

ME5204

MM4204 and MM5204
EPROM Programmer

By Martin Eberhard

 i

ME5204
Martin Eberhard’s

MM4204 & MM5204 EPROM Programmer

Rev A and B PC Boards, Rev 2.01 Firmware

Welcome

The ME5204 programmer is designed to program one of the more obscure EPROMs
ever made. National Semiconductor’s MM5204Q EPROM w as only made for a few
years, and no other manufacturer made a second-sour ce equivalent part. Its
pinout and programming voltages are unique, making it unsupportable by most
‘universal’ programmers. It was not used in many de signs, though it was used
in a few interesting products, such as early Sol-20 computers from Processor
Technology. (If you bought this programmer, then yo u already know this.)

The ME5204 Programmer is a full-function EPROM prog rammer designed to program
and read MM4204 and MM5204 PMOS EPROMs. The program mer connects to a computer
with an RS-232C serial port at 9600 baud, requiring a terminal program that
can send and receive text files. You can transfer f iles to and from the
ME5204 Programmer in either Intel Hex format or Mot orola S-record format. You
can also edit the EPROM file while it is in the ME5 204’s buffer.

The revision A PC board requires a few simple rewor k steps. These changes
were incorporated into the Rev B PC board.

A few words of caution: Be respectful of the voltages within the MM5204.
Obviously, the incoming 120V or 240V are dangerous. Also be aware that there
are 60V on the EPROM’s pins while it is being progr ammed, so touching the
EPROM during programming can be dangerous . High voltage is present on the
EPROM pins whenever the red ‘Busy’ light is lit.

The ME5204 Programmer is designed to run on either 100VAC-130VAC or 200VAC-
260VAC, user-selectable via the externally-accessib le fuse drawer. 50 Hz and
60 Hz are both acceptable. Please set the line voltage correctly before
plugging the unit into the wall! See Section 5.1.

The ME5204 Programmer is delivered as a kit that mu st be assembled and
adjusted before use. Simple electronics assembly sk ills and tools are
required to assemble the printed circuit board asse mbly, and to build the
wiring harnesses. Some rudimentary woodworking or p lastics skills and tools
are required to construct the enclosure. I’ve tried to make this manual
thorough - I recommend reading it through before st arting to assemble the
ME5204. Have fun assembling!

-Martin Eberhard
21 October 2018

 ME5204 Programmer

21 October 2018 ii Martin Eberhard

ME5204 Revision History

PCB Firmware Date Change Notes

A 1.01 28 Dec 2011 Created, based on ME1702/A firmw are version 1.07

A 2.00 15 Jan 2013
Rev 2.00 firmware supports firmware downloading via the
serial port, in conjunction with ME Loader Kernel 1 .00

A 2.01 18 Aug 2015
Add automatic address offset (AO command with no
parameter). Improve some messages by adding ‘range’ when
working with only a portion of the EPROM or buffer.

A & B 2.01 25 Sep 2018
Add R101 rework, Support Rev B boards, update Digik ey
part numbers, etc.

 ME5204 Programmer

21 October 2018 iii Martin Eberhard

Contents

Section 1. ME5204 Programmer Assembly.............. 1

1.1 Printed Circuit Board Assembly 2

1.2 Enclosure Fabrication 8

1.3 Chassis Wiring and Assembly 9

Section 2. Checkout and Adjustment................. 13

2.1 Line-Voltage Wiring Harness Checkout 13

2.2 Basic PCBA Checkout 13

2.3 Microcontroller Bring-Up 15

2.4 Microcontroller-Assisted Checkout and Adjustmen t 16

Section 3. Functional Testing...................... 23

3.1 Basic Buffer Operations and File Transfer 23

3.2 EPROM Reading and Programming 28

Section 4. Programming Algorithms.................. 33

4.1 Simple Programming Algorithm 33

4.2 ‘P+5P’ Smart Programming Algorithm 33

4.3 Programming Time 33

Section 5. ME5204 Commands......................... 35

5.1 EPROM Commands 35

5.2 File Transfer Commands 36

5.3 Buffer Commands 37

5.4 Diagnostic Commands 38

5.5 Other Commands 39

Section 6. ME5204 Programmer Usage................. 41

6.1 120V and 240V Operation 41

6.2 Connector Pinout 41

6.3 LEDs 41

6.4 Power Supply Voltage Checking 42

6.5 Address Offsets 42

6.6 Selecting a Programming Algorithm 43

6.7 Programming an EPROM from a File 43

6.8 Reading an EPROM into a File 44

6.9 Copying an EPROM 44

Section 7. ME5204 Theory of Operation.............. 45

7.1 Architecture 45

7.2 Isolation and Stepdown 45

7.3 Logic Supply 45

7.4 Microcontroller-Controlled High-Voltage Supply 45

7.5 EPROM Read/Write Interface 46

 ME5204 Programmer

21 October 2018 iv Martin Eberhard

7.6 Microcontroller 46

7.7 Voltage Measurement 47

7.8 MM5204 Programming Timing 48

7.9 Backwards EPROM Detection 49

Section 8. Downloading Firmware via the Serial Port 51

8.1 Firmware Download Instructions 51

8.2 Intel Hex File Format for Firmware Downloads 52

8.3 The ME Loader Kernel 54

Section 9. Drawings................................ 57

9.1 Enclosure Templates 57

9.2 Bill of Materials 61

9.3 Chassis Wiring Diagram 63

9.4 PCBA Component Placement 65

9.5 PCBA Schematics 67

9.6 MM5204 EPROM Specification 71

 ME5204 Programmer

21 October 2018 1 Martin Eberhard

Section 1. ME5204 Programmer Assembly

Assembly requires basic electronics skills, a decen t soldering iron and
solder, needle-nosed pliers, diagonal cutters, wire strippers, and a couple
of screwdrivers. Construction of the enclosure requ ires a drill, and router
table (or similar tool) to cut irregular holes in p lastic. A good connector-
pin crimping tool is not absolutely required, but h elps.

Take your time to install all components in their c orrect locations, with the
correct orientation. Install all components flush t o the PC board, and with
good, clean soldering. Inspect your work when you a re done.

The silkscreen on the PC board is verbose, mainly t o help you assemble it
correctly and to aide in debugging. But the silkscr een is not perfect. When
in doubt, refer to these assembly instructions.

Be careful with diode type and orientation: the dio de’s stripe must align
with the stripe on the silkscreen. The silkscreen h as an abbreviation of the
diode number, to aide in putting the correct diode in each location.

Also pay attention to the orientation of the two el ectrolytic capacitors.
Reversing these capacitors can cause some excitemen t.

There is logic to the order of assembly: the smalle r components first, the
larger ones later. Also, unusual components are ins talled first, so that bulk
components will not be installed in the wrong place s. For example, there are
ten TO-92 devices that are NOT 293904 transistors. These devices are
installed first, to minimize the chance of the wron g device being installed.

All unlabeled 1/4W resistors are 3K-ohm, 5% resisto rs. Most of the rest are
labeled to help you get the right resistors in the right locations.

When installing IC sockets and connectors, check th eir orientation, and make
sure they seat completely against the PC board with no pins bent under. I
suggest soldering them in place with just one or tw o pins, then re-heating
these solder connections while pressing the compone nt to the board, to get
them nice and tight. Solder the rest of the pins on ce the socket is flush to
the PC board.

If you are using a Rev A PC board then you will nee d to make one trace cut
and install four rework components on the solder-si de of the board. Make sure
the cut trace is cut completely. Install the four c omponents so that they are
flush to the PC board, anfd their leads cannot acci dentally touch adjacent
component pins. (This change has been incorporated into the Rev B PC board.)

Four components (the ZIF socket and the 3 LEDs) are installed on the solder-
side of the board, so that they will protrude throu gh the Enclosure when
assembled. These are installed last.

Wire colors are of course optional, but I recommend using these colors for
standardization.

This manual has check boxes next to every step, so you can check off each
step when it is complete. Some of the check boxes a re at the left margin;
others are the left column of tables.

 ME5204 Programmer

21 October 2018 2 Martin Eberhard

1.1 Printed Circuit Board Assembly

Step 1. (Rework for Rev A PC Boards ONLY) Cut the wide solder-side trace that
goes from the ‘+’ pin of C13 to pin 1 of V4 (the 78 05). I recommend
making two cuts about 1/8” apart. Then heat up the trace between the
cuts with your soldering iron, and slide the little piece of trace off
the board.

Step 2. Install the following 1/4 W, 1% resistors.

√√√√ Qty Locations Value Digikey Part Number

 3 R29,R30,R48 324 1% 324XBK-ND
 1 R27 976 1% 976XBK-ND
 2 R22,R26 2.1K 1% RNF14FTD2K10CT-ND
 1 R47 2.8K 1% 2.80KXBK-ND
 1 R23 3.09K 1% RNF14FTD3K09CT-ND
 3 R64,R83,R85 10K 1% 10.0KXBK-ND
 2 R82,R84 49.9K 1% 49.9KXBK-ND
 1 R63 78.7K 1% 78.7KXBK-ND

Step 3. Install the following 1/4 W, 5% resistors. (Rev A PC Boards: Note that
R43, R50, and R66 are not labeled ‘1K’ on the silks creen. Also R41 is
not labeled ‘12K’.)

√√√√ Qty Locations Value Digikey Part Number

 8 R5,R7,R9,R11,R13,R15,R17,R19 100 5% S100QCT-ND
 2 R60,R70 330 5% CF14JT330RCT-ND
 1 R25 910 5% CF14JT910RCT-ND
 5 R43,R50,R59,R66,R78 1K 5% CF14JT1K00CT-ND
 1 R24 5.6K 5% CF14JT5K60CT-ND
 4 R1,R41,R44,R49 12K 5% 12KQBK-ND
 8 R51-R58 47K 5% 47KQBK-ND

Rev B PC Boards Only:

√√√√ Qty Locations Value Digikey Part Number

 1 R99 12K 5% 12KQBK-ND
 1 R100 1K 5% CF14JT1K00CT-ND

Step 4. Install 3K-ohm, 5% resistors in the 55 remaining 1/ 4 W resistor
locations. Note that two more 3K-ohm resistors will be installed
later, as part of rework.

√√√√ Qty Locations Value Digikey Part No.

55

R2-R4,R6,R8,R10,R12,R14,R16,
R18,R20,R21,R28,R31-R40,R42,R45,
R46,R61,R62,R65,R67-R69,R71-R77,
R79-R81,R86-R98

3K 5% 3.0KQBK-ND

 ME5204 Programmer

21 October 2018 3 Martin Eberhard

Step 5. Install the following diodes. Be very careful about orientation and
also be very careful to put the correct diode in each location. It’s a
good idea to bend the leads such that the last 2 or 3 digits of the
diode number will be readable when the diodes are s oldered in place.

√√√√ Qty Locations Value Digikey Part Number

 3 D1-D3 Diode, 1N4148 1N4148TACT-ND
 4 D4-D7 Diode, 1N4004 1N4004-TPMSCT-ND

Rev B PC Boards Only:

√√√√ Qty Location Value Digikey Part Number

 1 Z1 Diode, 12V Zener, 1N4742A 1727-1946-1-ND

Step 6. Install 2 DIP sockets flush to the PC board, paying attention to
orientation:

√√√√ Qty Locations Value Digikey Part Number

 1 U3 16-pin DIP A100206-ND
 1 U2 40-pin DIP 3M5471-ND

Step 7. Install the following capacitors:

√√√√ Qty Locations Value Digikey Part Number

 6 C1,C2,C4,C5,C15,C16 0.1 uF, 100V 478-4855-ND
 8 C3,C6-C11,C14 1 uF, 25V 445-173583-1-ND

Rev B PC Boards Only:

√√√√ Qty Locations Value Digikey Part Number

 1 C17 0.001 uF, 100V BC5112-ND

Step 8. Install the TO-220 package voltage regulators. Bend their leads such
that they lie flat against the board and their moun ting holes align
with the PC board holes, and then solder them in pl ace. Screw the two
regulators down to the PC board, with the nuts on t he regulators.

√√√√ Qty Locations Value Digikey Part Number

 1 V2 LM317 LM317MTGOS-ND
 1 V3 LM337 296-21577-5-ND
 2 V2, V3 Pan-head screw, 6-32,5/16" H115-ND
 2 V2, V3 Nut, #6 H220-ND

Step 9. Install the following four TO-92 devices. Be very s ure you put the
right component in each location. Double-check thei r orientation.
When installed, these components should stand strai ght, and have
about 1/8 inch of lead between the PC board and the ir plastic bodies.

√√√√ Qty Locations Value
Digikey Part

Number

 1 V1 LM317L LM317LZXTR-ND
 2 Q19,Q23 MPSA56 MPSA56-APMSCT-ND
 Alternate Q19,Q23 MPSA55 MPSA55GOS-ND
 3 Q1,Q8,Q20 2N3906 2N3906-APCT-ND
 4 Q2,Q6,Q9,Q22 MPSA05 MPSA05-APMSCT-ND

 ME5204 Programmer

21 October 2018 4 Martin Eberhard

Step 10. Install 30 2N3904 transistors in the following loca tions. Double-
check their orientation. When installed, these comp onents should
stand straight, and have about 1/8 inch of lead bet ween the PC board
and their plastic bodies.

√√√√ Qty Locations Value Digikey Part Number

 30 Q3-Q5,Q7,Q10-Q18,Q21,Q24-Q39 2N3904 2N3904-APCT -ND

Step 11. Install 2 trim-pots in the following locations, and set them to the
center of their ranges.

√√√√ Qty Locations Value Digikey Part Number

 1 VR2 1K ohm Trimpot 262UR102B-ND
 1 VR1 250 ohm Trimpot 201UR251B-ND

Step 12. Install two fuse-clips each at FS1 and FS2. Look at the clips
carefully - they must be installed with the correct orientation.
They have a feature bent into them that prevents th e fuse from
sliding out the end. The clips should be installed such that this
feature is toward the outside, away from where the fuse goes. Make
sure the fuse clips are installed flush to the boar d. Note that the
board has been laid out to accept two different typ es of clips - you
can use either type.

√√√√ Qty Locations Value Digikey Part Number

 4 FS1, FS2 Fuse clip F4186-ND
 0 FS1, FS2 Alternate fuse clip BK-6005-ND

Step 13. Install the two electrolytic capacitors. Be sure to install them
with the correct orientation. The negative sign on each capacitor
should be farthest from the + sign on the PC board.

