Cromemeo

Bytesaver

Cromemco 32K

Bytesaver

Copyright e1978 by Cromemco Inc. All rights reserved.
Section 1
Introduction 1
Technical Specifications 1
Section 2
Operating Instructions. 2
2.1 Switch Options-An Overview. 2
PROGRAM POWER Toggle SwitchADDR/CONTROL SwitchesPROGRAM ENABLE SwitchesBANK SELECT SwitchesSHADOW ROM Switches
2.2 Addressing The 32 K BYTESAVER 7
2.3 Board Select/Chip Select. 8
2.4 Shadowing ROM Socket Pairs 10
2.5 Memory Banks 12
2.6 Select BANK \emptyset On RESET Or POWER-ON-CLEAR 16
2.7 Direct Memory Access. 16
Section 3
PROM Programming Instructions 19
3.1 Programming From RDOS Or Z-80 Monitor 19
3.2 Programming From 3K Control BASIC 20
3.3 Programming From Z-80 Assembly Code 22
Section 4
Theory Of Operation 24
4.1 Power Supplies 24
4.2 Addressing. 24
4.3 Memory Read Cycles 25
4.4 Memory Write Cycles 25
4.5 DMA Cycles 25
Section 5
Assembly Instructions. 27
5.1 Assembly Steps 27
5.2 Power Line Testing 28
Parts List. 30
Parts Location Diagram 32
Switch Options-Quick Reference 33
Warranty 34
Schematic Diagram 35

Table of Contents

LIST OF ILLUSTRATIONS

Figure 1 - Switch Locations. 2
Figure 2 -ADDR/CONTROL Switches . 3
Figure 3 -Example 1 Switch Settings . 5
Figure 4 - Example 2 Switch Settings . 6
Figure 5 - 32 K BYTESAVER Addressing 7
Figure 6 - Two 32K BYTESAVERS Spanning The 64 K Address Space9
Figure 7 - Example 4 Switch Settings And Memory Map. 11
Figure 8 - The Memory Map With Multiple Memory Banks 12
Figure 9 - Example 5 Switch Settings 13
Figure 10 - Example 5 Memory Map 14
Figure 11 - DMA OVERRIDE Example Configuration 17
Figure 12 - Control BASIC Memory Map 21
Figure 13 - IC Pin Position 28

0

Introduction

This manual provides assembly instructions, operating instructions and theory of operation for the Cromemco 32 K BYTESAVER memory board.

The 32 K BYTESAVER is an $\mathrm{S}-10 \emptyset$ bus compatible, 32 K -byte capacity, 2716 -type EPROM memory board and programmer. The 32 K BYTESAVER features:

- Independent operation as a 32 K -byte ROM memory board.
- Independent operation as a 2716 PROM programmer.
- BANK SELECT allowing memory expansion beyond 64 K -bytes.
- ROM SHADOWING allowing external memory to overlap portions of the 32 K BYTESAVER's address space.
- Powerful DMA configuration options with DMA OVERRIDE.
- Fully buffered address lines.
- Digital count derived PROGRAM PULSES (no erratic one-shots).
- A separate memory protect switch for each ROM socket.
- All options switch selectable (no soldered jumper wires).

This manual consists of four basic sections: Operating Instructions, PROM Programming Instructions, Theory of Operation and Assembly Instructions. If you purchased a 32 K BYTESAVER kit, the Assembly Instructions provide step-by-step construction and initial test procedures. The section "Switch Options - An Overview" of the Operating Instructions provides a 32 K BYTESAVER operational overview for those who want to put the board quickly to use.

Technical Specifications-32K BYTESAVER PROM Card

MEMORY CAPACITY:
MEMORY TYPE:
MEMORY ACCESS TIME:
WAIT STATES @ 2 MHZ :
WAIT STATES @ 4 MHZ :
BUS COMPATIBILITY:
POWER REQUIREMENTS:
OPERATING ENVIRONMENT: $0-55$ DEGREES CELSIUS
*NOTE: Texas Instrument's 2716 PROM is not equivalent to the Intel 2716 PROM, and thus it may not be used with the 32 K BYTESAVER. The TI 2516 is equivalent to the Intel 2716, so it may be used with the 32 K BYTESAVER.

operating Instructions

Operating the 32 K BYTESAVER board involves inserting from one to sixteen 2716 PROM devices in sockets ROM \emptyset - ROM 15 (any sockets may be used or left unused), setting six switch groups to configure the board, plugging the board into a convenient S-100 bus slot, and then applying system power. To program a PROM, you will additionally need to run software described in the Section 3, PROM PROGRAMMING INSTRUCTIONS.

2.1 Switch Options-An Overview

The 32K BYTESAVER is configured by setting six switch groups located along the top edge of the board (see Figure 1). To provide an operational overview and for later quick reference, the function of each switch group is briefly explained in this section.

Figure 1-Switch Locations

PROGRAM POWER Toggle Switch

The PROGRAM POWER switch turns the +26 volt dc to dc power supply and the nearby red LED indicator ON and OFF. Position this switch ON before PROM programming; position it OFF when done to prevent inadvertent re-programming.

ADDR/CONTROL Switches

The ADDR/CONTROL switches control several different functions (see Figure 2).

Switches 1,2 and 3 are not used.
The BANK ENABLE/DISABLE switch enables multiple 64 K memory banks (bank \emptyset-bank 7) when ON, and disables multiple banks when OFF (normal direct 64 K addressing).

The WAIT STATE switch is used to match the CPU cycle time to the 2716 PROM 450 ns (max) memory access time. Positioning the WAIT STATE switch ON introduces one wait state per machine cycle; the OFF position introduces no wait states. When used in a Cromemco system with a ZPU running at 4 MHz , position the switch ON . The switch may be left OFF when operating at 2 MHz .

The A 15 switch memory maps the 32 K BYTESAVER board in the lower 32 K half of the memory address space ($0000 \mathrm{H}-7 \mathrm{FFFH}$) when in the OFF position ($\mathrm{A} 15=0$), and memory maps the board in the upper 32 K half of memory address space ($8000 \mathrm{H}-\mathrm{FFFFH}$) when in the ON position (A15=1).

The DMA ENABLE/DISABLE switch enables DMA OVERRIDE when ON and disables DMA OVERRIDE when OFF. For normal direct 64 K DMA addressing, position the switch OFF. When performing DMA with memory banks enabled, turn

原
the switch ON. The DMA IN/OUT switch is active only when DMA OVERRIDE is enabled. With DMA OVERRIDE enabled, the 32 K BYTESAVER will respond directly to a DMA in the board's 16 -bit address range by board enabling if DMA is $I N$, and by board disabling if DMA is OUT, regardless of current active memory bank status at the time. This feature effectively permits the user to define one board out of several stacked in different memory banks as the DMA board (the one with DMA IN), and the boards in other memory banks as non-DMA boards (the ones with DMA OUT).

