binary mumbec}.

walues betwesn O eand 253

Jowdin

Lhern AND:

The
ur

hi
b
invere
anal B
0 and 25% decimal.

prad.

the vanabfe ngmed Ko AL sLitemei
181, i1z data al purt G i inguttes) end
ext lnive-Oed winh QUM binusy
fthe defavll opticn; Qe ¢ asumed
since Lhe 12pacd WALT argunienl nal
specified). Any Bl eacdusive ORed
with & renaing sicha sgeod while 4 hil
enclusiveChded with T & comples
munged, 10 Lhe wox ahwee, all hil
pusitiang remain the seeae e data
byt o thes ANOd wilh 128 decnal
whichs i TOUDBG binary . |FRELT s
e enne dindicating that the AR s
ready Mo peicive aonew value] e
gesudt ol U AMER operation will S
sierneesdy anvd executivn will prouceed 1o
Line 20 af 1l gproepam. Ciheswise 3%
statis porl wil! renl dptin aad
apain untif by TTHE] gees Lo 4L

In some dawssed e dnterlaces, TEF i
inverted before beirg proescnted 1o the
status port. kosech 4 osyem, biv 7
will po to lopic rorn when the bulTee is
emply. For the BWAFE to woh car
recily in this <ase, it is gecessny Lo
complement bit 7 belors 1he AN
ppetation, Thisv i accom phuhed by
elanging line 10 a5 fuliews:

10 WALT B, 128,128

The thfference being that The slalus
Te esclusive. DiRed
ey $1 28 degimal) w
s 1he ¢Mect of complomenting hit 7,
This ested step pegates [hy inversiun
of TEF within b interface,

Comlinuing with the prugram al line

20 0
30 GOTR 10

L4

20 by Cutastorsd in variable A {65
el wr D1D0000T binag) i
putenstved through data port 7, beline
30, pr 1 expcution sogtarned 1o
Bire L0 wlooe 5t oagain holds wp i
peceealy skl e previons data byte
Ny bogu bramamilled,

Patd sboned o goareey can be
ot o I e L iing e
rraling e Progeam O

Statemp 100y aaed 1o place 0
eogla flavs Chereclen en dhe ldbe.
Thi- can he vaeel by 1he ead program
tothe end of g blork wl dari.

tald
The s haice ul 25y deciaad [TITTT10E
binry) in penely arbitbiey, Ay ran-
arrflicting walue con e e,

Mo thal we Tan s made & canselle

L with BASIC, l='s write 4 pro-
wrar 1o real the dara Tos e When
readicg dita From a casatle wilh o
LEALT based syslem, 1here i anothen
statys llag catled the Read Data Avael-
able {RIAT Lhat gors high tu indicdls
whin 4 dais yle his been received by
e AR T I b pecesioy to mansior
1t b wdit For i1 16 o ta logw 1
betore Lty fepuiting from the
dats pod, Hers agsin we fin:d ready
use Frr 1ha WAIT comenand,
Corsider Wi fotlawing progam
Fragment- .
T
100 SAIT 6.)
165 1ET X=1KF(T)
Lo .. .

SROM ABCET FOR A"

Frogra [T

LE]

100

103 POE 1=1 Ta 10
110 WaAIT &, 128
115 OUT 7. B(1)
120 HELT T

175 WATT 6,128
130 0OUT T 455

Jan . ..

KEM B 1S ARRAY CONTATNING DATA

Pragearn €

i reanl

Ll slu

B -INERNTN]

Lows e el il
S S in ng
arge Ly birss The shaus Ly is
thent ANl s DVIGIEIGSUT wlier
ed ahal RI3A wcontible wn

By posal

WD e Teng Ae dlis rewdl i @
[ondaingy dio dela s oavailebhe dros

[EELINTTERNTY

T L0 e e
Lo TG rcmbing Hie w2
it @ woes de 1, L

i cannpl
asamngls byl A
Dy e tal in e gt
TEY e b b mizadilied

wtite reacliog

wre, it RIA

v 6, 1,1,

Lo are tan iy el Fian

[CEWIFY RSO RTRE R KA
[l

»

- T i vl gl
visdede e =@ this Lo BAS doecima,
Woen dn o viesartersd, o
et ulion 1 algp 225 il
won,

(TR

i

s 1he
-l ihe

LIASE. sibene d el
waile ot The actined e eale
fow e vt iy detcommsl Ly th
LEATT olach ol camct Lo ind 2o

P Linne Lotsescn by e, Loy, o

Funwctiza ol 1 cufnan ey iy
BASIC ciselte weile mogam. B
Uk el i
e il seatine i sgual Luar slishely
a0 R (Fe tailing avlay.
v, b ity e led winhe
L e e Dny by ey
Tuakd gl iy an daesanling b
a

a

inprasrLanl o b win

n ot write magiae, &
by wan ke

1o the v

Bowd by adieg b

Pz sich as

¥kl

e v Bl Taogive e eeges.
sy ity

A sl
gty Al

g,

an |,

1 il
can by
Cunlbetuiive By
tepr Lo o
B BASIC PI
T paans

SR
Lismd

o

lwaricns Lo a

wf the
T Lo
Ll
Fied gty

[SSSREIS
AlLain
whi
dala Digte s1cnsl in sy
Lzt

[CI

R

Fhe b
Lhe Bluck of =
e Ty vl

vl vnsling,
Ty Lo dvange, |
Aonnd

A anary PRI DTN
Jack pere sy, Leivg the Allon Sk
BASIE TORL ol A exangsh
| EEEE R PO P D

10 139PLT AN

20 o]
HRALT L
LU LN B A)
SO b t

ey Ll abl uf 1he
e e disrend s
anly e vun-
whin i wepre-

10 st B
paogLuns which v
1oe
fotils ol

Wil

S prasitiec inleser salies Bebwesn O
wond 235 lewimal, Reading ad wriling
{luuin G s el i s
it pore fevpdes ard will be
Lt b i 1B st BASIC Forum, e

woltl el sealers (0 Sl
[T] lTlriI HANMIE systens and
ey stiite of L Lew s discussce
rothis ariitle. A LNk oo aawing

LI I mumbers: convat he
dannhiers Lo s sisg o Laoamdl 1hen wnze
Vo st chlwaciors ane by one by
e,)

Flease remgealer the BASKH Furue
i T the v farme of ideas w BASIC
Lotuueae padrammig, Send ws your
Eput o thal i e be shared with
athers, Addicis canespesdence o:

BASIC Foauns
305t Tanmen e

of (o, ?

B et i o e s et e s it

i gl w oprdng tu
vtk and

for b 12

vfaee b iings 4

Tk o
welo ke, | oom
vl sl

RLUTIEEY

b
L Lyl
T aheut, T wall

anl

vl

A T T L R P TN T |
Fed voedpb televan gesd wel-ar Len
Lo Dl LhsE peagass, D g

litde wils, 1 o-
need i bose 1
Al e, o Bowedas
hivoy-A ree AL FIPL el
e oup the wealls fiere,
Jocrprenl
witssels Ll b
Tigdide's s n
iy -menth,
cin b thn

X
i 1l
vl e
Vil

sl

1y

crtn T eant ek e
ity D owant it

Ligeer 2l p By ey came

PLLLT 1 ¥ Appenl L 2ml Lhe
T vk ke b ul e e e vl Ly
Ioorums T But e Bad ooy 4l
abigady a Bichy g and bkl

Mowe | wenl i thee, 12K ASIL,

VO Seleainie S e of e dwene
thel ntciest s med Hul neae o ik
gy Dot b ke b sl e

Thei sl Lo b LIS
Ietigers, the lo-
dlithes sl e [S

o lcic with il Lzl

leclares 1o sduat,
L TER RS
hrcan
LTS
ma kel [
Fowns 2ine Rilad

(RS ITTTE B

v, Dwant i heop op
LI TRTHIY My om
[C DT ST
A, il
yoars

nl

L Ao, i
preclie e g LemEnel ns pasine
At wonle seces my ol
L e

techlowe sl

i oactually

lesed anan aczne g

Laalien el 41

[nai
sier s
RIT TS IS TR (T TR A
e Green'sdugh g m

= hin:
et Liate Beatl ol
el
preaple o e Bl thvcugh vl v,

Mot ot

vy
ikl

bt e ko ne o lal

1o e 1o Al p IR

saal ol Moyl

oMl L

to tho Editgrj_

(ALY
Al ey v
Lo nitbe them wenk Tothle gl
1 * bl an
ik b,

Vil k@ of s

TRSRCTITEVII SN

tort ol guinling enn

I Tiningd Pt i o i

1 Ryl G, g ik L ALy Y
v, il appenaly sl egogreent
Wkl 1o segund, tone, and selaned e

e el ol 1 o e datlio
o b nberests of il
Luren.,

Bl e pive g o wamples !
the b al i dinformia
Ve ol Lowsbed foe s sndently
while © wan e Bk, svy wystcm,
| [TCXTRITE adcipne enally

fre L. ©
e T 1
[vosrect

the yaung, con;

ol b

s vl

Lra 1= the Tt panel wi

pragam il sliy L poet £ T

wih | o TE KaM

dostn g addeews al 48,
i

vl They o

Bl ey

Elive ool Iim
ik
1
IS

Uoeiady lald me |
1t are b wlsaeged e diffs-

b nbiesees v ocaactly bBow 1he
Uaigh' el Ml anle Lalih ey
Lt Pelanely s Avneeh

.
Lis iy

e skl 1EASTE
shiiser, they s
Pl cdedly,
e ali
TR R TSNTTIT

tivdule ar
o bl in vidy
L LT Y S
it
al

data bne

el

" e e

i boowld day by by
- hadd getten the fofoc
tntivn By aihes {nune advanwel)
Dicbelig Snis, i 2w ol chas tez pearh
dhd an b acfsicedd

iy diteoan

o1, atel e

el ey

rel

e i L Wik s
sentl deshen i e it lione ary
B e gt withomin a lunely;
Tt gesnenonbly poevaded o deLailal

kg ol the pfogaam that tesides in
e DERER. What e neglected 10 du
wers bo I Ovicls i Lsen s ek
wedinatamphe, ot a it an te e 1o
lowd 1B CTU 2 CALL the
LEROMFwiong hoa, voakelLhed
st suchow ogeane with vl sl
anisaing,

That's Al s
1 had Lo, aikd e
Fully, i i
uf g L

v ks b

o lan ey pivee
1n vl slysigeed. But
my paint s Thai Y Y
wis L Lin adiddielevel ol msarn,
Lot el s Bolpiy iy

Fabic L F kowiwe whry . beois bec e
there are hardw jie nwn and there
sulbaare e (fime o 10 nuea aee
Wonen, ef cosbe), aind Delneen ghe
Dot specialiativks 1hee @ s & preat bk
devp by o of D e e maati,
Fre itiucdi manls hways
e o bwolpasts Aannhly and

®

Spptatzans The alyss lics Beiween

e 1ves Tine Laler s e inure evaw

EITRECICNTIL RSP SR

g, |

ey ovists amiping wiitware by gus;

Januvacy, 1977

¢

Page 27

suspended until a non-zero value results. J picks the bits
of port I to be tested and execution is suspended until
thogse bits differ from the c¢orresponding bits of K,
Execution resumes at the next statement after the WAIT. If
K is omitted, it is assumed to be zero. I, J and K must be
in the range @ to 255. Examples:

WAIT 24,6 Execution stops until either bit 1 or bit
2 of port 29 are egual to L. (Bit @ is
least significant bit, 7 is the most sig-
nificant.}) Exacution ressumes at the next
statement.

WALIT 19,255,7 Execution stops until any of the most significant
5 bits of port 1@ are one or any of the least

significant 3 bhits are zero. Execution
resumes at the next statement.

2) PCKE, PEEK (net in 4¥). Data may bLe entered inte
memory in binary form with the POKE statement whose format
is as follows:

BORE <I,J>

where I and J are integer expressions. POKE stores the byte
J into the location specified by the value of I. In 8K, I
must be lesgs than 32768, In Extended and Disk wversions, I
may be in the range & to 65536, J must be in the range & to
253, In 8K, data may be POKEd into memory above locatlon
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To
POKE data into locatieon 45404, for example, I i3
45006-65536=~295346, Care must be taken not to POKE data
inte the storage area occupled by Altair BASIC or the systen
may be POKEd to death, and BASIC will have to be loaded

again.

The complementary function o POXE is PEEX. The format
for a PEEK <all is as follows:

PEEK(<I>)

where I is an integer expreszion specifying the address from
which a byte is read. I is chosen in the same way as in the
PORE statement. The value returned is an integer betwesn 2
and 255, A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines.

Jrour, INP (not in 4K). The format of the QUT
statement is as Sollows:

ranuary,

i
1977 Page 28

ouT <I,J> I
where I and J are integer expressions. OUT sends the ibyte

signified by J to output port I. I and J must be in the
range @ to 255.

The INP function is called as follows:
INP(<I>)

INP reads a byte from port I where I is an inthger
expression In the range # to 255. Example:

20 IF INP(J)=16 THEN PRINT “ON"

3, FUNCTIONS

]
Rltair BASIC allows functions ts be referenced| in

mathematical function notation. The format of a function

call is as follows: !

<name> (<argument> [, <argument>,..]} i
where the name is that of a previcusly defined function [and
the arguments are one or more expressions, separated by
commas . Cnly one argument is allowed in 4K and |8K.
Function calls may be components of expressions,: so
statements like i

10 LET T=(F*SIN(T))/F and
28 C*SQR(A"2+B"2+2*A*B*C0S(T))

are legal,

3-1. Intrinsic Punctions

Altair BASIC provides several frequently used functions
which may be called from any program without furyher
definition. A procedure is provided, however, wheqeby
unneeded functions may be deleted to save memory space. (See
Appendixz B. For a list of intrinsic functions, see sect/ion
6-3. !

3-2. User-bafined Functions (not in 4X). ;

J

January,

®

1977 Page 29

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
CEF statement iz ag follows:

DEF<{function name>(<variable list>)=<expressien>

where the function name must be FN followed by a legal
variable npame and the entriez in the variable list are
'dummy"' variable names. The dummy variables represent the
argument varlables or values in the function call. In 8K
Altair BASIC, only one argument is allowed for a
user~defined funetion, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be af any type in Extended and Disk versions, but
user-defined string functions are not allowed in BK If a
type is specified for the Ffunction, the wvslue of the
expression is forced to that type before it is returned to
the calling statement. Examples:

18 DEF FMAVE(V,W)=(V+W) /2

11 DEF FNCONS (V5,WS)=RIGHTS (VS+W5,5) Returns the right
mest 5 characters of the concat-
enation of V5 and WS,

12 DEF FNRAD(DEG)=3.14159/18¢*DEG When called with the
measure of an angle in degrees,
returns the radian equiwvalent,

A function may be redefined by sexecuting another BEP
statement with the same name. A DEF statesment must be
executed bafore the function it defines may be called.

b. USR. The USR function allews calls to assembly
language subroutines. See appendix E.

3=3, Errors.

An FC or ILLEGAL FPFUNCTION CALL errcr results when an
improper call is made te a function, Some places this might
occcur atre the following:

1. a negative atray subscript. LET A(-1}=4d, for example.
2. an array subscript that is too large (>32767)

3. nagative or zero argument for LOG

vancary, 1977 Page 3@

4. Negative argument for SQR
5, A"B with A negative and B not an integer

&, a call to USR with no address patched for the machine
language subroutine.

7. improper arguments te MIDS, LEPTS ,RIGHTS, INP, OUT,
gaIT, PEEK, POEKE, TaB, SPC, INSTR, STRINGS, SPACES or
N...GOTO.

b. An attempt to call a user-defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINWED USER FUNCTION errzor.

C. A TM or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numerie value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functiens for manipulating string data. Many of the
statements have already been discusszed so only their
particular application to strings will be treated in this
section.

4-1. String Data.

A string is a list of alphanumeric characters which may
be from @ to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by wvariables, String constants are delimited by gquotation
marks at the beginning and end. A string variable name ands
with a dollar sign {$}. Examples:

AS="ABCD" Sets the wvariable A$ to the four character
string "ABCD"

B88="14A/56" Sets the variable 39% to the six character
skring "14a/5%6"

FODFOOE="ES" Sets the variable FOQFQ0$ to the two charac-
ter string "ES"

Strings input to an INPUT statement need not be surrounded

L

January, 1977 Page 31

by gquotation marks.

String arrays may be dimensioned exactly as any other
kind eof array by use of the DIM statement., Each element of
a string array is a string which may be up %o 255 characters
long. The ' total number of string characters In use at any
polnt in the execution of a program must not exceed the
total allocation of string space or an 0S or OUT OF STRING
SPACE ervor will result, String space is allocated by the
CLEAR command which 13 explained in section 6-2.

4-2. String operations.

4. Compariscn Operators. The comparisen gperators for
strings are the same as those for numbers:

= agual

<> not egual

< lass than

> greater than

=¢{,<=m legs than or equal to
=>,>= greater than or equal to

Comparison is made character by character on the basis of
ASCII codes until a diffarence 13 found, If, while
comparison 1s proceeding, the end of one string is reached,
the shocter string is considered to be smaller. ASCII codes
may be found in Appendix B. Examples:

A<Z ASCII A is #65, Z is 494

1<A ASCII 1 i= @49

" A">"A" Leading and trailing blanks are significant
in string literals,

- String Expressions. String expressions are
composad of string literals, string variables and gtring
function calls connected by the + or eoéncatanation operator.
The effect of the catenation operator is te add the string
on the right side of the operator to the end of the string
an the left, If the result of concatenation iz a string
more than 255 characters long, an LS or STRING TOO LONG
error mesgage will be issued and execution will be
terminated,

¢. Input/Cutput. The same statements used for input
and oautput of normal numeric data may be used for string
data, as well.

Tanuary, 1977 . Page 32

and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, leading
blanks will be ignored and the string will be terminated
when the first comma or coelon ls encountered. Examples:

1) INPUT, PRINT. The INPUT and PRINT statements read \’

18 INPUT 200%5,F00S Reads two strings

26 INPUT X$ Reads one string and assigns
it to the variable X§.

38 PRINT X§,"BI, THERE" Prints two strings, inecluding
all spaces and punctuation
in the second.

2} DATA, READ. DATA and READ statements for string
data are the same as for numeriec data. For format
conventions, see the explanation of INPUT and PRINT above.

4-3., BString Punctions,

The format for intrinsic string function calls is the
same as that for numeric funetions. For the list of string
functions, see section 6-3, Special user-defined string .
functions are allowed in Extended and Disk versions and may =
be defined by the use of the DEF statement ({see sectioen
3-2). String function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC preovide
several statements, operatars, functions and commands which
ara not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this i
section. Some modifications to existing 4K and 8K features, X
such as the IF.,.THEN...ELSE statement and number typing :j
facilities, have been discussed in conjunetion with the i
other versiens, Check the index for references to those i
features. i

S~1., Extended Statements i

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be used for
cther purposes. The format of the ERASE statement 1s as
follows: |

'anuafy ¥ 1977

P

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by commas. FRERASE will only opetate on arrays and
not array elements., 1If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
ocecur. The arrays deleted in an ERASE statement may bDe
dimensioned again, but the old values are lost. Example:

18 DIM A{5,5) ‘e,

6@ ERASE A
76 DIM A(100)

b. LINE INPUT. It iz often desireble to input a whole
line to a string variable without use of guotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

The prompt string is a string literal that is printed on the
terminal before input is acceptsd. A gquestion mark is not
printed unless it is centained in the prompt string, All
input from the end of the prompt string to the carriage
return is assigned to the string variable. A LINE INPUT may
be escaped by typing Control/C. At that point, BASIC
returns to command level and prints OR, Zxecution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be adited
by Control/A for re-—execuation.

c. SWAP. The SWAP statement allows the wvaluss of twe
variables to be exchanged. The format is as follcws:

SWAP <variable,varizbled

The value of the second wvariable iz assigned to the first
variable and vice-versa. Either or both of the wvariables
may e elaments of arrays. If one or both eof the wvariables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the zame type or a TYPE MISMATCH error
will result. Example:

1d INPUT F$,LS
20 SWAP F§.,L%

3@ PRINT F§,LS
RUN

January,

“

1977 Page 313

ERASE<array variable list>

where the entries in the list are valid array variable inames
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list whigh iz
not used in the program, an ILLEGAL PUNCTION CALL error will
ocgur,. The arrays deleted in an ERASE staktement mgy be
dimensioned again, but the old values are lost. Example:

13 DIM A(5,3) aetc.

-

60 ERASE A
78 DIM A{140) ,

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of gquotation marks and
other delimiters, LINE INPUT provides this facility. ' The
format of the LINE INPUT statement is as follows:

LIRE INPUT ["<prompt string>",];<string variable name>

The prompt string is a string literal that is printed op the
terminal before input is accepted. A guestion mark ig not
printed unless it is g¢ontained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string wariable. A LINEZ INPUI may
be escaped by typing <Contrel/C. At that point, BASIC
returns to command level and prints OK. Execution may bhe
tesumed at the LINE INPUT by t&typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
by Control/a for re-exacution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned &to the first
variable and vice-versa. Either or both of the varilables
may be elements of arrays. If one or both of the variables
are non—array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL erreoc will result. ~Both
variables must be ¢f the same type or a IYPE MISMATCH srroc
will result. Example:

1@ INPUT F$,L$S
2@ SWAP FS,LS
38 PRINT £$,.$
RUN

[anuary, 1977 Page 34

JFIRST,LAST Data input
LAST FIRST Computer prints

d. TROW, TROFF. As a debugging aid, twe statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each line in the program is printed as it is
executed. The numbers appear enclosed in sguare brackets
{(1}). The function is disabled by execution of the TROFF

statement. Example:

TRON executed in direct mode

oK printed by computer

15 PRINT 1:PRINT "A" typed by programmer

28 sTOP

RON

(181 1 line numbers and output printed by
F. computer.,

[22]

BREAK IN 2@

The NEW command will also turn off the trace flag.
e. IF...THEN...ELSE. See section 2-2.
f. DEPINT, DEFSNG, DEFDBL, DEF3STR. See section 2-=1

g. CONSQLE, WIDTH. CONSOLE allows the consaole
terminal to be switched from one I/0 port to another. The
format of the statement is:

CONSCLE <I/0 port number>,<switch registsr setting>

The <I1/0 port number> is the hardware port number of the low
order (status) port of the new I/0 board. This wvalue must
be a numeric expressicn between @ and 2535 inclusive., If it
is not in this range, an ILLEGAL FUNCTION CALL error will
accur. The <switch regilster setting> is alsc a value
between @ and 255 inclusive which specifies the type of I/0
pert (5I0, PIO, 4PIQC etc) being selected, Appropriate
values of the <switch register setting> may b»e found in
Appendix B 1in the table of sense switch settings or in the

table below.

—

.

January, 1977 Page 15

Table of wvalues for <switch register settingb:

I/0 Board Sense Switch
Setting
2810 with 2 stop bits a
2810 with 1 stop bit 1
SI0 2
ACR 3
4PI0 4
FID 5
HSR [
non-atandard terminal 14
ne terminal 15

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal 1line. The format of the WIDTH statement

is as follows:
WIDTE <integer expression’
Example:

WIDTH 84
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inelusive, or an ILLEGAL FUNCTICN CALL error will ocecur.

h. Error Trapping. Extended and Disk Al%air BASIC
make 1t possible for the user to write error detectioit and
handling routines which can attempt t¢ recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages. This faeility has been
added Gto Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR sgtatements and with the ERR and ERL
variables.

1} Enabling Ertor Trappling. The ON ERROR GOTO
statement specifies the line ¢f the Altair BASIC program on
which the error handling subroutine starts. The format is
as follows:

ON ERROR GOTQ <line number>

Panuvary, 1977 Page 356

The ON ERROR GOTO statement should be executed before the
user expects any errors to occcur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
toutine. If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will
oCCur.

Example:

18 ON ERROR GOTO 1488

2) Disabling the Error Routine. ON ERROR GQOTO @
disables trapping o¢f errors so any subsequent error will
cause BASIC to print an error message and sStop program
execation, If an ON ERROR GOTQ @ statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
O ERROR GOTOQ @ subroutine if an error is encountered for
which they have no recovery action.

NOTE

If an error cccurs during the execution of an error’
trap routine, the system error message will be
printed and execution will be terminated. Error
trapping does not trap errors within the error trap:
routine.

3) The ERR and ERL Variables. When the error handling
subroutine 1is entered, the variable ERR contains the error
code for the error. The error .godes and their meanings are
listed below. BSee section 6=-5 for a detaliled discussion of
each of the errors and error messages.

ode Erroc
NEXT WITHOUT FOR
SYNTAX ERROR
RETURN WITHQUT GOSUB
QUT OF DATA
ILLEGAL FUNCTION CALL
OVERFLOW
QUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT OUT OF RANGE

M 00 Oy LB L) B3)

@

C

January, 1977 Page 37

ig REDIMENSIONED ARRAY

11 DIVISICN BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 QUT CF STRING SPACE

15 STRING TOO LONG

ise STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE

ia UNDEFINED USER FUNCTION
19 HC RESUME

20 MISSING OPERAND

21 RESUME WITHQUT ERROR

22 UNPRINTABLE ERROR

23 LINE BUFPER OVERFLOW

Disk Errors

58 FIELD QVERFLOW .
51 INTERNAL ERROR :
52 BAD FILE NUMEER

53 FILE NQT FOUND

54 BAD FILE MODE

85 FILE ALREADY CGPEN

55 DISK NOT MOUNTED

57 DISK I/0C ERROR

58 FILE ALREADY EXISTS

5% SET TO NON-DISK STRING

§0 DISK ALREADY MOUNTED :
61 DISK FULL _
62 INPUT PAST END

63 BAD RECORD NUMBER

a4 SAD FILE NAME

65 MODE-MISMATCH

66 DIRECT STATEMENT IN FILE

67 TOO MANY FILES

68 OQUT OF RANDOM BLOCRS

The ERL variable contains the line number of the ; line
where the error was detected. For instance, if the error
occured in line 1488, ERL will be eaqual +to 10€4d. If the
statement which caused the error was a direct Emode
statement, ERL will be equal to 65335 decimal. To tesk if
an erraor occurred in a direc¢t statemenkt, use !

IP 65535=ERL THEN ... i
In all cther cases, use '

IF ERL=<line number> THEN...

January, 1977 Page 38

If the line number is on the left of the eguation, it cannot
be renumbered by RENUM (see sectiom l-laj.

4) Disk EBrror Values - The ERR function. The ERR
function returns the parameters of a DISK I/0 ERROR. ERR(B)
returns the number of the disk, ERR(1) returns the track
humper (@-76) and ERR(Z) returns the sector number (#=31).
ERR(3) and ERR(4) contain the Jlow and high order bytes,
respectively, of the cumulative error count singe BASIC was
loaded.

WOTE

Nelther ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement,

S} The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been performed. The user Ras three
eptions. The user may RESUME execution at the statement
that caused the error, at the statement after the one ‘that
caused the error or at some other line. To RESUME execution
at the statement which caused the error, the user should

use:
RESUME
or
RESUME @

To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME MEXT

To RESUME executisn at a line dfferent than the one where
the error occurred, use:

RESUME <line number>
Where <line number> iz not equal to zerws,

6) Errer Routine Example. The following example shows
how a simple error trapping subroutine operates.

