D) Instruction Manual

Fise Dollars

CROMEMCO

BYTESAVER II

Instruction Manual

CROMEMCO, INC.
28ø Bernardo Avenue Mountain View, CA $94 \emptyset 4 \emptyset$

TABLE OF CONTENTS

Section l: INTRODUCTION 2
Section 2: OPERATING INSTRUCTIONS 4
2.1 SWITCH OPTIONS--AN OVERVIEW 4
2.2 ADDRESSING THE BYTESAVER II 11
2.3 BOARD SELECT / CHIP SELECT 12
2.4 MEMORY BANKS 15
2.5 SELECT BANK \emptyset ON RESET OR POWER-ON-CLEAR 21
2.6 DIRECT MEMORY ACCESS 21
Section 3: PROM PROGRAMMING INSTRUCTIONS 26
3.1 PROGRAMMING FROM DEBUG, Z-8ø MONITOR OR ROS 28
3.2 PROGRAMMING FROM 3K CONTROL BASIC 31
3.3 PROGRAMMING FROM Z-8ø ASSEMBLY CODE 36
Section 4: THEORY OF OPERATION 38
4.1 POWER SUPPLIES 38
4.2 ADDRESSING 39
4.3 MEMORY READ CYCLES 41
4.4 MEMORY WRITE CYCLES 42
4.5 DMA CYCLES 43
Section 5: ASSEMBLY INSTRUCTIONS 45
5.1 ASSEMBLY STEPS 45
5.2 POWER LINE TESTING 50
BYTESAVER II PARTS LIST 53
BYTESAVER II PARTS LOCATION DIAGRAM 55
BYTESAVER II SCHEMATIC 56

Section 1
INTRODUCTION

This manual provides assembly instructions, operating instructions and theory of operation for the cromemco BYTESAVER II memory board.

The BYTESAVER II is an $S-1 \emptyset \emptyset$ bus compatible 8 K -byte capacity $27 ø 8$-type EPROM memory board and programmer. The BYTESAVER II features:

- Independent operation as an $8 K$-byte ROM memory board.
- Independent operation as a $27 \emptyset 8$ PROM programmer.
- BANK SELECT allowing memory expansion beyond 64 K -bytes.
- Powerful DMA configuration options with DMA OVERRIDE.
- Fully buffered address lines.
- Digital count derived PROGRAM PULSES (no erratic oneshots).
- A memory protect switch for each ROM socket.
- All options switch selectable (no soldered jumper wires).

This manual consists of four basic sections: Operating Instructions, PROM Programming Instructions, Theory of
Operation and Assembly Instructions. If you purchased a BYTESAVER II kit, the Assembly Instructions provide step-bystep construction and initial test procedures. Section 2.l of the operating Instructions provides a BYTESAVER II operational overview for those who want to put the board quickly to use.

TECHN ICAL SPECIFICATIONS

BYTESAVER II PROM CARD

MEMORY CAPACITY:

MEMORY TYPE: MEMORY ACCESS TIME: WAIT STATES @ 2 MHZ : WAIT STATES @ $4 \mathrm{MHZ}:$ BUS COMPATIBILITY: POWER REQUIREMENTS:

OPERATING ENVIRONMENT:

8 K BYTES
INTEL $27 \emptyset 8$ PROM OR EQUIVALENT $45 \emptyset$ NANOSECONDS NONE REQUIRED ONE PER MACHINE CYCLE $S-1 \emptyset \emptyset$
+8 VOLTS AT 0.8 AMPS (MAX.) +18 VOLTS AT Ø. 4 AMPS (MAX.) -18 VOLTS AT Ø. 2 AMPS (MAX.) Ø-55 DEGREES CELSIUS

Section 2

OPERATING INSTRUCTIONS

Operating the BYTESAVER II board simply involves inserting from one to eight $27 \emptyset 8$ PROM devices in sockets ROMø - ROM7 (any sockets may be used or left unused), setting four switch groups to configure the board, plugging the board into a convenient $\mathrm{S}-1 \emptyset \emptyset$ bus slot, then applying system power. To program a PROM, you will additionally need to run software described in Section 3, PROM PROGRAMMING INSTRUCTIONS.

2.1 SWITCH OPTIONS--AN OVERVIEW

The BYTESAVER II is configured by setting four switch groups located along the top edge of the board (see Figure 1). To provide an operational overview, and for later quick reference, the function of each switch is briefly explained in this section.

Figure 1: SWITCH LOCATIONS

- PROGRAM POWER TOGGLE SWITCH

The PROGRAM POWER switch turns the +33.5 volt dc to dc power supply ON and OFF. Position this switch ON before PROM programming; position it OFF when done to prevent inadvertent re-programming.

The eight PROGRAM ENABLE switches individually enable and inhibit programming sockets ROMø thru ROM7. An ON switch enables programming; an OFF switch inhibits programming. These switches may be alternately viewed as MEMORY PROTECT switches, preventing any memory write operations when in the OFF position.

To enable and disable socket programming, associate the board socket numbers (ROMø - ROM7) with the numerals printed above the switch DIP (7 to the far left, \varnothing to the far right).

- BANK SELECT SWITCHES

The eight BANK SELECT switches map the BYTESAVER II into any combination of 64 K -byte memory banks (bank \varnothing - bank 7). Setting a BANK SELECT switch ON logically places the board in the correspondingly numbered memory bank; an OFF switch logically removes the board from a bank. Again, associate the bank number with the numerals printed above the BANK SELECT switches, not the numerals on the DIP proper.

- ADDR/CONTROL SWITCHES

The ADDR/CONTROL switches control several different functions (see Figure 2).

The BANK ENABLE/DISABLE switch enables multiple 64 K memory banks (bank \varnothing - bank 7) when ON, and disables multiple banks when OFF (normal direct 64 K addressing).

Figure 2: ADDR/CONTROL SWITCHES

The DMA ENABLE/DISABLE switch enables DMA OVERRIDE when ON and disables DMA OVERRIDE when OFF. For normal direct 64 K DMA addressing, position the switch OFF. When performing DMA with memory banks enabled, turn the switch ON. The DMA IN/OUT switch is active only when DMA OVERRIDE is enabled. With DMA OVERRIDE enabled, the BYTESAVER II will respond directly to a DMA in the board's l6-bit address range by
board enabling if DMA is $I N$, and by board disabling if DMA is OUT, regardless of current active memory bank status at the time. This feature effectively permits the user to define one board out of several stacked in different memory banks as the DMA board (the one with DMA IN), and the boards in other memory banks as non-DMA boards (the ones with DMA OUT).

The WAIT STATE switch is used to match the CPU cycle time to the $27 \varnothing 8$ PROM $45 \emptyset n s$ (max) memory access time. Positioning the WAIT STATE switch ON introduces one wait state during each machine cycle; the OFF position introduces no wait states. When used in a Cromemco system with a ZPU running at 4 MHz , position the switch $O N$. The switch may be left $O F F$ when operating at 2 MHz .

The three high order address select switches Al3, Al4 and Al5 memory map the BYTESAVER II into one-of-eight 8 K -byte memory "blocks". Setting all three switches OFF maps the BYTESAVER II into the lowest 8 K -byte block of memory (øø日øH lFFFH); setting all switches ON maps the board into the highest 8K-byte block (EøøøH - FFFFH).

EXAMPLE 1

Suppose you have a 4 MHz Cromemco system, and you want to memory map your BYTESAVER II into the highest 8K-byte memory block (EøØøH - FFFFH). As a standard practice, you decide to program $27 \emptyset 8$ PROMs in socket ROM7 only. Also assume there is no other memory overlapping the uppermost 8 K of memory, so multiple memory banks are not required.

For memory read operation, the BYTESAVER II switch settings would then be as shown in Figure 3 .

