y—
System Support 1

USER MANUAL

N

IEEE 696 / S-100

¢ INTERRUPT CONTROLLERS ¢ INTERVAL TIMERS
e MATH PROCESSOR e RS232 SERIAL CHANNEL
* REAL TIME CLOCK/CALENDAR ¢ 4K RAM/ROM |

(ompuPro " (OREUE

mac 11/81

TABLE OF CONTENTS

A0W TO CONFIGURE YOUR SYSTEM SUPPORT
WITHOUT READING THE MANUAL
Other options and jumpers .+ + « +
Imporcant note about sSystem memory .

ABOUT SYSTEM SUPPORT L .« + « o 4 & &
Technical overview . « - + + + « o &

CONFIGURING THE SYSTEM SUPPORT 1 . .
Setting IfD address Y

Satting memory address = « « o & s e

Other memory options « « = o » + o
Disabling the memory + « o » o & o &
Global/extended address selection .
Phantom* Tesponse options . + « «
Battery back-up for CMOS RAM
Wait SEates « « + « v « v « v v +
Using higher spead 9511A or 9512 . .
Intertrupt jumpers and options . . .
Using a 9511 or 9512 with interrupts
Interval timer options « « « +» « .+ &
Configuring the serial channel . . .
Other miscellaneous hardware cptions
Connecting the battery . + « « » + »
Mounting the battery holder .« . .
Replacing the battery .« » + » « « &
I/O pOrt Map » « &+ « » « o 5 o o o

1IN UNDER 5 MINUTES,

L L T R S T)
a v & B & & & & » #

PROGRAMMING CONSIDERATIONS FOR THE SYSTEM SUPPORT 1 . . .

Power—up initializaction .+ « + + « &
Programming the serial channel . . .
UART initialization .+ « « « & « & &
Sample UART program .« « & « + » « &
Programming the real time clock - .
Clock programming sSequence » « « » «
Sample clock pProgram « « o « o & & o

Programming the interrupt controllers

a v o+ B & B & & & 4

Important note about using DDT to debug interrupts « « «
"INTEL 8259A Programmable Interrupt Controller™.
Initializiog the 82594 4 &« v 4 4 o o 4 v o & + o + u = & &
Routine for initializing master/slave 825945 + 4 & + & + &
Disabling the B2539As « 4 v v v v & « ¢ « ¢ & = 2 » & 2 o a

Programming the interval CimMer « v v « v « 5 o = o & & &

"INTEL 8253/8253-5 Programmable Interval Timer". . . .+ . .
Programming the 9511 or 9512 math procesSsor + « « « » o =

"INTEL 8231 Arithmetic Processing Unit"

L T N N

"INTEL 8232 Floating Point Processing Unit"

o LR

THEORY OF OPERATION '« o + o « s « s o » ¢ s « s s « s « » « 83
Address decode « + 5 o ¢ v s o4 2 o= oe % o o=

.
a
L}
(3
-
3
-
-
-
[+a]
(¥

ROM/RAM CATCUIETY + = & =« o « s o s « o « s = 5 o + » 2« « B4
Interrupt controllers .+ « = =« « = = & & » » = + & + s+ &+ + » 8B&
interval €iMer « o » o » « v o 5 s = u 5 & 6 & v s+ s s s o+ 8B
Serial channel + « o o & & & & & & » & 5 2« 5 & ¥ & v + v o+ o+ 86

Math CHIP » o o o o s « « » o s o s s » s ¢ « s o s s = » + 86
Reai-time clock/calendar « » o » o « s « 5 « s o +« o & o s & 87
Power=fail driver .+ « » « + o ¢ 4 o 2 » « 2 o o = « » o« » « 87
Walt State QENELALOT « « » « = « » 4 = ¢ s & « « » s o &+ + o« 87
DAata BUS « « = » » o o ¢ 2 o 4 s o o n s 4 o v 4 4 v e s s . B8

HARDWARE SECTION o o o o + « o o » o s o ¢ =« « » = + « v + 89
Parts 1isE o + ¢ & = » 5 5 % o % = » = 5w » & 2 » » v » = = » 89
Component layout « « s « a o o o o » o v o » « s o+ ¢ v + » 90
Logic diagram L L T T T T S S R S T S T 91

INDEX-n.uo-.u-ooo'tto-lol-IOGt-tO95

CUSTOMER SERVICE/LIMITED WARRANTY INFORMATION 96

DISCLAIMER
Godbout Electronics makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
. implied warranties of merchantability or fitmess for any
particular purpose. Further, Godbout Electronics reserves the
right to revise this publication and to make any changes from
time to time in the content hereof without obligation of Godbout
Electronics to notify any person of such revision or changes.

This document was proofread with the aid of SpellGuard TM
from ISA, Menlo Park, CA.

HOW TO CONFIGURE YOUR SYSTEM SUPPORT 1
IN UNDER 5 MIMIITES, WITHOUT READING THE MANUAL

This section is for those of you that can’t walt long enough to read the
manual to Eind cut if your System Support 1l board works. WE STRONGLY RECOMMEND

THAT YOU RELAX, AND READ THE MANUAL!!! 1If, after reading and following the
directions in this section, your board appears not to function, DON'T CALL!!!

READ THE MANUAL FIRST!L!

SWITCHES

DIP SWITCH 1 - is located near the right hand edge of the PC board and is used
to select the number of wait states, and various memory options.

Position Labeled How to Set It

1 W8 QFF

2 W OFF

3 w2 OFF :

[Wl ON if you have a 4 MHz or greater CPY,
otherwise, OFF.

5 RDI OFF if you are using the RAM/ROM,

.) ON otherwise.

6 XA ON if you are mot using extended
addressing, OFF otherwise.

7 PHD QN

8 PHE OFF

DIP SWITCH 2 - is iocated between U32 and U33 and is used to set the extended
address that the ROM/RAM responds to. If you are not using extended addressing
or the ROM/RAM then turn all switch positions of Dip Switech 2 OFF. Ocherwise
they are set according to the following table:

Position Address Bit
" a L] - L] L] L] * A23
A s 4w o+ s 4 o AZ2

e 4 s+ e 2 o« » o AZl ON="0"
« v s o+ s o« s o+ AZO

Al9
e e e e e e . . ALB OFF = "1"

0----_9--Ai7
s+ s s = s « » AlB

m."-.IO'\U'I-vaBNP—‘
-
.
-
.
»
-
+*
-

DIP SWITCH 3 - is located between U35 and U36 and is used to ser the address of
the 1/0 ports and the ROM/RAM. Positions 1 through 4 are used to set the
ROM/RAM address. If you are not using the ROM/RAM then turn positions 1 through
4 OFF. If you are using the ROM/RAM then they are set according to the
following table:

Position " Address Bit
L o « o » = = » » AlS -
2 o v v s o« & « » Ald oN = "o"
T A OFF = "L"
4 L . L] - L] L] L] * Alz

Pasitions 5 through 8 are used to set the address of the 1/0 ports. To set
them for the CompuPro standard (block of ports at 50 hex) then set the switches
as shown in the following table:

Position : How to Set It
5 4 4 w s+ v + s a s« ON

L] - L] - L] * L] * OFF

s s s v s = » « DN

L] - L] L] L] - L] L] - OFF

o o~y o

OTHER OFTIONS AND JUMPERS

Insert a dip shunt in locations J2 and J8. JZ is located at the top of the
board between the serial connector and U2. JB is located at the bottom left-
hand side of the board hetween U30 and U3l.

Connect the battery cable by plugging it onte J3 {which is located near the
top right-hand side of the board just to the right of the regulator). The
connector is pelarized but make sure the red wire is towards the lefc.

If you are using the System Sapport 1 with our CPU 8085/88 board or any
other 8085/8088/8086 type board, then install the shorting plug at jumper J13 so
that the pins labeled "8" and "C" are connected together (shorting plug will be
left of center}. .

If you are using the System Swpport 1 with our GPU Z or any other Z-80 or
8080 type CPU board (like an old IMSAT CPU), then install the shorting plug at
jumper J13 so that the pins labeled "Z" and "C" are connected together (shorting
plug will be right of center). :

J13 is located at the bottom right hand corner of the PC board.

IMPORTANT NOTE ABOUT SYSTEM MEMORY

When using the System Support 1 with its on-board interrupt controllers, and
you are using an 8080 or Z2-80 CPU, it is important that all your system memory
respond (become disabled) to the 5-100 PHANTOM* signal which is on bus pin 67.
Therefore you must configure all your system memory to respond to PHANTOM*.

ABOUT THE SYSTEM SUFPORT 1

Congratulations on your purchase of the System Support 1 board - a multi-
function module designed specifically for full electrical and mechanical
compatibility with the ILEEE 696/5-100 Bus standard. The 8~100 bus is the
professional level choice for commercial, Industrial and sciencific applica-
tions. This bus provides for ready expansion and modification as the state of
the art improves. We believe that this board, along with the rest of the
CompuPro family, is one of the best boards available for the S=100 Bus.

The System Support 1l board combines many of the most often desired “extras'
in an §-100 computer system. Most of these features don’t take up enough board
space to justify an entire board devoted to performing specifically that
function. For example, if every funection that is performed by the System
Support were put on a separate board, 1t would take up 7 slots! By integrating
all these functions inte one multi-function board, we have conserved slots,
power, and cost.

This board provides the system with scophisticated control of bus interrupts,
3 independent interval timers, a "real time" clock/calendar that provides BCD
hours/minutes/seconds /month/day/year with battery backup, a full R$-232 serial
channel which includes full handshaking, space for 4K of RAM or EPROM with
provision for battery back-up for 2K of CMOS RAM, provision for adding a high
performance math processor to increase system throughput, and generatiom of the
new S5-100 signal PWRFAIL*.

No other 5-100 board has been so packed with features at such a reasonable
cost as the System Support 1, and that makes 1t proud te be another member of
the CompuPro family.

Thank you for choosing a GompuPro product....welcome to the family of
satisfied computer users.

TECHNICAL OVERVIEW
The System Support l provides che system with the fellowing functions:

(1} Two sophisticaced LSI interrupt controllers. These handle the eight
vectored interrupts from the 5~100 Bus, as well as 7 interrupts generated on-
board. Thus, the on-board interrupt scurces do not use up any of the 5-100 bus
interrupt pins. The interrupt controllers provide sophisticated control of
interrupt’s priority, fully independant masking, and vectors to a service
routine table that may be located wvirtually anywhere in memory. The interrupt
controllers can function in an 8080/8085/Z-80 environment, as well as the
8088/86 environment.

{2) Three independent interval timers. These are 16 bit counters that can be
written to, read from, and can cause interrupts. They are clocked by a 2 MHz
source, but provision has been made to allow extermal cleck inputs, or the
counters may be cascaded for longer counts. A gate input is provided for sach
counter to allow timing of external events. The counters can operate in one of
six wodes: Interrupt on Terminal Count, Programmable One-Shot, Rate Genarator,
Square Wave Generator, Software Triggered Strobe and Hardware Triggered Strobe.

(3} A full RS5-232 serial channel. This serial channel provides features likes
Full modem and handshaking control lines, master/slave jumper options, fully
software programmable UART features such as parity, word length and baud rate,
and provision to run in an interrupt driven mode. The baud rates are erystal
controlled.

{4) A real time clock/calendar with battery back-up. Our real time clock keeps
"real time"; hours, minutes etc. Qur clock is not just an interrupt every few
milliseconds that requires processor overhead to actually keep track of the time
and date. {But you could use the interval timers to . do that!) Included are
features Iike 12 or 24 hour format, hour/minute/second /month/day/year/day-of-
week indication, individually accessible digits, BCD format, battery back-up
with' a battery life of wmore than one year, and crystal controlled time-base.

(5) Sockets for 4K of RAM or EPROM. You can use two 2716 type EPROMs or two of
the new "byte-wide" RAMs or one of each. Provision is made to power one of the
sockets from the clock battery if desired for use with the Hitachi 6116 CMOS RAM
chip. The power consumption from the battery is so low that the data will be
retained for over one year, and that includes running the clock. The memory
space is addressable on any 4K bouadary via a dip~switch, and may also respond
to the full 24 bits of IEEE extended addressing. The extended address is alsc
selectable by a dip-switch. The memory may also respond to the PHANTOM* signalj;
it may appear or disappear when PHANTOM* is asserted. The PHANTOM#* polarity is
selected by a dip~switch. The memory may be disabled with a dip-swicch.

(6} A socket for a 95114 or 9512 LSI math processor. This chip is not provided
with the standard board since the price/performance tradeoff may not be
justified in all systems. But 1f you really need the higher system throughput,
the chips are available from us, or you may add your own. In any case, the
capability for later expamsion is provided, should your need arise. Provision
has been made for either math chip, whichever you prefer. The math chip cam run
in an interrupt driven mode, which allows the math functions teo occur in
parallel with other processing on the bus. The math chips currently run ac 2
MHz, but provision has been made for am on-board crystal oscillator so that you
can use the faster versions of these chips. Buying a math processor all by
itself on a separate 5-100 board usually costs more than the price of an entire
System Support L.

(7) Implementation of the $-100 Bus Signal PWRFAIL*. This signal does not meet
the exact spec as defined by the new IEEE 696/5-100 Standard, but is asserted
well before the regulators drop out of regulation. This allows thousands of
instructions to be executed before the system crashes. Couple this with the
battery back-up RAM capability and now you have a useful power-fail system that
will allow you to recover in an orderly fashion. Provisjon is made on-board to
jumper the PWRFAIL* line to the NMI#* line.

(8) The System Support l takes up a block of 16 1/0 ports and is addressabhle on
any 16 port boundary. Provision is wmade to generate one, two, four or eight
wait states to insure operation with the fastest of processors. This board was
designed for full compliance with the IEEE 696/5-100 specifications to imsure
complete compatibility for today and the future.

For a more complete discussion of the actual implementation of these
features, refer to the Theory 0Of Qperation section o¢f this wanual.

By now you'can see that the System Support 1 is the perfect addition to any
$=100 system, but when coupled with one of our CPUs, can make a complete system
with just two boards! Many long hours of thought and revision went into this
product, and we at CompuPro are confident that it will provide years of solild
service., We sincerely hope that you will enjoy it.

"CONFIGURING THE SYSTEM SUPPORT 1

The System Support l cccupies a group of 16 1/0 ports, and 4K of memory
space, if the memory is to be used. The 1/0 ports can reside on any 16 port
boundary and the memory on any 4K byte boundary. Both addresses are set with
Switch 3.

Switch 3 is located in between U35 and U36 in the lower row of chips and is
marked "ROM/I/0 ADDR".

SEITING THE 1/0 ADDRESS

The I/0 address is set by Switch 3, positions 5 through 8. Each switch position
corresponds to a particular address bit:

SWITCH 3 Position

Soootoot.ﬁddrESSBit7
Position 6 .

7

8

s s+ 2+ = = « » Address Bit 6
+ v + = » « » » Address Bit 5
« = = v + s s + Address Bit 4

Position
Position

When a switch is "ON", that matches a "0" bit on the corresponding address
line. When a switeh is "OFF", that matches a "1" bit on the corresponding
address line.

The fellowing table shows all possible 1/0 addresses that the System Support 1
can reside at, and the assoclated switch settings.

SWITCH 3
Switch Position
1/0 Address 5 6 7 B
00 (hex) + + + —ON- “ON~ -0N- ~0ON-
10 ..+ .+ » =0ON= “ON~ ~ON~ -0FF-
20 v &+ & o+ o =0N- ~0ON- -0FF- —-ON-
30 « « » & . . —ON- -0N- -0FF- -0FF-
40 » 4 & 4« 0 =0ON~= -OFF-— -0N- —ON-
- 50 . . . 4+ « =ON- -0FF- -0N- =QFF= <
60 « + &+ . . ~ON- -0FF - -0FF - —ON-
?0 LI I I I I | "ON- _OFF "OFF" -OFF-
80 + + + « 4+ + —=OFF- =ON- ~ON- -0N-
90 « & ¥ * 8 W "'OFF— "ON“ —ON— -OFF—
A0 + 4+ + +» » =0FF- ~ON- —QOFF - ~ON-
BG . . + « + « =0FF- -ON- -0FF- —OFF-
CO v v v+ v« « ~0FF~ -0FF- =0N- -0ON-
DG . « v « » « =0OFF=- =-0FF=- == -QFF-
EO L I I —OFF - -OFF- -OFF" =D~
FO . + s+ « & + ~0FF~ -0FF- -0FF- -0FF-

The "standard" port block that we have assigned te the System Support 1 is
the block at 50 hex. 4ll of the software provided by CompuPro and other vendors
will assume that you have the board addressed to this block. To set the System
Support 1 to block 50 hex, set switch positions 5=0N, 6=0FF, 7=0N, and 8=0FF.

i0

SETTING THE MEMORY ADDRESS

The System Support 1 has a 4K block of EPROM or RAM. This memory may reside
at any 4K byte boundary in the system. The address of the block is set by two
switches: part of Switch 3 and all of Switch 2. Switch 3 is used to set which
block in the 64K "page" that the memory uses, and Switch 2 is used to select
which of the 256 possible 64K "pages" {corresponding to the new address lines
Al6=23) is to be used.

The 4K block address within the 04K page is set by Switeh 3, positions 1
through 4. Switch 3 is located in between U35 and U36 in the lower row of chips
and is marked "ROM/I/C ADDR.

Each of the four switch positions correspond to a particular address bit:

SWITCH 3 Position 1 + « =« + +» +» « « Address Bit 15
Position 2 + « « « « +» » » Address Bit 14
Position 3 + « » « « &« » .« Address Bit L3
Position 4 « +» « + + + « + Address Bit 12

When a switch is "ON", that matches a "0" bit on the corresponding address
line. When a switch is "OFF", that matches a "1" bit on the corresponding
address line.

The following table shows all possible 4K byte boundaries that the memory may
start at, and the associated switch settings:

SWITCH 3
Switch Positicn

Memory Address 1 2 3 4
0030 (hex) . . ~ON~ ~ON- -ON- —ON-
1000 « « + « . =0ON- —-0N- ~ON- —0OFF=-
2000 & « & & . —ON- ~OH- -0FF=- =-ON-
3000 . . . » . =ON- -ON- ~QFF= =0FF~
4000 « « » o o —ON- -0FF~ =N~ -ON-
5000 =ON=- -0FF= ~OK- -0FF~
6000 -ON- -0FF- ~0FF - =0N-
7000 4 -ON- -0FF -0FF- ~0FF-
800G + —OFF- -ON- -0N~ ~ON-
9000 « .« + + - ~OFF~ -0~ -0N- -OFF~-
4000 + . +» 4+ o =OFF=- ~ON=- ~0FF- -ON-
BOOO L N L —OFF_ "ON" "OFF- "OFF""
cogd —=OFF- =0FF~ -0ON- ~ON-
DooG =QFF= ~0FF- ~ON- ~OFF-
EOQD =DFF- ~0FF - -0FF - ~ON-

~ FOOO «OFF- —OFF- —OFF- —-0FF- &

NOTE: Ul6 occupies the upper 2K of the 4K address space and Ul7 occupies the

lower 2K of address space.

For example, if the memory were addressed at FOOO
hex then Ul7 would reside at FOOO to F7FF and Ul6 would reside at F800 cto FFFF.

The "extended address" that the memory responds to is set with Switch 2.
Switch 2 is located between U32 and U33 in the lower row of chips.

Each switch position corresponds to a particular address bit (see following):

SWITCH 2 Position 1 « « &« + & « « « Address Bic 23
Position 2 + + + & + » « » Address Bit 22
Position 3 . + « « « » .« » Address Bit 21
Position 4 + = » + &« « « « Address Bit 20
Position 5 « + « &+ « » o . Address Bit 119
Pogition 6 + « « « « + + « Address Bit 1B
Position 7 « +» « + & » & . Address Bit 17
Positlon 8 « « « + » + . « Address Bic 16

When a switch is "ON", that macches a "0" bic on the corresponding address
line. When a switch is "OFF", that matches a "1" on the corresponding address
line.

If you don’t want the memory to respond to the extended address bits, sesa
the section below on "Global/Extended Address Selection'.

OTHER MEMORY OFTIONS

Most of the other memory options are selected with part of Switeh 1. Switch
1 is located just to the right of UZ22.

First is a quick chart of the mewmory options asscciated with Switch 1, then
we will give you a more detailed description of each of the switch’s functions.

SWITCH 1 - Switch
Position Labeled Function
5 RDI ON to disable wemory.
] XA ON to disable extended addressing.
7 PHD ON to allow PHANTOM* to disable memory.
8 PHE ON to allow PHANTOM* to enable memory.

DISABLING THE MEMORY

Position 5 of Switch 1 is used to entirely disable the memory space on the
System Support 1. This will mainly be used if you don’t wish to use any on-
board memory at all.

To disable the on~board memory entirely, turn position 5 of Switch 1 ON. If
you don’t want the on-board memory space to be disabled {if you're going to use
some kind of memory), turn position 5 of Switch 1 OFF.

GLOBAL/EXTENDED ADDRESS SELECTION

Position 6 of Switch 1 is used to determine whether or not the memory
responds to the lower 16 address bits and ignores the upper 8 address bits, or
responds to the entire 24 address bits.

When the memory ignores the upper 8§ address bits, it will appear in each 64K
page. This is called "global" memory. If you have a processor card that is only
capable of generating 16 address bits, then you will want to use the memory as
global.

If you want the memory to respond to the full 24 address bits, turn position
6 of switch 1 OFF, If you want the mwemory to be global, then turn position 6 of
Switch 1 OHN.

Note that if you want the memory to respond to the extended address, you
will have to set Switch 2 to the proper extended addrass. See the above section
"Setting the Memory Address" for information on how to set Switch 2.

11

PHANTCM* RESPONSE OPTIONS

Positions 7 and 8 are used to determine how the memory on the System Support
1l responds to the S=-100 Bus signal PHANTOM*. The memory can respond in one of
three ways when PHANTOM#* is asserted on the bus. The memory may ignore the
PHANTOM* signal entirely, may become disabled or may become enabled.

If you want the memory to ignore the PHANTOM#* signal, leave both position 7
and position 8 of Switch 1 QOFF.

If you want the memory to become disabled (disappear) when PHANTOM* is
asserted, then turn position 7 ON and pesition 8 OFF. This is the most often
desired setting. Ty T T T
7 7Tt you want the memory to be enabled only when PHANTOM* is asserted, then
turn position 7 OFF and position 8§ ON.

NEVER turn both positions 7 and § ON at the same time!

BATTERY BACK-UP FOR CMOS RAM

If you are using the Hitachi HM6116 CMOS RAM chip in location Ul7 and wish
to have it powered by the clock battery on power-down, then you will need to
install a IN914 type diode at location D3, (just below U4 and U5 near the top of
the board).

If you obtained the HM5116 from us, we have provided the diode along with
the RAM chip. Be sure to install the diode with the banded end facing towards
the lefc. Take care not to create any sclder bridges between adjacent traces
when soldering in the diode, and use a temperature controlled soldering iron (or
be sure it”s less than 40 watts).

If you ever decide to use an EPROM in that socket, be sure to remove the
diode, otherwise the clock battery will be drained excesaively (and who needs to
battery back-up an EPROM?). If you wish to use the RAM in that location but
don’t care whether its contents are retained on power-down, then you may leave
the dicde out and reduce the current drain on the clock battery.

WAIT STATES

The System Supporxt 1l has circuitry that enables it to generate one, two,
four or eight wait states. This will mostly be used in systems where the
ptocessor is running at a very high speed. In this industry it has always been
the case that the speed of the CPU chips increases years before the speed of the
LSI peripheral chips. Since the System Support 1 makes extensive use of these
L5I peripheral chips, it may be necessary to add wait states to all accesses
‘made to the board.

Part of Switch S! is used to add wailt states to all accesses made to the
board. Sl is located just to the right of U22 at the right hand edge of the
-board. Positions 1 through 4 of 51 are used to select the number of wait states
to be generated according to the following table:

Number of Switch Position
Waly States L{W8) 2{W4) 3(W2) 4(W1)
None -OFF- -0FF- -QFF- -0FF~-
i -QFF - =QFF— -0FF- —ON=-
2 —-0FF- ~QFF- =ON-— =0ON=
& : =0FF=- =QN - —-ON- ~ON-—
8

-ON- -ON- -ON- -ON-

NOTE: These wait states affect the entire board, 1/0 ports and memory accesses.

USING A HIGHER SPEED 9511A OR 9512

- As supplied, the System Support 1 is designed to use either a 95114 or 9512
"math processer chip running at 2 MHz. This is the lowest cost version of these
- chipss The 2 MHz clock is taken from 5-100 Bus pin 49 which is specified by the
5-100 Standard to be a 2 MHz clock signal.

But we have made a2 provision for using an on-board crystal oscillator
instead of the 2 MHz signal from the 5-100 Bus. This was done primarily for two
reasons!-

l. Some users may desire to use the higher speed (3 and 4 MHz) versions
of the 95114 or 9512.

2. Some of the glder 5-100 systems may net have the 2 MHz clock signal
available om pin 49.

If your requirements fit aﬁy of the above, then you will want to install the
- extra crystal required for the on=-beard osciliator.
*° This is crystal Xl and is located just to the right oE Ull at the left-hand
edge of the board. HNHote that this crystal should be twice the frequency that
you require. If you are using a standard speed 95114 or 9512 (2 MHz)} but there
is neo 2 MHz clock on pin 49, then Xl should be a 4 MHz crystal. If you are
‘using a 3 MHz 9511A or 9512 then Xl should he 6 MHz. If you are using a 4 MHz
version than Xl should be 8 MHz. A proper crystal is available from CompuPro.
Be sure to specify a frequency of twice the operating speed of your math.chip.
You will alsoc need to instzll a jumper at location J5 {located upwards and
to the right of X1} and also cut a trace at J5 If you are using the on-board
oscillator option, then you must cut the trace connecting the two pads in the
"B" block of J5. This trace is located on the back (solder} side of the PC
board. Use an XACTO knife and be extremely careful not to damapge any other
traces. Then you will need to install a jumper between the two pads in the "A"
block of J5.
If you are not using a higher speed 95114 or 9512, or you have 2 MHz on pin
49 in your system, or 1f you are not using a mach processor at all, then do
nothing with J5 or install no crystal at Xl.

INTERRUPT JUMPERS AND OPTIONS

IMPORTART HOTE ABOUT USING THE ON-BOARD INTERRUPT CONTROLLERS: The System
Support l’s interrupt system has been designed to work with 8080/8085/Z2-80/8088
CPUs. In order to account for an idiosynceracy in the 8080 and Z-80 CPUs, the
interrupt circuitry asserts the 5-100 bus signal PHANTOM#* which is on bus pin
67. Therefore it is necessary to configure all your system memory to be dis-
abled when PHANTOM®* is asserted (if you are using a Z-80 or 808C CPU). For a
discussion about why this is necessary, see the Theory of Operation section of
this manual. HNote that the memory on the System Support 1l will always be
disabled when the iInterrupt clrcultry requires, regardless of how you have set
the PAD and PHE switches. .

JUMPER J13 - is located at the lower right hand corner of the PC hoard, and it
is used to select how the System Support l treats interrupt acknowledge cycles
depending on what type of CPU you are running. .

If you are using the System Support l with our CPU 8085/88 board or aany
other B0B85/8083/8086 type board, then install the shorting plug at J13 so that
the pins labeled "8" and "C" are counected together (shorting plug is left of
center}.

i3

14

If you are using the System Support 1 with our GPU Z or any other Z-80 or
8080 type of CPU (such as an old IMSAL CPU), then imstall the sherting plug at
J13 so that the pins labeled "2'" and "C" are connected together (shorting plug
is right of center). . .

The interrupt structure of the System Support 1 has been designed to be both
easy to use and at the same time very flexible. There are two interrupt
controllers on the board; one is the "master" and the other is the "slave'. The
two intetrrupt contrellers look at 15 different interrupt socurces. Eight of
these come from the 5-100 Vectored Interrupt lines and seven interrupts may be
generated from various sources on the board itself.