L

January, 1977 Page 39

189 ON ERROR GOTC 580

206 INPUT “WHAT ARE THE NUMBERS TO DIVIDE":X,Y
219 Z=X/Y

22d PRINT "QUOTIENT IS":2

238 GOTO 284

5¢a IF ERR=]1 AND ERL=219 THEN 520

514 ON ERROR GOTO ®

528 PRINT "YOU CANT HAVE A DIVISOR QF ZERO!"
530 RESUME 208&

7) The ERROR statement. 1In order teo force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trag routine
48 dsscribed above. The format of the ERROR statement is:

ERROR <integer expression>

When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messades may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <numeric expressicn>
used in an ERROR statement is less than zero or greatar than
235 decimal, an ILLEGAL FUNCTION CALL error will cecur. Of
course, the ERROR statement may alse be used to force JYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force printout of an error message for which ne
arror text is defined will cause an UNPRINTABLE ERROR

message to be printed out.

5-12. Extanded Qperators.

Two operztors are provided that are exclusive to the
Extanded and Diszk versions.

a. 1Integer Division. Integer division, dencted by
{backslash), forces its arguments ¢ integer form and
truncates the gquotient to an integer. More precisely:

A\B= FIX{INT(A}/INT(B})
Its precedence is just after multiplication and Ffloating

point divison. Integer division 1s approximately eight
times as fast as standard floating point division.

1977 Page 43
b. Modulus Arithmetic - the MOD operator. A MOD B

gives the 'remainder' ag A is divided by B, More precigdely:
A MOD BeINT(A}=-{INT(B)*(A\B}}

1f B=4, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3. Extended Functions

a. Intrinsie PFunctions. Extended and Disk Alkair
BASIC provide several intrinsic funections which are not
available in the other versicns. For a 1list of these
functions and a description of their use, see section 6-3.

b. The DEFUSH statement. Up to ten assembly langpage
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR[<digit @ through 9>]s=<integer expression>
Example:

DEFUSRl=51d00680
DEPUSR2Z=31d96
DEFUSRY=ADR

The of the <integer expression> is the starting address. of
the USR routine specified. When the USR sub:outiné is
entered, the A register contains the type of the argument
which was given to the SR function. This {s also. the
length of the descriptor for that argument type:

Value in A Meaning

2 Two byte signed two's compiement integer.

3 String.

4 Single precision four byte floating point number.
g Doukle precision floating point number.

When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FiC).
The [H,L] registers contain the address of FaC-3.

If the value in the FAC is a single pracision floating pdint
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
FAC=23 Middle 8 bits of mantissa. .
FAC=1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (&
positive, 1 negative}.

ARUATY,

_

1977

Page 48

b. H#odulus Arithmetic - the MOD operator. A MOD 3B
gives the 'remainder' as A is divided by B. More precisely:
A MOD B=INT(A)-(INT(B)* (A\B})

1f 8=8, a DIVISION BY ZERO error occurs. The precedance of
MOD is just below that of integer division.

5.3, Hxtended Functionsg

a. Intrinsic Punctions, Extended and Disk altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines wmay be defined by means of the DEFUSR statement
whose form i= as follows:

DEFUSR[<digit @ through 9>]=<integer expression>
Example:

DEFUSRI=£ 180000
DEFUSR2=31296
DEFUSRY=ADR

The &# tfRe <integer expressien> is the starting address of
e USR™ Toidtine 'sSpecifiedl. ~When the USR subroutine is
antered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:

value in A Meaning

2 Two byte signed two's complement integer.

3 String. =
4 Single precision four byte floating point number.
8 Double precision floating peint number.

When the OSR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FAC).
The [H,L] registers contain the address of FAC-3.

If the value in the FAC is a single precision floating point
number, it is ztored as follows:

FAC-3: Lowest 8 bits of mantissa.
PRC-2: Middle 8 bitz of mantissa. :
FAC=1: - Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (@
positive, 1 negative).

anuarcy,

C

1977 rage 41

FAC: Exponent excess 240 octal. If the contents of FAC is 288,

the exponent is B. If contents of FAC is @, the number is

Zero.

If the argument is double precision fleating peint, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, e2te¢. If the argument is an integer,
FAC-3 contains the lew order byte and FAC-2 contains the
high order byte of the signed two's complement value, If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

yte [Use

a2 Length of string 8-255 decimal.

1-2 Sixteen bit address pointer to first byte of e
strings text in memory {Caution - may point inte USé
program text if argument is a string literal). AP ¥

¥ormally, the value returned by a USR function will be the
same type (integer, string, single ot double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine whose address is stored
in location 6 will return the integer in [H,L! as the value
of the function, forcing the value returned by the function
to be integer, Execute the following seguence to return
from the function:

?USH H s SAVE VALUE TQ BE RETURNED
LaLD a 1GET ADDRESS OF MAKINT ROUTINE
XTHL :SAVE RETURN ON STACK &

:GET BACK (H,L)
RET ; RETURN

The argument of the function may be forced to an integer, no
matter what its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in (H,L?:

LXI 4,5UB1 ;GET ADDRESS OF SUBROUTINE
B s CONTINUATION

PUSH H ;PLACE ON STACK

LHLD 4 ;GET ADDEESS OQF FRUOINT

PCHL ;CALL FRCINT

5—4. The EDIT Command.

7

Januazry, 1977 Page 41

FAC: Exponent excess 204 octal. If the contents of FAC is 288,
K_/ the exponent is @. If cantents of FAC is #,the number is
zero,

If the argument is double precision £leating point, the
FAC-7 to PAC-4 contain four more bytes of mantissa, low
order byte in FAC=7, etc. If the arqument is an intager,
FAC-3 contains the low order byte and FAC-2Z contains the
high order byte of the signed two's complement value. If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:

3yte Use

a Length of string @-255 decimal.

1-2 Sixteen bit address pointer to first byte of
strings text in memory (Caution - may peint inte
program text if argument is a string literal).

Normally, the wvalue returned by a USR function will be the
same type {integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MARINY routine whose address is stored
in location 6 will return the integer in [B,L] as the valuse
of the function, forcing the value returned by the function
to be integer, Bzecute the following seguence to return
from the function:

2USH H tSAVE VALDE TQ BE RETURNED
LHLD 6 :GET ADDRESS OF MAKINT ROUTINE
ATHL ;SAVE RETURN ON STACK &

+GET BACK [H,L]
RET + RETURN

The argument of the function may be forced to an integer, no
matter what its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in {H,L}:

LXI H,8UBL ;GET ADDRESS OF SUBRQUTINE
s CONTINUATION
PUSH H s PLACE ON STACK
LELD 4 ;GET ADDRESS OF FRCINT
PCHL +CALL FRCINT
SUBL:

5-4. The EDIT Command.

January, 1877 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most commands may be preceded by an opticnal numeric
repetition factor which may be used to repeat the command a
number of times. This repetition factor should be in the
range B to 255 (f is equivalent to 1), If the repetition
facter is omitted, it is assumed to be 1. In the following
examples, a lower case "n" before the command stands for the
repetition factor. In the following description of the EDIT
commands, the "cursor® refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of tha
line and hit the carriage return. The line nomber of the
line being EDITed will be printed followed by a space. The
curger will now be positioned to the left of the First
character in the line,

WOTE

The best way of getting the “"feel" of the EDIT
command is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered,
the computer prints a bell {control/G) and the command is

ignored.

In the following examples, the lines labelled “computer
prints" show the appearance of the line after each command.

a. Moving the Cursor, Typing a space moves the sursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubout causes the immediately previous character to be
printed effectively backspacing the curscr.

b. Inserting Characters

WARNINGS:

g

January, 1977

_

P

Character insertion is stopped by typing Escap
for Altmode on some terminals). Contrel/C will np
interrupt the EDIT command while it is in Insef
mode, but will be inserted into the edited line
Therefore, Controi/C should not be used in the EDIL
command.

It is possible using EDIT to c¢reate a lin

ge 43

e
£
t

T

e

which, when listed with its line number, is longer
than 72 characters. Punched paper tapes containipg

such lines will not read properly. However, suf
lines may be CS5AVEd and CLOADed without error.

I Inserts new characters into the line being
Each character typed after the I is inserted a
the current cursor positien and printed on th
terminal. Typing Escape (or Aaltmode on som
terminals) stops character insertion. If a
attempt is made to insert a character that wil
make the line loager +than 255 characters,
Contrel/G (bell) is sent to the terminal an
the character is not printed.

A backarrow {or Rubout) typed during an |
command (or=) will delete the character to the
of the curser. Characters up to the Bbeginnip
the 1line may be deleted in this manner,
backarrow will be echoed for each chay
delated. However, i1if there are no characts
the left of the cursor, a bell is echcad insts
a2 backarrow, If a carriage return is typed 4
an insert command, it is as if an esg¢ape and
carriage return were typed. That is,
characters to the right of the curser wil
printed and the ERITed line will replace
original line.

X is similar to I, except that all characters
the right ¢f the cursor are printed, and the ¢
moves %o the end of the line. At this poin
will automatically enter the insert mode { s
command}, X is most useful when new statament
to be added to the end of an existing line.

example;
User types EDIT 5# (carriage retu
Computer prints 54
User Lypes X
Computer prints 50 X=X+l
User types 1¥=¥+1 {CR)
Computsy prints 58 XaX+l:Y=Y+l

h

£
e
e
n
1
a
e

nsert
left
g of
and a
acter
rs to
ad of
uring
then
ail
1 he
the

te

ursaor
£, it
e I
S are
For

cmn)

edited.

January, 1377

Page 44

In the above example, the original line $58 was
58 X=X+l

The new line #58 now reads:
59 A=sX+1l:¥=¥+1

B ie¢ the same as X, except that all characters
the right of the cursor are deleted (they will
be printed). The insert mode (see I command)
then automatically be entersd. H is most us
when the last statements on a line are &
replaced with new ones.

Leleting Characters

nD deletes n characters to the right of the
cursgr. If n is ommitted, it defaults to 1.
there are less than n characters to the righ
the cursor, characters will be deleted only to
end of the line. The cursor is positioned to
right of the last character deleted.
characters deleted are enclosed in backslashes
For example:

User types 20 X=X+1:REM JUST INCREME
User types EDIT 28 (carriage return)
Computer prints 28

Usar types 60 {carriage return})

Computer prints 28 \XsX+1:\REM JUST INCRE

The new line #29 will no leonger contain the
which are enclosed by the backslashes.

Searching.

The nSy command searches Eor the nth cccurrence
character y in the line. N defaults to 1.
search skips over the first character to the r
of the cursor and begins with the second chara
to the right of the cursor. All characters pa
over during the search are printed. If
character {5 not found, the cursor will be at
end of the line. If it is found, the ecursor
stop to the right of the character and all of
characters to its left will have bDeen printed.
exampie

Iser types : 5@ REM INC
Usar types : EDIT 5d

to

not
will
eful
o be

If

t of
the

the
The
(\) -

HT X

MENT X

characters

of the
The
Lght
cter
g5ed
the
the
will
the
=34

REMENT X

January,

_

1977

K

e,
c

£.
Carriage
E
Q

[}

Hag
Computer prints 5¢
User types : 285E
Computer prints 58 REM INC

nky is equivalent to § except that all of the
characters passed over during the search
deleted. The deleted characters are enclose

backslashes, For example:

User types 1@ TEST LINE
User types EDIT 18
Computer prints 13

User types KL
Computer prints 16 \TEST \

Text Replacement.

A character in a line may be changed by the uge
the command Cy which changes the character tp
right o¢f the cursor to the character y.

e 45

R

are
d in

of
the
Y is

printed on the terminal and the gursor is adyanced

one position. nCy may be used to chang
characters in a line as they are typed in fro

terminal. {See example Dbelew.) If an attepp
made to change a character which does not ex

the change mode will be exited. Example:

User types 12 FOR I=l TO 194
User types ERIT 18

Computer prints 13

User Lypes 251

Computer prints 1@ POR I=1 TO
User types 3g2
Computer prints 13 FOR I=1 T0 255

gnding and Restarting

Return Terminates editing and prints the
mainder of the line. The edited line replaces
original line.

E is the same as & carriage return, except bhg
remainder of the line is not printed.

Q restores the origimal line and causes BASIC |t
return to command level. Changes do not
effect until an E or carriage return is tymed,
allows the user ko restore the original
witheout any changes which may have been made.

e n
the
t is
ist,

L1

ra=-
the

o]
take
50 Q
line

L causes the remainder of the line to be prinfed, and
then prints the line number and rastarts aditing at

Hanvacy, 1977 Page 46

the beginning of the line. The cursor will be
pogsitioned to the left of the first character in
the line. L allows monitoring the =offect of
¢hanges on a line. Exanple:

User types 58 REM INCREMENT X
User types EDIT 58
Computer prints 54
User types 28M
Computer prints 5@ REM INCRE
Dser types L
Computer prints 58 REM INCREMENT X
5d
A A causes the original line to be restored

and editing to be restarted at the beginning of the
line. For example:

User types 12 TEST LINE
User types ECIT 14

Computer prints 1d

User types 18D

Computer prints 14 \TEST LINE\
User types A

Computer prints 18 \TEST LINE\
1g

In the above example, the user made a mistake when
he deleted TEST LINE. Suppose that he wants to
type "1D" instead of 18D. As a result of the A
command, the original line 1% is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discowvered durin the exscution
af a source program , BASIC will automaticaily hegin EDRITing
the line that caused the error as if an EDIT command had

been typed. Exanple:

1§ APPLE

RON

SYNTAX ERRCR IN 148
12

Complete eaditing of a line causes the line editad to be
reinserted. Reinserting a line causes all variable values
to be deleted. To preserve those values for examinaticn,
the EDIT command mede may be exited with the Q command after
the 1line number is printed. IEf this is done, BASIC will
ceturn t£o command level and all wvariable walues will be
preserved.

January, 1977 Hage 47

_

The features of the EDIT command may be used dqdn the
line currently being typed. To do this, type Control/A

instead of Carriage Return. The computer will respond

with

a carriage return, an exclamation point (l) and a |space.
The cursor will be positioned at the first character gf the
line. At this point, any of the EDIT subcommands [except

Control/A may be used to correct the line. Example:

User types 1 IF X GOTO #"/A
Computer prints !
User types 54 2C12

Computer prints 119 1P X GOTO 12

The current line number may he designated by a pericd

{.) in any command requiring a line number, Examples:

User types 1@ POR I= 1 TO 18
User types EDIT .
Computer prints 14

5=-5. PRINT USING statement.

The PRINT USING statement can be employed in situptions
where a specific output format s desired. This sithation
might be encountered in such applications as printing
payroll checks or accounting reports. The general format

for the PRINT USING statemsnt is as follows:

PRINT USING <stringr;<value list>

The <string> may be a string variable , string expression or

a string constant which is a precise copy of the line

to be

printed. All of the characters in the string will be
printed just as they appear, with the exception ¢f the
formatting characters. The <value list> is a list of the
items to be printed. The string will be repeatedly sc¢anned
until: 1) the string ends and there are no wvalues ip the
value list or, 2) a field is scanned in the string, olit the
value 1list 13 exhausted. The string iz constyucted

according to the following rules:
a, BString Fields.

! specifies a single character string field.
{The string itself is specified in the value 1
\n spaces\ 3Specifies a string field comsisting of 2+n
acters. Backslashes with no spaces batween

ist.)
char=-
them

January, 1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etc.

In both cases above, if the string has mote characters than
the field width, the extra characters will be ignored, If
the string has fewer characters than the field width, extra
spaces will be printed to fill out the entire field. Trying
to print a number in a string field will cavse a TYPE
MISMATCH error to occur., Example:

130 AS="ABCDE":BS="FGH"
29 PRINT USING "!":2$;BS
3@ PRINT USING "\ \";B§;:AS

{the above would print out)

AF
FGH ABCD

Note that where the "!" was used only the first letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from 2ach string were printed (an extra
space was printed for BS which has only three characters).
The extra characters in the first case and for AS in the
second case were ignored.

b. MNumeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings for formatting numeric £fields are
congtructed from the following characters:

£ Wumeric fields are specified by the # sign, each of
which will represent a digit position. These digit
positions are always filled. The numeric field
will be right justified; that is, if the number
printed is toe small to £ill all of the digit
positions specified, leading spaces will be printed
as necessary to fill the entire field.

The decimal peoint may be specified in any position
in the field. Rounding is performed as necessary.
If the (field format specifies that a digit is ko
precede the decimal peint, the digit will always be
printed (as © if necessary).

The fellowing preogram will help illustrate these rules:

(W

FaniaLyr ;977

$3

?%##:_12
?4.3%,-.12

?RE%%,-12

Paga 48

19 INPUT a5,A
2@ PRINT USING AS§;A
38 GOTO 14
RUN
? $%,12
12

? 3#+,12
12

? $#¥d%,12
12

#H.88,12

12.0@

? #F.,12
12,

? §.44§,.02

2.624d

7HE.2,2.36

?

-12
-.12
~12

The + sign may be used at either the begianing

or

end of the numeriec £fleld. If the number is

positive, the + sign will be printed at

the

specified end of the number. If the numbefr is
negative, a - sign will be printed at the specified

end of the number.

The - sign, when used to the right of the nume
field designation, will force the minus sign t

i

2
printed to the richt of the number if. jit is

L

negative. If the number is positive, a spac
printed.

The ** placed at the beginning of a numeric fipld

designation will cause any unused spaces iIn
leading portior of the number printed out

the
Eo be

fillad with asterisks. The ** also specfifies
positions for 2 more digits. (Termed "astprisk

Firl™)

When the $§ is used at the beginning of a nume
field designation, a § sign will be printed in
space izmediately preceding +the number pri
Hots that $% alsc specifies positions for two
digits, but that the § itself takes up one of
spaces. Exponential format cannot be used
leading $ signs, sor-ceEnTnegative-pembers—be—ed

Fig

the
nted.
more
thesa
with
saeii g

January, 1977

C

§8

2844,-12

?#.#5;*.12

24444,-12
213

Ba

18 INPUT A$,A
20 PRINT USING AS:A
3@ GOTO 18
RUN
7 $4,12
12

? #4%,12
12
? FEbER, 12
12
THE.44,12
12.08

7 $¥4..12
1z.
7 #.884,.82
9.428
T¥h.#,2.36
2.4

~12
-.12

The + sign may be used at either the beginning
end of the numeric £field. If the numb
positive, the + sign will be printed a
specified end of the number. If the numbe
negative, & - sign will be printed at the spe
end of the number.

T

[dia]

The = sign, when used to the right of the numg
field designation, will force the minus sign t
printed to the right of the number if
negative. If the number i3 positive, a sgpac
printed.

The #** placed at the beginning of a numeriec £1
designation will causze any unused spaces ia
leading porticn of the number printed out
filled with asterisks. The +** also speg
positions £for 2 more digits. ([Termed "as{
£ill™)

When the $5 is used at the beginning of a nums
field designation, a § sign will be printed in
space immediately preceding the number pri
Note that §3$ also specifies positions for two
digits, but that the § itself takes up one of
spaces. Exponential format cannot be used
leading $ signs, nor can negative numbers be d

ge 4%

is
the
is
fied

ric

a be
it is
e is

ald
the
to be
ifies
arisk

ric
the
ntad,
mere
thesa
with
utput

Fanuary, 1877

**s

EEY TS

Page 58

unless the gign is forced to be trailing.

The *#*3 used at the beginning of a numeric field
designation causes both of the above (** and §8) to
be performed on the number being printed ocut, All
of the previous conditions apply, except that **§
allows for 3 additional digit positions, one aof
which is the § sign.

A comma appearing to the leff of the decimal point
in a numeri¢ field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal peint in the number being
printed. The comma also specifies another digit
position, A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and is treated as a
printing character,

(4 4 } jon some terminals) Exponential Format,

1f exponential format 1s desired in the printout,
the numeric field designation should be followed by
%" (allows space for E+XX). Any decimal point
arrangement is allowed. fThe significant digits are
left Jjustified and the exponent Iis adjusted,
Unless a leading + or a trailing + or - is used,
one position te the left of the decimal point will
be used to print a space or minus sign. Examples:

PRINT USING "[#4"""*]"; 13,17,-8
[1E+d1)[2E+G1] [-BE+d€)

OK

BRINT USING " [.4#44347°""=];
[.123450E+085] [.123456E+86=]

QK

PRINT USING "[+.43#"""")*; 123,-126
[+.128+83] [~.13E+93]

OK

12345,-123456

If the number to be printed out is larger than the

specified numeric field, a §% <character will be
printed followed by the number itself in standard
Altair BASIC format., (The usar will see the entircs
number.] If rounding a number causes it to exceed
the specified field, the % character will be
printed feollowed by the rounded number. If, for
example, A=.99%, then

PRINT USING ".#4",A

will print

fanvary, 1377

**s

Ao

By

anrifgerne—sion—is forcedwtobe—tralling.

The **$ used at the beginning of a numeric field

ge 38

designation causes both of the above (** and §§) to

be performed on the number being printed out.
of the previous conditlons apply, except that

All
*xg

allows for 3 additional digit positions, ope of

which is the § zign.

A comma appearing teo the left of the decimal ppint

in a numeric field, designation will cause a komma
to be printed te the left of every third diglit to
the left of the decimal point in the number peing
printed. The comma also specifies another Pigit
position. A comma to the right of the degimal
point in & numeric field designation is consigered
a part of the string itself and is treated s a

printing character.

(4} Jon some terminals) Exponential Pormat.

If exponential format is desired in the oprinfout,

the numeric field designation should be followpd by

~na

tallows space for E+XX}. . Zny decimal point

arrangesment i3 allowed, The significant digitg are
left dJustified and the exponent Iis adjugted.
Unless a leading + or a trailing + or - is psed,

one position to the left of the decimal point

will

be used teo pripnt a space or minus sign. Examples:

PRINT USING "([32"°°7]"; 13,17,-8

[1=+d1]{ 2E+81} [~BE+E6]

OK -

PRINT USING " [.#4##34"7""-1; 12345,-123456
{.12345828+85]{.123456E+36-)

OK

PRINT USING "[+.84"7°7]"; 123,-126
[+.12E+83] [-.13E+83]

OK

If the 'number to be printed cut is larger than
specified numeric field, a % character will
printed followed by the number itself in stan
Altair BASIC format. (The user will see the ep
number.} If rounding a number causes it to ex
the specified £ield, the &% character will
printed followed by the rounded number. 1If,
example, A=.99%, then

PRIWT USING ".33#".,3

will print

the
be
dard
tire
cead
be
for

_

January, 1977

%1.09,
If the number of digits specified

ILLEGAL FUNCTION CALL error will o¢ccur.

The feollowing program will help
preceding rules.

Program: 1@ INPUT A$,A
28 PRINT USING AS;A
38 GOTO 18
RUN

Page 51

exceeds 24, an

illustrake the

The c¢ompukter will start by typing a ?. The numeriq field

designator and value lis:t are entered and
displayed as follows:

? +4,9
+3

? +4,14@
%+14

? 4,-2
-2

? +#r"'2

2

-FEr,.02
28

£
-2

+
.4

$T43.%,1840
8d.0

w o S gR e
1

? 33+,2
2+

? THIS IS A NUMBER 44,2
THIS IS & WUMBER 2

? BOUFORE ##% AFTER,12
SEFORE 12 AFTER

? 3t 44444

344444

? o**ga,l

xkx]

T ohkgg, 12
'*12

? *%33,123
*123
? *%4§,1234
1234

2 **E3,12345
312343
2w,

*1

? %%, 22

the output is

Tanuazry, 1977

22
? o L4,12
? OrRGEIE,)
*****l
{note: not floating %) ? SHE#E.44,12.34
§ 12.34
{note: floating §) 7 $54%44.88,12.56
$12.56
? $5.44,1.23
31,23
? $5.4%,12.34
$512.34
? $S4#4,0.23
5
? 55aE44.4%,0
s@.88
? owrSgdd.%,1.23
*Akag], 23
?OYH5_§4,1.23
*¥51.23
T OREGREE,L
LE L LY
? #,6.9
7
? $.§,6.99
7.9
? ##":2
2
? 5#‘!"2
? §3+,2
2+
? f#+,.-2
a.
? #7707, 2
ZE+80
? #7712
1E+31

? FHERE.E#47777,2.45678
2456,780E-03

? R.3447777,123

B.123E+83

? 4 437770, -123

=.12E+931

P OCHRAES, REF.E",1234567.89
1,234,570.8

Typing Control/C will stop the program,

5-6. Disk file operations.

Page 52

Janwary, 1977 Page 53

As many as sixteen floppy disks may be conrnected
single ALTAIR disk controller. These disks have

to a
been

assigned the physical disk numbers @ through 15. Users with
one drive should address the drive at zero, and usefs with

two drives should address them at zero and one, etc.

In the following descriptions, <disk number> [is an
integer expression whose value is the physical number [of cne
of the disks in the systam. If the <disk number> is gmitted

from a statement other than MOUNT or UNLOAD, the

<disk

number> defaults to 4. If the <disk number> is omitted from
a MOUNT or OUNLOAD statement, disks @ through the Highest

disk number specified at initialization are affacted.

a. Opening, Clesing and Waming Files. To initialize
disks for reading an@ writing, the the MOUNT command is

issued as follows:

MOUNT [<disk number>[,<disk number>...]]
Example:

HMOUNT 4@

Mounts the disk on drive zero, and

MOUNT 9,1
Mounts the disks on drives zezo and one. If there |is
already a disk MOUNTed on the specified drivel(s} a
DISK ALREADY MOUNTED message will be printed. Before

removing a disk which has been used for reading and writing
by Disk Altair BASIC, the user should giwve an PNLOAD

command:

UNLOAD [<disk number>[,<disk number>...]]

UMLOAD closes all the files open on a disk, and marks the
disk as not mounted. Before any further I/0 is done on an

UNLOADad disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or any other disk command may be used

a5 & program statement.

All data and program files on the disk have an assog
file name. This name is the result of evaluating a g

lated
tring

Fanuary, 1977 Page 54

axpression and must be cne to eight c¢haracters in length.
The first character of the file name cannot be a null (@)
byte or a byte of 255 decimal, An attempt to use a null
file name (zero characters in length) , a file name over 8
characters in length or containing a @ or 255 in the first
character position will cause a BAD PILE RAME ervor. Any
other sequence of one to eight characters is acceptable.

Examples of valid file names:

ABC

abg {Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE$##22

NOTE

Commands that require a file name will use <file
name> 1in the appropriate positicn. Remember that a

<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a partieular
disk. The format of the FILES command is:

FILES <disk number>

Example:

FILES {prints directory of files on disk @)
STRTRK PIP CURFIT CISASM

Executiocon of the FILES command may be interrupted by typing
Control/C. A more complete listing of the information
stored in a particular file may be obtained by running the
PIP utility program (see Appendix I).

C. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at & later time. This is accomplished by issuing a SAVE

command s

January, 1%77 Page 53

(

SAVE <file name>[,<disk number>[,A]]
Example:

SAVE "TEST", 9
or

SAVE "TEST"

would save the program TEST on disk zero. Whenever a
program is SAVEd, any existing copy of the program
previously SAVEd will be deleted, and the disk space usged by
the previcus program is made available. See section 5-6d
for a discussion of saving with the 'A' option.

The LOAD statament reads a file from disk and leads it
into memory. The syntax of the LOAD statement is:

LOAD <file namel>,<disk number>(,R]]
Correspondingly:
LOAD "TEST",# or LOAD "TEST"

loads the program TEST from disk zero, If the file does not
exist, a FILE NOT FOUND error will eccur.