PROGRAM ENABLE Switches

The sixteen PROGRAM ENABLE switches individually enable and disable programming sockets ROM0 thru ROM15. An ON switch enables programming; an OFF switch inhibits programming. These switches may be alternately viewed as MEMORY PROTECT switches, preventing any memory write operations when in the OFF position.

To enable and disable socket programming, associate the board socket numbers (ROM0ROM15) with the numerals printed above the two switch DIPs on the p.c. board (15 to the far left, 0 to the far right).

BANK SELECT Switches

The eight BANK SELECT switches map the 32 K BYTESAVER into any combination of eight possible 64 K byte memory banks (bank \emptyset - bank 7). Setting a BANK SELECT switch ON logically places the board in the correspondingly numbered memory bank; an OFF switch logically removes the board from a bank. Again, associate the bank number with the numerals printed above the BANK SELECT switches on the p.c. board, not the numerals on the DIP proper.

SHADOW ROM Switches

Each SHADOW ROM switch controls two ROM sockets (the rightmost controls ROMD and ROM1, the leftmost controls ROM14 and ROM15) by placing both sockets in the memory map when the switch is OFF, and by removing both sockets ("floating" the board when either socket is addressed) from the memory map when ON. Placing a SHADOW ROM switch ON effectively creates a 4K-byte "hole" in the 32K BYTESAVER address space, into which another memory module may be mapped.

Example 1

Suppose you have a $4 \mathrm{MHz} Z P U$ and you want your 32 K BYTESAVER to reside in the upper 32 K of memory．As a standard practice，you decide to program 2716 PROMs in socket ROMD only； there are no other boards in the upper 32 K of mem．
ory，so multiple memory banks are not required． Then，for memory read operation，the switch set－ tings would be as shown in Figure 3.

To program a PROM in socket ROMO，all switch settings remain the same except the PROGRAM POWER switch which must be turned ON．

Figure 3－Example 1 Switch Settings

The following example uses all of the 32 K BYTESAVER special features.

Example 2

Suppose you have a 2 MHz system and you want the board to reside in the lower 32 K of memory. The system has $4 K$ of RAM at overlapping addresses OOODH-OFFFH, so a 4 K "hole" must be created in the 32 K BYTESA VER memory map. You intend to
program four PROMs at a time in sockets ROM12ROM15 (programming 8 K blocks of source code to PROM) and a 16 K RAM card also resides in the lower 32 K of memory solely for DMA transfers (assume this card is assigned to memory bank 1).

You decide to assign the 32K BYTESAVER to memory bank 0 so it will be enabled on a system Power-On-Clear or RESET - see Section 2.6 for details. The appropriate 32 K BYTESAVER switch settings for memory read operations are then shown in Figure 4

Figure 4-Example 2 Switch Settings

All 32 K BYTESAVER special features and operational modes touched upon above are discussed in greater detail in the sections which immediately follow.

2.2 Addressing The 32K BYTESAVER

Addressing a byte on the 32 K BYTESAVER involves four levels of selection: choosing a memory bank, a memory board, an IC chip, and finally choosing the byte-on-chip.

Memory banks are addressed by the CPU outputting a control word to an integral OUTPUT

PORT $4 \emptyset \mathrm{H}$ contained on each 32 K BYTESAVER board. Board, chip and byte-on-chip are all decoded from the sixteen bit address sent out by the CPU on the S-100 bus.

Since the board capacity is 32 K bytes, board select is generated by the high order address line A15. There are sixteen ROM sockets, so the next four high order address lines A11-A14 are used to hardware generate chip enable (selecting ROM@ROM15), and the remaining eleven address lines $A \emptyset$ -A10 are used to address one-of-2,048 bytes on a 2716 PROM (see Figure 5).

Figure 5-32K BYTESAVER Addressing

2.3 Board SELECT/CHIP Select

S-100 bus address line A15 is hardware compared to switch A15 in the ADDR/CONTROL switch group. Switch A15 ON corresponds to address line A15=1 (address $8000 \mathrm{H}-\mathrm{FFFFH}$); switch A15 OFF corresponds to address line A15 $=\emptyset$ (addresses $0000 \mathrm{H}-7 \mathrm{FFFH}$). These two switch settings place the 32 K BYTESAVER in the upper or lower 32 K half of the 64 K address space, respectively.

Each ROM socket (ROM0-ROM15) spans a 2 K byte swath of memory. Address lines A11-A14 feed two one-of-eight decoders (IC6 and IC7 in the 32K BYTESAVER Schematic) to generate select signals for each ROM socket. The entire 64 K address space may then be spanned by two 32 K BYTESAVER
boards. Figure 6 illustrates such an arrangement along with the address range spanned by each ROM socket.

Example 3

Suppose you programmed two 2716 PROMs with Cromemco's Z-80 MONITOR and 3 K Control BASIC. The $Z-80$ MONITOR spans addresses EOOOH-E3FFH, and Control BASIC spans E400HEFFFFH. To load these programs, you would then place the two programmed PROMs in sockets ROM12 and ROM13 on a 32 K BYTESAVER assigned to 8000H-FFFFH with A15=1.

Figure 6-Two 32K BYTESAVERS Spanning The 64K Address Space

2.4 Shadowing ROM Socket Pairs

A 32 K BYTESAVER board spans one half of the CPU's 64 K direct addressing range. The eight SHADOW ROM switches allow the user to remove pairs of ROM sockets thereby creating 4 K -byte "holes" in the board's memory map which may then be "filled" with other memory modules. Each SHADOW ROM switch controls two vertically separated ROM sockets: the leftmost switch (number 1) controls the two leftmost sockets (ROM14 and ROM15): the rightmost switch (number 8) controls the two rightmost sockets (ROM0 and ROM1). Positioning a switch ON completely removes a socket pair from the memory map; an OFF switch leaves the socket pair in the map.

Example 4

Suppose you have a Cromemco Disc Operating System (CDOS) with 32 K of RAM spanning 0000 H -7FFFH, and a 32 K BYTESAVER assigned to
$8000 \mathrm{H}-\mathrm{FFFFH}$. The Cromemco Floppy Disc Controller board is factory shipped with the RDOS monitor program in ROM memory on the 4FDC board. The RDOS program spans addresses COOOH - C3FFH, so you SHADOW sockets ROM8 and ROM9, leaving a hole at $\mathrm{COOOH}-\mathrm{C} 7 \mathrm{FFH}$ which RDOS then partially fills.