To program a $27 \emptyset 8$ PROM in socket ROM7, all switch settings remain the same except the PROGRAM POWER switch, which must be turned ON.

Figure 3: EXAMPLE 1 SWITCH SETTINGS

The following example illustrates all of the BYTESAVER II special features.

EXAMPLE 2

Suppose you set your Cromemco ZPU card for 2 MHz operation, and assign your BYTESAVER II to memory block 4 (8øøøH - 9FFFH). Again as a standard practice, you program 2708 PROMs in socket ROM7 only.

Also assume another Cromemco memory board with BANK SELECT exists for DMA transfers only in overlapping memory 8øøøH - BFFFH, bank l (a l6KZ RAM card, for example). You then decide to map the BYTESAVER II into memory bank \varnothing so that it will be enabled on a system RESET or a Power-ON Clear (see Section 2.5 for details).

The correct BYTESAVER II switch settings for this configuration are then shown in Figure 4.

Figure 4: EXAMPLE 2 SWITCH SETTINGS

The sections which immediately follow discuss all of the

BYTESAVER II special features and operational modes touched upon in this section in greater detail.

2.2 ADDRESSING THE BYTESAVER II

Addressing a byte on the BYTESAVER II involves four levels of selection: choosing a memory bank, a memory board, an IC chip, and finally choosing the byte-on-chip.

Memory banks are addressed by the CPU outputting a control word to an integral OUTPUT PORT $4 \emptyset \mathrm{H}$ contained on each BYTESAVER II board. Board, chip and byte-on-chip are all decoded from the sixteen bit address sent out by the CPU on the $s-1 \emptyset \emptyset$ bus.

Since the board capacity is $8 K$ bytes, board select is generated by the high order address 1 ines Al3, Al4 and Al5. There are eight ROM sockets, so the next three high order address lines Alø, All and Al2 are used to hardware generate chip enable (selecting ROMø - ROM7), and the remaining ten address lines $A \emptyset$ - A9 are used to address one-of-lø24 bytes on a 2708 PROM (see Figure 5).

Execute OUT $\left.\left(4 \emptyset \mathrm{C}_{\mathrm{i}}\right), \mathrm{A}\right\}$-Select bank \emptyset - bank 7 combination

$\left.\begin{array}{l}\text { Al2 } \\ \text { All } \\ \text { Alø }\end{array}\right\}$ Select one-of-eight $27 \emptyset 8$ chips
A9
A7
A6
A5
$\}-$ Select one-of-1ø24 bytes
A 4
A3
A2
Al
Aø
Figure 5: BYTESAVER II ADDRESSING

2.3 BOARD SELECT/CHIP SELECT

The three high order S-løø bus address lines are hardware compared to switches Al3, Al4 and Al5 in the ADDR/CONTROL switch group. Any switch ON corresponds to a selected logic 1 on its corresponding address line; any switch OFF selects a logic \varnothing on its corresponding address line. The eight switch setting combinations and their corresponding BYTESAVER II memory block assignments are tabulated below.

Table 1

SWITCH
Al 5
Al4 Al3

OFF	OFF	OFF
OFF	OFF	ON
OFF	ON	OFF
OFF	ON	ON
ON	OFF	OFF
ON	OFF	ON
ON	ON	OFF
ON	ON	ON

BYTESAVER II
MEMORY ASSIGNMENT

	- 1 FFF	
2000	- 3FFF	
$4 \varnothing \varnothing \emptyset$	5FFF	; BLOCK
6000	7 FFF	BLOC
$80 \emptyset 0$	- 9FF	BLOCK
Aøøø	- BFFF	; BLOCK
Сøøø	- DFFF	; BLOCK
$\emptyset \emptyset \emptyset$	FFF	-

Each ROM socket ROMø - ROM7 spans a lK-byte swath of memory. Address lines Alø - Al2 feed a one-of-eight decoder (ICl9 in the BYTESAVER II Schematic) to generate select signals for each ROM socket. The entire 64 K address space may then be spanned by eight BYTESAVER II boards. Figure 6 illustrates such an arrangement along with the address range spanned by each ROM socket.

EXAMPLE 3

Suppose you programmed four 2708 PROMs with Cromemco's $Z-8 \emptyset$ MONITOR and $3 K$ Control BASIC. The $Z-8 \emptyset$ MONITOR spans addresses EøØøH - E3FFH, and Control BASIC spans E4øøH EFFFH. To load these programs, you would then place the four programmed PROMs in sockets ROMø, ROMI, ROM2 and ROM3 on a BYTESAVER II assigned to EøøøH - FFFFH with Al3=1, Al4=1 and Al5=1.

BOARD
ADDRESSES

Figure 6: EIGHT BYTESAVER IIS SPANNING THE 64K ADDRESS SPACE

Carefully note that another memory module may not be mapped into the "hole" created by an empty BYTESAVER II ROM socket. The BYTESAVER II reads an empty ROM socket as memory data $\varnothing \mathrm{FFH}$, and actively drives the S-løø DI bus lines DIø DI7 at logic l levels thereby creating a DI bus conflict when competing with another memory module.

2.4 MEMORY BANKS

BANK SELECT is an optional board feature which effectively allows memory expansion beyond the CPU's 64 K direct addressing range. This feature may be completely disabled by switch selecting BANK DISABLE in the ADDR/CONTROL switch group. When this is done, the eight BANK SELECT switch settings become irrelevant. In this mode the BYTESAVER II exists only in the assigned 8 K -byte memory block of the CPU's 64 k direct addressing range for memory read, PROM programming and DMA operations.

To enable memory banks, switch select BANK ENABLE in the ADDR/CONTROL switch group. When this is done, the BYTESAVER II is logically placed in one or more 64 K -byte memory banks with the eight BANK SELECT switches, and bank addressing is software controlled by executing the ouT (4øH), A (or equivalent) $Z-8 \emptyset$ instruction.

Memory may be stacked up to eight banks deep (see Figure 7). Positioning one or more BANK SELECT switches ON places a BYTESAVER II in each corresponding memory bank. On the other hand, positioning all switches OFF completely removes the board from the memory map (except possibly for DMA transfers--see Section 2.6).

Figure 7: THE MEMORY MAP WITH MULTIPLE MEMORY BANKS

As stated above, memory banks are activated and deactivated under software control. Each BYTESAVER II contains an integral OUTPUT PORT 40 H which latches the bits of the control byte output to it by the CPU. Each set bit (logic l) enables its corresponding memory bank, and each reset bit (logic \varnothing) disables its bank. Control byte bit 7 (MSB) controls memory bank 7, bit 6 controls memory bank 6, etc.

If the BYTESAVER II is switch mapped into any of the banks activated by the control byte (logical OR), the board responds when addressed and thus is placed "in" the memory map. When this condition occurs, the green LED indicator lights. Conversely, if the BYTESAVER II is switch mapped into no bank activated by the output control byte, the board will not respond when addressed and thus is "out" of the memory map. When a control byte inactivates the board, the green LED indicator goes out, and more specifically, the board responds by tri-stating (floating) all of its output lines. This behavior allows two or more memory boards with BANK SELECT to occupy the same or overlapping l6-bit address space but in different memory banks, provided only one board is memory bank active at a time, and all other boards are inactive. Memory bank conflicts may result if:
a) Two or more address overlapping memory boards are switch assigned to the same memory bank, or
b) Two or more l6-bit address overlapping memory boards assigned to disjoint memory banks are simultaneously activated by the same control byte.

EXAMPLE 4

Suppose two BYTESAVER IIs are both mapped into the uppermost 8 K of memory, and their memory bank switches are set as shown in Figure 8. The resulting memory map is then shown in Figure 9.

Figure 8: EXAMPLE 4 SWITCH SETTINGS

Figure 9: EXAMPLE 4 MEMORY MAP
To continue the same example, the sample programs below illustrate how to memory bank enable and disable the two boards.