LOAD "TEST",9,R
&):4

LOADs the program TEST from disk zero and runs it. The LGAD
command with the "R"™ optien may be used to c¢hain or segment
programs inte small pieces if the whole program is too large
to fit in the computer's memory. All variables and progranm
lines are deleted by LOAD, but all data files are Xxept
QPEN({see below) if the *R" option {5 used. Therefore,
information may be passed between programs through the use
of disk data files. 1If the "R" option is not used, all
files are automatically CLOSEd (see below) by a LOAD.

Example:

HEW
14 PRINT "FCOLl":LOAD "FOO2",4,R
SAVE “FOOLl®,8

OK
18 PRINT "FQOZ":LOAD "FOC1",82.,R
SAVE "FOO2Z", 8

January, 1977 Page 54

OR

RUN
PQO2
FCO1
FOO2
FOOL
«eatc,

{Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FQO2 prints | the
message "FOO2® and then calls the program FOOl on disk.
FQOl prints "FOQL* and ¢alls the program FOO2 which prints
"FOO2" and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number> (,R]]
All files are closed unless ,R is specified after the disk

number.

d. B5AVEing and LOADIng PFrogram Files in ASCII. Often

it 1is desirable to save a program in a form that allows the

program text to be read as data by another program, such as
a text editor or resequencing program. Unless otherwise
specified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and logads
very quickly. To save a program in ASCII, specify the ."A"
cption on the SAVE command:

SAVE "TEST",B.A
OK
LOAD “TEST",4d
QK
Information in the file tells the LOAD command jthe
format in which the file is to be loaded. The first

character of an ASCII file i3 never 255, and a binary

program file always starts with 235 {377 actal). Remember,
loading an ASCII file is much slower than loading a bimary
file. :

C

January, 1977 Page §7

e. The MERGE Command. Sometimes it ig very useful to
put parts of two programs together to form a new program
combining elements of both programs. The MERGE command is
provided for this purpose. As socon as the MERGE command has
been executed, BASIC returns to command level. Therefore It
is mere likely that MERGE would be used as a direct command
than as a statement in a program. The format of the |MERGE

statement is as fallowa:

MERGE <file name>[,<disk number>]

Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged inte the program already
in memory. The <file name> must specify an ASCIT flormat
saved program or a BAD FILE MODE error will occur. If |there

are lines in the program on disk which have the sane
numbers as lines in the program in memory, the 1lines

line
from

the file on disk will replace the corresponding prjogram

lines in memory. It is as if the program lines of the
on disk were typed on the user terminal,

file

£. Deleting Disk Files. The XILL statement daleklas a
file £from dJisk and returns disk space used by the fille to
free disk space. The format ¢f the KILL statement is as

follows:
KILL <file name> [,<digk number>]

If the file does not exist, a FILE NOT FOUND error

will

ageur., If a KILL statement is given £or & file that is
currzntly CPEN (see below), a PILE ALREADY QPEN error

QCCcuUrs.

g. Renaming Files - the WNAME Statement. The
statement is used to change the name of a file:

NAME

NAME <old file name> AS <new file name>[,<disk number>]

Zxamplae:
NAME "OLDFILE" AS "NWEWFILE"

The <old (file name> must exist, or a FILE NOT FOUND -
will occur. A file with the same name as <new £ile |
must not exist or a FILE ALREADY EXISTS error will od
After the NAME statement is executed, the file axists of

S fuld
name>
POUr .
1 the

1977 Page 58

gsame disk in the same area of disk space., Only the name is
changed.

h. OPENing Data Files, Before a program can read ot
write data to a disk file, it must first CPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

CPEN <mode>,[#]<file number>,<file name>[,<disk number>]
<mode> is a string expression whose first character is one

of the following:

Specifies sequential output mode
Specifies sequential input mode
Specifies random Input/Cutput mode

WH O

A sequential file 13 a stream of characters that is read orc
written in order much like INPUT and PRINT statements read

From and write to the terminal. Random files are divided
inte groups of 128 characters called records. The nth
record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail.

<file number)> is an integer expression between one and
fifteen. The number is asseociated with the file being
QPENed and is used to refer to the file in later I/0
operationa.

Examples:s

OPEN "0O",2,"QUTPUT",d
OPEN "I',1,"INPUT"

The above two statements would open the file OUTPUT for
sequential output and the file INPUT for sequential input on
disk zero.

OPEN M$,N,F$,D

The above statement would open the file whose name was in
the string F$ in mode M3 as file number W on disk D,

i. Sequential ASCII file I/0 Sequential input and
output files are the simplest form of disk input and output
since they involve the use of the INPUT and PRINT statements

January,

¢

1977 Page 59

with 2 file that has been previously QPENed.
INBUT is used to read data from a disk file as follows:

INPUT $<file number>,<variable list>

where <file number> represents the number of the file that
was OPENed for input and <variable list> 18 a 1list of the
variables to be read, as in 2 normal INPUT statement.| ihen
data is read from a sequential input f£ile using an | INPUT
statement, no question mark (?) 1s printed on the terminal.
The format of data in the flle should appear exactly as it
would be typed to a standard INPUT statement tp the
terminal. When reading numeric values, leading spaces,
carriage returns and 1line feeds are ignored. When a
non=space, non~carriage return, non-line=-feed character is
found, 1t 1s assumed to be part of a number in Altair|RASIC
format. The number terminates on a space, a carriage return
¢ line-feed or a comma.

When scanning for string items, leading blanks,
carriage returns and 1line-feeds are also ignored. Hhen a
character which is not a leading blank, carriage retugn or
line-f{eed is found, it is assumed ¢to be the start of a
string item.If this first character is a quotation matk (")
the item is taken as being a quoted string, and all
characters between the first double gquote {") and a matching
double quote are returned as characters in the string walue.
This means that a gquoted string in a file may contain any
characters except deuble quote., If the first character of a
string item is not a gquotation mark, then it is assumed to
be an ungquoted string constant., The string returned will
terminate on a comma, carriage return or line faed. The
string 1is immediately terminated after 255 characterg have
been raad.

For both numeric and string items, if end of file |(EOF;
is reached when the item is being INPUT, the itlem is
terminated regardless of whether or not a closing guotal was
seen.

Sequential I/0 commands destroy the input Dbuffer so
they may not be edited by Control/A for re-execution.

Example of seguential I/0 (numeric items):

388 OPEW "O",l1,"FILE",?
514 PRINT #1,X,Y.Z
5429 CLOSE =1

1377 Page &0

5390 OPEN "i",1,"FILE",Q
549 INPOT #1",X,Y,2

Note that CLOSE is used so that a file which has just been
written may be read. When FILE is re-0OPENed, the data
pointer for that file is set back te the beginning of the
file so that the first INPUT on the file will read data from
the start of the file.

2} PRINT and PRINT USING statements are used to write
data intoc a sequential output file. Their Fformats are as
follows:

PRINT #<file number>,<sxpression list>
ar

PRINT #<file number>,
USING <string expression);<expression ligt>

Bxample of sequential I/Q {guoted string items):

5pd OPEN "O",1,"PILE*
518 PRINT #1,CHR$(34);X$;CHRS(34);

515 PRINT $1,CHRS$ (34} :Y$;CHRS (34) ;CHRS (34) ;2% ;:CHRS {34)
52¢ CLOSE 1

5384 oPEM "I",1,"FILE",d

549 INPUT #1,X5,¥$,2%

In this example, the strings being output (X$, ¥S$, 2$) are
surrcunded with double quotes through the use of the CHRS
function to generate the ASCII value for a double gquote.
This technique must be wused if a string which is being
cutput te a seguential data file contains commas, carriage
returns, line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, carriage returns or lina-feeds in the strings td be
output, it is sufficient to iInsert commas bhetween the
strings being cutput as in the following sxample:

5d@ OPEN "C",1,"FILE"

31@ PRINT #1,X$;",":¥5:",":48
528 CLOSE 1

530 OPEN "I",l,'FILE",D

548 INPUT #1,X$,Y5,Z§

3) CLCSE., The format of the CLOSE statement is as
follows:

CLOSE [<Xfile number>[,<file number>...]]

January, 1977

L

ra

CLOSE i3 uged +to finish I/0 to a particular Altair
data file. After CLOSE has been executed for a file}

age 61

BASIC
the

file may be reOPENed for input or output on the same or
different <file number>. A CLOSE for a sequential oputput
fila writes the final buffer of output. A CLOSE to any QPEN
file finishes the connection between the <file number} and
the <file name> given in the OFEN for that file. It allows

the <file number> to be used again in another
statement.

& CLOSE with no argument CLOSEs all OPEN files.

NOTE

A PILE can be OPENed for sequential input or randyg
access on more than one <file number> at a time by
may be OPEH for output on only cne <file number> a
a time,

END and NEW always CLOSE all disk files automatically.
does not CLOSE disk files.

4} LINE INPUT. Often it is desirable to read a
line of a file into a string without using gquotas, comn|
other characters as delimiters, This is aspecially trud
certain fields of each line are being used to contain
items, or If a BASIC program saved in ASCII mode is
read as data by another program. The facility provid
perform this function is the LINE I4PUT statement:

LINE INPUT #$<file number>,<string variable>

A LINE INPUT from a data £lle will return all characte
to a carriage return in <string variable>. LINE INPUT
skips over the following carriage return/line-feed seg
so that a subseguent LINE INPUT from the file will ¢
the next line.

5) Bnd of FPile (EOF) Detection. When teadi
sequential data file with INPUT stataments it is us
desirable to detect when there is no more data in the
file. The mechanism for detecting this condition iz th
function:

X=EDF (¢{f1ile number>)

EQF returns TRUE (-1) when there is no mece ¢ata ia the
and PALSE {0} ocherwise. TIf an attempt i3 made to

OPEN

o g

STCP

whole
as or
e if
data
being
ed Lo

rs up
tnen
nencea
erurn

ng a
ally
disk
e EOF

file
[NEPUT

Tanupacy, 1977 Page 62

past the end of a data £ile, an INPUT PAST END error will
ogour.,

Example:

104 OPEN "I",1,"DATA",d
1ig I=g

128 IF EOF(1l) THEN 168
138 INPUT #1,A(I)

148 I=I+1

158 GoTO 124

168 viunan

In this example, numeric data from the sequential input £ile
DATA is read into the array A. When end of file 13
detected, the IF statement at line 120 branches to line 164,
and the variable I "points” one beyond the last element of A
that was INPUT from the file.

The following is a program that will calculate the
number of lines in a BASIC program file that has heen SAVEd
in ASCII mode:

1§ INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
29 QPEN "1",1,P§.d

20 Iag

48 If EOF(l)} THEN 780

58 I=I+1:LINE INPUT #1,LS

64 GOTO 48
7% PRINT “PROGRAM ";P$:" IS ";I;" LINES LONG"
88 END

This example uses the LINE INPUT statement to read each line
of the program inte the "dummy® string L§ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). 1t is
sometimes necessary to determine the amount of free disk
space remaining on & particular disk before alloecating
{writing) a file. The DSKF function provides the user with
the number of free groups left on & given disk, after <the
disk has been MOUKTed. A group is the fundamental unit of
Eile allecatien. That is, files are always allocated in
groups of eight sectors at a time. Tach sector contains 128
characters (bytes)., Therefore, the minimum size for a file
is 1824 bytes.

Syntax for the DSKF function:
DSKF(<disk number>}

Example:

X

January,

L

1977 Page 63

PRINT DSKF(4)
289

The above example shows that there are 260*1824=204884
characters (bytes) that can still be stored on disk zeno.

j. RANDOM FILE 1/0. Previocusly, we have discussed

how

data may be PRINTed or INPUT from sequential data files.
Howaver, it is often desirable to access data in a gandom
fashion, for instance to retrieve informatien |en a

particular part number or customer from a large data

base

stored on a floppy disk. If sequential files were used, the
whole file would have Lo be scanned from the start until the

particular item was found. Random files remove
restriction and allow a program to access any record

this
from

the first to the last in a speedy fashion. also, randonm
files transfer data from variazbles to the disk ouput rejcords

and vice versa in a much faster, more efficient fashion
sequential files. Random £ile 1I/0 is more complex

than
than

sequential I/0, and it 1is recommended that beginners try

sequential I/0 first.

1) QPENing a FILE fer Random I/0. Random I/0 filejs are

OPENed just like sequential files.

QPEN "R",1,"RANDOM",d

When a file is OPENed for randem 1/0, it is always OPEN for

beth input and output simultanecusly.

2) CLOSING Random Files. Lixe sequential files, rpndom
files must be closed when I/0 operations are finished, To
CLOSE a random file, use the CLOSE command as dascpibed

previously.

CLOSE <file number>[,<file number>...]

3] Reading and writing data to a random £ile - GET
PUT. Each randem file has associated with it a "ri
buffer™ of 128 bytes. When a GET or PUT operatior
performed, data 1is transferred direczly from the buffe
the data file or from the data file to the buffer.
syntax of GET and PUT is az follows:

and
andom
n is
2 Lo
The

Fanuary, 1977 Page &4

POT [#]<file number>[,<record number>]
GET [#]<file number>(,<record number>]

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or POT 1is read into the random buffer. 1Initially a GET or
PUT without a record number will read or write the Ffirst
regord. The largest possible record number is 2046. TIf an
attempt is made to GET a record which has never been PUT,
all zeroces are read into the rececrd, and noc error cccurs,

4) LOC and LOF. LOC is used to determine what the
current record number is for random files. In other weords,
it returns the racord number that will be used if a GET or
PUT is executed with the <record number> parameter omitted.

LOC(<file number>)

PRINT LOC (1}
15

LOC is alsc valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statament was exescuted.

LOF is5 used to determine the last record number written to a
random file:

LOF{<file number>)

PRINT LOF(2)
209

An attempt to use LOF on a sequential f£ile will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8., That is , when
the walue LQOF returns is divided by 8, the remainder is
always 5. Therefore,the values rsturned by LOF are 5§, 13,
21, 29 etc. This 1is due to¢ the way random files are
allocated.

NOTE

It is important to note that the value returned &
LOF may be a record that has never been written i
by a user program. This is because of the wa
random files are pre-extended.

Moving Data In and Out of the Random Buffer. §
we have described techniques for writing (PUT) and re
(GET) data from a file into its associated random bHu
Now we will describe how data from string variables is
to and from the random buffer itself., This is accompl
through the use of the FIELD, LSET and RSET statements.

5)

) FIELD., The FIELD statsment assoclates some or

L=

o far
ading
ffer.
moved
ished

all

of a file's random buffer with a particular string vari
Then, when the file buffer is read with GET or written
PUT, string wvariables which have beern FIELDed int
buffer will autematically have their contents rea
writtan. The format of the FIELD statament Iia:

FIELD [#] <Eile number> ,<field size> AS <string variab

<file number> is used to specify the file number of the
whose random buffer is being referenced. If the file i
a random file, a BAD FILE MODE error will ocgur. <
gize> sets the length of the string in the randem bu
<string wvariable> 1is the string variable which is assoc
with a certain number of characters (bytes) in the bu
Multiple fields may be assoclated with string variables
given FIELD statement. Each successive string variabl
assigned a sucgessive field in the random buffer.
FIELD 19 AS A3, 20 A5 BS, 30 a5 (3%
The statement above would assign the first 1@ characte
the random buffer t£o the siring variable A5, the nex
characters to BS and the next 38 characters te the var
C5. It is important to note that the FIELD statement
not cause any data to be transferred toc or from the r
buffer. It only causes the string variables give
arguments to "point" into the random buffer.

it is necessary to divide the random buffer
of sub-racords to maks more efficisnt use of
space. For instance, it might be desirable to divide
128 character record into two identical subrecords
accomplish this a "dummy variable” would be placed in
PIELD statement to represent one of the subrecords. O
the following statements would be executed dependin
whether the first or second subrescord were needed:

Qften,

a number

ble.
with
the
or

2

file
not
ield
fer.
ated
fer,
in a

is

Example:

rs of
t
lable
does
ndom

as

3

1

into
disk
the
To
the
e of
on

n
9

January,

1877

FIELD #1,64 AS D§, 28 AS NAMES,
2@ AS ADDRESSES, 24 AS OCCUPATIONS

ar

- FIELD #1,28 AS NAME§, 2@ AS ADDRESSES,
24 AS OQCCUPATIONS, &4 AS D$

where the dummy variable D$ is used to skip over one of the
subrecords. Ancther way to do the same thing would be to
set a variable I that would select the first or second
subrecerd.

FIELD #1,64*(I-1) AS D3,
29 AS NAMES, 2P AS ADDRESSS, 24 AS OCCUPATICONS

Here, if the variable I is one, I-1 %64 =g characters will
be skipped over, selecting the first subrecord. 1If I is
two, 64 characters will be skipped over, selecting the
second subrecord. Another technigue that is very useful 1is
to use a FOR.,.NEXT loop and an array to set up Subrecords
in the random buffer:

1688 FOR I=1 TO 1§

1818 FIELD #1, (I~1)*8 AS D$, 4 AS AS(I),
4 A3 BS(I)

1820 NEXT I

In this example, we have divided the random buffer inte 16
subzrecords compoged of two fields each. The first
4—-character field is in AS(X) and the second d4-character
field is in B%(X,) where X is the subrecord number,

NOTE
The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only space

allocation that occurs is for the string variables
mentioned in the FIELD statement. These string
variables have a one hyte count and two byte pointer
get up which points inte the random buffer for the
specified file.

Page 66

January, 1977 Page &7

. 7) Using Humeric Values in Random Files: MKI%, |[MESS,
(L/ MED$ and CVI, CVS, CVD. As we have seen, data is always
stored in the random buffer through the use of gtring
variables. In order to convert between strings and numbers

and vice versa, a number of special functions have| been
provided.

Te convert between numbers and strings:

MEIS {<integer wvalue>) Returns a two byte string
(FC error if value is not
»a-32768 and <=2+32767,
Fracticnal part is lost)

MKSS (<single pracision value>) Returns a four byte string

MEKD$ (<double precision wvalue>) Returns an eight byte string

To convert between strings and numbers:

CVI(<two byte string>) Returns an integer value
CVS (<four byte string>) Returns a siagle precision value
CVD(<eight byte string>) Returns a double precision valus

CVI, CvS5, and C¥D all give an ILLEGAL FUNCTION CALL arrpr i€

the string given as the argument is shorter than requlired.

If the string argument is longer than necessary, the pxtra

i characters are ignored. These functions are extremely fast,
(Lg ginca they convert between Altair BASIC's internal
vepresentations ¢f integers, single and double precisien

values and strings. Conventional saguential I/0 |must

perform time-consuming character scanning algoerithms | when
converting between numbers and strings.

4. LSET and RSET. When a GET operstion is performed,
all string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, C¥S and CVD functions may be used to copveart
any numeric fields in the record to their numeric wvalues.
When going the other way, i.e. inserting strings intg the
randem buffer before performing a PUT statement, a problem
arises, This 1s because of the way string assignments
usually take plage, For example:

LET AS=B3

When a LET statement is executsd, B$ is copied into string
space, A§ is pointed to the new string and the string length
of AS is modified. However, for assignments into the rdndom
buffers we do not want this ro happen. Instead, we wantl the
string being assigned to be stored whers the string variable
was FIELDed. In order te do this, two special assignment

1977 Page 68

statements have been provided, LSET and RSET:

LSET <{string variable>=<string expression>
RSET <string variable»=<string expression>

Examples:
LSET AS=MKS35(V}
RSET B$="TEST"
LSET C§({I)=MKDS$ (D#}

The difference between L3ET and RSET concerns what happens
if the string wvalue being assigned is shorter than the
length specified for the string variable ipn the FIELD
statement. LSET left justifies the string, adding hlanks
(octal 48, decimal 32) to pad out the right side "of the
string if it is too short. RSET right justifies the string,
padding on the left. 1If the string value is too long, the
extra characters at the end of the string are ignored.

NOTE

Do not use LSET or RSET on string variables whicgh
have not been mentioned in a FIELD statement, or a
SET TQ NON DISK STRING error will occur.

k. The DSKIS and DSKQ$ Primitives. Often it 1is
necessary £or the user to perform disk I/C operations
directly without using any of the normal file structure
features of Altair BASIC. To allow this, two special
functions have been provided. These are the DSKIS function
and the DSKOS statement. First we will give examples of how
to perform simple disk I/0 commands using Altair BASIC
statements,

To Enable disk @:
QUT 8,8
Te Enable disk N:
ouT 8,N
TG step the disk head out one track:

WAIT 8,2,2;00T 3,2

Janvary, 1977 Page §9

) To step the disk head in one track:
kL/ WALT 8,2,2:00T 9,1
To test for track 4:
IF (INP(8) AND 64)=0 THEW <{statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track &. This 1ig the
cutermest track on the disk.

To read sector ¥ (Y may be any expression, minimum sector
=f, maximum = 31):

AS=DSKIS (Y)

The statement
DSKO3 <string exprassion>,<sector expreasion;

writes the string expression on the sector specified, The
ttiigh order bit (most signifigant) of the first charpcter
output will always be set to one when the string is wriitten
on the sector, and thus will always be one when the skector
is read back in using DSEKI$. A maximum of 137 charapters
are written; giving a string whose length exceedps 137
(l/ characters will cause an ILLEGAL FUNCTION CALL erzor. If
the sitring argument is less than 137 characters in leshgth,
the end of the string will be padded with zeros to make a
string of length 137,

Fanuary, 1977 Page 70

6. LISTS AND DIRECTORIES

6=1. Commands.

Commands direct Altair BASIC ta arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints
'OK' and is at command level. The table below Llists the
commands in alphabetiecal order. The notation to the right
of the command name indicates the versiong ta which it
applies.

Command Varsion(s)

CLEAR all

Sets all program variables to zero.

CLEAR({<expression>) 8K, Extended, Disk

Same as CLEAR but sets string space to the value of the
expressicn. If no argument is given, string space will
remain unchanged. When Altair BASIC is leaded, string space
iz set to 5& bytes in 8K and 294 bytes in extended.
CLOAD<string expressicon> 8K (cassette), Extended, Disk
Causes the program on cassette tape designated by the f£irst
character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is lcaded.
CLOAD?<string expression> 8K (cassette), Extended, Disk

Compares the program in memory with the file on cassette
with the same name. If they are the same, BASIC prints OF.

If not, BASIC prints NO GOQOD,
CLOAD*<array name> gX{cassette), Disk

Loads the specified array from cassette tape, May be used
as a program statement

conT 8K, Extended, Disk

Continues program execution after a Control/C has been typed
or a BSTOP or ZND statement has besn executed. Executicn
resumes at the statement after the break occurred unlass
input from the terminal was interrupted. In that case,

quary, 1377 page

execution resumes with the reprinting of the zrompt (7 or
prompt string). CONT is wuseful in debugging, especiglly

fKL/ where an 'infinite loop' iz suspected, 2an infinite loop| is
a series of statements Ffrom which there 1s no es¢ape.
Typing Control/C causes a break in exscution and puts BASIC
in command 1level. Direct mode statements can then be fsed
to print intermediate wvalues, change the values of
variables, etc. Execution can be restarted by typing|the
CONT command, or by execuiting a direct mode GOTO statement,
which causes execution to resume at the specified line
number,

In 4X and BK Altair 3aAS5IC, execution cannot oe
continued if a direct mode error has occured during |the
breazk. 1In all versions, execution cannet continue if (the
pregram was modified during the brezak.

CSAVE<string exprsssion? 8K (casszette), EBExtended, Digk

Causes the program currently in memory to be saved| on
cassette tape wunder the name specified by the first
character of <string expression>.

LXrEmDED

CSAVE*<array name> 8K {cassette) [/ Di=k

Causes the array named b0 be saved on cassstta tapa. May -e

le/ used as a prooram statement,
K . . . i
* DELEZTE<line number>- Extended, Disk

Deletes the line in the current program with the specified
number. If no such line exists, an ILLEGAL FUNCTION JALL

Brror oCCurs.
DEILETE~<line nunber> Extended, Disk

Deletss every 1lipne of the current program up to (|and
ingluding the spescified lins. If there is no such line,| an
ILLEGAL FUNCTION CALL error occurs.

DELEZTE<1line number>-<line number> Extandad, Disk

Celetes all lines of the currsnt progranm from the first lfine
number +to the second inclusive. ILLEGAL FUNCTION CALL
occurs if ne linme has the second number.

EDIT<line number> Zxtended, Digk

Allows editing of the line specified without =zffecting pny
=

other Llines. The EDIT command has a oowerfuel set|of
sub-commands which are discussed in detail in section 5-4L

January,

L

1977 Page 71

execution resumes with the reprinting of the prompt (7 or
prompt string). COMT is wuseful in debugging, espedially
where an ‘infinite loop' is suspected. An infinite lodp is
a serles of statements from which there i no egcape.
Typing Control/C causes a break in execution and puts [BASIC
in command level. Dirsct mode statements can then be used
£0 print intarmediate values, change the value of
variables, eta. Executidn can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution +to resume at the specified line
number.

In 4K and 8K Altair BASIC, execution cannot| be
continued if a direct mode error has occured during the
break. In all versionszs, execution cannot continue if| the
program was medified during the break,

CSAVE<string expression> 8K {cassette), Extended, Disk

Causes the program currently in memory to be saved on
cassette tape under the name specified by the Flrst
character of <string expression>.

CSAVE*<array name> 8K {cassette), Disk

Causes the array named to be saved on cassette tape. May be
used as a program statement.

DELETE<line number> Extended, Disk

Daletes the line in the current program with the specified
number, If po such line exists, an ILLEGAL FUNCTION|CALL

SrIQL OCCurs.
DELETE=<line number> Extended, Disk
Deletes every line of the current program up to| and
including the specified line. 1If there is no such line, an
ILLEGAL FUNCTION CALL error occurs,

DELETE<line number>-<line number> Extended, Disk
Deletes all lines of the current program from the first |line
number to the second inclusive, ILLEGAL FUNCTION |CALL
oceurs if no line has the second number.
EDIT<line number> Extended, Disk
Allows editing of the line specified without affecting | any

other lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4,

Hanuary, 1977 Page 72

LIST aAll

Lists the program currently in menory starting with Ehe
lowest numbered line. Listing {5 terminated either by the
end of the program or by typing Control/C.

LISTi<line number>] all

In 4K and 8K, prints the current program beginning at the
specified line. In Extended and Disk, prints the specified
line if it exists.

LIST[<line number>]{~-<line number>] Extended, Disk
* Allows several listing options,

1. If the second number is omitted, lists all lines with
numbers greater than or egual to the number specified.

2. If the first number is omitted, lists all lines from
the beginning of the program to the specified line,
inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST[<line number>][-<line number>] Extended, Disk

Same as list with the same options, except prints on the
line printer.

NEW All

Deletes the current program and clears all variables. Used
before entering a new progran.

NULL<integer expression> 8K, Extended, Disk

Sets the number of nulls to be printed at the end of each
line. For 1@ character per second tape punches, <integer
expression> should be >=3. PFor 36 cps punches, it should be
>=3. When tapes are not being punched, <integer expression>
should be @ or 1 for Teletypes* and Teletype compatible
CRT's, It should be 2 or 3 for 39 cps hard copy printers.
The default value is d. 1In the 4K version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

* Teletype is a registered trademark of the Teletype
Corporaticn.

January,

¢

1877 Pag

RON{<line number>] al1l

Starts execution of the program currently in memory ay

e 13

the

line specified. If the line number iz omitted, exedution
begins at the lowest line number. Line number specilfidation

is not allowed in 4K.

