
M!TS ALTA!R BASiC

REFERENCE MANUAL

1ab!e of Contents:

INTRODUCTION I

GETTING STARTED WITH BASIC 1

REFERENCE MATERIAL 23

APPENDICES 45

A) HOW TO LOAD BASIC 46
B) INITIALIZATION DIALOG 51
C) ERROR MESSAGES 53
D) SPACE HINTS 56
E) SPEED HINTS 58
F) DERIVED FUNCTIONS 59
G) SIMULATED MATH FUNCTIONS 60
H) CONVERTING BASIC PROGRAMS NOT

WRITTEN FOR THE ALTAIR 62
I) USING THE ACR INTERFACE 64
J) BASIC/MACHINE LANGUAGE INTERFACE 66
K) ASCII CHARACTER CODES 69
L) EXTENDED BASIC 71
M) BASIC TEXTS 73

@ M I T S , Inc., 1975

PRtNTED)N U.S.A.
"Creative E!ectronics"

P.O. BOX 8636

A L B U Q U E R Q U E . NEW MEXtCO 87108

ALM1R - ---- —— Bd5ir
The following are additions and corrections to the ALTAIR BASIC REFERENCE
MANUAL. Be sure to read this over carefully before continuing.

1) If you are loading BASIC from paper tape, be sure your Serial I/O
board is strapped for eight data bits and no parity bit.

2) On page 53 in Appendix C, the meaning for an "OS" error should read:

Out of String Space. Allocate more string space by using
the "CLEAR" command with an argument (see page 42), and then
run your program again. If you cannot allocate more string
space, try using smaller strings or less string variables.

3) On page 42, under the "CLEAR" command, It is stated that "CLEAR" with
no argument sets the amount of string space to 200 bytes. This is in-
correct. "CLEAR" with no argument leaves the amount of string space
unchanged. When BASIC is brought up, the amount of string space is
initially set to 50 bytes.

4) On page 30, under the "DATA" statement, the sentence "IN THE 4K VERSION
OF BASIC, DATA STATEMENTS MUST BE THE FIRST STATEMENTS ON A LINE,"
should be changed to read, "IN THE 4K VERSION OF BASIC, A DATA STATE-
MENT MUST BE ALONE ON A LINE."

5) If you desire to use a terminal interfaced to the ALTAIR with a
Parallel I/O board as your system console, you should load from the
ACR interface (wired for address 6). Use the ACR load procedure de-
scribed in Appendix A , except that you should raise switches 15 § 13
when you start the boot. The Parallel I/O board must be strapped to
address 0.

6) If you get a checksum error while loading BASIC from a paper tape or a
cassette, you may be able to restart the boot loader at location 0 with
the appropriate sense switch settings. This depends on when the error
occurs. The boot loader is not written over until the last block of
BASIC is being read; which occurs during approximately the last two
feet of a paper tape, or the last 10 to 15 seconds of a cassette. If
the checksum error occurs during the reading of the last block of BASIC,
the boot will be overwritten and you will have to key it in again.

7) The number of nulls punched after a carriage return/line feed does not
need to be set >=3 for Teletypes or >=6 for 30 CPS paper tape terminals,
as described under the "NULL" command on page 23 of the BASIC manual.

In almost all cases, no extra nulls need be punched after a CR/LF on
Teletypes, and a setting of nulls to 3 should be sufficient for 30 CPS
paper tape terminals. If any problems occur when reading tape (the
first few characters of lines are lost), change the null setting to 1
for Teletypes and 4 for 30 CPS terminals.

8) If you have any problems loading BASIC, check to make sure that your
terminal interface board (SIO or PIO) is working properly. Key in the
appropriate echo program from below, and start it at location zero.
Each character typed should be typed or displayed on your terminal. If
this is not the case, first be sure that you are using the correct echo
program. If you are using the correct program, but it is not function-
ing properly, then most likely the interface board or the terminal is
not operating correctly.

Jn tAe /bZZoMtng program ZtsttMjs^ t^e MM/n&er to t^e Z-e/t t^e sZasTz
ts t^e oetaZ address and t^e TiMW^er to t&e rtjAt ^s t^e ocMZ. code /or t^at
address.

FOR REV 0 SERIAL I/O BOARDS WITHOUT THE STATUS BIT MODIFICATION

0 / 3 3 3 1 / QOQ 2 / 34b
3 / 0 4 0 4 / 3 1 3 5 / 000
b / 000 7 / 333 10 / 001

11 / 353 13 / 001 13 / 303
14 / 000 15 / 000

FOR REV 1 SERIAL I/O BOARDS (AND REV 0 MODIFIED BOARDS)

0 / 333
3 / 33E
b / 333

11 / 001
14 / 000

1 / 000
4 / 000
7 / 001

IB / 303

3 / 017
5 / 000

10 / 333
13 / 000

FOR PARALLEL 1/0 BOARDS

0 / 333
3 / 003
t= / 000

11 / 333
14 / 000

1 / 000
4 / 313
7 / 333

13 / 001
15 / 000

3 / 34b
5 / 000

10 / 001
13 / 303

For those of you with the book, MY COMPUTER LIKES ME when i speak in
BASIC, by Bob Albrecht, the following information may be helpful.

1) ALTAIR BASIC uses "NEW" instead of "SCR" to delete the current
program.

2) Use Control-C to stop execution of a program. Use a carriage-
return to stop a program at an "INPUT" statement.

3) You don't need an "END" statement at the end of a BASIC program.

Before a computer can perform any useful function, it must be "told"
what to do. Unfortunately, at this time, computers are not capable of
understanding English or any other "human" language. This is primarily
because our languages are rich with ambiguities and implied meanings.
The computer must be told precise instructions and the exact sequence of
operations to be performed in order to accomplish any specific task.
Therefore, in order to facilitate human communication with a computer,
programming languages have been developed.

ALTAIR BASIC* is a programming language both easily understood and
simple to use. It serves as an excellent "tool" for applications in
areas such as business, science and education. Mith only a few hours of
using BASIC, you will find that you can already write programs with an
ease that few other computer languages can duplicate.

Originally developed at Dartmouth University, BASIC language has
found wide acceptance in the computer field. Although it is one of the
simplest computer languages to use, it is very powerful. BASIC uses a
small set of common English words as its "commands". Designed specifi-
cally as an "interactive" language, you can give a command such as
"PRINT 2 + 2", and ALTAIR BASIC will immediately reply with "4". It
isn't necessary to submit a card deck with your program on it and then
wait hours for the results. Instead the full power of the ALTAIR is "at
your fingertips".

Generally, if the computer does not solve a particular problem the
way you expected it to, there is a "Bug" or error in your program, or
else there is an error in the data which the program used to calculate
its answer. If you encounter any errors in BASIC itself, please let us
know and we'll see that it's corrected. Write a letter to us containing
the following information:

1) System Configuration

2) Version of BASIC

3) A detailed description of the error

Include all pertinent information
such as a listing of the program in
which the error occurred, the data
placed into the program and BASIC'S
printout.

All of the information listed above will be necessary in order to pro-
perly evaluate the problem and correct it as quickly as possible. We
wish to maintain as high a level of quality as possible with all of our
ALTAIR software.

* BASIC ^s g reg-z^gre^ trademark o/ Par^moM^T: Z/n^grst^z/.

Me hope that you enjoy ALTAIR BASIC, and are successful in using it
to solve all of your programming needs.

In order to maintain a maximum quality level in our documentation,
we will be continuously revising this manual. If you have any sugges-
tions on how we can improve it, please let us know.

If you are already familiar with BASIC programming, the following
section may be skipped. Turn directly to the Reference Material on
page 22.

M9TE; MZTF 4LT4.Z7? R4RTC ts at?at^aMe under ^ o e n s e or pMrcTxzse
agreements. 6*op$/tn<y or ot&erMtse dtstrt&Mt^ng MPTF so/tMare OMt-
stde t̂ ze terms o/ SMc^! an agreement may &e a v^oZat^cn of cop^rtg-^zt
^aMs or t&e agreement ^tseZf.

If any immediate problems with MITS software are encountered, feel
free to give us a call at (505) 265-7553. The Software Department
is at Ext. 3; and the joint authors of the ALTAiR BASIC Interpreter,
Bill Gates, Paul Allen and Monte Davidoff, will be glad to assist you.

'mtmrEE)

W M

!

This section is not intended to be a detailed course in BASIC pro-
gramming. It will, however, serve as an excellent introduction for those
of you unfamiliar with the language.

The text here will introduce the primary concepts and uses of BASIC
enough to get you started writing programs. For further reading sugges-
tions, see Appendix M .

If your ALTAIR does not have BASIC loaded and running, follow the

procedures in Appendices A 5 B to bring it up.

We recommend that you try each example in this section as it is pre-
sented. This will enhance your "feel" for BASIC and how it is used.

Once your I/O device has typed " OK ", you are ready to use ALTAIR
BASIC.

M3TE; commands to ^LTAZT? BASTC s h o u M end zJtth a carriage
return. The carriage return teZZs BASTC that z/OM haue /Yntshed'
tz/ptng the command. Jf z/OM ma^e a tz/ptng error, t^/pe a &ac&-
arroM ^ J, z^s^aHz/ sht/t/O, or an zander Ztne to e^^mtnate the
Zast character. Repeated use o/ " " e ^ m ^ n a t e prevtOMS
characters. i4n at-stgn (^ ^ MtZ.^ e^tm^nate the entire Ztne
that z/OM are tz/p^ng.