- Executing the instructions below activates memory banks 2 and 3, and de-activates all other memory banks. The instructions then place both board A and board B in inactive memory banks (both boards inaccesible).

- Executing the instructions below simultaneously activates both boards A and B, and thus is illegal.

- Executing the instructions below places board A in an active memory bank, and board B in an inactive memory bank (board A available for memory read, PROM programming and DMA transfers; board B inaccessible).

- Executing the instructions below places board A in an inactive memory bank and board B in an active memory bank (board A inaccessible; board B available for memory read, PROM programming and DMA transfers).

When system power is first applied, or after a subsequent system RESET, the BYTESAVER II will respond in one of two different ways. If multiple memory banks are DISABLED, the board will remain "in" the memory map in the CPU's 64K-byte direct addressing range.

If multiple memory banks are ENABLED, memory bank \varnothing is automatically hardware activated by a system RESET or a POC, and bank 1 - bank 7 are de-activated. Thus, a RESET or a POC to the boards in Example 4 would activate board A, and deactivate board B.

2. 6 DIRECT MEMORY ACCESS

A device may request direct memory access to the BYTESAVER II by asserting the $S-1 \varnothing \varnothing$ bus line p $\overline{H O L D}$ low. The CPU grants the request by driving line pHLDA (hold acknowledge) high. When control line pHLDA is high, the device then may directly drive the $S-1 \varnothing \varnothing$ bus address lines and control lines (which are tri-stated during DMA transfers when pHLDA is high), and use the data bus lines for reading or writing without CPU intervention. The device may then transfer data at a rate limited only by the memory access time.

BYTESAVER II INSTRUCTION MANUAL

The general features of a DMA transfer are then:

- Fast asynchronous read or write access to memory.
- The DMA device should not be responsible for many overhead tasks (such as memory bank switching) to keep the memory access as quick as possible.
- The access is direct--no CPU intervention to slow the transfer.
- The DMA device must be capable of controlling and driving the tri-stated address, data and control busses.

In line with this general philosophy, the BYTESAVER II's DMA response behavior is controlled by two switches in the ADDR/CONTROL switch group; DMA OVERRIDE and DMA IN/OUT. There are four possible switch setting combinations; each is tabulated and discussed below.

Table 2

DMA OVERRIDE	
SWITCH	SWITCH

DISABLED IN or OUT Board enables when correctly addressed for either DMA or non-DMA transfers.

Board enables when correctly addressed for non-DMA transfers (normal operation); board disables during any system DMA transfer.

Board enables when correctly addressed for non-DMA transfers; board enables when the DMA device addresses the board's assigned 8 K block of memory, regardless of which banks were active before the DMA request.

The first table entry indicates the board behavior with DMA OVERRIDE DISABLED (note that in this case the DMA IN/OUT
switch setting is irrelevant). Here, the key phrase is "correctly addressed"; the BYTESAVER II will respond for memory read, write (PROM programming) or DMA transfers only when it is in an active memory bank (if multiple memory banks are enabled), and the $s-1 \emptyset \emptyset$ bus address falls within the board's assigned 8 K block of memory. The board in effect does not differentiate between a DMA data transfer and a normal read/write cycle in any way.

The BYTESAVER II does differentiate between DMA and nonDMA transfers with DMA OVERRIDE ENABLED, as shown in the last two table entries. A typical application demonstrating how DMA OVERRIDE works is shown in Figure l 1 .

Here, two BYTESAVER IIs are assigned to the same 16-bit address space with switches Al3, Al4 and Al5; board A is assigned to memory bank \varnothing, and board B to memory bank 1 (any other Cromemco memory boards with BANK SELECT and DMA OVERRIDE could also be used in the example). For non-DMA transfers, both boards are available for read/write operations when correctly addressed (board A is in memory bank \emptyset at $E \emptyset \emptyset \emptyset H-F F F F H$ and board B is in memory bank 1 at EØØØH - FFFFH).

Figure lø: DMA OVERRIDE EXAMPLE CONFIGURATION

When the CPU grants an asynchronous DMA request by driving the pHLDA line high, board A automatically disables and board B enables when the $S-l \emptyset \emptyset$ bus address is in the range EØØøH - FFFFH, regardless of which board was in an active memory bank before the request.

Thus, the DMA OVERRIDE feature is seen as a means of overriding logical memory bank boundries during a DMA transfer. This provides a fast way of vectoring the DMA device to the DMA board (the one with DMA IN) and disabling all non-DMA boards (the ones with DMA OUT) without burdening the DMA device with any overhead memory bank switching responsibilities.

It should be noted that after the DMA transfer is completed, both BYTESAVER IIs revert back to the same memory bank status which existed before the DMA transfer.

Section 3

PROM PROGRAMMING INSTRUCTIONS

The 2708 is an 8,192 -bit ultraviolet light erasable and electrically programmable read-only memory chip. The $27 \emptyset 8$ is erased, thereby forcing all bits to the logic l state, by exposing the chip's transparent quartz window to intense ultraviolet radiation. Consult the $27 \emptyset 8$ manufacturer's literature for detailed erasure procedures.

To program a $27 \emptyset 8$ PROM, insert an erased $27 \emptyset 8$ into a PROGRAM ENABLED BYTESAVER II socket with the system power OFF, turn ON the system power, turn the PROGRAM POWER switch ON, then execute one of the Cromemco system programming commands described in the following sections. If the PROM is to remain in the same socket after programming, the socket should then be PROGRAM DISABLED. The PROGRAM POWER switch should be turned OFF after programming to prevent inadvertent re-programming of other PROMs on the board.

Each $27 \emptyset 8$ byte is programmed by selectively changing logic 1 (erased) bits to the logic \varnothing state as required by the pattern being programmed. $27 \emptyset 8$ s may be re-programmed without intervening erasure provided no attempt is made to change $\operatorname{logic} \varnothing$ bits back to the logic l state--only complete EPROM erasure can force this transition.

The Cromemco PROM programming software described below writes a source code byte to each $27 \emptyset 8$ address in sequence. This process is then repeated until all l, 024 bytes of source code data have been written to the PROM $36 \emptyset$ separate times. The BYTESAVER II responds to each memory write cycle by forcing the CPU into an idle state by asserting the CPU pRDY line low, driving the eight $27 \emptyset 8$ data output pins with the source code byte, and applying a digitally counted 192 usec PROGRAM PULSE (low for 16 usec, high for 176 usec) to the $27 \emptyset 8$ PROGRAM input pin while the $\overline{C S} / W E$ line is held at +12 volts. Upon completion of the 192 usec interval, the pRDY line is again asserted high, and program execution resumes. Programming time for one 2708 is then approximately (l92 usec/byte) x (l, 024 bytes) x ($36 \emptyset$ programming passes) $=7 \emptyset$ seconds.

Specific $27 \emptyset 8$ programming examples appear in the next three sections. Section 3.1 illustrates how to program $27 \emptyset 8$ s using Cromemco's Z-8Ø MONITOR, DEBUG and ROS system commands, Section 3.2 discusses programming using $3 K$ Control BASIC, and Section 3.3 illustrates how to program 27ø8s from Z-8ø Assembly Language code.