6-2, Statements.

The following table of statements is listed in alpahabeltical

order. The notation in the Version column designats

the

versicns to which each statement applies. 1In the table, X
and Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose vplues
are truncated to integers. V and W are any varlable names.

The format for a Altair BASIC line is as follows:
{nnnnn> <statement>[:<statement>...]
where nnnnn is the line number.

Name Format Version
CONSOLE CONSOLE <I>,<J> Extended, Disk
Allows terminal console device to be switched. I 1s the
port number which is the address of the low order channe
the new I/0 board. J is the switch register setting
section 5-1 for the list of settings). #<aI,J¢=255.
DATA DATACIist> all

Specifies data to be read by a2 READ statement.
elements c¢an be numbers or, except in 4K, strings.

1/0
1l of
{sea

List

4K

allows expressiong. List elements are separated by commas.

DEF DEF FPNV(<WN>)a> 8K, Extanded, Di

Defines a wuser-defined function. Function name ig
followed by a lagal variable name. Extended and
versions allow user-defined string functiens. Definit
are restricted to onme line (72 characters in 4% and 8K,
characters in extended versions).

DEFUSR DEFUSR[<digit>]=<X> Extended, Disk

SK

3
Disk
fons
255

January, 1977 Bage 14

Defines starting address of assembly language subroutine.
Op to ten subroutines are allowed,

DINM DIM <V>(<I>[,JTuevd) [ssaa] All

Allocates space for array variablas. In 4K, only one
dimengion is allowed per variable. More than one variable
may be dimensioned by one DIM statement up to the limit of
the line., The wvalue of each expression gives the maximum
subscript posgible. The smallest subscript is 8. Without a
DIM statement, an array is assumed to have maximum subscript
of 17 for each dimension referenced. For example, A(I,J} is
agsumed to have 121 elements, from A(6,0} to A(L#,18) unless
otherwise dimensioned in z DIM statement.

END END All

Terminates execution of a program. Closes all files in the
Diak versien.

ERASE ERASE<V> [, <W>. 4] Extended, Disk

Eliminates the arrays specified. The arrays may bhe
tedimensioned or the space made available for other uses.

ERRCR ERROR<I> Extended, Disk

Porces error with code specified by the expression. Used
primarily for user~defined error codes.

FOR FORCV>=<X>TOCY> [STEP<Z>] All

Allows repeated execution of the same statements. Pirst
execution sets VsX. Execution proceeds normally until NEXT
is encountered. 2 is added to V, then, IF 2Z<@ and V=Y, or
if %>8 and V<=Y¥, BASIC branches back to the statement after
FOR. Otherwise, execution continues with the statement

after NEXT.

GOTO GOTO<nnnnn> All

Unconditional branch to line number

GOSUB GUSUB<nnnnn> All

Unconditional branch to subroutine beginning at lime nnnnn.
IF...GOTO IF <X> GOTC<nnnnn> 8K, Extended, Disk

Same as IF,..THENW except GOTO can only be folleowed bv a line
number and not azneother statement.

lamuary,

€ZI/

1977

IF...THEN [ELSE] IF<X>THENCK> [ELSELY>]) all
or IF<X>THEN<stakementy[:statemsnt...]
[ELSE<¢statement>[:statement.. .]

If value of X<>»J, branches to line number or statement after
THEN, Otherwise, branches to the line number or
statement{s) after ELSE, If EL3E is omitted, and the yazlue
of %=0, axecution procesds at the line after the IF...[HEN.
In 4K, X c¢an only be a numesric expression. “he ELSE clause
is only allowed in Extended and Disk Altair BASIC.

INPUT INPUTLV> [,<W>...] All

Causes BASIC to request input from termipal. Values {or, in
48, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<X> all

Assigns the value of the expression to the wvariable. The
word LET is optional.

Page 75. Insert the following after LET and before LPRINT.

ADDITION:
LINE INPUT LINE INPUT “prompt string™; string variable name
Extended, Disk

LINE INPUT prints the prompt string on the termina® and assigns| all
input from the end of the prompt string to the carrizge returan fto
the named string variable. Ko other prompt is printed if the prompt
string is omitred. LINE INFUT may not be edited by Control/a.
Part of the string X$ is5 replaced by Y$. RHeplacement siarts
with the I*h character of X3 and proceeds until Y35 is
exhausted, the end of X% is reached or J characters |have
been rtaplaced, whichever comes first, TIf I is greater |than
LEN{X$), an ILLEGAL FUNCTIONWN CALL error rasults.

NEXT HEXT [<V>,<W>...] All
Last statement of a FOR loop. V is the variable of the [mest
racent loop, W of the next most recent and so on. Only one
variable is allowed iIn 4R. ZExcept in 4K, WBEXT without a
variable terminates the most recent FOR looo.

CN ERROR GOTO O ERRCR GOTO<lipne number> EIxtended, Dilgk

When an error occurs, branches te lipe specified. Sets
variable ERR to error code and ERL to line number where| the

January, 1977 B

P

IF.,.TREN [ELSE] IF<{X>THEN<X>[ELSE<¥>] all
or IF<X>THEN<atatement)>[:statement...]
[{ELSE<statement>[:staktement...]

If value of X<>@, branches to line number or statement
THEN. Qtherwise, branches ko the line numb
statement(s) after ELSE, If ELSE is omitted, and the
of X=@, execution proceeds at the line after the IF..
In 4K, X can only be a numeric expression. The ELSE
is only allowed in Extended and Disk Altair BASIC.

INPUT INPUTCVS [, <WD .. .] all

Cauges BASIC to request input from terminal, Values (
4K, expressions) typed on the terminal are assigned
variables in the 1list.

LET LET <{VO={X> All

Assigns the wvalue of the expression to the variable.
word LET is optional.

LPRINT LFRINT X[,¥...] Extended, Disk

Same as PRINT, but prints on the line printer, Line
within strings are ignored. A carriage return is p
automatically after the 8&th character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended,

Same as PRINT USING, but prints on the line printer.
detailed description, see section 5-5.

#1D$ MIDS [<X$>,<I>[,<I>])=¥$ Extended, Dis

Part of the string X$ is replaced by ¥$. Replacement
with the Ith character of X$§ and proceeds until
exhausted, the end of %% is reached or J characters
been replaced, whichever comes first. If I is greate
LEN(XS), an ILLEGAL FUNCTION CALL error results.

HEXT NEXT (<¥>,<W>...] all

Last statement of a FOR leoop. V is the variable of th
recent loop, W of the next most recent and so en. On

dge 75

after
€r Qr
value
JTHEN.
dlause

or, in
te the

The

Eeeds
rinted
bisk

For a

4

starts
¥§ is
have
r| than

e | most
ly one

variable is allowed in 4K. Except in 4K, NEXT withoyt a

variable terminates the most recent FOR loop.

ON ERRQR GOTO ON ERRCR GOTO<line number> Extended, Disk

When an errer occurs, branches to line specified.

Sets

variable ERR to error code and BRL to line number wherd the

Panucary, 1977 Page 76

error o¢cured. See section 6-5 for a list of error codes.
ON ERROR GOTO @ {or without number) disables error trapping.

O, ..GOTO ON<I>GOTO<list of line numbers> 8K, Ext., Disk

Branches te¢ line whose number is Ith in the 1list. List
elements are separated by commas. If I=B or > number of
elaments in the list, execution continues at next statement.
If I<8 or >2553, an error results.

ON...GOSUB ON <I> GOSUB <list 8K, Extended, Disk

Same as OM.,.GO0TO except 1list elements are initial line
numbers of subroutines.

GuT QUTCI» , <3> 8K, Extended, Disk
Sends byte J to port I. 0<=I,J<=255,

POKE PORE<I> ,<JI> 8K, Extended, Disk
Stores byte J in memory location derived from I.
B<=T<=255;=32768<I<65536. If I is negative, address is
65533+I, 1if I is positive, address=I,

PRINT PRINT<X>{,<¥>...] all

Causes values of expressions in the list to be printed on
the terminal. Spacing is determined by punctuation.

Punctuation Spacing -~ next printing begins:
C oy at beginning of next 14 column zone
immediately

;
other or none at beginning of next line

String literals may be printed if enclosed by (") marks.
String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>»;<list> Extended, Disk

Prints the values of the expressions in the 1list edited
according to the string. The string is an expression which
represants the line to be printed, The 1list contains the
constants, variable names or expresgions to be printed.
List entries are separated by punctuation as in the PRINT
gtaterment. Por a 1list of string characters and their

functions, see section 5-5.
READ READCV> [, <W>. ..] all

Assigns values in DATA statements to varlables. Values are
assigned in sequence starting with the first wvalue in the

L

first DATA statament.

REM REM[<remark>} All

January, 1977 Page 77

Allows insertion of tremarks. Not executed, but may be
branched into. In extended versions, remarks may be |added

to the end of a line preceded by a single quotation
(.
RESTORE RESTORE All

Allows data from DATA statements tc be reread. Next
statement after RESTORE begins with first data of first
statement.

RESUME RESUME [<number>] Extended, Disk

mark

READ
data

Resumes program execution at the line specified after prror
trapping routine, If number is omitted or zero, resumps at

statement where erzor occured. RESUME WEXT causes
resumption at the statement following the statement where

the error was made.

RETURN RETURN All

Terminates a subroutine. Branches te the statement &fter

the most recent GOSUB.

STOP STOP all

Stops program execution. BASIC enters command level
except in 4K, prints BREAR INW LINE nnnan. Unlike END,
does not close files,

SWAP B SWAP <V»,<W> Extended, Disk

Exchanges values of the variables named. vVariables must

of the same type.
TROFF TRCFF Extanded, Disk

Turns off trace flag. The trace flag is turned on by
{see below), NEW alsc turns off the trace flag.

TROW TRON Extended, Disk

Turns on trace flag. Prints number of each line in sgq
brackets as it is executed.

WALIT WAITCI> , <J> [, <K>] 8K, Extended, Di

Status of port I is XOR'd with K and AND'ed with

and,
STOR

be

TRON

unare

Panuary, 1977 Page 78

Contineed execution awaits non-zero result. X defaults to
a. G<-I'J;K<’2550

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definition. If the functions are not
reguired for a program, they may be deletsd when BASIC is
loaded to conserve memory space, The functions in the
following table are 1listed in alphabetical order. The
notation to the right of the Call Format is the versions in
which the function is available. As usual, X and Y stand
for expressions, I and J for integer expressions and X$ and
¥$ for string expressions.

Function Call Format Version

ABS ABS (X} all

Returns absclute value of expression X. ABS(X)=X if ¥>=§,
=X if X«<@.

ASC ASC (X$) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
X$. ASCII codes are in appendix A.

ATH ATN (X) 8K, Extended, Disk
Returns arctangent (X}, Result is in radians in range =-pi/2
to pi/2,

The following functions are available in Extended and Disk:
CINT CINT (X} Converts X to integer.

CSNG CESNG{X} Converts X to single precision.

CDBL CCBL(X) Converts X to double precision,

If the argument is in the range -32768 to 32767, the
CINT (X)=INT(X). Qtherwise, CINT will produce an OVERFLOW

errar.

CHRS CHRS({I) 89X, Extended, Disk

Returns a string whose one element has ASCII code I. ASCII

L

January, 1977 Pag

codes are in Appendix A.
cas COS (X} 8K, Extended, Di
Returns ceos{X). X is in radians.

ERL Extended, Disk

Returns the number of the 1line in which the last g
occurred.

ERR Extended, Disk
Returns the error code of the last error.

ERR ERR(I) Disk

e 79

sk

rror

Returns perameters of disk errors. After a DISK I/C ERROR,

ERR(#) returns number of the disk, ERR(l) returns the £
number (8-76) , ERR{2) returns the sector number, ERR{3
ERR({4) return the low and high order 8 bits of
cumulative count of disk errors regpectively.
EXP EXP(X) 8K, Extended, DJ
Returns e to the power X. X must be <=87.3365.

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X)
equivalent to SGN(X)*INT(ABS(X)). The major differ]
between FIX and INT is that FIX dces not return the

lower number for negative X.

FRE FRE(9) BK, Extended, Di
Returns number of bytes in memory not being used by Ba
If argument is a string, returns number of free byte
string space.

HEXS$ HEZS(X) Extended, Disk

Returns a string which represents the hexadecimal of
decimal argument.

INP INP(I) 8K, Extended, Di
Reads a byte from port I.
INSTR INSTR{[I,]X$,YS) Extended, Disk

Searches for the first occurrence of string Y$ ia X§

rack
and
the

sk

is
ance
next

SIC.
g in

the

sk

and

Danwary, 1977 Page 89
returns the position. Optional offset I sets position for
starting the search. @<=I<=255. If I>LEN(X$), iIf X§ is \.

null or 1if Y§ cannot be found, INSTR returns A. If ¥$ is
null INSTR returas I or 1. Strings may be string variable
values, string expressions or string literals,

INT INT{X} ALl

Returns the largest integer <=X

LEFTS LEFTS (X5,I} 8K, Extended, Disgk
Returns leftmost I characters of string Xs.

LEM LEN (X$} 8K, Extended, Disk

Returns length of string X3. Non-printing characters and
blanks are counted.

LOG LOG{X) 8K, Extended, Disk
Returns natural log of X. X»@
LPOS LPOS (X) Extended, Disk

Returns the current position of the line printer print’ head

within the 1line printer buffer, Does not necessarily give a
the physical position of the print head. The exprassion ¥ "
mugt be given, but the value ig ignored. '

MID$ MIDS(X$,1{.J]) 8K, Extended, Disk

Without J, returns rightmost characters from XS beginning
with the Ith character. If I>LEN(X$), MID$ returns the null
string, @<I<255. With 3 arguments, ceturns a string of

length J of characters from X§ beginning with the Ith
character. If J is greater than the number of characters in
X§ to the right of I, MID$ returns the rest of the string.

B<=J<=255.
QCTS OCTS (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
degimal argument.

RND RND(X) All

Returns a randem number between € and 1., X<P starts a new
sequence of random numbers. X>8 gives the nest random
number in the sequence. X=@ gives the last number returned.
In BE, Extended and Disk, sequences started with the same

negative number will be the same, u

tnuary,

L

1977 Pagp

returns the position. Optional offset I sets position
starting the search. B<=I<=255. If I>LEN(X$}), 1if X8
null or if ¥$ canneot be found, INSTR returns 8. If ¥§
null INSTR returns I or 1. Strings may be siring wvaria
values, string expressions or string literals,

INT INT{X) All
Returns the largest integer <=X
LEFTS LEFTS (X$,1}

Returns leftmest I characters of string XS.

ge

for
is
is
ble

BR, Extended, Disk

LEM LEN({RS) 8K, Extended, Disk
Returns length of string X%S. Mon-printing characters |and
blanks are counted.

LOG LOG(X) 8K, Bxt=nded, Digk

Returns naturzl leg of X. X9

LPCSs LPOS (X) Extended, Disk

Returns the current positien of the line printer print® |
within the line printer buffer. Does not necessarily g
the physical position of the print head. The expression
must be given, but the walue is ignored.

MIDS MIDS(X$,I[,31) 9%, Extonded, Disg

Witheut J, returns rightmost characters from X$ beginn
wi=h the Ith character. If I>LEN(X$), MIDS returns the 1
string. ©8¢I<2%5., With 3 arguments, returns a string

length J of characters from X$ beginning with the
character. If J is greater than the number of characters
X$ to the right of I, MID$ returns the rest of the stri

B<¢=J<=255.
OCTS QCTS (X) g8, Extende

Returns a string which represents the octal wvalue of
decimal argument.

RND RND (X) All

Returns a randcm number between B and 1, %<9 scarts a

segquence of random numbers. X>8 gives the nex:t rang
number in the seguence. X=0 givss the last number returne
In 8K, Extended &znd Disk, sequances started with the sa:

negative number will be the same.

ead
ive

ing
ull

Tth
in

ng.

d,

the

Disk

huary,

7L

s

Zeturns string representation of value of X.

STRINGS STRINGS (I,J) fxtended, Disk

1977 Page B1
ros POS(1} 8K, Extended, D
Raturns present column position of terminal's oprint fead.
Leftmost position =9.

RICGHTS RIGHTE (X5,1) 2K, Extended, Disk
Returns rightmest I characters of string X$. If I=LEN{XS).,
returns XS.

SGN SGHN{X) All

If X»9, revturns 1, if %=9 returns &, 1if X<@d, returns| =1,
for example, ON 3GN(X)+2 GOTO 146,288,388 branches tog 186
i£ % is negative, 289 if X is 3 and 3399 if X is positivs.

SIN SIN(X) A1l

Returns the =sine of the value of X in radians.
COS (X} =SIN(X+3.12159/2).

SPACES SPACEZS (1) B8R, Extended, Disk
Returns a string of spaces of length I.

SPC SPC{I) BEK, Extended, D
Prints I blanks on terminal. @<=I<=255.

SQR SQR(X) all

Returns sguare root of X. X must be »>=9

STR3 STRS (X} 3K, Extengled, Di

Returns a string of lsngth I whose characters a1l have ASRCIT

coda J, See Rppendix A for ASCII cades.

TAB TAB{I} A1l

Spaces to position I on the terminal. Space @ is
leftnost. =zpace, 71 the rightnest. £ the carriace
already beyond szace I, TAB hkas no effect. 3<=I<=253,

only be usad in PRINT and LPRINT staztements.

TAN TAW(X) 311

Rzturns tancsnt{f). X is in radians,

the
is

ER

isk

isk

hge 81

‘o

January, 1977

&Lﬁ ros POS(I) 8K, Extended, Disk

Returns present column position of terminal's print |head.
Laftmost position =g.

RIGHT? RIGHTS (X$,I) 8K, Extended, Disk

Returns rightmost I characters of string X$. If I=LEN(XS),
returns X%,

SGN SGN (X) All
If %>8, returns 1, if X=4 returns 8, Lif %<9, returns -1,
Por example, ON SGM(X}+2 GOTO 199,280,308 branches Ho 184
if X is negative, 280 if X is @ and 309 if X is poaitive.

SIN SIN{X) All

Returns the gine of the valus of X in radians.
COS(X)=SIN{X+3.14159/2).

SPACES SPACES (1) 8K, Bxatended, Disk

Returns a string of spaces of langth I,
(l/, S5PC SBPC(I) IEK, Extended, Diak

Prints I blanks on terminal., @<=I<=2535,

SQR SQR(X) all

Returna sqguare root of X. X must be >=8

STR3 STRS (X) 8K, Extended, Disk

Returns string representation of value of X.

STRINGS STRINGS (I,d} Extended, Disk

Returns a string of length I whose characters all have ASCII
code J. See Appendix A for ASCII codes,

TAB TAB(I} All

Spaces to position I on the terminal. Space § 1g| the
leftmost space, 71 the rightmost, If the carriagqe is
already beyond space I, TAB has no effect. @<{=I<=255, May
only be used in PRINT and LPRINT statementsz.

TAN TAN (X) All

(i’ Returns tangent(X). X is in radians.

|EIgary, 1977 Page §2

USR USR(X) All

Calls the user's machine language subroutine with argument
X.

VAL VAL (X3} BX, Extended, Disk

Returns numerical value of string X$. If first character of
X5 is not +,- or a digit, VAL(XS$)=83.

VARPTR VARBTR{V) Extended, Disk

Returns the address of the variable given as the argument.
If the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CaLL error
will occur. The main use of the VARPTR function is to
obtain the address of variable or array so it may be passaed
te an assembly language subroutine. Arrays are ugually
passed by specifying VARPTR(A[H]) so that the lowest
addressed element of the array is returned.

NOTE
All simple variables should be assigned values in a
program before calling VARPTR for any array.

Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6=4. Special Characters

Altair BASIC recognizes several characters in the ASCIT
font as having special functions in carriage control,
editing and program interrupticn. Characters such as
Control/C, Control/3, ekc. are typed by holding down the
Control key and typing the designated letter. The special
characters in the table are listad in the order of the
versions to which they apply, starting with those common to
all wversicns and ending with those that apply only to
axtended versions,

Typed as Printed as

The following Special Characters are available in ALL
versions.

L

@ @

Erases current line and executes c¢arriage return.

(backarrow)

January, 1977 Page 83

Erases last character typed. If there is no last charjacter

types a carriage return.
- _{underline)}

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.

Contrel/C “C (in extended)

Interrupts executlon of current program or list commpangd.
Takes effect after execution of the current statement or
after listing the current line. BASIC goes to command level
and types CK. CONT command resumes execution., See section

6-1.

Separates statements in a line,
The following special characters are available in
Extended and Disk versions only.

Contral/0 "0 (in extended)

Suppresses all output until an INPUT statement

BK,

is

encountered, another Contrcl/0 is typed, an error occurs or

BASIC returns to command lewel.
? ?
eguivalent to PRINT statement.

Rubout sea explanation

Deletes previous character on an input line. First Rybout
prints \ and the last character to be printad. |Each
successive Rubout prints the next character o the 1eft,

Typing a new character causes another \ and the
character to be printed. All characters batween
backslashes are delated.

new
the

1977 Page 84

Control/U " (in extended)
Same as 4@
Control/S

Causes program execution to pause until <Control/D or
Control/C is typed.

Contrel/Q

Causes executlon to resume after Control/sS. Contzrol/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended
and Disk versions only.

Contral /A

Allows use of the EDIT command on the line currently being
typed. Control/A is typed instead of Carriage Return. See
section 5-4.

Control/I 1l to B8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8§ ¢olumn field, Flelds begin at
columns 1, 9, 17, etc. The tab character is especially
useful for formatting lines broken with line feeds. -

103<tab>FOR I=l TO 1@:<line feed>
<tab>»<tab>FOR J=1 TO ld:<line feed>
<tab><tab><tab>a(I,J)=9:<{line feed>
<tab>NEXT J,I<carriage return>

lists as:
184 FOR I=] TO 14@:
FOQR J=1 TO 13:
A(Y J)=@:2
WEXT J,1
Contrel/G bell

Rings terminal's bell
LINE FEED

Breaks & long line into shorter parts. The result is still
one BASIC line.

anuary,

L

L

1877 Pag

Denotes the npumber of the current 1line. ¥ay be
wherever a line number is t¢ be specified.

(1 (.1

Brackets are interchangable with parentheses as delinf
for array subscripts.

Lower Case Input

Lower casas alphabetlc ¢haracters are always echced as 1

used

ters

awer

case, but LIST, LLIST, PRINT and LEPRINT will translate lower

case to upper case 1f the lower case characters are not
of string literals, REM statements or single quote
remarks.

6~5. Error Magssages,

After an errer occurs, BASIC returns to comﬁand leval

part

("

and

types OK. Variable wvalues and the program text remain

intact, but the program cannot be continued by the
command. In 4K and 3K versions, all GOSUB and FOR con

CCOHNT

text

is lost. The preogram may be continued by direct mode GOTO,

however. When an error ocours in a direct statamsnd
line number is printed. Format of error messages:

Direct Statement XX ERROR
Indirect Statement ?XX ERROR IN YYYYY

where XX is the error code and YYYYY is the line n
where the error occurred. The following are the poss
error codes and their meanings:

ERRCR CCDRE EXTENDED ERROR MESSAGE N

The following error codes apply in ALL versions,

3s SUBSCRIPT OUT CF RANGE 9

An attempt was made to reference an array element which
outside the dimensions of the array. In the 8% and la
versiens, this error c¢an occur 4if the wrong number
dimensions are used in an array reference. For example:

LET A{l,1,1)=2

. Do

ber
ible

MRER

is
rger
of

1977 Page 86

when A has already been dimensioned by DIM A(14,18)
DD REDIMENSIONED ARRAY 1d

After an array was dimensioned, ancther dimensicn statement
for the same array was encountered. This error oftan occurs
if an array has been given the default dimension of 18 and
later in the program a DIM statement is found for the game
array.

b ILLEGAL FUHCTICN CALL 5

The parameter passed to a math or string function was cut of
ranga.. FC errors can eccur due to:

1. a4 negative array subscript (LET A(-1)=0)

2. an unreasonably large array subscript (>32767)
3. LOG with negative or zero argument

4. SQR with negative argument

5. A"B with A negative and B not an integer

6. a call to USR bhefore the address ¢f a machine language
subroutine has been entered.

7. calls to MID$, LEFT$, RIGHTS, INP, OUT, WAIT, PEEK,
POKE, TAB, SPC, STRINGS, SPACES§, INSTR or ON...GOTQ with

an improper argument.

ID ILLEGAL DIRECT 12

INPOT and DEF are illegal in the direct mode. In aextended
versions, however, INPUT is legal in direct.

WF NEXT WITHCOUT FCR

The wvariable in a NEXT statement corresponds ko ne
previcusly executed FOR statement.

QD OUT QF DATA 4

A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the

PTOgTam.

L

oM QUT OF MEMORY

Program is too large, has too many variables, too many
loopa, to many GOSUBs or too complicated expressions.
Appendix C,

ov OVERFPLOW

Hagacy, 1377 Page 87

FQOR
See

The result of a calculation was too large to be represented
in Altair BaASIC's number format. If an underflow occurs,
zero is given as the result and executlon continues without

any error message being printed.
SN SYNTAX ERROR

Missing parenthesis in an expression, illegal character
line, incorrect punctuation, etc.

BG RETURN WITHOQUT GOSUB

in a

A RETURN statement was sncountered before a previous GOSUB

statement was executed.

UL UNDEFINED LINE 8
The line reference ln a GOTC, GOSUB, IF...THEM...ELSE or
DELETE was to a line which does not exist.

/9 DIVISICN BY ZERO
Can occur with integer division and MOD as well as fleodting
point division. 4 to a negative power alsg causes a
DIVISION BY ZERQ error.

The following error messages apply to

3K, Extended and Disk versions only
CN CAN'T CONTINUE 17

Attempt to continue a program when none exists, an ﬂrror

occurad, or after a medification was made to the progra
LS STRING TOQ LONG

An attempt was made to c¢reate a string wmore than
characters long.

cs QUT OF STRING SPACE

String variables exceed amount of string space allocated

15
255

14

for

11

1977 Page 88

them. Use the CLEAR command to allocate more string space
or use smaller strings or fewer string varilables.

ST STRING FORMULA TQOO COMPLEX i6

A string expression was toc long or too complex. Break it
into two or more shorter ones.

™ TYPE MISMATCH 13

The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or
vice-versa; or a function which expected a s$tring argument
was given a numeric ohe or vice-versa.

gF UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had
naver been defined.

The following error messages are available in
Extended and Disk versions only.

MISSING OFERAND 20

During evaluation of an expression, an operater was found
with no aperand following it,

NQ RESUME

BASIC entered an error trapping routine, but the program
anded before a RESUME statement was encounteresd,.

RESUME WITHCUT ERROR 21

A RESUME statement was ancountered, but no errer trapping
routine had been antered.

DNPRINTABLE ERROR

An error condition exists for which there is no error
message available, Probably there is an ERROR statement

with an undefined error code,

LINE BUFFER OVERFLOW 23

An attempt was made to input & program or data line which
has too many characters o be held in the line buffer.
Shortaen the line or divide it into two or more parts.

19

22

January, 1977

L

Disk Altair BASIC Error Messages

FIELD OVERFLOW

An attempt was made to allocate more than 128 character
string variables In a 2ingle FIELD statement.

INTERNAL ERROR

Internal error in Disk BASIC. Report conditions under
error oceurred and all relevant data to MITS sof
department. This error can also be causzed by certain
of disk I1/0 errors.