Now, try typing in the following:

PRINT 10-4 (end with carriage,return)

ALTAIR BASIC will immediately print:

t,

OK

The print statement you typed in was executed as soon as you hit the
carriage return key. BASIC evaluated the formula after the "PRINT" and
then typed out its value, in this case 6.

Now try typing in this:

PRINT 1/2,3*10 f"*" means m M ^ p Z z / , '7" means d ^ d e j

ALTAIR BASIC will print:

.5 3D

As you can see, ALTAIR BASIC can do division and multiplication as
well as subtraction. Note how a " , " (comma) was used in the print com-
mand to print two values instead of just one. The comma divides the 72
character line into 5 columns, each 14 characters wide. The last two of
the positions on the line are not used. The result is a " , " causes
BASIC to skip to the next 14 column field on the terminal, where the
value 30 was printed.

2

Commands such as the "PRINT" statements you have just typed in are
called Direct Commands. There is another type of command called an In-
direct Command. Every Indirect command begins with a Line Number. A
Line Number is any integer from 0 to 65529.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a "Program". Instead of
executing indirect statements immediately, ALTAIR BASIC saves Indirect
Commands in the ALTAIR's memory. When you type in RUN , BASIC will
execute the lowest numbered indirect statement that has been typed in
first, then the next highest, etc. for as many as were typed in.

Suppose we type in RUN now:

RUN

ALTAIR BASIC will type out:

5
-1

OK

In the example above, we typed in line 10 first and line 20 second.
However, it makes no difference in what order you type in indirect state-
ments. BASIC always puts them into correct numerical order according to
the Line Number.

If we want a listing of the complete program currently in memory,
we type in LIST . Type this in:

LIST

ALTAIR BASIC will reply with:

10 PRINT B+3
B0 PRINT E-3
OK

Sometimes it is desirable to delete a line of a program altogether.
This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriage return.

Type in the following:

10
LIST

3

ALTAIR BASIC will reply with:

BO PRINT E-3
OK

We have now deleted line 10 from the program. There is no way to
get it back. To insert a new line 10, just type in 10 followed by the
statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

ALTAIR BASIC will reply with:

10 PRINT E*3
B0 PRINT B-3
OK

There is an easier way to replace line 10 than deleting it and then
inserting a new line. You can do this by just typing the new line 10 and
hitting the carriage return. BASIC throws away the old line 10 and re-
places it with the new one.

Type in the following:

10 PRINT 3-3
LIST

ALTAIR BASIC will reply with:

10 PRINT 3-3
E0 PRINT B-3
OK

It is not recommended that lines be numbered consecutively. It may
become necessary to insert a new line between two existing lines. An in-
crement of 10 between line numbers is generally sufficient.

If you want to erase the complete program currently stored in memory,
type in " NEW ". If you are finished running one program and are about
to read in a new one, be sure to type in " NEW " first. This should be
done in order to prevent a mixture of the old and new programs.

Type in the following:

NEW

ALTAIR BASIC will reply with:

OK

4

Now type in:

LIST

ALTAIR BASIC will reply with:

OK

Often it is desirable to include text along with answers that are

printed out, in order to explain the meaning of the numbers.

Type in the following:

PRINT "ONE THIRD IS EQUAL TO",1/3

ALTAIR BASIC will reply with:

ONE THIRD IS EdUAL TO .333333

OK

As explained earlier, including a " , " in a print statement causes
it to space over to the next fourteen Column field before the value fol-
lowing the " , " is printed.

If we use a " ; " instead of a comma, the value next will be printed

immediately following the previous value.

M^m&ers are a^Maz/s printed Mtth at Zeast owe tratZtMg space,
/tm/ text to printed ts a^zjaz/s to &e enclosed w d o u M e quotes.

Try the following examples:

A) PRINT "ONE THIRD IS EQUAL TO";1/3
ONE THIRD IS Et2UAL TO .333333

OK

B) PRINT 1,2,3

1 5 3

OK

C) PRINT 1;2;3

1 3 3

OK

D) PRINT -l;2;-3
-1 B -3

5

OK

We will digress for a moment to explain the format of numbers in
ALTAIR BASIC. Numbers are stored internally to over six digits of ac-
curacy. When a number is printed, only six digits are shown. Every
number may also have an exponent (a power of ten scaling factor).

The largest number that may be represented in ALTAIR BASIC is
1.70141*1038, while the smallest positive number is 2.93874*10*39.

When a number is printed, the following rules are used to determine
the exact format:

1) If the number is negative, a minus sign (-) is printed.
If the number is positive, a space is printed.

2) If the absolute value of the number is an integer in the
range 0 to 999999, it is printed as an integer.

3) If the absolute value of the number is greater than or
equal to .1 and less than or equal to 999999, it is printed
in fixed point notation, with no exponent.

4) If the number does not fall under categories 2 or 3,
scientific notation is used.

Scientific notation is formatted as follows: SX.XXXXXESTT .
(each X being some integer 0 to 9)

The leading "S" is the sign of the number, a space for a
positive number and a " - " for a negative one. One non-
zero digit is printed before the decimal point. This is
followed by the decimal point and then the other five digits
of the mantissa. An "E" is then printed (for exponent),
followed by the sign (S) of the exponent; then the two
digits (TT) of the exponent itself. Leading zeroes are
never printed; i.e. the digit before the decimal is never
zero. Also, trailing zeroes are never printed. If there
is only one digit to print after all trailing zeroes are
suppressed, no decimal point is printed. The exponent
sign will be " + " for positive and " - " for negative.
Two digits of the exponent are always printed; that is
zeroes are not suppressed in the exponent field. The
value of any number expressed thus is the number to the
left of the "E" times 10 raised to the power of the number
to the right of the "E".

No matter what format is used, a space is always printed following
a number. The 8K version of BASIC checks to see if the entire number
will fit on the current line. If not, a carriage return/line feed is
executed before printing the number.

The following are examples of various numbers and the output format
ALTAIR BASIC will place them into:

NUMBER

+1
-1
6523
-23.460
1E20
-12.3456E-7
1.234S67E-10
1000000
999999
.1
.01
.000123

OUTPUT FORMAT

1
-I
L5B3

-33.4b
1E+B0

-l.B345t,E-0b
1.B3457E-10
lE+Ob

. 1
1E-Q3
1-B3E-04

A number input from the terminal or a numeric constant used in a
BASIC program may have as many digits as desired, up to the maximum length
of a line (72 characters). Howevbr, only the first 7 digits are signifi-
cant, and the seventh digit is rounded up.

PRINT 1.2345678901234567890
1.E3457

OK

The following is an example of a program that reads a value from the
terminal and uses that value to calculate and print a result:

10 INPUT R
20 PRINT 3.14159*R*R
RUN
7 10
314.151

OK

Here's what's happening. When BASIC encounters the input statement,
it types a question mark (?) on the terminal and then waits for you to
type in a number. When you do (in the above example 10 was typed), execu-
tion continues with the next statement in the program after the variable
(R) has been set (in this case to 10). In the above example, line 20
would now be executed. When the formula after the PRINT statement is
evaluated, the value 10 is substituted for the variable R each time R ap-
pears in the formula. Therefore, the formula becomes 3.14159*10*10, or
314.159.

If you haven't already guessed, what the program above actually does
is to calculate the area of a circle with the radius "R".

7

11* wo wanted to calculate the area of various clrclcs, wc could keep
ru-running the program over each time for each succcssivc circle. But,
there's an easier way to do it simply by adding another line to the pro-
gram as follows:

30 GOTO 10
RUN
? 10
314.151

? 3

ER.E743
? 4.7
L1.3T77

?

OK

By putting a " GOTO " statement on the end of our program, we have
caused it to go back to line 10 after it prints each answer for the suc-
cessive circles. This could have gone on indefinitely, but we decided
to stop after calculating the area for three circles. This was accom-
plished by typing a carriage return to the input statement (thus a blank

M32TF; Typing a carriage return to an tnpMt statement tn tTze 4X

version of BASTC M t ^ ea^se a 5W error (see Re/erenoe AfatertaZJ.

The letter "R" in the program we just used was termed a "variable".
A variable name can be any alphabetic character and may be followed by
any alphanumeric character.

In the 4K version of BASIC, the second character must be numeric
or omitted. In the 8K version of BASIC, any alphanumeric characters
after the first two are ignored. An alphanumeric character is any let-
ter (A-Z) or any number (0-9).

Below are some examples of legal and illegal variable names:

line).

LEGAL ILLEGAL

IN 4K VERSION

A
Z1

% (1st character must be alphabetic)
Z1A (variable name too long)
QR (2nd character must be numeric)

IN 8K VERSION

TP
PSTG$
COUNT

TO (variable names cannot be reserved
words)

RG0TO (variable names cannot contain
reserved words)

The words used as BASIC statements are "reserved" for this specific
purpose. You cannot use these words as variable names or inside of any
variable name. For instance, "FEND" would be illegal because "END" is a
reserved word.

