ECONORAM XIIIa USER'S MANUAL

IEEE • S-100 32K Bank Select Memory using MM5257/90L44 · 5 MHz

2/80

Table of contents

About ECONORAM XIIIa .	14		-	÷	-		$\langle \mathbf{a} \rangle$	(\mathbf{r})		÷	÷	2			÷.	¥	3
Techincal overview			4	s.	*	*	6	(4)									3
Bank switching theory						•:		3								3	4
Bank port addressing	126	120	4	4	2	2	÷		4	2	÷	÷	ie:	Q.	4	ų,	4
Bank enable/disable bit assign	me	ent	ŝ.	a.	*	*		(a)	5¥	×	*			100		÷	4
Power-on enable/disable						*			.,		•		(e)		12	*	4
Memory address assignment.		•	a.	ă		÷			2	÷	3	÷	÷	- 3 /	14	4	4
Disableing 4K blocks	-	1452 1	34	я		×		Ee)	24	×	*	*	1060	(4)	э	×	4
Reference table	5	183	æ		-	85	5		3				•	8:0			5
Phantom line	•	٠	3	÷	÷		÷	•	8	÷		2	•	۲	9	2	5
Memory testing		0.	×			DC.		÷z.		×	×	190		14	×	÷	6
Memory testing routine		12		÷		+		ā.	ž	8	÷	æ	•		đ	8	6
Circuit description			2	25	25		500		8	×		•1					7
Logic diagram	٠		ii.	9		÷	٠		ii.	÷		1	(*)	1	ŝ	8	& 9
Parts list	2	146	14		÷		142	Sali	3	÷	a 2	-	No.	84	×.	÷	10
Component layout		2902	-	×	×	*:	83	1961			×		e		×	×	11
Customer service information		1. C.	Q#	×		*	•3					×	•2	(*)	() •	18	12
Limited warranty information	1.	112	á.	15	2	12			į,		÷						12

ABOUT ECONORAM XIIIa

Congratulations on your decision to purchase **ECONORAM XIIIa**, a 32K x 8 memory board designed specifically for electrical and mechanical compatibility with the IEEE S-100 buss standard. The S-100 buss is the professional level choice for commercial, industrial, and scientific applications. This buss provides for ready expansion and modification as the state of the computing art improves. We believe this board, along with the rest of the S-100 portion of the **CompuPro** family, is one of the best memory boards available for that buss.

As amateur radio operators have contributed greatly to communication technology, so too the computer hobbyist has provided the microcomputer industry with many significant developments. In recognition of this fact, we also make this board available in "UNKIT" form for those who enjoy the challenge of assembling and testing a fine computer board.

As the first company to nationally offer memory kits to computer hobbyists, we again thank you for choosing the **CompuPro ECONORAM** XIIIa...welcome to the club!

TECHNICAL OVERVIEW

This board incorporates proven static memory technology. There are currently two popular types of memory being used in products such as this: static and dynamic. Static memories are the overwhelming choice in applications where speed, complexity, ease of use, and reliability must all be considered ... there is no refresh slowdown, the CPU is freed from the drudgery of caretaking the memory, and techniques such as direct memory access (DMA) are far reliable and easier to implement. more The individual memory ICs used on this board are grouped together to form a single 32K X 8 block of memory, addressable on any 4K boundary using the on-board Dip switch (no jumpers required). Additional features include a write protect switch; a write strobe selection switch which allows use of this memory in systems with or front panel (MWRITE strobe); without a allowance for use of the PHANTOM* line; thorough capacitor bypassing of supply lines to suppress transients; plus on-board regulation and heatsinking for reliably cool operation. All this and sockets for all ICs go onto a double sided, solder-masked printed circuit board with a complete component-layout legend.