In general, the master intertupt contreller’s Minterrupt request” inputs
have a higher priority than those of the slave interrupt controller. The master
looks at seven of the 5-100 Bus Vectored Interrupts (VIO-6%*) and the slave looks
at the eighth wvectored interrupt and seven interrupt sources that are gemerated
on the System Smpport 1. This is the “standard" configuration, but through the
use of dip headers and jumpers, almost any configuration is possible. For
example, if an interrupt controller already exists in your system, the on-board
interrupts may be jumpered to any of the 5-100 vectored interrupt lines. This
means that the interrupting capability of the various board functions are not
lost even though you are not using the on-beard interrupt controllers. Or some
interrupts may be handled on board and some off board, or an on-board interrupt
may be given a higher priority by jumpering it to an 5-100 interrupt line which
is responded to by the master.

To allow the System Support L to be easily configured, a "standard" set of
interrupt assignments may be selected by merely plugging in a dip-shunt in omne
location, (J8), and leaving J7 open. If you don’t want a standard configur-—
ation, you may custom program these jumper areas with dip-headers instead of the
shunts. If the shunt is plugged into location J8 and locaticn J7 is left open
then the board’s interrupt confipuratiom, (see the following figure):

VID* >eme—e-e |IRQ 0 INT |--——>3-100 INT* line.
VIl* >emmem—- [IRg 1 |
5-100 VI2* >—————|IRQ 2 |
Vectored VI3* >———— |IRQ 3 ; 82594 MASTER
Interrupts VI4* >————— |IRQ 4 | (UL5)
VI5* >ommmm= |[IRG 5 |
VIG* Demmmae JIRQ 6 |
VI7% >==, |=|IRQ 7 |
T
I
On-Board | ! | < slave interrupt output
Interrupts | eeemmem—————
I F--—|IRQO |
TIMERD QUT>w~=w=m FIRGL |
TIMER] QUI>=w=w—=|IR(2 i
TIMER2 OUT>——--——|IRQ3 § 82594 SLAVE
9511 SVRQ »---———|IRQ4 [(14}
9511 END >====w=|IRQ5 |
2651 TxRDY»-————- |IRGH |
2651 RxRDY»————— | 18GQ7 |

I1f you wish to "secramble-wire" the interrupts, all interrupt sources and
destinations appear at jumpers J7 and J8 They may be jumpered in any conceiv-
able configuration by using dip-headers. The intarrupts appear at these jumpers
as siown in the following diagrams:

Sources Destinations
J7
9512 ERROR>=—~===|16 L] mme——— »5-100 VI7*
9511 END Sme———— |15 2|e=—==>3-100 VI6¥
9511 3VRQ >-————— {14 3| ———— >5-100 VIS*
TIMER2? QUT>—wm——w 113 4| m—m—— >8-100 VI4*
TIMER] QUI>———e——= |12 §|=m———- »>8=-100 VI3*
TIMERQ QUT>——=——=|l11 6|————- >5-100 VIz*
2651 THRDY>—————=m |10 7 |msemme»5=100 VI1*
2651 RxRDY>———-—1|9 §|~=—=m=>5-100 VIO*
J8
5=100 VI7%>-——~—|8 G|——— >SLAVE IR(O
TIMERQ QUI>—————=|7 10| -—--->SLAVE IRQl
TIMERL OUT>~————- | & il|-————>SLAVE IRQ2Z
TIMER2 OUT>—————— |5 12| ——~-->SLAVE IRQ3
95i2 SVRQ >—————14 13| w=—ew >SLAVE IRQ4
9512 END >—wm——=|3 14| =~—==>SLAVE LRQ5
2651 TxXRDY>=rm==|2 15]-=—=~— >SLAVE IRQ6
2651 RxRDY>»————— |1 16 [=—=m— >SLAVE IRQ7

USING A 9511 OR 9512 WITH INTERRUPTS

The "END" interrupt £rom the 9511 or 9512 is not actually coonected directly
to J7 and J8 as is shown above., This is because the polarity of the END signal
is different between the 951! and the 95i2. J6 is used to select the appro~
priate polarvity for this signal depending on which math processor you are using.

If you are using a 95114 then inscall a jumper in the "A" block at J6. Lif
you are using a 9502 cthen install a jumper in the "B" block at J6.

If you are using either math chip but are not running it "interrupt driven",
then you do not need to inscall any jumper at Jé.

Also note that the "ERROR" output from the 9512 (9511A does not have this
output) is not available at both J7 and J8 as the other math chip outputs are.
The ERBOR signal is only available at J7.

INTERVAL TIMER OPTLONS

The three interval timers on the System Support I are implemented with an
8253 IC. It contains three independent timer sections. Each sectien has a clock
input, gate input and timer outputs. These 9 inputs and outputs appear at J4 so
that the different sections may be cascaded for longer time delays or so that

15

16

the signals'méy be connected to external devices. The following diagram shows
the connections at .J4:

Jb
INVERTED TIMER 0 OUTPUT<—-—~-|1 16| —————— S>TIMER (@ OUTPUT
INVERTED TIMER 1 QUTPUT<==mw=m j2 15| -——-=——-———>TIMER 1 QUTPUT
INVERTED TIMER 2 QUTPUT<===—- |3 14| ~—mme—e—a———>TIMER 2 OUTPUT
TIMER 0 CLOCK INPUT> |4 13| <2 MHz SOURCE
TIMER 1 {LOCK INPUT:>- 5 12]-- <2 MHz SOUHCE
TIMER 2 CLOCK INPUT |6 L1 | = <2 MHz SOURCE
TIMER 0 GATE INPUT>—-———————-|7 10| =wm——r=mmem=aNO CONNECTION
TIMER 1 GATE INPUT>--———---——|8 9| <TIMER 2 GATE INPUT

NOTES: All gate inputs are pulled up with a 4.7K ohm resistor. Pins 4 and 13
are connected together, pins 5 and 12 are connected together and pins & and 11
are connected together. All timer outputs are buffered.

To cascade sections or use external clocks, the appropriate trace{s) must be
cut on the solder side of the board to remove the 2 MHz clock source. Then the
output of another section or an external input may be connected to the clock
inputs (TTL ONLY!). Use a dip header to make the interconnections.

CONFIGURING THE SERIAL CHANNEL

The Serial Channel on the System Support 1l has been designed to be as
flexible as possible. It may be used in the "master" or "slave" mode and
provides full RS-232C handshaking lines. A standard 26 pin transition comnnector
has been provided at J1 to facilitate easy connection of 2 ribbon cable that
usually has a DB-23 style connector on the other end. Such a cable is available
from us or your CompuPro dealer. ' ' -

All of the serial signals appear at J2 which allew them to be wired as

either a master or slave device. An exanple of a master device would be a

terminal or printer and an example of a slave device would be a modem or other
computer. Therefore, the serlal channel must be configured to complement the

. device it is conmnected to. In other words, if you are using the serial channel

with a terminal {a master device) then you will want to configure the serial

channel to act as a slave. Conversely, if you are using the serlal channel with

a modem (a slave device) then vou w1ll want to configure the serial channel to

act as a master.

_ Since the most common configuration will be that of a slave, we have made it

easy for you to install this configuration. This may be accomplished merely- by

installing a dip-shunt in location J2. Again, you will want to use this

configuration 1f you are hooking up the serial chamnel to a standard terminal or

printer. :
To configure the serial channel to¢ act as a master, then you w111 need

to cross-wire JZ by using a dip-header. This configuration is shown in

the following diagram: :

J2

For reference purposes, the signals appearing at J2 and Jl are as fellows:

J2 J1
TAD > = | 1 16 | mmeeme 13 i
RXDE—~m———|2 15} —————- |2
RIS>————~=|3 Li{=r====|5 |
CTS<——mm=| 4 13} ==~ 4 14 26 Pin Transition Connector
D8R&—————|5 12]=amem |20 and 25 Pin DB~25 Connector
DIR>=m~=r=r| & L1} == 16 1|
DD mmnm | 7 10}=~====|8 |
F12V—memem |8 =) J1 J=m———m GND
e ——— I| [7 [————= GND
-12v !
TxD = Transmitted Data RxD = Received Data
RTS = Request To Send CTS = Clear To Send
DSR = Data Set Ready DTR = Data Terminal Ready
BCD = Data Carrier Detect GND = Ground

DIAGRAM OF J2-J1-3ERIAL SIGNAL RELATIONSHIPS

Setting the baud rate, stop bits, parity and other UART parameters is done
in software and will be covered in a later section called "Programming The
Serial Channel".

OTHER MISCRLLANEOUS HARDWARE OPTIONS

Use of pSIVAL* - The System Support 1l uses the new S-100 Signal pSTVAL* that
appears on S$—-100 Bus pin 25. I1f you are using a CPU from CompuPro {or any
other CPU that meets the IEEE/696 standard), then this signal will be generated
* by the CFU and you need not worry about this next jumper.

If you are uging an older genevration GPU board that does not generate
pSTVAL#*, then you will need to make a small modification to the System Support
1. Proceed as follows: _

Locate Jil. It is located near the edge connector in approximately the
- center of the board. Jll has three pads labeled A, ¢ and B. 1f you look on the
-back (solder) side of the board you will notice that there is a small trace

connecting pad B to pad €. Using an XACTO knife, carefully cut this trace.
.Take care mot to damage any other traces on the PC board. Then install a jumper
between pads A& and C. That completes this modification.

Use of SLAVE CLRE* Instead of ERSEY* — The 5-100 signal SLAVE CLR¥* (bus pin 54)
is specifically designated for clearing slave devices {(the System Support 1 is a
slave device). However, it is usually more convenient in most systems to use
RESET* instead of SLAVE CLR*. The System Support 1l is currently wired to use
RESET* to clear the various circuits on the board. Provision has been made to
use SLAVE CLR* instead of RESET* if you so desire.

To do this, locate J9 and Ji2. J9 is a single Jumper pad located at the
bottom left-hand cormer of the board just above the edge connector fingers. Ji2
is alsc located at the bottom of the board just above the edge connector

17

i8

fingers, but near the center of the board. JlZ has two pads that are connected
together by a trace on the back (solder) side of the board. This trace must be
cut with an XACTQ knife. Be sure not to damage any other traces. Then, using a
langth of insulated wire {such as wire-wrap wire), install a jumper between the
pad of J9 and the left-most pad of J12 (the one closest to the "C"). This will
cause the circuitry on the board to be cleared in response to POC* and SLAVE
CLR*.

PHRFAIL* and FMI* - The System Support 1 generates the 5=-100 PWRFAIL* signal
which is used to indicate that a loss of power is inminent. You will usually
want this signal to cause a non-maskable interrupt (NMI#*) to the CPU. The CPU
can then save any data it deems relevant. Provision has been made to jumper the
PWRFAIL* signal to the NMI* line on the $-100 Bus. Thus both PWRFAIL* and NMI#*
would be asserted low about 153 milliseconds before the regulators in the system
drift out of regulation. (The exact time will depend on your system’s power

"supply and loading.)

If you desire to have the PWRFAIL¥ signal cause an NMI#*, then install a
jumper at location JL0. J10 is located at the bottom left hand side of the
board, just above the edge .connector fingers. If you don"t care about the
PWRFAIL* signal, then you need not do anything with JI1O0.

As an option, the PWRFAIL* signal 1s available at the right-most pad of Jlo.
It could conceivably be hooked to any other 3-100 interrupt pin via a header at
J?. It should be mentioned, however, that this would not be a good practice
because any of the other interrupts could be "masked" at the time of power
failure, thus defeating the purpose of the PWRFAIL* signal.

CONNECTING THE BATTERY

The battery connector supplied with the System Support 1l is semi-polarized
so that it should only plug onto J3 easily in one direction. To double check,
the red wire which connects to the + side ¢of the battery should correspond to
the + marking on the board.

If you desire to use a different battery than the one supplied (for axample
three 1.5 volt penlight cells in series for longer battery life) then you should
take care to keep the polarities correct. The circuitry on the System Support 1
is protected from reverse polarity so no damage will occur if the battery is
reversed, but the board won’t function properly.

The battery is shipped already plugged into its holder, bur should it become
necessary to remove it, be sure to orient the + end of the battery to correspond
to the + stamped in battery holder.

MOUSTIRG THE BATTERY HOLDEE

The battery holder is intended to be mounted outside the computer enclosure.
This is because batteries, although sealed, under some conditions can still
leak, outgas or otherwise do nasty things to the sensitive components and
contacts inside your computer. Therefore, We strongly recommend that the
battery be wmounted outside the computer enclosure and not inside.

REPLACING THE BATTERY

The 4.5 volt alkallne battery that is supplied with the System Support 1
should last approximately 1.5 years with normal use. However, to insure that &
loss of time or memory data does not occur due to battery failure, we recommend
that the battery be replaced once every year. The battery can be replaced while

the systam power is on, so that operation of the clock or memory data will not
be lost, (unless of course you get a power failure at the exact instant that you
remove the battery).

The type of battery used is a Mallory PXZ21 or Eveready 52Z3. Replacement
batteries are available from us or possibly your local dealer. You can preobably
also obtain this battery from a photo store or possibly a "drug" store with a
well stocked photo department. This battery is also used in some smoke alarms,
so you may also find it in 2 well stocked hardware store.

If you plan to keep a replacement battery handy, be aware thar the average
shelf life of an alkaline battery is two years. This can be extended signifi-
cantly by storing the battery in a refrigerator. Before using a battery that
has been stored in the refrigerator, allow it to come up to room temperature and
make sure that there is no moisture present on any of the contacts.

IMPORTANT HOTE: PFlease do not use anything other than an alkaline battery.
Mercury cells may seem like a good choice Eor this application, but they do not
fare too well under the light load preseanted by the System Support l. Carbon-
Zinc cells can leak, causing damage to the computer (usually irreparable). Ni-
cads will not be recharged by the board’s eircuitry. Also note that using any
battery other than the ones specified will void your warranty.

I/0 PORT MAP

The System Support 1l uses a block of 16 I/0 port addresses. This block may
begin at any 16 port boundary. Each of the I/0 ports performs a specific
function and each will always appear at an address that is relative to the base
address. The following chart shows the I/0 port’s relative positions, and
their actual address when the System Support 1 is addressed to the block at 50H
{CompuPro standard address).

hex 5E hex
hex 5F hex

2651 Mode Registers Basetl4 dec
2651 Command Register Base+l5 dec

Port Function Relative Position Address
Master 8259A lower port (AQ=0} Base+ 0 dec 0 hex 50 hex
Master 82594 upper port {(AD=1} Base+ 1 dec 1 hex 51 hex
Slave 8259A lower port (A0=0Q) Base+ 2 dec 2 hex 52 hex
Slave 825%A upper port (A0=1) Base+ 3 dec 3 hex 53 hex
Timer/Counter 0 Base+ 4 dec 4 hex 54 hex
Timer/Counter 1 Base+ 5 dec 5 hax 55 hex
Timer/Counter 2 Base+ 6 dec 6 hex 56 hex
Timer/Counter Contrel Register Baset+ 7 dec 7 hex 57 hex
95114/951L2 Data Port Bagset+ 8 dec 8 hex 58 hex
9511A/9512 Command Port Baset+ 9 dec 9 hex 59 hex
Clock /Calendar Command Port Base+10 dec A hex 54 hex
Clock/Calendar Data Port Base+ll dec B hex 5B hex
2651 Data Register Base+l2 dec € hex 5C hex
2651 Status Register Base+l3 dec D hex 5D hex

E
F

19

20

PROGRAMMING CONSIDERATIONS FOR THE SYSTEM SUPPORT 1

The following section of this manual will discuss some of the software
considerations that will be necessary to use this board. We will provide you

‘with a few actual programs, but these programs are presented as either examples

or for testing purposes and are not necessarily the best way to do something.
The listings were prepared using the standard CP/M assembler (ASM.COM) and
sometimes assume a CP/M system (like for L/0 calls).

First we will discuss the power-up initialization of the System Support 1
and then we will discuss the programming considerations for the wvarious
functicns of the board.

POWER-UP INITIALIZATION

When you turnm on your system, the first thing that usually happens is to
boot in the disk operating system or execute some kind of program stored in ROM.
Somewhere at the beginnlng of these programs is usually some code to initialize
the system. This may do things like set the stack pointer, clear some Tegisters
and send a set of iInitlal parameters to I/0 peripherals. This latter example is
what needs to be done with the System Support 1.

To be specifie, the interrupt controllers must be set up with all the data
it takes to get them to respond correctly in your system (like masking unused
interrupts, setting priority levels, setting the interrupt wvector address etc.);
the serial channel parameters must be set (like the baud rate, word length
eted); the interval timer modes must be set (if they are used) and so om.

How your board 1s to be set up on power-up is dependent soley on your system
requirements. Therefore, we will not attempt to give every possible example of
how the board may be initialized. Instead, the following sections will discuss
the various sections of the System Support I in detall and you will have to
derive the initialization parameters from that data. The software examples will
all contain some kind of initialization routine, but they will probably not be
the same for your system.

PROGRAMMING THE SERTAL CHANNEL

The serial channel on the System Support 1 is implemented with a 2651 cype
UART from either National Semiconducter or Signetiecs. Several of the UART
parameters and channel control funections are programmed by writing into or
reading from certain registers in the 2651. They are:

1. The baud rate.

2. The word length.

3. Whether or not a parity bit is generated.

4. Whether the parity is even or odd (if generated).

5. The number of stop bits.

6. Enabling and disabling the transmitter and recelver.
7. Setting and testing the R5-232 handshake lines.

In addition, the normal status indications and data transfer functioms are
also handled through the UART’s registers.

A table of the various registers and where they appear in the I/0 port map
follows. (The port addresses agssume that the System Suppeort 1 is set up to the
CompuPro "standard" port block; see the sections on setting the L/0 address and
the I/0 port map for more information.)

"READ" or. "INPUT" Ports

‘Port Address UART Register Function
5C hex Data Port, read received data word.
5D hex Status Port, read UART status info.
5E hex Mode Registers, read current UART mode.
5F hex Command Register, read current command.

"WRITE" or "OUTPUT" Ports

5C hex Data pott, write word to be transmitted.
3D hex not used

5E hex Mode registers, write mode bytes.

5F hex Command register, write command to UART.

Data Registers

The UART data registers are straight-forward in their operation. You write
a byte to the data register when you want to transmit that byte to an external
saerial device and you read the byte in the data register to receive a byte fronm
an external serial device. The UART will automatically add the proper start and
stop bits when transmitting and will remove them when receiving.

Status Register

The status register is used to determine the current state of the UART.
Fach bit of the status register has a differenc wmeaning depending on whether it
is high or low. ({High means a logic one or high level and low means a logic
zero or low level.) The following table describes the meaning of the status
bits:

Bit 0 - TxRDY: When low indicates that the transmitter is currently busy and
you should wait before sending another character. When high indicates that the
transmitter is not busy and 1s ready to accept a new character for sending.

Bit I ~ RxRDY: When low indicates that there Iis no character waiting to be
read. When high indicates that a character has been received and should be read.

Bir 2 - TxEMT/DSCHG: When high indicates that either the DCD or DSR lines have
changed, or that rthe transmitter shift register is empty. When low indicates
that none of the above are true. Note: Unless you really need this status
indication, just ignore this bit.

Bit 3 - PE: When high indicates that a parity error has occurred. When low
indicates that no parity error has occurred.

Bit 4 - Overrun: When high indicates that an overrun has occurred. When low
indicates that an overrun has not occurred. An overrun can occur if you falled
to read the data word before another one arrives.

Bit 5> - FE: When high indicates that a framing error has occurred. When low
indicates that no framing error has occurred. & framing error occurs when no
stop bit has been received. This can happen if the line was interrupted or the
baud rate is incorrect or any number of other data errors are detected.

21

22

Bit & - Data Carrier Detect: When high indicates that the DCD line is low.
When low indicates that cthe DCD line is high.

Bit 7 - Data Set Ready: When high indicates that the DSR line is low. When low
indicates that the DSR line is high.

Mode Registers

When bringing up the UART, its two mode registers must be set with various
bit patterns that will deterwine the operating modes. There are two registers,
however they occupy only one 1/0 port address. This is accomplished with
internal sequencing logic that allows you to write the first register (Mode
Ragister 1) and then the second register (Mode Register 2). It is important to
write to Mode Register 1 first.

The meanings of the various bits in the mode registers are described below:
Mode Register 1

Bits 0 and 1 - Mode and baud rate factor: For proper operation of the UART in
the System Support 1, bit O should be low {a logic zero) and bit 1 should be
high (a logic one)s This sets up the UART for asynchronous cperation with a 16X
baud rate.

Bits 2 and 3 - Character Length: These two bits are used to determine the
length of the characters that will be sent and received, according to the
following table:

Bit 3 Bic 2 Character Length
0 0 5 bits
0 1 & bits
1 0 7 bits
1 1 8 bits

The most often used character length will be 8 bits, so bits 2 and 3 will
normaily both be high.

Bit 4 - Parity Control: When bit & is low then no parity bit will be generated.
When bit 4 is high then a parity bit will be generated.

Bit 3 - Parity Type: When bit 53 is low then the parity generated will be odd.
If bit 5 is high then the parity generated will be even. If bit 4 (the Parity
Control bic) 1is low (meaning no parity is generated) then bit 5 is insignifi=-
cant. :

Bits 6 and 7 - Stop Bit Length: These two bits are used to determine the number
of stop bits that are sent according te the following table:

Bit 7 Bit 6 Humber of Stop Bits
0 0 Invalid
¢ 1 1 stop bit
i 0 1 L/2 stap bits
1 L 2 stop bits

The most often used configuration is two stop bits, so both bits 6 and
7 would normally be high.

The following example shows mode register 1 set up for B bit characters, no
parity and 2 stop bitss

Bic 7 6 5 4 3 2 L 0

1 1 xp ol vl 1) 1] of

L = HIGH 0 = LOW X = DONT CARE

Use the following area to write in the bit pattern for mode register 1 that
best suits the needs of your system:

Bit 7 6 5 4 3 2 L 0

Mode Register 1
Maode Reglster 2

Bits 0, 1, 2 and 3 - Baud Rate Selection: These four bits are used to determime
what baud rate will be generated by the UART (and therefore what baud rate the
UART will run at) according to the following table:

Bit 3 Bic 2 Bit 1 Bit O Baud Rate
50

15
110
134.5
1350
300
600
1200
1800
2000
2400
3600
4800
7200
9600
19200

Ll el el e e B e B e e T o e B o B o B
HERFRFOOOORFRFREFRODOO
OO~ ~,DOoO o O OC
[l = T e T e T o B e = T = B]

Bits 4, 5, 6, and 7: For proper UART operation in the System Support l, these
four bits should always be written in the following pattern:

Bit 7 Bit 6 Bit 5 Bit 4
0 1 1 1

The following example shows mode register 2 set up for 9600 baud:

Bit 7 6 5 4 3 2 1 0

lol 11 1 1] 1§ 1] 1) 0f

23

24

Use the following area to write in the bit pattern for mode register 2 that
best suits the needs of your system: .

Bit 7 6 3 4 3 2 i 0

Mode Register 2

That completes the descriptionm of the Mode Registers. Remember that you must
always write both mode registers, with Mode Register 1 first. :

Comamand Register

The Command Register is used to enable and disable the receiver and/or
transmitter, force a "break" condition, reset the érror flags and control the
state of the RTS and DTR outputs.

Bit 0 — Transmit Countrol: When bit O is high the transmitter section of the
UART is enabled. When bit 0 is low the transmitter is disabled. HNormally this
bit should be high. :

Bit 1 - Data Terminal Ready: When bit 1 is high the DIR output is forced to a
low state. When bit 1 is low the DIR output is forced to a high state.

Bit 2 - Receive Control: When bit 2 is high the receiver section of the UART is
enabled. When bit 2 is low the receiver is disabled. Normally this bit should
be high.

Bit 3 - Force Break: When bit 3 is high a break condition is foreced. When bit
3is low, normal operation occurs. A break condition is when the serial data
output line 1s forced to the marking state.

Bit 4 - Reset Error: When bit 4 is high the error flags in the status register
are reset. When bit 4 is low them normal operation ceccurs.

Bit 5 - Request To Send: When bic 5 is high the RTS output is forced to a low
state. When bit 5 1s low the RIS output is forced teo a high state.

Bits 6 and 7: For proper operation of the UART, these bits should always be low
{a logic 0). : .

The following example shows the command register set up for RIS and DTR low,
the force break and reset error functions set for normal operation and both the
receiver and transmitter enabled: :

Bic 7 6 5 4 3 2 1 0

o] of 14 o] of 1| 11{ 1]

1 = HIGH 0 = Low

Use the following area to write in the bit pattern for the command register
that best suits the needs of your system:

Bit 7 6 5 4 3 2 1 Q

Lo{ o] I [| [I I

Command Regilster

This completes our discussion of the various registers inside the UART and
what their functions are.

UART Initialization
When bringing up the UART, the following sequence of events must cccur:

l. Set Mode Register 1

2. Set Mode Register 2

3. Set Command Register

4. Begin normal UART operation

SAMPLE UART PROGRAM

The following program can be used to test the UART. It first initializes
the UART and then reads characters and echoes them. If a CONTROL € is typed,
control returns to CP/M (or you may patch it for any other monitor or software
you are using).

TEST PROGRAM FOR THE 2651 UART
SETS UP THE UART FOR 9600 BAUD (INTERNALLY GEN)
8§ BIT CHARACTERS, 2 STOP BITS, NO PARITY, RIS
1OW, DTR LOW, AND THEN ECHOES CHARACTERS

jassumes System Support 1 is addressed to 50 hex {(CompuPro Standard)
sfor different addresses, change '"BASE" in equates

0050 = BASE EQU 508 jbase address of System
Support 1

005C = DATA EQU BASE+ICH 3UART data register

Q05D = STATUS EQU BASE+ODH 3UART status register

0058 = MODE EQU BASEHJEH sUART mode registers

005F = CHND EQU BASE+OFH sUART command register

0001 = TBE EQU OLlH jtransmitter buffer empty
status bit

0002 = RDA EQU 02H ;Teceiver data available
status bit

00Q0 = CPM EQU 0CO00H ;CP/M restart address

0003 = CNTLC EQU 031 ;control C

0100 ORG 100H

(100 3EEE INIT: MVI A,111011108 ;data for wode register 1

Q102 D35E ouT MODE ;send 1t

25

26

0104 3E7E MVI A,01111110B - 3data for mode register 2

0106 D35E ouT MODE sgend it

0108 3E27 MVI A,0010G111B ;jdata for command registet

0104 D35F auT CMND ssend it

010G DB5D GETCHR: IN STATUS ;read the status register

010E E602 ANT RDA sjmask out all bits but RDA

Q110 caocol JZ GETCHR 3if it"s not high, loop

0113 DBSC IN DATA symust be high so read the
dacta

0115 E&7F ANT 7FH 3strip off parity bic

GL1? FEO3 CPL CNTLC ;jwas it a control C?

0119 CAOQQQ JZ CPM syes, jump to CP/M

jotherwise....

0lic F5 PUSH PSW ssave the character on the
stack

011r DB5D SNDCHR: 1IN STATUS jread the status regilster

D11F EB&OL ANI TBE smask out all bits but TBE

0121 cAlpol JZ SNDCHR ;if it’s mot high, loop

0124 Fl POP PSW jmust be high, get
character back

0125 D35C ouT DATA sand send it

0127 €30cP1 JMP GETCHR jthen repeat whole thing

PROGRAMMING THE REAL TIME CLOCK

The real time clock (or time-of=-day clock) is implemented with the OKI
MSM5832 clock chips. This CMOS IC takes care of all of the time and date house-
keeping functions, relieving the CPU of this owverhead. All that we need do is
set the time and date into the chip once and it will take care of the rest for
us. Whenever we want to know what time it is, we simply read the time from the
chip.