The following is a list of the reserved words in ALTAIR BASIC:

4K RESERVED WORDS

ABS CLEAR DATA DIM END FOR GOSUB GOTO IF INPUT

INT LET LIST NEW NEXT PRINT READ REM RESTORE

RETURN RND RUN SGN SIN SQR STEP STOP TAB(THEN

TO USR

8K RESERVED WORDS INCLUDE ALL THOSE ABOVE, AND IN ADDITION

ASC AND ATN CHR$ CLOAD CONT COS CSAVE DEF EXP

FN FRE INP LEFT$ LEN LOG MID$ NULL ON OR NOT

OUT PEEK POKE POS RIGHT$ SPC(STR$ TAN VAL WAIT

Remember, in the 4K version of BASIC variable names are only a letter
or a letter followed by a number. Therefore, there is no possibility of
a conflict with a reserved word.

Besides having values assigned to variables with an input statement,
you can also set the value of a variable with a LET or assignment state-
ment.

Try the following examples:

A=5

OK

P R I N T A , A * 2

5 10

OK
L E T Z = 7

OK

PRINT Z , Z - A

7 B

OK

9

As can be seen from the examples, the "LET" is optional in an assign-
ment statement.

BASIC "remembers" the values that have been assigned to variables
using this type of statement. This "remembering" process uses space in
the ALTAIR's memory to store the data.

The values of variables are thrown away and the space in memory
used to store them is released when one of four things occur:

1) A new line is typed into the program or an old

line is deleted

2) A CLEAR command is typed in

3) A RUN command is typed in

4) NEW is typed in

Another important fact is that if a variable is encountered in a
formula before it is assigned a value, it is automatically assigned the
value zero. Zero is then substituted as the value of the variable in
the particular formula. Try the example below:

PRINT Q,Q+2,Q*2

0 2 0

OK

Another statement is the REM statement. REM is short for remark.
This statement is used to insert comments or notes into a program. When
BASIC encounters a REM statement the rest of the line is ignored.

This serves mainly as an aid for the .programmer himself, and serves
no useful function as far as the operation of the program in solving a
particular problem.

Suppose we wanted to write a program to check if a number is zero
or not. With the statements we've gone over so far this could not be
done. What is needed is a statement which can be used to conditionally
branch to another statement. The "IF-THEN" statement does just that.

Try typing in the following program: (remember, type NEW first)

10 INPUT B
20 IF B=0 THEN 50
30 PRINT "NON-ZERO"
40 GOTO 10
50 PRINT "ZERO"
60 GOTO 10

When this program is typed into the ALTAIR and run, it will ask for
a value for B. Type any value you wish in. The ALTAIR will then come to
the "IF" statement. Between the "IF" and the "THEN" portion of the state-
ment there are two expressions separated by a relation.

!0

A relation is one of the following six symbols:

RELATION MEANING

= >

< =

>

<

EQUAL TO
GREATER THAN
LESS THAN
NOT EQUAL TO
LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

The IF statement is either true or false, depending upon whether the
two expressions satisfy the relation or not. For example, in the pro-
gram we just did, if 0 was typed in for B the IF statement would be true
because 0=0. In this case, since the number after the THEN is 50, execu-
tion of the program would continue at line 50. Therefore, "ZERO" would
be printed and then the program would jump back to line 10 (because of
the GOTO statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF state-
ment would be false and the program would continue execution with the
next line. Therefore, "NON-ZERO" would be printed and the GOTO in line
40 would send the program back to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B
20 IF A<=B THEN 50
30 PRINT "A IS BIGGER"
40 GOTO 10
50 IF A<B THEN 80
60 PRINT "THEY ARE THE SAME"
70 GOTO 10
80 PRINT "B IS BIGGER"
90 GOTO 10

When this program is run, line 10 will input two numbers from the
terminal. At line 20, if A is greater than B, A<=B will be false. This
will cause the next statement to be executed, printing "A IS BIGGER" and
then line 40 sends the computer back to line 10 to begin again.

At line 20, if A has the same value as B, A<=B is true so we go to
line 50. At line 50, since A has the same value as B, A<B is false;
therefore, we go to the following statement and print "THEY ARE THE SAME"
Then line 70 sends us back to the beginning again.

At line 20, if A is smaller than B, A<=B is true so we go to line 50
At line 50, A<B will be true so we then go to line 80. "B IS BIGGER" is
then printed and again we go back to the beginning.

Try running the last two programs several times. It may make it
easier to understand if you try writing your own program at this time
using the IF-THEN statement. Actually trying programs of your own is
the quickest and easiest way to understand how BASIC works. Remember,
to stop these programs just give a carriage return to the input state-
ment.

11

One advantage of computers is their ability to perform repetitive
tasks. Let's take a closer look and see how this works.

Suppose we want a table of square roots from 1 to 10. The BASIC
function for square root is "SQR"; the form being SQR(X), X being the
number you wish the square root calculated from. We could write the pro-
gram as follows:

10 PRINT 1,SQR(1)

20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)
40 PRINT 4,SQR(4)
50 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 10,SQR(10)

This program will do the job; however, it is terribly inefficient.
We can improve the program tremendously by using the IF statement just
introduced as follows:

10 N=1
20 PRINT N,SQR(N)
30 N=N+1
40 IF N<=10 THEN 20

When this program is run, its output will look exactly like that of
the 10 statement program above it. Let's look at how it works.

At line 10 we have a LET statement which sets the value of the vari-
able N at 1. At line 20 we print N and the square root of N using its
current value. It thus becomes 20 PRINT 1,SQR(1), and this calculation
is printed out.

At line 30 we use what will appear at first to be a rather unusual
LET statement. Mathematically, the statement N=N+1 is nonsense. However,
the important thing to remember is that in a LET statement, the symbol
" = " does not signify equality. In this case " = " means "to be replaced
with". All the statement does is to take the current value of N and add
1 to it. Thus, after the first time through line 30, N becomes 2.

At line 40, since N now equals 2, N<=10 is true so the THEN portion
branches us back to line 20, with N now at a value of 2.

The overall result is that lines 20 through 40 are repeated, each
time adding 1 to the value of N . When N finally equals 10 at line 20,
the next line will increment it to 11. This results in a false state-
ment at line 40, and since there are no further statements to the pro-
gram it stops.

This technique is referred to as "looping" or "iteration". Since
it is used quite extensively in programming, there are special BASIC
statements for using it. We can show these with the following pro-
gram.

12

10 FOR N=1 TO 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same as
the previous two programs.

At line 10, N is set to equal 1. Line 20 causes the value of N and
the square root of N to be printed. At line 30 we see a new type of
statement. The "NEXT N" statement causes one to be added to N, and then
if N<=10 we go back to the statement following the "FOR" statement. The
overall operation then is the same as with the previous program.

Notice that the variable following the "FOR" is exactly the same as
the variable after the "NEXT". There is nothing special about the N in
this case. Any variable could be used, as long as they are the same in
both the "FOR" and the "NEXT" statements. For instance, "Zl" could be
substituted everywhere there is an "N" in the above program and it would
function exactly the same.

Suppose we wanted to print a table of square roots from 10 to 20,
only counting by two's. The following program would perform this task:

10N=10
20 PRINT N,SQR(N)
30 N=N+2
40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed
on page 12 for printing square roots for the numbers 1 to 10. This pro-
gram can also be written using the "FOR" loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the
previous one using "FOR" loops is the addition of the "STEP 2" clause.

This tells BASIC to add 2 to N each time, instead of 1 as in the
previous program. If no "STEP" is given in a "FOR" statement, BASIC as-
sumes that one is to be added each time. The "STEP" can be followed by
any expression.

Suppose we wanted to count backwards from 10 to 1. A program for
doing this would be as follows:

10 1=10
20 PRINT I
30 1=1-1
40 IF I>=1 THEN 20

Notice that we are now checking to see that I is greater than or
equal to the final value. The reason is that we are now counting by a
negative number. In the previous examples it was the opposite, so we
were checking for a variable less than or equal to the final value.

13

The "STEP" statement previously shown can also be used with negative
numbers to accomplish this same purpose. This can be done using the same
format as in the other program, as follows:

10 FOR 1=10 TO 1 STEP -1
20 PRINT I
30 NEXT I

"FOR" loops can also be "nested". An example of this procedure fol-
lows:

10 FOR 1=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J
40 NEXT J
50 NEXT I

Notice that the "NEXT J" comes before the "NEXT I". This is because
the J-loop is inside of the 1-loop. The following program is incorrect;
run it and see what happens.

10 FOR 1=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J
40 NEXT I
50 NEXT J

It does not work because when the "NEXT I" is encountered, all know-
ledge of the J-loop is lost. This happens because the J-loop is "inside"
of the 1-loop.

It is often convenient to be able to select any element in a table
of numbers. BASIC allows this to be done through the use of matrices.

A matrix is a table of numbers. The name of this table, called the
matrix name, is any legal variable name, "A" for example. The matrix
name "A" is distinct and separate from the simple variable "A", and you
could use both in the same program.

To select an element of the table, we subscript "A" : that is to
select the I'th element, we enclose I in parenthesis "(I)" and then fol-
low "A" by this subscript. Therefore, "A(I)" is the I'th element in the
matrix "A".

M3TF; JTn t M s section of t&e manual Me zJtZZ &e concerned h^t?!
one-dtmenstonaZ matrices (Fee Reference A/atertaZJ

"A(I)" is only one element of matrix A , and BASIC must be told how
much space to allocate for the entire matrix.