Further assume you program one-half of a 2716 with Cromemco's $Z-80$ Monitor program (spanning EOODH-E3FFH), and you program four 2716s with your own $8 K$-byte development system.

The required switch settings and the resulting memory map are shown in Figure 7. \square

Carefully note that two empty ROM sockets are not equivalent to SHADOWING the same two sockets. The 32 K BYTESAVER will memory read data ØFFH from an unSHADOWED empty ROM socket, and as a result will actively drive all eight S-100 data bus lines DI0-DI7 high. The 32K BYTESAVER tristates its DI output lines when SHADOWED sockets are addressed, whether they are empty or not.

Figure 7-Example 4 Switch Settings And Memory Banks

SOCRE		CONTENTS	ADOR
AOM 15		EMPTY	FFFF
		EMPT	F800
HOM 14		EMPT	
FOM :		EMPTY	F000
		EMPT	EHOO
HOM 12		USER DEFINED	
		Z. 80 MONITOR	E000
ROM 11		EMPTY	
ROM 10	10	EMPTY	0000
RCOM	9	FLOATING	
			C800
Rove 6		O*	
RCM	7	EMPTY	c000
A0, 4	6	EMPT	8800
ROM	5	Espl ${ }^{\text {r }}$	B000
			4800
FOM	4	EMPT	
ROA	3	E* BrTES	4000
H(M)	2	or	9800
सOM	I	DEVELCPMENT	
			e800
H-N		SOFTEARE:	

2.5 Memory Banks

BANK SELECT is an optional board feature which effectively allows memory expansion beyond the CPU's 64 K direct addressing range. This feature may be completely disabled by switch selecting BANK DISABLE in the ADDR/CONTROL switch group. When this is done, the eight BANK SELECT switch settings become irrelevant. In this mode the 32 K BYTESAVER exists only in the upper or lower half of the CPU's 64 K direct addressing range for memory read, PROM programming or DMA operations.

To enable memory banks, switch select BANK ENABLE in the ADDR/CONTROL switch group. When this is done, the 32 K BYTESAVER is logically placed in one or more 64 K -byte memory banks with the eight BANK SELECT switches, and bank addressing is software controlled by executing the OUT $(40 \mathrm{H}), \mathrm{A}$ (or equivalent) $\mathrm{Z}-80$ instruction.

Memory may be stacked up to eight banks deep (see Figure 8). Positioning one or more BANK SELECT switches ON places a 32 K BYTESAVER in each corresponding memory bank. On the other hand, positioning all switches OFF completely re-

Figure 8-The Memory Map With Multiple Memory Banks

moves the board from the memory map (except possibly for DMA transfers - see Section 2.7).

As stated above, memory banks are activated and deactivated under software control. Each 32 K BYTESAVER contains an integral OUTPUT PORT 40 H which latches the bits of the control byte output to it by the CPU. Each set bit (logic 1) enables its corresponding memory bank, and each reset bit (logic \emptyset) disables its bank. Control byte bit 7 (MSB) controls memory bank 7 , bit 6 controls memory bank 6, etc.

If the 32 K BYTESAVER is switch mapped into any of the banks activated by the control byte (logical OR), the board responds when addressed and thus is placed "in" the memory map. When this condition occurs, the green LED indicator lights. Conversely, if the 32 K BYTESAVER is switch mapped into no bank activated by the output control byte, the board will not respond when addressed and thus is "out" of the memory map. When a control byte inactivates the board, the green LED indicator goes out, and more specifically, the board responds by tri-stating (floating) all of its output

Figure 9-Example 5 Switch Settings

lines. This behavior allows two or more memory boards with BANK SELECT to occupy the same or overlapping 16 -bit address space but in different memory banks, provided only one board is memory active at a time, and all other boards are inactive. Memory bank conflicts may result if:
a) Two or more address overlapping memory boards are switch assigned to the same memory bank, or
b) Two or more 16 -bit address overlapping memory boards assigned to disjoint memory
banks are simultaneously activated by the same control byte.

Example 5

Suppose two $32 K$ BYTESAVERs are both mapped into the upper $32 K$ of memory ($A 15=1$), and their memory bank switches are set as shown in Figure 9. The resulting memory map is then shown in Figure 10.

Figure 10-Example 5 Memory Map

To continue the same example, the sample programs below illustrate how to memory bank enable and disable the two boards.

* Executing the instructions below activates memory banks 2 and 3, and de-activates all other memory banks. The instructions then place both board A and board B in inactive memory banks (both boards inaccessible).

* Executing the instructions below simultaneously activates both boards A and B, and thus is illegal.

* Executing the instructions below places board A in an active memory bank, and board B in an inactive memory bank (board A available for memory read, PROM programming and DMA transfers; board B inaccessible).

* Executing the instructions below places board A in an inactive memory bank and board B in an active memory bank (board A inaccessible; board B available for memory read, PROM programming and DMA transfers).

2.6 Select BANK ø On RESET Or POWER-ON-CLEAR

When system power is first applied, or after a subsequent system RESET, the 32 K BYTESAVER will respond in one of two different ways. If BANK SELECT is DISABLED, the board will remain "in" the memory map in the CPU's 64 K -byte direct addressing range.

If BANK SELECT is ENABLED, memory bank \emptyset is automatically hardware activated by a system RESET or a power-on-clear (POC), and banks 1 through 7 are de-activated. Thus, a RESET or a POC to the boards in Example 5 would activate board A, and de-activate board B.

2.7 Direct Memory Access

A device may request direct memory access to the 32 K BYTESAVER by asserting the $\mathrm{S}-100$ bus line pHOLD low. The CPU grants the request by driving line pHLDA (hold acknowledge) high. When control line pHLDA is high, the device then may directly drive the $\mathrm{S}-100$ bus address lines and control lines (which are tri-stated during DMA transfers
when pHLDA is high), and use the data bus lines for reading or writing without CPU intervention. The device may then transfer data at a rate limited only by the memory access time.

The general features of a DMA transfer are then:

- Fast asynchronous read or write access to memory.
- The DMA device should not be responsible for many overhead tasks (such as memory bank switching) to keep the memory access as quick as possible.
- The access is direct - no CPU intervention to slow the transfer.
- The DMA device must be capable of controlling and driving the tri-stated address, data and control busses.