√√√√ Qty Locations Value Digikey Part Number

 2 C7,C8 470 uF 63V 493-1127-ND

Step 14. Install the LM7805 (TO-220) voltage regulator. It s hould first be
attached to a heat sink loosely with a screw and a nut, with the nut
against the TO-220 device. (Put a tiny bit of heat sink grease on the
mating surface of the TO-220 device if you have som e.) Then insert
the assembly into the PC board and solder it in pla ce, including
soldering the heat sink’s pin. Finally, tighten the screw and nut
thoroughly.

√√√√ Qty Loc. Value Digikey Part Number

 1 V4 Vertical TO-220 heat sink HS368-ND
 1 V4 Pan-head screw, 6-32,5/16" H115-ND
 1 V4 Nut, #6 H220-ND
 1 V4 LM7805 MC7805CT-BPMS-ND

 ME5204 Programmer

21 October 2018 5 Martin Eberhard

Step 15. (Rework: Rev A and Rev B PC Boards) Install the following component
on the solder-side of the PC Board. Keep it flush t o the board, and
be sure that the component leads cannot accidentall y short to any
adjacent pins.

√√√√ Value Ref. Digikey No. From To

47K ohm
Resistor

R101 47KQBK-ND
R46 end closest
to Q21

R47 end closest
to Q21

Step 16. (Rework: Rev A PC Board ONLY) Install the following four components
on the solder-side of the PC board. Keep them flush to the board, and
be sure that the component leads cannot accidentall y short to any
adjacent pins. Make sure the zener diode is install ed in the correct
orientation.

√√√√ Value Ref. Digikey No. From To

1N4742A
Zener
Diode

Z1 1727-1946-1-ND
Anode (no
stripe) to V4
pin 1

Cathode (stripe)
to C13 ‘+’ end

3K ohm
Resistor

R99 3.0KQBK-ND V4 pin 1 V4 heatsink pin

0.001 uF
capacitor

C17 BC5112-ND Q4 emitter Q4 collector

3K ohm
Resistor

R100 3.0KQBK-ND
C1 pin farthest
from board edge

R26 pin closest
to board edge

Step 17. Install two 0.1” headers in the following locations . Be sure to seat
them all the way against the PC board. (You can ins tall an additional
ground pin at the GND point near U2. These GND pins are only for
attaching meter and scope probes during diagnostics and adjustments.)

√√√√ Qty Locations Value Digikey Part Number

 1 GND 1-pin header 609-3466-ND
 1 J2 6-pin 0,1” header A31116-ND

Step 18. Install a 6-pin 0.156” header in location J1. Be su re to seat it all
the way against the PC board. J1’s alignment tang s hould be farthest
from the PC board edge, as indicated by the silkscr een marking.

√√√√ Qty Locations Value Digikey Part Number

 1 J1 6-pin 0,156” header WM4624-ND

Step 19. REVERSE-MOUNTED COMPONENT: Install the Textool ZIF socket on the
solder-side of the PC board. Install the socket with its handle
toward the cut-out side of the PC board - the handl e should be
closest to the square pin-1 pad. It is very important to open the
socket (handle perpendicular to the PC board) befor e you solder it in
place. Failure to open the socket before soldering will cause the
socket to open incorrecty during use.

√√√√ Qty Locations Value Digikey Part Number

 1 U1 Solder Side Textool 24-pin ZIF 3M2402-ND

Step 20. REVERSE-MOUNTED COMPONENTS: Install the following 3 LEDs on the
solder-side of the PC board. (Optionally, slide a stand-off onto each
LED before inserting the LED in the PC board.) Pay attention to the
LED orientation - the shorter lead on the LED (clos est to the flat
side of the LED’s plastic body) goes in the square hole in the PC
board. Push the LED and stand-off snugly against th e PC board when
you solder them in place. Be careful not to melt th e plastic casing

 ME5204 Programmer

21 October 2018 6 Martin Eberhard

on the nearby electrolytic capacitors with your sol dering iron.

√√√√ Qty Locations Value Digikey Part Number

 3 LED1-LED3 LED standoff 8311K-ND
 1 LED1 Solder Side Blue T1 LED C503B-BCS-CV0Z0461-ND
 1 LED2 Solder Side Green T1 LED 160-1130-ND
 1 LED3 Solder Side Red T1 LED 160-1127-ND

Four Reverse-Mounted Components and five rework com ponents
installed on the solder-side of a rev A PC board

Four Reverse-Mounted Components and one rework comp onent
installed on the solder-side of a rev B PC board

R100

C17

R99

Z1

Cut Trace

R101

R101

 ME5204 Programmer

21 October 2018 7 Martin Eberhard

Step 21. Insert two 3/4-amp fast-blow fuses in the fuse clip s at FS1 and FS2.
(These fuses help protect the circuitry against dam age from backwards
or wrong components in the ZIF socket. Further prot ection from this
mistake is done by firmware.)

√√√√ Qty Locations Value Digikey Part Number

 2 FS1, FS2 3/4-amp fast fuse 283-2631-ND

Step 22. Inspect your work! Check for shorts, inadequate sol der, component
orientation, etc. This is a high-voltage circuit, a nd construction
mistakes will probably damage components.

Note that the two ICs are not yet installed on the PCBA. This will
be done after some power supply checkout.

 ME5204 Programmer

21 October 2018 8 Martin Eberhard

1.2 Enclosure Fabrication

√√√√ Qty Hammond Part No. Description
Digikey Part

Number

 1 HM244-ND 1955-Series Instr. Console 806-4180

Hammond intended the 1955-Series Instrument Console to be used with its
plastic box on the bottom and the aluminum panel as the top. For the ME5204,
the box is upside down, with the aluminum panel as the bottom.

The plastic box needs several holes drilled into it , and three larger non-
round holes cut into it. The simple holes can be dr illed with a hand-drill or
a drill press. The larger non-round holes can be cu t using a Dremel tool or a
router table with a small router bit, using a file to tighten the corners
where needed. To avoid scratching the plastic with the router table, cover
the relevant faces of the plastic box with masking tape. When drilling the
plastic, use a slow drill speed to minimize melting . You can remove any
melted plastic cleanly with a sharp knife, provided that you covered the
surface of the plastic with masking tape before dri lling.

Step 1. Make copies of the four templates in the Enclosure Templates section
of this manual. Cut these templates out neatly alon g their perimeters.
Cut out the inside of the outlines for the power-en try and DA-9
connector holes in both rear templates, and also cu t out the inside of
the ZIF socket hole in the Top Inside template. Pun ch out the four
mounting post holes in the Top Inside template with a normal 1/4" hole
punch, or cut them out with an Exacto knife.

Step 2. Tape the inside-rear template to the inside of the rear of the box,
aligning the edge of the template with the open edg e of the box.
Center it as best you can between the rounded edges of the box, behind
the support posts inside the box. Use a router tabl e with a 1/8”
straight bit to cut holes for the power entry and t he DA-9 connector,
using the template as a guide. Tidy up with a file as needed.

Step 3. Tape the outside-rear template to the rear of the b ox, being aligning
the holes in the template with the holes that you c ut in the previous
step. Drill two 3/16” and four 5/32” holes at the d esignated places,
through the template and the box.

Step 4. Tape the top template to the inside of the top of t he box, positioning
it over the four mounting posts in the box. Use a r outer table with a
1/8” straight bit to cut the hole for the ZIF socke t, using the
template as a guide. Use a 13/64” bit to drill the three LED holes.
Tidy up with a file and a sharp knife as needed.

Step 5. Stick four rubber feet diagonally on the corners of the metal cover
plate, such that they don’t cover the screw holes. Stick them on the
surface that does not have the white plastic coatin g.

√√√√ Qty Component Digikey Part Number

 4 0.3” high adhesive foot SJ5523-0-ND

 ME5204 Programmer

21 October 2018 9 Martin Eberhard

1.3 Chassis Wiring and Assembly

Step 1. Construct the RS-232 Cable Subassembly

Use the following components, and three 9-inch piec es of AWG 20 or AWG
22 stranded wire (or 9 inches of 3-strand ribbon ca ble) to build the
RS-232 Cable Subassembly:

√√√√ Qty
Manufacturer/

Part No.
Description

Digikey

Part No.

 1 AMP/09-50-3061 6-pos. 0.156” conn. housing WM2104-ND
 3 AMP/08-52-0072 AWG18-AWG24 contact WM2302-ND
 1 3M/8R09-N001 9-pin female DSUB (DA-9) 3M10608-ND

If you do not use a real crimping tool for the AMP contacts, then
solder them after you crimp them. If you used indiv idual wires
instead of ribbon cable, twist the three wires ligh tly and tie them
together into a neat bundle with small wire ties or waxed dental
floss. The pinout for this harness is as follows:

√√√√ DA-9 Pin AMP pin Signal

 3 2 Data In (into the ME5204)
 2 1 Data Out (out of the ME5204)
 5 3 Ground

Step 2. Construct the Multifunction Inlet Subassembly

The multifunction inlet comprises four subcomponent s:

1. The power cord inlet, which takes a standard IEC po wer cord
2. The power switch
3. The main fuse, hidden inside a fuse drawer
4. The fuse drawer reverses to select either 120V or 2 40V operation

These four components are not electrically connecte d together - you
must connect them with wires. Use AWG 16 or AWG 18 wire to construct
the Inlet Subassembly, using the following parts:

√√√√ Qty
Manufacturer/

Part No.
Description

Digikey

Part Number

1

Qualtek/
765-00/001

Multifunction Inlet Q306-ND

1

TE Connectivity/
61793-1

#6 Ring terminal A29900CT-ND

Connect the Multifunction Inlet’s terminals togethe r as follows. When
you route a wire from one side of the inlet to the other, go the long
way around its back (not the short way around its s ide) or you will not
be able to insert the inlet into the hole you made in the box. Note
that some of the wires have free ends that will be connected later.
Leave about 8” of wire on these free ends. The gree n wire (that goes to
the ring terminal) should be about 3” long.

Some of the Multifunction Inlets do not have the te rminals labeled
clearly. When in doubt, refer to the Chassis Wiring Schematic in
Section 9.3, and double-check with an ohm meter.

 ME5204 Programmer

21 October 2018 10 Martin Eberhard

√√√√ Inlet Pin Inlet Pin And also To Wire Color Length

 N 2A -- White As needed
 L B -- Black As needed
 A 1B -- Black As needed
 1A 4 Free wire end Black 8”
 2B 1 Free wire end White 8”
 2 -- Free wire end Brown 8”
 3 -- Free wire end Orange 8”
 G Ring Terminal Green 3”

Step 3. Configure the Multifunction Inlet

√√√√ Qty Description Digikey Part Number

 1 3/4A 1-1/4” fast fuse 283-2631-ND

Pry the fuse drawer from the Multifunction Inlet wi th a screwdriver.
Install the 3/4A fuse in the side that has the 110- 120V arrow pointing
to it. (You will probably need to remove and discar d a small black
plastic cover first - the inlet is designed for two different fuse
sizes, and this cover is used for the shorter fuses .) Insert the
drawer back in the inlet, such that the triangular pointer near the
power cord inlet points to the 110V-120V arrow. (Fo r 240 volts, put
the fuse in the other side and install the drawer t he other way.)

Step 4. Assemble the Components into the Chassis

√√√√ Qty Description Digikey Part Number

 1 Inlet Subassembly from Step 2 above
 2 3/8" 4-40 flat-head screw 501-1531-ND
 2 3/8" 4-40 pan-head screw 36-9901-ND
 4 4-40 nut H220-ND
 2 3/8" 6-32 pan-head screw
 2 #6 lock washer H240-ND
 2 6-32 nut H220-ND
 4 3/8" 4-40 self-tapping screw
 3 #4 flat washer 5205820-3-ND

1
0.25A 56V center-tapped
Transformer, 120V/240V input

HM4690-ND

Step 4A: Insert the Inlet Subassembly through its hole in t he rear of

the box (from the outside) with the switch closest to the edge of the
box. Screw it down with two 1/2” 4-40 flat-head scr ews and two 4-40
nuts. If any of the plastic ribs on the inside of t he box are in the
way of the nuts, trim them off with a sharp knife.

Step 4B: Install the PC Board Assembly in the chassis, guid ing its LEDs
and ZIF socket into their holes in the chassis. Scr ew it in place with
four 4-40 self-tapping screws and three #4 flat was hers, pushing the
board down toward the front (shallow end) of the ch assis as you tighten
it. Install the ground lug on the Inlet Assembly in stead of a flat
washer in the corner closest to the inlet.

Step 4C: Insert the RS232 Cable Subassembly through the rea r of the box
(from the outside), and screw it down with two 1/2” 4-40 pan-head
screws and two 4-40 nuts.

21 October 2018

Step 4D: Screw the transformer
with its contacts toward the box opening. Use
lock washers, and two
the washers, trim them off with a sharp knife.

Step 5. Build the Line- Voltage

Wire the Line- Voltage
numbered as shown on the right.
so that they won’t short against the bot

Cut the wires to length, keeping the harness
back, close to the rear of the box.
nick the wire when you strip the ends.

Route the wires neatly toward the back of
the box, and tie them together wi
wire ties or waxed dental floss.

√√√√ From Inlet Subassembly

 White wire
 Orange wire
 Brown wire
 Black wire

Step 6. Build the Isolated

Use the following components, and some AWG
18 wire to create the
locations in the 6 -

√√√√ Qty AMP Part No.

 3 08-52- 0072

The AMP connector will plug into J1 on the PCBA. Ma ke your wires long
enough to reach comfortably, but not overly
to determine which end is pin 1
panel. Double- check the wiring against the labels on the PC board .

If you do not use a real crimping tool for the cont
them after you crimp them.

√√√√ From J1 pin To

 4
 5
 6

Route the wires neatly
them together into a neat bundle
floss.

Double- check that you put the
locations. Make sure the harness wires match the la bels on the PC board
silkscreen. (If you get this wrong, you will probab ly
when you power it up!)

 ME5204 Programmer

11

the transformer in place in the rear panel of the box,
with its contacts toward the box opening. Use two 6- 32 screws,

two 6-32 nuts. If any of the ribs are in the way
the washers, trim them off with a sharp knife.

Voltage Wiring Harness

Voltage harness as shown below. (T he transformer pins are
numbered as shown on the right.) Keep s older connections tight and low

short against the bot tom panel when it is installed.

Cut the wires to length, keeping the harness
back, close to the rear of the box. Don’t
nick the wire when you strip the ends.

Route the wires neatly toward the back of
the box, and tie them together wi th small
wire ties or waxed dental floss.

From Inlet Subassembly T1 pin

1
2
3
4

 Wiring Harness

Use the following components, and some AWG
18 wire to create the isolated wiring harness , using the three unused

- pin connector on the RS-232 harness.