DEBUG（on disc package model FDA－S／L），Z－8ø MONITOR （model number $Z M-1 \emptyset 8$ ）and ROS（model number $Z A-8 \emptyset 8$ ）all support a one line 2708 programming command．The respective command formats are illustrated below：

```
-P E\emptyset\emptyset\emptyset E3FF FC\emptyset\emptyset<CR>
:P E\emptyset\emptyset\emptyset E3FF FC\emptyset\emptyset<CR>
PROM,E\emptyset\emptyset\emptyset,E3FF,FC\emptyset\emptyset<CR>
（DEBUG）
（Z－8ø MONITOR）
（ROS）
```

where＜CR＞stands for pressing the RETURN key．Each command would result in programming a PROM located at FCøøH－FFFFH with source code located at EøøøH－E3FFH．Alternatively， these commands could have been entered as：
－P Eøøø S4の日 FCø日＜CR＞
：P Eøøø S4øø FCøø＜CR＞
PROM，EØøø，S4øø，FCøø＜CR＞
using the swath operator．

The first two arguments in each command define the source code starting location and extent in memory．The source code location may be specified in terms of absolute addresses as in the first three examples，or in terms of a starting address and a swath width as in the last three．The third argument defines the $27 \varnothing 8$ starting address on the

BYTESAVER II. The size of the source file (its swath width) and the $27 \emptyset 8$ starting address must be an exact multiple of $4 \emptyset \emptyset H$ (the addresses must end in either ØøøH, $4 \emptyset \emptyset H, ~ 8 \emptyset \emptyset H$ or $C \emptyset \emptyset H)$ or the command will be rejected and an error message issued.

After programming the 2708 , the source code is compared to the PROM contents, and any discrepancies are printed out according to the format illustrated below:

Eøøø	$2 C$	$2 D$	FCØØ
E2BC	$\emptyset 3$	$\emptyset 5$	FEBC
E3FF	C9	ED	FFFF

This printout indicates the source code byte 2 CH at EØØØH was incorrectly programmed into the $27 \emptyset 8$ as 2DH at address $F C \emptyset \emptyset H$, etc. If there are discrepancies, often reprogramming the 2708 with the same source code will change "stubborn" bits to their proper state. If there are no programming errors, the user is prompted for a new command.

EXAMPLE 5

Assume you have 2 K -bytes of development software located at lØØØH - 17 FFH which you want to store in $27 \emptyset 8$ PROM. Two erased $27 \emptyset 8$ occupy sockets ROM6 and ROM7 on a BYTESAVER II assigned to memory area EøøøH - FFFFH.

To program the PROMS, you would then PROGRAM ENABLE sockets ROM6 and ROM7, turn the PROGRAM POWER switch ON, and issue one of the following commands, depending on which operating system is running:

```
-P 10ø\emptyset 17FF F80\emptyset<CR> or
-P løø\emptyset S8\emptyset\emptyset F80\emptyset<CR>
:P 10\emptyset\emptyset 17FF F8\emptyset\emptyset<CR> or
:P 1\emptyset\emptyset\emptyset S8\emptyset\emptyset F8\emptyset\emptyset<CR>
PROM,1\emptyset\emptyset\emptyset,17FF,F8\emptyset\emptyset<CR> or
(DEBUG)
(ROS)
PROM,1\emptyset\emptyset\emptyset,S8\emptyset\emptyset,F8\emptyset\emptyset<CR>
```

After programming is complete, the PROGRAM POWER switch should be turned OFF.

Storing a disc file program in 2708 PROM is usually accomplished by reading the disc source file into RAM, then executing the DEBUG "P" (Program Proms) command to write the RAM data to PROM located elsewhere in memory. A potential problem exists when programming 2708 s with a ".HEX" extension object file using this procedure.

Moving a source file from disc to RAM is accomplished using the "F" (specify file name) and the "R" (read disc file) DEBUG commands. These commands will attempt to load the . HEX file from the disc into RAM beginning at the address specified by the "ORG" statement contained in the source code. The address so defined may not be RAM at all, or the area specified may be inconvenient for other reasons. To circumvent this problem, the . HEX file should be read into a convenient RAM area by specifying an appropriate displacement as the argument of the DEBUG "R" command (see next example). For further details, refer to Cromemco's Macro Assembler Manual.

EXAMPLE 6

Suppose you have a program named SAMPLE which is "ORGed" at 9200 H . You use Cromemco's ASMB program to create a . HEX object file on disc. You would like to read the .HEX file from the disc to RAM starting at $2 \emptyset \varnothing \mathrm{H}$, and then to use this data to program a $27 \emptyset 8$ PROM residing at FCøøH - FFFFH.

With DEBUG running, you would then type:
-FSAMPLE. HEX<CR>
This specifies the file name as "SAMPLE.HEX". Then type:
-R7ø日øH <CR>
This reads the file from the disc with a displacement of $7 \emptyset \emptyset \emptyset \mathrm{H}$. The displacement 7000 H is added to the ORG operand $920 \emptyset \mathrm{H}$ to yield the loading point $920 \emptyset \mathrm{H}+7 \emptyset \emptyset \emptyset \mathrm{H}=102 \emptyset \emptyset \mathrm{H}=\emptyset 20 \emptyset \mathrm{H}$ when the carry is discarded. Then type:

This command programs the $27 \emptyset 8$ at FCøøH with the source code located at $2 \emptyset \emptyset \mathrm{H}-5 \mathrm{FFH}$.
3.2 PROGRAMMING FROM 3 K CONTROL BASIC

3 K Control BASIC (model number $\mathrm{CB}-308$) program text may be stored in $27 \varnothing 8$ PROM for subsequent loading and execution by issuing an "EPROM" direct command.

To SAVE a Control BASIC (CB) program in a $27 \emptyset 8$ PROM:
a) Determine the length of the $C B$ program text using the $C B$ SIZE function value.
b) PROGRAM ENABLE sockets containing erased $27 \emptyset 8$ PROMs.
c) Turn the PROGRAM POWER switch ON.
d) Issue an EPROM ppp command where "ppp" is the $27 \emptyset 8$ PROM starting "page" address.
e) After receiving a CB message indicating successful programming, turn the PROGRAM PONER switch OFF.

3K Control BASIC logically partitions memory into "pages", where 1 page $=256$ bytes. Pages \emptyset and 1 (øøøøH $\emptyset 1 F F H)$ are not used by CB; pages 2 and 3 ($\emptyset 2 \emptyset \emptyset H-\emptyset 3 F F H)$ are used for variables, the input buffer and the stack; pages 4 thru 31 (Ø4øøH - lFFFH) are normally used for CB program text and arrays; and pages 32 on ($2 \emptyset \emptyset \emptyset H$ - end of user RAM) are normally used to save $C B$ program files (see Figure ll).

The 'EPROM ppp' command is used to program $27 \emptyset 8 \mathrm{~s}$ with the CB text area for later execution, the 'LOAD ppp' command reads a file from memory back into the text area for editing, and the 'RUN ppp' command initiates execution of the program text located at page 'ppp'.

The page number arguments of the EPROM, RUN and LOAD commands are specified in decimal. For the EPROM command, the page argument is the starting address of erased 2708 PROM. This number must be a multiple of 4 , and sufficient erased PROM should start at this address to contain all of the $C B$ program text. If the $C B$ text does not completely fill any $27 \emptyset 8$, the remainder of the PROM will be filled with data $\emptyset \emptyset H$, and thus the unused area is not available for other data or $C B$ text.

Figure ll: CONTROL BASIC MEMORY MAP

To determine the $C B$ program text length, first clear the
text area with the NEW command, then execute the CB program shown below which evaluates and outputs the sIZE function value. The SIZE function evaluates to the number of bytes allocated to, but left unused by the $C B$ program text.
>1 PRINT SIZE
>2 STOP
$>$ RUN
7142

The output (7,142 decimal in this example) gives the size of the unfilled $C B$ text buffer. This number should be recorded for later reference. The size of the unfilled test buffer may be changed using the LOCK ppp command (see Cromemco's 3 K Control BASIC Instruction Manual).

To determine the length of any CB program, load the same two statements at the beginning of your program (leave line numbers 1 and 2 free for this purpose), then RUN the combined program resulting in an output like that shown below:
>RUN
5938

The program text length is the difference of these two numbers, or, $7142-5938=1204$ bytes $=4.7$ pages. A 4.7 page program would then require two 2708 PROMS (one would be completely filled with $C B$ text; the other partially filled with $C B$ text and the remainder filled with data $\emptyset \emptyset H)$.