The time and date informatiom is available as BCD digits and any digit may
be read randomly. There are four data lines that contain the digit information.
These four lines appear as the lower four bits of the byte read at the clock
data port. The upper four blts are always zero. (This allows easy conversion
to ASCII by simply adding in 30H, or allows for easy digit packing.)

There is a command byte that is written to select whether a read or write
operation is taking place and select which digit we want to operate on. There
is also a bit that will stop the clock’s counting to ensure error free reads and
writes. The bit assignments and functions of the command port are as follows:

Bit 7: Unused.

Bit 6 - Hold: When this bit is high, the clock’s counters will be inhibited.
This line must be high for all write operations and may be optionally high for
read operations. If this line is kept high for more than one second then the
time will be affected.

Bit 5 = Write: When this bit is high the data at the data register will be
written into the selected digit address.

Bit 4 — Read: When this bit is high the clock data port will contain the data
from the selected digit. .

Bits 3, 2, 1 and 0 - Digit Select: These four bits are used to select which
digit to read or write according to the follewing table:

Bit 3 Bit 2 Bit 1 Bit O Digit Function
0 0 0 0 Seconds 1 Digit
0 0 0 1 Seconds 10 Digit
0 0 1 0 Minutes 1 Digit
0 0 1 L Minutes 10 Digic
0 1 ¢ 0 Hours 1 Digit
0 1 0 1 Hours 10 Digit =*
0 1 i 0 Day of Week Digit
0 1 1 L Days 1 Digit
1 0 0 0 Days 10 Digit #
1 0 0 1 Months 1 Digie
1 0 1 0 Months 10 Digit
i 0 i 1 Years 1 Digit
1 1 0 a Years 10 Digit

* The hours 10 digit is also used for AM/PM indication and mode setting and 24
hour mode setting.

The days 10 digit is also used to select either 28 or 29 days in month 2
(Leap Year in February).

NOTE: Both seconds digits are not settable to anything but zerces. Any value
that vyou try to write to them will be ignored and instead they will be set to
zero. This is an idiosynecracy of the MSM 5832 clock chip.

Clock Data Register

The data register is used to transfer digit data to and from the clock.
Operation 1is very straightforward — after setting up the command register all
that need be done is to read from or write to the data register. {The exact
sequence will be covered later.}

The actual data that is written to or read from thils register is usually in
the form of one BCD digic. 4 BCD digit is in the range of 0 to 9 and is
contained 1n the lower order uibble. The upper nibble is always zerc on reads
and is “don’t care’ on writes. There are two exceptions to the above. They
concern the Hours 10 digit and the days 10 digict.

The lower two bits of the Hours 10 digit and the Days 10 digit are the only
ones that convey any digit information. The next twe bits are used to convey
other kinds of information. Only two bits are needed for these twe digits since
two bits can represent the numbers 0 through 3. The hours 10 digit will never
go beyond 2 (in the 24 hour mode) and the days 10 digit will never go beyond 3.

The upper two bits of the low order nibble in the hours 10 digic are used to
select the 12 or 24 hour modes and to indicate AM or PM if the 12 hour mode 1is
selected.

The fellowing table illustrates the significance of the bits:

Data Bit 3 = "0" for 12 hour format, "1" for 24 hour format.

Data Bit 2 = "YQ" for AM, "1" for PM (in 12 hour format).

Data Bit 1 = Always zero in 12 hour format, otherwise MSB of digit
in 24 hour formac.

Data Bit 0 = LSB of digit in eicher format.

27

28

Bit 2 of the days 10 digit is used to tell the clock whether to put 28 or 29
days in February (leap year bit). If bit 3 is set to a one, then February will
have 29 days. After the 29th day in February, the bit will be reset to a zero.
If the bit 1s reset to a zero {either internally or externally by the program)
then February will only contain 28 days.

NOTE: All these extra bits must be set properly when programming the time and
date information, and they must be masked in software when reading the digit
data' {or first interpreted as in the case of the AM/PM bit).

HOTE: Both seconds digits are not settable to anything but zeroes. Any value
that you try to write to them will be ignored and instead they will be set to
zero. This 1s an idiosyncracy of the MSM 5832 clock chip.

CLOCK PROGRAMMING SEQUENCE

The clock must be written and read in a specific sequence of events. The
sequence for writing the digits is:

l. Write a 40H to the command register to set the hold bit high.

2. Write the digit address in the lower four bits of the command
register with the hold bit set high and the read and write bits low.

3. Write the data to be written to the data register.

4, Write the digic address in the lower four bits of the command
register with the hold and write bits set high and the read bit low.

3. Write the digit address in the lower four bits of the command
register with the hold bit set high and the read and write bits low.

6. Repeat steps 2 through 5 for the remaining digits.

7+ Write all zeroes te the command register to set the hold bit low and
start the clock going.

The sequence for reading the digits is:

1. Write the digit address in the lower four bits with the read bit set
high and the hold and write bits low {see note}.

2. BRead the digit from the data register.

3. Repeat steps 1 and 2 for any remaining digits {if you want to
continually read one digit then you do not have to keep rewriting the
command register).

4. Write all zerces to the command register.

NOTE: Optionally the Hold bit may be set high te ensure ervor free reads but if
the hold bit is set high then the cleck will stop counting. The time will not
be affected unless the hold bit is high for longer than one second. 50 if you
are continually scanning one digit, Lkeeping the hold bit high continually would
stop counting. If you are conly reading the clock once a second or at some other

comparatively slow rate, then it would be a good idea to set the hold bit. This
will imsure that you don’t read a digit just as it is changing, causing an
erroneous time to be reported.

SAMPLE CLOCK PROGRAM

The following program will allow you to test the clock as well as show the
basic idea in reading and writing from it. The program allows you to set the
time and date, print the time just once, print the time continually or return to
the cperating system. . .

When entering the time and date informaticen, all input is checked for a
valld digit, but erroneously typed digits cannct be corrected. Also note that
you must type In all 12 digics {including leading zeroes) to cause the infor-
mation rto be correctly entered into the clock. If you make a mistake, Lype a
return and try the whole sequence again. If the time is printing continuously,
typing a CNTL C will get you back to CP/M.

The program selects the 24 hour mode and assumes it is not a leap year.

TEST ROUTINES FOR THE SYSTEM SUPPORT 1 BREAL TIME CLOCK

;this program assumes that the System Support 1L is addressed
;to the block of ports at 50H, to change to a different address,
jchange BASE in equates.

0050 = BASE EQU SOH ;BASE PORT ADDRESS

0054 = CLKCMD EQU BASE+10 ;CLOCK GCOMMAND PORT

QG5B = . CLEDATA EQU BASE+11l sCLOCK DATA PORT

0005 = BDOS EQU 000SH ;BDOS CALL ADDRESS

0010 = READ EQU 10H ;READ BIT PATTERN

0020 = WRITE EQU 20H ;WRITE BIT PATTERN (+HOLD)
0040 = HOLD EQU 40H ;HOLD BIT PATTERN

0100 ORG 100H

sthis is the main loop that prints the sign-on message, decides
ywhat command has been entered and executes that particular routine.

0100 314804 LXI 5P, STACK ;SET THE STACK POINTER
(103 117202 . START - LXI b, SIGNON ;PRINT SIGNON MESSAGE
0106 CDbAO2 CALL PMSG 3PRINT IT

0109 ¢D3B02 CALL GETCHAR ;GET COMMAND CHARACTER
010C FE58 CrL ‘X ;IF X

OIDE CAOQ0DO JZ 0000R ;THEN RESTART SYSTEM
0111 FES3 CPI ‘s’ 3IF 8

0113 ¢A2901 JZ SETTIME ;THEN SET TiME

0lle FE50Q CP1 ‘P’ sIF P

0118 cAloo2 Jz PTIME sTHEN PRINT THE TLME
011B FE43 CPI cr . s IF C

011D ¢calcoz JZ FOREVER ;THEN PRINT TIME FOREVER
0120 116703 LXI D,ERROR ;NONE OF THE ABOVE
0123 Ccpe6AD2 CALL PMSG 3sPRINT ERROR MESSAGE
G126 €30301 JMP START ;AND TRY AGAIN

sthis routine sets up HL to peint to a table to receive the digits

29

30

0129
0l12¢c

012F7
al3z

0134
0136
01338
0139

al13c
013E
0140

0143
Ol4s
0149
OL4c
014D
GL4E
0L4F
0152
0133
0154

0157
0OL15A
015D
0160
0163
0165
0168
0l6A

0l6B

0l6C
016F
0172
0175
0178
al7a
0178
0L7D

jto be written to the clock.
;of address values that correspond to the desired digic.

DE contains the pointer to the table

The table

;1s organized in the proper order for reading and writing. The
jroutinae gets the digits from the conscle and puts them into memory
;and then writes them to the c¢lock. :

GETTIME
H, DTABLE

D, ATABLE
B,13

A,HOLD
CLKCMD
B
HERE

A, 0
CLECMD
D, TIMEIS

PMSG
CLKPRNT
START
A,M
C,A

D
WRTDGT
H

D

SET1

sGET THE DATE AND TIME
DATA

;H GETS DIGIT TABLE
ADDRESS

;D GETS ADDRESS TABLE

$NUMBER OF DIGITS To
WRITE +1

$SET HOLD BIT

$ANB WRITE IT OUT

$DECREMENT DIGIT COUNT

;SKIP THIS NEXT BIT IF NOT
DONE

;CLEAR A

;CLEAR HOLD BIT

;SHOW THAT THE TIME IS
NOW:

sWHATEVER

;PRINT TEE STUFF

sWE’RE DONE

;GET THE DIGIT INTO A

$AND PUT IT IN C

;GET THE COMMAND IN A

{WRITE THE DIGLT

sNEXT

;AND NEXT

;AND CONTINUE

jthis is the routine that gets the digits from the console and
jstores them intc memory at the address pointed to by HL.

GD5701 SETTIME CALL
211C04 LXT
111004 LXI
060D MV
3E40 MVI
D354 ouT
05 SET1 DCR
Cc24C01 JNZ
3ECO MV
D354A ouT
11F603 LXI
CcDeaG2 CALL
CDC701 CALL
c30301 JMP
7E HERE MOV
4F MOV
14 LDaX
Cch9301 CALL
23 INX
i3 INX
33801 JMP
114303 GETTIME IXI

CD6ADZ CALL
211C04 LX1
CD8201 GET1 CALL
FEOD CPI
CABFOL JZ
EGOF ANT
77 MOV
23 INX
C36001 JMP
110503 GETIDATE LXI
Cn6A02 CALL
cp8201 GET2 CALL
FEGD CPIL
c8 RZ
EGOF ANIL
77 MOV

D, ASKTIME
EMSG
H,DTABLE
GETHUMB
0DH
GETDATE
QFH

M, A

H

GET1
D,ASKDATE
PMSG
GETNUMEBE
ODH

OFH

M, A

sPROMPT. TIME INPUT

;ADDRESS TO PUT DIGITS

$GET DIGIT

;IS IT A CR?

$YES, GET THE DATE

;CONVERT TO BCD

;OTHERWISE, PUT THE DIGIT
IN MEMORY

; INCREMENT THE TABLE
ADDRESS

;GET THE NEXT DIGIT

;IS IT A CR?

sYES, RETURN
;CONVERT TO BCD

;PUT DIGIT IN MEMORY

017E
G017F

0182
0185
0187
0188
018A
018D
018F
0192

0le3
0194
0196
0198

0L9A
019D
019E
0140
0143
01A5
G1AS
0lA9

01AB
0lAR
GlAF
0181
gLB2

01B4
0lB6
OlBS
0184

O1BB
O1BD
O1BF
01C1
01C3

23
C37501

INX
JMP

H
GETZ

ythis routine gets a character from the console, and checks the
sinput for either a carriage return or a valid digit between 0-9
s59will not return until a CR or valid digit is typed.

CD3B02
FEOD
c8
FE30
DAB201
FE3A
D28201
co

GETNUMB CALL

GPI
RZ

CP1
Jc

CPL
JHC
RET

GETCHAR
0Dl

‘o”
GETHUMS
‘941

GETNUMB

;GET A CHARACTER
;I8 IT A CR?

;this routine writes the digit to the clock, and checks to

;see if it”s the hours or days 10 digit and sets the 24 hour
sand leap year bits accordingly.
;digit address in A and the digit to be written in C.

F5

Co40
D354
FE45

24301
79
c608
C3AF0L
FE48
C2AEQL
79
E603

C3AFC1
79
D35B
Fl
¢660

D354
D&20
D354
co

celo
D354
FEL15
DBSB
co

WRTDGT PUSH

ADT
oUT
CPI

JNZ
MOV
ADT
JMP
WRT1 CPL
JNZ
MOV
ANI

JMP
WRTZ MOV
WRT3 OUT
POP
ADI

out
SUL
QUT
RET

;and AM/PM/24 hour mode bits.
;jaddress in A and returns with the digit value in &

RDEGT ADI
QUT
CPL
IN
RNZ

PSW
HOLD
CLKCMD
3+HOLD

WRT1
A,C
08H
WRT 3
8-+HOLD
WRT?2
4,0
03K

WRT 3

A,C
CLKDATA
PSW
WRITE+HOLD

CLKCMD
WRITE
CLKCMD

READ
CLECMD
OSH+READ
CLKDATA

This routine is called with

;SAVE THE COMMAND

;ADD IN THE HOLD BIT

;AND QUTPUT IT

sWAS IT THE HOURS 10
BIGIT?

s NO

sOTHERWISE GET THE DIGIT

;AND SET 24 HOUR MODE

;WAS IT THE DAYS 10 DIGIT

S HO

sOTHERWISE GET THE DIGIT

sAND SET NON-LEAP YEAR
MODE

;PUT THE DIGIT IN A

;AND OUTPUT IT

;GET THE COMMAND BACK

3ADD IN THE WRITE AND HOLD
BITS

;SEND IT OUT

;CLEAR THE WRITE BIT

JAND SEND IT

;NOW WE’RE DONE

jthis routine reads a digit from the clock and masks the lsap year
This routine is called with the digit

;ADD IN THE READ BIT
;AND OUTPUT IT
;WAS IT THE HOURS L0 DIGIT
;GET THE DIGIT
;IF IT WASN’T, WE’RE DONE

31

0ic4 D608 SUI 08 - sIF 1T WAS, THEN KILL 24
HOUR BIT
Q1C6 C9 RET ;AND THEN RETURN

sthis routine prints the current time and date once and returns
;{complete with colons and slashes)

01C7 211004 CLKPRNWT LXI H,ATABLE ;GET THE TABLE ADDRESS
o 1IN HL :

GlCA CDFBOL CALL PRINTWO ;PRINT THE FIRST TW

: DIGITS :
01CD 3E3A MVI . A,":’
01CF ¢D5602 CALL PCHAR
01B2 CDF¥BOL _ CALL PRINTHWO sPRINT THE NEXT TWO DIGITS .
01D5 1JE3A MVI A7
01D7 CD5602 CALL PCHAR
01DA CDFBO1 CALL PRINTHWO ;PRINT THE NEXT TWO DIGITS
g1pD 3E20 MVI A, 7
01DF CD5602 CALL PCHAR sPRINT TWO SPACES
0lE2 3E20 MVI A" "
01E4 €CD5602 CALL PCHAR
01E7 CDFBO1 GALL PRINTWO ;PRINT TWO MORE DIGITS
OlEA 3E2ZF MVI T ;PRINT A SLASH
01EC CD5602 CALL PCHAR
O0lEF CDFBOL CALL PRINTWO
01F2 3E2F MYI AL
01F4 CD5602 CALL PCHAR
01F7 CDFBO1 CALL PRINTWO :PRINT THE LAST TW0 DIGITS
01FA C9 RET :WE"RE DONE

;this routine prints two digits from the clock. It is called with
sthe digit address of the first digit in HL. Exits with HL pointing
sto the address of the next two digits.

0lFB 7E PRINTWO MOV AM 3;GET THE ADDRESS FROM
TABLE

G1FC CDBBOL CALL RODGT sREAD THE DIGIT

OLFF C630 ADT 30H sCONVERT TO ASCII

0201 CcD5602 CALL PCHAR sAND PRINT IT

0204 23 INX H ; INCREMENT THE POINTER

0205 7E HOV CAGM ;GET THE NEXT ADDRESS

0206 CDBBOL CALL RDDGT

0209 C630 ADI 30H

0208 CD53602 CALL PCHAR

020E 23 INX H

020F C9 RET

sthis routine prints the time ounce and jumps back to the main loop

0210 11F603 PTIME LXI D, TIMELS ;PRINT "THE TIME IS -"

0213 Ccp6A02 CALL PMSG

0216 CDC70t CALL CLKPRNT ;AND PRINT THE TIME AND
DATE

0219 C30301 JMP START ;AND RESTART

021C
021E
0221
0223
0226
0229
0228
022E
022F
0231
0234

0235
0238

0238
023¢
023E
0241
0242

0244
0247
0249
024G
024E
0250
0252
0255

0256
0257
0258
0254
025B
025E
0260

0263
0264
0265
0266

jthis routine prints the time forever (unless a CNTL C 1s typed)
;it continually reads the seconds 1 digitc and waits for it to
jchange before printing the time.

3EQA FOREVER MV A,0AH ;LINE FEED

CD5602 CALL PCHAR $SEND IT

320D FOR1 MVL A,0DH sCARRIAGE RETURN

CD5602 CALL PCHAR $SEND IT

CDG701 CALL CLKPRNT sPRINT THE TIME

3E00 MVL A,0 ;ADDRESS OF SECONDS DIGLIT

CDBBO1 CALL RDDGT $READ THE SECONDS DIGLT

47 MoV B,A 38AVE IT IN B

3E00 FOR2 MVI A,0

CDBBOL CALL RODDGT sREAD IT AGATN

B8 CHMP B ;}COMPARE IT TO THE ONE WE
JUST READ

CA2F02 JZ FOR2 ;LOOF IF IT"S THE SAME

c3z2102 JHMP FOR1 ;OTHERWISE PRINT LT AGAIN

;:CP/M CALLS ANRD UTILLTIES

;jthls routine gets a character from the console, converts it to
suppercase, strips off the parity and checks for CNTL C

E5 GETCHAR PUSH H $SAVE HL

0E0) MVI ¢,01 {CHARACTER IN FUNCTION

CD0500 CALL BDOS

£l POP H

FE61 CPL ‘a’ sRANGE CHECK FOR UPPER
CASE

DA4GEO? Jc SKIP ;CONVERSION

FE7B CPI ‘2741 ;

D24E02 JNC SKLP

E6SF AN SFH ;CONVERT TO UPPER CASE

E67F SKIP ANI 7FH ;{AND STRIP PARITY

FEQ3 cPI 03H ;I8 IT A CNTL C?

CA0000 Jz 0000H ;YES, RESTART SYSTEM

c9 RET sOTHERWISE WE’RE DONE

sthis routine prints a character on the console and checks
sto sea if any characters were entered while printing.

D5 PCHAR PUSH D ;SAVE D REGISTER

SF MOV E,A sCHARACTER TO PRINT IN E

QE02 MVI G¢,02H $CHARACTER OUT FUNCTION

ES PUSH H $SAVE HL

cD0o500 CALL BDOS

DEOB MVI c,0BH ;CONSQLE STATUS CHECK

cno500 CALL BDOS 3;SEE IF A CHARACTER WAS
TYPED

El POP H

D1 POP D

B7 ORA A ;SET THE FLAGS

C43B02 CNZ GETCHAR 5IF A CHARACTER WAS TYPED,
GO GET 1T

33

34

0269 C9 RET sOR RETURN

;this routine prints the string pointed to by DE until a $ is
sencountered. Should be called with DE pointing to start of string.

026A E5 PMSG PUSH H

026B 0OE09 MVI C,09H ;PSTRING FUNCTION

026D CD0500 CALL BDOS

0270 El POP H

0271 Cc9 RET

iMESSAGES
U272 ODOAODDAS4SIGNON DB ODH, 0AH, ODH, 0AH, “TIME AND DATE TEST
_ ROUTINES FOR *

0296 5359535445 DB “SYSTEM SUPPORT 17,0DH,0AH, ODH, (AR

02AA 504C454153 DB ‘PLEASE TYPE ONE OF THE FOLLOWING
COMMANDS: © ,0DH, OAH

02D6 53202D2053 DB ‘S — SET THE TIME AND DATE’,O0DH,O0AH

02F1 50202b2050 DB "P - PRINT THE TIME AND DATE ONCE’,0DH,0AH

0313 43202D2043 DB ‘C = CONTINUQUSLY PRINT THE TIME ARD
DATE ,0DH, 0AR

033D 5820202045 DB “X - EXIT TO OPERATING SYSTEM’,0DH,0AR

0358 0DOA434F4D DB ODH, 0AH, “COMMAND: $§°

0367 ODQA544841ERROR DB ODH, 0AH, "THAT WAS NOT ONE OF THE ABOVE
COMMANDS *

038F ODQOAS04C45 DB QDH, 0AH, “PLEASE TRY AGAIN $7

03A3 ODOAS74841ASKTIME DB ODH, OAH, “WHAT IS THE TIME?
(24 HOUR FORMAT ~ HH:MM:S8) $§°

03D5 QDOA574841ASKDATE DB ODH,0AH, “WHAT 1S THE DATE? (MM/DD/YY} $°
03F6 ODOAS44845TIMEIS DB ODH,QAH, ‘THE TIME AND DATE ARE: $”
sDIGIT ADDRESS TABLE
sthis table contains the "address" wvalues that are sent in the

scommand byte in the following order: Hours 10, Hours 1, Min 10,
tMin 1, Sec 10, Sec 1, Month 10, Month 1, Days 10, Days i, Years 10

;Years l.

0410 0504030201ATABLE DB 5,4,3,2,1,0,04H4,9,8,7,0CE, OBH
;this is the area which gets the digits as they are entered from the
jconsele.

041¢ DTABLE DS 12

sthis is the area for the stack

0428 Ds 32 ;FOR 16 LEVEL STACK
STACK

PROGRAMMING THE INTERRUPT CONTROLLERS

The two interrupt controllers used on the System Support 1l are the 325%
from eicher Incel or NEC., This chip is very versatile and has many operating
modes. Rather than try to explain cthem all to you, we have chosen to reprint
several pages from Intel’s AP-59 application note on using the 825%9A. This is
excallently written by Rebin Jigour.

The specific hardware implementation of the two 8259As on thne System Support
1 is a master/slave arrangement with 7 of the master’s interrupt inputs and one
of the slave’s hooked up to the 5-100 vectored interrupt lines. The 7 remaining
interrupt inputs to the slave are connected to the oun—beard interrupt sources.
The interrupt ocutput from the slave is connected to the eighth interrupt input
of the master., This is shown in more detail in the section entitled "Interrupt
Jumpers and Options" in the hardware configuration section of this manual.

The interrupt controllers take up four 1/0 port addresses (two for each).
The exact port addresses will depend on how you have the board addressed, but
their relacive addresses are shown in the I/0 Port Map section of this manual.

The reprint below should explain everything you want to know about the 8253%A
and how to program it. After the reprint we will give you a sample prograwm that
can be used rto initialize the interrupt controllers.

IMPORTANT ROTE ABOUT USING DDT TO DEBUG INTERRUPTS

When using DDT under CP/M to debug interrupt routines, you should be aware
that when DDT is invoked and after a "G" command is issued, DDT will enable
interrupts. This can be catastrophic because your program will not have control
over when interrupts are enabled or disabled.

Tnere is only one practical solution to the problew and that is to modify
DDT to not enable interrupts. To modify DDT so that it will not enable
interrupts, perform the following steps: 1. Hake sure the computer’s power is
off and remove the System Supporkt 1l from the system. 2. Power the system back
up and type the following (things you type are underlined, things the computer
types are not):

A>DPT DDT.COM (return)
DDT VERS n.n

NEXT PC

1400 G100

~SABO {return) Where X=2 for DDT 2.0 and below
0ABO FB 00 (return) and X=8 for DDT 2.2

0ABl C9 . (return)

~5102X (return)

102X FB 00 (return}

102X 24 . (return)

-"C

A>SAVE 19 DDT.COM (return)

35

36

INTRODUCTION

The Intel 82594 is a Prograrfmmable Interrupt Contrsller
(PIC) designed for use in realtime interrupl driven
micrecomputer systems. The 82594 manages eight
levels of inierrupts and has built-in features tor expan-
5i0n up 10 64 levels with addilional 82594's, Its versatile
design allows it to be used within MCS-80, MCS-85,
MCS-86, and MCS-88 microcomputer systems. Being
fully programmable, the 8259A provides a wide variety of
mades and commands to tailor 82534 intarrupt process-
ing for the specific needs of the user. These modes and
commands control a number of interrupt orienled tunc.
tions such as interrupt priority selection and masking of
interrupts. The B259A programming may be dynamically
changed by the sofiware at any 1ime, thus aliowing com-
plete inferrupt control throughout program execution.

The 82594 is an enhanced, fully compatible revision of
its pradecessar, the B259. This means the 8259A can use
all hardware and software originally designed for the
8259 without any changes. Furthermore, it provides ad-
ditional modes that increase its flexibility in MCS-80
and MCS-85 systems and aliow it to work in MCS-86 and
MCS-88 systems. These modes are:

MCS-B6/88 Mode

Automatic End of interrupl Mode
Level Triggered Mode

Special Fully Nested Mode
Buffered Mode

Each of these are covered in depth further in 1his appli-
cation note,

LIS I B

This application note was written to explain completely
how to use the B259A within MCS-80, MCS-85, MCS-86,
and MGS-88 microcomputer systems, It is divided into
five sections. The firsi sectien, “*Concepts”™, explains
the concepts of interrupts and presents an overview of
how the B259A works with each microcomputer system
mentiocned above. The second section, “Functional
Biock Diagram', describas the internal functions of the
82594 in block diagram form and pravides a detailed
functional description of each device pin. “Operation ot
the B259A", the third section, explains in depth the
operation and use of each of the B259A modes and com-
mands. For clarity of explanation, this section doesn't
make reterance to the actual programming of the B259A.
Instead, all programming is covered in the fourth se¢-
tion, *Programming the 8259A". This section explains
how to program the 8258A with the modes and com-
mands mentioned in ihe previcus section,

The reader should note that some of the terminclogy
used throughoul this application nole may differ
slightly from existing dala sheeis. This is done 1o better
clarify and explain ihe operation and programming of
the B259A.

1. CONCEPTS

In microcompuler systems there is usvally a need for
the processor 10 communicate with various InputfQut.
put (HO) devices such as keyboards. displays. 5ensors,
and other peripherats. From the sysiem wiewpoint, (he
processor should spend as liltle time as possible servic-
ing the peripherals since the lime reguired for these 11O
chores directly aftects the amount ol {ime avadabie for

other tasks. In other words, the sysiem should be
designed so that IfO servicing has little or no effect on
the total system throughpul. There are two basic
meifods of handling 1he 110 chores in a syslem: status
polling and interrupt servicing.

The status poll method of 1O servicing essentially in-
valves having the processor "ask” each peripheral it it
needs servicing by testing the peripheral's status line. [f
the peripheral requires service, the processor branches
to the appropriate service routine; if not, the processor
continues with the main program, Cleatly, there are
several problems in implementing such an approach.
First, how often a peripheral is polled is an imporiant
constraint, Some idea of the “frequency-of-service”
required by each peripherai must be known and any soft-
ware written for the system must accommodate this
time dependence by “scheduling” when a device is
polled. Second, there will obviously be times when a
device is polied that Is not ready for service, wasting the
processor time that it took 10 do the poll. And other
times, a ready device would have to wail unlil the proc-
essor “makes its rounds™ before it could be serviced,
slowing down the peripheral.

Other problems arise when certain peripherats are more
important than others. The only way {0 implement the
“priority” of devices is to poll the high priority devices
more frequentty than lower priority ones. It may even be
necessary to poll the high priorily devices while in a low
priarity device servige routine. It is easy to see that the
polied approach can be inefficient both time-wise and
sofiware-wise. Overall, the polied method of 110 servic.
ing can have a detrimental effect on system throughput,
thus limiting the lasks thal can be performed by the
processor.