This is done with a "DIM" statement, using the format "DIM A(15)".
In this case, we have reserved space for the matrix index "I" to go from
0 to 15. Matrix subscripts always start at 0; therefore, in the above
example, we have allowed for 16 numbers in matrix A .

14

If "A(I)" is used in a program before it has been dimensioned, BASIC
reserves space for 11 elements (0 through 10).

As an example of how matrices are used, try the following program
to sort a list of 8 numbers with you picking the numbers to be sorted.

10 DIM A(8)
20 FOR 1=1 TO 8
30 INPUT A(I)
50 NEXT I
7 0 F = 0

80 FOR 1=1 TO 7
90 IF A(I)<=A(I+1) THEN 140
1 0 0 T = A (I)
110 A(I)= A(I+1)
120A(I+1)=T
130 F=1
140 NEXT I

150 IF F=1 THEN 70
160 FOR 1=1 TO 8
170 PRINT A(I),
180 NEXT I

When line 10 is executed, BASIC sets aside space for 9 numeric values,
A(0) through A(8). Lines 20 through 50 get the unsorted list from the
user. The sorting itself is done by going through the list of numbers and
upon finding any two that are not in order, we switch them. "F" is used
to indicate if any switches were done. If any were done, line 150 tells
BASIC to go back and check some more.

If we did not switch any numbers, or after they are all in order,

lines 160 through 180 will print out the sorted list. Note that a sub-

script can be any expression.

Another useful pair of statements are "GOSUB" and "RETURN". If you
have a program that performs the same action in several different places,
you could duplicate the same statements for the action in each place with-
in the program.

The "GOSUB"-"RETURN" statements can be used to avoid this duplication.
When a "GOSUB" is encountered, BASIC branches to the line whose number fol-
lows the "GOSUB". However, BASIC remembers where it was in the program
before it branched. When the "RETURN" statement is encountered, BASIC
goes back to the first statement following the last "GOSUB" that was exe-
cuted. Observe the following program.

10 PRINT "WHAT IS THE NUMBER";
30 GOSUB 100
4 0 T = N
50 PRINT "WHAT IS THE SECOND NUMBER";
70 GOSUB 100
80 PRINT "THE SUM OF THE TWO NUMBERS IS",T+N
90 STOP
100 INPUT N

15

110 IF N = INT(N) THEN 140
120 PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN."
130 GOTO 100
140 RETURN

What this program does is to ask for two numbers which must be inte-
gers, and then prints the sum of the two. The subroutine in this pro-
gram is lines 100 to 130. The subroutine asks for a number, and if it
is not an integer, asks for a number again. It will continue to ask until
an integer value is typed in.

The main program prints " hJHAT IS THE NUMBER ", and then calls the
subroutine to get the value of the number into N . When the subroutine
returns (to line 40), the value input is saved in the variable T. This
is done so that when the subroutine is called a second time, the value
of the first number will not be lost.

" hiHAT IS THE SECOND NUMBER " is then printed, and the second value
is entered when the subroutine is again called.

When the subroutine returns the second time, " THE SUM OF THE Th<0
NUMBERS IS " is printed, followed by the value of their sum. T contains
the value of the first number that was entered and N contains the value
of the second number.

The next statement in the program is a "STOP" statement. This causes
the program to stop execution at line 90. If the "STOP" statement was not
included in the program, we would "fall into" the subroutine at line 100.
This is undesirable because we would be asked to input another number. If
we did, the subroutine would try to return; and since there was no "GOSUB"
which called the subroutine, an RG error would occur. Each "GOSUB" exe-
cuted in a program should have a matching "RETURN" executed later, and the
opposite applies, i.e. a "RETURN" should be encountered only if it is
part of a subroutine which has been called by a "GOSUB".

Either "STOP" or "END" can be used to separate a program from its
subroutines. In the 4K version of BASIC, there is no difference between
the "STOP" and the "END". In the 8K version, "STOP" will print a mes-
sage saying at what line the "STOP" was encountered.

Suppose you had to enter numbers to your program that didn't change
each time the program was run, but you would like it to be easy to change
them if necessary. BASIC contains special statements for this purpose,
called the "READ" and "DATA" statements.

Consider the following program:

10 PRINT "GUESS A NUMBER";
20 INPUT G
30 READ D

40 IF D=-999999 THEN 90
50 IF D o G THEN 30
60 PRINT "YOU ARE CORRECT"
70 END

90 PRINT "BAD GUESS, TRY AGAIN."
95 RESTORE

16

100 GOTO 10
110 DATA 1,393,-39,28,391,-8,0,3.14,90
120 DATA 89,5,10,15,-34,-999999

This is what happens when this program is run. When the "READ"
statement is encountered, the effect is the same as an INPUT statement.
But, instead of getting a number from the terminal, a number is read
from the "DATA" statements.

The first time a number is needed for a READ, the first number in
the first DATA statement is returned. The second time one is needed,
the second number in the first DATA statement is returned. When the en-
tire contents of the first DATA statement have been read in this manner,
the second DATA statement will then be used. DATA is always read se-
quentially in this manner, and there may be any number of DATA statements
in your program.

The purpose of this program is to play a little game in which you
try to guess one of the numbers contained in the DATA statements. For
each guess that is typed in, we read through all of the numbers in the
DATA statements until we find one that matches the guess.

If more values are read than there are numbers in the DATA state-
ments, an out of data (OD) error occurs. That is why in line 40 we check
to see if -999999 was read. This is not one of the numbers to be matched,
but is used as a flag to indicate that all of the data (possible correct
guesses) has been read. Therefore, if -999999 was read, we know that the
guess given was incorrect.

Before going back to line 10 for another guess, we need to make the
READ'S begin with the first piece of data again. This is the function of
the "RESTORE". After the RESTORE is encountered, the next piece of data
read will be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only
READ statements make use of the DATA statements in a program, and any
other time they are encountered during program execution they will be
ignored.

TRE FCLLCWiWC JT^FOFAMyJOF APPLIES TO 2WF VERSION
OF BASIC (WLY

A list of characters is referred to as a "String". MITS, ALTAIR,
and THIS IS A TEST are all strings. Like numeric variables, string
variables can be assigned specific values. String variables are distin-
guished from numeric variables by a "$" after the variable name.

For example, try the following:

A$="ALTAIR8800"

OK

PRINT A$

ALTAIR aaoo

OK

17

In this example, we set the string variable A$ to the string value
"ALTAIR 8800". Note that we also enclosed the character string to be as-
signed to A$ in quotes.

Now that we have set A$ to a string value, we can find out what the
length of this value is (the number of characters it contains). We do
this as follows:

PRINT LEN(A$),LEN("MITS")

11 4
OK

The "LBN" function returns an integer equal to the number of chara-

cters in a string.
The number of characters in a string expression may range from 0 to

255. A string which contains 0 characters is called the "NULL" string.
Before a string variable is set to a value in the program, it is initial-
ized to the null string. Printing a null string on the terminal will
cause no characters to be printed, and the print head or cursor will not
be advanced to the next column. Try the following:

PRINT LEN(Q$);Q$;3

Q 3

OK

Another way to create the null string is: Q$=""

Setting a string variable to the null string can be used to free up
the string space used by a non-null string variable.

Often it is desirable to access parts of a string and manipulate
them. Now that we have set A$ to "ALTAIR 8800", we might want to print
out only the first six characters of A$. We would do so like this:

PRINT LEFT$(A$,6)

ALTAIR

OK

"LEFT$" is a string function which returns a string composed of the
leftmost N characters of its string argument. Here's another example:

FOR N=1 TO LEN(A$):PRINT LEFT$(A$,N):NEXT N

A
AL
ALT
ALTA
ALTAI
ALTAIR
ALTAIR
ALTAIR 5
ALTAIR 66

18

ALTAIR 660
ALTAIR 6600

OK

Since A$ has 11 characters, this loop will be executed with N=l,2,
3,...,10,11. The first time through only the first chatacter will be
printed, the second time the first two characters will be printed, etc.

There is another string function called "RIGHT$y which returns the
right N characters from a string expression. Try substituting "iRlGHT$"
for "LEFT$" in the previous example and see what happens.

There is also a string function which allows us to take characters
from the middle of a string. Try the following:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N):NEXT N
ALTAIR 6600
LTAIR 6600
TAIR 6600
AIR 6600
IR 6600
R 6600
6600

6600
600
00
0

OK

"MID$" returns a string starting at the Nth position of A$ to the
end (last character) of A$. The first position of the string is posi-
tion 1 and the last possible position of a string is position 255.

Very often it is desirable to extract only the Nth character from
a string. This can be done by calling MID$ with three arguments. The
third argument specifies the number of characters to return.

For example:

FOR N=1 TO LEN(A$):PRINT MID$(A$,N,1),MID$(A$,N,2):NEXT N

A AL
L LT
T fA
A AI
1 IR
R R

6
6 66
6 60
0 00
0 0

OK

19

See the Reference Material for more details on the workings of

"LEFT$", "RIGHT$" and "MID$".

Strings may also be concatenated (put or joined together) through

the use of the "+" operator. Try the following:

B$="MITS"+" "+A$

OK
PRINT B$

NITS ALTAIR 6600

OK

Concatenation is especially useful if you wish to take a string apart
and then put it back together with slight modifications. For instance:

C$=LEFT$(B$,4)+"-"+MID$(B$,6,6)+"-"+RIGHT$(B$,4)

OK
PRINT C$

HITS-ALTAIR-6600

OK

Sometimes it is desirable to convert a number to its string repre-
sentation and vice-versa. "VAL" and "STR$" perform these functions.