EXAMPLE 7

Suppose you wanted to store a $2,5 \emptyset \emptyset$ (decimal) byte CB program in $27 \emptyset 8$ PROM. Since $2,50 \emptyset$ bytes $=9.8$ pages, three $27 \emptyset 8$ PROMs are needed to store the text. Assume three erased PROMs occupy PROGRAM ENABLED sockets ROM5, ROM6 and ROM7 on a BYTESAVER II assigned to the uppermost 8 K of memory . The PROMs then reside at F4øøH - FFFFH, or pages 244-255 decimal. You would then turn the PROGRAM POWER switch ON, and issue the command:
>EPROM 244
The programming time is approximately $7 \emptyset$ seconds/PROM, so after about 140 seconds, you would see the message;

SAVED ON PAGE \%F4 TO \%FF
OK
>
if the programmed PROMs verified correctly, or;
SORRY
OK
>
if they did not. If the PROMs do not verify, you may try to re-program them with another EPROM 244 command without damage to the devices, or erase them and try again. Turn OFF the PROGRAM POWER switch after programming.

Assume now you move the three PROMs to sockets ROMø, ROM1 and ROM2 (EøøøH - EBFFH or pages 224 - 235) for running. Sockets ROMø, ROM1 and ROM2 should be PROGRAM DISABLED to prevent inadvertent re-programming. To run the program, issue the command:
>RUN 224
Or, to bring the program into the text area for editing, type:
>LOAD 224

3.3 PROGRAMMING FROM $Z-8 \emptyset$ ASSEMBLY CODE

Moving individual bytes or blocks of system memory to $27 \emptyset 8$ EPROM is most easily accomplished using DEBUG, Z-80 MONITOR or ROS system commands (see Section 3.1), but there may be instances where it is desirable to program 2708 s during the execution of your own $Z-8 \emptyset$ assembly language program. This section discusses a relocatable Z-8ø assembly language example program which may easily be modified to meet your specific requirements.

EXAMPLE 8

Assume you want to store source code data residing at $200 \mathrm{H}-8 \mathrm{FFH}$ in 2708 PROM. This represents 1,792 bytes of data, so two l, ø24-byte capacity $27 \emptyset 8$ s are needed to store the data. In anticipation of later re-programming, the unused portion of the second device should be filled with data FFH. Thus, you fill source code area $9 \emptyset \emptyset \mathrm{H}-9 \mathrm{FFH}$ with data FFH.

The example program assumes two erased 2708 PROMs occupy PROGRAM ENABLED sockets ROM6 and ROM7 on a BYTESAVER II assigned to the uppermost 8 K of memory. Thus, the PROMs span memory addresses F8øøH - FFFFH. Before the program is run, the PROGRAM POWER switch should be turned ON.

$27 \emptyset 8$ EPROM PROGRAMMER

THIS SAMPLE PROGRAM PROGRAMS TWO $27 \emptyset 8$ PROMS
IN SOCKETS ROM6 AND ROM7 ON A CROMEMCO BYTESAVER II MEMORY BOARD. THE SOURCE CODE IN THIS EXAMPLE IS ASSUMED LOCATED AT 2øøH - 9FFH.

($\varnothing 2 \varnothing \varnothing$)	SOURCE:	EQU	200 H	; SOURCE CODE START ADDR
(0800)	SWATH:	EQU	800н	;SOURCE CODE LENGTH
(FCDD)	EPROM :	EQU	ØFCøØH	;27ø8 PROM START ADDR
210002	PGM27ø8:	LD	HL, SOURCE	; LOAD SOURCE ADDR,
1100 F 8		LD	DE, EPROM	; $27 \emptyset 8$ START ADDR,
Ø10008		LD	BC, SWATH	; AND SWATH FOR BLOCK XFER
EDB \emptyset		LDIR		;WRITE SOURCE TO 2708
E5		PUSH	HL	; SAVE LAST SOURCE+1 ADDR
2A2Bøø		LD	HL, (PASSES)	;GET PROGRAMMING PASS\#
2B		DEC	HL	; DECREMENT IT

ØØ1Ø	7C		LD	A, H	;TEST FOR PASS\#=øøØØH
$0 \emptyset 11$	B5		OR	L	; VALID ZERO FLAG
Ø012	222 B Øø		LD	(PASSES) , HL	; RESTORE PASS\#
Ø015	E1		POP	HL	;RESTORE LAST SOURCE+1
ØØ16	20E8		JR	NZ, PGM 2708	; PASS\# NOT ØøøøH--GO BACK
Øø18	Ø1ØøØ8		LD	BC, SWATH	; DONE--READY TO VERIFY
$\emptyset \emptyset 1 B$	2B		DEC	HL	;POINT TO LAST SOURCE ADDR
$\emptyset \emptyset 1 \mathrm{C}$	1B	VERIFY:	DEC	DE	; POINT TO LAST 2708 ADDR
Øø1D	$1 A$		LD	A, (DE)	;GET $27 \emptyset 8$ BYTE AND
ØØ1E	EDA9		CPD		; COMPARE TO SOURCE BYTE
Øø2ø	E2280ø		JP	PO, EXIT	; DONE IF (BC) $=\emptyset \emptyset \emptyset \emptyset \mathrm{H}$
Øø23	28 F 7		JR	Z,VERIFY	; BYTES MATCH--NEXT BYTE
Øø25	3EFF	ERROR:	LD	A, ØFFH	;MISMATCH--LOAD REG. A
ØØ27	76		HALT		;WITH FFH AND HALT
Øø28	$3 \mathrm{E} \emptyset \emptyset$	EXIT:	LD	$A, \emptyset \emptyset \mathrm{H}$;SUCCESS--LOAD REG. A
$\emptyset \emptyset 2 \mathrm{~A}$	76		HALT		;WITH ØØH AND HALT
Øø2B	6801	PASSES :	DW	360	; INITIAL PASS\# $=360$
Øø 2D			END	PGM2708	

The sample program defines the source code starting address in register pair $H L$, the $27 \emptyset 8$ PROM starting address in register pair $D E$ and the source code length (the byte count) in register pair BC. The program then block moves the source code to PROM $36 \emptyset$ times by repeatedly executing the LDIR instruction. After the 2708 is programmed, the program then verifies the $P R O M$ contents against the source code. If they match, the program HALTs with øøH in Reg. A; if any byte does not match, the program HALTs with FFH in Reg. A. In actual use, the HALT instructions would be replaced by a branching instruction to the next code segment. The program may easily be placed elsewhere in memory provided the absolute jump instruction is re-assembled to point to the new EXIT point. It is the user's responsibility to test the contents of Reg. A for successful verification and take the appropriate action.

BYTESAVER II INSTRUCTION MANUAL

Section 4

THEORY OF OPERATION

This section gives a summary analysis of the BYTESAVER II at the component level. The user may find the section useful for troubleshooting the board, or just for gaining a fuller understanding of the board's features. The analysis is functionally divided into five categories: power supplies, addressing, memory read cycles, memory write cycles and DMA cycles. Refer to the BYTESAVER II Schematic for the following discussions.

4.1 POWER SUPPLIES

Unregulated +8 volt, +18 volt and -18 volt $S-1 \varnothing \varnothing$ bus lines are voltage regulated to +5 volts, +12 volts and -12 volts by IC3, ICl6 and IC2 respectively. The +5 volt line is also dc to dc converted to +33.5 volts by relaxation oscillator Q19, Q2ø, Q21, Tl and associated circuitry. The converter is turned $O N$ and $O F F$ by the PROGRAM POWER switch. The +33.5 volt line is Zener regulated to +27 volts by diode Dl9 which in turn provides the +26 volt (nominal) $27 \emptyset 8$ PROM programming voltage level.