A more gesirable approach in mosi systems would allow
the processor to be executing its main program and only
siop to service the /O when told to do so by the IO
itself, This is called the interrupl service method. In
effect, the device would asynchronously signal the proc.
assor when it required service. The processor would
finish #s current instruction and then vector to the
service routine for the device reguesting service. Once
the service rouling is complete, the progessor would
resurne exactly where it ieft off. Using the interrupl ser.
vice method, ne processcr iime is spent tesling devices,
scheduling i5 not needed, and priority schemes are
readily mmplemented. It i5 aasy to see that, using Lhe in-
terrupl service approach, system throughpul would in-
crease, allowing more tasks to be handled by the
processor.

However, t0 implement the interrupt service method
between processor and peripherals, additional hargware
is usually required. This is bacause. after interrupting
the processocr. the device must supply information for
vecloning pragram execution. Depending on the proc-
essor used, this can be accomplished by the device lak.
ing control of the dala bus and “jJamming " an nstruc:
tanis) onto it. The inslruchonisi then veclors the pro-
gram to the proper service rautineg, This of course re-
guires addiional control logic for each interrupl re.
questing device. Yet the implementation 5o (ar is only in
the most basic form. What il certain peripherals are to

be of higher pricrity than olhers? What if certain inter-
rupts must be disabied while others are to be enabled?
The possible variations go on, but they all add vp to one
theme; to provide greater flexibility using the interrupt
service method, hardware requirements increase.

So, we're caught in the middle, The status poll method
is a less desirable way of servicing VQ in 1grms of
throughput, but its hargware requirements are minimal.
On the other hand, the interrupt service methad is most
desirable in terms of flexibility and throughput, but
additional hardware {s required.

The perfect situation would be to have the flexibility and
throughput of the interrupt method in &n impiementa-
tion with minimal hardware requirements. The 8259A
Programmable Interrupt Controiler {PIC} makes this all
possidle.

The 8259A Programmable interrupt Controller (PIC) was
designed to function as an overall manager of an inter-
rupt driven system. Ng additional hardware is required.
The 8259A alone can handle eight prioritized interrupt
levels, controlling the complete interface between pe-
ripherals and processor. Additional 8259A's can be
“cascaded™ to increase the number of interrupt levels
processed. A wide variety of modes and commands for
programming the 8259A give it enough flexibility for
almast any interrupt controlled structure. Thus, the
82594 is the feasible answer to handling 10 servicing in
migrocomputar systems.

Now, before explaining exactly how to use the §259A,
lat’s go aver interrupt structures of the MCS-80, MCS-85,
MCS-86, and MCS-88 systems, and how they interact
with the 8259A. Figure 1 shows a block diagram of the
B259A interfacing with a stangdard system bus. This may
prove useful as reference throughout the rest of the
"Concepts' section.

¢ ADDAESS BUS.)
§ CONTROY BUS !
‘ 7OR | 170w IINT NTa
§ DATA BUS |
5 ay 0,0y, AD INT [HTA
CASCADE 2594
CINES casY x
casz Ima mq ma IR mo mn mn "o
SREN 7
SLAVE i
FN»DGJENIBI.E mrennupf
BUFFER AEQLESTS

Flgura 1. 82%3A Inierfacs 10 Sisndard System Bus

1.1 MCS-80"™™—8250A OVERVIEW

In an MCS-B0—B8259A interrupt configuration, as in
Figure 2, a device may cause an interrupt by pulling one
of the B259A’s interrupt request ping {{RO-1R7} high. It
the 8259A accepts the interrupt request (this depends
on its programmed condition), the 8259A's INT (inter-
rupt) pin will go high, driving the 8080A's INT pin high.

The BOBOA can receive an intarrupt request any time,
since its INT input is asynchroncous, The 80804, how-
aver, doesn't always have to acknowledge an interrupt
request immeadiately. It can accept or disregard re-
quests under software contirel using the El {Enabie Inter-
rupt) or Bt (Disable interrupi) instructions. These in-
structions either set or reset an internai interrupt enable
flip-flop. The output of this flip-flop controls the state of
the INTE {Interrupt Enabled) pin. Upon reset, the B0B0A
interrupts are disabled, making INTE low.

At the end of each instruction cycle, the B080A exam-
ines the state of its INT pin. If an inlerrupt request is
present and interrupts are enabled, the 8080A enters an
interrupt machine ¢ycle. During the interrupt machine
cycle the BOBDA resets the internal interrupt enable flip-
flop, disabling further interrupts until an El instruction
is executed. Unlike normal machine cycles, the interrupt
machine cycie doesn't increment the program counter,
This ensures that the 80B0OA can return to the pre-
interrupt program location after the interrupt is com.
pleted. The 80B0A then issues an INTA {Interrupt
Acknowledge) pulse via the 8228 System Controller Bus
Driver. This TNTA pulse signals the 82594 that the 8080A,
is honoring the request and is ready to process the inter-
rupt.

Tha 8259A can naw vector pragram execution to the cor-
responding service routine. This is done during a se-
quenca of the thrae INTA pulses from the S080A via the
8228. Upon receiving the first INTA pulse the 5259A
places the opcode for a CALL instruction on the data
bus. This causes the contents of the program counter to
be pushed onto the stack. In addition, the CALL instruc-

tion causes two more INTA puises to be issued, allow-

ing the B259A to place conto the data bus the starting
address of the corresponding service routine. This
address is called the interrupt-vector address. The lower
8 bits {LSB) of the interrupt-vector address are released
during the second INTA puise and the upper 8 bits
{MSB) during the third INTA pulse. Once this sequence
is completed, program execution then vecters to the
service routine at the interrupi-vector address.

If the same registers are used by both the main program
and tha interrupt service routine, thair contents should
be saved when entering the service routine. This in-
cludes the Program Status Word {PSW} which cansists
of the accumulator and flags. The best way 10 do this is
te “PUSH" each register used onto the stack. The ser-
vice routine can then "POP" each register oft the stack
in the reverse arder when it is completed. This prevents
any ambiguous operation when returning to the main
program,

Once the service routine is completed, the main
program may be re-entered by using a normal RET
{Return) instruction, This will “POP" the original ¢on-

37

38

tents of the program counter back off the stack to
resume program execution where it ieft off. Note, that
because intesrupts are disabled during the interrupt
acknowledge sequence, the E1 instruction must be
axecuted aither during the service routing or the main
program before further interrupts can be processed,

For additional information on the 80B0A interrupt struc-
ture and operation, refer to the MCS-80 User's Manyal.

1.3 MCS-86/88™.- 22504 OVERVIEW

Operation ot an MCS-86/88—82594 configuration has
basic similarities of the MCS-80/85—8253A configura-
tions, That is, a device can cause an interrupt by pulling
one of the 8259A°s interrupt requast pins (|RO-IRT) high.
If the B259A hanars the request, its INT pin will do high,
driving the B0858/8088's INTR pin high. Like 1he 8080A
and 80854, the INTR pin of the 8086/8088 is asynchro-
nous, thus it can receive an interrupt any tima. The
8086/8088 can also accept or disregard requests on
INTA under software control using the 8T1 (Set Interrupt)
or CLI {Clear Interrupt) instructions. These instructions
set or clear ihe interrupt-enabled flag IF. Upon
80B6/80BA reset the IF flag is cleared, disabling external
interrupts on INTA. Beside the INTR pin, the 8086/8088
provides an NMI (Non-Maskable Interrupt) pin. The NMI
functions similar to the 8085A's TRAP; it can' be dis-
abled or masked. NM1 has higher priority than INTR.

. Although there are some basic similarities, the aciual

processing of interrupts with an 8086/8088 is different
than an 80B0A or 8085A. When an interrupt request is
presant and interrupts are enabled, the 8086/8088 enters
ita interrupt acknowledge machine cycle. The interrupt
acknowladge machine cycle pushes the flag registers
onto the stack (as in a PUSHF instruction). It then clears
the IF flag wivch disables interrupts. The contents of
both the code sagment and the instruction painter are
then also pushed onto the stack. Thus, the stack retains
the pre-interrupt flag status and pre-interrupl program
location which are used to return from the service
routing. The 8086/8088 then issues the first of two INTA
pulses which signal the 8259A that the 80B6/B0B8 has
henored its interrupt request. Hf the B086/8088 is used in
its "MIN Mode” the INTA signal is avallable from the
8086/8088 on its INTA pin. If the BDBE/B088 is used in the
“MAX Made" the INTA signal is available via the 8258
Bus Controlier INTA pin. Addilionally, in the “MAX
Mode” the BO26/8088 LOCK pin goes low during the in-
terrupt acknowledge sequence. The LOCK signal can be
used to indicate to other system bus masters not to gain
control of the system bus during the interrupt acknowl-
edge sequence. A “"HOLD" request won't be honored
white LOCK is low.

The B259A is now ready 10 vector program execution to
the corresponding service routine. This is done during
the sequence of the two INTA pulses issued by the BOBE/
8088, Unlike operalion with the BOB0A or BO8SA, the
§258A doesn't place a CALL instruction and the starting
address of the service routine on the data bus. Instead,
the tirst INTA pulse is used only 10 signal the 82534 of
the honored request. The second INTA puise causes the
B259A to piace a single interrupt-vector byte onto the

data bus. Not used as a direct address, this interrupt-
vector byte pertains 1o one of 256 interrupt *'types" sup-
ported by the B086/808B mernory. Program execution is
vectored to the corresponding service routing by the
contents of a specified inlerrupt type.

All 256 interrupl types are located in absolute memory
locations 0 through 3FFH which make up the 8086/
8088's interrupt-vactor table. Each type in the interrupt-
vector table requires 4 bytes of memory and stores a

‘code segment address and an instruction pointer ad-

dress. Figure 5§ shows a block diagram of the interrupt-
vector tabte. Locations 0 through 3FFH should be
reserved far the interrupt-vector table alone. Further-
more, memory locations 00 through 7FH {types 0-31) are
reservad for use by Intel Corparation for Intel hardware
and software products. To maintain compatibilily with
pregent and future lntel products, these locations
should not be used.

IFRH

INTERAUPT TYPE 255
IFCH

IFEH

INTEARUPT TYPE 254
3FEH

BH

INTERAUPT TYPE 2
aH
™

IKTERALRT TYPE
-

H

IMTERAURT TYPED

qH

Figure 5. B0BB/B0BS Interrup Vacior Tsbie

When the 8086/8088 recerves an imterrupt-vactor byle
from the BZ5%A. it mulliphies its value by lour to acquire
the address of the inferrupt type. For example, d the
intarrupt-vactor byte specifies type 128 (BOH). the vac.
torad address in 8086/8088 memory is 4 x 80H. which
equals 200H. Program execulion is then vectored to the
sarvice routing whose address is specified by the code
segment and instruction pointer values within type 128
located at 200H. To show how this is done, [et's assume
interrupt type 126 is to veclor data to 8086/808B memaory
location 2FFSFH. Figure 6 shows 1wo possible ways to
set values of the code segment and instruction poinier
for vectoring to location 2FFSFH. Address generation
by the code segment angd instruclion ppinter 5 ag-
complished by an offset {they overlag). Of the total
20-bit address capability, 1he code segmeni can desig-
nate the upper 16 hits, the instruction pointer can
designate the lower 16 bits,

5 MSE) 2FH 1FFH

csush) FOH 1FEH

P iMSE} WA won TYPETR
P ILSEY SEH 1FCH

5 (MS8) 20H VFFH

c51Lsa) HaH 1FEH

IPIMSE) FFA 1FOH TYPE 128
IPLEB) SFH IFCH

Figurs €. Two Examples of B0AE/A085 Interrupt Type 128 Vacioring
1o Locallen 2FF5FH

When gntering an interrupt service routine, those regis-
ters thal are mutually used between the main program
and service routing should be saved. The best way to do
this is to "PUSH'" each register used onto the stack im-
mediately. The service routing can then “POP" each
register off the stack in the same order when it is com-
pleted.

Once the service routine is completed the main program
may be re-gntered by using a IRET {Interrupt Return) in-
struction. The IRET instruction will pop the pre-interrupi
instruction pointer, code segment and flags off the
stack. Thus the main program will resume where it was
interrupted with the same flag stalus regardiess of

changes in the service routing. Note espgcially that this
includes the state of the IF flag, thus interrupts are re-
enabled automatically when returning {rom the service
routine,)

.

Beside external interrupt generation frem the INTR pin,
the BOBE/BOBE is also able to invoke interrupts Ly soft-
ware, Three intarrupt instructions are provided: INT, INT
{Type 3), and INTO.{NT is a two byte instruction. the sec.
ond byte selects the interrupt type. INT (Type 3) is a one
byte instruction which selecis interrupt Type 2. INTO is
a conditional one byte interrupt instruction which
selects interrupt Type 4 if the OF flag {trap on overflow)
is set. All the software interrupts vector program execu-
tion as the hardware interrupts do.

For further information on 8086/8088 interrupt operation
and internal interrupt structure refer toc the MCS-86
Usar's Manual and the B086 Systemn Design application
nota.

2. 8258A FUNCTIONAL BLOCK DIAGRAM

A block diagram of the 8259A is shown in Figure 7. As
can ba seen from this figure, the 8259A consists of eight
major blocks: the Interrupt Request Register {|AR), the
in-Sarvice RAegister {ISR), the Interrupt Mask Register
(IMR), the Priority Resolver {PR), the cascade buffer/
comparator, the data bus bufter, and logic blocks for
control and readiwrite. We'll first go over the blocks
directly retated to interrupt handling, the IARA, ISA, IMR,
PR, and the centrol logic, The remaining functional
blacks are then discussed.

PIN CONFIGURATION

BLOCK DIAGRAM

- L iNTA INY
[=3m B} 20 Ve
wal]:z 27 [a4,
Aol 2 26 [JiNTA
]+ 2% [JA?
o= 24 L) Rg o oATA CONTROL LOGIC
o, s 20 ms o w‘:-"f“
o, 7 22 [0mns 1
* §250A P
o,0s 71 2R3
o,C]e » [Jr2 ?
0,] o 12 PR [ﬁ[' l lﬂ
o, v 18 7 1R
casal]2 17 DINT el -—::o
- fo-—— A%
cas1[] 1 16) SMER WA — —wof HEAD? a2
WRAITE el L] INTEARUFT)
GNO] 14 15 [Jcasz LOGIC seavice | Iraiomiry |] AEQuesT [+— A3
“ﬂ - REG <\,.‘, ﬁESDI.\I'ERK‘ - REG l-=—— 1R4
HSH} {IARA] RS
PIN NAMES _ 7 e
C5 -
D,-Dy DATA BUS (BIDIRECTIONALT P~ -AY
R0 __ AEADINPUT] [I l
WR WRITE INPUT o
A, COMMAND SELECT ADDRESS GASD = = i O INTEARUPT MASK REG
— IMR .
= CHIP SELECT cast = o Sncatt | R
CAS1.CAS0 _CASCAODE LINES | COMPARATOR
SHER SLAVE PROGRAMIENABLE BUFFER casz = =
INT INTERAUPT OUTAUT] j .
INTA INTERRUPT ACKNOWLEDGE INPUT ShER - INTER
JAD-IR7 __ INTERRUPT REOUEST INFUTS NTEANAL Bus

Flgura 7. 82584 Bloch D.

and Pin €

o

39

2.1 INTERRUPT REGISTERS AND CONTROL LOGIC

Basicatly, interrupt requests are handled by three “'cas-
caded"” registers: the Interrupt Reguest Register {IRR) is
use to store all the interrupt levels requesting service;
the In-Service Register (ISR} stores all the levels which
are being serviced; and the Interrupt Mask Register
(IMR) stores the bits of the interrupt lines to be masked.
The Priority Resolver (PR) locks at the IRR, 1SA and IMR,
and determines whether an INT should be issued by the
the contrel logic to the processor.

Figure 8 shows congeplually how the Interrupt Request
(IR) input handles an interrupt request and how the
various interrupt registers interact. The figure repre-
sents one of eight “daisy-chained" prigrity cells, one for
each IR input.

The best way 10 explain the operation of the priority cell
is to go through the sequence of internal evenis that
happen when an interrupt request occurs. However,
first, notice thail the input circuitry of the priority cell
allows far both level sensitive and edge sensitive IR in-
puts. Declding which method to use is dependent on Lhe
particuiar application and will be discussed in more
detail later.

When the IR input is in an inactive state (LOW), the edge
sense lateh is set. If edge sensitive triggering is
gselected, the “Q" output of the edge sense latch will
arm the input gate to the request latch. This input gate
will be disarmed after the IR input goes active (HIGH}
and the interrupt request has been acknowledged. This
disables the input from generating any further inter
nipts until it has returned low to re-arm the edge sense
latch. If lave! sensitive triggering is salected, the Q"
output of the edge sense latch is rendered useless. This
means the level of the IR input is in complete control of
interrupt generation; the input won't be disarmed once
acknowledged.

When an interrupt accurs on the IR inpul, it propagates
through the request latch and to the PR {assuming the
input Isn't masked). The PR (ooks at the incoming re-
quests and the currenily in-service interrupts to ascer-
tain wheiher an interrupt should be issued Lo the proc-
€850r. Let's assume that the request is the oniy ong in-
coming and no requests are presently in service. The PR
then causes the control logic to pull the INT line to the
processor high,

LTiW Bt
T T| PRIQAITY
S eEDGE O OTHER PRIORITY CELLS P
T LEVEL
SRAIT

EOGE
SENSE
LaTtw ‘ serisn | PPMORITY

N SERVICE
LATEH

RESOLYER

hi .
Y COMTRAOL

1061

SET

REQUEST

LATCH

= MO
A b a WASK T MASKED
LATGH REC
0 o qQ
WNTA ._| q
MOSBAS
WMODE [LA -
FREEZE | | INTERWAL
DATA BYS
A = = = i’
_ 9 g 2 o 2
INTA -3 - 2 5 a
- g ¥ ¥
= -
E =

NOTES

1. MASTER CLEAR ACTIVE ONLY DURING [TWI
2. FREEZE 15 ACTIVE DURING INTAr AND POLL SEQUENCES ONLY

2. TRUTH TABLE
L |

FOR DLATGH

T | DPERATION

-

FOLLOW

» 1 HOLD

-1

Figure 8. Priority Cell

When the processor honors the INT puise, il sends a se-
quence at INTA pulses to the B2594A (1three for BOBOAS
8085A, two for B0B6/B08E). During this sequence the
state of the request lateh is frozen {note the INTA-freeze
request timing diagram). Pricrity is again resolved by the
PR to determine the appropriate interrupt vectoring
which is conveyed to the processor via tha data bus,

40

Immediately after tha interrupd acknowledge sequence,
the PR sats the corresponding bit in the ISR which
stmultaneously clears the edge sense latch. if edge sen-
sitive triggering is used, clearing the edge sense latch
also. disarms the request latch, This inhibils the
possbility of a still active IR input from propagating
through the priority ceil. The IR inpul must return to an

inactive state, setting the edge sense laich, before
another interrupt request can be recognized. If level sen-
sitive triggering is used, however, clearing the adge
sanse latch has no affect on the request lateh. The stale
of the request latch is entirely dependent upon the IR in-
put level. Another interrupt will be ganerated immedi-
ately if the IR level is left active after its ISR bit has been
reset. An ISR bit gets reset with an End-of-interrupt (EOH}
command issued in the service routine, End-of-
interrupis will be covered in more detaii later.

2.2 OTHER FUNCTIONAL BLOCKS

Data Bus Buffer

This three-state, bidirectional 8-bit buffer is used to in.
terface the B2594 to the processor system data bus (via
DB0-DB7). Control words, status information, and
interrupt-vector data are transferred through the data
bus buffer.

Read/Write Control Logic

The funclion of this block is to control the programming
of the 8259A by accepting OUTput commands trom the
procassor. It aiso controls the releasing of status onto
the data bus by accepting INput commands from the
processor. The initialization and operation command
word registers which store the various control formats
are located in this block. The AD, WHR, A0, and T8
pins are used {0 control access to this block by the
processar,

Cascade Buffer/Comparator

As mentioned earlier, multiple B253A's can be combined
to expand the number of interrupt lavels. A master-slave
relationship of cascaded 82594's is used for the expan-
sion, The SFIEN and the CAS0-2 pins are used for oper-
ation of this block. The cascading of 8259A's is covered
in depth in the "Cperation of the B259A™ section of this
application note,

2.3 PIN FUNCTIONS

Name Pin# IIQ Function

Veeo 28 |+ 5V supply
GND 14 I Ground
cs 1 | Chip Sefect: A low en this pin en-

ables D and WR communicaticn be-
tween the CPU and the 8250A. INTA
functions are independent of TS,

WR 2 | Write: A low on this pin when CS is
low enables the B259A to accept
command weords from the CPU.

AD 3 | Read: A low on this pin when C3 is
low enables the 8259A to release
status anto the data bus for the CPU.

07-DO 4-11 IO Bidirectional Dala Bus: Control,
status and interrupt-vectos informa-
tion is transferred via this bus.

CAS0- 12,13, IfQ Cascade Lines: The CAS lines form a

Cas2 15 private 8259A bus to control @ muiti
pie B2594 structure, These pins are
ocutputs for a master 8259A and in-
puts for a slave 82594,

SPEN 16 WO Silave Program/Enable Buffer: This is

a dual function pin. When in the buf-
ferad mode it can be used as an oul-
put to control buffer transceivers
(EM). When not in the buffered mode
il is used as an inpul to designate a
master 8P = 1) or slave (SP=0).

INT 17 O Imégrrupt: This pin goas high whan-
ever a valid interrupt request is as-
serted. It is used to interrupt the
CPU, thus it is connected to the
CPU's interrupt pin.

IR0~ 18-25 | Inlterrupt Requests: Asynchronousin-

IR? puts. An interrupt request can be
generated by raising an IR input {low
10 high) and helding it high until it is
acknowledged (edge triggered mode),
or just by a high level on an IR input
{level triggered mode).

INTA 26 1 interrupt Ackpowledge: This pin is
used to enabte 8253A interrupt-vacior
data onto the data bus. This is done
by a sequence of interrupt acknowl-
edge pulses issued by the CPU.

Al 27 | A0 Address Line: This pin acts in con-
junction with the CS, WR, and RD
pins. It is used by the B259A to de-
ciphar between various command
words the CPU writes and status tha
CPU wishes to read. It is typically
connecied to the CPU A0 address
line (A1 for 8086/8088).

3. OPERATION OF THE 8259A

interrupt operation of the 8259A falls under five main
categoarias: vectoring, prioritias, triggering, status, and
cascading. Each of these categories use various modes
and commands. This seclion will explain the operation
of these modes and commands. For clarity of explana-
tion, howevar, the actual programming of the 82594 isn't
covared in this section but in 'Pragramming the 82394,
Appendix A is provided as a cross raference between
thase two sactions.

3.1 INTEARUPY VECTORING

Each IR input of the 8259A has an individual interrupt-
vector address in memory associated with i, Designa-
tion of each addrass depends upon the initial program-
ming of the B259A. As stated earlier, the interrupt
sequence and addressing of an MGCS-80 and MCS.85
sysiam differs from that of an MCS-86 and MCS-B88
system. Thus, the 8259A must be initially programmed
in sither a MCS5-80/85 or MCS-86/88 mode of operation to
insure the correct interrupd vecioring,

41

42

MCS-20/85™ Mode

When programmed in the MCS-80/85 mode, the 8259A
should only be used within an 8080A or an S085A
systam. In this mode the B0BOA/B085A wili handle intar-
rupts in the farmat described in the “MCS-80—82534 or
MCS-85—8259A Overviews.”

Upon interrupt request in the MCS-80/85 mode, the
B8259A will cutput to the data bus the opcode for a CALL
instruction and the address of the desired routine. This
is in response to a sequence of three INTA pulses
issued by the B0BOA/B0B5A after the B259A has raised
INT high.

The first INTA pulse to the 82594 enables the CALL
opcode "CDy" onto the data bus. it also resoives IR pri-
orities and efle¢ts operation in the cascade mode,
which will be covered later. Contents of the first
interrupt-vectar byte are shown in Figure 9A.

During the second and third INTA pulses, thé B259A
conveys a 16-bit interrupt-vector address to the B0B0AS
80854, The interrupt-vector addresses for all eight levels
are selected when initially programming the 8259A.
However, only one address is needed for programming.
Interrupt-vector addresses of IAQ-IR7? are automatically
set at equally spaced intervals based on the one pro-
grammed address. Address intervais are user definable
to 4 or B bytes apart. If the service routing for a device Is
short it may be possgible 1o fil the entire routine within
an 8-byte interval, Usually, though, the service routines
require more than B bytes. So, a 4.byte interval is used to
store a Jump (JMP) instruction which directs the 80B0A/
H085A to the apprepriate routine. The 8-byte intzrval
matntains compatibility with current 80BOA/BORSA
Restart (AST) instruction software, while the 4-byte in-
terval is best for a compact jump table. If the 4-byte in-
terval is selected, then the B259A wili automatically
insert bits AD-Ad4. This leaves A5-A15 toc be pro-
grammed by the user. If the 8-byte interval is selected,
the 825%A will automatically insert bits AQ-AS5. This
leaves only A6-A15 1o be programmed by the user,

The LSB of the interrupt-vector address is placed on the
data bus during the second INTA puise. Figure 98
shows the contents of the second interrupi-vector byte
for both 4 and 8-byte injervals.

The MSB of the interrupt-veétor adoress is placad onthe
data bus during the third INTA pulse. Contents of the
third interrupt-vector byte is shown in Figure 9C.

A, FIRST INTERRUPT YECTOR BYTE, MC580/85 MODE

07 o DE D4 D3 D2] aa

]

CALL CODE 1 1 a] 1 1

#. SECOND iNTERRUPY YECTOR BYTE, MCSB0MS MO DE

[L.] Intoresd = 4

DY [[D4 [7] 02 1] 0o
7 A7 Al AS 1 1 1 0 [
[] A7 Al AS 1 1 0 0 [
] AT A8 A5 1 [} 1 [} 0
4 AT A ASY 1 0 [1] 0 Q.
3 AY AY AS [3 1 [0
2 AT AB A5 0 1 [[} [
1 AT A5 A5 [} 0 1 0 0
0 AT AR A5] 0 [0 [
" Interval =8

o7 [oS D4 03 o2 [l 00
7 A7 A8 1 1 1) Q]
[A7 AS 1 1 0] [0
5 AT 1 1] 1 1] a 1]
4 AT AB 1 0 0 0 0 0
3 A7 0 1 t [n]
2 A7 A 0 1 0 [0]
t | ar 5 0 [} 1 [} 0 o
0y ar AG 0 4] 1] [} 0 o

[x]

. THIRD INTERRUPT YECTOR AYTE, MCSHYAS MODE

or D&] D4 D2 DI Ot Do
as | oaa Doann T oag T an [T aw T as

Figure . 2A-C. (nlerrupt-Vactor Bytes for D259A, MCS SVBS Mode

MCS-86/86™ Mode

Whan programmed in the MCS-86/88 mode, the 82594
should only be used within an MCS-86 or MCS-B8
system. In this mods, the BOBE/S08S will handle inter-
rupts in the format described earlier in the “8259A—
BOBG/B0BE Overview".

Upon interrupt in the MCS-86/88 mode, the B259A will
output a single imemupt-vector byte to the data bus.
This is in response 10 onty two INTA puises issued by
the B8086/80B8 after the 82594 has raisad INT high.

The first TNTA pulse is used only ter sel-up purposes in-
tarnal to the 8259A, As in the MCS-80/85 modae, this set-
up includas priority resoiulion and cascade mode oper-
ations which will be covered later, Uniike the MCS-530/85
mode, no CALL opcode is placed on the data bus.