BANK SWITCHING THEORY

The purpose behind Bank Switching is to allow the Microcomputer user to access and write to more than the typical 64K that most Micros can directly address. To allow this, the ECONORAM XIIIa allows chunks of memory to be selectively enabled and disabled by outputting a data bit (user selectable) to a I/O Port (also user selectable). For example, if the bank is specified as port 40H, and the data bit is bit 0, by outputting a one in data bit 0 to port 40H, the bank will be enabled. Alternately, by outputting a zero to data bit 0 the bank will be disabled, and the board will not be electrically part of your system.

NOTE: Care should be taken to first disable an enabled bank before enabling the disabled bank to insure that no memory conflicts occur.

BANK PORT ADDRESSING

S4	1	2	3	4	5	6	7	8	Bank Selection
	A7	A 6	A5	A4	A 3	A2	A1	AO	ON = 1
									OFF-0

EXAMPLE:

4

POSITIONS	1-8	ON	=	PORT	FFH	2
POSITIONS	1-8	OFF	=	PORT	00H	V
POSITIONS POSITIONS	1-4 5-8	ON \ OFF/	=	PORT	FOH	

BANK ENABLE/DISABLE BIT ASSIGNMENT

Once the Bank Port has been selected, one data bit (or more) must be selected to enable or disable the bank. S3 is used to select these data bits as shown below:

~ ~	1	2	3	4	5	6	7	8	ON=	"1"
\$3	D 7	D6	D5	D4	D3	D2	Dl	DO	OFF=	"0"

To disable the bank all O's must be output to the data bits which have been turned ON. To enable the bank again, a "1" must be output to any of the data bits that have been turned ON. Note that it requires all O's to be sent to the selected data bits to disable, but only one "1" bit will enable the bank again.

POWER-ON ENABLE/DISABLE

When initial power is applied, and upon receiving a slave reset this board will be either ENABLED or DISABLED depending on the switch setting of S2 positions 1 & 2. To have the board enabled on power-on turn position .2 | (PR) ON, and position 1 OFF. To disable board on power-on turn position 2 OFF and position .1 2 (RE) ON. Do not have both switches ON because the board will come up randomly enabled or disabled.

MEMORY ADDRESS ASSIGNMENT

This board is one large 32K block addressable on any 4K boundary. The dipswitch S2, positions 5-8 are used for selecting the starting address of the block. The starting address is set by "adding" the values shown below the switch when the position is ON. EXAMPLE: To start at 20K, turn ON positions 6 and 8 (16+4). To start at 52K, turn ON positions 5, 6, and 8 (32+16+4). With all switches (5-8) OFF the block will start at OH.

DISABLING 4K BLOCKS

Because this board is sold partially populated also, the memory rows can be disabled. Sl is used to delete 4K Blocks from the memory space. This is particularly useful for disk operations which may require ROM at E900 or E000. By turning on the appropriate position on Sl the 4K Block associated with that position is removed from the system.

S1 POSITION 1 2 3 4 5 6 7 8 ON = DISABLED

BLOCK 7 6 5 4 3 2 1 0 OFF = ENABLED

The legend on the right side of the board (AO-A7) corresponds with the positions shown above. FOR EXAMPLE: To populate the board to only 16K, put the RAM chips in rows AO-A3 and turn on positons 5-8 of S1. This will disable rows A4-A7. S2 is still used to select the starting address of the block. Problem: To populate the board with 28K in the upper half of the memory map and leave a hole at E000 (for disk ROM). Set the address switches to start at 8000 (S2-7 ON, 5, 6, & 8 OFF), turn S1-2 ON to disable row A6, and put the RAM chips in all rows but A6. You can leave RAM chips in a disabled row with no problems if you choose to.

REFERENCE TABLE

SWITCH	S1	1	2	3	4	5	6	7	8	ON=DISABLED
BLOO	ск	(7)	6	5	4	3	2	1	0	OFF=ENABLED

-S1 is used to selectively blank out individual 4K blocks within the main 32K block.

SWITCH S2 1 2 3 4 5 6 7 8 ON=ENABLED LABEL P R P M 3 1 8 4 OFF=DISABL R E H W 2 6

-PR enabled causes the board to be enabled on power up or reset.