If +33.5 volts is not present across $C 23$ when the PROGRAM POWER switch is ON, check the collector of Q2l for a \emptyset volt/ 18 volt square wave running at between $15 \emptyset$ and $25 \emptyset$

KHz. If no switching voltage is present, check Q2l first. If Q2l is good, then check the other converter components Q19, Q2ø, D29 (a lN5257, 33 volt Zener diode), D3ø and Tl for opens and shorts.

4.2 ADDRESSING

High order address lines Al3, Al4 and Al5 are compared to switches Al3, Al4 and Al5 in the ADDR/CONTROL group by IC22. The comparison output [IC22 pin 3] is logically ANDed with $S-1 \varnothing \emptyset$ bus signals and board signal [ICl pin 3] to yield the important node signal BOARD ENABLE which logically equals the following Boolean expression:

BOARD ENABLE $=($ Al3, Al4, Al5 MATCH) AND (S $\overline{\text { INTA }}$) AND ($\overline{\text { SOUT }}$)
 PROGRAM POWER)

The board will be enabled when the logic expression above is true, or evaluates to logic l. The line [ICl pin 3] will be low when the board is in an active memory bank, or has DMA IN during a DMA cycle.

Address lines Alø, All and Al2 feed one-of-eight decoder ICl9 which generates chip select signals for each of the eight ROM sockets. Buffered address lines Aø - A9 parallel
feed all $27 \emptyset 8$ s to finally select the byte-on-chip.

The board is mapped into an active or inactive memory bank by outputting a control word to output port $4 \emptyset \mathrm{H}$. Port address $4 \emptyset H$ is decoded from address lines Aø - A7 by the wire-oRed 7405^{\prime} s IC7 and IC8. These outputs are logically ANDed with control signals sOUT, pWR and switch BANK ENABLE to yield node signal BANK SELECT ENABLE $=$ (sOUT) AND (pWR) AND (BANK ENABLE) AND $(A \emptyset-A 7=4 \emptyset H)$. A high BANK SELECT ENABLE strobes a D-type flip flop at [IC26 pin 3] (it is also strobed on a Power-On Clear and a system RESET), and if the D-input at [IC26 pin 2] is low, the board is mapped into an active memory bank and the green LED indicator lights. If the D-input is high when strobed, the board is mapped into an inactive memory bank and the LED goes out.

The bits of the control byte output to port $4 \emptyset \mathrm{H}$ are inverted by ICll and ICl2, and those bits selected with the BANK SELECT switches are logically ANDed to drive the D-input [IC26 pin 2]. Any logic 1 control bit output to port $4 \emptyset H$ which is switch connected to [ICl2 pin 13] will then place the board in an active memory bank.

4.3 MEMORY READ CYCLES

The CPU begins a memory read cycle by placing the memory address on the $S-1 \emptyset \emptyset$ address bus $A \varnothing-A 15$ and by asserting the sMEMR control line high. After sampling the pRDY line to ascertain whether the memory is ready to supply the data byte, the CPU strobes the data from the DATA IN bus DIø - DI7 with a momentary high transition on the pDBIN line if memory is ready, or if memory is not ready, the CPU re-samples the pRDY line one clock cycle later.

If no wait states are selected with the WAIT switch in the ADDR/ CONTROL group, the pRDY line to the CPU stays high; if one wait state is selected with the switch, flip flop output [IC15 pin 8] goes low during pSYNC at the beginning of the read cycle (forcing $p R D=$ low), then goes high again one machine cycle later when $\mathrm{PSYNC}=$ low.

When the CPU asserts $0 D B I N$ high to strobe the read data from the DI bus, this signal is logically ANDed with BOARD ENABLE to yield signal $\overline{\text { DAT }} \bar{A}$ OUT ENABLE $=(\overline{\mathrm{PDBIN})} \overline{A N D}$ (BOARD $\overline{\text { ENABLE }) . ~} \overline{\text { DATA OUT ENABLE }}$ in turn enables tri-state drivers IC24 which place the $27 \emptyset 8$ data byte onto the DI bus.

BYTESAVER II INSTRUCTION MANUAL

4.4 MEMORY WRITE CYCLES

The CPU begins a memory write cycle to the BYTESAVER II by placing the byte address on the S-løø address bus Aø - Al5 and asserting control signals sWO low and MEM WRITE high. The CPU then places the data byte on the data out bus DOØ DO7, asserts the pWR line low and samples the pRDY line. If the PRDY line is low indicating memory has not latched the data byte, the CPU waits an integral number of clock cycles with stable address, data and control signals until the pRDY line again goes high. After the pRDY line is sampled high, program execution resumes.

The coincidence of MEM WRITE and BOARD ENABLE drives [ICl3 pin ll] low, which releases the clear lines of counter IC27, gates the data byte to the $27 \varnothing 8$ data output pins Dø D7 thru drivers IClø and IC23, and applies +12 volts to the appropriate PROGRAM ENABLED ROM socket CS/WE line by turning ON transistor Q18.

The dual 4-bit counter IC27 is driven by a 1 MHz clock which is derived from the $2 \mathrm{MHz} \overline{\mathrm{CLOCK}}$ line from divide-by-2 flip flop IC26. The counter outputs are conditioned by one-of-ten decoder IC28 and flip flop ICl5 to generate a PROGRAM PULSE waveform which is low for 16 usec and high for 176 usec at [IC4 pin 8]. This waveform turns transistor Ql7 ON and OFF, which, in conjuction with zener diode Dl9 (a 27 volt 3\%

1N5254), supplies a 26 volt pulse to the $27 \emptyset 8$ PROGRAM input. While the data byte drives the $27 \emptyset 8$ data output lines and the PROGRAM PULSE is applied to the 2708, the pRDY line is held low forcing the CPU to wait until 192 usec has elapsed.

The PROGRAM ENABLE switches selectively enable programming by routing +12 volts to the $\overline{\mathrm{CS}} / \mathrm{WE}$ input of a PROGRAM ENABLED socket when the switch is closed, or inhibit programming by applying +5 volts to the $\overline{\mathrm{CS}} / \mathrm{WE}$ input of a PROGRAM DISABLED socket when the switch is open.

4.5 DMA CYCLES

The CPU acknowledges a DMA request by asserting the pHLDA line high. The system address, data out and control busses are then tri-stated allowing the DMA device to control these lines. The pHLDA signal to the BYTESAVER II is logically gated with switch settings DMA OVERRIDE ENABLE/DISABLE and DMA IN/OUT resulting in signal [ICl pin 3] which ultimately either enables or disables the board thru node signal BOARD ENABLE. To enable the board, [ICl pin 3] must be low. The table below shows the relationship among the DMA switches and signal [ICl pin 3]. In the table, "Q" is output [IC26 pin 5] which is low when the board exists in an active memory bank (when the green LED is lit).

```
                                    Table 3
DMA OVERRIDE DMA IN/OUT (A LOW ENABLES TH
    (A LOW ENABLES THE BOARD)
\begin{tabular}{llc} 
DISABLED (OFF) & OUT (ON) & \(Q\) \\
DISABLED (OFF) & IN (OFF) & \(Q\) \\
ENABLED (ON) & OUT (ON) & (pHLDA) OR (Q) \\
ENABLED (ON) & IN (OFF) & (pHLDA) AND (Q)
\end{tabular}
```

From the table it is seen that when DMA OVERRIDE is disabled, the board must be placed in an active memory bank to be accessible, and the DMA IN/OUT switch setting is irrelevant. When DMA OVERRIDE is ENABLED, a DMA cycle will disable the board if DMA is OUT (since pHLDA is high); a DMA cycle will enable the board if DMA is IN regardless of the Q output state (since p $\overline{H L D A}$ is low). Thus, with DMA OVERRIDE enabled, a board with DMA OUT disappears during DMA transfers, and a board with DMA IN is available across memory bank boundries.