The second INTA pulse is usad 10 enable the single
interrupt-vactor byte onto the data bus. The 8086/2088
usges this interrupt-vector byte to select ane of 256 inter-
rupt “types’” in BOSE/B088 memory. Interrupt type selec-
tion for all eight IA levels is made when initially pro-
gramming the B259A. However, raferance (o only one in-
terrupt lype is neaded for programming. The upper 5 bits
of the interrupt vecior byte are user definable. The lower
3 bits ara aulomatically insertad by the 8259A dapend-
ing upon the IA lavel.

Contents of the interrupt-vector byte for BOBG/30BE ty
selection is put on \he data bus during the second INTA
pulse ang is shown in Figura 10,

2

0?7 |06 |05] D4 | O3 | D2 | D1 | DO
[H 7 | T8 | Ts | T4 | T2 t 1 1
iR8 7 | T8 | TS | T4 | T3 1 a
. IR5 Tr | T8 | T | T4 | T3 1] 1
R4 77 | Te | T5 | T4 | T3 1 o a
IR3 7 | Te | T5 | T4 | TA | 0O 1)
A2 77 | Tée | T5 | T4 | T3 | O 1 0
A1 T7 { T8 | T5 | T4 [TAa | 0 [1
RO 7 | T8 | s {va 13| 0 oo

Figure 10. Interrupl Vector Byte, MCS sans™ Mode

3.2 INTERAUPT PRIORITIES

A variety of modas and commands are avaitable tor con.
trolling interrupt priorities of the B259A. All of them are
programmable, that is, they may be changed dynarmic-
ally under software control. With these modas and com-
mands, many possibilities are conceivabie, giving the
user ancugh versatility for atmost any interrupt con-
troiled application.

Fuily Neated Mods

The fuily nested mode of operation is a general purpose
priarity mode. This mode supports a multilevel-interrupt
structure in which priority order of all eight IR inputs are
arrangad from highest to towest,

Unless otherwise programmed, the fully nested mode is
entered by default upon initializatian, At this time, IR0 is
assigned the highest priority through IR7 the lowest.
The fully nested mode, however, i3 not confined to this
IA structura alone. Once past inittalzation, other 1A in-
puts can be assigned highest priority also, keeping the
multilevel-intarrupt structura ot the fully nested modsa.
Figure 11A-C shows same variations of the priority
structures in the fully nested mode.

IR LEVELS [IHT (RB IR5 (R4 IR3 (A7 IR1 IAQ
PR}QRITY [7 & &5 a4 1 2 1 0|

IA LEVELS
PRIQRITY

1A LEVELS I D
PRIQAITY T 0 Fr &6 5 4 3 7

of Prioritly & in the

Flgurs 11. A-C. Soma ¥
Fully Nested Mods

rouling in service. This ISR bit remains set until an EQI
{End-Of-tntarrupt) command is issued to the 8259A,
EO!'s witl be explained in grealer detail shortty,

In the fully nested mode, whila an ISR bit is set, all fur-
ther requesis of the same or lower priority are inhibited
from generating an interrupt to the microprocassor, A
higher priority request, though, can generate an inter.
rupt, thus vectering program execution to its service
routine. Interrupts are only acknowledged, howaver, if
the microprocessor has previously executed an "Enabls
Interrupts” instruction. This is because the intarrupt
request pin on the microprocessor gats disabled auto-
matically after acknowledgement of any interrupt. The
assembly language instructions used to enabie inter-
rupis are “EI" for B080A/B085A and “STI" for 8086/8088.
interrupts can be disabled by using the instruction “DI™
for 8080A/ 8085A and “CLI" for BO86/8083. When a
routine is complated a "return” instruction is executed,
“RET" for 80B0A/085A and “IRET" for BO86/8088.

Figure 12 illustrates the corract usage of interrupt
related instructions and the interaction of interrupt
lavals in the fully nested moda.

Assuming the IR priority assignment for the example in
Figure 12 is IRD the highest through {iR7 the lowest, the
sequence is as foltows. During the main program, IR3
makes a raquest. Singe interrupts are enabled, the
microprocessor is vectored 1o the IR3 service routine.
During the IR3 routine, IR1 asserts a request. Since 1A1
has higher priority than 1IR3, an interrupt is generated.
Howaver, it is not acknowledged because the micro-
processor disabled interrupts in response to the 1IR3 in-
terrupt. The IR1 intarrupt is not acknowledged until the
"Enabla Interrupts” Iinstruction ia executed. Thus the
IR3 routine has a ‘“‘protected” section of code over
which no interrupts (except non-maskable) are ailowed.
The IR1 routineg has ne such “protected’” section since
an “Enable Interrupts” instruction is the first one in its
gorvice routine. Note that in this example the IRt re-
quast must stay high until it is acknowledged. This is
covered in more depth n the “Interrupt Triggering”
section.

Further exptanation of the fully nested mode, in this
section, i3 linked with information of genesal B2594, in-
terrupt operations. This is done 10 ease explanation to
the usar in both areas.

in generat, when an interrupt is acknowledged, the
highast priority request is determined from the IRRA {In-
terrupt Aequest Register). The interrupt vector is then
placed on the data bus. In addition, the corresponding
bit in the ISR {In-Service Register) is set to dasignate the

Figure 12. Fully Neaied Mode Exsmpke (MCS 06857 or MCS sase™)

43

44

What is happening to the I5R register? While in the main
program, no ISR bits are set since there aren’t any inter-
rupts in service. When the IR3 interrupt is acknowl-
adged, the JSR3 bit is set. When the IA1 interrupt is
acknowledged, both the ISRt and the ISR3 bits are set,
indicating that neither routine is complete. At this time,
only JR0O could generate an interrupt since it is the only
input with a higher priority than those praviously in ser-
vice. To terminate the IR1 routine, the routing must
inform the B259A that it is complete by resetting its ISR
bit. It does this by executing an EQI command. A
“return” instruction then transfers execution back to
the IR3 routine. This allows IR0-tA2 to interrupt 1he IR3
routine again, since ISRJ is the highest ISR bit set. No
further intarrupts occur in the axampte so the EOI cam-
mand resets ISR3 and the "return™ instruction causes
the main program to resume at its pre-interrupt locatian,
anding the example.

A single B253A is essentially always in the fully nested
mode unless certain programming conditions disturb it.
The feltowing pregramming conditions can cause the
82594 to go out of the high 1o low priority structure of
the fully nested mode.

* The automatic EOl mode
* The special mask mode

* A slave with a master not in the special fully nested
mode

These modes will be covered in more detail later,
however, they are mentioned now s0 the user can be
aware ol them. As long as these program conditions
aren't inacted, the fully nestéd mode remains undis-
turbed.

End of Interrupt

Upon completion of an interrupt service routine the
8259A needs to be notified so its ISR can be updated.
This is done {o keep track of which interrupt levels are in
the process ol being serviced and their relative priori-
ties. Three different End-Of-Interrupt (EQI) formats are
available for the user, These are: the non-specific EQF
command, the specific EQl command, and the auto-
matic EQI Mode. Selection of which EQl to use is depen-
dent upon the interrupt operations the user wishes to
perfarm.

Non-Specifie EOl Command

A non-spegific EOl command. sent from the microproc-
essar lels the 82594 know when a service routine has
been compleled, without specification of its exact intar
rupt level. The 82594 automatically determines the inler-
rupt level and resets the correct bit in the ISR,

To take advantage of the non-specific EQt the 82534
must be in a mode of operation in which it can predeter-
mine in-service routine levels, For this reason the non-
gpecific EQI command should only be used when the
most recent level acknowledged and serviced is always
the highest priority level. When the 8253A receives a
non-specific EQl command, il simply resets the highast
priority ISR bil, thus confirming to the B2594 1hat the
highest prigrity routine of the routines in service is
finished.

The main advantage of using the nan.specific EQ) com-
mand is that IR leve! specification isn't necessary as in
the “'Spacific EOI Command', covered shortly.
However, special consideration should be taken when
deciding to use the non-specific EQL Here are two pro-
gram conditions in which it i5 best not used:

* sing the set priority command within an interrupt
service rouling.

+ LUsing a special mask mode.

These conditions are covefed in more detail in their own
sections, but are listed here for the users reference.

Specific EQI Command

A specific EOl command sant from the microprocessor
lets the 82594 know when a service routine of a particu-
lar interrupt level is completed. Unlike a non-specific
EQI cammand, which automatically resels the highest
pricrity ISR bit, a specific EOl command specifies an
exact ISA bit to be reset. Oneg of the eight 1R levels of the
82594 can be specified in the command.

The raason the specific EOl cormmand is neaded, is to
reset the ISR hit of a completed service routing when-
ever the 8259A isn't able to automatically determine it.
An example of this lype of situation might be if the
pricrities of the interrupt levels were changed during an
inserrupt routine (“Specific Rotation™), In this case, i
any other routines were in service at the same time, a
non-specific EOI might reset the wrong ISR bit. Thus the
specific EQOl command is the best bet in this case, or for
that matter, any time in which confusion of interrupt
prigrities may exist. The specific EOl command can be
ugsed in ail conditions of B253A operation, including
thosa that prohibit non-specific EQI command usaga.

Automotic EO! Moda

When programmed in the aulomatic EQI mode, the
MIGroprocesser no longer needs to issue a command to
notify the 8259A it has complated an interrupt routine.
The B259A accomplishes this by perfarming a non-
specific EOl autornatically at the trailing edge of the last
INTA pulse ithird pulse in MC3S-80/85, second in
MCS5-86).

The abvious advantage of the automatic EOl mode over
the other EDl command is no command has to be
issued, In general, this simplifies programming and
lowers coda requirements wilhin interrupt routines.

However, special consideration should be taken whén
daciding to use the automatic EQI mode because it
disturbs the fully nested mode. In the automatic ECQH
mode the ISR bit of a routine in sarvice is reget right
after it's acknowledged, thus leaving no designation in

" the ISA that a sevice rouline i being executed. If any in-

tarryupt request occurs during this lime {and interrupts
are enabled} it will get serviced regardless of its priority,
low or high. The problem of “ovar nesting” may aiso
happen in this situation. " QOver nesting” is when an IR
input keaps interrupting ita own reuling, rasulting in un-
necessary stack pushes which could fill the atack in a
worst case condition. This i3 not usually a desired form
of operation!

So what goad is the automatic EOl mode with problems
like thoss just covered? Well, again, like tha other EQls,
gelaction is dependent upon the application. If inter-
rupts are controlled at a predetermined rate, so as not to
cause the problems mentioned above, the automatic
ECH mode works parfect just the way it is. Howaver, if in-
tarrupts happen sporadically at an indeterminate raie,
the automatic EQ mode should only be used under the
following guideline:

* When using the automatic EOQlI mode with an inde-
tarminate intarrupt rate, the microprocessor should
keep its interrupt request input disabled during
execution of service routines.

By doing this, higher priority interrupt levels will ba sar-

viced only after the completion ot a routine in service.
This guideline restores the fuily nested structure in
regards to the iRRA; however, a routineg in-service can't be
interrupted.

Automatic Rotlatlon — Equal Priorily

Automatic rotation of priorities serves in applications
where the interrupting devices are of aqual priority,
such as communicatigns channels. The concept is that
once a peripheral is serviced, all other equal priority
peripherals should be given a chance to be serviced
before the original peripheral is serviced again. This is
accomplished by automatically assigning a peripheral
the lowast priority after being servicad Thus, in worst
case, the device would have to wait until ali other
devicas are serviced before being sarviced again.

There are two methods ol accomplishing automatic
rotation. One is used in conjunction with the non-
spacific EQI, "ratate on non.specific ECI command”.
The other is used with the automatic EQl mods, 'rotate
in automatic EOI maode™.

Rotate on Non-Spacific EQl Command

When tha rotate on non-specific E0l command is
issued, the highest ISR bit is reset as in a normal non-

~ specific EQl command. After it's reset though, the cor-

respanding IR level is assigned lowasi priarity, Other IR
priarities rotate to confarm to the fully nested mode
basad on the newly assigned low priority

Figuras 13A and 8 show how the rotate on non-specific
EQlI command effects the interrupt prioritias. Let's
assurng the IR pricrities were assigned with IR0 the
highest and IR7 the lowest, as in 13A. IR6 and IR4 are
akready in service but naither is compietad. Being the
higher priority routing, |1A4 i3 necessarily the routine
being executed. During the IR4 routine a rotate on nan-
specific EQl command is executed. When this happens,
bit 4 in the ISR is resst. IR4 then bacomes the iowest
priority and IRS becomas the highest as in 138,

IST 156 155 154 153 152 151 150
A ISR STATUS G 1 © 1 0 @ 0 0] BEFORE
PRIQAITY | 7 & 5 4 3 2 1 0| COMMAND

t
|

LOWEST PRIQRITY

HIGHEST PRIQAITY

5

5
ISA STATUS [
PRIOAITY [2

D 0 0 0 w0 AFTER
0 7 & 5 4 1| COMMAND

SE 1S5 154 151 152 151 150
1
1

HIGHEST PRICAITY LOWEST PRIDAITY

Figura 13. A-B. Roiate on Non-spacltic EQI Command Exampla

Rotate In Automatic EQ! Mode

The rotate in automatic EOl mode works much like the
rotate on non-specific EOl command. The main differ-
ence is that priority rotation is done automaticaily after
the last INTA pulse of an interrupt request. To anter or
exit this mode a rotate-in-automatic-EQI set command
and rotata-in-automatic-EQI clear command is provided.
After that, no commands are neaded as with tha normal
automatic EQl mode, Mowever, it must be remembered,
when using any form of the automatic EQl mode, spe-
cial consideration should be taken. Thus, the guidslins
for the automatic ECl mode also stands for the rotate in
automatic EOI mode.

Spacific Rotation — Spacilic Priority

Specific rotation gives the user versatile capabilities in
interrupt conirolled operations. It serves in those ap-
plications in which a spacific device's interrupt priority
must be alterad. As opposed to automatic rotation
which automatically sets prioritigs, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive lowest or highast
priofity. This can be done during the main program or
within interrupt routines. Two specific rotation com-
mands are available to the user, the “set priprity com.
mand” and the “rotate on specific EQl command.”

Set Priority Command

The set priority command allows the programmer to
assign an iA level the lowest priority, All other interrupt
levels will conform to the fully nested rmode based on
the newly assigned low priority.

An example of how tha set priority command works is
shown in Figures 14A and 148. These figures show the
status of the ISR and the relative prioritias of the inter-
rupt levels betore and after the set priority command.
Two interrupt reutines are shown to be in service in
Figura 14A, Since IR2 is the highest priority, it is
necessarily the routine being executed. During the IR2
routing, priorities are aitered 56 that IRS is the highest.
This is done simply by issuing the set prigrity command
to the 8253A. In this case, the command specifies IR4 as
being the lowest priority, The result of this set priority
command is shown in Figure t48, Even though IA7 now

45

46

has higher priority than IR2, it won't ba acknowladged
until the IR2 routine is finished {via EOI). This is because
priorities are only resolved upon an interrupt request or
an interrupt acknowledge sequence, If a higher priority
requast accurs during the IR2 routine, then pricrities are
rasolved and the highest will be acknowledged.

I57 158 IS5 154 453)52 151 IS0
a ISR STATUS 1 0 0 0 0 0 0! BEFORE
PRIORITY | 7 6 5§ 4 3 2 1 0] D

LOWEST PRIQAITY HIGHEST FRIDAITY

157 156 156 IS4 |53 IS2 IS1 150
ISASTAYUS [V 0 ©_0 03 ¢ o"I AFTER
PRIORITY [Z_1 07 & 5 4 3]ct

HIGHEST FAIOAMY LOWEST PRIDRITY

Figury 14, A-B, Sei Priovly Command Exampis

When completing a service routing in which the set
priority command is used, the correct EOQl must be
issved. The non-specific EQI command shouldn't be
used in the same routine as a sel priority command.
This is because the non-spacific EO3 command resets
the highest ISR bit, which, when using the set priority
command, is not always the most recent routine in ser-
vice. The automatic EQOI mode, on the other hand, can be
used with the set priority command. This is because it
automatically performs a non-specific EQI baefore the
set priority command can be issued. The specific EQI
cammand is the bast bet in most cases whan using the
set priority ¢command within a routine. By resetting the
specific 15A bit of a roulina being completed, confusion
is eliminated.

Rotate on Specitic EQI Command

The rotate on specific EQl command is literally a com-
bination of the set priority command and the specific
EOI command. Like the set priotity command, a speci-
fied IR laval is assigned lowest priarity. Like the specitic
EOQI command, a specified level will be resst in the ISR,
Thus the rotate on specific EQl command accomplishes
both tasks in only one command.

If it is not necessary to change IR prioritias prior to the
end of an interrupt routine, then this command is advan-
tageous. For an EQl ¢cormmand must be execulad any-
way (unless in the automatic EQI mode), 5o why not do
both at the same time?

intarrupt Masking

Disabling or gnabling interrupts can be dons by other
means than just controlling, the microprocessor's inter-
rupt request pin. Tha §2594A has an IMR {Interrupt Mask
Register) which enhances interrupt control capabilities.
Rather than all interrupts being disabled or enabled at
the same time, the IMR allows individual IR masking.
The IMR is an B-bi! register, bits 0-7 ditectly correspond
to IRO-IR7. Any IR Input can be masked by writing to the
IMRA and setting the appropriate bit. Likewise, any I8 in-
put can be anabled by clearing the correct IMR bit,

There are various uses for masking off individual IR in-
puts. One example is when a portion of a main routine
wishes only to be interrupted by specific interrupts.
Another might be disabling higher priority interrupts for
a portion of a lower priority service routine. The possi-
bilities are many, :

Whaen an interrupt oceurs while its IMR bit is set, it isn't
nacessarily forgotten. For, ag stated earlier, the IMR
acts only on the output of the IRR. Even with an IR input
masked it is still possible to set the IRR. Thus, when
resatting an IMR, if its IAR bit is set it will then generate
an interrupt. This is providing, of course, that other
priority factors are taken into consideration and the IR
request remains active. If the IR request is removed
hafore the IMR is reset, no interrupt will be acknowi-
edged.

Spacilal Mask Mode

In various cases, it may be desirable to enable interrupts
of a lower priority than the routing in service. Or, in other
words, allow lower priority devices to generale inter-
rupts. However, in the fully nested mode, all IR |avels of
priotity below the routine in service are inhibited. So
what can be done to enabie them?

well, onge method could be using an EQl command
befare the actual completion of a routine in service. But
beware, deing this may cause an “'over nesting” prob-
lem, similar to in the automatic EQI mode. In addition,
resetting an ISR bit is irreversible by sofiware control,
50 lower priority IR levels could only be later disabled by
setting the IMA.

A much better sofution is the special mask mode. Work-
ing in conjunction with 1he IMR, the special mask mode
anables intarrupts from all levals except the lave! in ser-
vice. This is done Dy masking the laved thal is in service
and then issuing the special mask moede command.
Once the special mask mode is set, il remains in effect
until reset,

Figure 15 shows how to enable lower priority interrupls
by using {he Special Mask Mode (SMM). Assume that
IAD has highest priority when the main program is inter-
rupted by IR4. In the IR4 service routing an enable inter-
rupt insiruction is axecutad. This. only atlows higher
priority interrupt requesis to interrupt R4 in the normal

~fully nested mode. Further in the IR4 routine, bit 4 of the

IMR is masked and ihe special mask mode is entered.
Priority operation is no longer in the tully nested mode.
All interrupt levels are enabiled except for IR4. To leave
ihe special mask mode, the sequence is executed in
reverse.

WAIN FRCGRAM

El OR 5TI

|R4 SERYICE
RGLITINE

10 0
)

I

EI DA 571

|RG-3 ENABLED
[Rd«T DISABLED

]

[maskina

—

1A0-), 5-7 ENABLED
IR4 Qi5ABLED

RESET SMM

UNMASK RS

1A0-1 ENABLED
IR4-7 DISAHLED

RET OR IRET

Figure 15. Special Mask Made Exsmple {MCS 80/85 ™or MCS saisa™

Precautions musi be taken when exiting an interrupt
sarvice routing which has used ihe special mask mode.
A non-specific EQI command can't be used when in the
special mask mode. This is because a non-specific
wan't clear an ISR bit of an interrupt which is masked
when in the special mask mode. in facy, the bit will ap-
pear invisible. If the special mask mode is cleared
belore an EQl command is issued a non-specific EOI
command can be used. This could ke the case in the ax-
ample shown in Figure 15, but, to avoid any confusion
it's bast to use the specific EOQl whenever using the
special mask mode.

It must be remembared thal the special mask mode ap-
plies 10 all masked levels when se!. Take, for instance,
fR1 interrupting (R4 in the previous example. If this hap.
pened while in the special mask mode, and the IR
rouline masked itself, all interrupts would be enabled
except IA1 and IR4 which are masked.

3.3 INTERRUPT TRIGGERING

There are two classical ways of sensing an active inter-
rupt request. a level sensitive input or an edge sensitive
input. The 82594 gives tha user the capability tor either
method wilh ihe edgs triggered made and 1he level trig-
gered mode. Seleclion of one ol thase interrupt rigger-
ing mathods is done during the programmed initializa-
tion of the 8259A.

Level Triggered Mode

When in the level triggered mode the 52594 will recog-
nize any active {high) level on an IR input as an interrupt
request. If the IR input remains active after an EQI com-
mand has been issued {resetting its 1SA bit), another in-
terrupt will be generated. This is providing of course, the
procassor INT pin is enabled. Unless repetitious intsr-
rupi generation is desired, the IR input must be brought
to an inactive state bafore an EOI command is issued in
its service routing. Howavar, it must not go inactive so
soan that it disobeys the necessary \iming require-
ments shown in Figure 16. Note that the request on the
1A inpul must remain until after the falling edge of the
first INTA pulse. If on any IR input, the request goes
inactive befare the first INTA pulse, the B258A will
respond as if IA? was active. In any design in which
there's a possibility of this happening, the IR7 detault
feature can be used as a safequard. This can be accom-
plished by using the IR7 routine as a "‘clean-up routine"
which might recheck the 8259A status or merely return
program execution 10 its pre-interrupt location.

Depending upon the particular design and application,
the laval triggered mode has a number of uses. For one,
it provides for rapetitious interrupt generation. This is
useful in cases when a service routine needs to be con.
tinually executed until the interrupt request goes inac-
tive. Another possible advantage ol ihe level iriggered
mode is it allows tor "wire-OR'ed” inlerrupt requests,
That is, a number of interrupt requests using the same
IR input. This can't be done in the edge triggered made,
for if a device makes an interrupt request while the IR in-
pui is high {from another request), its transition will be
“shadowed''. Thus the 8259A won't recognize further in-
terrupt requests because its IR input is already high.
Nate that when a “wire-OR'ed"” scheme is used, the ac-
tual requesting device has to be determined by the soft-
ware in the sarvice routine.

Cautian should be taken when using the automatic EOI
mode and the level triggered mode together. Singce in
the automatic EQl mode an EQI is automatically per-
formed at the end of the interrupt acknowiedge se-
quencs, it the processor enables interrupts while an IR
input is still high, an inlerrupt will occur immediately. To
avoid this situation interrupts should be kept disabled
untit tha and of the sarvice routine or until the IR input
returns low.

Edge Triggered Mode

Whean in the edge triggered mode, the 8258A will only
racognize intarrupts if generated by an inactive (low} to
active (high) transition on an IR input., The adge irig-
gerad mode incorporates an edge lockout method of
operation. This means that after the rising edge of an
interrupt request and the acknowledgement of the re-
quest, the positiva levet of the IR input won't generate
turther intarrupts an this level. The user needn't worry
about quickly removing the request after acknowledga-
ment in lear of generating further interrupts as might be
the cass in (he lavel triggered mode. Before anothar in-
terrupt can be generated the IR input must return 1o the
inactive state.

47

48

[S/ W—

—t/

=1
Il

LATCH*
ARMED

EARLIEST IR
CAN BE REMOYVED

NaVa v

—~
\\\J—

LATCH®

*EDGE TRIGGERED MODE ONLY AAMED

Flgurs 16. IR Trigpering Timing Aequirsmants

Referring back to Figure 16, the timing requirermnents for
interrupt triggering is shown. Like the level triggered
made, in the edge triggered mode the request on the IR
input must remain active until alter the falling edge of
the first INTA pulse for that particular interrupt. Unlike
the level triggered mode, though, after the interrupt
request is acknowledged its IRR latch is disarmed. Only
after the R input goes thactive will the IRR latch again
beacome armed, making it ready to receive another inter-
rupt request (in tha level triggered mode, the IRR latch is
always armed}, Because of the way the edge triggered
mode functions, it is best to use a positive level with a
negative pulse to trigger the IR raquests. With this type
of input, the trailing edge of the pulse causes the inter-
rupt and the maintained positive leved meets the neces.
sary timing requirements {remaining high until after the
interrupt acknowledge occurs). Note that the IR7 default
taature mentioned in the “lavel triggered mode™ section
also works for the edge triggered mode.

Depending upon the particular design and application,
the edge triggered mode has various uses. Because of
its edge lockout operation, it is best used in those
applications where repetitious interrupt generation isn't
desired. I is also very useful in systems where tha inter-
rupt request is a pulse {this should be in the form of a
negative pulse to the B2534A). Another possible advan-
tage is that it can be used with the automatic EQl mode
without the cautions in the level iriggered mode. Cver-
all, in most cases, the adge triggered moda simplifies
oparation for the user, since the duration of the intarrupt
request at a positive level is not usually a factor.

3.4 INTERRUPT STATUS

By means of software control, the user can interrogate
the status of the 8259A. This allows tha reading of the
internal intarrupt registers, which may prove useful for
interrupt control during service routines. It alse pro-
vides for a modified status poll method of davice moni-
tering, by using the poll command. This makes the
status of the internai IR inputs available to the user via
software control. The poll cammand offers an alterna-
tive to the interrupt vector method, especially for those
cases when more than 64 interrupts are needed.

Reading Interrupt Registers

The contents of each B-bit interrupt register, IRA, ISR,
and IMR, can be read to update the user's program on
the present status of the 82594, This can be a versatile
tool in the decision making process of a service rouline,
giving the user more control over interrupt operations,
Before delving into the actual process of reading the
registers, let's briefly review their general descriptions:

IRR {Interrupt
Request Register)
ISR (In-Service
Registen

IMRA {tntarrupt
Mask Register)

Specifies all interrupt levels re-
questing service.

Specifies all interrupt levels

which are being serviced,

Specifies all interrupt levels that
are masked.

To read the contents of the IRR or 1SR, the user must
first issue the appropriate read register command (read
IRR or read ISR) to the 82594, Then by appiying a RD
pulse to the 82534 (an INpul instruction), the contents
of the desired register can be acquired. There is no need
to issue a read register command every time the IRR or
ISR is to be read. Once a read regisier command is
received by the 82594, it “remembers' which regisier
has been selected, Thus, ail that is necessary to read
the contents of the same register more than once is the
AD pulse and the correct addressing (AQ =0, exptained
in "Programming the 82539A"). Upon initialization, the
saldction of registers detaults to the IRR. Some caution
5hould be taken when using the read regisier command
in a system that supports several levels of interrupts, If
the higher priority routine causes an interrupt between
the read register command and the actual inpul of the
ragister contents, thare's no guaranies that the same
registar will be selected when it returns. Thus it is best
in such cases to disable interrupis during the oparation.

Reading the contents of the IMR is different than read-
ing the tRA or ISA. A read register command is not
necessary when reading the IMA. This is bacause the
IMR can be addressed diractly for boih reading and
writing. Thus all that tha 8259A requiras for reading the
IMR is a AD pulse and the correct addressing (AD=1,
explained in “Programming the 8259A").

b

Poll Command

As mentioned towards the beginning of this application
nole, there are two methods of servicing peripherals:
status polling and interrupt servicing. For most applica-
tions the interrupt service method is best. This is
pbecause it réquires the least amount ol CPU time, thus
increasing system throughput. However, for certain ap-
plications, the status poll method may be desirable.

