
,.r--,

,~"

Cromemeo
MACRO ASSEMBLER

INSTRUCTION MANUAL ADDENDUM

CRGr1EMCO, INC.
280 Bernardo Avenue

Mountain View, CA 94043

~-'-

Part No. 023-4001

Copyright © 1978, 1980
CROMEMCO, INC.

ALL RIGHTS RESERVED

January, 1980

This manual was produced on a
Cromemco System Three Computer
using the SCREEN Edi tor. The
edited text was formatted using
the Cromemco Word Processing
System Formatter. Final
carner a-ready copy was pr inted
on a Cromemco 3355A printer.

'--.J

-,......./

-,--.-/

~'

,r-'",

TABLE Q£ CONTENTS

Introduction 5

I. Macro Assembler •••••••••••••••••••••••••• · . 7

1. OptionsSpecifiedWhenCallingASMB •••••••••••••• 7
Liston,

Lis t 0f f ••••••• -e •••••••••••••••••••••••• 7
Text,

Notext 7
T run c ••

7
Noxref•.......•••........................

7
Date •••

7
T irne ••...••.••.•.••.•.••...•.•••••....•••.•.•••

7

(Labels) ••2. Names 8

3. Condition Codes ••••••••.••••..•••••••.•••••.•• 9

4. Modifying the Default Value of Options ••••••••••• lO

5. Expressions and Operators •••••••••••••••••••••••• ll

....

New Pseudo-Ops •••••••••
Subtitle •••••••••••••
List - Text, Notext •
Maclib ••••••
Rellib •
Struct ••
Defv, Dv •••••
Conmsg •
Global •••••••
Else .

..
·.....

..
• •13

• • • •13
•13

· 13
•13

••••• 14
•••• 15
••••15
•••• 15
•••16

·.......

·..

....
·..

·.
· .

-..
....
......

6.,.---.,

......................·..
7. Macros ••••••••

Comments •••
Exi tm ••••••••
Argument Substrings ••
Ornac r 0 •••••••••••••••

.... ·.... ·...·..
••17

••••17
•••• 17

• • 17
•18

8. Repeat Expansions ••••••••••••••••••••••••
Rept •••••••••••••••.•.•..•••••••••••••.
I rp •••••••.••.•.•••••••••••••.•••••••
Irpc .

..•.. 19
•••• 19
••••19

• 20

...........................
-~

9. Listings ••••••••••
Cross Reference ••
Symbol Table.

... ·..
· .

••••22
•• 22

••••22

10. Modifying CDOS I/O Device Drivers •••••••••••••••• 23

- -

Introduction To Debug •
Debug Enhancements ••••••••••••••••••••••• •
Loading Debug •••••••••••••••.••••••• ••••••
Control Characters ••••
Command Format ••••••••••••••
Current Program Counter Location
Command Starting Address ••••
@ Register ••••••••••
Address Expressions ••••••••••••••••
Expressions ••••••••••
Swath Operator ••••••
Errors •••••••

................
•• • • ••

........... .---.-/.27

........

. • • . . . 27
• 27

••• 27
••••• 28

••••••••29
••••••••••• 29

••••••••• 29
•••••••••••30

.••.•• 30
•31
•32
•32.........

($)....

.................
............

..............
...............

1.

Debug ••••••••••••••••••••II.

2. Debug Cornrnands••••••••••••••••••••••••••••••••••• 33
A Assemble into Memory •••••••••••••••••••••••• 33
B Set or Display Permanent Break Points •••••••34
BX Delete Permanent Break Points •••••••~•••••••36
C Trace'Over Calls •••••••••••••••••••••••••••• 36
CN Trace Over Calls with No Display ••••••••••••37
CJ Trace Over Calls with Jumps •••••••••••••••••37
CNJ Trace Over Calls with Jumps and No Display.38
D or DM Display Memory •••••••••••·••••••••••••••38
DR Display Registers ••••••••••••••••••••••••••• 39
E Examine Input Port •••••••••••••••••••••••••• 41
EJ Eject Disk•............... 41
F Specify File Name ••••••••••••••••••••••••••• 41
G Go •• 42
H Hexadecimal Arithmetic •••••••••••••••••••••• 43
L List In Assembler Mnemonics •••••••••••••••••43
M Move Memory ••••••••••••••••••••••••••• '•••••• 44
o Output To Data Port ••••••••••••••••••••••••• 45
P Program Proms ••••••••••••••••••••••••••••••• 45
Q Query Memory ••.••.••..••.....••.•....•.•.•.• 46
R Read Disk File •••••••••••••••••••••••••••••• 46
S or SM Substitute Memory •••••••••••••••••••••• 47
Sr Substitute Register ••••••••••••••••••••••••• 48
T Tr ace ••••••••••••••••••••••••••••••••••••••• 49
TN Trace with No Display ••••••••••••••••••••••• 50
TJ Trace Jumps .•••...•.•.••...•...••.••..•••.•• 50
TNJ Trace Jumps with No Display ••••••••••••••••51
V Verify Memory ••••••••••••••••••••••••••••••• 51
W Write Disk File ••••••••••••••••••••••••••••• 52
Z Zap Memory•.•.•••..•.•...•...••...•.•••. 52

~.

3 • Summary of Debug Commands •••••••
Summary of Register Names ••.

•• •...53
• • 54

~

INTRODUCTION

The Cromemco Macro Assembler version 3.05 and
higher has several significant enhancements. These
enhancements are covered in the first part of this
addendum.

Page numbers refer to the Cromemco Macro Assembler
Manual (part number 023-0039) as published in
October 1978.

The second part of this addendum is intended to
replace Part III (pp. 117-138) of the same manual.
This section of the addendum covers the use of the
Debug program (version 00.14 and higher) which has
also been significantly enhanced.

~"

~.

5

--~- ------. ----- -- -~- --.--

9

~--

~-

OPTIONS SPECIFIED WHEN CALLING ASMB (pp. 19-27)

LISTONr LISTOFF

These options, when given in the command line which
calls the Assembler, override the list ON and OFF
pseudo-ops (pp. 52-53) • The LISTOFF option is
useful if the programmer desires a cross reference
listing without a program listing.

TEXTr NOTEXT

The NOTEXT option causes the Assembler to suppress
the printing of the generated object code
associated with DB statements.

TRUNC = nn

This option is similar to the WIDTH option (pp. 25
26) except that lines longer than nn characters are
trunca ted and not wrapped around. Lines longer
than 128 characters are truncated by default unless
the WIDTH option is specified.

NOXREF

This option suppresses the generation and printing
of the cross reference listing. This may be useful
if the default has been changed to XREF on.

DATE=mmddyy
.'fl..M.E.=hhmmss

These options cause the specified date and time to
be included in the program listing which is
generated by the Assembler. Note that month, day,
year, hour, minute, and second must each be
specified as two digit numbers as shown above.

If time and date are set in CDOS the Assembler will
use these values.

7

NAMF.S (LABELS) (p.30)

Symbol names may now contain up to eight
significant characters except for ENTRYs and EXTRNs
which may contain up to seven significant
characters. The following special characters may
now be used anywhere in a symbol name:

'.

----./

(period)
$

(dollar sign)
(underscore)?

(question mark)
@

(at sign) -- ,

-..../

~--_.-/

8

\

.r--.