Try the following:

STRING$="567.8"

OK
PRINT VAL(STRING$)
5L7.6

OK

STRING$=STR$(3.1415)

OK

PRINT STRING$,LEFT$(STRING$,5)

3-1415 3-14
OK

"STR$" can be used to perform formatted I/O on numbers. You can
convert a number to a string and then use LEFT$, RIGHT$, MID$ and con-
catenation to reformat the number as desired.

"STR$" can also be used to conveniently find out how many print
columns a number will take. For example:

PRINT LEN(STR$(3.157))
b

20

OK

If you have an application where a user is typing in a question such
as "WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1
FEET?" you can use "VAL" to extract the numeric values 5.36 and 5.1 from
the question. For further functions "CHR$" and "ASC" see Appendix K.

The following program sorts a list of string data and prints out
the sorted list. This program is very similar to the one given earlier
for sorting a numeric list.

100 DIM A$(15):REM ALLOCATE SPACE FOR STRING MATRIX
110 FOR 1=1 TO 15:READ A$(I):NEXT I:REM READ IN STRINGS
120 F=0:I=1:REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO 1
130 IF A$(I)<=A$(I+1) THEN 180:REM DON'T EXCHANGE IF ELEMENTS

IN ORDER
140 T$=A$(I+1):REM USE T$ TO SAVE A$(I+1)

150 A$(I+1)=A$(I):REM EXCHANGE TWO CONSECUTIVE ELEMENTS
160A$(I)=T$
170 F=1:REM FLAG THAT WE EXCHANGED TWO ELEMENTS
180 1=1+1: IF I<15 GOTO 130
185 REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS, CHECK
187 REM TO SEE IF WE EXCHANGED ANY. IF NOT, DONE SORTING.
190 IF F THEN 120:REM EQUIVALENT TO IF F<>0 THEN 120
200 FOR 1=1 TO 15:PRINT A$(I):NEXT I: REM PRINT SORTED LIST
210 REM STRING DATA FOLLOWS
220 DATA APPLE,DOG,CAT,MITS,ALTAIR,RANDOM
230 DATA MONDAY,"***ANSWER***"," FOO"

240 DATA COMPUTER, FOO,ELP,MILWAUKEE,SEATTLE,ALBUQUERQUE

2!

u

u

22

o

B451C LAfVEÛ EE

O

23

COMMANDS

A command is usually given after BASIC has typed OK. This is called
the "Command Level". Commands may be used as program statements. Certain
commands, such as LIST, NEW and CLOAD will terminate program execution
when they finish.

NAME EXAMPLE PURPOSE/USE

CLEAR *(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION)

LIST LIST Lists current program
LIST 100 optionally starting at specified line.

List can be control-C'd (BASIC will
finish listing the current line)

NULL NULL 3 (Null command only in 8K version, but
paragraph applicable to 4K version also)
Sets the number of null (ASCII 0) charac-
ters printed after a carriage return/line
feed. The number of nulls printed may
be set from 0 to 71. This is a must for
hardcopy terminals that require a delay
after a CRLFf It is necessary to set the
number of nulls typed on CRLF to 0 before
a paper tape of a program is read in from
a Teletype (TELETYPE ts a registered
trademark of *7:e TELFTTPF CCRP0A4T.RW .
In the 8K version, use the null command
to set the number of nulls to zero. In
the 4K version, this is accomplished by
patching location 46 octal to contain the
number of nulls to be typed plus 1.
(Depositing a 1 in location 46 would set
the number of nulls typed to zero.) When
you punch a paper tape of a program using
the list command, null should be set >=3
for 10 CPS terminals, >=6 for 30 CPS ter-
minals. When not making a tape, we recom-
mend that you use a null setting of 0 or 1
for Teletypes, and 2 or 3 for hard copy
30 CPS terminals. A setting of 0 will
work with Teletype compatible CRT's.

RUN RUN Starts execution of the program currently
in memory at the lowest numbered state-
ment. Run deletes all variables (does a
CLEAR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired

line. *CRLF=carriage return/line feed

24

RUN EDO (8K version only) optionally starting
at the specified line number

NEhJ NEM Deletes current program and all variables

TRE FCLLCMZWC COMMANDS ARE JFV TRE FX K E R R K W ONLY

CONT CONT Continues program execution after a
control/C is typed or a STOP statement
is executed. You cannot continue after
any error, after modifying your program,
or before your program has been run.
One of the main purposes of CONT is de-
bugging. Suppose at some point after
running your program, nothing is printed.
This may be because your program is per-
forming some time consuming calculation,
but it may be because you have fallen
into an "infinite loop". An infinite loop
is a series of BASIC statements from
which there is no escape. The ALTAIR will
keep executing the series of statements
over and over, until you intervene or
until power to the ALTAIR is cut off.
If you suspect your program is in an
infinite loop, type in a control/C. In
the 8K version, the line number of the
statement BASIC was executing will be
typed out. After BASIC has typed out OK,
you can use PRINT to type out some of the
values of your variables. After examining
these values you may become satisfied that
your program is functioning correctly.
You should then type in CONT to continue
executing your program where it left off,
or type a direct GOTO statement to resume
execution of the program at a different
line. You could also use assignment (LET)
statements to set some of your variables
to different values. Remember, if you
control/C a program and expect to continue
it later, you must not get any errors or
type in any new program lines. If you
do, you won't be able to continue and will
get a "CN" (continue not) error. It is
impossible to continue a direct command.
CONT always resumes execution at the next
statement to be executed in your program
when control/C was typed.

25

CLOAD CLOAD P Loads the program named P from the
cassette tape. A NEW command is auto-
matically done before the CLOAD com-
mand is executed. When done, the CLOAD
will type out OK as usual. The one-
character program designator may be any
printing character. CSAVE and CLOAD
use I/O ports 6 § 7.
See Appendix I for more information.

CSAVE CSAVE P Saves on cassette tape the current pro-
gram in the ALTAIR's memory. The pro-
gram in memory is left unchanged. More
than one program may be stored on cassette
using this command. CSAVE and CLOAD use
I/O ports 6 § 7.
See Appendix I for more information

OPERATORS

SYMBOL SAMPLE STATEMENT

A=100
LET Z=E-5

B=-A

t 130 PRINT X+3

140 X=R*(B*D)

150 PRINT X/1.3

IbO Z=R+T+3

170 J=100-I

PURPOSE/USE

Assigns a value to a variable
The LET is optional

Negation. Note that 0-A is subtraction,
while -A is negation.

Exponentiation (8K version)
(equal to X*X*X in the sample statement)
0+0=1 0 to any other power = 0
AtB, with A negative and B not an integer
gives an FC error.

Multiplication

Division

Addition

Subtraction

RULES FOR EVALUATING EXPRESSIONS:
1) Operations of higher precedence are performed before opera-
tions of lower precedence. This means the multiplication and
divisions are performed before additions and subtractions. As
an example, 2+10/5 equals 4, not 2.4. When operations of equal
precedence are found in a formula, the left hand one is executed
first: 6-3+5=8, not -2.

26

2) The order in which operations are performed can always be
specified explicitly through the use of parentheses. For in-
stance, to add 5 to 3 and then divide that by 4, we would use
(5+3)/4, which equals 2. If instead we had used 5+3/4, we
would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as
follows, in order beginning with the highest precedence:

fFVcte; Operators Zested on the same Ztne have the same precedence J

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALhJAYS EVALUATED FIRST

5) + EXPONENTIATION C3R VER32YW ONLY;

3) NEGATION -X UHERE X MAY BE A FORMULA

4) * / MULTIPLICATION AND DIVISION

5) + - ADDITION AND SUBTRACTION

L) RELATIONAL OPERATORS: = E<2UAL
feq^aZ precedence for <> NOT Et2UAL
a n s ^ ; < LESS THAN

> GREATER THAN
<= LESS THAN OR E<2UAL
>= GREATER THAN OR Et2UAL

VERSION ONLY) (These 2 be^oM are Log^caZ Operators)

7) NOT LOGICAL AND BITWISE "NOT"
LIKE NEGATION, NOT TAKES ONLY THE
FORMULA TO ITS RIGHT AS AN ARGUMENT

a) AND LOGICAL AND BITWISE "AND"

OR LOGICAL AND BITWISE "OR"

In the 4K version of BASIC, relational operators can only be used
once in an IF statement. However, in the 8K version a relational ex-
pression can be used as part of any expression.

Relational Operator expressions will always have a value of True (-1)
or a value of False (0). Therefore, (5#4)=0, (5=5)=-l, (4>5)=0, (4<5)=-l,
etc.

The THEN clause of an IF statement is executed whenever the formula
after the IF is not equal to 0. That is to say, IF X THEN... is equivalent
to IF X<>0 THEN... .