Part No. Description Digikey

0072 AWG18-AWG24 contact WM2302

The AMP connector will plug into J1 on the PCBA. Ma ke your wires long
enough to reach comfortably, but not overly -long. Look at the PC board
to determine which end is pin 1 - it is the farthest from the back

check the wiring against the labels on the PC board .

If you do not use a real crimping tool for the cont acts, then
them after you crimp them.

To T1 pin Wire Color

7 Black
5 Yellow
8 Yellow

Route the wires neatly and plug the connector into J1 on the PCBA. T
into a neat bundle using small wire ties or waxed dental

check that you put the harness wires into the correct connector
locations. Make sure the harness wires match the la bels on the PC board
silkscreen. (If you get this wrong, you will probab ly damage the board
when you power it up!)

ME5204 Programmer

Martin Eberhard

in place in the rear panel of the box,
32 screws, two #6

If any of the ribs are in the way of

he transformer pins are
older connections tight and low

tom panel when it is installed.

, using the three unused

Digikey Part No.

WM2302-ND

The AMP connector will plug into J1 on the PCBA. Ma ke your wires long
Look at the PC board

it is the farthest from the back
check the wiring against the labels on the PC board .

then solder

J1 on the PCBA. T ie
small wire ties or waxed dental

the correct connector
locations. Make sure the harness wires match the la bels on the PC board

damage the board

 ME5204 Programmer

21 October 2018 12 Martin Eberhard

Inside of completed chassis (Rev A board shown)

Step 7. Inspect your work!

Check for correct wiring, stray wire strands, loose crimps, etc.

 ME5204 Programmer

21 October 2018 13 Martin Eberhard

Section 2. Checkout and Adjustment

Basic checkout requires a voltmeter and either a co mputer terminal (such as
the most excellent Wyse WY-30 1) or a PC with a serial port and a terminal
emulation program. These tests are sequential - if you find a defect, do not
move on until the defect has been corrected!

2.1 Line-Voltage Wiring Harness Checkout

Step 1. Make sure the power switch (on the Multifunction In let) is off. Unplug
J1 from the PCBA if it is plugged in.

Step 2. Install a line cord in the inlet and plug it into t he wall. Measure AC
voltage between pins N and L of the Inlet. If they are not at line
voltage, then your power cord is installed incorrec tly or defective.

Step 3. Measure AC voltage between pins 1B and 2A of the Mu ltifunction Inlet
(on the switch). If they are not line voltage, then check the location
of the fuse in the fuse drawer. If this is correct, check your wiring.

Step 4. Measure the AC voltage between 1A and 2B (on the sw itch). If this is
NOT 0V, then the switch is on, or you have a wiring mistake. Now turn
the switch on. You should measure line voltage acro ss 1A and 2B.

Step 5. Measure between pins 1 and 4 of the transformer, ag ain looking for
line voltage. Check your wiring if you do not see t his.

Step 6. Measure between pins 1 and 2 of the transformer. If you do not see
line voltage, then you either have the fuse drawer installed
backwards, or you have a wiring mistake. (Note: mov e the fuse to the
other position if you turn the drawer over.) Measur e also between pins
3 and 4 of the transformer. Again, you should see l ine voltage.

Step 7. Measure the following approximate voltages between pins of the 6-pin
connector on the wiring harness. Correct defects be fore moving on.

√√√√ From To AC Voltage

 5 6 56 VAC (may be as high as 68VAC)
 4 5 28 VAC (may be as high as 34VAC)
 4 6 28 VAC (may be as high as 34VAC)

2.2 Basic PCBA Checkout

Step 8. Turn the power off, and plug the harness connector into J1. Hook the
ground lead of your voltmeter to the GND pin near t he lower-left
corner of the PCBA. Turn the power on. The blue LED should light.

Step 9. Measure the unregulated supply for the 5V regulator :

√√√√ Measure Measurement Meaning

V4 pin 1

24V to 34V Correct operation

 >34V
Z1 (rework diode) installed backwards or wrong
diode type?

<24V Short circuit in rework? Short in +5V circuit?

Step 10. Measure DC voltage at U2 pins 11 and 32. Both shoul d be +5V +/-0.25V.
If not, power off and debug the logic supply.

1 The Wyse Technology WY-30 was the first product th at I designed professionally.

 ME5204 Programmer

21 October 2018 14 Martin Eberhard

Step 11. Measure DC voltage at both ends of the fuse FS1. Yo u should see
around -44V at both ends. If this voltage is only a t one end, then
the fuse has blown, probably because of an assembly problem on the
board. Power down and debug as needed.

Step 12. Measure the voltage at both ends of the fuse FS2. Y ou should see
around +40V at both ends. If this voltage is only a t one end, then
the fuse has blown, probably because of an assembly problem on the
board. Power down and debug as needed.

Step 13. Power down and unplug the ME5204 Programmer. Instal l two ICs in the
following locations, paying attention to orientatio n. Be careful not
to bend any leads as you insert the ICs.

√√√√ Qty Locations Value Digikey Part Number

 1 U3 MAX232 RS-232 transceiver 296-1402-5-ND

1 U2

Programmed PIC16F1519
microcontroller

PIC16F1519-I/P-ND

(With ME5204 firmware)

U2 is a PIC microcontroller with internal flash mem ory. You must use
a PIC that has been pre-programmed with the ME Load er Kernel 1.0, or
program it in place yourself, using a PC, a Microch ip PICkit-3
programming device, and my program file. (J2 is the PICkit-3
compatible in-circuit programming connector for thi s purpose.) The
PIC must also be loaded with the ME5204 Programming Firmware, which
can be loaded via the serial port - see section 8. If you are using
the PIC that I supplied, then it has already been p rogrammed with
both the loader and the programming firmware.

Completed Rev A PC Board, Component Side

 ME5204 Programmer

21 October 2018 15 Martin Eberhard

2.3 Microcontroller Bring-Up

Step 1. Plug a terminal (or a PC with a terminal program) i nto the ME5204
Programmer’s serial port connector, making sure to connect the
transmit signal (TxD, pin 3) from the ME5204 to rec eive signal of the
terminal and the receive signal (RxD, pin 2) from t he ME5204 to the
transmit signal of the terminal. For a normal PC, y ou will need a
symmetrical “null modem” DA-9 to DA-9, as shown in Section 6.

Step 2. Set up the terminal (or terminal program) this way:

Baud Rate 9600

Stop Bits 1

Parity None

Handshake XON/XOFF

Step 3. Plug in the ME5204 Programmer and turn it on. On th e terminal screen,
you should see a sign-on banner and a prompt like t his:

====================================
* ME5204 *
====================================
* MM4204/MM5204 EPROM Programmer *
* By Martin Eberhard *
* Firmware Version 2.01 *
====================================

Type ? for command list

>

 If you do not see this banner, check the following :

√√√√ Check

 Is the terminal setup right? - baud rate, etc. as above

 If you are using a PC (maybe with an RS-232C - to - USB dongle),
check that this is all working correctly. You can r oughly test it
with a loop-back from pin 2 to pin 3.

 TxD, RxD and GND wiring from the ME5204 Programmer to the
terminal. Are TxD and RxD reversed?

 RS232 Wiring harness - correct pins? Good connectio ns?

 Are IC2 and IC3 inserted correctly?

 Is IC1 in fact programmed? (With the right code?)

Step 4. Two LEDs should now be lit. Debug if not.

√√√√ LED State Meaning

 LED1
Power

On Correct

Off LED1 Orientation?

 LED2

Ready

On Correct

Off LED2 Orientation?

 LED3
Busy

On PC board short?

Off Correct

Step 5. Type ‘?’ to see a full help screen. You will try ou t all of the
commands on this screen in the following sections.

 ME5204 Programmer

21 October 2018 16 Martin Eberhard

2.4 Microcontroller-Assisted Checkout and Adjustment

NOTE: The following steps involve dialog with the ME5204 ’s monitor. The
monitor’s prompt is ‘>’. You should type what is in bold , and the monitor
will respond as indicated. If you turn off the powe r between steps, you will
need to repeat the dialog up to the point where you are working, when you
power back on.

All voltages are referenced to ground - reconnect t he voltmeter ground lead
to the PCBA GND pin. If the terminal and/or ME5204 Programmer are off, then
turn them back on.

Step 1. Test Master Power-Off

Measure the voltage at pin 3 of V2. This should be close to 0V. If
not, debug the circuit that includes Q6 and Q19.

Measure the voltage at pin 2 of V3. This should be close to 0V. If
not, debug the circuit that includes Q22 and Q23.

Step 2. Test Master Power and Low-voltage Control

Monitor dialog:

>TM 1
Master Power on
>

Now, only one LED should be lit:

√√√√ LED State Meaning

 LED1
Power

On Correct
Off LED1 Orientation?

 LED2
Ready

On Mistyped command? PC board short?
Off Correct

 LED3
Busy

On PC board short?
Off Correct

Measure the voltage at pin 3 of V2

√√√√ Measurement Meaning Debug

 37V to 43V Correct operation --

0V to 37V Problem

• Correct component in V1 and V2?
• Problem with V1 circuit or V2

circuit?
• Problem with Q6 & Q19 circuit?

Measure the voltage at pin 2 of V3

√√√√ Measurement Meaning Debug

 -37V to -44V Correct operation --

0V to -37V Problem

• Correct component in V3?
• Problem with V3 circuit?
• Problem with Q22 & Q23 circuit?

 ME5204 Programmer

21 October 2018 17 Martin Eberhard

Step 3. Test Low-voltage Regulated Outputs

Measure the following voltages, and debug as needed :

√√√√ Measure Correct Value Debug if incorrect

U1 Vss 5.0V +/- 0.25V

V2, Q5 circuits. Check values: R26, R27,
R29

 U1 Vbb 3.5V to 6.5V * V1, Q4 circuits. Check value s: R25, R30
 V3 pin 3 -12.0V +/- 0.6V V3, Q21 circuits, check v alues: R47, R48
 U1 Vdd 4.75V +/- 0.5V Q2 circuit
 U1 PROG 4.75V +/- 0.5V Q9 circuit
 U1 CSn 4.75V +/- 0.5V Q7 circuit

 * We will adjust Vbb soon.

Step 4. Adjust Vbb. Note that the Vbb adjustment is relativ e to Vss.

√√√√ Measure Adjust Correct voltage

 U1 Vbb VR1 (Vss + 0.15V) +/-0.05V

Step 5. Test Chip Select Signal

Monitor dialog:

>TC 1
 -CS Signal On
>

U1 CSn and U1 Powersaver (pin 2) should both be les s than 0.5V. If
not, debug Q7 circuit.

Step 6. Test Vdd

Monitor dialog:

>TD 1
 Vdd On
>

U1 Vdd should now be within 0.3V of Vneg (which is -12V, measured at
V3 pin 3). If not, debug Q9 circuit.

Step 7. Test the Address Drivers

Monitor dialog:

>WA 0
>

Measure each address pin on U1. They should all be less than 0.3V.

Monitor dialog:

>WA 1FF
>

Measure each address pin on U1. They should all be near 5V.

Use the WA command to write various address values, checking to see
if what you wrote is reflected on the address pins of U1. Debug the
nine address driver transistors as needed.

 ME5204 Programmer

21 October 2018 18 Martin Eberhard

Step 8. Test the Data Drivers

Monitor dialog:

>TC 0
 -CS Signal Off

>WD 0
>

Measure each data pin on U1. They should all be les s than 0.3V.

Monitor dialog:

>WD FF
>

Measure each data pin on U1. They should all be clo se to 5V.

Use the WD command to write various data values, checking to see if
what you wrote is reflected on the data pins of U1. Debug the data
driver transistors as needed.

Step 9. Test the Data Receivers

Monitor dialog:

>WD 01
>RD
Data Read: 01

If you get any value besides FF, double check that you typed WD 01,
and then debug the data input transistor circuits a s needed.

Write other values, including 02, 04, 08, 10, 20, 4 0, and 80, using
the WD command. Each time, follow with an RD comman d. You should
read the same value that you wrote each time. Debug as needed.

Monitor dialog:

>WD FF
>RD
Data Read: FF

Clip a test jumper to one of the GND pins on the PC board. Use the
other end of the jumper to ground one of the data p ins on U1. Use
the RD command to see that this bit now reads as 0. Repea t for each
of the data bits, and debug the data input transist ors as needed.

Step 10. Test High-Voltage Power Supply Control

 Monitor dialog:

>WD FF
>WA 1FF
>TP 0
-PROG Signal off
>TD 0
 Vdd off
>TH 1
High Voltage on
>

 ME5204 Programmer

21 October 2018 19 Martin Eberhard

Now, two LED should be lit:

√√√√ LED State Meaning

LED1 Power

On Correct
Off LED1 Orientation?

LED2 Ready

On Mistyped command? PC board short?
Off Correct

LED3 Busy

On correct
Off LED3 orientation? PC board short?

Step 11. Test and Adjust High-Voltage Power Supply Outputs

Measure the following voltages, adjust and debug as needed.

√√√√ Measure Measurement Meaning

U1 Vss

(pin 12)

13V +/- 0.6V Correct operation

 >13.6V
Check value of R26

 5.3V to 12.4V

4.75V to 5.3V Debug Q5 circuit

0 to 4.75V Debug V2 circuit

U1 Vbb

(pin 1)

13V +/- 0.5V Adjust VR1 so that Vbb = Vss + 0.10V

 5.3V to 12.5V
Check value of R22

13.5V to 15V

4.75V to 5.3V Debug Q4 circuit

0 to 4.75V Debug V1 circuit

>15V Debug Q3 circuit

 U1 Vdd

(pin 23)

Within 0.3V of Vss Correct operation

 otherwise Debug Q2 circuit

Vneg

(V3 pin 3)

34V to 38V Correct operation

 <-38V
Check value of R24

-13.5 to -34V

-11V to -13,5V Debug Q20, Q21 circuit

<11V Debug V3 circuit, look for shorts

 U1 PROG

(pin 4)

Within 0.3V of Vss Correct Operation

 Otherwise Debug Q8, Q9 circuit

 U1 CSn

(pin 3)

Within 0.3V of Vss Correct Operation

 Otherwise Debug Q7 circuit

 U1 A0-A8 Within 0.3V of Vss Correct operation

 U1 D0-D7 Within 0.8V of Vss Correct operation

 ME5204 Programmer

21 October 2018 20 Martin Eberhard

Step 12. Test and Adjust Pulsed Power Signal Vdd

Monitor Dialog

>TD 1
 Vdd on
>

Measure the following voltages, adjust and debug as needed.