In line with this general philosophy, the 32 K BYTESAVER's DMA response behavior is controlled by two switches in the ADDR/CONTROL switch group; DMA OVERRIDE and DMA IN/OUT. There are four possible switch setting combinations; each is tabulated and discussed below.

Table 1		
DMA OVERRIDE SWITCH	DMA IN/OUT SWITCH	32K BYTESAVER RESPONSE
DISABLED	IN or OUT	Board enables when correctly addressed for either DMA or non-DMA transfers.
ENABLED	OUT	Board enables when correctly addressed for non-DMA transfers (normal operation); board disables during any system DMA transfer.
ENABLED	IN	Board enables when correctly addressed for non-DMA transfers; board enables when the DMA device addresses the board's assigned 32 K block of memory, regardless of which banks were active before the DMA request.

The first table entry indicates the board behav－ ior with DMA OVERRIDE DISABLED（note that in this case the DMA IN／OUT switch setting is irrele－ vant）．Here，the key phrase is＂correctly addressed＂； the 32 K BYTESAVER will respond for memory read，write（PROM programming）or DMA transfers only when it is in an active memory bank（if mul－ tiple memory banks are enabled），and the $\mathrm{S}-10 \emptyset$ bus address falls within the board＇s assigned 32 K block
of memory．The board in effect does not differen－ tiate between a DMA data transfer and a normal read／write cycle in any way．

The 32 K BYTESAVER does differentiate be－ tween DMA and non－DMA transfers with DMA OVERRIDE ENABLED，as shown in the last two table entries．A typical application demonstrating how DMA OVERRIDE works is shown in Figure 11.

Figure 11－DMA OVERRIDE Example Configuration

Here, two 32 K BYTESAVERs are assigned to the same 16 -bit address space with the A15 switch. Board A is assigned to memory bank \emptyset, and board B to memory bank 1 lany other Cromemco memory boards with BANK SELECT and DMA OVERRIDE could also be used in the example). For non-DMA transfers, both boards are available for read/write operations when correctly addressed (board A is in memory bank \emptyset at 8000 H - FFFFH and board B is in memory bank 1 at 8000 H - FFFFH).

When the CPU grants an asynchronous DMA request by driving the pHLDA line high, board A automatically disables and board B enables when the S-100 bus address is in the range 8000 H -

FFFFH, regardless of which board was in an active memory bank before the request.

Thus, the DMA OVERRIDE feature is seen as a means of overriding logical memory bank boundaries during a DMA transfer. This provides a fast way of vectoring the DMA device to the DMA board (the one with DMA (N) and disabling all non-DMA boards (the ones with DMA OUT) without burdening the DMA device with any overhead memory bank switching responsibilities.

It should be noted that after the DMA transfer is completed, both 32 K BYTESAVERs revert back to the same memory bank status which existed before the DMA transfer.

PROM Programming Instructions

The 2716 is a 16,384 -bit, ultraviolet light erasable and electrically programmable read-only memory chip. The chip is erased, thereby forcing all bits to the logic 1 state, by exposing the chip's transparent quartz window to intense ultraviolet radiation. Consult the 2716 manufacturer's literature for detailed erasure procedures.

The 2716 is programmed one byte at a time. The bytes may be programmed individually, sequentially, or in random order (contrasting with earlier EPROMs which must be programmed sequentially). The bits in a byte are programmed by selectively changing logic 1 (erased) bits to the logic \emptyset state. Note that bits may not be programmatically changed from the logic \emptyset back to the logic 1 state only complete EPROM erasure can force this transition.

To program a 2716 , insert a 2716 into a 32 K BYTESAVER socket with the system power OFF, turn ON the PROGRAM POWER switch and PROGRAM ENABLE the ROM socket (never insert or remove the board or board parts while system power is ON). The 32 K BYTESAVER hardware then permits you to program a 2716 byte by merely performing a memory write to the target location (or by executing any one of several Cromemco system commands described in the following sections). The 32 K BYTESAVER senses the memory write cycle, forces the CPU to an idle state via the pRDY line until byte programming is complete, properly drives the 2716 with the target address and the program data byte, then applies a digitally timed PROGRAM PULSE. Programming one byte takes approximately 50 msec , thus the entire 2716 may be programmed in approximately $2,048 \times 50 \mathrm{msec}$ or about 100 seconds.

Specific 2716 programming examples appear in the next three sections. Section 3.1 illustrates how to program 2716s using Cromemco's RDOS and Z-80 MONITOR system commands, Section 3.2 discusses programming using 3 K Control BASIC, and Section 3.3 deals with programming 2716s from Z. 80 Assembly Language code.

3.1 Programming From RDOS Or Z-80 MONITOR

The 2716 bytes may be programmed individually, sequentially or in random order as mentioned above. Thus, the 2716 may be properly thought of as a true read(fast)/write(slow) memory chip, provided a write cycle never attempts to change a logic 0 bit to logic 1 bit. All system commands which move, substitute or display memory may then be used to program and verify 2716 s. System commands which memory read the 2716 (e.g., display memory) will be executed at full system speed, but the system commands which memory write to the 2716 (e.g., move memory) will slow significantly since a write cycle to the 2716 takes approximately 50 msec instead of 750 nsec (with a 4 MHz clock).

It is assumed that a reader of this section is familiar with either Cromemco's RDOS or Z-8Ø MONITOR programs. In both examples which follow, it is also assumed that:
a) An erased 2716 has been inserted in socket ROM15 on a 32 K BYTESAVER which has been mapped into the upper 32 K of memory ($\mathrm{A} 15=1$), thus the erased 2716 spans addresses F8ø@H - FFFFFH.
b) The PROGRAM POWER switch has been positioned ON.
c) Socket ROM15 has been PROGRAM EN. ABLED.
d) The user is in either RDOS or $Z-80$ MONITOR and has just been prompted for a new command.

Example 6

To program the entire 2716 with source code residing at $400 \mathrm{H}-$ DBFFH, you would issue the move memory command:

```
M400 BFF F8OD<CR>
or
M 400 S800 F800<CR>
```

where $\langle C R\rangle$ stands for pressing the RETURN key.

Any discrepancies between the source code and the programmed 2716 will be printed out. If there are discrepancies, you should again turn ON the PROGRAM POWER switch, and re-program the 2716 with the move memory command as shown above, or use the substitute memory command illustrated in the next example.