27

SYMBOL SAMPLE STATEMENT PURPOSE/USE

ID IF A=15 THEN 40

70 IF A<>0 THEN 5

30 IF B>100 THEN 5

1L0 IF B<3 THEN 10

Expression Equals Expression

Expression Does Not Equal Expression

Expression Greater Than Expression

Expression Less Than Expression

<=,=< 130 IF 100<=B+C THEN 10

>=,=> 110 IF (2=>R THEN 50

AND B IF A<5 AND B<B THEN 7

OR IF A<1 OR B<B THEN B

NOT IF NOT <23 THEN 4

Expression Less Than Or Equal
To Expression

Expression Greater Than Or Equal
To Expression

(RK Version cnZz/J If expression 1
(A<5) AND expression 2 (B<2) are both
true, then branch to line 7

(3K Version o n ^ J If either expres-
sion 1 (A<1) OR expression 2 (B<2) is
true, then branch to line 2

f&K yerstcw on^z/J If expression
"NOT Q3" is true (because Q3 is
false), then branch to line 4
/Vote.- NOT fM9T *rne=faZseJ

AND, OR and NOT can be used for bit manipulation, and for performing
boolean operations.

These three operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then per-
form the specified logical operation on them and return a result within
the same range. If the arguments are not in this range, an "FC" error
results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same position
for each argument.

The following truth table shows the logical relationship between bits

OPERATOR ARG. 1 ARG. 2

AND

RESULT

1
0
0
0

(cont.J

28

OPERATOR ARG. 1 ARG. 2 RESULT

OR 1 1 1
1 0 1
0 1 1
0 0 0

NOT 1 - 0
0 - 1

EXAMPLES: fin a H of the examples &eZoM, ZeaJtng zeroes on
w n ^ e r s are not shcMn.J

b3 AND lb=lb Since 63 equals binary 111111 and 16 equals binary
10000, the result of the AND is binary 10000 or 16.

15 AND 14=14 15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals binary 1110 or 14.

-1 AND 5=6 -1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

4 AND 5=0 4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

4 OR 5=b Binary 100 OR'd with binary 10 equals binary 110, or
6 decimal.

10 OR 10=10 Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10 decimal.

-1 OR -3=-l Binary 1111111111111111 (-1) OR'd with binary

1111111111111110 (-2) equals binary 1111111111111111,
or -1.

NOT D=-l The bit complement of binary 0 to 16 places is sixteen
ones (1111111111111111) or -1. Also NOT -1=0.

NOT X NOT X is equal to -(X+l). This is because to form the

sixteen bit two's complement of the number, you take the
bit (one's) complement and add one.

NOT l=-5 The sixteen bit complement of 1 is 1111111111111110,
which is equal to -(1+1) or -2.

A typical use of the bitwise operators is to test bits set in the
ALTAIR's inport ports which reflect the state of some external device.

Bit position 7 is the most significant bit of a byte, while position
0 is the least significant.

29

For instance, suppose bit 1 of I/O port 5 is 0 when the door to Room
X is closed, and 1 if the door is open. The following program will print
"Intruder Alert" if the door is opened:

10 IF NOT (INP(5) AND 2) THEN 10 This line will execute over
and over until bit 1 (mask-
ed or selected by the 2) be-
comes a 1. When that happens,
we go to line 20 .

ALERT" Line 20 will output "INTRUDER
ALERT".

statement 10 with a "WAIT" statement, which

This line delays the execution of the next
statement in the program until bit 1 of
1/0 port 5 becomes 1. The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

The ALTAIR's sense switches may also be used as an input device by
the INP function. The program below prints out any changes in the sense
switches.

10 A=300:REt1 SET A TO A VALUE THAT DILL FORCE PRINTING
BO J=INP(E55):IF J=A THEN B0
30 PRINT J;:A=J:G0T0 BO

The following is another useful way of using relational operators:

1B5 A=-(B>C)*B-(B<=C)*C This statement will set the variable
A to MAX(B,C) = the larger of the two
variables B and C.

STATEMENTS

/Vote; -Tn tTze foZZoning description of statements, an arjMment of 7
or ^ denotes a nMmeric v a r i a M e , X denotes a numeric expression, de-
notes a string expression and an Z or <7 denotes an expression tTzat is
trMncated to an integer before t/ze statement is executed. Truncation
means t M t any fractional part of t&e number is Zest, e.g. 3.3 becomes
3, 4.0Z. becomes

^n expression is a series of u a r i a M e s , operators, function c a M s
and constants M^ic/: after tTze operations and function c a H s are performed
Msing t^e precedence rn^es, eva&Ma^es a numeric or string t?a%ne.

4 constant is either a number /3.J4J or a string ZiteraZ (" F W J .

B0 PRINT "INTRUDER

However, we can replace
has exactly the same effect.

10 tit AIT 5,B

30

NAME EXAMPLE PUKPOSii/USE

DATA 10 DATA li3-.-lE3-..04 Specifies data, read from left to right.
Information appears in data statements
in the same order as it will be read in
the program. IN THE 4K VERSION OF BASIC,
DATA STATEMENTS MUST BE THE FIRST STATE-
MENTS ON A LINE. Expressions may also
appear in the 4K version data statements.

BO DATA " FOO",ZOO C3R Verstcn,) Strings may be read from
DATA statements. If you want the string
to contain leading spaces (blanks), colons
(:) or commas (,), you must enclose the
string in double quotes. It is impossible
to have a double quote within string data
or a string literal. (""MITS"" is illegal)

(RK Vers^cMj The user can define functions
like the built-in functions (SQR, SGN, ABS,
etc.) through the use of the DEF statement.
The name of the function is "FN" followed
by any legal variable name, for example:
FNX, FNJ7, FNKO, FNR2. User defined
functions are restricted to one line. A
function may be defined to be any expres-
sion, but may only have one argument. In
the example B 6 C are variables that are
used in the program. Executing the DEF
statement defines the function. User de-
fined functions can be redefined by exe-
cuting another DEF statement for the same
function. User defined string functions
are not allowed. "V" is called the dummy
variable.

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

DIM 113 DIM A(3),B(10) Allocates space for matrices. All matrix
elements are set to zero by the DIM state-
ment.

114 DIM R3(5,5),D3(B,B,E) (SR Vers^cnJ Matrices can have more
than one dimension. Up to 255 dimen-
sions are allowed, but due to the re-
striction of 72 characters per line
the practical maximum is about 34
dimensions.

115 DIM <21(N),Z(E*I) Matrices can be dimensioned dynamically
during program execution. If a matrix
is not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single subscript

M

DEF 100 DEF FNA(V)=V/B+C

110 Z=FNA(3)

may range from 0 to 10 (eleven elements). , j

117 A(B)=4 If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(10)
had been executed previous to the execu-
tion of line 117. All subscripts start
at zero (0), which means that DIM X(100)
really allocates 101 matrix elements.

END m END Terminates program execution without
printing a BREAK message, (see STOP)
CONT after an END statement causes exe-
cution to resume at the statement after
the END statement. END can be used any-
where in the program, and is optional.

FOR 300 FOR V=1 TO 1-3 STEP -b (see NEXT statement) V is set
equal to the value of the expres-
sion following the equal sign, in
this case 1. This value is called
the initial value. Then the state-
ments between FOR and NEXT are
executed. The final value is the
value of the expression following
the TO. The step is the value of
the expression following STEP. ^
When the NEXT statement is encoun-
tered, the step is added to the
variable.

3ld FOR V=1 TO 1-3 If no STEP was specified, it is
assumed to be one. If the step is
positive and the new value of the
variable is <= the final value (9.3
in this example), or the step value
is negative and the new value of
the variable is => the final value,
then the first statement following
the FOR statement is executed.
Otherwise, the statement following
the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at
least once, even in cases like
FOR V=1 TO 0.

315 FOR V=10*N TO 3-4/(3 STEP S(3R(R) Note that expressions
(formulas) may be used for the in-
itial, final and step values in a
FOR loop. The values of the ex-
pressions are computed only once,
before the body of the FOR NEXT
loop is executed.

32

330 FOR V=1 TO 1 STEP -1

330 FOR U=1 TO 10: FOR U=1

GOTO 50 GOTO 100

When the statement after the NEXT
is executed, the loop variable is
never equal to the final value,
but is equal to whatever value
caused the FOR...NEXT loop to ter-
minate. The statements between
the FOR and its corresponding NEXT
in both examples above (310 § 320)
would be executed 9 times.

TO :NEXT L):NEXT h) Error: do not
use nested FOR...NEXT loops with
the same index variable.
FOR loop nesting is limited only
by the available memory,
(see Appendix D)

:hes to the statement specified.

GOSUB 10 GOSUB 110 Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement
after the GOSUB. GOSUB nesting is limited
only by the available memory,
(see Appendix D)

IF...GOTO
33 IF X<=Y+B3-4 GOTO 13 (6R VersioHj Equivalent to IF...THEN,

except that IF...GOTO must be followed
by a line number, while IF...THEN can
be followed by either a line number
or another statement.

IF...THEN
IF X<10 THEN 5 Branches to specified statement if the

relation is True.

30 IF X<0 THEN PRINT "X LESS THAN 0" Executes all of the
statements on the remainder of the line
after the THEN if the relation is True.

35 IF X=5 THEN 50:Z=A WARNING. The "Z=A" will never be
executed because if the relation is
true, BASIC will branch to line 50.
If the relation is false Basic will
proceed to the line after line 25.

Bb IF X<0 THEN PRINT "ERROR, X NEGATIVE": GOTO 350
In this example, if X is less than 0,
the PRINT statement will be executed
and then the GOTO statement will
branch to line 350. If the X was 0 or
positive, BASIC will proceed to
execute the lines after line 26.