CONDITION CODES

In order to allow the programmer to make listings
more readable several new Condition Codes have been
defined. These codes may be used in place of those
specified in the Zilog and Mostek Assembly Language
Programming Manuals •.

RELEVANT EQUIVALENT
.c®..E.

CONDITION FLAGCONDITION

valid for JP,

RET,and CALL instructions:

V

overflow P/VPE parity even
NV

no overflowp/VPO parity odd

valid for JR,

JP,RET,and CALL instructions:

EQ

equal ZZ zero
NE

not equal ZNZ non zero
r.r---,-

LTless thanC.C car ry
GE

greater or equal CNC no carry

~'.

9

MODIFYING THE DEFAULT VALUE OF OPTIONS

The Default value of various Assembler options can
be changed by modifying locations 103H to 109H.
These changes may be accomplished by using the
Cromemco DEBUG program and saving the modified
file.

'-...-/

Hex Current
Location

bit.Default Option

103

3AHPAGE=

104

80H{WIDTH=
{TRUNC=

105

0TOP=

106

21 XREF
3

0 SYMB
4

1 RANGE
5

0 PARITY
---..-/

107
10 NOGEN

2
0 NOCOND

3
0 OPCODE

5
0 COND

6
0 GEN

108

20 TEXT
3

1 NOTEXT
4

0 LISTON
5

0 LISTOFF
6

1 TRUNC

109

7(number of chars for ENTRY &
EXTRN)

should only be 6 or 7

~

10

....•..•

~'

~ ..

\~-"
.. \

EXPRRSSIONS AND OPERATORS (pp. 34-36)

NEW OPERATORS

The following new operators have been added to
those described on page 35 of the Cromemco Macro
Assembler Manual:

<> not equal, same as NE

>= greater than or equal, same as GE

<= less than or equal, same as LE

% modulus, same as MOD

« shift left logical, same as SHL

» shift right logical, same as SHR

& logical and,.same as AND

logical or, same as OR

logical not, same as NOT

set bit as specified by the expression
following the operator. This is a unary
operator and may alter bit 0-15 to form an
integer constant. This operator has the
highest precedence.

Low return the low byte of the following
expression. This is a unary operator with the
lowest precedence.

High return the high byte of the following
expression. This is a unary operator with the
lowest precedence.

STRING COMPARISON

,This new feature finds the most use in Macro
definitions. An ASCII string comparison is of the
following format:

"string-I" relop "string-2"

11

where relop can be anyone of:

=
<>
>=
<=
<
>

and string-l and string-2 may be of any length. If
one string is shorter than the other, the shorter
one is left justified and padded with nulls.

EXTERNAL + OFFSET

A label which is declared external (pp. 47-49) may
now be used wi th an absolute expression (or a
constant) added to or subtracted from it. Thus,
the following would be a legal section of code:

'.._J

disp:
extrn
equ

Id

•

table
3

a, (table+disp) .-...-/

UNDEFINED EXPRESSIONS

Undefined Expressions for IF, EQU, DEFL, ORG, REPT,
STRUCT, and DEFS now give errors on pass one of an
assembly. This avoids the generation of a complex
phase error during pass two.

///

12

-"_n'-/"

--.

~

/~

~".

~'"

.~.

NE.N PSEUDO-OPS (pp. 39-63)

SUBTITLE

In addition to a TITLE pseudo-op (pp. 56-57) the
programmer may now specify a subtitle. The
subtitIe is specified in the same manner as the
TITLE using one of the following equivalent pseudo
ops:

TITLE2
SUBTTL

LIST = TEXT, NOTEXT

In the same manner as the LIST - ON, OFF pseudo-ops
(pp. 52-53), the LIST - TEXT, NOTEXT pseudo-ops
cause the listing of generated object code
associated with DB statements to be suppressed.

*r1ACLIB

The Macro Library pseudo-op defines a Macro Library
in the same manner as the MACRO= option (pp. 22
23). Up to 16 different libraries may be defined
during one assembly. The format of this pseudo-opis:

*MACLIB file-ref

where file-ref is a file reference composed of a
file name and optionally a disk drive specifier and
file name extension.

*RELLIB

The relocatable library pseudo-op defines a library
of relocatable routines which will be searched at
link time for unresolved externals. The format of
this pseudo-op is:

*RELLIB file-name

where file-name is a file name containing no more
than 7 characters. The file must be on the disk in
the current drive. No file name extension may be

13

specif ied in the *RELLIB pseudo-op but the file
must have a file name extension of REL on the disk.

STRUCT

The STRUCTure pseudo-op defines a series of labels
as offsets from a base. The format is as follows:

-~-./

NAMEl:
NAME2:

STRUCT
DS
DS

MEND

<exp>
<size>
<size>

where exp is an expression denoting the
offset (usually zero) and size is the size
element of the structure. Note that the DS
ops within the STRUCT-t1END definition
reserve any space.

For example, the following structure:

initial
of each
pseudo
do not

x:
y:
z:
size:

struct 20
ds 4
ds 2
ds 1
ds 0
mend

,-.../

is the functional equivalent of:

x:
y:
z :
size:

equ
equ
equ
equ

20
24
26
27

Each of these
the labels x,
example, size
maximum offset

sections of code def ine offsets of
y, z~ and size. Notice that in the
is automatically set equal to the
value.

Remember that the DS pseudo-op does not reserve
storage area only wi thin the bounds of a STRUCT
MEND definition. In all other cases, DS functions
as described in the Assembler Manual (pp. 42-43).

Given either of the above examples, storage space
for three different structures could be reserved by

14

,---_/

r---

the following code:

stra:

dssize
strb:

dssize
strc:

dssize

Then the following code will load the A register
with the contents of the second member of STRC:

Id
Id

ix,strc
a, (i x+y)

---...

~.

?-.....

Using the STRUCT form has the advantage of
automatically computing the offset and maximum
offset while allowing the programmer to add or
delete elements of the structure without re
computing the offset for each original element.

DEFV. ill[

These pseudo-ops perform the same function as DEFL
and DL (pp. 40-41) except that a label defined by
DEFV or DV will not appear in the cross reference
listing. A label defined by DEFV or DV may be
redefined at a later point in the program.

CONHSG

This pseudo-op will display a message on the
console during the second pass of the assembler.

The format is:

CONMSG <any message>

GLOBAL

The GLOBAL pseudo-op acts as an EXTRN (pp. 47-49)
if the label following it is undefined and as an
ENTRY (pp. 45-46) if it is def ined in an assembly
module. This finds a great many applications when
used in conjunction with the *INCLUDE pseudo-ope

15

ELSE

The ELSE pseudo-op may be included between the IF
and ENDIF statements (pp. 74-76) to form an if
then-else structure for conditional assembly.

16

'----./

'~-_/

"--_/

~,

r'-

.~"

MACROS (pp. 65-74)

COMMENTS

Any comments in a Macro which are preceded by two
semicolons (as opposed to the usual one) will be
thrown away by the Assembler. This will save
memory during the assembly and will also create a
shorter PRN file.

EXI.T11

When this instruction is encountered during the
expansion of a Macro the balance of the Macro will
not be expanded. This can be used to advantage in
conjunction with conditional assemblies.