-RE enabled causes the board to be disabled on power up or reset.

-PH enabled puts the board under the control of the phantom line 67.

-MW enabled grounds the MWRITE line and causes the board to respond to PWR*.

-32, the decimal number that, when enabled, must be summed together to obtain the starting address for the board.

-16 See "32".

-4 See "32".

 SWITCH
 S3
 1
 2
 3
 4
 5
 6
 7
 8
 ON=RESPOND

 LABEL
 7
 6
 5
 4
 3
 2
 1
 0
 OFF=NORESP

-Positions 1 through 8 correspond to data bits 7 through 0 respectively. S3 is used to select which bit(s) the bank select responds to.

SWITCH S4 1 2 3 4 5 6 7 8 ON = "1" LABEL 7 6 5 4 3 2 1 0 OFF = "0"

- Positions 1 through 8 correspond to address lines 7 through 0 respectively. S4 selects bank select port address and should reflect the binary equivalent of the desired address.

PHANTOM LINE

Switch S2-3 allows the **ECONORAM XIIIa** to be removed from memory space by a low level on PHANTOM* (Bus Pin 67). With S2-3 ON, memory will disappear when PHANTOM* is asserted. With S2-3 OFF, the board is unaffected by PHANTOM*. NOTE: Since some manufacturers are not conforming to the proposed IEEE S-100 buss standard, insure that your system is using the PHANTOM* line properly before using this feature on your **ECONORAM XIIa**.

MEMORY TESTING

If the memory board seems to be working properly, the MEMORY TESTING ROUTINE can be used to give the board a more thorough workout. It is rather slow; but will do the job well. It can be entered via editor/assembler or front panel switches.

The routine is set up to test 32K from 4000 hex to BFFF hex. This may be changed by entering a different starting address at "STRT" (3001-3002) and/or a different end address at "END" (3004 - high order byte only).

If the memory passes the test it starts over again. You may on the other hand, insert a jump instruction at "MARK" to some user routine or, if desired the user may enter an output instruction or, can do a notification routine at "MARK" to show successful completion and restart.

If the memory fails the test, critical informaton is stored and the routine enters a software "HALT" that is a "jump to here" at "SHLT". Front panel lights, if any, will show this state. The user may then use the front panel or dump routines to display the following stored failure information:

3069*	"FDE"	=	D,E pairD is the fill
			character, and E is
			the test character
306B*	"FHL"	=	H,L pairthe failure
			address
306D*	"FOUT"	-	the data expected
306E*	"FIN"	=	the data read

* address from MEMORY TESTING ROUTINE

The user may replace the "jump" at "SHLT" with a jump to a display or notification routine.

The difference betwen "FOUT" and "FIN" should indicate which bit is failing, indicating which chip or area is causing the problem.

This test will find most of the harder to distinguish errors.