BAD FILE RUMBER

An attempt was made to use & flle number which specif
file that is not OPEN or that is greater than the numbe
files entered during the Disk Altailr BASIC initializ
dialog.

FILE NOT FOUND

Reference was made in a LOAD, KILL or OPEN statement
file which did not exist on the disk specified.

BAD FILE HMODE
An attempt was made to perform a PRINT to a random £il
CPEN a random file for sequential output, to perform a
or GET on a sequential file, to load a random file

exegute an OPEN statement where the file mode is not I
or R.

PILE ALEEADY OFEN

A seguential output mode COPEN for a file was issued
file that was already OPEN and had never been CLOSEd
KILL statement was given for an OPEN £ile.

DISK NOT MOUNTED

an I/0 operation was issued for a file that was not MOU
DISE I/0 ERRCR

an I/0 error occured on disk X. & sector read (chec
error occurred eighteen {18) consecutive times.

SET TO NON-DISK STRING

Page 89

5 of

which
tware
kinds

jes a
r of
ation

to a

54
, kO
PUT
or to
¥ of
535
for a
br a
56
NTad.
57

k sum)

30

51

32

53

38

January, 1977 Page 94

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD statement.

DISE ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 6d

All disk storage is exhausted on the disk, .Delete some old
digk filesz and try again.

INFUT PAST END
An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is

executed for a null (empty) file. Use of tha EOP function
to detect End Of File will aveid this error.

BAD RECORD NUMBER 52

In a PUT or GET statement, the racord number is either
greater than the allowable maximum (2846) or equal toc zerc.

BAD FILE NAME 63
4 file name of 4 characters (null) or a file name whose
first byte was @ or 377 octal (255 decimall or a file name

with more than 8 characters was used as an argument to LOAD,
SAVE, KILL or OPEN.

MODE-MISMATCH 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or

vice versa.
DIRECT STATEMENT IN FILE 685

A direct statement was encountered during a LOAD of a
program in ASCII format. The LOAD is terminated.

TGO MANY FILES
A BSAVE or OPEN (D or R) was executed which would create a

new file on the disk, but all 255 directory entries wers
already full. Delete scme files and try again.

OUT OF RAWDOM BLOCKS 687

6l

(-1

-ﬁ'ary.
E

-

g

1977

An attempt was made to have wore random files OPEN at g
than the number of random blocks that were allocatad dug
initialization by the response o
"NUMBER OF RANDOM FILES?" guestion (sce Appendix H.

FILE ALREADY EXISTS
The new file name svecified in a WAME statement had the §
name asg another file that already existed on the disk,
a different name.

FILE LINK ERROR

During the reading of a file, a sactor was read which
naot belong to the file,

6~6. Raserved Words.

Some words are reserved by the Altailr BASIC interpreter

wsa as statements, commands, operators, etc. and thus|

not be used for wvariable or function names. The ra2s5ey
words are listed below in order of the versions for wh
they are reserved, starting with theose reserved in
versions and ending with those reserved only in Disk ALY
BASTC. Words resecved in largasr versions may be used
smaller wersiocns, =zlthough cne may want to avoid
reserved words in the interest of compatibility.

addition to the words listed belew, intrinsic function ngs

are resarved words in all wverszions in which they
available.

RESERVED WORDS

words reserved in all versicns.

CLEAR NEW
DATA NDKT
DIM PRINT
END READ
FOR REM
Gasuz RETURN
GOTD RUN
ir 3TOP
1320T TQ
LET . TAB
LIST THEN
UsR
words reserved in BK, Extended and Disk wversions. All t

Plus:

9l

nce
ing
the
68

zme
Try

he above

g9

C

Januacy, 1977

_

Page 91

An attempt was made t¢ have wmore random files OPEN at] once
than the number of random blocks that were allocated during

initialization by the response to
"WUMBER OF RANDOM FILES?" question {see Appendix E).

FILE ALREADY EXISTS

the

68

The new file name specified in a HAME statement had the same

name as another file that already existed on the disk. Ty
a different name.

FILE LINK ERRCR

During the reading of a file, a sector was read which did
not belong to the file.

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter| for
use as statements, commands, operators, etc. and thus may
not be used for varlable or functicn names. The reserved

words are listed below in order of the versions for which

they are reserved, starting with those reserved in

all

versions and ending with those reserved only in Disk Altair

BASIC. Words reserved in larger versions may be used
smaller wversions, although one may want to avoid
reserved words in the interest of compatibility.

in
all
In

addition to the words listed below, intrinsic function names

are reserved words in all wversions in which they
available.

RESERVED WORDS

Words reserved in all versions,.

CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FCR REM
GOsyB RETURN
GOTO RUN
I STOP
INPUT TC
LET TAB
LIST THEN
USR

Words reserved in 8X, Extended and Disk versions. All |the above

Plus:

are

69

Manuary,

1977

AND ON

CONT OR

DEF QUT

FN POKE

NOT SPC

NOLL WAIT

Words reserved in Extended and Disk versions.

AOTO LINE

CONSCLE kL LLIST

DEFDBL LEPRINT

DEFINT MOD

DEFSNG RENUM

DEFSTR RESUME

DELETE SPACES

EDIT STRINGS

ELSE SWAP
TROFF

ERASE TRON

ERL VARPTR

ERR WIDTH

IMp XOR

INSTR

Words reserved in Disk. All the above plus:

CLOSE LSET

DSKIS MERGE

DSKOS MOUNT

FIELD NAME

FILES OPEN

GET PUT

KILL RSET

LOAD UNLOAD

Page 92

All the above plus:

[anuary, 1977

C

DECIMAL
a9a
281
Fg2
ap3
294
285
g86
847
268
24q9
dl@
g1
§12
gl3
214
215
316
817
418
219
2@
8921
22
8923
g24
g25
426
827
a28
829
23@
231
432
833
834
#35
936
@37
938
839
43
341
842

ASCII CHARACTER CODES

APPENDIX A

CEAR -
NUL
SCH
5TX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vr
FF
CR
50
SI
DLE
bl
DC2
DC3
DC4
NAK

g

ETB

[M)
g3g

ESCAP

@k &o

1]
g
3]
5]

BT QTR AR S e

LF=Line Feed

DECIMAL
#43
244
a45
246
#47
244
249
358
51
452
653
454
855
256
357
#58
as9
1.1
g6l
a62
63
ge4
865
115
ae7
268
a69
E a7g
&71
a72
a73
874
a7s
276
477
378
a79
[1: 1)
g8l
g8
83
P84
@85
FP=2form Peed

CHAR.
+

-

GﬂmmﬂﬂozxvmuHmmwmonmbmmvnAunmmummthHa\-I

DECIMAL
a8s
487
ass
B89
asq
491
ggz2
293
894
C1E)
B98
297
#98
99
iga
141
192
133
134
165
196
17
158
139
11p
111
112
113
114
115
116
117
118
119
i2g
121
122
123
124
125
128
127

page 93

CHAR,

v
W
X
Y
z
[
\
1
<
a
b
<
a
e
'
q
B
1
3
k
1
m
n
Q
B
q
r
2
t
g
v
W
X
Y
2
{

i

DEL)

CR=Carriage Return DEL=Rubout

Jai

1977 Page 94

Using ASCII codes ~- the CHRS$ function.

CHRS (X} returns a string whose one character is that
with ASCII code X. ASC(X§) converts the first character of
a string t¢ its ASCII decimal value.

One of the most common uses of CHRS is to send a
special character %o the user's terminal. The mest cften
used of these characters is the BEL (ASCII 7. Printing
this character will cause a bell to ring on some terminals
and a beep on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user
if he has fallen asleep. Example:

PRINT CHRS3(7);

Another major use of special characters is on those
CRT's that have cursor positioning and other special
functiona (such as turning on a hard copy printer}. Far
egample, on most CRT's a form feed (CHR$(12)) will cause the
screen to erase and the cursor to "home®” or move to the
upper left corner.

Some CRT's give the wuser the capability of drawing
graphs and curves in & special point-plotter mode. This
feature may easily be taken advantage of through use of
Altair BASIC's CHRS function.

APPENDIX B
LOADING AWD INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

Pade 95

Thiz appendix details the procedure for loading BAasSIC

in 4K, 8K and Extended versions from paper tape or
cassette., For instructicons en loading Disk BASIC,
appendix ®H

The programs below are entered into wmemory through
front panel switches. Rather than specify the s
positions as "up" and "dewn", it is convenient to denotsa

tape

Ses

the
itech

the

up position as 1 and the down position as @. Taken in
groups of three, then, the switches can repra2sent octal

digits. Te save space, the switch positions in

the

following loader program listings are shown in actal

notation. The lefimost two switches in an 8 bit set

are

reprecsented by the ficst digit, the next three by the segond

digit and the lcw-order three switches by the last digit

For example, if we wish to enter octal 315 on the gdata
switch register, the switches would have the following

pasitions:

7 & 3 4 3 2 1 @
up up down down up up down up
3 : 1 5

For data entry, only the rightmest 8 switches of the
switches on the ALTAIR 8866 front panel swiich register

le
are

used. All 16 switches would e wused to encer a memory

addrecss.

The following is the procedure for leoading BASIC [rom

paper tape or cassette.

1. Turn the power switch con.

2. Raise the STO?P switch and RESET switch simultaneous

3. Switch the terminal to LINE

4, Enter one of the following programs on the front p
switches. The 88-MBL Muliti-Boot Loader PROM cont

the necegsary loader programs, so it 1s not necessary
enter a loader from the front panel if it is install
Refar to the 88-M3L manual for more information.

Ly

nnel
hins
y Lo
lad.

) APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

January, 1977 P3age 95

This appendix details the procedure for lcading |BASIC

in 4K, 8K and Extended versions from paper tape o
cassette. For instructions on loading Disk BASIC,
appendix E.

The programs below are entered into memory through

positions as "up” and "down", it is convenient to deno
up position as 1 and the down positien as g9. Tak

front panel switches. Rather than specify the qwitch
2
e

tape
See
the

the
n in

groups of three, then, the switches can represent [pctal

digits. To save space, the switch positions in

the

following loader program listings are shown in octal
notation. The leftmost two switches in an 8 bit set are
represented by the first digit, the next three by the spcond
digit and the low-~order three switches by the last digif.

For example, if we wish toc enter octal 313 ¢n the

data

switch register, the switches would have the follpwing

positions:
7 6 5 4 3 2 1]
up up down down up up down up

1 3

For data entry, only the rightmost 8§ switches of the
switcheg on the ALTAIR 88dd front panel switch register

16
are

used. All 16 switches would be used to enter a memory

address.

The following is the procedure for loading BASIC
paper tape or cassette.

1. Turn the power switch on.

2. Raise the STQP switch and RESET switch simultanecus

3, Switch the terminal to LINE

4, Enter one of the following programs on the front g
switches, The 388-MBL Multi-Boot Loader PROM cont
the necessary loader programs, so it is not necessan
enter a loader from the front panel if it is instal
Refer to the 88-MBL manual for mere information.

from

ly

anel
ains
y to
led.

&

waary, 1977

QOctal Address
ang
gal
ag2
283
PB4
aa5
¢o6
na7
818
Bl1
a12
al3
214
15
al6
ALy
828
921
922
B23

Page 96

2. loading from paper tape with the 5I0 board (REV 1)

Octal Data

241

382

@xx (17 for 4K, 37 for 8K, 77 for
a6l Extended & Disk)
422

peg

3133

age

917

338

333

gl

275

318

@55

167

3908

351

623

gaa

loading from cassette

Qctal Address
P89
gal
dp2
ag3
pa4
#as
gos
gazy
614
311
412
al3
214
915
ale
aLrz
2829
a2l
B22
a23

Cetal Data
841

382

gxx {17 for 4K, 37 for 8K, 77 for
251 Extended and Disk)
p22

Aaa

3133

46

217

333

333

8697

275

3183

Aas53

167

300

351

843

a9

Jenuzary, 1977 Ppge 97

¢. loading with the 88 PIO board

Octal Address Octal Code
215 1) g4l

gal a2z

gaz gxx {17 for 4K, 137 for 8K, 77 for
283 asl Extended and Disk)
2d4 a23

285 230

g06 333

pa7 2d4

219 346

811 51 B8

al12 ile

413 333

214 aas

Bls5 275

glé 318

a17 A55

azo 167

Azl . 3@09

g22 3351

az23 ae3

824 pag

d. loading with the 28I0 board

Octal Address QOctal Data
Goa 876
aal ag3
2d2 323
@83 228
gg4 a7eé
Aas 2L (=2 stop bits, #25=1 stop bit)
age 323
aa7 g28¢
218 441
211 362
P12 Bxx {17for 4K, 37 for 8X, 77 for
B13 A6l Extanded and Disk)
214 gaz
a1s 799
dle 333
217 g24q
az2g g17
821 328
822 333
223 gz21
524 275
b 823 31é@
926 @55

927 167

January, 1%77 Page 98

3@ laoe
231 351
@32 413
233 1))

e. loading with the 4PI0Q board

Qctal Address Octal Data
#0d 257
P8l 323
pg2 -ET]
a3 323
gn4 g41
995 876
266 P54
aa7 323
218 642
211 241
Bl2 3d2
#13 Bxx {17 for 4K, 37 for 8K, 77 for
214 #6861 Bxtended and Disk)
615 B33
gl& 2a9
a17 333
- azp g40
921 07
922 330
223 333
924 241
#25 275
826 3la
n27 2585
#38 167
231 309
932 351
@33 214
B34 pda

f. Loading with the High Speed Tape Reader

Octal Address Octal Data
a0d 257
A8l 323
g2 244
283 323
494 845
245 323
ad6 g4
aa7 57

gle 323

J- mary, 1977 Page 99

L/

811 847
812 276
813 214
gl4 323
gl5 244
816 278
a17 o4
p2a 323
g2l 846
822 323
823 247
P24 P41
225 ez
a26 dxx (17 for 4K, 37 for 8K, 77 for
27 861 Extended and Disk)
B3g 247
g3l A0
p32 333
833 #44
#34 346
gas iea
d3s 318
837 333
(h/ a4 45
: 241 275
P4z 318
g43 535
g44 167
445 389
46 351
a7 a27
954 ged

To entar these programs,

1. Put switches # to 15 in the down positions
2. Raise EXAMINE

3. Put the data for address zero in switches 4 through 7.
4. Raise DEPAOSIT

5. Put the data for the nexzt address in the switches
5'. Depress DEPOSIT NEXT

7. Repeat steps 5 and 6 until the whole lozder i= toggled

(_/ in

8‘
9.
1a.

11.
12.
13,
14.
1s.

16.

17.
13.

1g.

24,

2l.

22,

Tanuary, 1977

Page 180

Put switches # through 15 in the down positicn
Raise EXAMINE

Check to see that the lights 08 through D7 show the
data that should be in location 886. Light on =1, light
off = @. If the correct value is there, go to step 13,

if not go to 1ll.

Put the correct value in the switches

Raise DEPOSIT

Depress EXAMINE HEXT

Repeat steps 18 through 13 to check the entire leader

If there were any mistakes, check the entire loader
again to make sure they were correctad.

If 2 paper tape is being loaded, put it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 382 octal punched in each column. TIf an
audio cassette is being loaded, put it in the cassette
recorder and make sure it is fully rewound.

Lower switches 8 through 15
Raise EXAMINE

Enter the sense switch settings. See the table in
secticn B.

If loading is through a SIOA, B or C or an 88PIO, turn
on the tape reader and then depress RUON. If a cassette
is being loaded, turn on the recorder, put it in PLAY
mode and wait 15 sec¢onds. Then press RUON on the
computer. If loading is through a 4PIQ, 2SI0 or High
Speed Tape Reader, depress RUN and then start the read
device.

Wait for the tape te read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes
for 4K. <Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K, Do not move any of
the switches while the tape is being read.

If a loading error ocecurs, the loading procedure must
start over from step 1. See section C below for error

conditions.,

3

J

J: nary,

-

1977 Page 14l

23. When the tape is read, BASIC should start up and [print
MEMORY SIZE? See section D below for what to do next.

24. If BASIC will not load from cassette, the ACR

dule

may need realignment. The Input Test Program described

in the ACR Manual, pages 22 and 28 may be used to
the ACR.

B8, Sense Switch Settings

Senge switches (switches A8 through AlS5) muat be

test

set

before tape or cassette loading begins. The settings depend

on the terminal and irput interface bcards in use. The

low

order (rightmost) four switches contain the load poard

setting and +the high order four switches contain

the

terminal board setting. 1In the table below, the setting is
given for each I/0 board option. As above, the setting is

an octal number which signifies the switch positions.

The

Terminal Switch and Load Switch columns show the switches
that are raised for each of the load and terminal device

options.
Senge Switch Terminal Load
Device Setting Switchez Switches Channels
2510 g none none 20, Rl
{2 stop bits)
2510 1 Al2 A8 29, 21
{1 stop bit)
S10 2 Al3 A9 a, 1
ACR 3 All,Al2 A9, A8 6, 7
4PIO 4 al4 Ald 44, 41, 42, 43
PID 5 ald,Aalz2 Ald, A8 4, %
HSR [Al4,Al3 Al3,AS 46, 37
non=-standard 14
terminal

noe terminal 15
Ezamples:

Input from audioc cassette through ACR and CRT termi
through 25I0 with 1 stop bit.

Switch 15 14 13 12 11 18 9 g
Position 4@ a] 1 a a 1 1

Input from high speed paper tape reader, terminal
through SIO.

Switeh 15 14 13 12 11 18 ¢]

Position & 7 1] d 1 1 a

nal

Tapuary,

1977 Page 182

C. Error Detection

The checksum loader turns on the Interrupt Enable light
on the front panel when a loading error occurs. The ASCIT
cade of the error letter is stored in location &. In
addition, the error letter is sent out over all the terminal
channels and so will appear on whatever terminal is
connected to the terminal, The error letters are as
follows:

C checksum error, Bad tape data.

¥ memory error. Data won't store properly.
The address of the bad memory location is stored
in leocations 1 and 2.

QO overlay error. Attempt was made to load data on top
of the loader,

I invalid lecad device, Invalid setting on the
sense switches.

D. Initialization Dialog
Upon starting, BASIC prints
MEMORY SIZE?

To this, the user responds by typing the number of bytes of
memory te be used by BASIC and BASIC programs. Remenber
that the BASIC interpreter itself takes 3.4K in the 4K
version, 6.2K in 8K and 14.6K in Extended. If the response
is just a carriage return, BASIC will use all the memory it
can find, starting at location zero up to the last byte of
read/write memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the printing
line of whatever output device iz in use. Typing a carriage
return sets the terminal width to 72. Extended and Disk
Altair BASIC set the terminal width through the WIDTH
command, so the TERMINAL WIDTH gquestion is not asked at
initialization and an initial width of 72 is assumed. In
4¥X, the response to MEMORY SIZE? and TERMINAL WIDTH? must
be less than 6 digits,

At this point BASIC asks several quesations about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K agks,

SIN? Answer Y to sgave SIN, SQR and RND
Answer W to delete SIN and see the

g

J

J(h;gry,

1977 Page 143

next gquestion
SQR? ¥ keeps SQR and RND

N deletes SQR, asks next guestion
RND? ¥ keeps RND

N deletes RND

BE and Extended BASIC ask,

WANT SIN-COS=-TAN=-ATH? keeps all four
deletes all four

deletes only ATN

02

{in extended) retains

CONSOLE function. Apy

other answer deleteas
CONSQLE.

Now BASIC prints,
IXXX BYTES FREE

ALTAIR BASIC VERSION 4.0
[FQUR~K VERSION]

cr
[EIGHT-E VERSICHN]
or
{EXTENDED VERSION]
4

BASIC is now in command level and is ready for use.

E. Echo Routines.

The Altair input/ocutput channels work in a full-dyplex
mode. This means that characters entered on an input/ogtput

terminal will not, as a rule, be printed as they are ent

unless the computer {5 programmed to return them.

ared
The

following echo programs may be used to test the input/cutput

devices. To test an input-only device, dump the eg
characters on an output device or store them in memory
later examipation. To test an output-only device, send
echo characters through the front panel zwitches or sen
constant character, Be sure to check the ready-to-reg
bit of the output terminal before attempting ouktput. If
echo program wotrks, but BASIC does not, make sure the
device's I/0 board is strapped for & data bits and that
ready-~to-recieve bit is set properly on the terminal dev

88-PID

OCTAL ADDRESS QCTAL CCDE
gal 004
da2 346
LK) a1

heoed
for
the
d a
aive
the
lcad
the
ice.

Farmuacy, 1977

a4
@5
BB 6
#87
al@
211
812
213
a14
Bls

2510
QCTAL ADDRESS
aga
gel
a8z
B@3
6d4
gas
286
287
gle
g1l
‘al12
g13
914
815
816
al7
020
a2l
822
923
224

4PIO

QCTAL ADDRESS
oB@
a8l
892
23
ag4
BE5
g6
a87
ald
81l
8l2
g13
gl4
ais
216

312
Q&0
89
333
285
323
285
a3
a4
pgd

QCTAL CODE
276
263
323
828 (flag ch.}
B76
g2) (=2 step bits,
323 P25«1 stop big)
929
333
a24a
817
33z
414
do0a
333
P21 {data channel)
323
a2l
383
pla
gag

OCTAL CODE
257
323
24d
323
41
323
g42
457
323
#43
876
@54
323
848
323

Page 184

J

Januvacy, 1977

(v,

a17
g29
221
22
823
924
g25
a26
827
3o
B3l
g3z
LEE]
834
8435
P36
g37
244
941
242
243
244

@42
333
LT
346
260
3lz
228
a0e
333
842
346
209
31z
827
pen
333
g41
323
843
383
620
a99

Pag

e 185

aAnpary,

1977 Page 186

APPENDIX C
SPACE AND SPEED HINTS

A, Space Allocation

The memory space required for a program dJdepends, of
course, on the number and kind of elements in the program.
The following table containg informatien on the space
required for the various program elements.

Element Space Reguired

Variables
numeric integer 5 bytes
single precisien 7 bytes in Extended and Disk

6 bytes in 4K and 8K
double precision 11 bytes
string 6 bytes

Arrays
integer (% of elements)* 2 + 6 +(3 of dimensions)*2 bytes
single precisicn 4+ 5
double precision 8
string : 3
8K and 4K

strings and floating pt., & + 5

Functions
intrinsie 1 byte for the call (2 bytes in Extended and Disk}

user-defined & bytes for the definitiocn :

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Other Characters
1l byte each

String Space 1 byte per character

Stack Space
active FOR
laop 17 bytes in Extended and Disk,
16 bytes in 4K and 8K
active GOSUB 5 bytes
parentheses 6 bytes each set
temporary
result 12 bytes in Extended and DPisk
14 bytes in 4K and 3K

January,

w

1377 Page 187
BASIC itself takes about 3.4K in the 4K version, | 6.2K
in 8K, 14.6K in Extended and 20 K in Disk.

B. Space Hints

The space reguired to run & program may| be
gsignificantly reduced withogt affecting exectuicon by
following a few of the folleowing hints.

1. Use multiple statements per line., Each line haz [a 5
byte overhead for the line number, etc., S0 the [fewer
lines there are, the less storage is required.

2. Delete unnecessary spaces, Instead of writing

12 PRINT X, Y, 2
use
18 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and 1|byte
for each character ¢f the remark.

4. Use variables instead of costants, expecially when| the
same value i3 used several times. For example, using
the constant 3.1415% ten times in a program uses 48
bytes more space than assigning

16 P=3.14159
once and using P ten times.

5. Using BWD as the last statement of a program is| not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining| new
variables.

7. Use subroutines instead of writing the same |code
several times.

a. Use the smallest wversion of BASIC that will run| the
program.

9, Use the zerc elements of arrays. Remember the Jrray
dimensioned by

188 DIM A(l8}
hag eleven elements, A(8) through A{ld).

Jan

uary, 1877

1g.

Page 148

In Extended and Disk, use integer wvariables wherever
possible.

Speed Hints

Deleting spaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. S0, reusge
variable names and keep the list of variables as short
a3 possible.

In 8K, Extended and Disk use ¥NEXT without the index
variable.

8K, Extended and Disk have faster floating point
arithmetic than 4K. 1If space is not a limitation, use

the larger wersions,

The math functions in 8K, Extended and Disk are faster
than theose in 4K.

In the 4K and 8X versions, wuse variables instead of
constants, especially in POR loops and cther code that
must be executed repeatedly.

In Extended and Disk wuse integer wvariables wherever
possible.

o

fancary, 1277 Page

APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions

149

The following functions, while not intrinsiec to ALTAIR
BASIC, can be calculated using the existing BASIC functlons.

FPunction: BASIC equivalent:

SECANT SEC(X) = 1/C0S5(X)

COSECANT CSC{X} = 1/8IN(X)

COTANGENT COT(X) = 1/TAN(X}

INVERSE SINE ARCSIN(X} = ATN(X/SQR(=X*X+1})

INVERSE COSINE ARCCOS (X) = <-ATN X(X/SQR(=X*X#1))
+1.5788

INVERSE SECANT ARCSEC{X) = ATN(XSQR(X*X~1))
+SGN(SGN(X)-1)*1.57498

INVERSE COSECANT ARCCSC(X) = ATHN(1/BQR(X*X-1)}
+{SGN(X)-1)*1.5758

INVERSE COTANGENT ARCCOT(X) = ATN(X)+1.5708

HYPERBOLIC SINE SINH(X) = (EXP({X)-EXP(~X))/2

HYPEREQLIC COSINE COSH(X) = (EXP(X)+EXP(=~X))/2

HYPERBOQLIC TANGENT TANH{X) = EXP(-X}/ExP(X)+EXP(-x})_
*2+1 ’

HYPERBOLIC SECANT SECH(X) = Z/(EXP(X)+EXP(=2X)}

BYPERBCLIC COSECANT CECH(X}) = 2/(EXP(X)=-EXP(=-X))

HYPEREOLIC COTANGENT COTE(X) = EXP{=-X}/{EXP({X)=EXP[=X})
*2+]

INVERSE HYPERBQLIC

SINE ARCSINH{X) = LOG({X+5QR({*X+1)

INVERSE BYFERBOLIC

COSINE ARCCOSH (X) = LOG(R+SQR{X*X+-1}))

INVERSE HYPERBOLIC

TANGENT ARCTANH{X} = LOG((l+X)/(1-X))/2

INVERSE EYPERBOLIC

SECANT ARCSECH(X) = LOG((SQR(=-X*X+1)+1)/X)

INVERSE HYPERBOLIC

COSECANT ARCCESCH(X) = LOG{(SGH(X)*

SQR{X*X+1)+1) /X
INVERSE HYPERBOLIC
COTANGENT ARCCOTH(X) = LOG{(X+1)/(X-1)}

"$2, Simulated Math Functions.\&

[&)

The following subroutines are intsnded for 4% BASIC users

uary, 1977

who

the

Page 118

want to use the transcendental functions not built into
4K BASIC. The corresponding routines for these functions in
8% version are much faster and more accurate. The REM \l

statements in these subroutines are given for documentation
purpeses only, and should not be typed in because they take

up a large amount of memory. The following ara the
subroutine calls and their 8K equivalents:

8K EQUIVALENT 4X SUBROQUTINE CALL

P9=X9" Y9 GOSUB 690308

L9=LOG (X5) GOSUE 68690

E9=EXP (X9) GOSUB 6@l60

C9aC0s (X9) GOSUB 68244

TY=TAN (X9) GOSUB 4@28d

A9=»ATN {X9) GOSUB 6@31d

The unneeded subroutines should not be typed in. Please
note which variables are used by each subroutine. Alsc note
that TAN and COS5 require that the SIN function be reatained
when BASIC is loaded and initialized.