ARGUMENT SUBSTRINGS

Any character or group of characters in a Macro
argument (parameter) may be accessed in a Macro
definition. Assuming that a Macro has an argument
defined as #ARG any character or characters may be
referenced by one of the two forms:

#ARG(first-pos,last-pos)
#ARG(first-pos)

where first-pos and last-pos
character indexes wi thin the
Position expressions are:

1 = first character
2 = second character

are the desi red
argument string.

.-..--~.

-2 = second'to last character
-1 = last character

This addressing scheme allows the same character to
be addressed either by its position relative to the
beginning Q£ end of the string •

17

OMACRO

This represents an opcode Macro. A Macro defined
by OMACRO will be placed in the OPCODE XREF table
instead of the SYMBOL XREF table.

18

"-~

----.-/

'---../

,'"

~'"

~"

REPEAT EXPANSIONS

The ~epeat Expansions allow the programmer to write
repeti tive code in a more structured fashion so
that it may be more easily written, understood,
debugged, and mod if ied. The expansions QQ llil.t.
generate code wi th loops in it. They expand the
code as is demonstrated in the examples.

REPT

This form will repeat the generation of a given
section of code a specified number of times. The
format is:

REPT <exp>

(code)

MEND

where exp is an expression whose value determines
the number of times the code is to be repeated.

Example.:

rept
db
mend

256
OFFH

will generate the following code:

db OFFH

(256 times)

l.R1:

db OFFH

/"-"
The iterative repeat will repeat a given section of
code, substituting a new value for a given
argument, until it runs out of values. The format

19

is:
IRP #ARG, ARGI, ARG2, ARG3, •••

(code)
•

MEND

where #ARG is the argument which takes on the value
of ARGI the first time through the loop, the value
of ARG2 the second time through, etc. When the
loop has been expanded one time wi th each of the
arguments the expansion will terminate.

Example:

,~

ld

irp
ld
mend

hl,O
#var,x,y,z
(#var) ,hI

will generate the following code:

IRPC

ld
ld
ld
ld

hI, 0
(x) , hI
(y) , hI
(z) , hI

----./

The iterative repeat with characters will repeat a
given section of code, substituting a new character
for a given argument, until it runs out of
characters. The format is:

IRPC #ARG, 'character string'

(code)

MEND

where #ARG is the argument which takes on the value
of each successive character in the character
string each time through the loop. When the #ARG
has taken on the value of the last character in the
string the expansion will terminate. •

20
____J

,r--

Example:

irpc
Id
inc
mend

#char,'COM'
(hI), '#char'
hI

~ ",.----.

~

will generate the following code:

Id (hI), 'C'
inc hI
Id (hI), '0'
inc hI
Id (hI), 'M'
inc hI

21

\

LISTINGS

CROSS REFERENCE

The cross reference listing now takes the following
format:
NAME

FLAGSVALUEDEFNREFERENCES

E - entry

X - extrnM - multdefU - undef
MACRO

12345678

SYMBOL TABLE

Macros are now listed in the Symbol Table while
Omacros (opcode Macros) are listed in the Opcode
Xref Table.

22

..---'

.....•.•~~

I
._~

,..-

---'

..J

~

- ~,

~--,

MnnTFYING ~ ILQ DEVICE DRIVERS

The Assembly Language source file for the CDOS I/O
Drivers is now supplied on the disk with the
Cr omemco Macro Assembler. For most appl ications
the programmer need not be concerned with this
file. The I/O Drivers are already incorporated in
CDOSGEN and this file is included only. for those
programmers who need to modify the Drivers.

A programmer attempting to modify the Drivers ~
be familiar with Z-SO Assembly Language
programming, conditional assembly, the Cromemco Z
SO Macro Assembler, and the design of I/O drivers.

The file containing the CDOS I/O Drivers is called
DRIVERS.ZSO. This file contains switches for
conditional assembly and EQUs for port assignments
followed by the routines for the various devices.

The following points should be observed when
modifying the Drivers:

1. The programmer must follow the instructions
and notes in the source listing.

2. No tables may be moved or changed. This
applies to those tables which CDOS needs and
expects in certain locations.

3. All routines are preceded by a header which
specifies entry and/or exit parameters,
register contents, etc. These specifications
must be observed as CDOS is dependent upon
them.

4. If the programmer uses any of the prime
registers or the IX or IY registers their
value must be preserved (typically on the
stack). The non-prime registers need only be
preserved to the extent which they are used
(as in number 3 above).

5. The CDOS stack should not be used to a depth
greater than ten (approximately).

The following procedure will create a CDOS with the
modified I/O Drivers as specified in the file
MYDRIVER. Z80. Notice that' although the procedure

23

must be followed step by step the names of the
files may be changed as desired. The commpnds in
the left column are given in response to the CDOS
prompt while the right hand column explains the
purpose of each.

"~-

SCREEN MYDRIVER.Z80

ASMB MYDRIVER.@@ZHEX=O

REN MYDO.HEX=MYDRIVER.HEX

ASMB MYDRIVER.@@ZHEX=IOO

REN MYDIOO.HEX=MYDRIVER.HEX

24

Using SCREEN or EDIT
change the file
DRIVERS. Z80 as is
needed and then exit
f rom the edi tor.
Always maintain a
copy of the original
source file for
reference. Here a
copy of the file is
called MYDRIVER.Z80.
The Z80 file name
extension is

required.

Assemble the Drivers
in HEX format with an
ORG of O. Note that
the file name

extension of @@Zwill
instruct the
Assembler that the
source file is
located on the
current disk, the
object file is to be
placed on the current
disk, and that no
pr int file is to be
produced.

Rename assembled HEX
file.

Assemble the· Drivers
in HEX format with an
ORG of IOOH.

Rename the assembled
Hex file. At this
point the original
source file
(MYDRIVER.Z80) is
3till present and
unchanged on the

.-.-/

CDOSGENMYDO.HEXMYDIOO.HEX

~

~ r--...

,r-',\

r'.

disk.

This is the final
step which generates
a version of CDOS
using the modified
Drivers. The two HEX
files are used to
relocate the drivers
to their final
location in CDOS.
All questions in
CDOSGEN must be
answered as usual.
When CDOSGEN has
finished writing .the
CDOS file to the disk
CDOS must be booted
up again.

Once _the < the new CDOS has been booted up the new
I/O Drivers will be operational.

25

~--

.----/ -

9Z

r---

INTRODUCTION TQ DEBUG

DEBUG ENHANCEMENTS

1. More powerful expressions.

2. Permanent break points.

3. Conditional break points.

4. New commands:
B -break points
C -tracing
Q -query memory
W -write disk file
Z -zap memory

,r---.

5. Bug fixes and changes:
Lower case is accepted as input to the SM

command.
Area where Debug was loaded is now zeroed.
Proper names are used for the registers.
Initial value of SP is now top of memory.
Relative addresses are always displayed if

the @ register is not equal to O.

-~

.~

LOADING DEBUG

The Cromemco Debug program makes it possible to
te st, debug, and trace through user programs.
Debug is loaded into memory at lOOH and moved to
the highest memory available below CDOS.