For this reasen, the 8259A supports polling operations
with the poil command. As opposed to the conventional
methad ot polling, the poll command oHers improved
device servicing and increased throughput. Rather than
having the processor poll each peripheral in order to
find the actual device requiring service, the processar
polis the B259A, This allows the use of all the previously
mentioned priority modes and commands. Additionally,
both polied and interrupt methods can be used within
the same program.

To use the poll command the processor must first have
its interrupt request pin disabled. Once the poll com-
mand is issued, the B259A will treat the next (CS quali-
fied) RO pulse issued to it {an INput insiruction) as an in-
terrupt acknowledge. It will then set the appropriate bit
in the ISR, if there was an interrupt request, and enable a
special word onto the data bus. This word shows
whether an interrupl request has occurred and the
highest priority level requesling service. Figure 17
shows the contenis of the “poll word" which is read by
the processor. Bits W0-W2 convey the binary cods of
the highast priority level requesting service. Bit | desig-
nates whether or not an interrupt request is present. If
an interrupt request is present, bit | will equal t. Hf there
isn't an interrupt request at all, bit | will egual 0 and bits
WO-W2 will be set to anes. Service to the requesting
device is achieved by software decoding the polt word
and branching to the appropriate service routine, Each
time ihe 8259A is to be pelled, the poll command must
be writien before reading the poll word.

The poll command is uselul in various situations. Forin-
stance, it's a good alternative when memory is very
limited, because an interrupt-veéctar 1able jsn't needed.
Anather use far the poll command is when mare than G4
intefrupl levels are needed (64 {5 the limit when cascad-
ing 825%'s). The only limit of interrupts using the poll
command is the number of §259's that can be addressed
in a particular system. Still anather applicaiion of the
poli command might be when the INT or INTA signais
are not available. This might be the case in a large
system where a processar on one card needs to use an
82594 on a different card. In this instance, the poll com-
mand is the anly way to monitor the interrupt devices
and still take advantage of ‘the 8259A4’s prioritizing
{eatures. For those cases when the B2534 is using the
pall comwnand only and net the interrupt method, each
8258A must receive an initialization sequence linterrupt
vecter). This must be done even though the intarrupt
vector features of the B259A are not used. In this case,
the interrupt vector specified in the initialization
sequence could be a “take”.

NEBEATIT

WO-W2m BINAAY CODE OF HIGHEST
FRIGRITY LEVEL AEQUESTING SERVICE

I= 1 IF AN INTERAUPT QCCURAED

Figurs 17. Pall Word

3.5 INTERRUPT CASCADING

As mentioned earlier, more than one 82594 can be used
to expand tha prigrity intarrupt schemea to up to 64 levels
without additional hardware, This method for expanded
interrupt capability is called “cascading”. The 8253A
supports cascading operations with the cascade mode.
Additionally, the special fully nested mede and the buf-
fered mode are available for increased flexibility when
cascading 8259A's in certain applications.

Cascade Mode

When programmed in the cascade mode, basic opera-
tion consists ol one 8253A acting as a master to the
others which are serving as slaves. Figure 18 shows a
system containing a master and 1wo slaves, providing a
total of 22 interrupt levels.

A specific hardware set-up is required to establish
operation in the cascade moda. With Figure 18 as a ref-
erance, note that the master is designaled by a high on
the SPIEN pin, while ihe SPIEN pins of the siaves are
grounded (this can also be done by software, see but-
fered mode). Additionally, the INT output pin of each
slave is connecled to an IR input pin of the master. The
CAS0-2 pins for all 8259A's are parailaled. These pins
act as outputs when tha 8253A is a master and as inputs
for the slaves. Serving as a private 82594 bus, they con-
tral which slave has control of the system bus for inter-
rupt vectoring operation with the processor. Adl other
pins are connected as in narmal operation {each §259A
receives an INTA pulse).

Besides hardware set-up requirements, all 8255A°s must
be sottware programmed to work in the cascade mode,
Programming ihe cascade mode is done during the in-
itialization of each 8259A. The 82594 that is selected as
master must receive specification during its initializa-
ticn as to which of its IR inputs are connected to a
slave's INT pin. Each slave 82589A, on the other hand,
must be designated during its initialization with an 1D (0
through 7} corresponding to which of the master's 1R in-
puts its INT pin is connected to. This is all necessary so
the CAS0-2 pins of the masiers will be able to address
each individual slave. Note that as in normal operaticn,
each 825%A must also be initialized to give its 'R inputs
a unigue interrupt vectar. More detail on the r.ecessary
programming of the cascade made is explained in “Pro-
gramming the B259A".

Now, with background information on both hardware
and software for the cascade mode, let's go over the

49

AQURESS Bus 1160 o N 5

LONTROL BUS

[1] N

1]

DATA BUS 181

wr s A, 007 MTE Nt €5 & DOT NTA
caso casy casa
82594 . 8604
GRS T SLAVED cas cAsY MASTER
casz |+ casz €as?
4] EFIER 47 MG M5 M4

kil

o 1z

[

Ver L

|

5 4

T
INTERAUFT AEQUESTS

Flgura t8. Cascaded 2594'S 22 Intsrrupl Levels

saqguence of evenis that occur during a valid interrupt
request from a slave. Suppose a slave IR input has
received an interrupt request. Assuming this request is
higher pricrity than other requests and in-service levels
on the slave, the slave’s INT pin is driven high. This
signals the master of the request by causing an inter-
rupt request on a designated IR pin of the masier. Again,
assuming that this request to the master is higher priori-
ty than other master requests and in-service levels
{possibly from othar slaves), the master's INT pin is
pulled high, interrupting the processor.

The interrupt acknowledge sequence appears fo the
procassor |he same as the non-cascading interrupt
acknowladge sequence; however, it's different among
the B259A’s. The first INTA pulse is used by all the
8259A's for internal setup purposes and, i in the
8080/8085 mode, the master will place the CALL opcode
on the data bus. The first TNTA pulse also signals the
master to place the requesting slave's |D code on the
CAS lines, This turns contral over to the slave for the
rest of the interrupt acknowledge sequence, placing the
appropriate pre-programmed interrupt vecior on the
data bus, completing the interrupt request.

Curing the interrupt acknowledge sequence, the cor-
responding ISR bit of both the master and the slave get
set. This means two EQI commands must be issued (if
not in the automatic EQt mode), one for the master and

_one for the slave,

50

Special consideration should be taken when mixed
interrupd requests are assigned to a master 82534, that
is, when some of the master's IR inputs are used for
Slave interrupt requests and some are used lor individ-
ual interrupt requesis. In this type of siructure, the
master's IR0 must not be used for a stave. This is
because when an IR input that isn't initialized as a siave
receives an interrupt request, the CAS0-2 lines won't be
activated, thus staying in the default condition address-
ing far IR0 (slave IAD). If a slave is connecied to the
mastar's IRD when a non-slave interrupl occcurs gn
anether master IR input, erroneous canditions may

result. Thus IAC should be the iast choice when assign-
ing slaves to IR inputs. '

Special Fully Nésted Mode

Depending on the application, changes in the nested
structure of the cascade mode may be desired. This is
because the nested structure of a slave 8259A differs
from that of the normal fully nested mode. In the cas:
cade moda, if a slave racaives a higher prigrity interrupt
request than one which is in service (through the same
slave), it won't be recognized by the master. This is
because the master's ISR bit is set, ignoring all requests
of equal or lower priority, Thus, in 1his case, the higher
priority slave interrupt won't be serviced until after the
master's ISR bit is reset by an EOt command. This is
most likely after the completion of the lower priority
rouiine.

If the user wishes to have a truly fully nested structure
within a slave 8259A, the special fully nested mode
should be used. The special fully nested mode is pro-
grammed in the master only, This is done during the
master's. initiatization, !n this mode the master will
ignore only those interrupl requests of lower pricrily
{than the set ISR bit and will respond 10 all requests of
equal or higher priority. Thus it a slave receives a higher
priority request than one in service, it will be recognized.
To insure proper interrupt operalicn when using the
special fully nested mode, the soltware must delermine
if any gdher slave interrupis are still in service before
issuing an EOl command 10 the master. This is done by
resetting the appropriate siave ISR bit with an EQl and
then reacing its ISA. If the ISA contains all zeres, 1hare
aren'i any oiber interrupts fram the slave in service and
an EQI command can be sent to the masier, If. the ISR
isn't all zeros, an £01 command shouldn't be sent to the
master, Clearing the master's ISR bit with an EQI com-
mand while there are still slave interrupts in service
would altow lower priofity interrupls to be recognized at
the mastaer. An example of this process is shown in the
second application in the “Applications Examples™ sec-
tion.

4, PROGRAMMING THE 8259A

Programming the B253A is accompiished by using two
types of command words: initialization Command
Words (ICws) ang Operational Command Wards
{QCWSs). All the modes and commands explained in the
previous section, "Operation of the 8259A", are pro-
grammable using the ICWs and OCWs (see Appendix A
tor cross reference). The ICWs are issued from the proc-
es50r in a sequential format and are used to set-up the
8259A in an initial state of operation. The QCWs are
issued as needed to vary and cantrol B259A operation.

Both ICWs and OCWSs are seni by the processor to the
82694 via the data bus (8259A £S=0, WR=0). The
§259A distinguishes between the different ICWs and
OCWSs by the state of its AD pin {controlled by progessar
addressing}, the sequence they're issued in (iCWs only),
and some dedicated bits among the {CWs and OCWSs.
Those bits which are dedicated are indicated so by fixed
values (0 or 1) in the corresponding ICW or OCW pro-
gramming formats which are covered shortty. Note,
when issuing either ICWs or OCWs, the interrupt
request pin of the processor should be disabled.

4.1 INITIALIZATION COMMAND WORDS (ICWs)

Before normal operation can begin, each 8259A in a
system must be initialized by a sequence of two to four
programming bytes called ICWs {initialization Com-
mand Words). The ICWs are used to set-up the neces-
sary conditions and mades for proper 8259A operation,
Figure 20 shows the initialization flow ot the 82594,
Both ICW1 and ICW2 must be issued for any form of
8250A operation. However, ICW3 ang ICW4 are used
only if designated so in ICW1. Detarmining the naces-
sity and use of each KOW is covered shortly in individuai
groupings. Nole that, once intialized, if any program-
ming changas within the ICWs are to be made, the entire
ICW sequence must be reprogrammed, not just an indi-
vidual 1ICW.

Certain internal set-up conditions occur automatically
within the 8259A after the first ICW has been issued.

Thesae are:

A, Sequancer lagic is set to accept the remain ng ICWs
as designaisd in ICW1.

B. The ISR {In-Service Register} and IMR {Interrupt Mask
Register} are both cleared.

C. The special mask mode is reset.
0. The rotate in automaiic EOl mode Hip-flop is clearad.

E. The IAA {Inlerrupt Aequest Regisier) is selected for
the read register command,

F. If the IC4 bit equals O in ICW1, all functions in JICW4
are cleared; 8080/8085 mode is selacted by default.

G. The fully nested mode is entered with an initial prior-
ity assignment of IAQ highesi through IR? lowest.

H. The edge sense latch of sach 1R priority cell is
cleared, thus requiring a (ow to high trangition to
generale an interrupt (edge triggered mode effected
only).

The HCW programming format, Figure 21, shows it
designation and a short definition of each ICW. With 1he
ICW format as reference, the functions of each ICW will
now be explained individually,

NO{SHAL =1}

YES (SHAL = 0)

I 1CW3 I

NO (C4 = 0}

15 ICWa
NEEDED

YES {IGaa 1)

| [|

AEADY TO ACCEPT
INTERAUPT REQUESTS

Figure 20. Indtinilzetion Flow

Indtialization Command Word Format
Lle 2%
4 0 G B 0 0 & O G

ADI

ul, &] ;‘T 1 lmn sum[lcal
L-J — H -I:::c"::'::.?ow

1 SINGLE
O« CASCACGE WODE

LALL IWTERVAL
T INTEAYVALOF 4
o WNTERVAL QF 8

o -

LEweL t T
* EOGE TRIGGERLD WPy T

Ay dy GFTERAURT YECTOR
AODRESS Hel SAG % MOCE |

L=
5 8 B 5 & 0 o b

[BT~
(TITILTT

by, oy U R HHUKE L RE I
AR A G ARG I 1LY

Np T3 IRIEHRGRT R
LI Al

51

Wl iwMASTEA DEVHE
M By B om0, 0 O, 6 0O

Llelslslo]s]nisis]
LLLL LT

WY aSl Ave VI
S @ B D, G, 3, U, B G

LT T

NIRRT WAS & 3L AVE
B Im AP T ORTE S N HAYE
afiayl

SLmwloh

~l=fal=
Z=]=l=

={al-|+

alela]=
ale]-1-
al-l-]=

T 5 g
| ' [a I " ‘ a [:.muinmlut.l_mu‘ vul

1 el e, R MU
RO T D TR

Toarmiim
L T P T

T { Hish Bk E | IEL B
o,.n AUFFFHE RO S awd
il

LRI RO T T SN T

[T AL TAL ALt SRR

L i

NOTE 1
SLAVE 10 15 EQUAL TO THE CORRESPONDING MASTER (R INFUT

SOME OF THE TERMINGLOGY USED MAY OIFFER SLIGHTLY FROM EXISTING B2S9A ©
OATA SHEETS. TS IS DONME TO BETTER CLARIFY AND EXPLAIN THE PROGAAM- |
MG GF THE 325BA, THE OPERATIONAL AESULTS REMAIN THE SAME.

Figure 21, Inlialization Command Words (ICWS) Programming Formai

ICW1 and ICW2

18suing ICW1 and ICW2 is the minimum amount of pro-
gramming needed for any type of 8259A operation. The
majority of bits within these two ICWSs are used 10 desig-
nate the interrup! vectar starting address. The remain-
ing bits serve various purposes. Description of the ICW1
and ICW2 bits is as follows:

1C4: The IC4 bit is used 10 designate to the 82594
whether or not ICW4 will be issued. If any of
the ICW4 operations are to be used, W4
must equal 1. If they aran't used, then ICW4
needn't be issued and IC4 can equal 0. Note
that if 1G4 = 0, the 82594 will assume operation
in the MCS-80/85 mode.

SNGL: The SNGL bit is used to designate whether or
not 1he B2594, is to be used alone or in the cas:
cade mode. If the cascade mode is desired,
SNGL must equal 0. In doing this, the 82594
will accept ICW3 for further cascade mode pro-
gramming. If the §259A is 10 be used as the
single B259A within a system, the SNGL bit
must equal 1, ICW3 won'i be accepted.

52

ADI The ADI bit is used to specify the address in-
terval far the MCS-B0/85 mode. If a 4-byte ad-
dress interval is to be used, ADI must equal 1.
Far an 8-byte address interval, ADI must equai
0. The siate of ADI is ignored whan the B25G4A
is in the MCS-B6/88 mode.

LTIM: The LTIM bit is used to select between the two
iR input triggering modes. It LTIM = 1, the level
triggered mode is selected. If LTIM=0, the
adge triggered mode is selected.

A5-A15; The A5-A15 bits are used to select the inter-
rupt vecior address when in the MCS-80/85
mode. There are two programming formats
that can ba used to dp this. Which one is im-
plemented depends upon the selected address
interval (ADI). If ADI is set for the 4-byte inter-
val, then the 82534 will automatically insert
Al-A4 {(AD, A1=0 and A2, A3, Ad=IRC-7).
Thug A5S-A15 must be user sefected by pro-
gramming the AS-A15 bits with the desired ad-
dress. If ADI is set for the 8-byte interval, then
ACQ-A5 are automatically inserted (AD, A%,
AZ2=0 and A}, A4, A5=IR0-7). This leaves
AG-A15 to be selected by programming the
AB-A15 bits with the desired address. The
state of bit 5 is ignored in the latter format.

T3-T7. The T3-T7 bits are used to selact the interrupt
type when the MCS-B6/88 mode is used. The
programming of T3-T7 selects the upper 5
bits, The Iower 3 bits are automatically in-
serted, corresponding to the IR level causing
the interrupt. The state of bits A5-A1Q will be
ignored when in the MCS-86/88 mode, Estab-
lishing the actual memory address of the inter-
rupt is shown in Figure 22.

F O O

mnmmn T‘:::l:n;:;?ﬂ(WSEN PACGRAMSED

d

'
)

L]

- ffgzgi:Tg.Ltﬁ:?:mm AT
Iﬂmlnlﬂlﬂlﬂﬂm COMPLETE BOBASGE 1N TERRUST PrAE

,___l ,._..J

010 G 2 A 2 D D D R i ot vt

Flgues 22. E 4 Memory Adch ol BOSSIB08S Intarvupl Type

ICW3

The B259A will only accept ICW3 if programmed in the
cascade made (ICW1, SNGL=0). ICW3 is used for
specific programming within the cascade mode. Bit
definition of WCW3 differs depending on whether tha
82594 is a master or a slave. Definition ot the ICW3 bits
is as follows:

S0-7 If the 82594 is a master {gither when tha

{Mastery SP/EN pin is tied high or in the buffered
moade when MIS = 1 in {CW4), ICW3 bit defi-
niticn is §0-7, corresponding to *'slave 0-7".
These bits are used ta establish which IR in-
puts have slaves connectad to them. A 1
designales a slave, a 0 no slave. For exam-
ple, it a slave was connected to IR3, the S3
bit should be set to a 1. (S0} should be last
choige for slave designation,

IDO-ID2 I the B2594 is a slave {gither when the SP/EN

(Slave): pin is low or in the buffered mode when
M!S = 0 in ICWA4), ICWS3 bit delinition is used
to establish its individual identity. The 1D
code of a particuiar slave must correspond
to the number of the mastars IR input it Is
cannected 10, For example, if a slave was
connected {0 IAG of the master, the slaves
1D0-2 bits shoutd be set to IDD=0, ID1=1,
and iD2=1.

ICW4

The 82594 will only accept WOW4 il it was selected in
ICW1 {bit IC4 = 1). Various modes are offered by vsing
ICW4. Bit definition of ICW4 is as follows:

uPM: The uPM bit allows for selection of either the
MCS-80/85 or MCS-86/88 mode. If setasa 1 the
MCS5.-86/88 mode iz selected, if a 0, the
MCS-80/85 mode is selected.

AEQL The AEDI bit is used to select the automatic
end of interrupt mode. If AEOI=1, the
automatic end of interrupt mode is selected. If
AEQI=0, it isn't selected; thus an EQI com-
mand must be used during a sarvice routine.

M/S: The M/S bit is used in cenjunction with the buf-
fered mode. If in the bulfered mode, M/S
defines whether the 8259A is a master or a
slave, When M!S is sel {0 a 1, the B259A
operates as the master, when M/S is 0, it
operates as a slave. it not programmed in the
buffered mode, the state of the M/S bit is
ignored.

BUF: The BUF bit 1s used to designale operation in
the buftered made, thus controlling the use of
the SPIEN pin. If BUF is set to a 1, the buffered
mode is pragrammed and SP/EN is used as a
transceiver enable output. If BUF is 0, the buf-
terad mode isn't programmed and SP/EN is
used for master/slave selection. Note if ICW4
isn't programmed, SP/EN is used for master/
slave salection.

SFNM: The SFNM bit designates selection af the
special fully nested mode which is used in
canjunction with the cascade mode. Only the
master should be prograrmmmed in the special
fully nested made to assure a truly iully nested
structure among the slave IR inputs. If SFNM
is set to a 1, the special fuily nested mode is
selected; if SFNM is 0, it is not selected.

4,2 OPERATIONAL COMMAND WORD {OCWs)

Once initialized by the ICWs, the B259A will most likely
be operating in ihe fuliy nested mode. Al this point,
operation can be further controlled or modified by the
use of QOCWs (Operation Commangd Words). Three
OCWs are available for programming various modes and
commands. Unlike the ICWs, the OCWs needn’t be in
any type of sequential order. Rather, they are issued by
the processor as needed within a program.

Figure 23, the OCW programming format, shows the bit
designation and shon definition of each OCW. With the
OCW format as reference, the functions of each OCw
will be explained individually.

ocwi

OCW1 is used solely for 8259A masking operations. it
provides a direct link to the IMR (Interrupt Mask Regis-
ter). The processor can write to or read from the IMR via
OCWH1. The OCW1 bit definition is as follows:

MQ-M7: The MO-M7 bits are used to control the mask-
ing of IR inputs. If an M bit is set to a 1, it will
mask the corresponding IR input. A O clears
the mask, thus enabling the IR input. These
bits convey the same meaning when being
read by the processor for status update.

OCW2

OCW2 is used for end of interrupt, aviomatic rotation,
and specific rotation operations. Associated commands
and modes of these operations (with the exception of
AEOQl initiatization), are setected using the bits of OQCwW2
in a combined fashion. Selection of a cammand ar
mode shoutd be made with the corresponding table for
QCW2 in the QCW programming farmat (Figure 20),
rather than on a bit by DIl basis. However, lor com-
pleteness of explanation, bit definition of OCW?2 is as
follows:

LO-L2: The LO-L2 bits are used to designate an inter-
rupt lavel {0~7} to be acted upon for the opera-
tion selected by the EQM, SL, and R bits of
OCW2. The level designated will either be
used to reset a specific ISR bit or to set a
specific priority. The LO-L2 bits are enabled or
disabled by the SL bit.

EQI The EQI bit is used for all end of interrupt com-
mands (not autematic and of interrupl mode).
f set te a 1, a form of an eng of interrupt com-
mand will be executed depanding on the state
af the SL and R bits. If EOl is 0, an end of inler-
rupt command won't be executed.

53

orws
4 & 5 0, §o9 B v

1B BE ...1.., |

HEEEEE

ANTERAURT mate
Maty 311
O WASK RESET

ALEVEL 108K
ACTED UPDN

.
Jalals

o

o

wlalr

| SRR

Man g c €01 Cammana

“Sowdihe EQH Comenang

1] Asiale OnHan Saecihe €01 Commung
O Rolale in deipmuls EC0 Mode [SETT

By e Auemeng O Mode (CLE AR
|

]

[}

I END OF IMIFRAUFT

ALPTOMA NI AQTSCH

‘Frommbe dw Spamihe ELn Cammang

§ "3t Puandy Command } SPECHIC ADTATION

H
] M spergues

LOLZ wrm vamd

Qo]
4% @ 4, © M 3, @ © g
I.-[|u--|m| n! l ,.l.q'
READ RECASTER COMMAND
oty
Lal a | L
1
wam fian
s |aRe
e LIRS L TER]
AT M M B s

I m Pl COMMAND
0 = WO POLL COMkkD

O O S
L O B
e HT

Pl TH WRCAL | BMCIa
LY b

OATA SHEETS, THIS 15 QOME TO BETTER CLARIFY AND EXPLAIN THE PRGGRAM.

SOME OF THE TERMINCLOGY USED MAY QIFFER SLIGHTLY FROM EXISTING 12594
! MING OF THE 82594, THE OPEPATIONAL FESULTS REMAIN THE SAME.

Figure 23. Oparational Command Words (OCWs) Pregramming Formst

SL: The SL bit is used to selecl a specific lavel for

a given operation. If SL is settoa 1, the LO-1.2
bits are enabled. The operation selected by the
EQl and A bits will be executed on the
specified interrupt level. If SL is 0, the LD-L2
bils are disabied.

A: The R bit is used {0 control all 82594 rotation

54

operatigns. If the R bit is set to a 1, a form af
prierily rotation will be execuled depending on
the state of SL and EQI bits. I R is 0, rotation
won't be axecuted.

oCcw3a

OCW3 is used to issue various modes and commands to
the 82594, There are two main categories of operation
associated with OCW3: interrupt status and inferrupt
masking. Bit deflnition of OCW3 is as foilows:

RIS:

RR:

SMM:

ESMM:

The RIS bit is used to select the ISR or AR for
the read register command. If RIS is set to 1,
ISR is selected. If RIS is 0, IRR is seiected. The
state of the RIS is only honored if the RR bit is
al

The RR bit is used to execute the read register
command. If RA is set to a 1, the read register
command is issued and the state af RIS deter-
mines tha register 1o be read. If AR is 0, the
read register co;nmand isn't issued.

The P bit is used to issue the poll command. It
P Is set to a 1, the poll command is issued. If it
is 0, the poll command isn't issued. The poll
command will override a read register com-
mand if set simultansously.

The SMM bit is used to set the special mask
mode. If SMM is set to a 1, the special mask
mode is selected. It it is O, it is not selected.
The state of the SMM bit is only honored if it ig
enabied by the ESMM bit.

The ESMM bit is used to enable or disable the
efiect of the SMM bit. If ESMM is sef to a 1,
SMM is enabled. If ESMM is O, SMM is dis-
abled. This bit is useful to prevent interference
of mode and command selactions in OCWJA.