Example 7

Assume you want to program 2716 addresses $F C 00 \mathrm{H}, F \mathrm{FD} 1 \mathrm{H}, F C D 2 \mathrm{H}$ and $\mathrm{FCD3H}$ with data bytes $B 8 H, B 9 H, B A H$ and $B B H$ respectively. Since the 2716 is assumed erased, the current contents of each of these locations is FFH. This task is most easily accomplished using the substitute memory command as illustrated below. In this example, the characters you type are underlined.

SM FCOD<CR>
 FCDO: FF.B8 FF.B9 FF. BA FF.BB FF. $\langle\underline{C R}>$

If you then wanted to verify that the four bytes properly programmed the 2716, you would issue a display memory command:

$$
\begin{aligned}
& \text { DM FCOO FCD }\langle C R> \\
& \text { or } \\
& \text { DM FCOO S4 }\langle C R>
\end{aligned}
$$

and the response should be:
FCDD: B8 B9 BA BB
The $Z .80$ MONITOR program supports a PROGRAM command which is designed to program 2708-type EPROMs (RDOS does not support this command). While in principle the command will program 2716s, in practice it will take hours to execute due to the large number of passes required to program the 2708.

3.2 Programming from 3K Control BASIC

3 K Control BASIC (CB) program text may be stored in 2716 PROM for subsequent loading and execution by issuing the SAVE command. The SAVE command is normally used for moving the CB program text area to RAM memory, but since the 2716 is functionally equivalent to a read(fast)/ write(slow) RAM, the SAVE command may also be used to program 2716 PROMs.

To SAVE a CB program in a 2716 PROM:
a) Determine the length of the CB program text using the CB SIZE function value.
b) PROGRAM ENABLE sockets containing erased 2716 PROMs.
c) Turn the PROGRAM POWER switch ON.
d) Issue a SAVE ppp command where "ppp" is the 2716 PROM starting "page" address.
e) After receiving a $C B$ message indicating successful programming, turn the PROGRAM POWER switch OFF.

3 K Control BASIC logically partitions memory into "pages", where 1 page $=256$ bytes. Pages \emptyset and $1(0000 \mathrm{H}-01 \mathrm{FFH})$ are not used by CB; pages 2 and $3(0200 \mathrm{H}-03 \mathrm{FFH})$ are used for variables, the input buffer and the stack; pages 4 thru $31(0400 \mathrm{H}$ 1FFFH) are normally used for CB program text and arrays; and pages 32 on (2000 H - end of user RAM) are normally used to save CB program files (see Figure 12).

The SAVE ppp command is used to store the CB program text as a file for later execution, and the LOAD ppp command brings the SAVEd file back into the text area for editing.

The page number arguments of the SAVE, RUN and LOAD commands are specified in decimal. For the SAVE command, the page argument is the starting address of an erased 2716 PROM. Sufficient erased PROM should start at this address to contain all of the CB program text. If the CB text does not fill more than 7 pages of an 8 page capacity 2 K -byte 2716, the unprogrammed 2716 pages may be filled later with CB program text or other data.

To determine the CB program text length, first clear the text area with the NEW command, then execute the CB program shown below which evaluates and outputs the SIZE function value. The SIZE function evaluates to the number of bytes allocated to, but left unused, by the CB program text.

```
>1 PRINT SIZE
>2 STOP
>RUN
    7142
```

The output (7,142 decimal in this example) gives the size of the unfilled CB text buffer. This number should be recorded for later reference. The

Figure 12-Control BASIC Memory Map

size of the unfilled test buffer may be changed using the LOCK ppp command (see Cromemco's 3 K Control BASIC Instruction Manual).

To determine the length of any CB program, load the same two statements at the beginning of your program (leave line numbers 1 and 2 free for this purpose), then RUN the combined program resulting in an output like that shown below:

```
>RUN
    5938
```

The program text length is the difference of these two numbers, or, $7142-5938=1204$ bytes $=4.7$ pages. A 4.7 page program will then occupy 5 of the 2716's 8 page capacity, leaving 3 pages free for other CB program text.

Example 8

Suppose you wanted to store a 2,500 (decimal) byte CB program in 2716 PROM. Since 2,500 bytes $=9.8$ pages, two 2716 PROMs are needed to store the text. Assume two erased PROMs occupy PROGRAM ENABLE sockets ROM14 and ROM15 on a $32 K$ BYTESAVER assigned to the upper 32 K of memory $(A 15=1)$. The PROMs then reside at FØØØH - FFFFH, or pages 240-255 decimal. You decide to place the CB program "towards the front" of the PROMs on pages 240-249, leaving the last six pages 250-255 free for later programming.

You would then turn the PROGRAM POWER switch ON, and issue the command:

$>S A V E 240$

The programming time is approximately 13 seconds/ page, so after about 130 seconds, you would see the message:
SAVED ON PAGE \%FD TO \%FG

OK

$>$
if the programmed PROMs verified correctly, or
SORRY
OK
$>$
if they did not. If the PROMs do not verify, you
may try to re-program them with another SAVE 240 command without damage to the devices, or erase them and try again. Turn OFF the PROGRAM POWER switch after programming.

Assume now you move the two PROMs to 32 K BYTESAVER sockets ROMO and ROM1 18000 H 8FFFH or pages 128 - 143) for running. Sockets ROMD and ROM1 should be PROGRAM DIS$A B L E D$ to prevent inadvertent re-programming. To run the program, issue the command:
>RUN 128
Or, to bring the program into the text area for editing, type:

$$
>\angle O A D 128
$$

3 K Control BASIC also supports a 2708 -type PROM programming command - EPROM ppp. While in principle this command will also program 2716 devices, in practice it should not be used since it would take hours to execute.

3.3 Programming From Z-80 Assembly Code

Moving individual bytes or blocks of system memory to 2716 EPROM is most easily accomplished using RDOS or Z-8Ø MONITOR commands (see section 3.1), but there may be instances where it is desirable to program 2716s during the execution of your own $\mathrm{Z} .8 \emptyset$ assembly language program. This section discusses a relocatable $\mathrm{Z}-8 \emptyset$ assembly language example program which may easily be modified to meet your specific requirements.

Example 9

Assume you want to program and verify a 2716 with source code located in system memory at $1000 \mathrm{H}-13 \mathrm{FFH}$. This represents 1 K -bytes of data, and you decide to load the data in the upper half of a 2716 residing in socket ROM15 on a 32 K BYTESAVER assigned to the upper 32 K of memory. Thus, the 2716 resides at F 800 H - FFFFH, and the source code will program the upper half of this region, or FCDDH - FFFFH. The program is written as a subroutine which is called with the source code starting address in HL , the number of source code bytes in BC and the EPROM starting address in DE. The subroutine returns with $(A)=00 \mathrm{H}$ indicating successful verification; $(A)=F F H$ if not.