Loading Debug is accomplished by typing one of the
following commands from CDOS:

DEBUG
DEBUG file-ref

where file-ref is a file reference to the program
to be tested. The CDOS jump instruction located at
location 5H is changed to jump to the start of
Debug. Thi sallows locations 6H and 7H to still
point to the lowest available memory location
(below Debug) •

The second form of the command is used to load the

27

file to be tested into memory. If the file name
extension is HEX, then the file is read as an Intel
format HEX file. A file with any other file name
extension is read as an absolute binary file and
loaded at location 100H. Note that Debug ~ ~
l..ink .t:..e..lQ~llb.l.~ ti~~.s.. If a re10ca table file
(with a file name extension of REL) is specified it
will be loaded as if it were a binary file and will
not be executable.

CONTROL CHARACTERS

Control characters are used in Debug to help enter
commands. These control character s are the same
ones CDOS uses.

....-/.

Control-C ("'C)return to CDOS
Contro1-H

("'H)delete character and backspace on CRT
Contro1-U

("'U)delete line
Control-V

("'V)delete line
Contro1-X

("'X)delete character and echo
underscore(_)

delete character and backspace on CRT
RUBout

(DEL)delete character and backspace on CRT
....../

While displaying new information (such as that
which is displayed by the DM command) the following
characters may be used:

Contro1-S ("'S)stop/start printing or listing
to the console. If printing,
this character will stop the
pr in ting. If already stopped
by the use of a CTRL-S, this or
any other character will resume
the printing.

space (or any other character) will
abort the printing or console
display, prompt, and wait for
the next command •

28

.'
'--~

f'-"'-..

\~,

~ ;----

~

COMMANDFORMAT

Debug is controlled by one and two character
commands from the terminal. The format is free
form with respect to spaces. Commas may be used in
place of spaces. Remember that .all., commands must
bet e r mi n ate d wit hac a r ria g ere t urn. Th e
following examples all display memory starting at
location 1000H and ending at location 10FFH.

DlOOO 10FF
DMlOOOSlOO
DM 1000,10FF
D 1000,SlOO

CURRENTPROGRAMCOUNTERLOCATIONLit

The current address (the current value of the
program counter) may be represented by a dollar
sign ($). The following command will begin program
execution at the current value of the program
counter and will stop execution (by the use of a
temporary break point) when the program counter
reaches its current value plus 3:

G/$3

COMMANDSTARTING ADDRESS

The Assemble into Memory (A), Display Memory (DM or
D), List in Assembler Mnemonics (L), and Substitute
Memory (SM or S) commands ~ maintain a starting
address to use if none is given with the command.
This address is changed each time one of the
specified commands is executed so that the next
execution of the command will commence where the
last one ended. When Debug is entered each of the
starting addresses is set to 100H.

29

.@. REGISTER

Debug was designed to aid the programmer in testing
relocatable programs. The @ register is used to
tell Debug where the module you wish to debug is
located. This address can be found from the map
generated by the Cromemco linking loader LINK. To
change the @ register, type:

@

on the console. Debug will then display:

@-xxxx

where xxxx is the current value of the @ register.
The computer will then wait for a new address. If
only a carriage return is typed, the register will
remain unchanged. If an address and a carriage
return is typed, then the register will contain the
new address. The @ register may now be used as
part of an address:

G/@ @A3 1000

This is an example of the GO command. Break points
will be set at the beginning of the current module,
relative location A3H in the current module, and at
location 1000H. This feature allows you to test a
module without having to calcule.te absolute
addresses.

The relative address is displayed in addition to
the absolute address whenever addresses are
displayed unless the @ register equals zero.

ADDRESS EXPRESSIONS

For addi tional ease in specifying addresses an
expression can be used. Within these expressions,
addition, subtraction, the relative address (@)
register, and the current program counter location
($) may be used. If many modules are being tested,
addition can be used to specify relative addresses.

30

"" ,"-

'>.""--

(
.,--.....-/-

-"

-"

"reg
@

$
(expr)
[expr]
'xy'
ddddd.
hhhh

r---,.

EXPRESSIONS

Special Symbols:

Register value (see Summary of Register Names)
@ register
Program counter
Contents of memory addressed by "expr"
Used to alter order of evaluation
Ascii value of "xy"
Decimal number
Hexadecimal number

Unary Operators:

+

+

*
%

&

I

=
<>
>
>=
<
<=

Positive number
Negative number
Logical Not (complement)

Binary Operators:

Addition
Subtraction
Hultiplication
Division
Logical And
Logical Or

Relational Operators:

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

r-",\

An expression can be used in Debug anywhere that a
number is needed, Le., for addresses, data, etc •
.Expressions must not contain any imbedded spaces.
The precedence of operators is as follows:

1. Special symbols (highest precedence)
2. Unary operators
3. Binary operators
4.' Relational operators (lowest precedence)

The order of evaluation may be altered by the use
of brackets ([]).

31

Among operators of the same precedence, evaluation
proceeds from left to right. For example:

10.+20.*3. equals 90. (decimal)

ADE=AHL equals 0000 if the DE register does not
equal the HL register
equals FFFF otherwise

G/232l+A3 would set a break point at relative
location A3H if the module is located at
2321H

SWATH OPERATOR

There are two ways to specify the address range. of
many commands. The first is to simply list the
beginning and end addresses (and where appropriate,
the destination address). For example, the fir st
command below programs the range 0 through l3FFH
into PROMs starting at location E400H. The second
command di splays the contents of memory between
addresses E400H and E402H.

PO l3FF E400
DME400 E402

Another way to do the same thing is to use the
Swath operator to specify the width of the address
range, rather than explicitly stating the end
address.

PO S1400 E400
DM E400S3

ERRORS

Any errors made during command entry may be
corrected by typing Control-V (AV) to abort the
line or by backspacing and correcting the line. If
a carriage return has already been entered and
Debug detects an error, the line will not be
accepted and a question mark will be displayed.
The command must then be re-entered correctly.

32

"-J

'.-..- •..-

/
......-/

'--'.,

~ r-..

DEBUGCOMMANDS

A = ASSEMBLEINTO MEMORY

This command allows the user to enter assembly
language mnemonics f rom the console and have them
assembled into memory. The command takes the
following format:

A
A beginning-addr

The first format assembles into memory starting at
the default cuirent address (initially 100H). The
second format assembles starting at beginning-addr.

The user is prompted wi th the absolute address,
relative address, and the current instruction
located at that address.

Debug reads f rom the console and assembles the
instruction into memory. The mnemonics for the
various Z-80 instructions can be found in the Z-80
CPU Technical Manual published by Mostek and Zilog
(Cromemco part number 023-0045). If there is no
error in the instruction it is assembled into
memory and the user is prompted for the next
ins tr uc ti on. The rules for address expressions
apply to the addresses in the assembler mnemonics.
In the following example the @ register contains
l234H.

A@40
1274 0040'
1275 0041'
1278 0044'
l27B 0047'

NOP
NOP
NOP
NOP

ADDB
CALL @93
JP 1032+95
•

r-,

If only a carriage return is typed by the user,
Debug does not alter the current instruction and
goes to the next instruction in memory.

The A command terminates when a line starting with
a period (.) is entered. If there is an error in
the input line, it will not be accepted, a qQestion
mark will be displayed, and the user will be
prompted again.

33

fi ~ SET or DISPLAY PERMANENT BREAK POTNTS

The B command is used to set permanent break
points. Using this feature, it is not necessary to
repea tedly set break points when using the G
command. A permanent break point will remain in
effect until it is explicitly removed by the BX
command.

It is possible to set a total of 12 break points
including the permanent breakpoints (B command),
temporary breakpoints (G command), and tracing
breakpoints (T and C commands).