6499a
6p0le
68024
68630
60440

CEELET
6gped
686749
68880
68890
601849
6@1la@
68120
6@Ll3a

68135
68148
52158
68160
66178
6E175
66180
gdlog
E8195
6gl97
60249
68219
682208
50230

REM EXPONENTIATION: P9=X9"¥9

REM NEED: EXP, LOG
REM VARIABLES USED: A%,B9,C9,E9,L9,P3,.X%9,Y%

REM P9 =1 : E9=8 : IF Y9=@ THEN RETURN
IF X9<@ THEN IF INT(¥3)=Y9 THEN PO=l~2*Y9+4*INT(¥9/2}

P {9==-X9 .
IF X9<>@ THEN GOSUB 68092 : X9=Y9*L9 : GUSUB 621ed ‘
B9=P9*EYS : RETURN ’
REM NATURAL LOGARITHM: LS=LOG(X9)
REM VARIABLES USED: A%,B9,C9%,E9,L9,X9%
E9=f : IF X9<=§ THEN PRINT "LOG FC ERROR":; : STOP
A9=1: BY9=2: (C9%=,5: REM THIS WILL SPEED THE FOLLOWING
IF X8>=A9 THEN X9=C9*XD3 : E9=ES+A% : GOTO 6814@8
X9=(R9-. 787137} /{X9+.7077147) : LI=X9*X9
La=(({.598979%L9+,961471) *L9+2.885339) "X9+E9=-,5) *
.693147
RETUEN
REM EXPONENTIAL : E9=EXD(X9)
REM VARIABLES USED: A%.ES,L%.,X9
LO=INT({1.4427*X9)+1 : IF L9<127 THEWN 6£138
IF X9»>P THEN PRINT "EXP OV ERROR"; : 3TCQP
E9=8 : RETURN
E9=.593147*L5-XY% : AS5=1.32938E-3-1.4131RE-4*ESQ
A9=((A9*E9-8.30136E-3) *E9+4.16574E-2) *E9
E9=({A9-.166665) *E9~1) *EO+1 : A9=2
IF LS<=g THEN A9=.5 : L9=-L% : IF LS=0 THEN RETURN
FOR X9=]1 TO L9 : E9=A9*ES : NEXT X9 : RETURN
REM COSINE: C9=COS({X9)
REM HW,B. SIN MUST BE HRETAIMED AT LOAD-TIME
REM VARIABLES USED: C9,X9

January,

C

1977

60240
60258
6B26¢
60270
60288
68299
6a3ad
68314
68329

68338
608348

Page 111

C9=SIN(X9+1.5708) : RETURN
REM TANGENT: T9=TAN{X%)
REM NEEDS COS., (SIN MUST BE RETAINED AT LCAD=-TIME)
REM VARIABLES USED: C9,T9,X9

GOSUB 60240 : T9=SIN(X9)/C% : RETURM
REM ARCTANGENT : A9=ATN(X9)

REM VARIABLES USED: A9,B9,C9,T3,X9

TIaSGN (X9} : X9=ABS(X9):C9=4: IF X>1 THEN C9%=1l: X9=1/X9

AJ=X9*¥H9 : BY9=((2.86623E~3*A9-1.61657E=2) *AY
+4,29996E-2) *AS

B3=((({B9-7.5289E-2) *A0+,106563) *A9~-.1142889) *A9+.1999345) =49
A= ({B9=,333332)*a9+1)*X9 : IF C9=1 THEN A9=1,570B-A%

1977 Fage 112

APPENDIX E
N BASIC AND ASSEMBELY LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR
function allows Altair BASIC programs to call asaembly
language subroutines in the same manner as BASIC functions,

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside
memory space. When BASIC asks, MEMORY SIZE? during
initializatien, the response should be the size of memory
avallable, minus the amcunt needed for the assembly language
routine. BASIC uses all the bytes it can f£ind from location
zero up, so ohly the topmost locations in memory can be used
for wuser supplied routines. If the answer to the MEMORY
S8IZE? question is too small, BASIC will ask the question
again wuntil it gets all the memory it needs. See Appendix

The assembly language routine may be lcaded into memory
from the front panel switches or from a BASIC program by
means of the POKE statement.

The starting address of the assembly language routine
goes in OSRLOC, a two byte location in memory which varies
from version to version. USRLOC for 4F and 8K Altair BASIC
version 4.4 is 111 decimal. In Extended and Disk, USRLOC
need not be known explicitly since it is defined
automatically by DEFUSR. See section 5-3b. The function
USR c¢alls the routine whose addrass is in USRLOC.
Initially, USRLOC contains the address of ILLFUN, the
routine which gives the FC or ILLEGAL FUNCTION CALL error,
which 1s what happens if USR is called with no assembly

language routine having been lcaded.

When USR is c¢alled, the stack pointer is set up for 8
levels (16 bytes) of stack storage, If more stack space is
needed, BASICs stack can be saved and a new stack set up for
use by the assembly language reutine. BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly language routine. Of course, memocy
locations within BASIC ought not to be changed, nor should
more bytes be popped off the stack than were put on it.

USR is c¢alled with a single argument. The assembly
language routine c¢an retrieve this argument by calling the
routine whose address is in locations 4 and 5 decimal. The

ENUArY,

1277 Page

AFPENDIX E

BASIC AND ASSEMSLY LANGUAGE

All versions of Altair BASIC have provisions
interfacing with assembly language routines. The

112

for
UsSR

function allows Altair BASIC programs to call assepbly
language subroutines in the same manner as BASIC functiops.

The first step in setting up & machine langpage
eubroutine for an Altair BASIC program 15 to set apide
MEMQrY Space. When BaSIC asks, MEMORY SIZE? dufping
initialization, tha response should be the size of mehmory
available, minus the amount needed for the assembly langpage
routine. B3B85IC uses all the bytes it can find from locafkion
zero up, so anly the topmest locations in memory can be psed
for user supplied routines. If the answer to the MEMORY
SIZE? question is too =mall, BASIC will ask the gueskion
again until it gets all ihe memery it needs. See Appehdix

c.

The assembly language routine may be loaded into mepory
from the front panel switches or from a BASIC prograp by

means of the POKE statement,

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies

from version to versionbcﬁ

LJJSRLOC for 4K and 8K Altair BASIC

version 4.8 is 111 de¢imal. In Extended and Disk, USRLOC
need not be Xnown explicitly since it is defined
automatically by PDPEFUSR. See section 5-3b., The function
USR c¢alls the routine whose address is in USRLOC.

Initially, USRLOC contains the address of ILLFDN,
routine which gives the FC or ILLEGAL FUNCTION CALL ery

the
or

which is what Thappens if USR is called with no assepbly

larguage routine having been loaded.

When USR is called, the stack pointer is set up forz

levels (16 bytes) of stack storage. If more stack space

needed, BASICs stack can be saved and a new stack set up

use by the assembly language routine. BASIC's stack must

restored, however, before returning from the usezr routins

All memory znd all the ragisters can be changed 3y
user's assembkly language routine. Cf course, nen
locations within BASIC ought not to be changed, nor shg
more bytes be popped off the stack than were put on it.

USR 1s called with a single argument. The assen
language rontine can retrieve this argument by calling
routine whose address is in locations 4 apd 5 decimal,

is
for
be

ory
uld

bly
the
The

C

January, 1977 Page 113

low-order byte of the address is in 4 and the high-order in
5. In 4K and 8%, this routine (DEINT) stores the argument
in the register pair {D,E]. In Extended, the argument is
passed in pair {H,L]. The argument is truncated to integer
in 4K and 8K, and if it is not in the range =-32768 to 3R767,
an FC ertor occurs., In extended, the register pair [H,L]
contains a pointer to the Floating Point Accumulator where

the argument is stored (see section 5«3b. for
information}.

nore

To pass a result back from an assembly language
routine, load the value in register pair [A,B] in 4K and 8K,

or [H,L] in Extended. This value must be a signed, 16

bit

integar as defined above. Then c¢all the routine ghose

address is in locations 6 and 7. If this routine is
called, USR(X) returns X. To return to BASIC, then
assembly language routine executes a RET instruction.

not
the

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 axe used to hold a JMP
instruction to a user supplied interrupt handling roufine,
Location 56 Initially holds a RET, so it must be set yp by

the user or an interrupt will have no effect.

All interrupt handling rocutines should save the stack,

registers A-L and the PSW. They should also reen
interrupts before returning sinee an interrupt automatig
disables all further interrupts once it is recelved.

There is only one way to call an assembly lang

able
rally

uage

routine in 4K and 8K, but this does not limit the programmer

to only one assembly language routine. The argument of
can be used to designate which routine is being called.
8%, additional arguments can be passed through the use
PORE and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may
called with the USR8 - USRI functions. For more informd
on this feature, see section 5=-3b.

OSR
In
of

be
tion

Jaguary, 1977 Page 114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette, and in Extended and Disk wversions. 8K
BASIC on paper tape will give the user about 254
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in either direct or
indirect mode, and its format is as follows:

CSAVE <{strinrg expresgion>

The program currently in memory is gaved on cassette under
the name specified by the first character of the STRING
expression>, CSAVE writes through channel 7 when the Write
Buffer Empty bit (bit 7) of chanhel 6 is low. After {SAVE
iz completed, BASIC always returns to command level.
Programs are written an tape in BASIC's internal
representation. Variable values are not saved on tape,
although an indirect mode CSAVE does not affect the variable
values of the program currently in memory. The number of
nulls (see NULL command) has no affect on the operation of
CSAVE. Before using CSAVE, turn on the cassette recocder,
make sure the tape is in the proper vosition and put the
recerder in RECORD mode.

Programs may be loaded from cassette tape by means of
the CLOAD command, which has the same format as CSAVE. The
effect of CLOAD is to execyte a NEW command, clearing memory
and all variable values, and lcading the specified file into
memory. When done reading and loading, BASIC returns to
command level. CLOAD reads a byte from channel 7 when the
Read Data Ready bit (bit 8) in channel 6 iz low. Reading
continues until 3 consecutive zeros are read, BASIC will
not return to ¢ommand level after a CLOAD if it could not
£ind the requested file or if the file was found but did not
end with 3 zeros. 1In that case, the computer will continue
to search until it is stopped and restarted at location 4.

anuary,

L

1977 Page 114

APPENDIX F

USING THE ACR INTERFACE

NOTE

Tha cassette features , CLOAD and CSAVE , are only
present in BK Altalr BASICs which are distributsd eop
cassette, and in Extended and bisk versions. 8H
BASIC on paper tape will give the user about 25§
additicnal bytes of free memory, but it will nof
recognize the CLCAD or CSAVE commands.

Programs may be saved on cassette tape by means of
CSAVE command. CSAVE may be used in either dired
indirect mode, and its format is as follows:
. - . Ld& ?f?o
CSAVE <string expression> NoTE ‘THA’E* 7é§9us"ﬂ'
. _F-'__#_,,.r-‘)' 15 SAUED
The program currenﬁ;g,in’memory is saved on cassette o
the name specifi®d by the first character of the(sT
expression>. “CSAVE writes through channel 7 when the W
Buffer Empty bit (bit 7) of channel & is low. After (
iz conmpleted, BASIC always returns to command b=
Programs are written Gon tape in BASIC's inte
represantation. Variable values are not saved on t
although an iadirect mode CSAVE does not affect the vari
values of the program currently in memory. The number
nulls (see NULL .command) has no affect on the operatiog
C3AVE., Before using CSAVE, turn on the g¢assetts recor
maka sure the tape 1is in the proper position and put
recorder in RECCRD mods. -

Programs may be loaded from cassestte tape by mreans
the CLOAD command, which has the same format 25 CSAVE.
effact of CLOAD i5 to executs z NEW command, ¢learing me
and all wvariable values, and lcading the specified file
memory. when done reading and 1loading, BASIC returns
ceommand level. CLOAD reads a byte froem channel 7 when
Read Data Ready bit {bit @) in channsl 6 i3 low. Rea
continues until 3 consecutive zeros are read. BASIC
oot return to command level after a CLOAD if it could
find the reguested file or if the file was found but did
end with 3 zeros. In that case, the computer will c¢ont
to search until it is stopped and restartsd a2t location

the
t or

FRA

nder
RING
rite
SAVE
vel,
rnal
a2pe,
aple
of
n of
der ,

the

of
The
MOy
into

to
the
ping
will
nat
nat
inue
.

o B

i

bﬁMEDP

G

>

Jangary, 1977 Fagp 115

In the 8K cassette and Extended versions of ALTAIR
BAS1C, data may be read and written with the CSAVER and

CLOAD* commands. The formats are as follows:
CSAVE*<array variable name>

and

CLOAD*<array variable name>

See section 2-44 for a discussion of CSAVE* and CLOAD*| for
array data.

CLOAD?<string expressiond> compaces the program
currently in memory with the specified file on cassatte If

the two files match, BASIC prints OK. If not, BASIC prints

NQ GOQD.

Data may also be read from and written on cassette in
the papar tape version of 8K Altair BASIC. T¢ write data,
execute a WAIT 6,128 statement to check for the Write Byffer

Empty bit and then write with an OUT 7,<byte> statement
read, execute a WAIT 6,1 to check for Read Data Ready

To
and

then read with an INP(7). The end of a block of data may be

conveniently designated by a special character. Data sh
be stored in array form since there is no time dy
reading and writing for computation.

iould
iring

January, 1977 Page 1llé
i
APPENDIX G .
CONVERTING BASIC PROGRAMS
NCOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
i are in many ways similar, there are gsome incompatibilities
I between ALTAIR BASIC and the BASIC used on other computers.

1} Strings.

A number of BASICs require the length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaraticn of the form DIM A$(I,J) declares
a string array of J elements each of which has a length I.
Convert DIM statements of this type to equivalent cnes in
Altair BASIC: DIM A$(J). Altair BASIC uses " + " for
string concatenation, not * , * or " &.° ALTAIR BASIC uses
LEFT?$, RIGHTS and MID$ to take substrings of strings. Some
other BASICs use AS(I) to access the Ith character of the
string A%, and AS(I,J) to take a substring of AS from
character position I to character positien J. Convert as

follows:
QLD NEW
AS(I) MIDS{AS,I,1)
i AS{I,T) MIDS {3$%,1,J-I+1}

i This assumes that the reference to a subscript of A5 is in

; an expression or is on the right side of an assignment. If
i the reference to A$ 1is on the left hand side of an

assignment, and X$5 (s the string expression used to replace
characters in A$, convert as follows

In 4K and 3k

QLD NEW

AS{I)=X$ AS=LEPTS{AS,I-1) +X5+MIDS (AS5,I+1)
AS(I,J)=X$ AS=LEFTS{AS,I-1}+X$+MIDS (AS,J+1)
Extended and Disk

OLD WEW

AS(I)=X3 MIDS{AS,1,1)=X$

AS(I,J)y=X3% MIDS (A§,I,J=-1I+1)=X3

C

2) Multiple assignments,
Some BASICs allow statements of the form:
5@ LET B=C=Q

This statement would set the variables B and C to zero}
8K Altalr BASIC this has an entirely different effact

January, 1377 Page 117

In
all

the ® = * signs to the right of the first one would be
interpreted as logical comparisen operators. This would set
the variable B to -1 if C equalad 8. 1If C did not equal @,
B would be set to @. The easiest way to convert statements

like this one is to rewrite them as follows.

508 C=@f:Hm(

3) Some BASICs use " \ " instead of * " to delimit

multiple statements on a line. Change each * \ " to ™
in the program.

4} Paper tapes punched by other BASICs may have no nullls at

the end of each line, instead of the three per

line

recommended for use with Altair BASIC., To get around (|this,
try to use the tape feed control on the Teletype to stop the
tape from reading as soon as Altair BaSIC prints a carriage

return at the end of the line. Wait a moment, and

then

continue feeding in the tape. When reading has finished, be

sure to punch a new tape in Altair BASIC's format.

A program for converting tapes to Altair BASIC's fprmat

was published in MITS Computsr Notes, November 1976, P.

5) Programs which use the MAT functions available in
BASICs will have to be re-written using FOR...NEXT loo)
perform the appropriate operations.

25,

some
ps to

Nanuary, 1977 Page 118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks Use

#-5 . Disk BASIC memory image.

6-63 Space for either randem or sequential files.
70 Directory track. See below.

71-76 Space for sequential files only,

Format of DISK BASIC Memory Image {Tracks d-5):

BASIC is leoaded starting at track 4 sector # then track &
2ector 1, etc. Each sector contains 128 bytes of BASIC.
The first 128 bytes are loaded first, second 128 second,
etc,

Sector format ([Tracks d4-5):

Byte Use
) Track Humber+]28 decimal.
1-2 Sixteen Bit address of the next
higher byte of memory than the highest memory location
saved on this sector.
3-134 128 bytes of BASIC.
131 255 decimal stop byte.
132 Checksum - sum of bytes 3-138 with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte Use
d Most Significant Bit always on.
Contains track number plus 284 octal.
1 Sector number * 17 MQD 32.
2 File number in directory. Zeroc file number means

that the sector is not part of any file. If the
sector is the first file of a group of 8 sectors
? means the whole group of 8 sectors is free.

Rnuary,

1977 Fage

3 Humber of data bytces written (@ to 128) . Always

128 for random files. (EBxceot for the random filg
index blocks in which case this byte indicates 1}
groups are allocated to the file.)

4 Checksum. The sum of all the data on the sector
except for the track number, the sector
aumber and the terminating 255 byte.

5,6 Pointer to the next group of data. This 1s set up
randam files and sequential files, and is even val
in the middle of a group. If it is zero it means §
is no mere data in the file, The track is the firg
and the sector number is the second byte.

7-134 Data

135 A 255 (octal 377) to make sure the right number
of data bytes were read.

136 Unused.

Directory Track (78) Format:

Zach sector of the directory (which is all of track
iz composad of up to 38 file name slots, 16 bytes per
Each slot can contain a file name (8 bytes}), a link toj
start of file dazta (2 bytes), and & byte which specifie
mode of a file {(Random=4, Seguential=2}. The remainin
bytes are not currently used. Any slot which has the f
filename byte equal to zero centains & file which has
deleted. If +fthe first byte of a slot is a 255 , it is
last slot currently in use in the directory. 8lats bg
the “stopper™ are garbage. Flle numbers are calculate
multiplying the sector number of the directory track
fila is in by X8fand adding the position of the slot in
sector (B-8) plus 1.

Z=7

NOTE

The ith legical sector on a track is actually mapped
to the 1*17 HKOD 32 3physical sector to improve
latency in BASIC I/C operations.

Format of Random Filas

Each random file starts with two random index blecks.
"rnumber o0f data bytes" field in the first bleck indic
hew many groups are currently allocated to this random f
The next 256 bytes in the two randem index blocks give
location of each group in the random file in order of &
wosition in the file. The upper two bits give the g
number , and the lower six bits give the track number -

ow many

for

id
hete

t byta

76)
lot.
the
the
g 5
irst
been
the
vond
d by
the
the

The
Etes
ile.
the
heir
roup
b.

C

3 Number of data bytes written (@ to 128) . Always

128 for random files, (Except for the random file
index blocks in which case this byte indicates

groups are allocated to the file,)

4 Checksum. The sum of all the data on the sector
except for the track number, the secter
number and the terminating 255 byte.

56 Pointer to the next group of data., This is set up

Januacy, 1977 Page 119

how many

for

random files and sequential files, and is even valid

in the middle of a group. If it is zero it means

there

igs no more data in the file. The track is the first byte

and the secteor number is the second byte.

7+134 Data

135 A 255 {octal 377) to make sure the right number
of data bytes were read,

13s Unused.

Directory Track {(79) Format:

Bach sector of the directory (which is all of track 748)
is conposed of up to 8 file name slots, 16 bytes per [slot.

Each slot can contain a file name (8 bytes), a link to

the

start of file data (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2}. The remaining 5
bytes are neot currently used. Any slot which has the |first

filename byte equal to zeroc containg a file which has

last slot currently in use in the directory. Slets b
the ‘“"stopper™ are garbage. File numbers are calculat
multiplying the sector number of the directory track

deleted. 1f the first byte of a slot is a 255 , it iE the

been

yond
d by
the

£ile 1is in by 16 and adding the position of the slot in the

sector (P-8) plus 1.

NCTE

The ith logical sector on a track is actually mappe
to the i*17 MOD 32 physical sector to improw
latency in BASIC I/0 cperations,

Format of Randcm Files

Each random file starts with two random jindex blocks.

"number of data bytes" field in the first bhlock indi
how many groups are currantly allccated to this random

The next 256 bytes in the two random index blocks giwve
location cf each group in the random file in order of
position in the file. The upper two bits give the ¢
number ., and the lower six bits give the track number -

(2]

Ll

The
rates
File.
2 the
their
Jroup

RnGary,

1977 Page 124

Agssemnbly Code to Read and Write a Sector

The follewing code has been provided t¢ help users write
their own assembly language subroutines to read and write
data on the floppy disk. 1t is assumed that the disk being
used - has already been enabled and positioned to the correct
track. Two data bytes are always read or written at a time
so that the CPU0 can keep up with the data rate (32
microseconds/byte) of the floppy disk. After two bytes are
read or written, the CPU re-synchronizes with the next 'hyte
ready' status from the floppy disk controller,

CALL WITH NUMBER OF DATA BYTES TC WRITE IN [A]

; AND} PCINTER TQ DATA BUFFER IN [H,L}

ALL REGS DESTROYED.

DEKO: MOV C.,a +SAVE # OF BYTES IN C
MVI A, 136 ;CALCULATE NUMBER OF ZEROS TO WRITE
SOB C ;SUBTRACT THE NUMBER OF DATA BYTES
Mov B,A ;NUMBER OF ZEROS+1
CALL SECGET ;s LATERCY
MVI A,128 ;ENABLE WRITE WITHOUT SPECIAL CURRENT
ouT 9
¥
; CALL WITH [B]|=NUMBER OF ZEROS ([C]=NUMBER OF DATA BYTES
; AND [#,0] POINTING AT OUTPUT DATA
OHLDSK: MVI D,1 ;SETUP A MASK (READY TO WRITE)
MVI A,l28 ;HIGH BIT (D7) ALWAYS ON IN FIRST BYTE
QRA M ;OR ON DATA BYTE
MOV E.A ;SAVE FOR LATER
INX H + INCREMENT BUFFER POINTER
NOTYTD: IN 8 ;GET WRITE DATA READY STATUS
ANA D +TEST STATUS BIT
JNZ NOTYTD ;NOT READY TO WRITE, WAIT
ADD E ;ADD BYTE WE WANT TO SEND TQ ZERO
ogT 18 ;SEND THE BYTE
MoV A M ;GET NEXT BYTE TO SEND
InX H sMOVE BUFFER POINTER AEEAD
Mov E.M ;GET NEXT DATA BYTE
INX i ;MOVE BUFFER POINTER AHEAD AGAIN
DCR c ;DECREMENT COUNT OQF CHARS TO SEND
JZ ZRLOP +IF DONE, QUIT & GO TO ZRLOP
DCR c ;DECREMENT COUNT OF CHARS AGALN
auT 19 ;SEND THIS BYTE
JNZ NOTYTD ;STILL MCRE CHARS, DO THEM.
ZRLOP: IN 8 ;+GET READY TO WRITE
ANA D +IS IT READY
JN2 ZRLOP sIF NOT, LOQP
ouT 18 ;KEEP SENDING FINAL BYTE
DCR B +DECREMENT COUNT QF BYTES TO SEND

J

J

Januarcy, 1977

(u -
El
MvVI
out

RET
H

DSKI: CALL
MVI
RERDOK:
ORA
JM
IN
MOV
INX
DCR
J5
DCR
NOP
IN
MoV
INX
JNZ
(_/ RETDO:
' MYI
RET

SECGET:
out
DI

SECLPZ:

Jc

ANI
CMP
JNZ
RET

highest p
the PROM

PROM shou

ouT

ZRLOP

a8
9

DISE INPUT ROUTINE.
OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.

SECGET
C,137
IN

A
READOR
18

M,A

E

c
RETDOQ
C

Y|

M,A

H
READOK
El

A8

9

MVI
9

IN

SECLP2
3l

E
SECLP2

Tha Disk BROM Boctstrap Loader

osition

IC sockest on the opposite side of the board
the black finned heat sink.

1d be in

ENTER WITH PCINTER

5,4

The Disk bootstrap loader PROM must be
con the PROM hoard and the PROM board

be strapped at the proper address. position

Page 121

;REEP WAITING
1RE-ENABLE INTERRUFTS
sUNLOAD HEAD

;SEND CCMMAND

sDONE

sPOINT T0 RIGHT SECTOR

$GET # OF CHARS TO READ
$GET DISK STATUS

;READY TQO READ BYTE

;READ TEE STUFF
:SAVE IN BUFFER
;BUMP DESTINATION PQINTER
;LESS CHARS

;IF QUT QF CHARE, RETURN
:+DECREMENT COUNT OF CHARS
:1DELAY INTO NEXT BYTE
;GET NEXT BYTE

$+SAVE BYTE IN BUFFER
+MOVE BUFFER POINTER
:+IF CBARS STILL LEFT,

LOQOF BACK

s RE-ENABLE INTERRUPTS

;UNLOAD SEAD
1SEND COMMAND

+LOCAD THE HEAD

;DISABLE INTERRUPTS

3GET SECTOR INFOD
1FIX UP SECTOR #
:1IF NOT, RKEEP WAITING
;GET SECTOR #
+IS IT THE CONE WE WANTED
;TRY TO FIND IT

installed in

The proper

the
must
is
from

The black det or

the upper left corner.

jumpers on the PROM hoard must be in the 'l' positien.

'1' on| the
The address

an

Hary,

1977 Page 122

To use the Disk bootstrap loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177480 (address switches Al5-2aB
up, rest down) and then set the sense switches for the
terminal I/0 board as explained in Appendix B, Depress the
RUN switch. BASIC should print (or display}:

MEMORY SIZE?

For the rest of the initialization procedure, see below.

Using the Cassette and Paper Tape Bocotstraps

If the Disk Beotstrap PROM is not in use, a paper tape or
cassette program must be loaded which then reads in BASIC
grgm the disk. This is deone by following the pracedure
elow:

1. Key in the applicable paper tape or cassette bootstrap

loader £rom the listings in Appendix B. Make
location 2=116 octal. Set the sense switches for the
terminal

2. ©Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in tha
instructions for leading BASIC from paper tape from
cassette as given in Appendix B.

BASIC should respend:

MEMORY SIZE?

Por the rest of the initialization procdure, see below.
Disk Initialization Dialog

The initialization dialog has been expanded to allow the
user to select the proper amount of memory nseded to use the
disk{s) on the system. After the the HMEMORY SIZE guestion

is answared, BASIC will ask:

HIGHEST DISK NUMBER?

The wuser should answer with the highest physical disk
address in the system or with carriage return to default to
2. Each additional disk uses 43 bytes of memory.

Example:

Fanuary.

o

1877

Page 122

To use the Disk hootstrap loader, tugrn the computer's |power
on. Raise RESET and STOP simultangously. Lower RESET and

then STOP. EXAMINE location 177468 (zddress switches A

15-A8

up, rest down} and then set the sense switches folr the

terminal 1/0 board as explained in Appendix B. Depress
RUH switch. BASIC should print {or display):

MEMORY SIZE?