√√√√ Measure Measurement Meaning

 U1 Vdd

(pin 23)

-36V +/- 1V Adjust VR2 for -36V +/- 0.1V

 Otherwise Debug Q1, Q2 circuit

Step 13. Test Pulsed Power Signal Vbb

Monitor Dialog

>TB 1
 Vbb on
>

Measure the following voltages, debug as needed:

√√√√ Measure Measurement Meaning

U1 Vbb

(pin 1)

25 +/- 0.5V Correct operation

 >25.5V Correct value for R23?

Correct Vbb adjustment in step 4? 13.5V to 24.5V

12.5V to 13.5V Debug Q3 circuit

<12.5V Debug V1 circuit, look for shorts

Step 14. Turn off pulsed power supply voltages

Monitor Dialog

>TB 0
 Vbb off
>TD 0

 Vdd off

>

Step 15. Test High-Voltage Logic Signals

Use the WA, WD, TP, and TC commands (as above) to test the address,
data, PROG and CSn signals. Logic high should read 12.75V +/- 0.5V.
Logic low should read between 0V and 0.3V.

Step 16. Reset When Done

Monitor Dialog

>RE
====================================
* ME5204 *
====================================
* MM4204/MM5204 EPROM Programmer *
* By Martin Eberhard *
* Firmware Version 2.01 *
====================================

Type ? for command list

>

 ME5204 Programmer

21 October 2018 21 Martin Eberhard

Step 17. Test with an EPROM

Install an MM5204 EPROM in the ZIF socket, and repe at steps 1
through 16. This EPROM may get programmed while you test, so plan to
erase it when you are done. Minimize the time you s pend on steps 12
and 13, so that you do not leave Vdd or Vbb active for an extended
time. This may damage the EPROM.

This concludes the checkout. You can turn on and off various signals further
if you like, measuring the results on the pins of U 1. When you are done, you
can type RE to reset the ME5204 Programmer, which will power-o ff all pins.

 ME5204 Programmer

21 October 2018 23 Martin Eberhard

Section 3. Functional Testing

Power-off the ME5204 Programmer, and screw on the b ottom panel. Turn it right
side up. Connect it to a computer with a terminal p rogram that can send and
receive files. Set up the terminal program for 9600 baud, 1 stop bit, no
parity. This program expects a display screen that is at least 24 rows of 80
columns, so adjust the display of your terminal app ropriately.

Power-on the ME5204, and see that your terminal pro gram can talk to it.

Note: The ME5204 Programmer uses an ‘Address Offset ’ when uploading and
downloading files. The Address Offset is set by the user (with the AO
command), and defines an 8-bit offset for the high address byte in the hex
files. During uploads, this address offset is added to the high address byte
in the hex records. During downloads, the record da ta is only loaded into the
buffer if the high address byte in the hex record m inus the Address Offset is
00 or 01.

During downloads, the hex records are checked for v alid record types, correct
checksum, legitimate hexadecimal characters, correc t record count (for
Motorola S5 records). Any errors in these checks wi ll generate a brief error
message and bump the error count.

The record count, loaded record count (records with where the address high
byte minus the Address Offset equaled 00 or 01), an d error count are
displayed, and then reset whenever an end-of-file r ecord is encountered.

Note that no command is required to start downloadi ng to the ME5204
Programmer. The ME5204 simply detects a valid Intel Hex (any line that starts
with ‘:’) or Motorola record (any line that starts with ‘S’). (Interestingly,
you could mix and match S-records and Intel Hex rec ords in the same
download...)

All numbers (typed by you and printed by the ME5204) are hexadecimal. For hex
file transfers, the allowable characters are
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. For other operat ions, you can also use
lower-case {a,b,c,d,e,f}.

3.1 Basic Buffer Operations and File Transfer

You can always pause ME5204 transmission by sending an XOFF character,
typically <control>S on your keyboard. Any key (inc luding XOFF and XON) will
restart transmission when paused.

Step 1. Display the Default Buffer Data

Monitor dialog:

>DB
000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0

 ME5204 Programmer

21 October 2018 24 Martin Eberhard

0E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
110: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
120: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
130: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
140: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
160: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
170: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
Buffer checksum: 00
>

Step 2. Fill the Buffer with a Constant

Monitor dialog:

>FB 55
>Buffer filled with 55
>DB 40 100
040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0A0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
Buffer range checksum: 00
> FB AA
>Buffer filled with AA
>DB 32 81
032: AA AA AA AA AA AA AA AA AA AA AA AA AA AA
040: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
050: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
060: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
070: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
080: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
090: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
0A0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
0B0: AA AA AA
Buffer range checksum: AA
>

(Note that you can display portions of the buffer b y specifying the
start address and the number of bytes to display.)

 ME5204 Programmer

21 October 2018 25 Martin Eberhard

Step 3. Edit the Buffer

Monitor dialog:

>MB 110
110: AA 01 AA 02 AA 03 AA 04 AA 05 AA 06 AA 07 AA 08
118: AA 09 AA <control-C>

>DB 100 40
100: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
110: 01 02 03 04 05 06 07 08 09 AA AA AA AA AA AA A A
120: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
130: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
Buffer range checksum: B3
>

Step 4. Upload Buffer Contents to your Computer as an Intel Hex File

You will need to use your terminal program to captu re the file in your
computer. I suggest calling the file INTEST.TXT.

For this demonstration, I am randomly setting the p age address to 0x68
- you will see the result in the file.

Monitor dialog:

>AO 68
>Address Offset: 68
>UI {start file capture before hitting Return}
:10680000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8
:10681000AAAAAAAAAAAAAAAAA9AAAAAAAAAAAAAAD8
:10682000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8
:10683000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8
:10684000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8
:10685000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98
:10686000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88
:10687000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA78
:10688000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA68
:10689000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA58
:1068A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA48
:1068B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA38
:1068C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA28
:1068D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18
:1068E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA08
:1068F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8
:10690000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE7
:10691000010203040506070809AAAAAAAAAAAAAAA4
:10692000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7
:10693000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7
:10694000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7
:10695000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA97
:10696000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87
:10697000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77
:10698000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67
:10699000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57
:1069A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47
:1069B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA37
:1069C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA27
:1069D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA17
:1069E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07
:1069F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF7
:00000001FF
>

 ME5204 Programmer

21 October 2018 26 Martin Eberhard

{Stop capturing and close the file on your computer }
Use a text editor to examine the file INTEST.TXT, t o make sure it
transferred correctly, and to delete the ‘>’ at the end.

Step 5. Upload Buffer Contents to your Computer as a Motoro la S-record File

You will need to use your terminal program to captu re the file in your
computer. I suggest calling the file STEST.TXT.

For this demonstration, I am randomly setting the p age address to 0x31
- you will see the result in the file.

Monitor dialog:

>AO 31
>Address Offset: 31
>US {start file capture before hitting Return}

S1133100AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1B
S1133110AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0B
S1133120AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB
S1133130AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB
S1133140AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADB
S1133150AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB
S1133160AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB
S1133170AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
S1133180AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9B
S1133190AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8B
S11331A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7B
S11331B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6B
S11331C0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5B
S11331D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4B
S11331E0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3B
S11331F0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2B
S1133200AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1A
S1133210010203040506070809AAAAAAAAAAAAAAD7
S1133220AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA
S1133230AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA
S1133240AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA
S1133250AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA
S1133260AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA
S1133270AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
S1133280AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9A
S1133290AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8A
S11332A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7A
S11332B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6A
S11332C0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5A
S11332D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4A
S11332E0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3A
S11332F0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2A
S9030000FC
>

{Stop capturing and close the file on your computer }

Use a text editor to examine the file STEST.TXT, to make sure it
transferred correctly, and to delete the ‘>’ at the end.

Step 6. Test downloading files to the ME5204 Programmer, us ing the two files
we just created. First we will fill the buffer with something
different, to be sure. (If you are paranoid, power- cycle the ME5204.)
Note that we set the Address Offset to match the ba se address in the
hex file - otherwise nothing will get loaded into t he buffer.

Monitor Dialog:

 ME5204 Programmer

21 October 2018 27 Martin Eberhard

>FB 99
>Buffer filled with 99
>DB 25 44
25: 99 99 99 99 99 99 99 99 99 99 99
30: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
40: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
50: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
60: 99 99 99 99 99 99 99 99 99
Buffer range checksum: A4
>AO 68
>Address Offset: 68

{Now, start sending the file INTEST.TXT to the ME52 04}

>:10680000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8
:10681000AAAAAAAAAAAAAAAAA9AAAAAAAAAAAAAAD8
:10682000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8
:10683000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8
:10684000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8
:10685000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98
:10686000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88
:10687000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA78
:10688000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA68
:10689000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA58
:1068A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA48
:1068B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA38
:1068C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA28
:1068D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18
:1068E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA08
:1068F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8
:10690000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE7
:10691000010203040506070809AAAAAAAAAAAAAAA4
:10692000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7
:10693000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7
:10694000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7
:10695000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA97
:10696000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87
:10697000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77
:10698000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67
:10699000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57
:1069A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47
:1069B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA37
:1069C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA27
:1069D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA17
:1069E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07
:1069F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF7
:00000001FF
Records: 21, Bad Records: 00
20 records loaded into buffer with Address Offset: 68
>DB 100 100
100: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
110: 01 02 03 04 05 06 07 08 09 AA AA AA AA AA AA A A
120: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
130: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
140: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
150: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
160: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
170: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
180: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
190: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
1A0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
1B0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
1C0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
1D0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A

 ME5204 Programmer

21 October 2018 28 Martin Eberhard

1E0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
1F0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A
Buffer range checksum: 33
>

You can test with the file STEST.TXT the same way. Remember that its
Address Offset is 31.

Step 7. Test backwards EPROM detection - to the firmware, a backwards EPROM
looks a lot like no EPROM is installed. Perform thi s operation with no
EPROM installed.

Monitor Dialog:

>EP
Please be sure the EPROM is inserted correctly, wit h pin 1
closest to the socket handle. Ready to program (Y/N)? Y
All bytes of this EPROM are FF and cannot be progra mmed.
Is it inserted backwards? Is it really a MM4204 or MM5204?
Abort
>

3.2 EPROM Reading and Programming

Here, you need a blank MM5204 EPROM - preferably se veral of them. Known-good
EPROMs would be nice. You will also want an EPROM e raser, as you will be
filling EPROMs with junk.

Step 1. Low-voltage Operations

Power-on the ME5204 Programmer, and then install a blank MM5204 EPROM
in the ZIF socket, with its pin 1 closest to the ZI F socket handle.
Monitor Dialog:

>EB
EPROM is blank
>

{or...}
Error Address: XXX EPROM: ZZ
{perhaps several errors}
Fail
>

Whether or not the EPROM is blank, you can read it back and see what
it contains:

Monitor Dialog:

>ER
EPROM read into buffer
EPROM checksum:00
>DB
000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0

 ME5204 Programmer

21 October 2018 29 Martin Eberhard

0E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
0F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
110: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
120: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
130: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
140: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
160: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
170: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1A0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1B0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
1F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0 0
Buffer checksum: 00
>

(Obviously, if the EPROM was not blank, it would no t read as all 0’s
and the checksum would be different.) You can now c ompare the buffer
to the EPROM. Then, you can change the buffer data to force a
failure.

Monitor Dialog:

>EC
EPROM matches buffer
>MB 85
085: 00 77 00 <control-C>
>EC
Error Address: 085 Buffer: 77 EPROM: 00
Fail
>

Step 2. High-Voltage Operations

First, create some interesting data.

Monitor Dialog:

>FB 55
>Buffer filled with 55
>MB
000: 55 1 55 2 55 4 55 8 55 10 55 20 55 40 55 80
008: 55 AA 55 <control-C>
>MB 19A
19A: 55 12 55 34 55 56 55 78 55 9A 55 BC
1B0: 55 DE 55 F0 55 <control-C>
>DB
000: 01 02 04 08 10 20 40 80 AA 55 55 55 55 55 55 5 5
010: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
020: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
030: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5

 ME5204 Programmer

21 October 2018 30 Martin Eberhard

0D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
140: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
150: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
160: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
170: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
180: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
190: 55 55 55 55 55 55 55 55 55 55 12 34 56 78 9A B C
1A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
Buffer checksum: 3C
>

Now, program an EPROM. The default algorithm is the P+5P smart
algorithm, which will program the EPROM until it ma tches the buffer,
then over-program it 5 times the number of times it took to match the
buffer. Each dot printed during programming represe nts one pass
through the range of EPROM being programmed. In the following example,
the EPROM matched the buffer after the second pass.

Raise the handle of the ZIF socket, put a blank MM5 204 in the socket,
with pin 1 up, closest to the handle, and then push the ZIF socket
handle down to lock the EPROM in place.

Monitor Dialog:

>EB
EPROM is blank
>EP
P+5P Smart programming algorithm enabled
Please be sure the EPROM is inserted correctly, wit h pin 1
closest to the socket handle. Ready to program (Y/N)? Y
P+5P Smart Programming..
P=02. 5P over-programming..........
Verifying
EPROM matches buffer
>

If you get any error messages, try again with anoth er EPROM, to
determine if the problem is with the EPROM or the M E5204 Programmer.

Clear the buffer, and then calculate the EPROM’s ch ecksum. It should
be the same as it was in the buffer:

Monitor Dialog:

>FB 0
Buffer filled with 00
>ES
EPROM checksum: 3C
>

Read the EPROM back into the buffer and have a look . If all goes well,
it will go like this:

Monitor Dialog:

 ME5204 Programmer

21 October 2018 31 Martin Eberhard

>ER
EPROM read into buffer
EPROM checksum:3C
>DB
000: 01 02 04 08 10 20 40 80 AA 55 55 55 55 55 55 5 5
010: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
020: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
030: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
0F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
140: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
150: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
160: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
170: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
180: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
190: 55 55 55 55 55 55 55 55 55 55 12 34 56 78 9A B C
1A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
1F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5
Buffer checksum: 3C
>

Congratulations, your ME5204 EPROM Programmer appea rs to function
correctly. If you are still reading this, try typin g ‘?C’ for an
Easter egg in the code.

 ME5204 Programmer

21 October 2018 33 Martin Eberhard

Section 4. Programming Algorithms

You can choose between two programming algorithms, using the PC command. The
Vdd pulse width is always 1.05 mS mSec, with a 21% duty cycle. See the timing
diagrams in section 7’s Programming Timing subsecti ons for details.

The MM5204 data sheet recommends the P+5P Smart Pro gramming Algorithm. You
can choose to program with a fixed number of progra mming cycles instead.

With either algorithm, you can program the entire E PROM (the default), or
just a portion of the EPROM, by specifying the star ting address and the byte
count in the EP command.