To display all of the currently active permanent
break points ente-r the command:

B

To set a permanent break point enter the command:

B breakpoint-l breakpoint-2 •••breakpoint-n

A break point is specified by up to four fields:

"'~'

...J

Field
R
addr
{cond}
:count

~
Report registers flag (optional)
Memory address for break point
Condition for break point (optional)
Repeat count for break point (optional)

The report registers flag is used to display the
registers each time the break point is encountered
during execution. This is used in conjuction with
the repeat count field.

The condition field is used to specify a
conditional break point. If a condition is
specified the break point will not stop the program
un 1ess the con dition is true (non - zer0) • The
condition can be any expression involving registers
or memory. Each time the user program reaches the
break point address the expression is evaluated.
If the result is false (zero) the user program
continues as if the break point did not exist.

The repeat count is used to stop the user program
the nth time it reaches the break point address.
The repeat count is decremented each time the

34

(
-".-/

r---

~r-·

r--\.

program reches the break point. If the count goes
to zero, the user program will be stopped.

Note that if a condi tion and a repeat count are
both used, the repeat count is only decremented if
the condition is true.

The repeat count is never reset to its original
value. The programmer must respecify the break
point (using the B command) if the repeat count
needs to be reset.

128 bytes are dedicated to conditional expressions
so tha tall condi tions together can contain a
maximumof 128 characters.

Examples:

B 106

This will establish a permanent break point at
memory location 106H. Whenever the program counter
(PC) is equal to 106H program execution will stop
and the registers will be displayed in standard
format.

B 106:5

This variation on the first example will cause
program execution to stop on the fifth execution of
the instruction at 106H. The registers will be
displayed only when program execution stops.

B RI06:5

This time the report registers flag has been set so
that each time the break point is passed the
registers will be displayed. Again execution will
be terminated the fifth time the instruction at
location 106 is to be executed.

B 106 {"A=O}

Now a condi tional permanent break point has been
set. Execution will terminate and the registers
will be displayed only when the program counter
equals 106H and the A register equals O.

B 5{["C=9]1["C=A]}:25

The final example in this section will stop program

35

execution when, for the 25th time, the C register
equals 9H or AH and the program counter. equals
five. Register names are preceded by the up-arrow
(caret) character while hexadecimal numbers are
not; the two should never be confused. When
debugging a program which is running under CDOS,
this break point will have the effect of stopping
program execution on the 25th system call to print
or input a buffered line.

RX = DELETE PERMANENT BREAK POINTS

Thi s command is used to delete permanent break
points. It has two formats:

BX
BX addr-l addr-2 •••

The first format will delete all permanent break
points. The second format will delete the break
points at each of the specified addresses •

~ = TRACE QYER CALLS

C
C number of instructions
C {expr}

The Trace Over Calls command functions in a manner
similar to the simple Trace command. The
difference appears when a CALL or RET instruction
is encountered in a multiple instruction trace.

When a CALL instruction is encountered dur ing the
execution of the C command no tracing is performed
in the called subroutine. Tracing resumes when
control is returned to the current subroutine at
the location which is three bytes beyond the CALL
instruction. The number-of-instructions counter is
not decremented while program control remains in
the called subroutine.

When a RET instruction is encountered during a
mul tiple instruction trace, tracing will stop and
the RET instruction will be displayed. This allows
the programmer to stop execution of a subroutine
before control is returned to the calling routine.

36

...••..../.

..•~.-/

{
"~'

,--..

~ "-----'.

.~

At this point the registers can be examined (and
modified) before the return instruction is
executed.

If a condi tional RET instruction (e.g., RET Z) is
encountered program execution will stop ~ if the
RET condition is true (i.e., if the RET instruction
is to be executed). Otherwise the conditional RET
instruction will be treated as any other
instruction and program execution will continue.

When the third form of the command is used
execution will continue until the expression (expr)
is true (not equal to 0). The expression will only
be evaluated while program control remains wi thin
the current subroutine. The CALL and RET
instructions function as described above.

~ = TRACE OVER CALLS ~ NQ DISPLAY

CN
CN number of instructions
CN {expr}

The CN command is similar to the C command except
that no information' is displayed as the trace
progresses. When the trace terminates, the
standard register information is displayed.

CJ = TRACE ~ CALLS NITH JUMPS

CJ
CJ number of instructions
CJ {expr}

The Trace Over Calls with Jumps command is similar
to Trace Over Calls with one addition. Break
points are established before all instructions
which alter the program counter (i.e., JP and JR).

The CALL and RET instructions function as they do
in the Trace Over Calls command.

With this command only JP, JR, and CALL
instructions are traced and only the execution of
these instructions cause the number of instructions
counter to be decremented or the expression (expr)

37

to be evaluated.

Notice that a condi tional RET instruction whose
condition is not true (which means the RET
instruction is not executed) will not stop program
execution but will be traced and will cause the
number of instructions counter to be decremented or
the expression to be evaulated.

Th is command w ill supply the programmer with a
history of the past n instructions which altered or
could have altered the program counter •

~ = TRACE OVER CALLS WITH JUMPS AND NO DISPLAY

CNJ
CNJ number of instructions
CNJ {expr}

The CNJ command is similar to the CJ command except
that no information is displayed as the trace
progresses. When the trace terminates, the
standard register information is displayed.

~ or DM = DISPLAY MEMORY

The contents of memory is displayed in hexadecimal
notation. Each line of the display is preceded by
the address of the first byte and is followed by
the ASCII representation of the hexadecimal bytes.
For example:

......./

....-

DMI00,S30
0100 40 41 42 43
0110 50 51 52 53
0120 35 36 37 38

44 45 46 47
54 55 56 57
39 00 00 00

48 49 4A 4B
58 59 SA 30
00 00 00 00

4C 4D 4E 4F
31 32 33 34
00 00 00 00

@ABCDEFGHIJKLMNO
PQRSTU~vXYZ01234
56789 •••••••••••

If the @ register is not equal to zero the relative
address will be displayed as follows (assume the @
register has been set to IOOH):

DMI00,S30
0100 0000' 40 41 42 43
0110 DOlO' 50 51 52 53
0120 0020' 35 36 37 38

44 45 46 47
54 55 56 57
39 00 00 00

48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO
58 59 SA 30 31 32 33 34 PQRST~XYZ01234
00 00 00 00 00 00 00 00 56789 •••••••••••

The formats of this command are as follows:

38

r-
.'---~

,r--.

~

............r--::,

DM

DM beginning-addr
DM beginning-addr ending-addr
DM beginning-addr S swath-width
DM ,ending-addr
DM S swath-width

The M is optional in all formats.

The first format displays memory from the current
display address, initially lOOH, and continues for
8 lines. The second format displays from the
beginning address and continues for 8 lines. The
third format displays from the beginning address to
the ending address. The fourth format displays
from the beginning address for a length specified
by the swath-width. The fifth format displays from
the current display address to the ending address.
The sixth format displays from the current display
address for a length specified by the swath-width.

DR = DISPLAY REGISTERS

When Debug is re-entered from a break point, the
user registers are saved. The registers may be
displayed in response to the Debug prompt by typing
the following command: ,

-DR
SZHVNCE A =OOBC =0000 DE =0000 HL =0000 SP=OlOO PC=OlOO 0000' LD E,A
SZHVNC A'=OO BC'=OOOO DE'=OOOO HL'=OOOO IX=OOOO IY=OOOO I=OO

Notice that the relative address of the program
counter (PC) is displayed only if the @ register is
not equal to zero.