MEMORY TESTING ROUTINE =

3000	21	00	40	0010	STRT	LXI	H, AGCOH
3003	3E	AØ	1.0070	0020	END	MVI	A. ØAØH
3005	32	6E	30	0030		STA	FIN
3008	3E	10		0040		MVI	A+10H
300A	84			0050		ADD	н
300B	4F			0060		MOV	CA
3000	16	00		0070		MVI	DaØ
300E	1E	FF		0080		MVI	E.ØFFH
3010	22	65	30	0090	DONE	SHLD	STAD
3013	AF			0100		XRA	A
3014	47			0110		MOV	BAA
3015	7B			0120	SCND	MOV	A.E
3016	5A			0130		MOV	E,D
3017	57			0140		MOV	DA
3018	79			0150		MOV	A,C
3019	2A	65	30	0160	testa to net	LHLD	STAD
3010	72			0170	FILL	MOV	M+D
3010	23			0180		INX	н
301E	BC			0190		CMP	н
3011	62	10	30	0200		JNZ	FILL
3022	28	00	30	0210	NITT IN	LHLU	STAD
3025	73			0220	NEXT	MOV	MAE
3026	78			0230		MOV	Art
3027	BL	15	20	0240		UNIT	m FATT
3028	12	01	30	0250		JNZ	FAIL
3020	19			0200		HOV	AJU
3020	23			0210		CUID	n
3825	C.0	an	30	8208		IN7	NDON
3831	88	40	30	8388		CMD	B
3832	0.0			6316		MOU	B.H
3033	CA	15	30	8328		.17	SCND
3836	34	66	30	6325		LDA	STAD+1
3039	88		00	0330	MARK	NOP	J.mb
3034	88			0331		NOP	
3038	88			6332		NOP	
3030	34	6E	30	0340		LDA	FIN
303F	89			0350		CMP	C
3040	CA	00	30	0360		JZ	STRT
3043	79			0370		MOV	A.C
3044	67			0380		MOV	HA
3045	2E	00		0390		MVI	L.0
3047	C6	10		0400		ADI	10H
3049	4F			0410		MOV	CA
304A	C3	10	30	0420		JMP	DONE
304D	22	67	30	0430	NDON	SHLD	NXAD
3050	7A			0440	LOPB	MOV	A.D
3051	BE			0450	LOPA	CMP	M
3052	C2	6F	30	0460		JNZ	FAIL
3055	20			0470		INR	L
3056	C2	51	30	0480		JNZ	LOPA
3059	79			0490		MOV	AC
305A	24			0500		INR	н
3058	BC			0510		CMP	н
3050	C2	50	30	0520		JNZ	LOPB
305F	2A	67	30	0530		LHLD	NXAD
3062	C3	25	30	0540		JMP	NEXT
3065				0550	STAD	DS	2
3067				0500	NXAD	DS	2
3069				0570	FDE	DS	20
3008				0000	FOUT	DS	2
3000				0590	FTN	DS	1
3000	20	40	2.0	0000	FAIL	CUID	FUI
3007	20	40	30	0610	FALL	STA	FOUT
3075	7F	00	30	0620		MOV	ArM
3076	32	6E	30	0640		STA	FIN
3079	EB			8658		XCHG	1041011-110
307A	22	69	30	0660		SHLD	FDE
3070	C3	70	30	0670	SHLT	JMP :	SHLT
3080			33	0680	*	with the state	and the Part
3080				8688	*		

6

CIRCUIT DESCRIPTION

The heart of ECONORAM XIIIa is the MM5257/90L44 static memory IC (RAM), which can ore 4096 single bits of information (thus, each is a "4K x 1" memory IC). Unlike standard RAMs, those included with your kit are specifically designated by the manufacturer as low power, high speed parts. These ICs are arranged in rows that are 8 ICs wide. This way, each row can store 4K x 8 bits of information. Paralleling 8 of these rows together produces a total memory storage of 32K x 8 bits. (Note that the bit number corresponding to a given column of ICs is indicated along the top edge of the memory array). Now that we have this storage, there are still other aspects we must consider. First, we need to address a specific location in memory; and, we need to be able to write data into the memory, or read data from the The schematics show the address memory. circuitry along with the other ECONORAM XIIIa circuitry. Each memory IC requires 12 address lines (AO-A11) to access any one of the 4096 bits available in the IC. These address lines are generated by the CPU and are buffered by a number of inverters. After buffering, a particular address is presented to all IC address selection pins. However, we additionally need to select which particular row of ICs is to react to the given address. his requires 4 more address lines (A12-A15) which are decoded and used to enable the desired row of ICs (note row markings along the right hand side of the memory array). When data is to be written into memory, it first passes through 8 inverting buffers before being put on the data pins of the RAMs (buffering prevents loading of the data buss). Data to be read on to the data buss from memory passes through 8 TRI-STATE inverting buss drivers; when data is not being read on to the buss, the outputs of these inverters are in a highimpedance or "disconnected" state. This board can be used in a system with more than 64K of memory, and because of this there must be a method to disable the entire board and remove it from the system memory map. Since the CPU can only access 64K of memory with its 16 address lines, the method chosen was to use an I/O port to ENABLE/DISABLE the board. Switch S4 is used to select the I/O port for the board and when the correct port is decoded by U19, U9 latches in the data bit(s), if any bit selected by switch S3 is high, the board will be enabled at the address selected by switch S2 positions 5-8. Conversely if all bits selected by S3 are low upon receiving the output instruction the board will be disabled. The board can be set op to be turned ON or OFF with Preset or Powera by using switch S2 positions 1 and 2.