4.1 Simple Programming Algorithm

Setting the number programming passes to anything g reater than 00 will select
the simple programming algorithm.

Programming Phase: The simple programming algorithm first prints
“Programming” on the console. Then the buffer conte nts are written to the
EPROM repeatedly, as many times as you specified. A fter each pass through the
EPROM range, a period is printed on the console.

Verifying Phase: Once programming is complete, “Verifying” is print ed on the
console. The EPROM is verified by comparing it to t he buffer, reporting
errors to the console.

4.2 ‘P+5P’ Smart Programming Algorithm

Setting the number of programming cycles to 00 (PC 00) selects the P+5P Smart
Programming Algorithm.

Programming Phase: This algorithm first prints “P+5P Smart Programmin g” on
the console. Then it writes one complete pass throu gh the EPROM and then
compares it to the buffer. This is repeated (keepin g count in P) until the
EPROM matches the buffer. After each pass through t he EPROM range, a period
is printed on the console.

During the programming phase, the EPROM is deemed t o match the buffer if all
bits that are ‘1’ in the buffer are also ‘1’ in the EPROM. If any additional
bits are ‘1’ in the EPROM, no amount of additional programming cycles will
make them become ‘0’ - these errors will be caught during the verify stage.

If the EPROM does not match the buffer after 256 pa sses during the P phase,
then an error is reported to the console, and progr amming is aborted.

Over-Programming Phase: When the EPROM does match the buffer, the value for P
is printed on the console, followed by “5P over-pro gramming”. The EPROM is
then programmed another 5 times P passes. After eac h pass through the EPROM
range, a period is printed on the console.

Verifying Phase: Once programming is complete, “Verifying” is print ed on the
console. The EPROM is verified by comparing it to t he buffer, reporting
errors to the console.

4.3 Programming Time

Nominally, each pass through an entire MM5204 will take about 2.6 seconds.
However, any byte that is to be programmed as 00 wi ll be skipped, since this
is the erased state of a MM5204 data byte. Skipped bytes take much less time.

Note that you can abort programming by typing contr ol-C.

 ME5204 Programmer

21 October 2018 35 Martin Eberhard

Section 5. ME5204 Commands

5.1 EPROM Commands

The EPROM commands generally deal with the 512-byte EPROM, and the 512-byte
buffer in the ME5204. For Compare, Program, and Rea d commands, the EPROM
address is always the same as the buffer address.

For these EPROM commands, <beg> is the beginning ad dress, both for the EPROM
and for the buffer. <cnt> is the byte count for the command. <cnt>=000 is
interpreted as <cnt>=200 hex. If you don’t enter va lues for <beg> and <cnt>,
they both default to 000. If you enter only one val ue, it is assumed to be
<beg>, and <cnt> defaults to 000 (which means 200h) . The EPROM and buffer
addresses will wrap around to 000 once they pass 1F F.

>EB <beg> <cnt> Blank-Check EPROM

EB starts at address <beg> and checks <cnt> bytes o f the EPROM to see
if they are blank (data=00). Any non-blank bytes ar e reported to the
console. If all bytes in the specified range are bl ank, this command
responds with “EPROM is blank”.

>EC <beg> <cnt> Compare EPROM to Buffer

EC compares <cnt> bytes of the buffer to the EPROM, starting at address
<beg>. Any differences are reported to the console. If all bytes are
the same, this command responds with “EPROM matches buffer”.

>EP <beg> <cnt> Program EPROM from Buffer

EP programs <cnt> bytes of the EPROM with data from the buffer, the
EPROM and buffer addresses both starting at <beg>. The programmed range
is verified when programming is complete, and any e rrors are reported
to the console. If the programmed range matches the buffer when done,
then this command will respond with “Success”.

Before programming, the relevant states of the ME52 04 (Programming
algorithm, programming cycles) are displayed, and y ou are asked if you
want to proceed.

Typing control-C during programming will abort clea nly, leaving the
EPROM in a reasonable state.

See the Programming Algorithms section for additional details.

>ER <beg> <cnt> Read EPROM into Buffer

ER reads <cnt> bytes of data from the EPROM into th e buffer, both
starting at address <beg>. This command always resp onds with “EPROM
read into buffer” followed by “EPROM checksum: XX”.

>ES <beg> <cnt> Compute EPROM Checksum

ES reads and adds together <cnt> bytes of data from the EPROM, starting
at address <beg>. Only the low byte of the sum is k ept. This command
responds with “EPROM checksum: XX”.

>PC <cnt> Set Programming Pass Count to <cnt>

PC sets the number of programming passes through th e EPROM to <cnt>. PC
00 selects the P+5P Smart Programming Algorithm. If you don’t type a
value for <cnt>, then 00 (P+5P Smart Programming Al gorithm) is assumed.

 ME5204 Programmer

21 October 2018 36 Martin Eberhard

?E Help with EPROM Commands

?E prints a help screen for these EPROM commands.

5.2 File Transfer Commands

>AO Automartic Address Offset Mode (default)

AO (with no parameter) selects automatic Address Of fset mode. When
downloading a file to the ME5204, the Address Offse t will be taken from
the high address byte of the first received record. When uploading a
file from the ME5204, the Address Offset will be 00 .

>AO <offset> Set Address Offset

AO sets the Address Offset for uploads and download s to <offset>. The
Address Offset is added to the upper address byte w hen uploading buffer
data, and subtracted from downloaded Intel Hex reco rds and Motorola S-
Records.

See the Address Offsets subsection under ME5204 Programmer Usage for
further details about the Address Offset, and how i t is used during
uploading and downloading.

>UI Upload Buffer as Intel Hex

UI prints the entire buffer contents on the console as Intel Hex files.
The high address byte for each record is the Page A ddress. All records
are 16 bytes long, and the transfer ends with an In tel Hex end-of-file
(type 01) record. To upload into a file, start the file capture after
you type UI, but before you type <return>.

>US Upload Buffer as Motorola S-Records

US prints the entire buffer contents on the console as Motorola S-
record files. The high address byte for each record is the Page
Address. All records are 16 bytes long, and the tra nsfer ends with a
Motorola S-record end-of-file (S9) record. To uploa d into a file, start
the file capture after you type US, but before you type <return>.

>: Begin Intel Hex record

Target buffer addresses are calculated by subtracti ng the Address
Offset from the address in each record, and then in crementing after
each data byte of the record has been handled.

If the record type is 00 (a data record), then all data whose target
buffer address is between 000 and 1FF will be loade d into the buffer.
Any data whose target address is outside this range will not be loaded.

If the record’s checksum does not match the compute d checksum, then “?
Csm” will be printed, and the error count will be i ncremented.

Invalid hex characters (including lowercase a-f) pr int “? Hex” and
cause the error count to be incremented.

Record types other than 00 (data) and 01 (end-of-fi le) print “? Rec”
and cause the error count incremented.

Byte count > 00 for a type 01 record (end-of-file) print “? Rec” and
cause the error count to be incremented.

The prompt is not displayed after receipt of an Int el Hex record,
except as below.

 ME5204 Programmer

21 October 2018 37 Martin Eberhard

If the record type is either 00 (data) or 01 (end-o f-file), and the
record byte count is 00, then the record count, the count of records
loaded into the buffer, and error count are display ed and then cleared,
and the prompt is displayed.

>S Begin Motorola S-record

Target buffer addresses are calculated by subtracti ng the Address
Offset from the address in each record, and then in crementing after
each data byte of the record has been handled.

If the record type is S1 (a data record), then all data whose target
buffer address is between 000 and 1FF will be loade d into the buffer.
Any data whose target address is outside this range will not be loaded.

An S5 (record count) record will compare the ME5204 ’s record count to
the record count in the record. If they do not matc h, then “? Cnt” is
printed, and the error count is incremented.

If the checksum in the record does not match the ch ecksum computed by
the ME5204, then “? Csm” is printed and the error c ount is incremented.

Invalid hex characters (including lowercase a-f), w ill print “? Hex”
and cause the error count to be incremented.

Any record type besides S1 (data), S5 (record count), and S9 (end-of-
file) will print “? Rec” and cause the error count incremented.

An end-of-file record may be a full S9 record (with byte count,
address, and checksum fields), or it may be just ‘S 9’. (This
abbreviated S9 record is sometimes found in old S-r ecord files.)

If the byte count for a type S5 (record count) or S 9 (end-of-file)
record is not 00, then “? Rec” is printed, and the error count is
incremented.

The prompt is not displayed after receipt of a Moto rola S-record,
except as below.

If the record type is either S1 (data) or S9 (end-o f-file), and the
record byte count is 00, then the record count, the count of records
loaded into the buffer, and error count are display ed and then cleared,
and the prompt is displayed.

?F Help with File Transfer Commands

?F prints a help screen for these file transfer com mands.

5.3 Buffer Commands

>DB <beg> <cnt> Display Buffer Contents

DB displays the specified range of buffer contents. Data are displayed
16 hex bytes to a line, except the first line, if i ts least-significant
digit is not 0. Each line is preceded by a 3-digit hex address. If you
don’t enter values for <beg> and <cnt> then the ent ire buffer contents
will be displayed. The checksum of the specified re gion of the buffer
is printed last.

>FB <val> Fill Buffer with Value

FB fills the entire buffer with <val>. If you don’t enter a value for
<val>, then the buffer will be filled with 00.

This command responds with “Buffer filled with <val >”.

 ME5204 Programmer

21 October 2018 38 Martin Eberhard

>MB <addr> Modify Buffer

MB allows you to modify the buffer contents startin g at address <addr>.
The address and its contents are first printed on t he console. If you
type <return>, the contents will remain unchanged. If you type a
hexadecimal number and then <return>, the value you type will replace
the buffer contents at that address.

After you type <return>, the contents of the next a ddress in the buffer
are displayed, allowing you to modify that address. This continues
until you type <control-C>.

Every address that ends with 0 or 8 will start a ne w line, displaying
first the address, then the data.

?B Help with Buffer Commands

?B prints a help screen for these buffer commands.

5.4 Diagnostic Commands

These commands are intended only for diagnosing the ME5204, especially during
initial bring-up and when you want to adjust the pr ogramming voltages. They
allow you to control various signals to the EPROM s ocket directly, so that
you can measure and adjust voltages, and test funct ionality.

For these commands, if you don’t enter a value (0 o r 1), then 0 is assumed.

>TM <0/1> Test Master Power

TM 1 turns on power to the EPROM socket, TM 0 turns it off. If
programming voltage is off (TH command), then Vss w ill be +5 volts when
you type TM 1, and 0 volts when you type TM 0. If p rogramming high
voltage is on (via TH 1), then Vss will be 13 volts when on, and 0
volts when off.

>TB <0/1> Test Vbb

TB 1 turns on Vbb, though this is only visible when programming high-
voltage is on (via TH 1). When programming high-vol tage is on, Vbb will
be at 25 volts. When off (TB 0), Vbb will be at 13 volts.

>TC <0/1> Test Chip Select Signal

TC 1 turns the EPROM chip select on, TC 0 turns it off. Since Chip
Select is an active-low signal, on means at 0 volts . Off means at Vss,
which depends on TM and TH.

>TD <0/1> Test Vdd

TD 1 turns Vdd on, TD 0 turns Vdd off. Vdd is activ e low, so off means
at Vss, which depends on TM and TH. When on, Vdd wi ll be at 0 volts.

>TP <0/1> Test PROG Signal

TP 1 turns the EPROM PROG signal on, TP 0 turns it off. Since PROG is
an active-low signal, on means at 0 volts. Off mean s at Vss, which
depends on TM and TH.

>TH <0/1> Test Programming High-Voltage

TH 1 turns on the high-voltage programming supply, and puts Vss to 13
volts. TH 0 turns off programming high-voltage.

 ME5204 Programmer

21 October 2018 39 Martin Eberhard

>WA <val> Write Address

WA writes <val> to the nine address pins of the EPR OM socket. Every ‘0’
bit will drive the corresponding pin to 0 volts. Ev ery 1 bit will drive
the corresponding pin to Vss.

If you don’t enter a value for <val>, then 000 is w ritten.

>WD <val> Write Data

WD writes <val> to the eight data pins of the EPROM socket. Every ‘0’
bit will drive the corresponding pin to 0 volts. Ev ery 1 bit will drive
the corresponding pin to Vss.

If you don’t enter a value for <val>, then 00 is wr itten.

>RD Read Data

RD reads the EPROM data pins and displays the resul ts on the screen.
Note that the data write drivers interact with the read circuitry. If
you want to read the data pins correctly, you need to type WD FF first.

Note also that the pins are pulled up to Vss. If Ma ster Power is off,
then there is no pull-up, and you will not read any thing meaningful.
Therefore, you should type TM 1 typing RD.

Use a jumper to test each pin - ground the pin and read the result.

>RV Read Voltages

RV reads the Vss, Vbb, and the negative supply, Vne g. Each of these
pins has a resistor network. The 16-bit value print ed is the direct
result of the A/D converter. Interpret these number s as you please...

?D Help with Diagnostics

?D prints a help screen for these diagnostic comman ds.

5.5 Other Commands

>? Help

Typing a question mark prints a help screen that br iefly explains all
the commands.

>TE <0/1> Set Terminal Echo

TE 0 turns terminal echo off; TE 1 turns it on.

>DS Display all Settings

Displays the following: Loader Kernel firmware revi sion, Page Address,
EPROM Type, Programming Cycles/Smart Programming mo de, and Echo State.

>RE Reset ME5204 Programmer

RE is just like power-cycling the ME5204.

>?L View Firmware Loader Notes

?L displays notes on loading new firmware into the ME5204 via the
serial port. Firmware loading is discussed in a lat er section.

^S Pause Serial Port Output

Control-S (XOFF) tells the ME5204 to stop sending d ata. Any subsequent
character (including XON, which is control-Q) will re-enable the ME5204
output, and that character will be discarded by the ME5204.

 ME5204 Programmer

21 October 2018 41 Martin Eberhard

Section 6. ME5204 Programmer Usage

The previous sections walked you through the basic ME5204 Programmer
operation. Here are some specifications, and the pr ocedures for common EPROM
operations.

6.1 120V and 240V Operation

The ME5204 Programmer will operate on either 100VAC -130VAC, or 200VAC-260VAC,
at 50Hz or 60 Hz. Select your input voltage using t he fuse drawer right next
to the power cord inlet. Use a small screwdriver to pry the fuse drawer from
the inlet.

For 100VAC-130VAC operation, install the 3/4A fuse in the side that has the
110-120V arrow pointing to it. Insert the drawer ba ck in the inlet, such that
the triangular pointer near the power cord inlet po ints to the 110V-120V
arrow.