For the rest of the initialization procedurs, see below

Using the Cassette and Paper Tape Bootstraps

the

1f the Disk Bootstrap FEOM is not in use, a rpapsr tape Or

casgette rogram must be loaded which then reads in [BASIC

from the disk. This is done by follewing the procpdure

below:

1. Xey in the applicable paper tape or cassette bootgtrap
loader from the listings in Appendix B. Make
location 2=13% cctal. Set the sense switches fofr the

terminal o7

2. Start the paper tape or cassette (labeled DISK LORDER)

reading, and then start the computer as in
instructions for loading BASIC from paper tape
cassette as given in Appendix 8,

BASIC should respond:

MEMORY S5IZE?

For the rest of the initialization procdure, see below.
Disk Initializatien Dlalog

The initializaztion dialmg has been expanded to allow
user to select the proper amount of memory needad to us
disk{s} oA the system. AIfter the the HEMORY BSIZE gue
is answered, BASIC will ask:

HIGHEST DISE WUMIER?

The user should znswer with the highest h

addrass in the system or with czrriage raturn te
d. Each additicnal disk uses 4§ bytes of memory.

Exampla:

the
from

k_/.

January, 1977 Pag

HIGHEST DISE NUMBER? 1

e 123

BASIC next asks how many files are to be QPEN at one time in

the program. This number includes both random
sequential filles, If the user types carriage return
default is zero., Each file allocated requires 138 byte

buffer space, Example:

HOW MANY FILES? 2

and
the

5 for

Finally, BASIC asks how many random files are to be OPEN at

one time. The amount of memory allocated is the answer
This memory space is used to keep track of the locati
the floppy disk where groups of a random file regide,
the total memsry required for each random £11
138+257=395 bytes. Example:

HOW MANY RANDOM FILES? 1
A typical dialog might appear as follows;

MEMORY SIZE? <carriage return>

HIGHEST DISE NUMBER? <carriadge return>
HOW MANY FILES? 2 <carriage return>

BOW MANY RANDOM PILES? 1 <carriage return>

Xxxxxx BYTES FREE

Altair BASIC REV. 4.9

[DISX EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

e

*257.
Pn on
Thus,

is

1877 Page 124

APPENDIX I

THE BFIP UTILITY PROGRAM

A BASIC Utility program has been provided to¢ perform such
such common functions as printing directories, initializing
disks, copying disks etec.

HOTE

Some of the PIP commands {LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialeg. This is done by answering
the "HOW MANY FILES?" question with a value greater
than zere. If an attenpt is made to perfrom a LIS
or DIR without following this procedure, a
BAD FILE NUMBER error will occur.

Once the BASIC disk has been mounted, type the following
command :

RUN "PIP"<carriage return’
{PIP will type)
*

PIP is now ready to accept commands. To exit PIP, type a
carriage return to the prompt asterisk., To initialize the
floppy disk in drive 8, type:

*INI@

PIP will type "DONE" when it is finished. Any disk number
may be substituted for the 6 in the above command and PIP
will format the disk in that drive, Any previous files on
the disk initialized will ke lost. If you wish to use blank
disks with Disk BASIC, they must be initialized in this
fashion before they can be MOUWTed.

NOTE
DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC

ON IT. THIS WILL WIPE OUT ALL THE FILES PRCVIDED ON
THE DISK.

January,

C

L/_

1377 Page 125

Printing a Directory

Giving PIP the command:

*DIR<Adisk number>

prints out a directory of the flles on the specified|disk.
The name of each file iz printed, along with the file's
"mode™ (5 for sequential, R for random), and the starting

track and sector number of the first block in the file

SRT<dilsk number>

prints a sorted directory of the files on the spegified

disgk.

LISting Sequential Files

The LIS command is used to list the contents of a segquential

data file on the terminal:

Syntax:

LIS<disk number>,<file name>
Example:

*[L.I5H4,PIPA usar types
7 CLEAR 1449 computer prints

COPying Disks

The CCP command is used to copy a disk placed in one [drive
to a disk on another drive. WNeither disk need be MOUNTed

for the COF command to work properly.

Syntax:

COP<old disk number>,<new disk number>

fanuary, 1977 Page 126
Before the copy is done, PIP verifies the actionn by
printing the following massage:

FROM<disk number>T0<disk number>
Typing ¥ followed by a carriage return causes execution to

- proceed. Any other responce aborts the command., Example:
*COPP,1l FROM @ TO 1? YCARRIAGE return> DONE * -

The DAT command
The DAT command is used to dump out a particular sector of
the disk in octal.
Syntax:
DAT<disk number>
When the DAT command is issued, PIP asks for the numberg of
the track and sector to be dumped. Example: *DATD {DAT

is equivalent) TRACX? @ SECTOR? ¢ dé¢ g0d 80d @989 @Ad dag
€8 008 G6d 209 049 GA9 A9@ etc.

The CHV command

CHV converts disks written under Altair BASIC wversion 3.4
and 3.3 to a format useable by version 4.8. The format of

the command is as followa:
CHV<disk numbar>

CHV makes sure that the next to last byte of each sector iz
255.

Cther Programs Provided on the System Disk

Program Name U=e
STARTREK Plays game based on TV zeries.

nuary,

_

1977 Page

14}
aT)
2]
"~
o
o
a
=

Before the copy is done, 2IP verifies th
printing the following massage:

TROM<disk numher>TO<disk number>

Tveing ¥ followed by a carriage return causes cxscution
procaed. aAny other responce aborts the command. Examy
*COPA,l FROM 8 TO 1? YCARRLAGE return>» DONE *

The PAT command

The DAT command iz used to dump out a particular sector
the disk in occtal.

Syntax:

DAT<disk number?

Wwhen the DAT command is issued, PIP asks for the numbers
the track and secktor to be dumped. Example: *DATH----
is-equivalent}-TRACK?- -8 SECTOR?—¢ #88 206 944298 @94
96 992 098 949 ¢88 803 988 ete. FDATY

TRALK ? p’

Secrk T

The CHV command oz ge¥ ops #0¢ §of gt

CNV converts disks written under Altair BRBASIC vaersicn
end 3.3 to a format useable by version 4.8. The format
the cowmand is as Zollows:

Cyv<disk number> -
CHV makes sure that the next o last byte of =zach sector

255.

Other Programs Provided on the System Disk

Program Mame 8)
B

STARTREE - ve game basad on TV series.

126

|eea

is

C

January, 1977

APPENDIX J
BASIC TEXTS

Below are a few of the many texts that may be
in learning BASIC.
1y BASIC PROGRAMMING, John G. Kemeny, Thomas BE.

1967, l45pp.
2) BASIC, Albrecht, Finkel and Brown, 1973

Page 127

hellpful

Kurtz,

3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A.

Dwyer and Michael 5. KXaufman; Boston: Houghton
Co., 1973

Books numbered 1 and 2 may be obtained from:
People’s Computer Company
P.0. Beox 318
Menlo Park, California 94625
They also have other books of interest, such as:

181 BASIC GAMES, David ahl, Ed., 1974, 258pp.

Mifflin

WHAT TO DO AFTER YOU HIT RETURN or PCC's PIRST BQOK OF

COMPUTER GAMES
COMPUTER LIB AND DREAM MACHINES, Thecdore H, HNelson,

186pp.

1974,

Taouary, 1977 Page 128

APPENDIX X

USING Altair BASIC ON THE
INTELLEC® SEMOD 88 AND MDS SYSTEMS.

This appeﬁdix covers procedures for loading and
operating Altair BASIC on Intellec and MDS developument
systems.

A, Loading BASIC., To lcad Altair BASIC, put the hex
paper tape of BASIC in the system reader device. Now enter
the System and agsign the CONSQOLE I/C device as desired {see
Section 4.2.1 of the Intellec 8/Mod 80 Operator's Manual).
Now read in BASIC with the following R command.

R{CL)

The BASIC tape will be lcaded into memery and the
system monitor will type a period on the CONSOLE device. If
you are only using contiguous RAM memory below the system
moniter (3840H) or are using BASIC on a MDS System, proceed
Eo step 2. If you have RAM memory above the PROM Intellec
monitor which you wish BASIC to use for program and variable
storage, you must patch the two locations known as INTLOC to
point to the bottom (lowest address) of memory. The is most
easily accomplished by using the System Monitor $ command.
INTLOC is given below under "Memory Requirsments.” :

«SEAXX @8 48 (Cr)

The above S command would make INTLOC point te RAM, starting
at 1l6K.

NOTE

If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (sSee
Appendix B). Essentially, this means that the WANT
SIN-COS-TAN-ATN? guestions asked by BASIC's
initialization dialeg should be answered by a Y({Cr).
Also, you must answer the MEMORY SIZE? guestion
with the highest decimal or RAM address in your
systam,

January,

W

- E., Calling Assembly Language Routines

1977 Page 129

Start BASIC by giving the monitor GOTC command

GPP@GB<carriage return’

NOTE
Once BASIC has been started, it may always B

restarted by depressing the RESET switch on th
Intellec 8 console,

When BASIC types MEMORY SIZE?, Typing carriage return

O @

will

cause BASIC to use all the RAM memory it can find abovie the
end of BASIC. Otherwise, if you wish to specify an |exact
amount of memory, type the decimal address of the highest

byte of memory in the computer and type carriage raturn.

B, BASIC I/0.

The system devices used for termirmal I/0 in BASI(
CI, CO and CSTS.

C. Baving and Loading Programs.

To save a program on paper tape, re-enter the

are

PROM

menitor and reassign the CO device to the paper tape punch

or other output device. Then restart BASIC by using
GddEd command and type LIST(Cr). The characters of the

the
LIST

command will not be echoed, but the BASIC program currently

saved in memory will be put on the cutput device.

To load =z program enter the system monitor, re-agsign

CI te the input device where the program resides, and
start BASIC with a G0849. When the preogram has
completely read in, reassign CI teo the user conscle.
re-enter BASIC with a GOA¥9d, and start the I/Q device,
program will be echoed con CO as it is read in.

D. Memory Requirements

BASIC uses locations Jd00E-0883H

then
beean
Then

The

and

g8l@H~approximately 19DFH in the 8K versicn, and P@1dH-PFJEH
in the Extended wersien., TFTor Intellec 8K and MDS 8K BABICs,
INTLOC is 6520 decimal. For MDS Extended, INTLOC is 14257

decimal.

January, 1977 Page 13@

USRLOC for 8K BASIC is #@55H. ADR{DEINT) is stored in
locations @843H. ADR(GIVACF) is stored in location @@45H.
In the Extended version these locations contain the
addresses of PRCINT and MARKINT, respectively. Interrupt
driven subroutines using RST 7 are not allowed in the
Intallec/MDE version of Altair BASIC, See aAppendix €. for
further information on calling assembly language
subroutines.

* Intellec is a registered trademark of the Intel
Corporation.

=0

1377 Page
PATCHING E i/0 RCUTINSS

BASIC's I/0 routipes may be changed to acccommo

non-standard terminal eguipment. After 2A8IC is loaded

ipcation 71 contain

before it has been initialized,
mhese addressss conkain

pointer to a list of addresses.
I/0 routines of 3ZASIC:

CRG 101 7R
oW IDLST ;TWO BYTE ADDRESS OF ADDS
IOLST: DW TRYOUT ;ADDRESS OF QUT20T ROUTI
oW TRYIN ;CELRACTER IWPUT 20UTINE
oW ISCNTC ;20LL FOR CONTROL/C CHECK
oW NMEWSTT ;FAST POLL FOR CCOHTROL/C C
+BX AND LARGER OHLY
CW IN25I0 ;ADDREES OF IWITIALIZATION
+ROUTINE FOR 2510 BCARDS
oW IN4PI0 ;ADDRESS OF INITIALIZATION
;4PI0 BOARDS
DW L2TCOD ;ADDRESS OF LPT RCOUTINE (I
AND DISK OMLY.)
oW LPTCD2 ;ZHD LPT RCUTINE
oW LPTCH ;330 LPT RCUTINE
oW IOCHNL :ADCRESS 0OF I/0 RESET LOCA
;(1¥ EXTEZNDED AND DISK ONL
TRYOUT: IN 8 :GET DEVICE STATUS
anl 203 ;AND QFF BIT 7
JNZ TRYOUT ;WAIT UNTIL TERMINAL CAN O
°CP PSW :GET CHARACTER TC OUTPUT O
coT 1 sTRANSMIT IT
?USH 75w +SAVE CHARACTSR 3ACK ON ST
NCP «CHANGED TO "IN 41" FOR 4P
NOP
0P PSW ;GET CHARACTER BACK OFF ST
RET sALL DONE WITH CHARACTER O
TRYIW: IN g sGET TLRMINAL STATUS
ANI 1 :CHEARACTER READY?
3492 TRYIN ;HO, KEEP WAITING

Bzte
and

the

E33 LIST

NE

HECK

TI0oN
59

PTZ0T
FF STACK

RCK
[BCABDS

RCR
DTPUT ROUTIHE

January,

C

1977 Page 131
APPENDIX L
PATCHING BASIC'S I{O ROUTINES
BASIC's I/0 routines may be changed to accommodate %
non~standard terminal eguipment. After BASIC is lecaded and ;
before it has been initialized, location 71 contains a

pointer to a list of addresses,

I/0 routines of BASIC:

QRG Q1
oW IOLST
IOLST: DW TRYOUT
oW TRYIN
oW ISCNTC
bw NEWSTT
Dw IN2SIO
DW IN4PIOQ
oW LPTCOD
oW LPTCD2
DwW LPTCD32
DwW IOCHNL
TRYIOUT: 1IN E
ANI 240
JNZ TRYCUT
PoP PSW
guT 1
PUSH PSW
NOP
NOP
er PowW
RET
TRYIN: IN ¢
ANT 1
JNZ TRYIN

These addresses contali

yTWO BYTE ADDRESS QF ADD

yADDRESS OF OUTPUT ROUT|
;CHARACTER INPUT ROUTINE
;POLL FOR CONTROL/C CHECK
;PAST POLL FOR CONTROL/C
:8K AND LARGER ONLY
;ADDRESS OF INITIALIZATIO
;ROUTINE FOR 2SIC BOARDS
tADDRESS OF INITIALIZATIO
; 4PIO BOARDS
;ADDRESS GF LPT ROUTINE (
;AND DISK ONLY.)
:2ND LPT ROUTINE
:3RD LPT ROUTINE

;ADDRESS OF 1/0 RESET LOCATION

s+ {IN EXTENDED AND DISK ON

;GET DEVICE STATUS
AND OFF BIT 7
;WAIT UNTIL TERMINAL CAN
;GET CHARACTER TO OUTRUT
sTRANSMIT IT

$SAVE CHARACTER BACK ONM STACK

;CHANGED TC "IN 41° FOR 41

;GET CHARACTER BACK OFF 81

+ALL DONE WITHE CHARACTER QUTPUT ROUTINE

sGET TERMINAL STATUS
; CHARACTER READY?

;NQ, EKEEP WAITING

n the
IRESS LIST

INE

FHECK

E ROUTINE FOR
N EXTENDED

LY)

BUTEUT ;
OFP STACK ;

PIO BOARDS

[ACK

Anuary, 1977

IN

ANI
CPI
RNZ

ISCNTC: IN

NEWSTT: IN
ANI
cz

IN25I10: CPI
RNC
ADI
PUSH
MVY
CALL
FOP
JMP

INGPIO: MVI
DCR
CALL

LPTCOD: LDA
CRA
JZ
POP
PUSH
CPI
JINZ

MORSPL: MVI
COTCHR
LD&
ANI

1
127
CONTOC

11

4
1
CNTCCH

24

2l

pPSwW
A, 3
LOIz2e
PSW
DOIOZ8

A,540

M
Do1g2a

ERTFLG
A
TTYCHR
PSHW

PSW

9
NOTABL
A,32

LETPROS
7

Page 132

;READ IN THE CBARACTER ‘
;GET RID OF PARITY BIT

s CONTROL/07 \‘
:RETURK IF NOT

:READ TERMINAL STATUS
;HAS THE TERMINAL A CHARACTER

:TO SEND?
NG, RETURN

;FOLLO&ING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
:AND IS EXECUTED FOR EACH STATEMENT

;READ TERMINAL STATUS
tTEST BIT @
;YES, SEE 1F CHARACTER CONTRCOL/C

;IS IT 2510
sNO, QTHER GO DIRECTLY TO SETIO
tGET PROPER INITIALIZATION BYTE

$SAVE IT u
;INITIALIZE THE 25I0

:GET BACK SECOND INITIALIZATION BYTE
; PROGRAM TC DATA AND STOP BITS

;sRESET FOR DATA TRANSFER
;CHANNEL=22

;SEE IF WE WANT TO TALK TO LET
;TEST BITS
;IF ZERO THEN NOT
;GET BACK CHAR

;1 TAB
s NO
;GET SPACE
15END 1T
;GET CURRENT PRINT POSIT
+AT TAB STOP?

C

January, 1377 Page 133

INZ MORSPL GO BACK IF MORE TO PRINT
POP PSW sPOP OFF CHAR
RET ;i RETURN
WOTABL:
POP PSW }GET CHARACTER WE WANT |TO PRINT
PUSH PSW)
crI 13 ;IS5 IT CARRIAGE RETURN?
CZ PRINTW sFORCE QUT A LINE
CPL 13 ;GET CONDITION CODES BACH
Jc PPSWRT +IF FUNNY CONTROL CHARACTER
+ {LF), DO NOTHING
LDa LPTPQS ;WHERE ARE WE?
CrPI LPTLEN-1 ;ARE WE AT END OF LINE?
JNZ NOTELP ;NQ, JUST SEND CHEHAR
MVI a,1 tSET LPTLST=1 AND LPTPOS=R .
CALL FINLPZ2
DCR A $MAKE SURE LPTPOS ZERO.
HOTELP: INR A
STA LPTPOS
LPTWAT: IN 2
ORI 245
INR A
JNZ LPTWAT
POP PSW
ouT 3 ;SEND QUT CHAR
RET 1 RETURN

+THIS ROUTINE IS CALLED TO FORCE OUT A PARTIAL BUFFER
sFOR THE LINE PRINTER. IT ALSO RESETS PRTFLG SO ALL
;FURTHUR I/0 GOES TO THE USER'S TERMINAL

FINLPT: XRA A +RESET PRINT FLAG SO QUIPUT .

STA PRTFLG yGOES TO THE TERMINAL

LDA LPTPROS ;SEE IF ANY LEFTOVERS MUST BE
ORA A ; PFORCED OUT

RZ :BY LOORKING AT LPTPCS

;THE ROOTINE PRINTW IS CALLED TCO FPORCE OUT A LINE CURRENTLY
+IN THE LINE PRINTER BUFFER. THE CARRIAGE RETURN/LINE FEED

tOUTPUT SUBRCUTINE CALLS PRINTW

PRINTW: IN 2 ;MARE SURE LAST BRINT
ORI 245
INR A
JNZ PRINTW ;BIT
: SEE IF BUFFER MUST BE EMPTIED
LDA LPTPOS
ORA A ;CHARACTERS IN THE BUFFER?
JNZ BRINTR ;1F SO DON'T CLEAR THE BUE
LDA LPTLST :PRINT BLANK LINE.
;CHECK IF PRINT WAS LAST
ORA a :IF SO, DO SPECIAL DELAY E
;OF DESIGHN
Jz NTEXDL ; PROBLEM
PUSH il :SAVE [H,L]
LXI H,196¢4 ;DELAY COUNT

FFER

JECAUSE

[anuary,

1977

LPTDLY: DCX
MoV
ORA
JHZ
BOP
STa
NTEXDL: MVI
ouT
XRA
RET
PRINTR: MVI
cauT
FINLP2: STA
DCR
STA
RET

LPTCD2: LDA
ADD
CPL
JMP

LPTCDl: LDA

NLPPGS

CPI
JMP

-

IOCHNL; 8
2
TOREST: LI
CALL
CALL
Jue

Tc patch the I/0 routines, stop the
and insert the patches using the front panel switches

BASIC

or read in a tape containing the patches.
location zero with all sense switches up.
BASIC from modifying the 1/0 routines. In
guidelines should be followed in writing I/0 routines:

B
AH
L
LPTDLY
g
LPTLST
A,2

2
A
A,l
2
LPTLST

A
LPTPOS

LPTPOS
H
LETLEN
LINCHEK

LPTPOS
EQU

NLPPOS
CHECOH

H, IOCHNL
HELPIO
STKINI
READY

Page 134

;COUNT DOWN G
;UNTIL ZERC
¢RESTORE [H,L] REGS
+BECORD LINE FEED LAST
;SEND A LINE FEED COMMAND
sRETURN WITH 8 &CC'S=§

sTELL LPT TO PRINT
3 STATUS REG :

:[a}=0
;RESET LINE PRINTER POSITION

JGET CURRENT LPT PRINT HEALD POSITION

;WILL TBIS NUMBER OVERLAP?

J

;GET LINE PRINTER POSITION
sNOTE: COLUMN WIDTH (CLMWID)=
114 CHARACTERS :

({ (LPTLEN/CLMWID) -1} *CLMWID) ; PGSITION BEYOND

;WHICH THERE ARE
:NO MORE COMMA FIELDS, S0
;COMMA JUST DOES A "CRDOY
;USE TELETYPE CHECK

;DEPQSIT EBOARD TYPE HERE
;CHANNEL GETS DEPOSITED HERE,
;GRAB POINTER TO IT
+SET UP THE NEW COWNSQLE DEVICE
MAKE STACK OK
fAND TYPE "OK® HOPEFULLY ON GOOD CONSOLE

machine after loading
Restart BASIC at
This will prevent

general, these

J

anvary,

1377 pagp

1. Ipsert a JMP at TRYOUT to the custom cutput routine)
sure the PSW that is saved on the stack when the rop
iz entered is presecved., Make sure all registers
left unchanged when the rcutina is exited. :

2, 1Imsert a JMP at TRYI®N to the custocm input rouf
Return the input character in the A& register and do
change any of the other registers, The 25W may
changed.

3. To medify ISCHTC insert a CALL to the custom
routine. This routins returns a non-zeroc conditicn
setting if no character is preszzn and zere L
character is present., The A registsr and the c¢ondl

codes may be changed,

4. To chance the initizlization of the 2310 bLoard, of
the "ADPI 230" to "MVI A,XXX" whera XXX is the

initialization byte.

ization ¢f the 4PI0 board

5. To change the initializ
to a "MVI A,XXXK" where XXX

the "MVI A, 540"
initialization byte.

1
o]

orinter driver change, the cod
LETCOD. Note that PRINTW is alse ¢allsd by the rou
which prints a carriage refurn line feed. The codg
LPTCD2 and LPTCD3 must be changad if the line printg
not 88 characters wide,

6. To patch in a new line
FR
5]

7. To racover Qrggﬂan incorrect CONSBCLE commzand, deq
the board ® évee if IOCHNL, the beard tvyoe in I0CHY
and start the machine a2i% IQCHWL+2.

T

Patching Disk 2ASIC - the PTD program. After
ZASIC is loaded, deposit the Jdesirsd patches in neg
Then exzamine and run PTD at location S4868 occtal. Aftey
or tarse seconds, the patched varsion of RASIC will be g
on disk. The save is conolete when the Dizk Enable ligh

disk drive zero coes cut.

To save a catched wvsrs
not previopsly contain
must be copied from 2 4.3

an of ZASIC on a disk which
a 4,8 Altair BASIC, tra

rzms cther than 3
ding the preocgram a
21! gmemory locat
saved on tracks 2-

TD may
cn tracks
BaASIC is loa
2

poll
carde
£ a
tion

ange
new

2SI
Cter
ions
B on

January, 1977 Pagle

C

sure the PSW that is saved on the stack when the ro
is aentered is preserved, Make sure all registars
left unchanged when the routine is exited.

1. Insert a JMP at TRYOUT to the custom output routineF

135

Be
tine
are

2, Insert a JMP at TRYIN to the custom input rouftine.

Return the input character in the A register and db
change any of the other registers, The PSW may
changed.

3. To modify ISCNTC insert a CALL +to the custom
routine. This routine returns a non-zer¢ condition
setting if ne character is present, "and zero 1
character is present. The A register and the condi
¢odes may be changed.

4. To change the initialization of the 2SI0 board, ch
the P"ADI 23Q" to “"MVI A,XXX" where XXX is the

initialization byte.

3. To change the initializatien of the 4PI0 board, ef
the "MVI A,54Q" to a "MVI A&,XXX" where XXX iz thg
initialization byte.

6. To patch ir a new line printer driver change the cod
LPTCOD. Note that PRINTW is also called by the rou
which prints a carriage return line feed. The coda
LPTCDZ and LPTCD3 must be changed if the line printe
not 86 characters wide,

7. To recever f{rom an incorrect CONSOLE command, dep
the board type in IOCHNL, the board type in rOCHN
and start the machine at IOCHNL+2.

Patching Disk BASIC - the BTD program. After
BABIC is Iloaded, deposit the desired patches in mem
Then examine and run PTD at location 54808 octal. After
or three seconds, the patched version of BASIC will be s
on disk. The save is complete when the Disk Enable ligh
disk drive zero goes gut.

To save a patched verzion of BASIC on a disk which
not previously contain release 4.9 Altair BASIC, tra
must be copied from a 4.9 disk.

not
be

pell
code
£ a
tion

ange
new

ange
new

e at
tine
at
r is

osit
L+l,

Disk

LY.
Etwo
ved
£ on

did
ck @

PTD may also be used to save programs other than BASIC

en tracks @-4 of a diskette by lecading the program a
BASIC is loaded and running »7TD. All memory locat
between # and 46094 octal will be saved con tracks g-
diskette zero.

Fter
LONS
i on

1977 Page 136

APPENDIX M
USING ALTAIR DISK BASIC

An Example

The following is a discussion of how to program a
typical application in BASIC. The example is the MITS
in-house inventory system which is designed to run on the
following hardware:

Altair 889@b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SI0 serial
1/0 board

Two disk drives

24-line Lear-Sigler CRT terminal

Line printer

The most important part of the design for an
application is setting up the files. Files that are
correctly set up will be easy to use and maintain. Poorly
set up files will be a perpetual headache, causing either an
eventual rewrite or, more likely, abandonment of the system.

The first listing at the end of the appendix, INVEN,
contains modules from the main program f{n the inventory
system. INVEN shows how the central file (a random file) in
the system is set yp and how it is handled. The INVEN
listing also shows the use of ancther random file and a
sequential file, The CALC 1isting shows how to read
programs as data files, CODEl is a partial 1listing of a
program that will be read as a data file,

The INVEN modules listed were included to show the
following features:
1. pregram startup Initialization and comments about the
files usad by the program (lines 1-235)

2. what the complete program does (lines §8-1994)

3. an example of how to modify records in a random file
{lines 96d-1644d)

4. an example of how =sequential files are used (lines
1509-1868 and 2788-2828)

January,

L

1377 Pag
5. one approach to the problem of handling & random
that spans more than one disk {lines 2080-20380)

6, three subroutines {lines 3ge-342, 9¢9d9-9026
9298-9229} that are c¢alled by the INVEN modules.

& 137
filae

and

The function FNY {line 6) is used to round dollar

amounts to thousandths of a cent. FNQ (line 7) is us
round guantities %to thousandths and +to convert @
precigion amounts to double precision.

ed to
ingle

INV3 is fielded once in the program initialization, but

INVI and INV2 are crepeatedly fielded by calls ¢

subroutine at line 208@. The IF F>255 {line 6&d) avoids
possibility that the program can be stopped by an il
funetion call at line 61.