SUMMARY OF 0259A INSTRUCTION SET

ingl, # Mnamonic A0 OF D& DS D4 03 D2 DV DO Opawation Dascrigtion
A ICW1 A O AT A5 A5 1 a 1 1 a Formal = 4, single, edge \nggered
2 ICw1 B O AT A8 AR 1]]]] Formal = 4. single. level thggered
k] cwt C 0 AT a8 AS 1 L] 1 9 0 Byts ¥ Inthalizatign Formal = 4. not single. edge Inggeed
4 w3 0 AT Al AS 1 1 1 a a Format = 4 not single. level 1ngeated
5 cwyr £ 0 A7 A8 0 1 a] 1] Ho ICW4 Asgulrsd Format = 8, single. edge tnggered
L] cwi1 F 0 AT A8 O 1 1 a 1 a Farmat = 8. aingle. leval triggerad
7 w1 G 0 A7 A8 O 1 a o 0 0 Format = 8. nol singls, edps 1nggered
-] Icw1 H 0 A7 A8 O 1 ’] a 1] Format = B, nod Blagle, |evet triggered
] Cw o 0 AT A A5 1] | 1 1 Format = 4, single, sdge triggered
10 oWy G A AE AS 1 1 1 | 1 Format = 4, single_ ievet riggared
1 W1 K 0 A7 A A5 Y D 1 0 1 Byle 1 IMUBIZANON Eormgr . 4 not single, edge triggered
ik oW1 L 0 A7 AS A% 1 1 1] 1 Formal a2 4, not aingle, lavel riggersy
13 W1 M D A7 AG O \ b 0 f f ICW4 Aequired Faormat = B, single, ecge tripgered
1 ICwr N 0 A7 A6 O 1 1 q 1 1 Formal = 8, aingle. leval iInggetad
15 [Leg L B o 0 A7 A6 0 1 0 0 0 1 Farmal = 8, not single. adge Inggered
18 ICwry P 0 AT A8 1 1 0 a4 1 Formal = 8, not single. level trpgarad
17 ICw2 1 M5 A1d A1 A12 A1 AN AF A8 Byie 2 inihaiization
18 1ICW3 M 1 57 S8 85 54 53 52 5 S0 Byte 3 inilialization — magter
15 Icwl 5 1 Q o q a 0 52 51 50 Byte 3 inibalization — slave
20 ICWe A 1 o ¢ 4 494 o O O O No agiion, redungdan)
2 ICWwe B + 1] a 0 1] 4] o 4] 1 Mon-bulfered mode, no AEDI, B0OBE 8028
Frd ICwé C] 1] a 0 1] o o 1 4] Non-bullered moda, AEQI, MCS-80/85
F] tws D 1 g 0 o 0 4 @ 1 1 Non-butterad moda, AEQI, BOBGB038
24 cws E 1 o a 1] 1] a 1 Q q Mo action, redundant
Fi] ICWe F 1 ¢ o0 0o o 0 10 1 Non-bullerad moda, no AEOI, BO8S, BOAA
26 ICwe G 1 ¢ o0 ¢ o 0 1 10 Non-butered moda, AEQI, MCS-80/85
ar ICW4 H LN+ R R H B 1 1 1 Non-bullgrad modae, AEQI, 80868088
28 CWa | 1 Q o ¢ 0 Y q q] Bultersd mode, alave, no AED), MCS-80/85
29 Cwa) 1 a [B a T] 0 1 Buitarad mode, alave, no AEQH, B0as; aoea
KL} ICwd K 170 0 0 0 1 1] ! 1] Buitered mode, slava, AEDI MCS-BO/85
n ICwa L 1 o o 0] 1 1] 1 1 Buitered moda, alave, AEDI, BUas/a0aa
32 ICW4 M T 0 9 0 o0 1 LI T Butferad moda, masier, no AEQ), MCS-B0/ 85
k] ICWe N " 86 0 9 0 1 1 0 1 Buiferad mods. maeler, no AECI. 808G 8088
M [La3 T I o L T B R B | 1 10 Bufferad mode, masler, AEQI, MCS-80/85
35 Cwa P 1 4] a 1] 1] 1 1 1 1 Buﬂsre_ﬁl mode, masler AEQI, 8086, 8068
] ICWa NA T g 0 4] 1] a a o Fully neated moda, MC35-80, non buttered, no AECH
7 ICWa NB 10 e ¢ 1 0 0 0o ICW4 NB through ICWA N 3re 1denncal 1o
38 ICW4 NC 1 (I B« 1 o 0 1 4] ICWA B Ihrough ICWA D wilh Ihe additon al
15 ICWa ND 1 a o 4 1 o o 1 1 Fully Nealsd Mode
L) ICW4 MNE 1 4 0 0 1 1] 1 % 0 Fully Neatsd Mode, MCS-8(0:85 non-bullersg. no AEOI
[} ICW4 NF 1 L] LI] 1 4] 1 k4] 1
42 ICW4 NG 1 a Q a t 1) 1 1 Q9
43 ICWd NH 1 9 0 1] 1 Q 1 1 1
A4 ICW4 NI 1 o 40 1] 1 1 a Q 1]
a5 iCwe NJ Y 0 0 06 1 1 0 0 1
a8 CWA WK 1 ¢ o0 o 1 f 0 1 o ICWA NF thregugh ICWA NP are idenhical (o
a7 CWe NL . " 0 4 ' | 0 . ' ::?:: ;‘t:':)duﬂnoﬁwt P with Ine adovhion of
48 ICWA NM 1 Q o q T 1 1 k¢! Q
“w ICW4 NN 1 a o a ' 1 1 a 1
50 ICWd NG 1 a9 0] 1 1 1 1 Q
51 ICW4 MNP 1 9 0 0 1 1 1 1 L]
42 oCw 1 M ME ME M4 MI MZ M1 WD Load mask ragisiar, read maah regiaier
53 oCw? E ¢ 0 o 1 a 9 o 4 q Nan-apscific EQI
G4 oGwW2 SE o a 1 1 [i] I ¥ BN] Specific EOI, LO-L2 coda ot IS FF 10 he resal
4 QW2 RE /] 1 1] 1 1] Q T 4 9 Rclate on Non-Specihe EQ)
%6 QCW2 RASE [1 1 0 0 L2 Lt oW Rolate on Specitic EQI LO-L2 coda of ling
57 acwz A g + o 4 90 0 O O 0 Ralete in Aulo EQI (aal)
58 aCwi CA ¢ o0 ¢ a0 0o O O O @ Rolate in Auto EQ) (clear)
5% OoCwi RS a 1 1 1} 1} 4 w2 v W Set Priority Commang
L] oCcwl} P o a 4] 9 0 1 1 1]] Poll mode
61 QCwW] RIS a 0 i+l) Q 1 q 1 1 Read IS register

55

56

INITIALIZING THE 82595

The following program can be used to initialize the 8259As as they are
implemented on tihe System Support L.

This program sets up the master 82594 to have the following characteristies:
ICW4 is needed, cascade mode, address interval of 4, level triggered mode,
vector starting address of Z200H, IR7 input has a slave, 8085 mode, unormal end~-
of-interrupt mode, non-buffered mode, special fully nested mode, all interrupts
enabled, wnon-polled mode, and rotate priority on non-specific end=of-interrupt
command . :

Tne slave B239A is set up to have the followinyg characteristics: ICW4 is
needed, cascade mode, address interval of 4, level triggered mode, vector
starting address of 220H, slave 1D of 7, 8085 mode, norwal end-of-interrupt
mode, non-buffered mode, special fully nested mode, all interrupts enabled, non-
polled mode, and rotate priority on non-specific end-of-interrupt command.

Hote that Intel advises that using the automatic end-of-interrupt mode in a
master/slave environment is not recommended.

ROUTINE FOR TNITTALIZING MASTER AND SLAVE 8259As
ON THE SYSTEM SUFFORT 1

;this program assumes that the System Support 1 is addressed
sat S0H (CompuPro standard), for different addresses change
3BASE in eguates.

0050 = BASE EQU 50H sstarting address of board

0050 = MPRTQ EQU BASE slower master port (AU=0}

0051 = MPRTL EQU BASE+] supper master port (A=)

0052 = SPRTO EQU BASE+2 ;jlower slave port (al=0)

0053 = SPRT1 £QU BASE+3 jupper slave port (AO0=l}

0Ll00 ORG 1008

jthis routine initializes the master 52394

0100 3ELD INIT MVI 4,00011101B ;ICWL

al02 D350 . ouT MPRTO jsend it

0104 3E02 MVIL A,Q2H supper byte of address
interval

0146 pisl auT MPRT1 ssend it

0108 3EBO MVL A, 100000008 ;IR7 has a slave

Ul0a D351 ouT MPRT1 ;send it

010C 3E10 MVL A,000100008 ;ICWS

010F D351 ouT MPRT1 jsend it

oLl0 3E0C MVI A,0 sjclear all mask bits
(OCU1Y

0112 D351 0UT MPRT1 ;send it

0ll4 3EAQ MVI 4,10100000B jrobtate on non-specific
EGT

0116 D350 Ut MPRTQ ssend 1t

1118 3E08 MVL 4,000010008 ;0CH3

01lA D350 ouT MPRTOQ ;send it

sthis routine initializes the slave B2594

OLLC 3E3D HVL A, 001111018 ;ICHL

OLLIE D352 QOUT SERTO jsend it

0120 3E02 MVI 4,020 supper byte of address
interval

0122 D353 ouT SPRTL

0124 3E07 VL A,07d ;slave ID

0126 D353 JUT 3PRT1

0l28 3El0 MVI A,00010000B ;ICW4

0124 D353 QuUT SPRTL

012¢ 3EQ0 HYVL 4,0 jclear all mask bics
{OCWI)

012E D353 ouT SPRT1

0130 3EAQ MVI 4, 101000008 jrotate on non-~specific
il

0132 D352 QUT SPRTO

0134 3E08 MyI 4,000010008 ;0CW3

0136 D352 ouT SPRTO

0w on to other processing

DISABLING THE 8259A°S

To disable the two 525945 on the System Support 1, perform the following
operations:

1) Unplug IC U28 from its socket. Bend pin 12 of IC U28 ouct from the
package at abour a 45 degree angle and re-install it in its socket,
making sure that toe bent out pin makes no contact with any other IC
pin.

2} Unplug IC V46 from its socket. Bend pin 8 of IC U46 out from the
package at about a 45 degree angle and re-install it in its socket,
making sure chat the bent out pin makes no contact with any other IC
pin.

3) On the solder side of the PC board, connact a jumper between pin 4
of IC U44 and pin 14 of the same IC (+5 Vde)s If any misunderstanding
exists concerning these instructions, please send back the board
concerned te CompuPro. & charge of $40.00 will be assigned to any
board whose owner wishes to disable interrupts but who does not under-
stand chese instructions. A miaimum charge of $40.00 will be assigned
to any board recurned to CompuPro whose owner either misunderscands
these instructions or fails to implement them properly.

58

PROGRAMMING THE INTERVAL TIMERS

The interval timers on the System Support 1 are implemented with the 8253
chip (eriginally produced by Intel, but may be supplied by others). As with che
82594, rather than repeat a lot of information, we have chosen to reprint a
section of the data sheet on the 8253, It should give you all the information
you need to program the part, and it fully explains the part’s various operating
modes:. The various inputs and ourputs of the 8253 appear at J4 which is
intended for connecting these inputs and cutputs to the outside world and for
cascading sections. (See the section called "Interval Timer Options"” in the
hardware configuration section of this manual for more detailed informatiomn.)

The interval timer’s outputs also appear at J7 and J8 for connection to the
interrupt controllers and to the 5-100 bus vectored interrupt lines. BSee the
section called "Interrupt Jumpers and Options” in the hardware configuration
section of this manual for more information. uUne comment is in order here: The
hardware configuration of the interval timers on the S5ystem Support 1 is
designed so0 that the "Interrupt on Terminal Count" mode of the 8253 is taken
advantage of, aud this mode is recommended when using the timers to cause
interrupts.

Reprint from the Intel data sheet follows:

That completes rhe section on Programming Considerations.

intal

8253/8253-5
PROGRAMMABLE INTERVAL TIMER

PIN CONFIGURATION

b, ot

0,0
BGE
0,0
0,0
0,0
o,0
o,[]
cLe o]
ouT o]
GATE o]
GNDL]

s
:[dwe
agls
[cs
SEN

[2,
[k 2
[our 2
[GaTe 2
[Dew
[caten
[TouT

8253

WM e B AR B w sy

PIN NAMES

DATABUS 8 BIT:
COUNTER CLOCK INPLTS
COUMTER GATE I4PUTS
COUNTER QUTPLITS

READ CQUNTER

WHITL COMMAND O DATA
CHIFRLEECT

f COUNTER SLLECT

"5 YOLTS

GROUND

0,0,
CilK N
GATE s
U N
RO
WH
Cs
Ly B

VC.C
GND

AD
WA

]

e

BLOCK DIAGRAM

M

f———— LLK

o SRR | DATE
k] BUS

BLFFER

e

Y.

/_l .

—_ |
"9 Reap

WAITE —

LOGIC "| ﬂ;

COUNTER
0

po————— GATEL

———=0uTo

po—— LR 1

COUNTER

a1 b GATE Y

——— e —]

e OUIT
]

T oo 4

.
H H
J | I R
- (ML
CONTROL
woro - V' counTeR | cart s
REGISTER [Y :
———out2

| |

INTERNAL BUS /

FUNCTIONAL DESCRIPTICN

General

The 8253 is & programmable interval timer/counter
snacifically designed for use with the Intel™ Micro-
computer systems. Its function is that of a general
purpose, multi-timing slement that can be treated as an
arcay of 1/0 ports in the system software.

The 8253 solves one of the most common problems in any
microcomputer system, the generation of accurate time
delays under software control. Instead of setting up timing
loops in systems software, the programmer conligures the
8253 to match his requirements, initializes one of the
caounters of the 8253 with the desired quantity, then upon
command the B253 will couni out the delay and inferrupt
the CPU when il has completed its 1asks. It is easy to see
that the softwaré overhead is minimal and thal multiple
delays can easily be maintained by assignment of priority
ievels.

Othar counter/timer functions that are non-delay in
nature but also common to most microcomputers can be
implemented with the 8253,

#» Programmable Rate Generator

¢ Event Counter

* Binary Rate Multiplier

® Real Time Clock

* Digitai One-Shot

« Comptex Mator Controtler

Data Bus Buffer

This 3-state, bi-directional, 8-bit bufteris used (o interface
tha 8253 to the systemn data bus. Dats is (ransmitted or
received by the butfer upon execulion of INput or QUTput
CPL instructions. The Qata Bus Buffer has three basic
tunctions.

1. Programming the MODES of the 8253

2. Loading the count registers.

3. Reading the count vatues.

59

Read/Write Logic

The Read/Write Logic accepts inputs from the system bus
and in turn generates control signals for overall device
operation. It is enabled or disabled by CS so that no
operation can occur to change the function unless the
device has been selected by the system logic.

RD (Read)
A low” on this input informs the 8253 thal the CPU 15
inputting dala in the form o a4 couniers value.

WR (Write)
A “low™ gn this (nput infarms the 8253 thal the CPU 15

outputting datainthe farm of mode information ar loading
counters. :

AD, A1

These inputs are normally connected to the address bus
Their function is to select one of the three counters {0 be
operated on and to address the conirol word register for
mode setection.

CS (Chip Seiect)

A “tow" on this input enables the B253. No reading or
writing will occur unless the dewice 15 selecled. The C8
input has no effect upon the actual operation of the
couniers.

T p+—CLK D

- DaTh

T w8 e e
BUFFER

—OuT 0

ol b— cLK 1
WA ————=q peap
: COUNTER
wHITE o b GATEN
. LOGIC
—out
A‘
l— cux 2
contaoL | o |
WORD TR e —Gare 2
REGISTER [N

fo - OUT 2

[|
—

-

Figure 1. Block Diagram Showing Data Bus Bufler and
Read/Write Logic Functions

60

ol
-
jw

3
-

>

*

=]

Load Caunter No. 0

Load Counter No.

Load Counter No. 2

Write Mode Word

;.ead Counter No. 0|

T Read Counter No. 1
Read Counter Na. 2

-

PR (PR [

Q== |

|
|
1
!

1
(=
'

ux—-—-|—-l—-oooo

|
i__

+

J No-Operation 3-State
| Disable 3-State

DM[ODOODODD
= Ix O oo Q@

I
i

|x)(._. _.I

Control Word Reglster

The Control Word Register is selected when AD, At are 11,
It then accepts information from the data bus buffer and
stores 1t in a register. The information stored in this
register controls the operatiocnal MODE of each counter.
seiection of binary or BCD counting and the loading of
each count register.

The Control Word Register can only be wrilten into: no
read operation of its contents is available.

Counter #0, Counter #1, Counter #2

These three functional blocks areidentical in operation 50
only a single Counter will be described. Each Counter
consists of a single, 18-bit, pre-settable, DOWN counter.
The counier can operate in either binary or BCD and its
input, gate and output are conligured by the selection of
MODES siored in the Control Word Register,

The counters are fully independent and each can have
separate Mode configuration and counting operation,
binary or BCD. Also, there are special features in the
control ward that handle the lcading of the count valug so
that soflware overhead can be minimized for these
functions.

The reading of the contents of each counter is available to
ihe programmer with simple READ operations for event
counting applications and special commands and logic
are included in the 8253 so that the contents of each
counter can be read “on the fiy” without having to inhibit
the clock input.

(" —
pt—CLK D
- DATA
Ry e KT K o e aareo
BUFFER .
—0uTn

| 1

B ——
il p— CLK 1
—_—
L PEAD/ COUNTER
WRITE 21 f—aaTEs
A LogIc
——=ouT1
Ay -
— CLK 2
CONTACHL | A
WORD 1 COUNTER Le— oate2
REGISTER [N

[— QLT 2

|
——

Figure 2. Block Diagram Showing Control Word
Register and Counter Functions

OPERATIONAL DESCRIPTION

General

The complete functional defindion ¢of the 8253 15
progtammed by the systems software. A set of controd
words musl be semt out by the CPU to innialize each
counter of the 8253 with the desired MODE and guantity
information. These control wards program the MODE.
Loading sequence and selection of binary or BCD
counting.

Qnce programmed, the 8253 is ready to perform whatever
timing tasks it is assigned 1o accomplish

The aciuai counting aperation ol each counter 15
completely independent and additional logic is provided
on-chip s0 that the usual problems assgciated with
efficient monitoring and management of exiernal,
asynchrongus events Or rates 10 the microcomputer
system have been elimipated.

Programming the 8253

All of the MODES for each counter are programmeo by Ihe
sysiems software by simple 1/0 operations

Each counter of the 8252 1s indwidually programmed by
writing a control word inlg the Conltral Word Regisler
(Al A1 - 1)

Control Word Format

(3] Dg Dsg Oy D3 D, D Dy
[sc1 [sco [muy [Reo [m2] w1 [mo [eco |

Definltion of Control
SC — Select Counter:

sC1 SCO
ADODRESS BUS (161 1 o a Select Counter O
Ay R l i) 1 Select Counter 1
CONTROL B8 : 1 V] Select Counter 2
1 i | 1R oW 1 1 (legal
DATA BUS B 3
L "i : AL — Readiload:
A, A, L3 0,0, :‘ \‘rf'l'l ALl RLO
COUNTER on?:z:::n COUNTER 0 0 Counter L_a.":h'"g operation {sec
0 ! 2 READ/MWRITE Procedure Section|
out Gare cux | our caTE cux Tout gate ok . —1 0 Read/Load most z-iu_;r;i?icant _b\,rte anly.
{ ‘ [‘ T [! ‘] 0 _‘I »_Fl_ea_d.g’[oa_-fj-_leasl ;Enihca-m hyleo_nI\,r—_
| ' b 1 1 Read/Load least significant byte First,
then most signiticant byte.

Figure 3. 8253 System Interface

61

M -— MODE:

M2 M1 MO
0] D | Mode D
. 0 1 Mode 1
—
X i 0 | Mode 2
X 1 1 Mode 3
1 0 | Mode 4
H 0 1 Mode &
BCD:
] Binary Counter 16-bits _‘
1 Binary Coded Decimal {BCD} Counter
4 Decades)

Counter Loading

The count register is not loaded until the count value is
written (one or -iwo byles. depending on the mode
selected by the RL bits), followed by a rising edge and a
falling edge of the clock. Any read of the counter prior 1o
that failing ¢lock edge may yield invalid data.

MOQE Delinition

MODE 0: Interrupt on Terminal Count. The output will
be initially low after lhe mode set operation. Aller the
count is loaded inlo the selected count register. the oul-
put will remain low and the counter will count. When ter-
minal count 15 reached the culput will go high and re-
main high until the selected count register is reloaded
with the mode or a new count is loaded. The counter
continues to decrement after 1erminal count has been
reached.

Rewriting a counter register during counting results in
the following:

{1} Wnite 151 byle stops the current counting.
{2} Write 2nd byte starls the new counl.

MODE 1: Programmable One-Shot. The oulpul will go
low on the count tollowing the rising edge of the gate in-
put.

The output witl go high on the terminal count. If a new
count value is loaded while the outpul is low it wili nol
affect the duration of 1he one-shot pulse until the suc-
ceeding trigger. The current count can be read al any
time withoul affecting the one-shol pulse.

The one-shol is retriggerable, hence the output will re.
main tow tor the full counl after any rising edge of 1the
gate input.

62

MODE 2: Rate Generator. Divide by N-counter. The out-
pul will be low for one period of the input clock. The
period from one cutput pulse to the next equals the
number of input counts in the count register” If the
count register is reloaded between output puises the
present period will not be affected, but the subsequent
period will reflect the new value.

The gate input, when low, will force the outpul high.
When the gate input goes high, the counter will start
trom the initial count. Thus, the gate input can be used
to synchronize the counter. .

When this mode is set, the output will remain high until
after the count register is loaded. The output then can
atso be synchronized by sofiware.

MODE 3: Square Wave Rate Generator.Similar toc MODE
2 except that the output will remain high until ¢ne half
the count has been compieted (for even numbers) and
go low for the other half of the count. This is accom-
plished by decrementing the counter by two on the fall-
ing edge of each clock pulse. When the counter reaches
terminal count, the siate of the cuiput is changed and
the counter is reloaded with the full count and the whole
process is repeated.

if the count is odd and the output is high, the first clock
pulse {(after the count is loaded) decrements the count
by 1. Subsequent clock pulses decremeni the clock by
2. After timeaout, the culpul goes low and the full count
is reloaded. The first clock pulse (following the reload)
decrements the counier by 3. Subsequent clock pulses
decremendt the count by 2 until timeout. Then the whole
process is repeated. In this way, if the count is odd, the
output will be high for (N+ 1¥2 counts and low for
{N - 1)/2 counts,

MODE 4; Software Triggared Sircbe. After the mode is
set, the output will be high. When the ¢ount is loaded,
the counlter will begin counting. On ferminal count, the
output will go low for one inpul clock period, then will
go high again.

If the count register is reloaded between output pulses
the present period will not be atfected, but the subse-
qguent pariod witl reflect the new value. The count will be
inhibited while the gate input is low. Reloading the
counter register will restart counting beginning with the
new number.

MODE 5: Hardware Triggared Strobe. The counter will
start counting after the rising edge of 1he trigger input
and will go low lor one clock period when the terminal
count is reached. The counter is retriggerable. The out-
put wilt not go low untit the full count after the rising
adge ot any irigger. ’

8253 READ/WRITE PROCEDURE
Write Operatlons

The systems software must program each counter of the
8253 with the mode and quantily desired. The program-
mer must write out to the B253 a MODE control word and
the programmed number of count register bytes {1 or 2)
prior to actually using the selected counter.

The actual order of the programming is quite flexible.
writing oul of the MODE control word can be in any
sequence of counter selection. e.g., counier #0 does not
have to be first or counier #2 iasl. Each counter's MODE
control word register has a separate address so 1hat its
loading is campleteiy sequence independent. (SC0, SC1}

The ioading of the Count Register with the actual count
value, however, must be done 1n exactly the seguence
programmed in the MODE control word (RLO. RL1). This
loading of the counter's count register is sull sequence
independent like the MODE control word loading. but
when a selected count regisier is to be loaded it must be
loaded with the number of bytes programmed in the
MODE controt ward (RLO. RL1). The one or two bytes to
be loaded in the count register do not have 1o follow the
associated MODE control word. They can be programmed
at any time following the MODE control word leading as
long as the correct number of bytes is loaded in order.

All counters -are down counlers. Thus, the value loaded
into the count registier will actually be decrernented.
Loading all zeroes into a count register will result in the
maximum count {2'¢ for Binary ar 104 1or BCD}. InMODED
the new count will not restart until the load has been
completed. It will accept one of two bytes depending on
how the MODE control words (RLO, RL1} are program-
med Then proceed wilh the restart opetation.

MODE Contral Word

Counter n
Count Register byte

LSB Counter n
MSEB Count Register byte

Counter n

Note: Format shawn is a simpie exampie of loading the 8251 and
does not imply that i1 is the anly tormat that can be used.

Figure 6. Programming Format

At | AD
No. 1 MODE:DC:;::JLWOM . .
No. 2 MGD Eotionr::ro: Word 1
[|

Count Register Byte)
No. 4
o LS8 Counter 1 ¢ !
Count Register Byte 0 1
No. 5 | MSB Counter 1
Count Register Byie
Mo.
0.6 1 LSB Counter 2 ! 0
Count Register Byte
Mo.7 | M5B Counter 2 1 0
Count Register Byte
No. 8 | LSB Counter D 0 1]
Count Register Byte
No. 9 | MS8 Counter 0 0 0

MNote: The exclusive addresses of each counter’s caunt register make
the task of pragramming the 8253 a very simple matter, and
maximum effective use of the device will result if 1his feature
is fully urilized.

Figure 7. Alernaie Programming Formais

Read Operations

In mast counter applicalions it becomes necessary to read
the value of the count in progress and make a
cemputationa! decision based on this guantity Event
counters are probably the most common apphcation that
uses this function. The B253 comtainsg iogic that wilt allow
the programmer to easily read the contents ol any of the
three counters withoul drsturbang the actual counl in
progress.

There are two methods that the programmer can use to
read the value of the counters. The first method involves
the use of simple 10 read operahons of the selected
counter. By controlling the ADQ. A1 npuls to the 8253 the
programmer can select the counter 10 be read {remember
1hal no read operation of the mode register s allowed AQ.
A1-11). The gnly requirement with this method 1s that in
order to assure astable count reading the actual operation
of the selected counter musi be mhibited eilher by
controdling the Gate inpul or by external logic that inhibits
the clock input The contents of the counler selected will
be available as follows.

tirst 170 Read cantains the least significant byte {(LSB}

second 1/0 Read conlains the mosi significant byte
{MS8].

Oue to the internal logic of the 8253 « 15 absolutely
necessary tocompietetheentirg reading procedure IHtwo
bytes are programmed to be read then iwo bytes must be
read before any loading WA command can be senl Lo 1he
same counter

63

Signal Low
Siatus Or Going

Modes Low Rising High
0 Cisapies - Enanles
caunhing Cuuntog
1 —_— 11 Iminales [
COwnYing

21 Renels ruipuat
alter neat clock

2 15 Gisanies
caunling tnehiatey Enanles
21 Sets guiput counhng connhien
immediately
migh
3 1+ Chsaples
counhing b Ales Endples
71 Sers output Connting Lotanhing
immedraledy
mgh
4 Disables _ Enacies
counting counting
= _— Imtiales —_—

Lounnng

Figure 4. Gate Pin Operations Summary

MODE 0: Interrupt on Tarminal Count

CLOCK_IUUULIULIUUUUUUL

Wﬁn_]____r_—.—_l_

|
: '
4 3 2 1 1]
OUTPUT (INTERAUFT] !]
tnrd) et n
| |
f |
WA m I I 3 I
: I
GATE N rm
5 4 a2 3 0
QUTPUT {INTERRUPT} ; . J
im = 5] ——r ——
A 8
A+B=m

MODE t: Programmable One-Shot

evoox MMM UL LU UL
e | I
TRIGGER l

4 3 2 1 0O

ouTPuT _L___l——-—-—-——

[GER

TRIGGER I 1 J
4 T 7 4 13 7 1 0

QUTFUT 1

64

MODE 2: Rate Generator

WAa Lt n2
4 3 2 1T DM 7 Yoz Yoo
QuTPUT
J | -
oy 3 2 1 M3 1 o2 i
outPuT (n=3) LT | | LT

RESET T ______

MODE 3: Square Wave Generalor

erock _MLAUAUMU UM AULULUL
4 2 4 2 4 2 L] 2 4 2 4 Fd q
5 4 7 5 2 H a 2) 2 3 4 H
QUTPLUT tn=% e 1 |] |

MODE 4: Software Triggered Sirobe

Wit I n-af
4 3 2 1 0
QUTFLT Lt
LOAD n n=d
GATE 1 I
4 4 1 2 1 0
OUTFUT] I

MODE 5: Hardware Triggerad Strobe

GATE |
CUTPUT 40 41 L—r

GATE l | I

DUTHUT 40 4|

Figure 5. 8252 Timing Disgrams

Read Operation Chart

Al AD RD

0 a o Read Counter No. 0__
0 1) Read Counter No. 1

1 0 0 Read Counter No. 2

1 1 [0 liegal

Reading While Counting

In arder for the programmer Lo read the conlenls of any
counter without effecting or dsturbing Ine counting
operation the 8253 has special inlernal 10gic that can be
accessed using simple WR commands to the MODE
regisier Basically. when the programmer wishes to read
ithe contents of a selected counter "gnthe fly helgadsthe
MODE register with a special code which latches Lhe
present count value inlg a slorage register 50 that s
contents contain an accurate. stable guantdy The
programmer thenissues a normal read command 1o the
selected counler and Ihe canlents ol the latched reqisier s
available

MODE Register for Latching Count
AQ, A1 = 11

D7 D6 DS | D4 | D3 | D2 [ay} oo
sC SCo 0 a X X X X

SC1.8C0O— specity counler 1o be lalched
D504 — 00 designates counter lalching operation
X — don'l care

The same limitation applies to this mode of reading the
counter as the previous method. That is, it is mandatory
lo compiete the entire read operalion as programmed.
This command has no effect on the counter’'s mode.

65

66

FROGRAMMING THE 9511 OR 9512 MATH PROCESSOR

The System Support 1l can accommodate either a 95114 or 9512 type math
processor from AMD or INTEL (these chips are provided only as an option). For
the hardware differences between these chips see the section of this manual
entitled Theory of Operation.

Though the 9311 and 9512 chips are not software compatible as far as their
representation of numbers, they may be accessed through the same I/0 ports. The
two ports occupied by these chips are:

9511/12 PORT FUNCTION 1/0 ADDRESS
l: The DATA port Base+8
2: The COMMAND port Base+9

It is worth noting that these chips have a stack structure that must be
kept under very tight control. The stack will become misaligned 1f, for exam~
ple, too few or too many bytes ¢f a result are read after a calculation. Once
the stack is misaligned, there iIs no sigrmal instruction that will reset it. The
only way to re-align the stack through software is to read or write sufficient
bytes to restore it. The guickest and surest way to re-align the math processor
stack is to reset the system.