Section 5

ASSEMBLY INSTRUCTIONS

If you purchased a BYTESAVER II kit, you will find assembly to be straight-forward provided you follow the instructions below.

Before beginning assembly, verify you have all kit parts by referring to the Parts List. Please fill out and return the Missing Parts form to your authorized Cromemco dealer if any parts are damaged or missing.
5.1 ASSEMBLY STEPS

All parts are inserted from the component side of the board (with the white printed legend), and all soldering is done from the opposite side.

Be sure to use a high quality rosin core solder (DO NOT USE ACID CORE SOLDER), and a fine tipped low-wattage (25 W or less) soldering iron.

The printed legend on the component side of the board shows the exact location and orientation of each component (also see Figure 12). Carefully organize your work; check off each component after insertion and each assembly step when completed.

Figure 12: BYTESAVER II PART ORIENTATIONS
() Install transistors Q1 - Q2l. Align transistor flat sides with outline drawings. Note that transistor types alternate between $2 \mathrm{~N} 39 \emptyset 4$ and $2 \mathrm{~N} 39 \emptyset 6$ up to Q17 and Q18, which are both $2 \mathrm{~N} 3904^{\prime} \mathrm{s}$.
() Install Zener diodes D19 (1N5254 3\%) and D29 (1N5257). Align the bands on the diodes with the bands on the outline drawings. Install twenty-seven 1 N 4531 diodes D2 - D18, D2ø D28 and D3ø in the same way.
() Solder in position all l/4-watt resistors:

R1	$18 \emptyset$	BROWN-GREY-BROWN
R2-R3		NOT ASSIGNED
R4-R5	1 K	BROWN-BLACK-RED
R6	$1 \emptyset \emptyset K$	BROWN-BLACK-YELLOW
R7	$1 K$	BROWN-BLACK-RED
R8	47	YELLOW-VIOLET-BLACK
R9	$1 \emptyset \emptyset$	BROWN-BLACK-BROWN
R1Ø	$5.6 K$	GREEN-BLUE-RED
R11	$1 \emptyset K$	BROWN-BLACK-ORANGE
R12	$5.6 K$	GREEN-BLUE-RED
R13-R14	1 K	BROWN-BLACK-RED
R15		NOT ASSIGNED
R16-R17	$15 \emptyset$	BROWN-GREEN-BROWN
R18	1 K	BROWN-BLACK-RED
R19-R22	$15 \emptyset$	BROWN-GREEN-BROWN

() Solder in position thirty-six IC sockets.
() Solder three SIP resistor networks RN2, RN5 and RN6 in place. The arrow tips printed on the circuit board point to SIP pin l; align arrows with numerals "l" printed on SIP packages.
() Install seven polarized capacitors C1ø - Cll and C23C27. WHEN INSTALLING THE $1 \emptyset$ UF POLARIZED CAPACITORS MAKE CERTAIN THAT THE "+" END OF THE CAPACITOR IS ALIGNED WITH THE "+" PRINTED ON THE P.C. BOARD.
() Install the remaining forty-nine disc capacitors. The . $\varnothing 22$ uF capacitors are labeled ". ø22", and the smaller 220 pF capacitors are labeled "22ø". Notice that C2l is a .øl uF capacitor, not a .l uF.
() Install transformer Tl.
() Install light emitting diode Dl. Align LED flat sides with outline drawings. Bend the LED leads at right angles so that the LED faces the top of the board when installed.
() Install three 8-pole DIP switches. The arrows on the switch packages indicating the $O N$ position should point towards the top of the board.
() Install the SPDT toggle switch.
() Install ICl6, the 7812. +12 volt regulator on the small heatsink in the lower left corner of the board. Secure with a steel screw and nut. Make sure the IC legs do not touch the metallic heat sink.
() Install IC2 and IC3 on the large heatsink in the upper right corner of the board. Position the mica insulating pad beneath IC2, the $7905-5$ volt regulator; secure with a nylon screw inserted from the board solder side to a steel nut. Secure IC3, the $7805+5$ volt regulator, with a steel screw and nut. Make sure the IC legs do not touch the metallic heat sink.
() Install all ICs and the three DIP Resistor Networks RNl, RN3 and RN4 in their correct sockets (see Important Note below). The arrow tips printed on the circuit board point to IC pin 1 (see Figure 12).

IMPORTANT NOTE

The most common assembly fault is bent under IC legs. To avoid this problem, first bend the IC legs to closely match the IC socket span. Then "rock" the IC into its socket with a gentle end-to-end pressure. Visually inspect the legs after insertion by looking beneath the device.

This completes the construction of the cromemco BYTESAVER II board. Carefully inspect your work before proceeding. Take particular care to see that there are no inadvertent solder bridges between pads and/or adjacent foil
areas. It is a good practice to scrub the board solder side clean with a fluorocarbon solution to remove any fine metallic particles which may be imbedded in the rosin residue.
5.2 POWER LINE TESTING

Follow the next procedure to verify that no short circuits exist between the board power lines, or between the power lines and ground. If testing indicates a short circuit, the connection must be found and removed.

With the board disconnected from the $S-1 \emptyset \emptyset$ bus, connect an ohmmeter, on the $R \quad x \quad$ or lowest full-scale setting, across C25. The exact resistance reading is not important (it depends heavily on the ohmmeter design), but it should be several ohms or greater. If the reading indicates zero or a fraction of an ohm, a short exists between the +8 volt line and ground. Remove the short and verify by re-testing. Reverse the ohmmeter leads and again verify a non-zero ohm condition.

Test the +18 volt line as above by placing the ohmmeter leads across c26. Test the -18 volt line in the same way across C24.

Test the +5 volt line as above by placing the ohmmeter
leads across Cll. Test the +12 volt line across C27. Test the -5 volt line across clø. Test the +34.5 volt line across C23. In each case, observe a non-zero ohm condition.

Now, place the ohmmeter between the "+" end of polarized capacitor Cll and the "+" end of C27; repeat with Cll and C23; repeat with C27 and C23. Now place the ohmmeter leads between the "-" end of C 10 and the "+" end of Cll ; then C 23 ; then C27. Verify a non-zero ohm condition in each case.

Follow the next procedure to verify that proper power supply voltages are present when the BYTESAVER II is plugged into an S-løø bus slot.

First, turn the system power OFF. Install the BYTESAVER II in an S-løø slot which permits access to the component side of the board with a VOM. NEVER insert or remove the board or board parts with the system power ON.

Turn the system power ON. The BYTESAVER II switch settings are unimportant for this test. Carefully measure the voltage across Clø and verify $5 . \emptyset$ volts with the same polarity as capacitor clø. Carefully measure the voltage across C27 and verify $12 . \emptyset$ volts with C27's polarity. Carefully measure the voltage across Clø and verify l2.ø volts with the same polarity as clø. Turn the PROGRAM POWER switch $O N$ and carefully measure the voltage across C23.

Verify between 32.5 and 34.5 volts with C23's polarity.

This completes the preliminary testing of the BYTESAVER II board. If further testing indicates a board failure, the first corrective measure should be the removal of all board ICs and DIP resistor networks to check for bent under IC legs. If none are found, carefully re-insert the correctly oriented ICs in their proper sockets and refer to Section 4, or return the board to Cromemco for servicing (see WARRANTY at the end of this manual).