For 200VAC-260VAC operation, install the 3/4A fuse in the side that has the
220-240V arrow pointing to it. Insert the drawer ba ck in the inlet, such that
the triangular pointer near the power cord inlet po ints to the 220V-240V
arrow.

To avoid damage to the ME5204, please be sure the fuse drawer is oriented
correctly for your line voltage !

6.2 Connector Pinout

The DA-9 connector is a compatible with standard PC serial port.

Female DA-9 Pin Signal

2 Data Out (out of the ME5204)

3 Data In (in to the ME5204)

5 Ground

For a normal PC connection, you will need a standar d straight-through male
DA-9 to male DA-9 cable like this. Also, a standard USB-RS232 dongle (the
kind with a male DA-9) will plug directly into the ME5204.

Male DA-9 Pin Signal Male DA-9 Pin

2 Data In (in to the ME5204) 2

3 Data Out (out of the ME5204) 3

5 Ground 5

6.3 LEDs

Three LEDs tell you the state of the programmer.

The top (blue) LED is ‘Power’, and indicates that t he power switch is on. It
is connected across the Microcontroller’s 5-volt su pply.

The middle (green) ‘Ready’ LED is connected to the signal that enables power
to the EPROM. When lit, this LED indicates that no power is applied to the
EPROM. It is safe to insert or remove an EPROM only when this LED is lit.

The bottom (red) LED is ‘Busy’. It is connected to the control signal for the
high-voltage (programming) power supply. When lit, the EPROM has high
voltage, and should not be touched.

 ME5204 Programmer

21 October 2018 42 Martin Eberhard

6.4 Power Supply Voltage Checking

The ME5204 tests some of its internal voltages when it performs EPROM read
and programming operations, and also when it ends t hese operations. The A/D
converter and related scaling hardware have signifi cant tolerances, so the
measurements are somewhat rough. Measurements are m ade mainly to detect gross
errors that may damage an EPROM. The software toler ances are set wide enough
that you should never see a voltage error message w ith a correctly-
functioning ME5204. Any voltage error message shoul d cause you to debug the
hardware.

Because of these sloppy tolerances, you cannot assu me that the ME5204 is
properly adjusted just because it does not give you any ‘voltage out of
bounds’ messages. You should follow the adjustment procedure (earlier in this
manual) to set the voltages correctly.

During reading, the ME5204 checks Vss and Vbb. If e ither is too far above or
below 5 volts, an error message will be printed, an d you will be given the
opportunity either to continue with the operation o r to abort.

Also during reading, the negative supply voltage, V neg is checked for a
reasonable voltage. If it is too low or too high, y ou will be given the
option to continue.

During programming, the ME5204 checks Vss to see if it is roughly 13 volts.
Vbb is similarly checked, to see if it is roughly 1 3 volts before each actual
programming pulse. If either is too high, the ME520 4 will panic, preventing
programming. If either is too low, an error message will be printed, and you
will be given the option to continue.

Vbb is also checked during teach programming pulse. If it is to far above 25
volts, the ME5204 will panic and abort the programm ing. If it is ever low
during the programming pulse, the ME5204 will repor t this fact when
programming has completed - whether or not the prog ramming was successful.

When any EPROM operation completes, the three volta ges are checked to see if
they are near 0 volts. If not, you will get an erro r message. You should
debug the ME5204 if this happens - otherwise you wi ll have a hot socket, and
will risk damaging EPROMS when you install or remov e them.

6.5 Address Offsets

Simple Intel Hex files and Motorola S-record files have 2-byte addresses
(represented as 4 hex digits). An MM5204 EPROM cont ains 512 bytes of data.
Thus, the address in a hex file can be thought of a s having 2 components:
without any address offset, the high byte (first 2 hex digits) can either be
00 or 01, and the low byte (second 2 hex digits) re presents the address
within one half or the other of the EPROM.

The EPROM data may be a computer program intended t o run at address 0000, or
it may be intended to run at some other address. If it is intended to run at
some other address besides 0000, then the high byte of the 2-byte addresses
in the hex file that you will send to the EPROM wil l not be 00 or 01 - these
bytes will be the high byte of the intended target address.

You can tell the ME5204 what the address offsete is , using the AO (Address
Offset) command. If you specify automatic Address O ffset mode (by typing the
AO command with no value), then the Address Offset fo r downloads will be set
to the high address byte from the first received re cord of the file.
Automatic Address Offset mode is the default after reset.

 ME5204 Programmer

21 October 2018 43 Martin Eberhard

When you download a hex file to the ME5204, the Add ress Offset is subtracted
from the high address bytes for the data in the fil e. Any data whose address
high byte minus the Address Offset does not equal 00 or 01 will not be loaded
into the buffer.

Note that it is possible for some of the data withi n a given record will get
loaded into the buffer, and some of it will not. (T his will happen if the
record spans a 512-byte boundary.) Such records are not counted as loaded
records in the reporting at the end of the file, th ough the data that fit
into the buffer did get written into the buffer.

Note that if you have a hex file that spans several EPROMs, you can program
each EPROM sequentially by first setting the Addres s Offset for one of the
EPROMs, then clearing the buffer, and then sending the whole hex file, and
then programming the EPROM. Repeat this procedure f or each EPROM - setting
the Address Offset appropriately. Each time, only d ata whose address high
byte minus the address offset equals 00 or 01 will get loaded into the buffer
- the others will be ignored.

Similarly, if you are reading an EPROM that is inte nded to run at an address
besides 0000, you can generate the correct hex file by setting the Address
Offset before uploading the buffer. The Address Off set that you specify with
the AO command will be added to the high address byte in every record
uploaded. If automatic Address Offset mode is selec ted, then the Address
Offset will be 000.

6.6 Selecting a Programming Algorithm

See the more extensive Programming Algorithms section for details about the
two supported programming algorithms.

The default programming algorithm is the so-called P+5P Smart Programming
Algorithm, which figures out how many passes it tak es to program the EPROM
and get a successful read-back, then programs it fi ve times that many more
times. To select the P+5P Smart Programming Algorit hm, set the Programming
Count to 0:

Monitor Dialog:

>PC 0
P+5P Smart programming algorithm enabled
>

Otherwise, you can simply tell the ME5204 Programme r how many passes to
program the EPROM. For example, to program 32 decim al (20 hex) cycles, do
this:
Monitor Dialog:

>PC 20
Programming Cycles: 20
>

6.7 Programming an EPROM from a File

Here is how you program an EPROM from a file, assum ing the Smart algorithm is
used, and assuming (for the sake of demonstration) that the EPROM took two
programming passes to read back successfully.
Monitor Dialog:

{Power-on}
{insert blank EPROM in the socket}
>EB
EPROM is blank
>ER

 ME5204 Programmer

21 October 2018 44 Martin Eberhard

Success {This fills the buffer with either 00}
>AO XX {XX is the Address Offset for the EPROM}
>Address Offset: XX
> {send S-Record or Intel Hex file to the ME5204}
>EP
Make sure the EPROM is inserted correctly, with pin 1
closest to the socket handle. Ready to program (Y/N)? Y
P+5P Smart Programming..
P=02. 5P over-programming...........
Verifying
EPROM matches buffer
>

6.8 Reading an EPROM into a File

You can read an EPROM, and save the data in a stand ard format (either Intel
Hex or Motorola S-Record) on your computer.

Monitor Dialog:

{Power-on}
{insert programmed EPROM in the socket}
>AO XX {XX is the Address Offset for the file}
Address Offset: XX
>ER
Success
>UI {start file capture on your computer before hitting return}
{Intel Hex file follows}
>

If you want the file in Motorola S-Record format, u se US instead of UI .

6.9 Copying an EPROM

You can read an EPROM, and then write it into any n umber of blank EPROMs.

Monitor Dialog:

{Power-on}
{insert source EPROM in the socket}
>ER
Success
{insert blank EPROM in the socket}
>EB
EPROM is blank
>EP
Make sure the EPROM is inserted correctly, with pin 1
closest to the socket handle. Ready to program (Y/N)? Y
P+5P Smart Programming..
P=02. 5P over-programming..........
Verifying
EPROM matches buffer
{insert another blank EPROM in the socket}
>EB
EPROM is blank
>EP
Make sure the EPROM is inserted correctly, with pin 1
closest to the socket handle. Ready to program (Y/N)? Y
P+5P Smart Programming...
P=02. 5P over-programming...............
Verifying
EPROM matches buffer
>

 ME5204 Programmer

21 October 2018 45 Martin Eberhard

Section 7. ME5204 Theory of Operation

7.1 Architecture

The following is a very brief description of the ME 5204 Programmer’s circuit
operation. For further detail, see the MM5204 speci fication.

The ME5204 Programmer comprises several power suppl ies, a microcontroller
with embedded EEROM, RAM and serial port, and a ZIF socket with a read/write
interface for the MM5204 EPROM.

7.2 Isolation and Stepdown

Transformer T1 steps the line voltage down to 56VAC RMS.This is rectified by
a bridge diode (D4-D7), and split into a positive a nd negative DC voltage,
using the transformer’s center-tap.The two DC suppl ies are smoothed with 470
uF caps (C12 & C13), large enough that they will ch arge to the AC line peak
voltages, +39V and -39V. FS1 and FS2 protect these supplies from overcurrent.

7.3 Logic Supply

V4 regulates the +39V to produce +5V for the PIC mi crocontroller and the RS-
232 interface. Rework zener diode Z1 is used to dro p the unregulated,
rectified voltage to well below 40V, to meet the LM 7805’s specification. Even
with this rework, V4’s input voltage is relatively high, between 24 and 30
volts. For this reason, it is normal for regulator V4 to get warm when the
ME5204 is on.

7.4 Microcontroller-Controlled High-Voltage Supply

The MM5204 EPROM programming voltages are specified as Vbb = 0V & +12V, Vl =
-13V, Vdd = 0 & -49V, and logic signals at 0V and - 13V to the EPROM’s inputs.
These voltages are referenced to the EPROMs Vss, de fined as 0V. When reading
the EPROM, voltages are referenced to ground, defin ed as 5V below the voltage
of the Vss pin, since the MM5204 does not have a gr ound pin.

To make interfacing simpler, the programming voltag es are translated up by 13
volts, referenced to Vdd, when programming high-vol tage is on. The voltages
translate as follows:

Pin name
MM5204 Specified Voltage Translated Voltage

Read Ready 1 Program Read Ready 1 Program

Vss 5V ±5% 0V 0V 5V ±5% 13V±2% 13V±2%

Vdd -12V ±5% -2V to 0.5V -49±1V -12V ±5% 13V±2% -36±0. 1V

Vll 0V 0V to -14V 0V to -14V 0V 0V 0V

Vbb 5V ±5% 0V to 0.4V 12V ±0.6V 5V ±5% 13V±2% 25V±5%

PROG 5V ±5% 0V -49±1V 5V ±5% 13V±2% -36±0.1V

CSn 0V 0V 0V 0V 13V±2% 13V±2%

A<0:7> high 2.4V to 5V 0V 0V 3.5V to 5V 12.5V±5% 12.5V±5%

A<0:7> low 0 ±0.8V -13 ±2V -13 ±2V 0 to 0.5V 0 to 1V 0 to 1V

<0:7> high (output) -13 ±2V -13 ±2V (output) 0 to 1V 0 to 1V

D<0:7> low (output) 0V 0V (output) 12.5V±5% 12.5V±5%

1. Ready for programming

Vss is generated by an LM317 programmable voltage r egulator (V2), with
precision resistors R27 and R29 setting the 5V leve l, and R26 setting the 13V
level. The microcontroller controls Q5 to select be tween these two voltages.

 ME5204 Programmer

21 October 2018 46 Martin Eberhard

V1 and surrounding components serve as a programmab le voltage regulator for
Vbb, capable of providing 5V, 13V, and 25V, control led by Q3 & Q4. All of the
voltages are adjusted by VR1. The 13V output has th e most restrictive
requirement in the MM5204 spec, so adjustment shoul d be made when the output
is set for 13V.

V3 and surrounding components generate Vneg, provid ing the negative voltages
used for Vdd and -PROG. This power supply provides either -12V or -36V,
controlled by Q22 and Q23.

Vdd is pulled up to Vss when Q2 is off, and driven to at Vneg when Q2 is on.
The microcontroller controls Q2 via its EN_VDD outp ut.

Similarly, -PROG is pulled up to Vss when Q8 is off , and driven to at Vneg
when Q8 is on. The microcontroller controls Q2 via its EN_PROGRAM output.

7.5 EPROM Read/Write Interface

Every MM5204 logic signal is driven by a resistor-t ransistor circuit that
translates TTL signals from the Microcontroller to the necessary voltages for
reading and programming. These circuits use a pull- up resistor to Vss (which
may either be 5V or 13V) and a transistor that can drive the pin to 0V.

The driver circuit for each of the EPROM data pins also includes a resistor-
transistor circuit that allows the EPROM to be read by the microcontroller,
without ever exposing the microcontroller to the hi gh programming voltages.
Note that in order to read from the EPROM, the writ e-driver transistors must
be turned off by the microcontroller.

Because the address and data drivers must operate a t 13 volts, these circuits
are pretty slow when running at 5 volts (e.g. when reading). The
microcontroller waits more than 20 uS after writing an address before reading
the EPROM data, to insure a correct read.

7.6 Microcontroller

All ME5204 Programmer operations are controlled by a 40-pin PIC16F1519
microcontroller, running at 16 MHz. This PIC includ es a UART that is
connected to the serial port connector through a MA X232 RS232C transceiver.

The PIC has 1024 bytes of internal RAM, which is us ed for the EPROM buffer,
as well as for transmit and receive queues, variabl e storage, and general
purpose registers.

The PIC also has 16K of 14-bit program memory EEPRO M, which holds the ME5204
Programmer’s firmware. This EEPROM can be reprogram med in place via the 6-pin
PIC ICP connector and a Microchip PICkit III progra mming device.

The PIC has a multi-channel A/D converter that is c onnected (via 3 resistor
divider circuits) to Vneg, Vss, and Vbb, so that th e PIC can measure these
voltages and perhaps could warn the user if voltage s are out of spec.

Ther PIC has been programmed with two pieces of fir mware: the Loader and the
Programming Firmware. See section 8 for details.

 ME5204 Programmer

21 October 2018 47 Martin Eberhard

7.7 Voltage Measurement

Three A/D converters are implemented in the Microco ntroller, measuring Vneg,
Vss, and Vbb. They each connect to the power supply via a resistor divider.
The A/D converters use the PIC’s 5-volt Vss as a re ference.