The letters SZHVNC on the first row represent the
flags, while on the second row they represent the
prime flags. If the flag is on, it is displayed,
if the flag is off, a space is displayed. If only
the carry and zero flag are set then " Z C" would
be displayed. The flags are described below.

S - Sign flag,
one, i.e. ,

8=1 if the MSB of the resul t is
if the result is negative.

.~

Z - Zero flag, Z=l if the resul t of an operation
is zero •

39

H - Half-carry flag, H=l if the add operation
produced a carry into the 4th bit .of the
accumulator or a subtract operation produced a
borrow from the 4th bit of the accumulator.

"~ - I

v - Parity or overflow flag. This flag is
affected by arithmetic and logical operations.
If an overflow occurs during an arithmetic
operation, the flag is set to one. After a
logica~ operation, the flag is set to 1 if the
resul t of the operation has ,even parity.

N - Add/subtract flag, N=l if the last operation
was a subtraction.

C - Carry flag, C=l if the operation produced a
carry.

The E flag on the first line is the state of the
interrupt flip-flop (IFF). If interrupts are
enabled, the E is displayed, otherwise a space is
displayed.

The A register is displayed next, followed by the
BC, DE, and HL register pairs and the stack
pointer. The program counter value is then
displayed as both an absolute and relative address.
The opcode pointed to by the program counter is
then displayed as an instruction.

On the second line, the prime registers are
displayed, F' (prime flags), A', BC', DE', and HL'.
The IX, IY, and I (interrrupt page) registers are
displayed next. If the disassembled opcode
includes an address, the relative value of this
address is displayed as the last item on the line.

-DR
S H NCE A =00 BC =0000 DE =0000 HL =0000 SP=OOOO PC=1234 0010' CALL 1334
SZ NC A'=OO BC'=OOOO DE'=OOOO HL'=OOOO IX=OOOO IY=OOOO I=OO (OlIO')

40

-.--/-

(
'-----'

'~

/--

,r--

~.J

~ ~ EXAMINE INPUT PORT

The data port is read and displayed as a
hexadecimal number. The format of the command is:

E data-port

In the following example the data port 3 is read
and displayed on the console.

-E3
23

E.J. ::. EJECT IlIS.K

The format of the command follows:

EJ d

The d is the disk identif ier (A, B, C, etc.). If
possible, the diskette in the disk drive will be
ejected.

£ ::.SPECIFY FILE NAME

This command allows the programmer to insert file
names in the two default FCBs (at SCH and 6CH) and
the command line into the default buffer (at 80H).
The example below loads FILEI. COM into the first
FCB and FILE2.COM into the second FCB. The
complete line is also loaded into the default
buffer.

-FFILEl.COM FILE2.COM OPTIONI OPTION2

This command can be used with the R command to read
disk files. This command is compatible with the
operation of the CDOS console processor code.

41

.G .=. .GO.

The GO command has the following format:

G starting-ad dr/breakpoint-l breakpoint-2 ••• breakpoint-n

Each of the addresses is optional. If the starting
address is omitted, then the contents of the
program counter is used. The registers are loaded
from the user registers (these are the values
di spl ayed by the DR command). Execution begins
wi th the starting address or the contents of PC
(the program counter). If break points were
specified, an RST 30H is inserted at the break
point addresses and a jump instruction is placed at
location 30H. When a breakpoint is executed,
control is returned to Debug, and all of the user
registers are saved and displayed. All temporary
breakpoints (those established by the G command)
are then removed from the user program. Note the
following about breakpoints:

1. A temporary break point (as used in the G
command) may be specified in the same manner
and wi th the same fields (report registers
flag, condition, and repeat count) as a
permanent break point (see the B command).

2. Breakpoints can only be set in programs
residing in RAM. This is because an RST 30H
is inserted at each break point location.
(The original contents of these locations are
saved so that they can be restored after a
break point is executed).

3. Up to 12 break points can be set. If an
attempt is made to enter more than 12 break
points, the command will not be accepted. The
12 breakpoints may be composed of any
combination of permanent and temporary
breakpoints.

4. When a break point is used, a jump instruction
is stored at location 30H. Therefore
locations 30H, 3lH, and 32H are not available
to a user program.

The reader is referred to the Band BX commands for
description of permanent and conditional permanent
break points.

42

{--

?"'-

/---.

~ ...

~•.

. .)....-

R ~ HEXADECIMAL ARITHMETIC

H expr
H exprl expr2

The first format of the command evaluates the

expression and displays the result in hexadecimal
and decimal.

The second format will perform hexadecimal addition
and subtraction. The first number to be displayed
is the sum of the two expressions. The second
number is the difference between the first and
second expression.

In the following example two hexadecimal numbers
(1234H and 321H) are added and subtracted. The
first pair of numbers is the result of the addition
displayed first in hexadecimal and then in decimal.
The second pair of numbers is the result of the
subtraction displayed in a similar manner.

-H 1234,321
1555 5461., OF13 3859.

L ~ LIST ~ ASSEMBLER MNEMONICS

The list command is used to list the contents of
memory in assembly language mnemonics. The formats
of this command are:

L
L starting-addr
L starting-addr ending-addr
L starting-addf ·S swath-width
L ,ending-addr
L S swath-width

The first format lists 16 lines of disassembled
code starting from the current list address
(initially lOOH). The second format lists 16 lines
from the starting address. The third format lists
from the starting address to the ending address.
The fourth format. lists from the starting address
for a length specified by the swath width. The
fifth format lists from the current list address to
the ending address. The sixth format lists from

43

the current address for a length specified by the
swath-width.

The first address of the disassembly is the
absolute address. The second address is the
relative address. If the disassembled instruction
contains an address, the absolute address is
displayed in the instruction in hexadecimal and the
relative address is displayed to the right of the
disassembled line. In the example that follows,
the @ register contains 2800H.

-L@800 @811
3000 0800'

ADD A,B
3001 0801'

CALL 3200(OAOO')
3004 0804'

CALL 3243(OA43 ')
3007 0807'

CALL 3333(OB33')
300A 080A'

LDA,B
300B 080B'

ORA,C
300C 080C'

JRZ,3000(0800')
300E 080E'

INCHL
300F 080F'

INCDE
3010 0810'

INCBC
3011 0811'

LDA,H

1'1 ::. r40VE HEHORY

The formats of this command are:

H source-addr source-end destination-addr
H source-addr 8 swath-width destination-addr

The first format moves the contents of memory
beginning with the source address and ending with
the source-end to the destination address. The
second format uses the swath width to determine the
length of the move.

The move is verified to insure that all bytes were
moved correctly. If an overlapping move was made,
errors will be reported. The error reporting can
be terminated by typing any character.

The move command can be used to fill a block of
memory with a constant. In the following example,
a zero has been entered into location 100H using
the 8M command. The following command will move
zeros from location 100H through 108H.

44

~--../

~

L

'-

"

~----

~---
,r"_

'~-)-

-MIOO S7 101

Care should be taken not to move memory over Debug
or CDOS.