The user should not attempt to program these chips without a data sheet
{see pages 70-81).

The program belew can be used to verify the proper operation of the System
Support 1 with eitcher a 95114 or a 9512. The program, written to run under
CP/#, simply requests the math processor under test to add two numbers from a
table and then compares the result with a known correct result from another
table. The program can be assembled to test the S311A or the 9512 by changing
the EQU pseudo-opcode after MP95311 or MP9512 to "TRUE" for the desired processor
and ‘FALSE” for the other.

jtest routime for 9511 or 9512

7
FFFF = TRUE EQU OFFFFH
0000 = FALSE EQU NOT TRUE
¥
0005 = BDOS EQU 5
0009 = PSTRING EQU 9H sprints string in de register
000A = RCON EQU 0AB ;jreads sering to memory at de
0004 = CR EQu 0AH scarriage Treturn
0OoD = LF EQU oDH iline feed
0050 = BASE EQU 504 ;System Support I/0 base
0058 = DREG: EQU BASE+8 smath chip data register
0059 = CREG: EQU BASE+9 smath chip command register
¥
FFFF = MP9511 EQU TRUE sset test chip to true
@000 = MP9512 EQU FALSE sset other chip to false
3

0100 = ORG 100H sstart of program code

0100

0103
0lde
0108

0108
O10E
0110
OlllL
0112
0113
0115
0118
0lla

aLic
Ql1E
0121
0123
0l24
0127
0128
0129
012c
Q12E
0131
0133
0136

31AD01L

114401
0EQ9
ChO500

2178001
0EG4
7E
D358
23

oD
CELOOL
3E6C
D359

0EO2
217701
DBS58

c22101
DB59
117501
OE09
CcDO500
C30000

LXI SP,STACK

IF MPS511

e wy

test routine for 9511

* .

START: LXT D,GREET!1
MVL C,PSTRING
CALL BDOS

write contents of tbll to 9511

[PERE TRy

LXI H,TBL1
MVI C,4

TESTL: MOV A,M
0UT DREG
INX H
DCR c
JNZ TESTL
MVI A,6CH
ouUT CREG

;

jcompare

H
MVL c,2
LXL HCTBL?2

COMPL: 1IN DREG
CHP M
INZ ERROR
INX H
DCR c
JRZ COMP1
IN CREG
LXI D,0KMSG
MVI ¢,PSTRING
CALL BDOS
JMP 0

H
ENDLF

»
IF MP9512

;test routine for 95312

¥
START:

LXI G,GREET L2
MVI C,PSTRING
CALL BDOS

iWwrite contents of

»
L

LXI H,TBL3

MVI C,8
TESTZ: MOV AN

ouT DREG

tbl2 to 9512

jinitialize stack

slength of table into reg c
;byte from table into reg a
joutput byte from cable to 9511
jincrement pointer into table
jdecrement table count

;1f zero input data done
;single precision add (SADD}
sgive command to 951l

9511 answer with known correct answer in thl2

slength of table into reg c
shl reg points teo table 2
;input data Erom 9511

smatch with known result
serror 1f no match

jelse update pointer into table
;jdecrement counter

3if not zero compare next byte
;echeck status and throw away
;set up ok message

sprinc it

jtest passed—— return to CP/M

;length of table iunto reg ¢
;byte from table into reg a
joutput byte from table to 9512

67

INX
DCR
JNZ
MVI
ouT .

[T

MVL
LXI
COMP2: IN
cMpP
JNZ
IdX
DCR
JNZ
IN
LXI
MVI
CALL
JMP

e

ERDIF

0139 11eC0l ERROR: LXI
013C CGEO09 MVI
OL3E CDOS00 CALL
0141 C30000 JYP

H

jmessages
0l44 QAOD39531GREETLL:
0158 DAOD39531GREET12:

016C AODO455252ERRMSG:
0175 OAODAF4BZOOKMSG:

H jincrement polnter into table

C ;jdecrement table count
TEST2 . s1f zero input data done
a,l ;single precision add (SADD)

CREG ;give command to 9512

compare 9512 answer with known correct answer in tbla

C,R slength of table into reg c
H,TBL1 3hl reg points to table 2
DREG sinput data from 9512
M smatch with known result’
ERROR jerror if no match
H sjelse update pointer into table
C sdecrement counter .
COMP2 31f not zero compare next hyte
CREG jcheck status and throw away
D,0KMSG ;set up ok message
C,PSTRING jprint it
BDOS
0 jtest passed-- return to CP/M
D, ERRMSG j8et up error message
¢,PSTRING ;print it
BDOS
0 sreturn to GP/M

DB CR,LF,"9511 TEST BEGUN",CR,LF,"§"
DB CR,LF,” 9512 TEST BEGUN’,CR,LF,” %"
DB CR,LF, "ERROR*,“$*
DB CR,LF, OK’,"§’

H
stables of data and results to test 9511 and 9512

.

;9511 tables
0178 00300040 TBLL: DB
017F 7000 TBLZ2: DB

H

19512 tables
(181 0000803F00TBL3: DB
0189 40000000 TBL4: DB

018D DS
STACK:

00, 308, 00, 40H
70H, 00

00, 00,804, 3FH, 00, 00, 80H, 3FH
40H, 00, 00,00

32 ;16 LEVEL STACK

inter’ PRELININARY
b 8231A
ARITHMETIC PROCESSING UNIT

s Fixed Point Single and Double s Compatible with MCS-80™ and
Preciston {16/32 Bit) MCS-85™ Microprocessor Families
= Floating Point Single Precision m Direct Memory Access or
(32 Biy) Programmed /O Data Transters

m Binary Data Formats
s Add, Subtract, Multiply and Divide
u Trigonometric and Inverse

= End of Execution Signal
m General Purpose 8-Bit Data Bus

Trigonometric Functions Intertace
s Square Roots, Logarithms, » Standard 24 Pin Package
" Expanentiation s +12 Volt and +5 Volt Power
» Float to Fixed and Fixed to Float Supplies
Conversions a Advanced N.Channel Silicon Gate
w Stack Oriented Operand Storage HMOS Technology

The Intal® B231A Arithmetic Processing Unit {APU) is a monolithic HMOS LSt device that provides high performance fixed
and floating point arithmetic and floating point trigonometric cperations. It may be used to enhance the mathematical
capability of a wide variety of processcr-oriented systems. Chebyshev polynomials ara used in the implementation of the
APU algorithms.

All transfers, Including operand, result, status and command information, take place over an 8-bit bidirectional data bus.
Operands are pushed onto an intarnal stack ang commands are issued to perfarm operations on the data in the stack.
Results are then available te be retrieved from the stack.

Transfers to and from the APU may ba handled by the associated processar using conventional programmed KO, or may be
handlad by a direct memaory access contraller for improved performanca. Upen complation of each command, the APU
issues an and of execution signal that may be used as an interrupt by the CPU to help coordinate program execution.

InJanuary 1981 Intel will be converting from 8231 to 8231A. The 82214 provides enhancemants over the 8231 to allow use
in both asynchronous and synchronous systems. . ’

75—
A ~—=o)
WA BUS
9 contRoL oPERAND Jf RKING
Ay ——a] - REGISTERS
(N3
MEADY it [ALY . C_\. l_’. b o
{} wee 2 nld o
3 - . w2 2[5 mEser
§vaer O+ L =
svaeq] Hinl)
AL: oo wor e 1 L] 8 w[o wh
oed-DA? weren T COMSTANT mewwn], M, H
oo s o
ALOGAITHM onr 9 F='
CONTAOLLER ooz [w] onr
pEx n W] o
ERD -+——u o] courna
ERIR —a-N
FLLT A L —
— CONTREN
RERET il
o ——e
Figure 1. Block Diagram Figure 2. Pin Configuration

69

70

ntel

8231A

PRELIMINARY

Table 1. Pin Description

Pin Pin
Symbol | No.| Type MHame and Funciion Symbol |No. | Type Name and Function
Veo 2 Powar: +5 Voli power supply. SWRAEQ | 5| O |Service Aequest: This aclive high oul-
Vo 18 Pawer: 12 Yolt power supply. put sig.nal. indicales thal command
aexecution is complate and thal post
Vas 1 Ground. execution service was requesled in the
CLK 23| 1 |Clock: An external, TTL compatible, previgus command byte. [tis cleared by
. timing source is applied ta the CLI pin, SVACK. the next command gutput Lo Lhe
RESET | 22 | | Aemet: The active high raset signal pro- device. or by RESET
vidas initialization for the chip. RESET READY | 17 | O |Ready: This active high output indi-
also terminates any operation in pro- cates that the B231A is able to accept
gress. RESET clears the status register communication with the data bus. When
and places the B231A into the idle stale, an attempl is made lo read dala, write
Stack contents and cemmand registers data or to entar a new command whila
are not affected (5 clock cycles). the B2314 is execuling a command,
— e - - READY goes low until execution of the
oS 18 1 qhsp SBIa_cl: G5 is an active low input current command is complate (See
signal which St_alec:_ts thg B231A and en- READY Oparation, p. 5.
ables communication with the data bus, - — -
- - - — LB g | ;0 |Data Bua: These eight bidirectional
A 21| | |Addrees: In conjunction with the RD DB7 15 lines provide for transler of commands,
and WR signals, the A, control line es- status and data betwesn the B231A and
tablishes the type of communication ihe GPY. The 8231A tan drive the data
thatis tobe performed with the B231A as bus only when GS and RD are low.
shown balow:
Ao AD | WA Function
0 1 0 Enlerdata byte into stack COMMAND STRUCTURE
0 0 1 Read data byle from stack
1 1 0 Enter command Each command entered into the 82314 consists of asingle
1 i} 1 Read status 8-bit byte having the format illustrated below:
AD 20| | |Read: This activs low Input indlcates svaca OPERRTION
that data or status is to be read from the ® swoee Fxen “ooE
B231A If CS Is low. | | | |
WR 19 | 1| |write: This active low input indicates ' s s 4 ’ ' ! 0
that dana or a command Is to be wrillen
inlo the 82314 if ©5 is low. Bits (-4 select the operalion to be perfarmed as shown
EACR al | | End ol Execution: This active low input in the table. Bils 5-& select the qala formal appr_opriate
claars the and of execulion output sig- 1o the selected operation. I bitS5is a1, a fixed poir dala
nal {END). H EATK is lied low, the END formal is specified. If bil 5 is a §. Hoating point format is
output will be a pulse that is one clock specilied. Bit 6 sefecls Lhe precision of the data to be
period wide, operaled upon by fixed point commands only (if bit
SVACK | 4| 1 |Servics Request: This active low input 5=0, bit 6 must be 0} If bil & is a 1, single-precision
clears the service request output {16-bil) operands are assumed. If bit 6 is a 0, double-
. [SVYREQ). precision {32-bit} operands are indicated. Results are
ERG 24 | O |Ena: This sctive low, open-drain output undefined for all illegal combinations of bits in the com-
indicates that execution of the pre- mand byte. Bit ¥ indicates whether a service request is
viously entared command is complete_ i to be issued after the command is execuied, Ifbit 7 isa
¢an be used as an interrupt request and 1, the service request oulput {SYREQ} will go high at the
is cleared by EACK, RESET or any read conclusion of the command and will remain high until
or wrltg access to the 8231. reset by a low level on the service acknowledge pin

(SVACK) or until completion of execulion of the suc-
ceeding command where service request {(bit 7} is 0.
Each command issuad to the B231A requests post execu-
tion service based upon the state of bit 7 in the command
byte. When bit 7 is a 0, SVREQ remains low.

AFh-00 2818

intel 82314 PRELIMINARY

Table 2. 32-Bl Floating Polnt Instructiona

121
Instruction Dascription "é:‘::. s;tscl::E::é:';:én su::in.::x"'
ACOS Inverse Cousing ol A [AU UuU ‘B.1€
ASIN Inverse Sine o! A LU} R U v U 5 2E
ATAN Inverse Tangent af & o ? R B U U 52
CHSF Sign Change of & 15 R BECD 5.Z
CD5 Cogine of A (radians) o 3 "R B U U 5L
EAF o Funclion o oA f 80U 5.2 E
FADD Add A and 8 10 R C DU S L E
FOIV Divide B by A 13 AR C DUV S ZE
FLTD 32.Bit Inleger to Floating Point Convarsion 1 C R B CU 52
FLTS 16-Bit Inleger to Floating Point Conversion 10 A B C U 57
FMUL Mulliply & and B 12 AR C DU 5ZE
FSUR Sublract A from B 11 R C DU 5 LE
LOG Common Logarlthm jbasa 103 of & LI R BUU 5. LE
LN Natural Logarithm of A IR] R B UU S LE
PORF Slack Pop 1 8 B C DA 5 Z
FTOF Stack Push 17 A A B C 82
PURI Push m onto Stack 1 A A A BC 5z
PWR B Power Funclion [:] ACUuUY 8 ZE
SIN Sine ot A (radians) o2 R B UU [
SQRT Squara Roat of A a1 AR B G U 5 LE
TAN Tangenl of A jradlans) 0 4 A B U WU 5 ZE
XCHF Exchange A and B8 18 B A C D 5L
Table 3. 32-Bit Integer Instructions
120
Instrucilon Daszcrdptlon 'é;ﬁ:l skl:f:r g::::ll:n Sll;l:it.:::';m
A B C D
CHSD Sign Change af A 34 R BCO 520
DADD Add A and B 2 G R C O A 52 CE
ooV Divide B by A 2 F R C DU 52 E
DMUL Multiply A and B (A= lowar 32-blIs) 2 E R C DU 520
DMUL Multiply A and B {R = upper 12-bits] 16 R C D WU 520
psua Sublracl A fom B 20D R C D A 5 2C0
FIxD Flaaling Polnt 1o Integer Conversion 1 E R B CU 5 L0
FORD Stack Pop 28 B C D A 52
PTOD Stack Puah a7 A & B C 32
XCHD Exchange A and B 398 BE A COD 52
Table 4, 16-Bit Integer Instructions
i3 :
Instruchion Descriplion 2::;:‘ s:l::tg::ct:'::;n s“:::;::':m
Ay A By B Gy G Dy D
CHSS Change Sign ol A 7 4 R AL By B Cy Gy Dy O 520
FIx5 Floating Poinl to Integar Conversion 1 F RByBCuG U LU 5,20
POPS Stack Pop 78 A By B Cy C Dy O Ay 52
PTCS Slack Push 77 Ay Ay AL By BL &y G Dy 8.2
5400 Add Ay and A E C A By B Cy G Dy Dy Ay 520 €
SOHY Divide A_ by Ay, 6 F R ByB CyC.Oyb U 5. ZE
SMUL Mulliply A by A (A= lower 16-bits) & E R By B GyQ DyD_ U 8 LE
SMUL Mulliply & by Ay (R = upper 16-biis) 76 RByB CyC OyD U 3. LE
S5UB Subtract Ay from A 6 D R B, By Cy C Dy B Ay 5, 2.GC.E
ACHS Exchangs Ay and A 79 AL Ay By B Cy G Dy D 5Z
HOP No Operallon L] Ay & By B Cy € Oy D

Motes: 1. In the hex code column, SYREGHIS a 0.
2, The stack inllially is compased ol lour 32-bit numbers (A, B, C, D), A is equivalent 1o Top O Siack TOS)and B |5 Naxi On Stack {NOS), Upon
campletion ¢f 2 command the miack is composed of: the result (AL undalined {U); or the initial conlenis tA, B, C, or D
3. Tha stack initially |s composed of eight 16-bil numbecs 1A, A, By, B, Cy, CL. 0y, Dy)- Ax is tha TOS and A) |3 NOS. Upon complation ol a
command the stack is composed of: 1he regult (A) undetined {J); or the initial conlants (A, AL By, B, ..)
4. Nomenclature: Sign () 2ero (2); Overlow (OF Carry (G Error Code Figld (E)

AFHO1251B

71

72

intel

8231A

PRELIMIMARY

DATA FORMATS

The B231A arithmetic processing unit handles operands
in both fixed pgint and flcating point formats. Fixed
point oparands may be represented in either single
(16-bit operands} or double pracision {32-bil operands),
and are always represented as binary, two's comple
ment values.

 SINGLE PRECISION FIXED POINT FORMAT

ViLUE

LV

POUSBLE PRECISION FIXED POINT FORMAT

VALUE

T T AT

The slgn {posltive or negative} of the operand is located
in thea most significant bit {(M5B). Positive values are
represanted by a skgn bil of zaro (S = 0). Negative values
are representad by the twe's complement of the corre-
sponding positive value with a sign bit equal 1o 1 (S= 1.
The range of values that may be accommodatad by each
of these formats Is - 32,769 to + 32,767 for single preci-
sion and - 2,147,483,648 to + 2,147,483,647 for double
precision.

Floating point binary values are represented in a format
that permits arithmetic to be performed in a fashion
analogous to operations with decimal values exprassed
in sclentific notation.

{5.83 x 109 (8.16 x 10"} = (4.75728 x 10%)

in the decimal system, data may be expressed as values
between 0 and 10 timez 10 raised to a power thal effec-
tively shifts the implied decimal point right or left the
number of places necossary to express tha result in con-
venlional form (e.g., 47.572.8). The value-portion of the
data |g called the mantissa. The expanent may be aither
negative or positive.

The concapt of floating point notation has both a galn
and a loss assaciated with i4. The gain is the ability 1o
rapresent the significant digits of data with values span-
ning a large dynamic range limitad only by the capacity
of the exponent fleld. For exampie, in decimal notation
if {he exponent field is two digits wide, and the mantissa
Ia five digits, a range of values (positive or negative)
from 1.0000x 10~ % to 9.9900% 10*% can be accom-
modated. The loss is that only the significant digits of
the vaiue can be represented. Thus there is no distinc-
tion in this reprasentation betwesn the values 123451
and 123452, for example, since each would be ex.
pressed as: 1.2345x 10° The sixth digil has besen
discarded. In most applications where the dynamic
range of values to be represented is large, the loss of
significance, and hence accuracy of resulls, is a minor
consideration. For greater precision a fixed point format
could be chosen, although with a loss of potential
dynamic range.

The B2314 is a binaty arithmetic processor and requires
that floating point data be represented by a fractional
mantissa value between .5 and 1 multiplied by 2 raised
o an appropriate power. This is expressed as follows:

value = mantissa x 29%ponent

For example, the value 100.5 expressed in this lorm is
0.1100 1001 x 2", The decimal oquivalant of this vaiue
may be computed by summing the components {powers
of two} of the mantissa and then multiplying by the éx-~
ponenl as shown below:

value =2~ 42724 2-54 278 27
=05+ .25+ 0.03125 + §.00290625) X128
=0.78515625x 128
=100.5

FLOATING POINT FORMAT -

Tha format for {loating point values in 1he 8211 A is given
palow. The mantissa is expressed as a 24-bit (fractional}
valug; the exponent is expressed as a two's complement
7-bit value having a range of -64 to +63. The most
significant bil 15 the sign of the mantissa {0 = positive,
1 =negative}, for a total of 32 bits. The binary point I8
assumed 1o be to the left of the most significant man-
tissa bil {bit 23). All floating point data values must be
normalized. Bit 23 must be equal 1o 1, except for the
value zero, which is represanted by all zeros.

I'!IEJI[HI‘EIJIIII]IIIIIIIIJIIHH

H¥ H 3 L]

The range of values that can be represented in this {or-
mat is = (2.7 10~ %10 9.2 10" and zero.

FUNCTIONAL DESCRIPTION

STACK CONTROL

The user interface to the 52314 includes access to an §
level 16-bit wide data stack. Since single precision fixed
point operands are 16-bits in lengih, elght such values
may be maintained in the stack. When using doubla
precision fixed polnat or floating point lormats lour
values may be stored, The stack in these two configura-
tions can be visualized as shown below:

Tas Az, M 1 TR ——] MM, A2 I
Nog —1 B2 | @i Nos —=| B4 B3 By | B

L L

|
]
'
|

— 1 —

Data are written onto the stack, eight bits a{ a time, in
the order shown {A1, A2, A3, .. .). Dala are removed from
the sfack in reverse byte order (&4, A3, AZ.) Data
should be entered onio the stack in muitiples of the
number of bytes appropriate to the chosen data format.

AFN-1 2518

intel

8231A

PRELIMINARY

DATA ENTRY

Data eniry |s accomplished by bringing the chip select
{C5}, tha commandidata line {Ag), and WH low, as shown
in the timing diagram. The entry of each new data word
“pusheas down™ the praviously entered dala and places
the new byte on the top of stack (TOS). Dala on the bot-
tom of the stack priar to a stack entry are lost,

DATA REMOVAL

Crata are removad from the stack in the 8231A by bringing
chip setect (C5), commandidata (Ag), and RD low as
shown In the timing diagram. The remaval ot gach data
word radefings TOS so that 1he naxt successive byte to
be ramaved becomas TOS. Data removed from the stack
rotates to the battom of the stack.

COMMAND ENTRY

After the appropriate number of bytes of data have been
entered onto the slack, a command may be issued {o
perform an cperaticn on ihat data. Commands which re-
quire two cperands for execution {e.g., add) oparate on
the TOS and NOS values. Single operant commands
operate only on the TOS.

Commands are issued to the 8231A by bringing the chip
select {CS) line low, command data {Ag line high, and
WR line low as indicated by the timing diagram. After a
command is issued, the CPL can continue execution of
its program concurrently with the 82314 command
axacution.

COMMAND COMPLETION

The B231A signals the completion of each command exe-
cution by lowering the End Execution line {END}.
Simultanecusly, the busy bit in the status regisier is
cleared and the Service Request bit of the command
register is checked. If it is a 1" the service requesi out-
put tevel (SYAELD) is raised. END is cleared on receipt of
an active low End Acknowledge (EACK) pulse. Similarly,
the servica request line is cleared by recognition of an
acilve low Service Acknowledge (SVACK) pulse.

READY OPERATION

An active high ready {READY) i5 provided. This line is
high in is quiescent state and is pulled low by the 8231A
undar ihe following conditions:

1. A previcusly initialed operation is In progress {device
busy} and Command Eniry has been attempted. In
this case, the READY llne will be pulled low and re-
malin low until complatlon of the current command
axecution. It witl then go high, permitting entry of ihe
new command.

2. A previously initiated operation is In progress and
stack access has beon atlempied. In this case, the
READY line will ba pulled low, will ramain in that
state untll execution is complete, and will then be
raised to permit completion of the stack accesa.

3. The 8231A is not busy, and data remgval has been re-
quested. AEADY will be pulled low for the length of
time necessary to transfar the byte from the top of
stack to the interface lateh, and will then go high,
indigating availatility of the data.

4, Tha 8214 i3 not busy, and a deta entry has been re-
quested. READY will be pulled low for the langth of
time required to ascertaln if the preceding dala byte,
if any, has been written to the stack. If 5o READY wili
immadiately go high. It not, READY will remain low
until the interface talch is free and wilt then go high.

5. When a status read has boen raqueated, READY wil
be pulled low for ihe length of time necessary to
transfer the status {o the interiace laich, and wlll
then be ralsed to permit completion of the slatus
read. Status may be read whether or not the 8231A ia
busgy.

When READY goes low, the APU axpects the bus con-
trol signals prasent at tha time to ramaln slable untis
READY goes high.

DEVICE STATUS
Device stalus is provided by means of an inernal status
register whosgea format is shown below:

BUSY SIGN IEAQ === EARQA CODE — ———

| | [

T a

|

BUSY: Indicates that 82314 is currently executing a com-

mand (1=Busy)

SIGN: Indicatas that the value on the top of stack is

negaiive (1 = Negative)

ZERQ: Indicales that the value on tha top of stack is

zers (1= Vatue is 2ero)

ERAOR CCDE: This field contains an indication ol the
validity of the resull of the last opera-
tian. The error codes are:

Q003 — Mo error

1000 — Divide by zaero

0100 — Sguare root or log of negative number

1100 — Argument of inverse sine, cosine, or

e* too large
XX10 — Underflow
X¥01 — Overtlow
CARRY: Previocus operation resulted in carry o borrow

from most significant bit, {1 =Carry/Barrow,
0= No Carry/No Borrow.)

It the BUSY bit in the status register is a one, the other
status bits are not defined; if 2ero, indicating not busy,
the operation is complete and the other status bils are
defined as glven above.

AEAD STATUS

The B231A status register can be read by the CPU at any
time (whether an oparafion is in progress or not] by
bringing 1he chip select [C5) low, the commandfdaialine
{Ag) high, and lowering RD. The status register is then
gated ontc tha data bus and may te input by the CPU.

EXECUTION TIMES

Timing for execution of the §221A command set is con-
talned baiow. All times are givan in 1erms of clock
cyclas. Where substantial variation of execution times

AFN-E8

73

intel

8231A

PRELIMINARY

is possibla, the minimum and maximum values are
quoted; otherwise, 1ypical values are given. Variations
are data dependent.

Total execution times may require allowances for
operand transfer into 1he APU, command execution, angd
result relrieval from the APU. Except for command exe-

cution, these limes will be heavily influenced by the
nature of the data, the control interface used, the speed
ot memaory, the CPU used, 1the pricrity allotted to DMA
and Imterrupt operations, the size and number of
cperands to be transferred, and the use of chalned
calgulations, etc.

Table 5. Command Execution Times

Command Clock Command Clock Command Clock Command Clock
Mnsmonlc Cycles Mnemonic Cycles Mnamonic Cycles Mnamonic Cycles
$ADD 17 - FADD 54-368 LN 4298-8956 POPF 12
ssuB 30 FSUB 70-370 EXP 3704-4878 XCHS 18
SMUL B4-94 FMUL 146-168 PWHR 8280-12032 XCHD 26

SMUY 8098

500V 84-94 FOIV 154-184 NOP 4 XCHF 26
DADD 21 SORT 800 CHSS 22 PUPI 16
DsuB 38 SIN 4464 CHSD 27

CMUL 194.210 Gcos 4118 CHSF 18

DMuL 182-218

oDV 208 TAN 5754 PTOS 16

FIxs 92-216 ASIN 7668 PTOD 20

FIXD 100-348 ACOS 7734 FTOF %

FLTS 98-185 ATAN §006 POPS 10

FLTD 98-378 LOG 4474.7132 POFD 12

DERIVED FUNCTION DISCUSSION

Computer approximations of transcendental functions
are often based on some form of polynemial equation,
such as:

FOX = Ag+ AyX+ A2+ A3+ A4 . 11

The primary shoricoming of an approximation in this
form is thal it typically exnibits Yery large errors when
the magnitude of |X| is targe, althcugh the arrors are
small when |X] is small. With polynomials in this form,
the error distribution is markedly uneven over any
arbitrary interval.

A set of approximating functions exists that not only
minimizas tha maximum ercor but also provides an even
distribution of errors within the sselected data represen-
fation interval. These are known as Chebyshev Poly-
nomials and are are based upon cosine functions. These
functions are defined as follows:

TaX)=Cosng; wheren=0,12 ... 11-23
9=Cos— X

The various terms of the Chebyshev series can be com-
puted as shown beiow;

To{X)=Cos{0 - 8= Cos (0}=1 (1-4}

T(X}=Cos (Coz~)= X {1-5)

TaiX}= Cn? 26=2C0s?8— 1=2Cos¥{Cos~X)-1 (16)
=2%X2-1

In general, the nexi term in the Chebyshev series can be
recursively derived from tha previous term as Tollows:

ToX=2X [T - ¥ - To—2Xknz2 {1-7)

Common logaritbms are computed by muliiplication
of the nalurai logarithm by the conversion factor
0.43429448 and the error funciion is therefore the same
as {hat for natural logarithm. The power function is
realized by combination of natural lop and exponential
functions according to the equation:

XY = gylnx,

The error for the power function is a combination of that
tor the logarithm and exponential functions.

Each of the derived functions is an approximaticn of the
true function. Thus the res