Vneg is equal to (5 - 44.35 X (ADC value)/resolutio n) volts

Vss and Vbb are equal to 5.99 X (ADC value)/resolut ion volts

The PIC’s Vss is supplied by a 7805 voltage regulat or, which has a tolerance
of about +/-2.5%. The resistors in the divider are +/-1%. When you combine
these errors, the voltage measurements have an erro r of about +/-4.5%. This
is not good enough for detecting a properly adjuste d power supply, but it is
good enough to detect many potential failure modes, including a failed power
supply switch circuit.

The firmware uses these A/D converters for this pur pose. Because the
measurements are rough anyway, the firmware only lo oks at the 8 most
significant bits of the A/D converter’s 10-bit resu lt.

Hopefully, this logic will prevent a small failure in the ME5204 from
cascading into a larger failure, and also help prev ent damaging an EPROM.

Here are the Vneg A/D result limits used by the fir mware. The Minimum and
Maximum Voltages are the extremes when all the tole rances are worst-case in
either direction. The highlighted values are the li miting cases.

A/D high
result

Minimum
Voltage

Maximum
Voltage

Note

03 >-41.64V >-36.20V Acceptable -36V programming
voltage 22 <-35.66V <-30.98V

97 >-14.21V >-12.24V
Acceptable -12V voltage

A3 <-11.75V <-10.10V

DF >-0.87V >-0.59V
Acceptable 0V (off) voltage

E4 <0.29V <0.42V

Here are the Vss and Vbb A/D result limits used by the firmware. The Minimum
and Maximum Voltages are the extremes when all the tolerances are worst-case
in either direction. The highlighted values are the limiting cases.

A/D high
result

Minimum
Voltage

Maximum
Voltage

Note

00 >0V >0V
Acceptable ‘off’ voltage range

13 <0.55V <0.62V

26 >4.13V >4.72V
Acceptable 5V (low voltage) Vss

2F <5.25V <6.00V

66 >11.13V >12.72V
Acceptable +13V Vss output

78 <13.24V <15.13V

C6 >21.64V >24.72V
Acceptable 25V Vbb

E6 <25.27V <28.88V

 ME5204 Programmer

21 October 2018 48 Martin Eberhard

7.8 MM5204 Programming Timing

Below is the timing specification for programming t he MM5204 EPROM, compared
to the timing of the ME5204 Programmer. Note that M icrochip’s spec for the
PIC’s internal clock frequency has an accuracy of + /-10%. Note also that
inaccuracy in the PIC’s clock frequency will not af fect the pulsed power
supply duty cycle, T VDD

A<8:0>

Vdd

Powersaver

PROG

Inverted DataD<7:0>

t
SS

t
PSS

t
BS

MM5204 Programming Timing for One Byte

True Address

Vbb

t
DS

t
PW

t
SH

t
DH

t
PSH

t
BH

t
VDDH

t
VDDL

Symbol Parameter
MM5204 Spec ME5204

(±10%) Min Max

TVDD T VDDL/(T VDDH + T VDDL)= Vdd Duty cycle 25% 21%

TPW PROG Pulse Width 0.5 mSec 5 mSec 1.0 mSec

TDS Data and Address Setup to PROG ↓ 40 uSec 1.06 mSec

TDH Data and Address Hold from PROG ↑ 0 3 mSec

TSS Pulsed Vdd Setup to PROG ↓ 40 uSec 100 uSec 60 uSec

TSH Pulsed Vdd Hold from PROG ↑ 1 uSec 2.5 uSec

TBS Pulsed Vbb Setup to Vdd ↓ 1 uSec 500 uSec

TBH Pulsed Vbb Hold from Vdd ↑ 1 uSec 2.5 uSec

TPSS Powersaver Setup to Vdd ↓ 1 uSec >500 uS

TPSH Powersaver Hold from Vdd ↑ 1 uSec >500 uS

 ME5204 Programmer

21 October 2018 49 Martin Eberhard

7.9 Backwards EPROM Detection

Attempting to program an EPROM that is installed ba ckwards can damage the
ME5204. In particular, the fuse will blow, and one or two of the transistors
might be damaged. Prior to programming, the ME5204 firmware attempts to
detect an EPROM that is installed backwards, to try and avoid damage.

A backwards MM5204 reads as all bytes=FF. Reading a backwards MM5204 does not
harm the ME5204 (and does not seem to harm the EPRO M either). Note that
unprogrammed bytes in a MM5204 read as 00.

Prior to programming, the ME5204 will check for an EPROM that is completely
filled with FFs, and will abort with a backwards-EP ROM error message if this
is the case. This prevents damage to the ME5204 fro m trying to program a
backwards EPROM, as well as preventing damaging the EPROM.

 ME5204 Programmer

21 October 2018 50 Martin Eberhard

 ME5204 Programmer

21 October 2018 51 Martin Eberhard

Section 8. Downloading Firmware via the Serial Port

You can load new ME5204 firmware via the serial por t. Most likely, you will
load a firmware update that I have emailed to you. However, if you have the
programming skills and I am not providing some firm ware feature that you
need, then you can create your own firmware (probab ly by modifying mine), and
download that to your ME5204.

The ME5204 firmware is divided into two components: the ME Loader Kernel (the
Loader, which cannot be downloaded via the serial p ort) and the ME5204
Programming Firmware (the Programming Firmware). Th e primary function of the
Loader is to load new Programming Firmware via the serial port, eliminating
the need to use a PIC programming device, such as t he PICkit 3.

This section describes how to load new Programming Firmware. It also provides
some details about how it all works, so that you co uld modify the firmware -
assuming that you are versed in PIC assembly langua ge.

8.1 Firmware Download Instructions

Connect your ME5204 to the serial port of your comp uter (or a serial port
dongle on the USB port of your computer) and start a terminal program, such
as Hyperterm. Set up the terminal program this way: 9600 baud, 8 data bits,
no parity, XOFF/XON handshaking enabled .

To enter the Loader, type capital L a few times imm ediately after you turn on
the ME5204, or immediately after issuing a Reset co mmand. You will see the
Loader message, instead of the ME5204 sign-on banne r:

 ME Loader 1.0

When you see this message, the ME5204 is ready to r eceive a Programming
Firmware file in Intel Hex format. The Loader expec ts to see an Intel Hex
file exactly like that produced by Microchip’s MPAS M assembler.

The PIC microcontroller has insufficient RAM to loa d and validate the entire
Programming Firmware before writing it to FLASH. In stead, the Loader writes
to FLASH whenever it gets a complete 32-word ‘row’ of data (where a word is 2
bytes in the hex file). This means that a failed Pr ogramming Firmware load
will probably corrupt the Programming Firmware in F LASH memory. (However, the
Loader itself is hardware-protected against being o verwritten.)

Before you send the hex file, make sure your termin al program has XOFF/XON
handshaking enabled . Handshaking is required so that the Loader can pa use the
file transmission from time to time, to write the r eceived data into FLASH.
Otherwise, data will be lost, and the Programming F irmware will be corrupted.

Once your terminal program is set up correctly, sen d the hex file (typically,
me5204.hex) to the ME5204. It will take a few minut es to download, and you
should see the hex file as it downloads. If there a re any errors, they will
be flagged with a brief error message:

Message Meaning
 ?Csm Checksum error in Intel Hex record
 ?Hex Illegal (non-hex) character received
 (Only ‘0’-‘9’ and ‘A’-‘F’ are allowed)
 ?Ver Flash read-back verify error

When the firmware load is complete, the Loader will print the total number of
Intel Hex records loaded, as well as the number of errors detected. If the
error count is anything but 0000, the firmware load failed, and the loaded
firmware is most likely corrupted.

 ME5204 Programmer

21 October 2018 52 Martin Eberhard

If you got your new firmware file from me, then I w ill have included a
comment that tells you how many records should have been loaded. If the
reported number of loaded records does not match th e number that I provided,
then the firmware load was probably not successful, and the loaded firmware
is most likely corrupted.

If the load is successful, you can jump to the new Programming Firmware by
typing the ESC key several times. Or you can power- cycle the ME5204.

If the load fails for any reason, you can try again immediately after the
failed load, when Loader message is printed. Or, yo u can type capital L
immediately after powering on the ME5204 to invoke the Loader to try loading
again.

8.2 Intel Hex File Format for Firmware Downloads

This section specifies the format of Intel Hex file s that are accepted by the
Loader, as well as the error messages that are prin ted by the Loader. This
Intel hex format is exactly the format produced by Microchip’s MPASM
assembler. Note that this specification is slightly different than Intel Hex
files accepted by the Programming Firmware.

An Intel Hex record is defined as follows:

:NNAAaaTTDDDDDD..DDDDCC

• A colon marks the beginning of an Intel Hex record. All characters are
ignored until a colon has been received. This means that comment lines in
the Intel Hex file (that contain no colons) will be ignored. This also
means that any record where the initial colon has b een corrupted will be
ignored without being caught as an error .

• NN defines the number of Data bytes in the record.

• AAaa is the address field of the record. AA is the most significant
address byte; aa is the least significant address b yte.

• TT is the record type.

• DD is a data byte. Data bytes belong in memory at s equential addresses,
starting at AAaa. The record should have NN data by tes.

• CC is the checksum of the record. The low byte of t he sum of NN, AA, aa,
TT, all the DDs, and CC should be 00.

• A carriage return (CR), a line feed (LF), or both, is optional.

Three Intel Hex record types are accepted; all othe r records are ignored.

1) Type 00 records are data records. Data records are written to FLAS H only
if a Type 04 record has already been received, with extended address =
0000. If no Type 04 record has been received yet, o r if the last Type 04
record set the extended address to something other than 0000, then the
data record will be ignored. This means (for exampl e) that an Intel Hex
file cannot write to the Config registers of the PI C.

2) A Type 01 record (with 0 bytes of data) is an End-Of-File record, a nd is
required at the end of the file to force a write to FLASH of the last RAM
buffer full of data. NOTE: a data record (Type 00) with 0 bytes of data is
NOT treated as an End-of-file record.

3) Type 04 records set the extended address for the subsequent record s. The
"address" field of the Type 04 record (bytes 2 and 3) is ignored. The
first 2 bytes of the "data" field (bytes 5 and 6) s et the extended
address. MPASM sets the extended address to 0000 fo r FLASH data, and 0001
for the PIC Config registers.

 ME5204 Programmer

21 October 2018 53 Martin Eberhard

The PIC's FLASH memory is organized in 32-word ‘row s’, where a word is 14
bits wide. Microchip’s MPASM assembler splits each word into two sequential
bytes in the hex file, with the low 8 bits in the f irst byte and the high 6
bits in the second byte. This means that the addres s in each Intel Hex record
is the FLASH address times 2.

The Loader assumes that each Intel Hex record fits completely within one 32-
word (64-byte) FLASH row. However, one FLASH row ma y be (and probably will
be) made up of several hex records. (In other words , no record is allowed to
have data that is split between two 32-word FLASH r ows.) Hex files generated
by MPASM meet this requirement.

If the hex file has data for only part of a FLASH r ow, then only the data
supplied in the Hex file will be changed - the othe r bytes in that FLASH row
will remain unchanged, because the Loader first rea ds the old FLASH data from
each row into its RAM buffer, filling in the missin g data for that row.

After each row is written, the Loader verifies the write by reading it back
and comparing it to the row data in its RAM buffer.

The Loader checks the checksum for all records, inc luding ignored records.

The following conditions will generate an error mes sage, and increment error
count that is reported after the end of the file:

1) Checksum Error (The checksum of the record was incorrect.)

2) Bad Hex Error (something besides ‘0’-‘9’ or ‘A’-‘F’ when expecti ng hex)

3) Verify Error (FLASH read-back did not match the RAM buffer data)

The Loader actually writes to FLASH when a new hex record addresses FLASH
memory in a different FLASH row than the previous r ecord, or when a type 01
record is received. This means that FLASH write-ver ification occurs after the
address and record-type fields of the next hex data record have been
received, and before its data bytes are received. A nd this (in turn) means
that if a verify fails, then the verify error messa ge will be printed in the
middle of the next hex record, and will refer to th e previous record(s).

Erasing and writing one FLASH row takes significant ly longer than a character
time at 9600 baud, and the FLASH write cannot be in terrupted. For this
reason, your terminal program must respect XOFF/XON handshaking: the Loader
will issue an XOFF prior to programming a FLASH row , and then will wait for
your terminal program to respond to the XOFF, accep ting up to about 127 more
characters after sending the XOFF. When the Loader receives no characters for
3 mS (3 character times at 9600 baud) after sending an XOFF, it assumes that
your terminal program has paused transmission, and will program the FLASH
row. The Loader will send an XON when the FLASH row programming is complete.
The Loader will not receive any characters from its serial port while it is
busy programming FLASH - such characters will be lo st.

The hex file must end with a type 01 (End-Of-File) record. Receipt of a type
01 record causes the following actions:

1) The total number of records that were actually load ed into the FLASH is
printed. (Type 01 and type 04 records, as well as a ny type 00 records that
were not written to FLASH do not count.) This can b e checked manually, to
make sure no records were dropped, and the load was in fact successful.

2) The total number of errors detected is printed. Any thing other than 0000
means that the load was unsuccessful, and the loade d code should not be
trusted.

 ME5204 Programmer

21 October 2018 54 Martin Eberhard

3) Control returns to the Loader, reprinting the Loade r's brief sign-on
message. (To run the newly loaded code, hit the ESC key 3 times in a row)

8.3 The ME Loader Kernel

This section gives some details of the ME Loader Ke rnel, interesting only of
you intend to create or modify the Programming Firm ware.

If you are considering modifying the Programming Fi rmware, refer to Microchip
document number DS41452B, “PIC16(L)F1516/7/8/9 Data Sheet.” Also, get a copy
of Microchip’s MPLAB IDE, which includes their MPAS M assembler. (At the time
of this document, the data sheet and MPLAB IDE are available for free at
www.microchip.com.)

The ME Loader Kernel resides in PIC FLASH memory be low address 0x0200, an
area that is hardware-protected (via the PIC CONFIG registers) against writes
by firmware. The ME Loader Kernel executes first af ter reset, and transfers
control to the Programming Firmware only after givi ng the user an opportunity
to invoke the Loader (by typing some ‘L’s), instead of executing the
Programming Firmware. Thus, if a firmware load goes badly and the Programming
Firmware becomes corrupted, the Loader will still b e there, and will allow
you to re-load the Programming Firmware.

The Loader manages the UART transmit and receive in terrupts, and also the
transmit and receive queues, whose memory locations are given below. The best
way to access the queues is through the Loader’s ca ll vectors. However, you
can also directly access the queues by using their pointers, as follows.