Q = OUTPUT %Q ~ ~

This command outputs data to a data port. The
following is the command format:

o data-byte port-number

E = PROGRAM PROMS

This command enables the user to program PROMs
(programable Read Only Memory chips). The
following are the command formats:

P source-addr source-end destination-addr
P source-addr S swath-width destination-addr

The first format programs PROMs starting with the
source address and ending with the source-end into
PROMs beginning at the destination address. The
second format determines the length from the swath
width.

If the length of the source is not a multiple of
400H or if the destination does not begin at a 400H
boundary, Debug will reject the command.
(Multiples of 400H end in OOOH, 400H, 800H, and
CO OH) •

Any number of 2716, 2708 or 2704 PROMs can be
programmed in the execution of one command as long
as there are enough Cromemco PROM programming
boards to contain them. Each PROM is verified with
its source after all are programmed and any
discrepancies are displayed. If no discrepancies
are found, a prompt is displayed and the next
command may be entered.

Software can be loaded into a PROM in as small
increments as you desire, provided it is added to
previously unused areas of the PROM. This is done
by-first using the Move command (M) to transfer the
contents of the PROM to RAM, adding the new

45

Q beginning-addr ending-addr string-of-bytes
Q beginning-addr S swath-width string-of-bytes

software to an area of RAM which corresponds to the
unused portion of the PROM and finally using the
Program command (P) to reprogram the PROM with the
resul t. Athough the entire PROM must always be
programmed, it never hurts to rewrite the same data
over again. In general, a 1 may be wri tten over a
1, a 0 over either a 1 or a 0, but the only way to
change a's to l's is to erase the PROM with the
appropr iate UV light. (See the Cromemco Bytesaver
II manual for details.)

Q =- OUERY MEMORY

The format of the Query command is:

~\ a·~r~ - This command is used to search through a specified
area of memory for a certain string-of-bytes. The
string-of-bytes is in the same format as the S or
SM command. If the string-of-bytes is found, 16
bytes starting at the first byte which matches are
displayed as in the DM command.

Ii =- READ DISK FILE

The R command is used with the F command to allow
the programmer to read a disk file. The F command
is used to specify the filename, and the R command
causes the file to be read into memory. If the
file has a file name extension of HEX, then the
file is read as an Intel format HEX file. Any
other file is considered to be a binary file and
will be read directly into memory beginning at
location lOOH. The format of the R command is:

R

R displacement

The first format reads the file with no
displacement. The second format reads the file
with a displacement. If the input file is in HEX,
then the displacement is added to the address in
the file to determine the address at which to store
the file. If the file is a binary file, it will be
stored at the displacement + lOOH.

46

'---./

~

L

/"----

_/"'--

When the R command is executed Debug displays
either a question mark if there is an error (file
not found, checksum error, or attempting to read a
file above highest available memory location) or
the following message if there is no error:

NEXT = xxxx
NEXTM = yyyy

Where xxxx-l is the highest memory address loaded
by all R commands during this Debug session and
yyyy-l is the highest memory address loaded during
this R command.

~ or SM = SUBSTITUTE MEMORY

This command is used to substitute memory. The
formats of this command are:

SM

SM starting-addr

Note that the M is optional if the first character
of the address does not match a register name.

If the first format is used then the last
substi tuted location (initially lOOH) will be the
starting address.

Debug displays the absolute address, followed by
the relative address, followed by the contents of
the memory byte. One of the following may then be
entered.

1. A data-byte value followed by a carriage
return. The data byte value is stored at the
address of the prompt. The address is then
incremented by 1 and displayed on the next
line.

2. A string enclosed between apostrophes (')
followed by a carriage return. The string is
stored beginning at the address of the prompt.
The address is then incremented past the
string and displayed on the next line.

~'}
3. Any number of 1 and 2 above can be entered on

one line with one carriage return terminating
the 1ine. The address is then incremented

47

past the bytes that were stored and the new
address is displayed on the next line.

4. A minus sign (-). A minus sign does not store
a byte. The address will be decremented to
the previous address. The minus sign can be
used to back up to a previous location in case
an error was made.

5. A carriage return only. If no entry is made
on the line, the memory byte remains
unchanged. The address is incremented by 1
and displayed on the next line.

6. A period(.). A period ends the input mode and
returns control to the command level.

In the example that follows, assume that the @

register contains the value 2800H:

-SH@lOO
2900 0100' 32 0
2901 0101' 17 00
2902 0102' 31 'this is an ASCII string'
2919 0119' 7A 'AAAA' 0 0 1 2 3 4 5 6 7 8 9
2928 0128' 22
2929 0129' 29
292A 012A' 87 -
2929 0129' 55
292A 012A' 87 •

~ = SUBSTITUTE REGISTER

The Sr command allows the user registers to be
al tered. The letter r stands for the register
which is to be changed. The section SUMMARY OF
REGISTER NAMES gives a summary of the names that
can be substituted. When substituting the F and F'
flags, enter the command SF or SF'. Debug will
then display the flags that are set and wait for
the programmer to enter the names of the flags
which are to be set. If the flags are NOT entered,
the flags are reset. Before the following example
the SZHC flags are set. After the example the ZC
flags are set. The lower case letters are entered
by the programmer.

-sf
SZH C zc

48

•.•...-----/

,-----'

~L

'""

"

,,/----,

/'

~ ..

./'

~ ..)-

'"

When substituting a one byte register, a one byte
value is accepted. When substituting a two byte
register, a two byte value is accepted. For
example, SD will allow the value of the D register
to be changed, SE will allow the value of the E
register to be changed, and SDE will allow the
value of the D gnQ E registers to be changed.

If no value is entered, or if an error occurs, the
value of the register remains unchanged. In the
following example, the A register is changed to
contain 41H.

-sa
A=98 41

T =- TRACE

The format of the Trace command is:

T
T number of instructions
T {expr}

The first format traces the program through one
instruction. The second format traces the program
through number of instructions. The third format
traces until the expression (expr) is true (not
equal to 0). After every instruction is traced the
values of the registers are displayed.

A program can only be traced through RAM. The
trace command places a break point after the
instruction, loads the registers and executes the
instruction. The break point is then executed and
the registers are re-saved. The registers are
di spl ayed and the next instruction is executed
unless the number of instructions counter has
reached zero or expr is true, in which case a
prompt for the next command is displayed.

To abort the trace, depress any key on the console.
A prompt for the next command will then be
displayed.

If a permanent break point is reached during
tracing, the trace will be stopped •

49

Examples:

T {"'B>lO}

This command will trace the execution of a program,
di spl aying the registers after each instruction,
until the B register assumes a value greater than
10H.

TN = TRACE ~ NQ DISPLAY

TN
TN number of instructions
TN {expr}

The TN command is similar to the T command except
that no information is displayed as the trace
progresses. When the trace terminates, the
standard register information is displayed.

TJ = TRACE JUMPS

TJ
TJ number of instructions
TJ {expr}

The TJ command is similar to the T command except
that break points are only placed in the user
program before instructions which alter the program
counter (i.e., JP, JR, CALL, and RET instructions).
The registers will be displayed and the number of
instructions counter decremented or the expression
evaluated only when a program counter altering
instruction is executed. For example:

TJ

will cause the program to be executed until the
n ext pro gram co un tera 1teringin struction is
reached. The registers will then be displayed and
the programmer prompted for another command.

The registers will be displayed before each PC
altering instruction unless the TNJ command is
used.