33

INPUT 3 INPUT V,U,U3

5 INPUT "VALUE";V

Requests data from the terminal (to be
typed in). Each value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed
by a carriage return. A "?" is typed as
a prompt character. In the 4K version, a
value typed in as a response to an INPUT
statement may be a formula, such as
2*SIN(.16)-3. However, in the 8K version,
only constants may be typed in as a re-
sponse to an INPUT statement, such as
4.SE-3 or "CAT". If more data was re-
quested in an INPUT statement than was
typed in, a "??" is printed and the rest
of the data should be typed in. If more
data was typed in than was requested,
the extra data will be ignored. The 8K
version will print the warning "EXTRA
IGNORED" when this happens. The 4K ver-
sion will not print a warning message.
(FX VerstCMj Strings must be input in the
same format as they are specified in DATA
statements.

(<% Vers^cnJ Optionally types a prompt
string ("VALUE") before requesting data
from the terminal. If carriage return
is typed to an input statement, BASIC
returns to command mode. Typing CONT
after an INPUT command has been inter-
rupted will cause execution to resume at
the INPUT statement.

LET 300 LET W=X
310V=5.1

Assigns a value to a variable
"LET" is optional.

NEXT 340 NEXT V
345 NEXT

350 NEXT V,h)

Marks the end of a FOR loop.
C3.K Version) If no variable is given,
matches the most recent FOR loop.
fRK VorstCMj A single NEXT may be used
to match multiple FOR statements.
Equivalent to NEXT V:NEXT W.

ON...GOTO
100 ON I GOTO 10,30,30,40 (FX VersionJ Branches to the line

indicated by the I'th number after
the GOTO. That is:
IF 1=1, THEN GOTO LINE 10
IF 1=2, THEN GOTO LINE 20
IF 1=3, THEN GOTO LINE 30
IF 1=4, THEN GOTO LINE 40.

34

If 1=0 or I attempts to select a non-
existent line (>=5 in this case), the
statement after the ON statement is
executed. However, if I is >255 or
<0, an FC error message will result.
As many line numbers as will fit on
a line can follow an ON...GOTO.

105 ON SGN(X)+2 GOTO H0,50,L0
This statement will branch to line 40
if the expression X is less than zero,
to line 50 if it equals zero, and to
line 60 if it is greater than zero.

ON...GOSUB
110 ON I GOSUB 50,bO (FR Version; Identical to "ON...GOTO",

except that a subroutine call (GOSUB) is
executed instead of a GOTO. RETURN from
the GOSUB branches to the statement after
the ON...GOSUB.

OUT 355 OUT I,J (RK Version; Sends the byte J to the
output port I. Both I § J must be >=0
and <=255.

POKE 357 POKE I,J CSR Version; The POKE statement stores
the byte specified by its second argu-
ment (J) into the location given by its
first argument (I). The byte to be stored
must be =>0 and <=255, or an FC error will
occur. The address (I) must be =>0 and
<=32767, or an FC error will result.
Careless use of the POKE statement will
probably cause you to "poke" BASIC to
death; that is, the machine will hang, and
you will have to reload BASIC and will
lose any program you had typed in. A
POKE to a non-existent memory location is
harmless. One of the main uses of POKE
is to pass arguments to machine language
subroutines. (see Appendix J) You could
also use PEEK and POKE to write a memory
diagnostic or an assembler in BASIC.

PRINT 3L0 PRINT X,Y;Z Prints the value of expressions on the
370 PRINT terminal. If the list of values to be
360 PRINT X,Y; printed out does not end with a comma (,)
310 PRINT "VALUE IS";A or a semicolon (;), then a carriage
400 PRINT AE,B, return/line feed is executed after all the

values have been printed. Strings enclosed
in quotes (") may also be printed. If a
semicolon separates two expressions in the
list, their values are printed next to
each other. If a comma appears after an

35

expression in the list, and the print head
is at print position 56 or more, then a
carriage return/line feed is executed.
If the print head is before print position
56, then spaces are printed until the car-
riage is at the beginning of the next 14
column field (until the carriage is at
column 14, 28, 42 or 56...). If there is no
list of expressions to be printed, as in
line 370 of the examples, then a carriage
return/line feed is executed.

410 PRINT MIDt(A3,B); (RK Version) String expressions may be
printed.

READ 410 READ ViM Reads data into specified variables from
a DATA statement. The first piece of data
read will be the first piece of data list-
ed in the first DATA statement of the pro-
gram. The second piece of data read will
be the second piece listed in the first
DATA statement, and so on. When all of
the data have been read from the first
DATA statement, the next piece of data to
be read will be the first piece listed in
the second DATA statement of the program.
Attempting to read more data than there
is in all the DATA statements in a pro-
gram will cause an OD (out of data) error.
In the 4K version, an SN error from a READ
statement can mean the data it was at-
tempting to read from a DATA statement was
improperly formatted. In the 8K version,
the line number given in the SN error will
refer to the line number where the error
actually is located.

Allows the programmer to put comments in
his program. REM statements are not exe-
cuted, but can be branched to. A REM
statement is terminated by end of line,
but not by a " : " .

In this case the V=0 will never be exe-
cuted by BASIC.
In this case V=0 will be executed

REM 500 REN NOtd SET V-0

505 REM SET V=0: V=0

50k V-0: REM SET V-0

RESTORE 510 RESTORE Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in
the first DATA statement of the program.
The second piece of data read will be
the second piece listed in the first DATA
statement, and so on as in a normal
READ operation.

36

RETURN 50 RETURN Causes a subroutine to return to the
statement after the most recently exe-
cuted GOSUB.

STOP 1000 STOP Causes a program to stop execution and to
enter command mode.

C3R Version; Prints BREAK IN LINE 9000.
(as per this example) C0NT after a STOP
branches to the statement following the
STOP.

UAIT B05 UAIT I,J,K (3R Version; This statement reads the
B0L MAIT I,J status of input port I, exclusive OR's

K with the status, and then AND's the re-
sult with J until a non-zero result is
obtained. Execution of the program con-
tinues at the statement following the
WAIT statement. If the WAIT statement
only has two arguments, K is assumed to
be zero. If you are waiting for a bit
to become zero, there should be a one in
the corresponding position of K. I, J
and K must be =>0 and <=255.

4K INTRINSIC FUNCTIONS

ABS(X) 150 PRINT ABS(X)

INT(X) 140 PRINT INT(X)

RND(X) 170 PRINT RND(X)

Gives the absolute value of the expression
X. ABS returns X if X>=0, -X otherwise.

Returns the largest integer less than or
equal to its argument X. For example:
INT(.23)=0, INT(7)=7, INT(-.1)=-1, INT
(-2)= -2, INT(1.1)=1.
The following would round X to D decimal
places:

INT(X*10tD+.5)/10+D

Generates a random number between 0 and 1.
The argument X controls the generation of
random numbers as follows:

X<0 starts a new sequence of random
numbers using X. Calling RND with
the same X starts the same random
number sequence. X=0 gives the last
random number generated. Repeated
calls to RND(0) will always return
the same random number. X>0 gener-
ates a new random number between 0
and 1.
Note that (B-A)*RND(1)+A will gener-
ate a random number between A S B.

37

SGN(X) 230 PRINT SGN(X) Gives 1 if X>0, 0 if X=0, and -1 if X<0.

SIN(X) 110 PRINT SIN(X) Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS (X)=SIN(X+3.14159/2) and that 1 Radian
=180/PI degrees=57.2958 degrees; so that
the sine of X degrees= SIN(X/57.2958).

S(3R(X) 160 PRINT S(2R(X) Gives the square root of the argument X.
An FC error will occur if X is less than
zero.

TAB(I) B40 PRINT TAB(I) Spaces to the specified print position
(column) on the terminal. May be used
only in PRINT statements. Zero is the
leftmost column on the terminal, 71 the
rightmost. If the carriage is beyond
position I, then no printing is done. I
must be =>0 and <=255.

USR(I) BOO PRINT USR(I) Calls the user's machine language sub-
routine with the argument I. See POKE
PEEK and Appendix J.

8K FUNCTIONS f i n c h e s a H those M s t e d M7K?er 4R JNyRJNSZC F W C y f O N S
p^MS the foZZ.oMtMQ' tw a&Ztt-MM.J

ATN(X) BIO PRINT ATN(X)

COS(X) BOO PRINT COS(X)

EXP(X) 150 PRINT EXP(X)

FRE(X) B70 PRINT FRE(0)

INP(I) Bb5 PRINT INP(I)

Gives the arctangent of the argument X.
The result is returned in radians and
ranges from -PI/2 to PI/2. (PI/2=1.5708)

Gives the cosine of the expression X. X
is interpreted ias being in radians.

Gives the constant "E" (2.71828) raised
to the power X. (E+X) The maximum
argument that can be passed to EXP with-
out overflow occuring is 87.3365.

Gives the number of memory bytes currently
unused by BASIC. Memory allocated for
STRING space is not included in the count
returned by FRE. To find the number of
free bytes in STRING space, call FRE with
a STRING argument, (see FRE under STRING
FUNCTIONS)

Gives the status of (reads a byte from)
input port I. Result is =>0 and <=255.