Main Program

MAIN PROGRAM

This sample main program CALLs subroutine PGM2716 which does the 2716 PROM programming．

	（1000）	SOURCE：	EQU	1090H	；SOURCE CODE START ADDR
	（03FF）	SWATH：	EQU	3 FFH	；LENGTH OF SOURCE CODE
	（FCD®）	EPROM：	EQU	ØFCØ0H	；EPROM PROGRAMMING START
Øロのロ	210010	MAIN：	LD	HL，SOURCE	；LOAD SOURCE START ADDR
9003	＠1FFg3		LD	BC，SWA TH	；LOAD SOURCE LENGTH
ロ006	1100 FC		LD	DE，EPROM	；LOAD PROGRAM START ADDR
0009	CDOD＠		CALL	PGM2716	；PROGRAM THE PROM
ØロロС	76		HALT		；END OF SAMPLE MAIN

Subroutine PGM2716

SUBROUTINE PGM2716

This subroutine programs 2716 EPROMs occupying PROGRAM ENABLED sockets on a Cromemco 32 K BYTESAVER memory board． Switch the PROGRAM POWER switch ON before running program， turn it OFF after execution．

CALL subroutine with：（HL）＝source code starting address
（BC）＝source code length
；RETURNS with：
（DE）$=$ EPROM programming start address
；
；
の日0D
C5
ロの日E
EDB \emptyset
PGM2716：
$(A)=\emptyset 0 H$ if successful verification
（A）$=$ FFH if any byte does not verify
（ $B C$ ），（DE）and（HL）changed

0010
Cl
PUSH
LDIR
0011
2B
Ø012 1B VERIFY：
0013 1A
0014 EDA9
0016 E21E0ロ
0019 28F7
Øø1B 3EFF
Ø日1D C9
ØøIE ЗEø日
ø020 C9
POP BC
DEC HL
BC ；SAVE SWATH ON STACK
；BLOCK MOVE SOURCE TO EPROM
；RESTORE SWATH TO BC
；ADDR LAST SOURCE BYTE
；ADDR LAST EPROM BYTE ；EPROM BYTE TO ACC． ；COMPARE（A）TO（HL） ；THRU VERIFY IF $(B C)=\emptyset \emptyset H$ ；NOT THRU：NEXT BYTE ；ERROR：LOAD（A）WITH ；ØFFH AND RETURN
；SUCCESS：LOAD（A）WITH ；ØOH AND RETURN

The sample program consists of a main segment which CALLs the EPROM programming subroutine． Your main program must define register values（BC）． （DE）and（HL）before calling PGM2716．For simpli－ city，the main and subroutine programs are assem－ bled with a 0000 H starting address．The code may
be re－located anywhere else in memory provided the absolute jump instruction＂JP PO，EXIT＂is re－ assembled to point to the new EXIT point．It is the user＇s responsibility to test Reg．A for a successful verification after the RETURN and take the appro－ priate action．
-

Theory of Operation

This section gives a summary discussion of the 32 K BYTESAVER at the component level. The user may find the discussion useful for troubleshooting the board, or just for gaining a fuller understanding of the board's features. The discussion is functionally divided into five categories: power supplies, addressing, memory read cycles, memory write cycles and DMA cycles.

4.1 Power Supplies

There are four major power supply lines on the 32 K BYTESAVER; two regulated +5 volt lines, an unregulated +18 volt line, and a Zener regulated +26 volt line.

The +5 volt lines are derived from the $\mathrm{S}-100$ bus unregulated +8 volt line with two 7805 IC voltage regulators. Each +5 volt line drives approximately one-half of the board loads. The unregulated +18 volt line is dc to dc converted to +26 volts by relaxation oscillator Q1 thru Q5, T1 and associated circuitry. The converter is turned ON and OFF by the PROGRAM POWER switch, which also controls the red LED indicator. The +26 volt line is used to supply the 2716 programming voltage.

If +26 volts is not present across C3 when the PROGRAM POWER switch is ON, check the collector of Q 1 for a \emptyset volt/ +17 volt square wave running at between $1 \emptyset \emptyset$ and $2 \emptyset \emptyset \mathrm{KHz}$. If no switching voltage is present, check Q1. If Q1 is good, then check the other converter components $02-05$, D5 (a 25 volt 3\% Zener diode), D6 and T1 for opens or shorts.

4.2 Addressing

High order address line A15 is compared to switch A15 in the ADDR/CONTROL group at [IC21 pins 9 and 10]. The comparison output is logically ANDed with S-100 bus signals and board signal [IC16 pin 8] to yield the important node signal BOARD ENABLE which logically equals the following Boolean expression:

$$
\begin{aligned}
& \text { BOARD ENABLE }=(\mathrm{A} 15=\text { switch } \text { A } 15) \text { AND } \\
& \text { (sINTA) AND (sOUT) AND (sINP) AND } \\
& \text { (sIMEMR DISABLE) AND (IC16 PIN 8) AND } \\
& \text { (sWO OR PROGRAM POWER) AND (THE } \\
& \text { ADDRESSED ROM NOT SHADOWED). }
\end{aligned}
$$

The board will be enabled when the logic expression above is true, or evaluates to logic 1. The line [IC16 pin 8] will be low when the board is in an active memory bank, or has DMA IN during a DMA cycle.

Address lines A11-A14 feed two one-of-eight decoders IC6 and IC7 which generate chip select signals for each of the sixteen ROM sockets. Buffered address lines A 0 - A9 parallel feed all 2716s to finally select the byte-on-chip.

Negative true chip select signals from IC6 and IC7 are logically ANDed by pairs (IC5 and IC8), and the SHADOW ROM switches parallel connect all of these ANDed outputs to node BOARD ENABLE. If either of the socket pair is chip selected with a low level from IC6 or IC7, the AND output will go low; and if the corresponding SHADOW ROM switch is closed (ON), BOARD ENABLE will go low thus disabling the board.

The board is mapped into an active or inactive memory bank by outputting a control word to output port 40 H . Port address 40 H is decoded from address lines A \emptyset - A7 by the wire-ORed 7405's IC13 and IC19. These outputs are logically ANDed with control signals sOUT, pWR and switch BANK ENABLE to yield node signal BANK SELECT EN$\mathrm{ABLE}=$ (sOUT) AND (pWR) AND (BANK EN. $A B L E)$ AND ($A \emptyset-A 7=40 \mathrm{H})$. A high BANK SELECT ENABLE strobes the D-type flip flop [IC15 pin 3] (it is also strobed on a Power-On-Clear and a system RESET), and if the D-input at [IC15 pin 2] is low, the board is mapped into an active memory bank and the green LED indicator lights. If the D-input is high when strobed, the board is mapped into an inactive memory bank and the LED goes out.