BYTESAVER II PARTS LIST

Integrated Circuits Part No．

ICl	74 LS ¢ \emptyset	Ø10－Øø69
IC2	7905	Ø12－øø日ø
IC3	7805	ø12－øøø1
IC 4	7406	Ø10－øø28
IC5	7406	Ø10－øø28
IC6	74 LS ø 2	Ø10－øø68
IC7	74 LS ø 5	Ø10－øø65
IC8	74 LSø5	Ø10－Øø65
IC9	74 LS33	Ø10－øø99
IC1ø	74367	ø1ø－øø8ø
ICll	74 LS 05	Ø1ø－øø65
ICl2	74 LS 05	ø10－øø65
ICl3	74 LS ¢ \varnothing	ø10－0069
ICl4	$74 \mathrm{LS@4}$	Ø10－øø66
IC15	74LS74	Ø10－Ø055
ICl6	7812	ø12－øøø2
IC17	7406	ø10－øø28
IC18	74 LS ø 2	ø10－øø68
IC19	74LS42	Ø1ø－øø57
IC2ø	74367	Ø1ø－øø8ø
IC22	74 LS 136	ø10－øø50
IC23	74367	ø10－øø80
IC24	74367	ø1ø－øø8ø
IC25	74LS 33	ø1ø－øø99
IC26	7474	Ø10－øø19
IC27	74393	ø10－øø78
IC28	74 LS42	ø10－øø57

Resistor Networks

IC Sockets

```
8-SOCKETS, 24 PIN Øl7-\emptysetø\emptyset5
10-SOCKETS, 16 PIN Øl7-\emptyset\emptyset\emptyset2
l8-SOCKETS, l4 PIN Øl7-øø\emptysetl
```

Capacitors
Part No．

Cl－C9	． 1 uF	øø4－øø3ø
Cl0－Cll	1 l	øø4－øø32
C12－C19	9.05 FF @ 25 V	øø4－øø27
C20	680 pF	øø4－øø2ø
C21	．$\varnothing 1 \mathrm{uF}$	øø4－øø26
C22	． 1 UF	øø4－øø3ø
C23	$1 \varnothing \mathrm{uF} \mathrm{@} 5 \emptyset \mathrm{~V}$	øø4－øø31
C24 6	6.8 uF＠35V	øø4－Øø34
C25	$1 \emptyset \mathrm{UF}$＠2øV	øø4－øø32
C26 6	$6.8 \mathrm{uF} @ 35 \mathrm{~V}$	øø4－øø34
C27	$1 \emptyset \mathrm{UF}$＠2øV	øø4－øø32
C28－C 35	5 ．$\quad 22$ uF	øø4－øø23
C36－C38	8.1 uF	øø4－øø3ø
C 39	$22 \emptyset \mathrm{pF}$	øø4－øø13
C40	． 1 uF	øø4－øø3ø
C41	220 pF	øø4－øø13
C42	． 1 uF	ø日4－ø日3の
C43－C45	$522 \emptyset \mathrm{pF}$	ø04－øø13
C46	． 1 uF	Øø4－Øø3ø
C47	220 pF	øø4－øø13
C48－C49	9.1 uF	øø4－øø3ø
C50	220 pF	øø4－øø13
C51－C52	2.1 uF	øø4－øø3ø
C53	220 pF	ø04－øø13
C54－C55	5.1 uF	øø4－ø日3ø
C56	220 pF	øø4－ø013

Diodes

D1	LED TIL－2ll	øø8－øø2ø
D2－D18	1N4531	øø8－øøø2
D19	1N5254 3\％	øø8－øøø4
D20－D28	1N4531	øø8－øøø2
D29	1N5257	øø8－øø03
D30	1N4531	øø8－øøø

BYTESAVER II PARTS LIST

Resistors

R1	$18 \emptyset$	$\emptyset \emptyset 1-\emptyset \emptyset \emptyset 9$
R2-R3	NOT	ASSIGNED
R4-R5	1 K	$\emptyset \emptyset 1-\emptyset \emptyset 18$
R6	$1 \emptyset \emptyset \mathrm{~K}$	$\emptyset \emptyset 1-\emptyset \emptyset 39$
R7	1 K	$\emptyset \emptyset 1-\emptyset \emptyset 18$
R8	47	$\emptyset \emptyset 1-\emptyset \emptyset \emptyset 3$
R9	$1 \emptyset \emptyset$	$\emptyset \emptyset 1-\emptyset \emptyset \emptyset 7$
R1ø	5.6 K	$\emptyset \emptyset 1-\emptyset \emptyset 26$
R11	$1 \emptyset \mathrm{~K}$	$\emptyset \emptyset 1-\emptyset \emptyset 3 \emptyset$
R12	5.6 K	$\emptyset \emptyset 1-\emptyset \emptyset 26$
R13	1 K	$\emptyset \emptyset 1-\emptyset \emptyset 18$
R14	1 K	$\emptyset \emptyset 1-\emptyset \emptyset 18$
R15	NOT	ASSIGNED
R16-R17	$15 \emptyset$	$\emptyset \emptyset 1-\emptyset \emptyset \emptyset 8$
R18	1 K	$\emptyset \emptyset 1-\emptyset \emptyset 18$
R19-R22	$15 \emptyset$	$\emptyset \emptyset 1-\emptyset \emptyset \emptyset 8$

Miscellaneous
3 DIP SWITCHES,
ø13-øøø2
8 POLE
1 TOGGLE SWITCH
Ø13-øøøø
1 LARGE HEAT SINK
Ø21-øø17
1 SMALL HEAT SINK ø21-øø16
1 XT8K XFMR. Ø14-øøø1
4 SCREWS, 6-32 Ø15-øøø8
STEEL
1 SCREW, 6-32, Ø15-øøø2 NYLON
5 HEX NUTS, 6-32 Ø15-øø13
1 INSULATING PAD 999-øøøø
1 PC BOARD $\emptyset 2 \emptyset-\emptyset \emptyset \emptyset 3$

Capacitors
Part No.

Q1	2N3904	øø9-øøø1
Q2	2N3906	øø9-øøø2
Q3	2N3904	øø9-øø01
Q4	2N3906	øø9-øøø2
Q5	2N3904	øø9-øøø1
Q6	2N3906	øø9-øøø2
Q7	2N3904	009-øø01
Q8	2N3906	øø9-øøø2
Q9	2N3904	øø9-øøø1
Q10	2N3906	øø9-øøø2
Q11	2N3904	øø9-øøø1
Q12	2N3906	øø9-øøø2
Q13	2N3904	øø9-øøø1
Q14	2N3906	øø9-øøø2
Q15	2N3904	øø9-øøø1
Q16	2N3906	øø9-øøø2
Q17	2N3904	ø09-øøø1
Q18	2N3904	øø9-øøø1
Q19	2N3906	øø9-øøø2
Q2ø	2N3904	øø9-øøø1
Q21	MPS-6560	ø09-めø2

Documentation
BYTESAVER II INSTRUCTION MANUAL
ø23-øøø1

WARRANTY

Your factory built BYTESAVER II is warranted against defects in materials and workmanship for a period of $9 \emptyset$ days from the date of delivery. We will repair or replace products that prove to be defective during the warranty period provided they are returned to Cromemco. No other warranty is expressed or implied. We are not liable for consequential damages.

Should your factory built BYTESAVER II fail after the warranty period, it will be repaired for a fixed fee, provided it is returned to Cromemco. We reserve the right to refuse to repair any product which has, in our opinion, been subjected to abnormal electrical or mechanical abuse. The service fee is currently $\$ 7 \varnothing . \varnothing \varnothing$, and is subject to change without notice.

Your assembled BYTESAVER II kit will be repaired for a fixed fee, provided it is returned to Cromemco. We reserve the right to refuse repair of any kit which has not, in our opinion, been assembled in a workmanlike manner, or has been subjected to abnormal electrical or mechanical abuse. Payment of the service fee must accompany the returned merchandise. The service fee for kit repair is currently $\$ 7 \varnothing . \emptyset \varnothing$, and is subject to change without notice.

H滝