U8 is used to select the row of memory enabled during read/write. Switch S1 and NAND gate U6 are used with U8 to select 4K chunks of memory to be removed anywhere on the board. The appropriate position of S1 will disable the corresponding block if it is turned on.

An unfortunate fact of life is that logic ICs generate switching transients that travel along the power supply lines. If these transients work their way into the logic circuitry, problems can appear. To prevent such occurances, bypass capacitors are tied across the power lines at regular intervals in the memory array and at every support IC.

This board is guaranteed to operate at 4 MHz, or 5 MHz with an 8085 CPU over the full temperature range (0-70 C ambient) and draw less than 3.5 Amps. Also, our typical measured currents were less than 3.0 Amps, depending on the surrounding temperature. We have heard similar reports from the people already using these boards.

It is interesting to note that static RAM technology has progressed to the point that this high-performance static RAM board is comparable in cost and power consumption to dynamic memory boards.

ECONORAM XIIIa - COMPUPRO PRODUCT FROM GODBOUT ELECTRONICS - BLDG. 725, OAKLAND AIRPORT, CA 94614

8

CDOS swortel setting for top 32K.

ECONORAM XIIIa - COMPUPRO PRODUCT FROM GODBOUT ELECTRONICS - BLDG. 725, OAKLAND AIRPORT, CA 94614

10

Component Layout

CUSTOMER SERVICE INFORMATION

Our paramount concern is that you be satisfied with any Godbout CompuPro product. If this product fails to operate properly, it may be returned to us for service; see warranty information below. If you need further information feel free to write us at:

P.O. Box 2355, Oakland Airport, CA 94614.

When writing, please be as specific as possible concerning the nature of your query. We maintain a 24 hour a day phone for taking orders, (415) 562-0636. If you have any problems or questions which cannot be handled by mail, this number can be used to connect you with our technical people ONLY during normal business hours (10am-5pm Pacific Time). We cannot return calls or accept collect calls.

LIMITED WARRANTY INFORMATION

Godbout Electronics will repair or replace, at our option, any parts found to be defective in either materials or workmanship for a period of 1 year from date of invoice. Defective parts *MUST* be returned for replacement.

If a defective part causes a Godbout Electronics product to operate improperly during the 1 year warranty period, we will service it free (original owner only) if delivered and shipped at owner's expense to and from Godbout Electronics. If improper operation is due to an error or errors on the part of the purchaser, there may be a repair charge. Purchaser will be notified if this charge exceeds \$10.00.

We are not responsible for damage caused by the use of solder intended for purposes other than electronic equipment construction, failure to follow printed instructions, misuse or abuse, unauthorized modifications, use of our products in applications other than those intended by Godbout Electronics, theft, fire, or accidents.

Return to purchaser of a fully functioning unit meeting all advertised specifications in effect as of date of purchase is considered to be complete fulfillment of all warranty obligations assumed by Godbout Electronics. This warranty covers only products marketed by Godbout Electronics and does not cover other equipment used in conjunction with said products. We are not responsible for incidental or consequential damages.

Prices and specifications are subject to change without notice, owing to the volatile nature and pricing structure of the electronics industry.

"Econoram XIIIa" is a trademark of W.J. Godbout.

TRI-STATE[®] is a trademark of National Semiconductor Corp.

Contents of this booklet © 1980 by Godbout Electronics. All rights reserved. We encourage quotation for the purposes of product review if source is credited.