38

LOG(X) IbO PRINT LOG(X)

PEEK 35b PRINT PEEK(I)

Gives the natural (Base ii) lonarithm of
Its argument X. To obtain the Huso Y
logarithm of X use the formula LOG (X)/LOG (Y)
Example: The base 10 (common) log of
7 = LOG(7)/ LOG(10).

The PEEK function returns the contents of
memory address I. The value returned will
be =>0 and <=255. If I is >32767 or <0,
an FC error will occur. An attempt to
read a non-existent memory address will
return 255. (see POKE statement)

POS(I) BbO PRINT POS(I)

SPC(I) B5Q PRINT SPC(I)

Gives the current position of the terminal
print head (or cursor on CRT's). The
leftmost character position on the terminal
is position zero and the rightmost is 71.

Prints I space (or blank) characters on
the terminal. May be used only in a
PRINT statement. X must be =>0 and <=255
or an FC error will result.

TAN(X) BQ0 PRINT TAN(X) Gives the tangent of the expression X.
X is interpreted as being in radians.

STRINGS (FX Version OnZz/J

1) A string may be from 0 to 255 characters in length. All string
variables end in a dollar sign ($); for example, A$, B9$, K$,
HELL0$.

2) String matrices may be dimensioned exactly like numeric matrices.
For instance, DIM A$(10,10) creates a string matrix of 121 elements,
eleven rows by eleven columns (rows 0 to 10 and columns 0 to 10).
Each string matrix element is a complete string, which can be up to
255 characters in length.

3) The total number of characters in use in strings at any time during
program execution cannot execeed the amount of string space, or an
OS error will result. At initialization, you should set up string
space so that it can contain the maximum number of characters which
can be used by strings at any one time during program execution.

NAME EXAMPLE PURPOSE/USE

DIN B5 DIM A3(10,10) Allocates space for a pointer and length
for each element of a string matrix. No
string space is allocated. See Appendix D.

39

LET 37 LET A6="FOO"+V6 Assigns the value of a string expression
to a string variable. LET is optional.

>

<

< =

> =

String comparison operators. Comparison
is made on the basis of ASCII codes, a
character at a time until a difference
is found. If during the comparison of
two strings, the end of one is reached,
the shorter string is considered smaller,
Note that "A " is greater than "A" since
trailing spaces are significant.

30 LET Z3=R3+%3 String concatenation. The resulting
string must be less than 256 characters
in length or an LS error will occur.

INPUT 40 INPUT X3 Reads a string from the user's terminal.
String does not have to be quoted; but if
not, leading blanks will be ignored and
the string will be terminated on a "," or
":" character.

READ 50 READ X3 Reads a string from DATA statements within
the program. Strings do not have to be
quoted; but if they are not, they are
terminated on a "," or ":" character or
end of line and leading spaces are ignored.
See DATA for the format of string data.

PRINT bO PRINT X*
70 PRINT "F00"+A3

Prints the string expression on the user's
terminal.

STRING FUNCTIONS C8X Version O M ^ j

ASC(X3) 300 PRINT ASC(X3) Returns the ASCII numeric value of the
first character of the string expression
X$. See Appendix K for an ASCII/number
conversion table. An FC error will occur
if X$ is the null string.

CHR3M) 375 PRINT CHR3(I)

FRE(X3) 373 PRINT FREf"")

LEFT3(X3,I)
310 PRINT LEFT3(X3,I) string expression X$.

an FC error occurs.

40-

Returns a one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be
=>0 and <=255. See Appendix K.

When called with a string argument, FRE
gives the number of free bytes in string
space.

Gives the leftmost I characters of the
If I<=0 or >255

LEN(X3) 330 PRINT LEN(X3)

MIDS(X$,I)

Gives the length of the string expression
X$ in characters (bytes). Non-printing
characters and blanks are counted as part
of the length.

MID$ called with two arguments returns
330 PRINT MID3(X3,I) characters from the string expression X$

starting at character position I. If
I>LEN(I$), then MID$ returns a null (zero
length) string. If I<=0 or >255, an FC
error occurs.

MID3(X3,I,J) MID$ called with three arguments returns
340 PRINT MID3(X3,I,J) a string expression composed of the

characters of the string expression X$
starting at the 1th character for J char-
acters. If I>LEN(X$), MID$ returns a null
string. If I or J <=0 or >255, an FC
error occurs. If J specifies more char-
acters than are left in the string, all
characters from the 1th on are returned.

RIGHTS(XS,I)
330 PRINT RIGHTS(XS,I)

STRS(X) 310 PRINT STRS(X)

VAL(XS) 330 PRINT VAL(XS)

Gives the rightmost I characters of
the string expression X$. When I<=0
or >255 an FC error will occur. If
I>=LEN(X$) then RIGHT$ returns all of
X$.

Gives a string which is the character
representation of the numeric expression
X. For instance, STR$(3.1)=" 3.1".

Returns the string expression X$ converted
to a number. For instance, VAL("3.1")=3.1
If the first non-space character of the
string is not a plus (+) or minus (-) sign
a digit or a decimal point (.) then zero
will be returned.

SPECIAL CHARACTERS

CHARACTER USE

@ Erases current line being typed, and types a carriage

return/line feed. An is usually a shift/P.

-*- f&acAxEPrczj or wafer Hue,) Erases last character typed.
If no more characters are left on the line, types a
carriage return/line feed. "-<-" is usually a shift/0.

41

CARRIAGE RETURN A carriage return must end every line typed in. Re-

turns print head or CRT cursor to the first position

(leftmost) on line. A line feed is always executed

after a carriage return.

Interrupts execution of a program or a list command.

Control/C has effect when a statement finishes exe-

cution, or in the case of interrupting a LIST com-

m a n d , when a complete line has finished printing. In

both cases a return is made to BASIC'S command level

and OK is typed.

C<% Version,) Prints "BREAK IN LINE XXXX" , where
XXXX is the line number of the next statement to
be executed.

A colon is used to separate statements on a line.
Colons may be used in direct and indirect statements.
The only limit on the number of statements per line
is the line length. It is not possible to GOTO or
GOSUB to the middle of a line.

CONTROL/O Typing a Control/0 once causes BASIC to suppress all

output until a return is made to command level, an
input statement is encountered, another control/0 is
typed, or an error occurs.

? Question marks are equivalent to PRINT. For instance,
? 2+2 is equivalent to PRINT 2+2. Question marks can
also be used in indirect statements. 10 ? X , when
listed will be typed as 10 PRINT X .

MISCELLANEOUS

1) To read in a paper tape with a program on it (8K Version), type a
control/0 and feed in tape. There will be no printing as the tape
is read in. Type control/0 again when the tape is through.
Alternatively, set nulls=0 and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.
Each line must be followed by two rubouts, or any other non-printing
character. If there are lines without line numbers (direct commands)
the ALTAIR will fall behind the input coming from paper tape, so
this in not recommending.

Using null in this fashion will produce a listing of your tape in
the 8K version (use control/0 method if you don't want a listing).
The null method is the only way to read in a tape in the 4K version.

To read in a paper tape of a program in the 4K version, set the
number of nulls typed on carriage return/line feed to zero by patch-
ing location 46 (octal) to be a 1. Feed in the paper tape. When

42

CONTROL/C

: (colon)

the tape has finished reading, stop the CPU and repatch location 46
to be the appropriate number of null characters (usually 0, so de-
posit a 1). When the tape is finished, BASIC will print SN ERROR
because of the "OK" at the end of the tape.

2) To punch a paper tape of a program, set the number of nulls to 3 for
110 BAUD terminals (Teletypes) and 6 for 300 BAUD terminals. Then,
type LIST; but, do not type a carriage return.
Now, turn on the terminal's paper tape punch. Put the terminal on
local and hold down the Repeat, Control, Shift and P keys at the same
time. Stop after you have punched about a 6 to 8 inch leader of
nulls. These nulls will be ignored by BASIC when the paper tape is
read in. Put the terminal back on line.
Now hit carriage return. After the program has finished punching,
put some trailer on the paper tape by holding down the same four
keys as before, with the terminal on local. After you have punched
about a six inch trailer, tear off the paper tape and save for
later use as desired.

3) Restarting BASIC at location zero (by toggling STOP, Examine loca-
tion 0, and RUN) will cause BASIC to return to command level and
type "OK". However, typing Control/C is preferred because Control/
C is guaranteed not to leave garbage on the stack and in variables,
and a Control C'd program may be continued, (see CONT command)

4) The maximum line length is 72 characters?* If you attempt to type too
many characters into a line, a bell (ASCII 7) is executed, and the
character you typed in will not be echoed. At this point you can
either type backarrow to delete part of the line, or at-sign to delete
thewhole line. The character you typed which caused BASIC to type
the bell is not inserted in the line as it occupies the character
position one beyond the end of the line.

*CLEAR CLEAR Deletes all variables.
CLEAR X f<% Version; Deletes all variables. When

used with an argument "X", sets the amount
of space to be allocated for use by string
variables to the number indicated by its
argument "X".

10 CLEAR SO C3R Version; Same as above; but, may be used
at the beginning of a program to set the exact
amount of string space needed, leaving a maxi-
mum amount of memory for the program itself.

NOTE: If no argument is given, the string
space is set at 200 by default. An OM error
will occur if an attempt is made to allocate
more string space than there is available
memory.

.**For inputting only.

43

u

u

44

u

45