PUT statements are the very last statements execut
the Remove from Inventory module, the Add to Inve
module, etc. This prevents updating one file but not
other. (This could happen if PUT %, Rl was at line 1@l

Line 29¢0 sets T to 1 and Rl to N if the item wa
N, is less than 208l. It sets Z to 2 and Rl to N-2{
the item wanted is greater than 286@. Line 2028 then
the pointers for the wvariables in the field statems
point into either the buffer for INV1 or the buffer
INVZ, depending on whether the item wanted is less thar
or greater than 2008.

The CALC listing is a program which determipes if

o the
the
legal

ed in

ntory
the

@.)

nted,
ag if
sots
nt to
for
2081

there

are enough parts in inventory to meet prodjested demands.

Line 68 walts while the disk comes up to speed s0

the

message "ENABLE DISK 1" will not be printed on the terminal.

Lines 180-149 input up to fifty different product codes
the number of each product to be built., Line 174 op
file for each product that contains the parts required
the product. Lines 22@-25@0 build up a creport he
extracting the product description contained in line 1
each file.

Lines 120-150 accumulate the number of parts reg
for each product into the array Q. If more than 32767
part is required, & peinter is set in the array 0 and
number of the part is accumuulated in the array Q!.
maneuvering is necessary since the system does not
enough memory to dimension Q 2s single precision inste
integer.

and
ng a
for
rding
A of

Nired
of a

the
This
navs
ad of

Fanuary, 1977 Page 138

The parts lists for a product are programs saved with
the A option. Since they are pregrams, their maintenance is
very easy. For example, suppose that part 1471 in the 88@4b
is toe marginal and that from now on part 1173 should be
used instead. With the parts lis¢s disk meunted on drive &,
the following sequence will update the #8¢8b filae:

LOAD "CODE1™
168,1,1173
SAVE "CODE1",d,A

The programmer who {s cramped for memory will find that
programs can still be documented adequately if comments are
set up as separate files. The memory used for wvariables
when a program runa can be used for comments if the comments
are merged in when the pregram is to be listed.
Alternatively, the program c¢ould be listed in twe or more
parts. Additional memory can be obtained by bringing BaSIC
up without optional functions and with no files.

The main inventory program is set up so that a carriage
return typed in responce to any prompt cause the program to
dump the function descriptions on the CRT and to return to
the PUNCTION NUMBER prompt. If the program were to be run
on a printing terminal, instead of a 9608 baud CRT, it would
not be set uyp to print the descriptions every time the
operator wanted to get back to the FUNCTION NUMBER prompt.
The 1list of function descriptions might be taped on the wall
next to the terminal instead.

Listing of INVEN

DEFINT F-N
DEFINT R

DEFINT 2

DEFDBL P

DEF FNY# (QB#)=INT (QI#*A4+.5¢) /A%

DEF FNQ#(Q91)=INT (VAL (STRS(Q9!))*1800¢+.5%) /10084
AS=MKDS (8) :B§=MKS${0) tA§=100806%

19 DIM Q$(2),B5(2)

e

INV1 ON DRIVE § HOLDS ITEMS 1-2840

INV2 ON DRIVE 1 HOLDS ITEMS 2081-4400

INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND CUT BY DEPARTMENT
12 ¢

WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM #35 THAT NEED TO BE RESET; AND ARE READ BY
THE WEEKLY,MONTHLY RESETS.

14

Q5 () <=> THREE ON HAND QTY FOR: PF35{) <=> THREE PRICES

0] O L1 LD k3

J

January, 1977 Page 139

- [F{6) OLDEST, P(l) NEXT OLDEST, Q(#)<>8 IF Q(l)<>d,
QIL)<>8 IF G(2)<>81]
DS <=> DESCRIPTION LEFTS (D$,3)="$$5" <=> INACTVE ITEM %
15 *
I1S ¢=> WEEKLY QTY IN
I28 <=> MONTHLY QTY IN
0l§ <=> WEEKLY QTY OUT
02§ <=> MONTHLY QTY OUT
T$ <=> REORDER LEVEL
DIl§ <=> WEEKLY $ IN
ID2§ <=> MONTHLY § IN
DO1§ <=> WEEKLY § OUT
?nz§ «=> MONTELY $ OUT
7
DT1$ <=> WEEKLY DEPT § TAKEN
DX2S$ <=> MONTHLY DEPT § TAKEN
DGlS$ <=> WEEKLY DEPT $ GIVEN
DY2§ <=> MONTHLY DEPT § GIVEN

20 OPEN "R",&l1,"INV1I"
3P OPEN "R",42,"INV2",1
32 OPEN “R",#3,"INV3",1
35 FIELD #3,8 AS DT1$,8 AS bX23,8 AS DG1$,8 AS DY2$
63 PRINT:P=8:INPUT"FUNCTION NUMBER";F:IFF>25STHENG3
(_/ 61 ON F GOTO 21@,359,35%¢,1969,6084,%80,17649,
2709,2549,2300,2409,1888,2948°
2 3 4 5 6 7 8 g 1 11 12 13

14 15 186
63 PRINT"1 ENTER NEW ITEM"
64 PRINT"Z LIST ITEM ON CRT (SHORT FORM)"
65 PRINT"3 LIST ITEM (N CRT (LONG FORM)}"

67 PRINT"S5 ADD TO IWNVENTORY"

68 PRINT"6 REMOVE FROM INVENTORY"
6% PRIWT"7Y PRINT WEERLY DEPT DOLLAR RECORD ON LINE PRINTER
79 PRINT"8 - PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER

71 PRINT"9 - WEEKLY RESET
72 PRINT"18~ PRIWT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRINT"11- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER

74 PRINT"12~ MONTHLY RESET

75 PRINT"13- RESET ORDER LEVEL3
76 PRINT"14- PRINT LISTNG QOF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"13- DELETE OLD ITEH
78 PRINT*16- ERRCRS BACKOUT

18¢ GOTO6D

298 T

*

66 PRINT"4 - PRINT ITEMS OH LINE PRINTER

508 - INPUT PART # & GET RECORD
*

39¢ PRINT:PRINT:N=0:INPUT"PART WUMBER":N:IFN<1THENRETURN
(; 31@ IZN>4JQ@THENPRINT:PRINT"!'# TOO HIGH''":GOTO 304
220 GOSUBZ#UA:GETZ,RI1

1377 Page 14d

338 IPLEFTS (DS,3)="§§$"THENPRINT:
PRINT"''NO INFORMATION ON PART''";N:GOTO3U#
349 RETURN
894 '
*

F=§ - REMOVE FRCM INVENTORY
*

580 GOSUB39d:IFN=0GCTC63
926 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN:IFDN=-1THEN63
950 IFCVS(QF{8))+CVS(QS(1l)}+CVS{QS(2)) <DNTHENPRINT"
ATTEMPT TO REMOVE MCRE THAN CON HAND" ;PRINT:GOTO63
960 DB=DN:P=g@
978 IFDACCVS{Q$(d)) THEN
PaP+FNOH (DA) *CVD (P$ (0}) : LSETQS (@) =MKSS (CVS(Q$(8)) -D4) :
GOTC15849
980 P=P+FNQ#(CVS(Q$(0))) *CVD (PS5 (0}) : DA=DA-CVS (Q5{D)) :
LSETQ$ (8) =05 (1) : LEETQS (1) =Q$(2) :LSETQS {2} =BS:
LSETPS (@) =P$ (1} :LSETPS$ (1)=P$(2) :LSETFS (2} »AS : IFDJTHEN
GOTCS 79
1880 LSETOLl$=MESS (CVS{01§)+DN) :LSETO2$=MKS$ (CVS (02§) +DN) :
LSETDOL$=MKDS (CVD (DOL1$) +P) : LSETCOD2S=MKDS {CVD (0D23) +P)
1828 GOSUBY29¢:IFCE=-1GOTO6]
1438 LSETDT1$=MKDS (CVD(DT1$§)+P) :LSETDX2S=MKDS (CVD (DX2$)+P)
1449 PUT3,C%:PUTZ,RL:50T0984
1799
x

F=9 ~ WEEKLY RESET
*

18¢9 PRINT®"7 - WEEKLY DEPARTMENT RECORD

1802 PRINT"8 ~ WEEKLY ACTIVE ITEMS

1894 Z$="";INPUT"BAVE THE ABOVE SEEN LISTED POR TODAY";Z$

181d IFLEFT${Z$,1)}<>"Y"THENPRINT:PRINT
"WEEKLY RESET NOT PERFORMED":GOTO63

1343 QPEN"I",4,"WEKLYRST"

1345 IFEQF{4)THENCLOSE4:KILL"WEKLYRST" :GOTC1862

1852 INPUT#4,N:IF l<{=NANDN<=4008 THENGQSUB2684:GETZ,R1
ELSEPRINTN; "QUT OF BOUNDS. RESET ABORTED.":END

1855 LSETI1$=B$:LSETOl$~B$:LSETDI1S=A%:LSETDOLl$=A§:PUTS,R1

1868 GOTOl845

1862 FORI=1TO20

1864 GET2,I:LSETDT15=A5:LSETDG1S=AS:PUTI, I

1866 NEXT

1868 GOTO6H

lage

*

5UB - GET Z,Rl FOR N AND FIELD TO INVL,2
* .

2808 2Z=1l-(N>2085) :Rl=N+({2=2) %2808
2920 FIELD Z,4 AS Q${B),4 AS Q5(1),4 AS Q$(2), B AS ¥$(D),
8 A5 P$(1),8 AS PS(2),40 AS DS,4 AS I15,4 AS I2%,
4 AS 01%,4 AS 0Q2%,8 AS DI1S,8 AS ID25,8 AS DO1$,8 AS QD23

k"

2838 RETURN
2699 !
*

F=8,11 -~ WEERKLY,MONTHLY ACTIVE ITEMS LIST
*

2799 N=1:GOSUB2499:GOSUB2855

Januvary, 1977 Page 141

.

2783 IFF=8THENQPEN"Q",4, "WEKLYRST"ELSEOPEN"Q", 4,"MONTHRST"

2705 IT#=@:0T4=A:TT4=4

2718 FORI=1T02008

2728 GETZ,I:IFLEFTS({D%,3)}="$5S"THEN2BG]

2723 Q@=CVS(QS(2)) :QLl=CVS{Q8(1)) :Q2=CVS(Q$(2))

2725 IFF=8THENI!=CVS(Il$):0!=CVS(01$) :I#=CVD(DIL1S) :Q¢=CVD(DOLS)
ELSEI!=CVS(I2%) :Q1=CV5{028) : T#=CVD(IDZS) :04=CVD(O023%)

2727 TTH=TTH+CVD(PS{8)) *0F+CVD (PS5 (1)} *QL+CVR(PS (2}) *Q2
2730 IFI1+0!=Q0THENZ800

2733 PRINT#4,N+I-1

2735 IT§=ITH#+1#:0THwOTE+04%

2749 IPL9>59ANDKE=BTHENGOSUB2850

2758 LPRINTUSING" #3¢#84™ ;99999 1+N+I;

2778 LPRINTUSING"##,%#%,34#8":11,0!,Q08+Q1+Q2,Q00+Q1+Q2+0I~I];

2780 LPRINTUSING"SS 3&#,483.34" 14,04

2798 L9=L9+1

2795 KE=KE+1:IPKRK=5THENLPRINT:L9=L9+1:KE=0
2880 NWEXT

281F IFN=I1THENN=2801:GOSUB2008:GOTO2718
2811 CLOSE4

2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$S4%, 338 R#8.%4";TTE

2815 REM *GOTO2829 IN Fa7,18
2820 LPRINT:LPRINTUSING TOTAL IN = S$S#8,484,344. 42717}
2839 LPRINTUSING"TOTAL QUT =$S4%, 444, 334,85 ;0T#
2837 LPRINT:LPRINT

2048 GOTOS5@

2854 FORJ=L9TO66: LPRINT :NEXT

2855 IFF=ETHENLPRINT"WEEKLY"; :ELSELPRINT"MONTHLY";
2862 LPRINT" ACTIVE ITEMS LIST";:GOSUB9480G

2865 LPRINTTAZ(39};"STARTED"

2879 LPRINT"ITEM # QTY¥-IN QTY-QUT ON-HAND MO-WITH

DOLLARS-IN DOLLARS-QUT"
2889 LPRINT:KK=8:L9=6:RETURN
gasa
*

S8UB -~ PRINT TODAY'S DATE
*

9998 IFTD$=""THENLINEINPUT"TODAY'S DATE ?";TDS:IFTDS=""THENG3

98156 LPRINT™ ";TD$%
9815 LPRINT

9620 RETURM

91949 °

*

INFUT DEPARTMENT # AND GET TOTALS
*

9209 C3=-1:INFUT"ENTER DEPARTMENT CODE";C%:IFC%=~=1THENRE

TURN

Fanuary, 1977

921
922

5
18
29
98
ldq
110
120
138
140
150
l6a
17d
182
199
288

18
28
39
49
5a
68
9
93
INP
Hkw
18d
118
129

138
146
145
ACC
XY
150
160
170
lan
198
280
2149
228

Page 142

B IFl<=CSANDC%<=28THENGET3,C%:RETURN J

8 PRINT"INVALID CCDE":50TQ9200

Listing of CODEL

CODEL
PARTS LIST FOR: 8800B
OoCT 38,1976
REM THIS IS THE START OF DATA
(11,1642
£3,1134
+4,1940
(1,1828
(1,10821
11,1824
f1,1871
:1,1874
+1,2145
» 24,348
+2,326

Listing of CALC

CLEARGGH y
DEFINT A-Z u

ODIM CN{49),NU{49),0(4008),0! (2848)

CLOSE:UNLOADL

INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1., HIT RETURN";GS
FORK!=1TC5A60 :NEXT : MOUNT1

PINEINPUT“TODAY‘S MO/DA/YR ";DT$:8$5 (@) =DTS+" PARTS AVAILABLE FOR:"

UT QUANTITY OF EACH PRODUCT REQUIRED
* %
INPUT“CODE NUMBER(@ WHEN FINISHED)";CN(I)
IF CH{I)=8 THEN 159
IF CN(I)<1 OR 5P<CN{(I) THEN PRINT"INVALID CODE NUMBER":
GOTO 19@
INPUT"NUMBER OF UNITS TC BE MADE";NU(I)
I=I+1:IF I<54 THEN 148
'
UMULATE QUANTITY OF EACH PART REQUIRED
*
FOR K=8 TO I-1
ONERRORGOTC614
OPEN"I®,#1,"CODE"+MIDS (STRS(CN(K)),2),1
ONERRORGOTOH
LINEINPUT#1,A5:1IFAS=""THEN192
IFLEFTS (A§,3)="90 “"THEN26Q
LFLEFTS (A$,3)<>"1P "THEN196
IFKTHENHS (HK) =HS$ (HR)+","

January, 1977 Page 143

« 230 HH§=STR$ (NU (X)) +STRS (CN(K)) +*= (" +MIDS {AS, 28} +") "
249 IFLEN (HH$)+LEN (HS (HK))>72THENHK=HE+1
250 HS (HK)=HS (BK) +HH$:G0T0190
266 ONERRORGOTO630
27¢ IPEOF(1}THEN318
286 INPUT #1,A,QN,PN
296 IFQ(PN)<@THENQ!I (~Q(PN))=Q! (—Q(PN)) +NU (K) *ON
ELSEQ (P¥) =Q (PN} +NU (X) *ON
30¢ GOTO279
31 ONERRCRGOTOS:CLOSE 1:NEXT K
315
GET SECOND HALF OF INVENTORY BACK ON LINE
Jrde e e
328 CLOSE:UNLOADL
338 INpUT™)
PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TC START REPORT":GS$
346 FORI!=1TOS@60:NEXT:MOUNTL
368 OPEN"R™,42,"INV1"
37¢ FISLD $2,4 AS Q15,4 AS Q2§.4 AS Q35,24 AS G6$,40 AS DS
375 !
FRINT REPGRT
kK

380 GOSUB578
390 FOR I=1 TO 40d@
(_/ 494 IF Q(l)=F THEN 530
418 QQI=Q(T) +IFG{I)<OTHENQQ!=Q) (-Q(I})
428 IFLY9>SSANDKK=FTHENGOSUBS6E
430 L9=L9+]1
440 RN=I
450 IFPI<20Q0THEN4AGAELSERN=RN-2086¢:IFFLAG=0THEN
CLOSEZ2:OPEN"R", #2,"INV2",1:FLAG=1:
FIELD#2,4 AS Ql$,4 AS Q25.4 AS Q3§,24 AS G§$,4¢ A5 D
469 GET %2,RN
470 IFLEFTS(DS$,3)=a"$$$ " THENLDRINTI+190420! ;
Uhnxkawaah NG INFORMATION ON PART *a%didadt,,
LPRINTUSING ™ ##, ##4444";0Q! :GOTOS520
480 QHI=CVS(QLl$)+CVS (Q25)+CVS (Q3S) :QDI =B ~QQ0!
5¢0 LPRINTI+1A66061;:DS$;" ";
510 LPRINT USING "#4,84%448":00Q1;:QH!;QD!
528 KK=KK+1:IPKK=STHENKK=0:LPRINT:LS=L3+1
53¢ NEXTI:CLOSE:END
568 FORK=LYTO66:LPRINT:NEXT
565 '
PRINT PAGE HEADING
LR S R B]
578 FOREK=PTOHK:LPRINTHS (K) sNEXT
388 LPRINT:LPRINTTAB{52):"NEEDED ON HAWD EXCESS":LPRINT
590 KK=8:L9=5+IK:RETURN
6085 °*
: TRAP ROUTINE: BAD CODRE NUMBER
L ik drded
610 IPERR=S3THENPRINT:PRINT"NO CODE";MID$ {STRS(CN{X}),2};" FILE"

Ffanuary, 1977

629 ONERRORGOTOR

6§25 !

TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED
drkdre

638 IFERR<>60RERL<>29¢THENONERRORGOTOS

648 NO=NQ+1:Q1 {NQ}=Q (PN) +NU(K) *ON:Q (PN} ==NQ
678 RESUME27@

Page 144

January, 1977 Pagqe 145 ;
(—’ INDEX |
I
T
BBS . . & 4 4 = 2 v s & « s« « 78
ACR interface . . « + 114
BHD 0 v i b a e e e e e e e s 17
Array variables . . .+ .+ .« . . 14
o -
ASCII character codes 93
ATN & + & » + » « 2 » « « « « 78 i
AUTO . 4 o v + ¢« s« o« o &« 4 » = B
BackartoWw .« « 4+ « 2 « + « « . 83
BASIC texts . .+ + & & + & o . 127
Boot leoaders . . . + » 4« « +» .« 96
Branch, cenditional 19
8ranch, uncenditional 19
Branching « + « 4 .+ . 18
(_/ Carriage Return . . . + « + o« 4
‘ Carriage return 83
Character, alphanumeric . . . 4
CHRS . 4 4 o o 4 o o o + + « + 78
CLEAR . . + &« +« = =« « = +« +» - 180
CLOAD .+ &+ + « « = » « « « . . 10
CLOAD* for arrays . « « s« « « 23
CLOAD? v ¢ o & v o v o + +» = « 78
CLOSE . + = « = = « » « +« - . B@
CLOSE, random files 63
Command Level . . .+ + « o » « &
Commands List 70
CONMSCLE + & & o v s o » = a o 34
Constants . + & « + « = + +» « 1B
COT & v v v v v s v v o » = » 70
Contzol/A & + v & &« v 4+ . . 1D
Control/C+ .« 83
Control/I . + +« + « + « « « . 84
Control/Q .+ & & + o & .« « 83
Control/Q o« . & 4 « & - - . . 84
Contrel/S . .+ « « & + &« &+ « . 84
Control/U« , « « . 18
Conversion from non=altair BASIC 114
COS & v v 4 v w s v+ s o« = &+ o 19
CSAVE* for arrays .+ » + » » » 25
CVD v v 4 4 e s e o s 1« » a B7
» 12 SR+
- ¥

DATA . .
DEF . .
DEPDBL .
Definitic
DEFINT .
DEFSNG .
DEFSTR .
DEFUSR .
DELETE .
oIM . .
Dimension

Direct Mode
Disk format

Disk nemb
Disk oper
Disk PROM

- - - - - - - - L] L]
- - * - L] - - L] L] L] -
B v v ¢ v & & « 2 =
P e et e e e e
N
s s s s s 4 s 4 e o
“ s b e e e e a4
L] - L[] L] a - » - L] L L]
-

L] - - - . - a - -

« e e s e e e s
-3
ations

boutstrap loader .

24
29
13
4
13
13
13
40
71
15
14
5
118
53
53
121

Disk read and write, assembly code

Divisiocn,
Double pr
DSKF . .

DSKI$ and

Echo rout
EDIT . .
Edit, def
Editing,
END . .
EQF . .
EQV . .
ERASE .
BRL . .
ERR , .

Error codes
Error message format

integer
ecigion . . v & . . .
DSKOS primitives . .
ines« . 4 .
inition
elementary provisions

LI
LI T Y

.
+
-
L]
.
» . .
.

L

Error messages, disk
ERECR gtatement . . . « « +
Error trapping . « « + + & o .
EXP v v i i e e e e e e
Expression, integer . ., . . .
Expressions, string
PIELD & v & & « 5 5 » s & 2 =
Fields, numeric
Fields, string . « « « + « «
File name . « « « o« o & « & &
FILES command . .+ « « « « + &
1
FOR &+ & 4« v 4 & & 2 « = = =
FRCINT . & & & o o = o o« = s =
FRE & & v 4 4 4 a v e s s s
Functions . . . « . . + « « &
Funetions, derived
Functions, extended
Functiens, intrinsic
Functions, simulated {(for 4k)

39
11
62
68

193
48
3

9
61,
61
18
32
36
36,
36
]
89
39
35
79
3
3l

63
48
47
54
54
79
21
41
79
28
199
48
28
139

123

74

75

Functions, string
Functions, user-defined

GET .« + = 4 + &
GOSUB . » « + &
GOTO . « + « + &

HEXS

Bexadecimal con;t;nés

IF,..GO0TO , ., .
IF...THEN . . .
IF...THEN...ELSE
IMP
Indirect Mode

Initialization dialeg

-
.
.
.

.
.
.
.

initialization dialog,
Initializing a disk

INP
INPUT . . o .
INPUT, disk .
INSTR
INT & & & & 4 .
Inteilec systems

KILL . . &+ + « .

LEFTS .
LEN . .
LET . .
Line . .
LINE FEED
LINE INPUT
LINE INPUT, d
Line LENGTH
Line Wumber
LIST . « + &
Lists and Dir
LLIST . . .
LOAD . . «
Loader errors
Loading BASIC
LOC

+ o o+ & & a

o R

s

c

L T T T,

*+ » & & v gFw v

LOF
LOG . . « « + &
Loops .
Lower case input
LPOS & &+ « + &
LPRINT , . .
LPRINT USING
LSET

L3
.

MAKINT
MERGE . . + . .
MIDS . . . - . .

o

LI T T T T T

=
N N

L

Alt

L T T

1

Hoa v +# » » 0 [Le & o & + 4

L L

L

Lt

s v o & 5 a

L T T Ws o « » &
o =~

A e oA e o

Dhes + a & & &

N]

L

L A]

L

L)

Chs =« & » » 4 & % v w & % @&

LI T T T

4 4w o e e om g

32
29

63
22
18

79
12

29

28
18

182
122
124
28
23
59
79
8g
on.

57

89
88
i3]

B4
33
61

72
78
72
55
12
95
64
64
86
21
as
89
73
75
67

41
57
75

1lz8

MIDS func
MEDS . .
MEIS . .
MKSS . .
MOD opera
MOUNT .,

NAME . .
NEW . .
NEW in &i
NEXT .
NOT . .

CCTs . .
Octal con
ON ERROR
CON...GOSU
ON. . .GQTO
QPEN . .
OPEN, ran
Operators
CPERATORS
Operators
Uperators
Operators
Operators
OR . . .
QuT . .

PEEK . .

PIP utility program

CHV
CcoP
BAT
DIR
AT R

PI1P,
F1P,
PIP,
PIE,
PIP,
PIP, LIS
PIP, SRT
POKE . .
POS . .

Precedence, table of

PREINT .
PRINT USI
PRINT, 4di
Prompt st
PTD progr
PUT . .

Random bu
Random Fi
Random f£i
READ . .
Remarks
RENUM .
Reserved

tion
- L]
tor

L I B
- r o oa s

. .
e

sk

- a % oA
" ok ok o4 s

stants
gore .,
B . ..
dom file

a .

' extendéd and

= r n a4 - s v on s .

-k e e o= s

;, logical
, precedence of

¢y Felational

, string

- = o w

command
command
command
command
command
command
command

NG .
sk

ring
am .

r = ow

- or s s o

ffer .
le 1/0
les ,

. = om
LR

WORDS

+ a4 = a1 o

.
.
-
-
.

L3

-
-
"
.
-
.

LI N

LI B a & % 2 & a

LI R R

.

L}
L}
.
.

.
.
L}
.
.
.

N
n

L S

L T)

L S T T

" s s

L L T T Y

d

L R, LI I B L T I

L T L A L T

L N T

LI I LI R T A+ 4 s oo

e

L

I T T

= A 4 omomom

L L T T T * s = o oa

L B T

L N R L)

N

135

63
63
58
25

Reserved words
RESTORE . .
RESUME . . .
RESUME NEXT
RETURN . .

RIGHTS .
RND . .
RSET . .
ROBOUT .
Rubout .

T I A L e
* 3 8 &4 & F & F B " &
LR T B T T T R T T]

.
L]
-
-
-
-
-
»
.
-

iles
SAVE . . o & = = + & =
Sclentific notation .
Sense switch settings
Sequential File I/C
Sequential mode .
BGN ¢+ o ¢« = » »
I 4 .
Single precisicn
Space allocation
gpaca hints . .
SPACES . o + +
EPC & & v = 2
special Characters
Speed hinta . . .
SBQR + « v v s+ a
Statements .+ « .« .
Statements, sxtende
STOP & o« » s + & »
STRE & + =« +
String Literal
STRINGS .+ « -
Strings . . .
Subroutines . . .
Subroutines, machin
SWAP o + + o = + =

E R T TR T)

LI I N]
T R S R L I T R S R T R

e MDr s v o+ a e Phr s s 8 s s s oaoe s s

TAB .

TAN & o o o o & & «
TROFF .+ + » « « 4 n
TRON . & & = « v ¢ «
Tyrve of constant .« .
Type of variables . .
Type,definition . . .
UMLOAD . + + « &

USR 4 o o = = & »

VAL & 4 = & o % 4 4+ &
variazble types
Variables . « + « « &
VERPTR o & « & = & +

]

4 M e s 2 & & s & om o w B o o4 & % 4 " 4 B ¥ ¥ Aom

" r 4 & B &8 & & 8 E s #

L} LI T N R

o

P - T R R R R R R I R . . I T T T Y

L S

- s o a

o

e) ¢ ¢ & w w = B & % B 4 B 4 ™ E E B W oN B " o B

I S T T T TR R T

i

P T T N A L

T T R T A T T T TR R T T R S T R R R

L}

. 42y

- = v

32
13
12
82

112

WAIT
WIDTH

XOR

26
35

18

83
83