The bits of the control byte output to port 40 H are inverted by IC14 and IC18, and those bits select-
ed with the BANK SELECT switches are logically ANDed to drive the D-input of [IC15 pin 2]. Any logic 1 control bit output to port 40 H which is switch connected to [IC14 pin 11] will then place the board in an active memory bank.

4.3 Memory Read Cycles

The CPU begins a memory read cycle by placing the memory address on the S-100 address bus A A15 and by asserting the sMEMR control line high. After sampling the pRDY line to ascertain whether the memory is ready to supply the data byte, the CPU strobes the data from the data in bus DIO DI7 with a momentary high transition on the pDBIN line if memory is ready, or the CPU re-samples the pRDY line one clock cycle later if memory is not ready.

If no wait states are selected with the WAIT switch in the ADDR/CONTROL group, the pRDY line to the CPU stays high; if one wait state is selected with the switch, flip flop output [IC15 pin 8] goes low during pSYNC at the beginning of the read cycle (forcing pRDY $=$ low), then goes high again one machine cycle later when pSYNC = low.

When the CPU asserts pDPIN high to strobe the read data from the DI bus, this signal is logically ANDed with BOARD ENABLE to yield signal READ ENABLE $=(\mathrm{pDBIN})$ AND (BOARD ENABLE). READ ENABLE in turn enables tri-state drivers IC27 which place the 2716 data byte onto the DI bus.

4.4 Memory Write Cycles

The CPU begins a memory write cycle to the 32 K BYTESAVER by first placing the byte address on the S-1 $1 \emptyset$ address bus A 0 - A15 and asserting control signals sWO low and MEM WRITE high. The CPU then places the data byte on the data out bus DO0 - DO7, asserts the pWR line low and samples the pRDY line. If the pRDY line is low indicating memory has not latched the data byte, the CPU waits an integral number of clock cycles with stable address, data and control signals until the pRDY line again goes high. After the pRDY line is sampled high, program execution resumes.

The coincidence of MEM WRITE and BOARD ENABLE clears PROGRAM PULSE counters IC28 and IC29. These dual 4 -bit counters are then driven by the 2 MHz CLOCK line, and they, along with
one-of-ten decoder IC3Ø and D-type flip flop IC31 generate a digitally counted 50 msec PROGRAM PULSE which feeds the 2716 PROG input during programming operations. The coincidence of MEM WRITE and BOARD ENABLE also enables tri-state drivers IC2 0 placing the contents of the data out bus DOØ - DO7 at the 2716 output pins DØ - D7. While the data byte drives the 2716 data lines and the 50 msec PROGRAM PULSE is high, the pRDY line is held low (thus forcing the CPU to wait) until the byte is completely programmed. During this time, the PROGRAM POWER switch should be ON forcing +26 volts at the $2716 \mathrm{~V}(\mathrm{pp})$ input rather than the memory read +5 volt level.

The PROGRAM ENABLE switches selectively enable or disable the PROGRAM PULSE to each ROM socket. A closed (ON) switch enables the PROGRAM PULSE to its socket; an open (OFF) switch holds the 2716 PROG input at logic \emptyset thus inhibiting PROM programming.

4.5 DMA Cycles

The CPU acknowledges a DMA request by asserting the pHLDA line high. The system address, data out and control busses are then tri-stated allowing the DMA device to control these lines. The pHLDA signal to the 32 K BYTESAVER is logically gated with switch settings DMA OVERRIDE ENABLE/DISABLE and DMA IN/OUT resulting in signal [IC16 pin 8] which ultimately either enables or disables the board thru node signal BOARD ENABLE. To enable the board, [IC16 pin 8] must be low. The table below shows the relationship among the DMA switches and signal [IC16 pin 8]. In the table, " Q " is output [IC15 pin 5] which is low when the board exists in an active memory bank (when the green LED is lit).

Table 2		
DMA OVERRIDE	DMA IN/OUT	IC16 PIN 8 A LOw ENABLE THE BOARD
DISABLED (OFF)	OUT (ON)	0
DISABLED (OFF)	IN (OFF)	Q
ENABLED (ON)	OUT (ON) ENABLED (ON) (pHLDA) OR (Q) IN (OFF)	
(pHLDA) AND (Q)		

From the table it is seen that when DMA OVER RIDE is disabled, the board must be placed in an active memory bank to be accessible, and the DMA IN/OUT switch setting is irrelevant. When DMA OVERRIDE is ENABLED, a DMA cycle will disable the board if DMA is OUT (since pHLDA is
high); a DMA cycle will enable the board if DMA is IN regardless of the Q output state (since pHLDA is low). Thus, with DMA OVERRIDE enabled, a board with DMA OUT disappears during DMA transfers, and a board with DMA IN is available across memory bank boundaries.

Assembly Instructions

If you purchased a 32 K BYTESAVER kit, you fill find assembly to be straight-forward provided you follow the instructions below.

Before beginning assembly, verify you have all kit parts by referring to the Parts List at the end of this manual. Please fill out and return the Missing Parts form to your authorized Cromemco dealer if any parts are damaged or missing.

5.1 Assembly Steps

All parts are inserted from the component side of the board (with the white printed legend), and all soldering is done from the opposite side.

Be sure to use a high quality rosin core solder (DO NOT USE ACID CORE SOLDER), and a fine tipped low-wattage (25 W or less) soldering iron.

The printed legend on the component side of the board shows the exact location and orientation of each component.

Check off each instruction when completed.
\square Solder in position all 1/4-watt resistors:

R1	$18 \emptyset$	BROWN-GREY-BROWN
R2	$18 \emptyset$	BROWN-GREY-BROWN
R3	47	YELLOW-VIOLET-BLACK
R4	100 K	BROWN-BLACK-YELLOW
R5	1 K	BROWN-BLACK-RED
R6	33 K	ORANGE-ORANGE-ORANGE
R7	560	GREEN-BLUE-BROWN
R8	$56 \emptyset$	GREEN-BLUE-BROWN
R9	1 K	BROWN-BLACK-RED
R1Ø	1 K	BROWN-BLACK-RED
R11	$56 \emptyset$	GREEN-BLUE-BROWN
R12	$56 \emptyset$	GREEN-BLUE-BROWN
R13	$1 \emptyset \emptyset K$	BROWN-BLACK-YELLOW
R14	1 K	BROWN-BLACK-RED
R15	$1 \emptyset K$	BROWN-BLACK-ORANGE

\square Solder in position forty-seven IC sockets.