50

'--.-/.

,-------

L

TNJ ~ TRACE JUMPS WITH NQ DISPLAY

TNJ
TNJ number of instructions
TNJ {expr}

The TNJ command is similar to the TJ command except
that no information is displayed as the trace
progresses. When the trace terminates, the
standard register information is displayed.

y = VERIFY MEMORY

Ver ify tha t the bloC;k of memory between souce
address and source end contain the same value as
the block beginning at destination addr ess. The
addresses and contents are displayed for each
discrepancy found. The following is the format of
this command:

V source-addr source-end destination-addr
V source-addr S swath-width destination-addr

The command works by reading bytes from the source
and destination and comparing them.

If a discrepancy is found it is displayed in the
following order: source address, source contents,
destination contents, destination address. In the
example that follows, memory locations 0003H and
1003H do not compare as the same. The same is true
of locations 0008H and 1008H.

-V 0 S30 1000
0003 32 12 1003
0008 7A SA 1008

51

N ~ WRITE DISK FILE

The W command is used to write out parts of'memory
to a disk file. The file name may have previously
been specif ied with the F command or may be the
file which was specified on.the Debug command line.
There are four possible formats:

w

W beginning-addr ending-addr
W beginning-addr S swath-width
W ,ending-addr

~he first format will write out memory from lOOH to
the last specified by "NEXT =" address (from the
last R command). If no R, command has been
executed, one record (128 bytes) will be written.

In the second and third formats the indicated
memory will be written out. The fourth format
specifies memory between lOOH and ending-addr.

If the number of bytes is not a multiple of 128
(record size), it will be rounded upward. Memory
locations less than lOOH should not be specified
because 5CH contains the FCB and 80H contains the
disk buffer.

z = ZAP HEf10RY

Z beginning-addr ending-addr string-of-bytes
Z beginning-addr 8 swath-width string-of-bytes

This command is used to initialize a portion of
memory. The memory ,from beginning-addr to ending
addr is initialized with the string-of-bytes
repeated over and over. The string-of-bytes is in
exactly the same format as in the 8 or 8M command.

Examples:

-,-

-...-/

-z 100 5400 0 (zeros everything from
100H to 3FFH)

-z 1000 510 0 1 'ABC'
-D 1000 510

1000 00 01 41 42 43 00 01 41 42 43 00 01 41 42 43 00 ••ABC ••ABC ••ABC.

52

("'---

/r-_

pUMMARY Q£ DEBUG COMMANDS

The following is an alphabetical list of the Debug
commands.

~ r--

~,

'~)

Command

A

B

BX

C
CN
CJ
CNJ

D or DM

DR

E

EJ

F

G

H

L

M

o

P

Q

R

S or SM

Sr

Description

Assemble into memory

Set and display Break points

Delete Break points

Trace Over Calls
Trace Over Calls with No display
Trace Over Calls with Jumps
Trace Over Calls with Jumps and No
Display

Display Memory

Display Register

Examine input port

EJect disk

Specify disk File name

Go

Hexadecimal arithmetic

List in assembler mnemonics

Move memory

Output to data port

Program PROMs

Query memory

Read disk file

Substitute Memory

Substitute register (refer to
Summary of Register Names)

53

----~---------------------------------- -

T Trace
TN Trace with No display
TJ Trace Jumps
TNJ Trace Jumps with No Display

~/

v

W

Z

Verify memory

Write disk file

Zap memory

SUMMARY Q£ REGISTER NAMES

The following register names are displayed by the
DM command and may be used with the Sr command.

Register Decription

F Flags, the following flags may be changed.

S -.s.ignflag
Z -Zero flag
H -Half carry flag
V -parity/oYerflow flag
N -subtractioN flag
C -~arry flag

The interrupt enable flag (E) may also be changed.

FI The F' flags are the same as the F flags.
(Note that the E flag may not be changed here.)

A accumulator

AI Prime Accumulator

B B register

B1 B1 register

C C register

CI CI register

D D register

.......-/

D' D I register

54

t _

~--J
55

Note:

The disk file directory is now available "to the
user. In response to the CD08 prompt type:

Debug 8Y8.DIR

This will load the disk directory into memory
starting at location lOOH. The programmer may
examine it (using the DM command), change it (using
the 8M command), and if necessary write it back to
the disk (using the W command). Users who are not
familiar with the structure of the disk directory
should not attempt to use this feature.

56

---./

_____I

(~
v

~-,

/'

/' r---,

~

I N D E X

@

@ Register, 30

A

A (command), 33
Address Expressions, 30
Argument Substrings, 17
Assemble into Memory, 33

B
B (command), 34
BX (command), 36

C

C (command), 36
CJ (command), 37
CN (command), 37
CNJ (command), 38
Command Format, 29
Command Starting Address, 29
Comments, 17
Condition Codes, 9
Conmsg, 15
Control Characters, 28
Cross Reference, 22
Current Program Counter Location ($), 29

D

D (command), 38
Date, 7
Defv, 15
Dv, 15, 3 4, 36, 3 8 , 3 9

E

E (command), 41
EJ (command), 41
Eject Disk, 41
Else, 16
Errors, 32
Examine Input Port, 41
Exitm, 17
Expressions and Operators, 11

F
F (command), 41

G

G (command), 42
Global, 15

I-I

Go, 42

H

H (command), 43
Hexadecimal Arithmetic, 43

I
I rp, 19
Irpc, 20

~

,-

L
L (command), 43
List, 13
List In Assembler
Listing, 22
Liston, 7
Loading Debug, 27

Mnemonics, 43

M

M (command), 44
Maclib, 13
Modifying CDOS I/O Device Drivers, 23
Modifying the Default Value of Options, 10
Move r-lemory,44

N
Names (Lables), 8
Notext, 7, 13
Noxref, 7

o
o (command), 45
Omacro, 18
Options, 7
Output to Data Port, 45

P
P (command), 45
Program Proms, 45
Pseudo-Ops, 13

Q

Q (command), 46
Query Memory, 46

R
R (command), 46
Read Disk File, 46
Rellib, 13
Repeat Expansions, 19
Rept, 19

1-2

,.-../

?
(~. ,
., .--../

-'

r--,

~",

/"'\

S
S (command), 47
Set Permanent Break Points, 34
SM (command), 47
Specify File Name, 41
Sr (command), 48
Struct, 14
Substitute Memory, 47
Substitute Register, 48
Subtitle, 13
Summary Of Register Names, 54
Swath Operator, 32
Symbol Table, 22

T
T (command), 49
Text, 7, 13
Time, 7
TJ (command), 50
TN (command), 50
TNJ (command), 51
Trace, 49
Trace Jumps, 50
Trace Jumps with No Display, 51
Trace Over Calls, 36
Trace Over Calls With Jumps, 37
Trace Over Calls With Jumps And No Display, 38
Trace Over Calls With No Display, 37
Trace with No Display, 50
Trunc, 7

v
V (command), 51
Verify Memory, 51

w

W (command), 52
Write Disk File, 52

Z

Z (command), 52
Zap Memory, 52

I-3

/ ,

, (....,~) •2.5 -"*pY¥ '(-fr ~ro ~ d)r~)::!~ cali ~~ ~ ~~F" ~ (j

("""'::F) / @.,~ \ --.-pr"" r- ~)'>"O ~ Q