Solder five SIP resistor networks RN1-RN5 in place. The arrow tips printed on the circuit board point to SIP pin 1; align arrows with numerals "1" printed on SIP packages.
\square Install polarized capacitors C3, C9, C10, C24 and C32. C3 has a 50 V rating; the others a $2 \emptyset \mathrm{~V}$ rating. WHEN INSTALLING THE POLARIZED CAPACITORS, MAKE CERTAIN THAT THE "+" END OF THE CAPACITOR IS ALIGNED WITH THE " + " PRINTED ON THE P.C. BOARD.

Install the remaining twenty-seven capacitors. Note that C4's value is . $\emptyset 1 \mu \mathrm{~F}$, not $.1 \mu \mathrm{~F}$.
\square Install inductor L1.
\square Install transformer T1.
\square Install transistors Q1 thru Q5. Align transistor flat sides with outline drawings.
\square Install light emitting diodes D1 and D2. Align LED flat sides with outline drawings. Bend the LED leads at right angles so that the LEDs face the top of the board when installed.

Install two 1N4148 diodes D3, D4 and D6, a 1 N 4150 . Align the bands on the diodes with the bands on the outline drawings. Install 1N5253 Zener diode D5 in the same way.
\square Install five 8 -pole DIP switches. The arrows on the switch packages indicating the ON position should point towards the top of the board.
\square Install the SPDT toggle switch.
\square Install the heatsink and voltage regulators IC32 and IC33. Position each regulator so the exposed metallic side makes contact with the heat sink. Make sure the regulator legs do NOT make contact with the metallic heat sink.

Install all ICs in their correct sockets (see Important Note below). The arrow tips printed on the circuit board point to IC pin 1 (see Figure 13).

Important Note

The most common assembly faults are bent under IC legs．To avoid this problem，first bend the IC legs to closely match the IC socket span．Then ＂rock＂the IC into its socket with a gentle end－to－ end pressure．Visually inspect the legs after insertion by looking beneath the device．

This completes the construction of the Cro－ memco 32 K BYTESAVER board．Carefully inspect your work before proceeding．Take particular care to see that there are no inadvertent solder bridges between pads and／or adjacent foil areas．It is a good practice to scrub the solder side of the board clean with a fluorocarbon solution to remove any fine metallic particles which may be imbedded in the rosin residue．

5．2 Power Line Testing

Follow the next procedure to verify that no short circuits exist between the board power lines， or between the power lines and ground．If testing in－ dicates a short circuit，the connection must be found and removed．

With the board disconnected from the S－100 bus，connect an ohmmeter，on the $\mathrm{R} \times 1$ or lowest full－scale setting，across C24．The exact resistance reading is not important（it depends heavily on the ohmmeter design），but it should be several ohms or greater．If the reading indicates zero or a fraction of an ohm，a short exists between the +8 volt line and ground．Remove the short and verify by re－testing． Reverse the ohmmeter leads and again verify a non－ zero ohm condition．

Test one +5 volt line as above by placing the ohmmeter leads across C9．Test the other +5 volt line across C10．Test the +26 volt line across C3．In each case，observe a non－zero ohm condition．

Now，place the ohmmeter between the＂＋＂end of polarized capacitor C24 and the＂＋＂end of C9； repeat with C24 and C10；repeat with C9 and C10． Verify a non－zero ohm condition in each case．

Follow the next procedure to verify that proper power supply voltages are present when the 32 K BYTESAVER is plugged into an S－100 bus slot．

First，turn the system power OFF．Install the 32 K BYTESAVER in an S－100 slot which permits access to the component side of the board with a

Figure 13－IC Pin 1 Position

VOM. NEVER insert or remove the board parts with the system power ON.

Turn the system power ON. The 32 K BYTESAVER switch settings are unimportant for this test. Carefully measure the voltage across C9 and verify 5.0 volts with the same polarity as capacitor C9. Carefully measure the voltage across C10 and
verify 5.0 volts with C10's polarity. Turn the PROGRAM POWER switch ON and carefully measure the voltage across C3. Verify between 25.0 and 26.5 volts with C3's polarity.

This completes the preliminary testing of the 32 K BYTESAVER board.

32K Bytesaver Parts List

Parts List

Miscellaneous	Part No．	Documentation	Part No．
P．C．BOARD L1 IND $22 \mu \mathrm{H}$ T1 XT8K XFMR 1－SPDT TOGGLE SW． 5－8 POLE DIP SW． 1－HEATSINK 4－SCREWS 6－32 4－NUTS 6－32 1－P．C．BOARD 24－IC SOCKETS 14 PIN 4－IC SOCKETS 16 PIN 3－IC SOCKETS 20 PIN 16－IC SOCKETS 24 PIN	$020-0004$ 007－0000 014－0001 013－0000 013－0002 021－0017 015－0006 015－0013 020－0004 017－0001 Ø17－0002 Ø17－0004 Ø17－Ø005	32K BYTESAVER INSTRUCTION MANUAL	023－0002

Parts Location Diagram

Switch Options-Quick Reference

Limited Warranty

Cromemco, Inc. warrants this 32K Bytesaver board against defects in materials and workmanship for a period of Ninety (90) days from the date of delivery to the customer. Cromemco, Inc. will replace or repair at its option this product should it prove to be defective due to defects in materials or workmanship during the warranty period, provided that this product is returned to Cromemco, Inc. postage or shipping prepaid and adequately packaged for shipment to insure against loss. If this product fails after the above Ninety (90) day warranty period, it will be repaired for a fixed prepaid service fee provided that this product is returned to Cromemco, Inc. postage or shipping prepaid and adequately packaged for shipment to insure against loss. Cromemco, Inc. reserves the right to refuse to repair any product that in the discretion of Cromemco. Inc. has been subjected to electrical or mechanical abuse or not handled with reasonable care. The service fee is currently $\$ 70$ and is subject to change without notice.

Cromemco, Inc. makes no further warranties either expressed or implied with respect to this product and its quality, performance, merchantability, or fitness for any particular use. In no event will Cromemco, Inc. be liable for direct, indirect, incidental or consequential damages resulting from any defect in this product even if Cromemco, Inc. has been advised of the possibility of such damages. Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation may not apply to some customers.

Cromemco" Tomorrow's Computers Today 290 BERNARDO AVE MOUNTAIN VIEW, CA 94043