The pointers are the low byte of the address of the next queue slot. The high
byte for these queue pointers are fixed, as defined below. The two UART
queues are circular. If incrementing a queue pointe r causes it to point
beyond the last queue address, then it should be re set to the first queue
address. Note that global interrupts should be mask ed while manipulating the
queue pointers.

For the transmit queue, new data should be entered where TQ_IPTR points,
before the the pointer is advanced. However, if TQ_ IPTR is equal to TQ_OPTR,
and the TQ_EMPTY bit is cleared, then the queue is full, and firmware should
wait for this state to end before enqueuing a chara cter. The TQ_EMPTY bit
should always be cleared upon enqueuing a character . Unless the XOFF_STATE
bit is set, the transmit interrupt should be enable d, once enqueuing is
completed. Note that global interrupts should be ma sked around this
manipulation.

For the receive queue, the next available character is where RQ_OPTR points,
and the pointer should be advanced after reading th e available character.
However, if RQ_OPTR is equal to RQ_IPTR and the RQ_ FULL bit is cleared, then
the receive queue is empty.

The receive interrupt code translates any CR-LF seq uence, any LF-CR sequence,
and any stand-alone LF, into a simple CR. The trans mit interrupt translates
every CR into a CR-LF sequence. These translations make the ME5204 agnostic
about how lines are terminated: CR-LF (e.g. CP/M, M S-DOS, Microsoft Windows),
LF-CR (e.g. Acorn BBC), plain LF (e.g. Unix, Mac OS -X, BeOS), or plain CR
(e.g. Apple][through Mac OS-9, TRS-80, and Commod ore) are all acceptable.

 ME5204 Programmer

21 October 2018 55 Martin Eberhard

The ME Loader Kernel provides several functions to the Programming Firmware,
accessed via fixed-location call-vectors. The Progr ammer Firmware can call
these functions, and they will return when complete d. The following table
defines all of the functions provided by the ME Loa der Kernel. The subsequent
Common Memory table defines the registers, R0 and R 1. All of the other
registers referenced in this table are defined in t he PIC Data Sheet.

Address Call Vector Function

0x0002 K_KERN_REV
Get Loader Kernel Revision Level
On Return: W bits [7:4] = major revision level
 W bits [3:0] = minor revision level

0x0003 K_PROG_ID
Get Programmer ID
On Return: W=00 for ME1702/A, W=01 for ME5204

0x0005 K_CONIN

Get one character from Receive Queue
On Return: New character is in W & R0, Z is cleared
 If Rx queue is empty: W = R0 = 00, Z is set
 Trashes FSR0

0x0006 K_CONOUT

Print one character (via Tx queue)
On Call: W = character to send
On Return: R0 = sent character, unlees it was CR
 If character was CR then R0 = LF
 Trashes W, FSR0, BSR

0x0007 K_PRINTF

Print null-terminated string (via Tx queue)
On Call: BSR must be set to 0x03
 String address = PMADRH, PMADRL
 String data b packed via MPASM ‘da’ direct ive
 String is terminated with 14-bit word = 0x 0000
On Return:
 Trashes W,R0,FSR0,BSR,PMDATL,PMDATH,PMADRL,PMADR H

0x0008 K_PRINTHEX1

Print binary value as 1 ASCII hex digit (via Tx queue)
On Call: W bits 3:0 = 4-bit binary value to send
 W bits 7:4 don’t matter
On Return: Trashes W, R0, FSR0, BSR

0x0009 K_PRINTHEX2
Print binary value as 2 ASCII hex digits (via Tx queue)
On Call: W = 8-bit binary value
On Return: Trashes W, R0, R1, FSR0, BSR

0x000A K_HEX2BIN

Convert ASCII hex value to binary, and combine resu lt
with previous nibble
On Call: R0 = ASCII hex value {“0”-“9” or “A”-“F” }
 R1 bits 3:0 = 4-bit previous binary valu e
 R1 bits 7:4 don’t matter
On Return: C set if R0 <> “0”-“9” or “A”-“F”
 R0 = new binary nibble (trash if C is se t)
 W = R1 = R1 << 4 + R0 (both trash if C s et)

0x000B K_STALL25M Stall for W * 25 mSec (Clears W, R0 & R1)
0x000C K_STALL250U Stall for W * 250 uSec (Clears W, R0)
0x000D K_STALL1U Stall for W + 1 uSec (Clears W)
0x0200 LOADED_CODE Execution address for Programming Firmware

 ME5204 Programmer

21 October 2018 56 Martin Eberhard

The PIC’s Common RAM locations are assigned as follows:

Address Name Function
0x70 R0 General purpose register
0x71 R1 General purpose register
0x72-0x7A available Available for use by Programming Firmware
0x7B RQ_IPTR Receive queue in-pointer (Note 1)
0x7C

RQ_OPTR

Receive queue out-pointer. This is the address low byte
of the next character available in the queue. The h igh
address byte is high(RX_QUEUE).

0x7D

TQ_IPTR

Transmit queue in-pointer This is the address low b yte
of the next empty slot in the queue. The high addre ss
byte is high(TX_QUEUE).

0x7E TQ_OPTR Transmit queue out-pointer (Note 1)

0x7F INT_FLAGS

Flags used by the Loader Kernel:
Bit Name Meaning when Set

0 XOFF_STATE
Transmitter is stopped due to received
XOFF (Note 1)

1 TQ_EMPTY The transmit queue is empty (Note 2)
2 PREV_CR The previous chr was CR (Note 1)
3 PREV_LF The previous chr was LF (Note 1)
4 RQ_FULL The receive queue is full (Note 2)

5-7 reserved For future use by the Loader

Notes:

1. This variable is reserved for use by the interrupt service routines, and
should not be written by the Programming Firmware

2. This bit is set by the interrupt service routine an d cleared by the
Programming Firmware.

The PIC’s Linear RAM is assigned as follows:

Address Name Function
0x2000 RAM_BUF Available for 512-byte EPROM image b uffer.
0x2200 RX_QUEUE UART receive circular queue (128 by tes)
0x2280 TX_QUEUE UART transmit circular queue (16 by tes)
0x2290-
0x23EF

Available Available for use by Programming Firmware

 ME5204 Programmer

21 October 2018 57 Martin Eberhard

Section 9. Drawings

9.1 Enclosure Templates

The following drawings should be photocopied, and t hen used as templates for
drilling and cutting the Enclosure’s plastic box. S ee Section 1.2 Enclosure
Fabrication .

 ME5204 Programmer

21 October 2018 58 Martin Eberhard

 ME5204 Programmer

21 October 2018 59 Martin Eberhard

 ME5204 Programmer

21 October 2018 60 Martin Eberhard

 ME5204 Programmer

21 October 2018 61 Martin Eberhard

9.2 Bill of Materials

The following two pages are the complete Bill of Ma terials for the ME5204.

The Digikey part numbers and prices are more or les s current at the time this
was written.

Note that a few components have alternate component s listed, with quantity 0.
You can substitute the alternate component with no significant effect.

If you choose to substitute any of the other compon ents, be sure that you
choose suitable substitutions:

• 1% resistors are used when they control output volt ages - so do not
substitute with lower-tolerance components.

• When substituting capacitors, be careful about oper ating voltages. The
ME5204 has higher voltages than typical digital cir cuits, and using a
capacitor that is not rated for a high enough volta ge will cause an
early failure.

• When substituting transistors, you need to look at Vce max, hfe, Ic
max, Vce at saturation, and pinout. Some of the tra nsistors (where I
used MPSA05 and MPSA56 transistors) need to tolerat e at least 60V Vce.
Most others must tolerate at least 40V Vce. Some (e .g. Q1) must pass
500 mA Ic with relatively low (less than 0.5V) volt age drop.

• If you replace the transformer with one that does n ot support both
120V and 240V inputs, then you should disable the a ppropriate circuit
on the Multifunction Inlet Subassembly.

ME5204 Bill of Materials

PCBA Components

NOTE: Components listed in assembly order

Qty Component Value locations Digikey Part Number

1 PC Board, rev A or B

3 Resistor, 1/4W, 324 1% 324 1% R29,R30,R48 324XBK-ND

1 Resistor, 1/4W, 976 1% 976 1% R27 976XBK-ND

2 Resistor, 1/4W, 2.1K 1% 2.1K 1% R22,R26 RNF14FTD2K10CT-ND

1 Resistor, 1/4W, 2.8K 1% 2.8K 1% R47 2.80KXBK-ND

1 Resistor, 1/4W, 3.09K 1% 3.09K 1% R23 RNF14FTD3K09CT-ND

3 Resistor, 1/4W, 10K 1% 10K 1% R64,R83,R85 10.0KXBK-ND

2 Resistor, 1/4W, 49.9K 1% 49.9K 1% R82,R84 49.9KXBK-ND

1 Resistor, 1/4W, 78.7K 1% 78.7K 1% R63 78.7KXBK-ND

8 Resistor, 1/4W, 100, 5% 100 R5,R7,R9,R11,R13,R15,R17,R19 S100QCT-ND

2 Resistor, 1/4W, 330, 5% 330 R60,R70 CF14JT330RCT-ND

1 Resistor, 1/4W, 910, 5% 910 R25 CF14JT910RCT-ND

5 Resistor, 1/4W, 1K, 5% 1K R43,R50,R59, R66,R78 CF14JT1K00CT-ND

1 Resistor, 1/4W, 5.6K, 5% 5.6K R24 CF14JT5K60CT-ND

5 Resistor, 1/4W, 12K, 5% 12K
R1,R41,R44,R49, R99 [R99 is rework on

Rev A PCB]
12KQBK-ND

9 Resistor, 1/4W, 47K, 5% 47K R51-R58, R101 47KQBK-ND

56 Resistor, 1/4W, 3K, 5% 3K

R2,R3,R4,R6,R8,R10,R12,R14,R16,R18,

R20,R21,R28,R31-R40,R42,R45,R46,

R61,R62,R65,R67-R69, R71-R77,R79-

R81,R86-R98, R100 [R100 is rework on

Rev A PCB]

3.0KQBK-ND

1 Zener Diode, 12V, 1W, 1N4742A 1N4742A Z1 (rework on Rev A PCB) 1727-1946-1-ND

3 Diode, 1N4148 1N4148 D1-D3 1N4148TACT-ND

4 Diode, 1N4004 1N4004 D4-D7 1N4004-TPMSCT-ND

1 Socket, 16-pin, low profile 16-pin DIP U3 ED3046-5-ND

1 Socket, 40-pin, low profile 40-pin DIP U2 A120355-ND

1 Capacitor, ceramic, 1000 pF, 100V .001 uF C17 (rework on Rev A PCB) BC5112-ND

6 Capacitor, chip, 100V 0.1 uF C1,C2,C4,C5,C15,C16 478-4855-ND

8 Capacitor, chip, 25V 1 uF C3,C6-C11,C14 445-173583-1-ND

1 Regulator, Adjustable Pos., TO-220 LM317 V2 LM317MTGOS-ND

1 Regulator, Adjustable Neg., TO-220 LM337 V3 296-21577-5-ND

1 Regulator, Adjustable Pos., TO-92 LM317L V1 LM317LZXTR-ND

2 Transistor, PNP, MPSA56 MPSA56 Q23 Q19 MPSA56-APMSCT-ND

3 Transistor, PNP, 2N3906 2N3906 Q1,Q8,Q20 2N3906-APCT-ND

4 Transistor, NPN, MPSA05 MPSA05 Q2,Q6,Q9,Q22 MPSA05-APMSCT-ND

30 Transistor, NPN, 2N3904 2N3904 Q3-Q5,Q7,Q10-Q18,Q21,Q24-Q39 2N3904-APCT-ND

1 Trimpot 1K 1K VR2 262UR102B-ND

1 Trimpot 250 250 VR1 201UR251B-ND

4 Fuse Clip Fuse Clip FS1 & FS2 (both ends) F4186-ND

0 Fuse Clip Fuse Clip (Alternate Part for FS1 & FS2) BK-6005-ND

2 Capacitor,Electrolytic, 470 63V 470 uF 63V C7,C8 493-1127-ND

3 Screw, 6-32, 5/16", Pan Head V2-V4 H115-ND

3 Nut, 6-32 V2-V4 H220-ND

1 Heatsink, TO-220, vertical Heatsink V4 HS368-ND

1 LM7805 LM7805 V4 MC7805CT-BPMS-ND

1 Header, 6-pin, 0.1" Hdr 6-0.1 J2 A31116-ND

1 Header, 6-pin, 0.156" Hdr 6-0.156 J1 WM4624-ND

2 Test Pin Hdr 1 GND 609-3466-ND

1 Socket, 24-pin ZIF ZIF 24 U1 {REVERSE MOUNT} 3M2402-ND

3 Spacer, T1-3/4 LED, 0.12" LED spacer LED1-LED3 8311K-ND

1 LED, Red LED Red LED3 {REVERSE MOUNT} 160-1127-ND

1 LED, Green LED Green LED2 {REVERSE MOUNT} 160-1130-ND

1 LED, Blue LED Blue LED1 {REVERSE MOUNT} C503B-BCS-CV0Z0461-ND

1 Tranceiver, RS232, DIP16 MAX232 U3 296-1402-5-ND

1 Microprocessor, PIC16F1519, DIP40 PIC16F1519 U2 PIC16F1519-I/P-ND

1 Fuse, 1-1/4", 3/4A, fast 3/4A fuse FS1 283-2631-ND

Chassis Components

Qty Part Manufacturer Mfg part no. Supplier Part no.

1 0.25A 56V center-tapped Transformer, 120V/240V input Hammond 186C56 HM4690-ND

1 slope-top cabinet Hammond 1595EB HM244-ND

1 Multifunction inlet Qualtek 763-00/001 Q306-ND

1 Connector housing, 6-position .156 AMP 09-50-3061 WM2104-ND

6 Connector Contact AMP 08-52-0072 WM2302-ND

1 Connector, 9-position, female, D-sub Amphenol DE09S064TLF 609-1525-ND

1 Ring Terminal, #6, star TE Connectivity F1759-ND A29900CT-ND

1 Fuse, 1-1/4", 3/4A, fast 283-2631-ND

2 Screw, 6-32, 5/16", Pan Head H115-ND

2 Flat washer, #6 H778-ND

2 Lock Washer, #6 H240-ND

2 Nut, 6-32 H220-ND

2 Screw, 4-40, 3/8", flat head 501-1531-ND

2 Screw, 40-40, 3/8", pan head 36-9901-ND

4 Nut, 4-40 H216-ND

4 3/8" self-tapping 4-40 screws, pan head

4 Flat washer, #4 5205820-3-ND

4 0.3" high adhesive rubber foot 3M SJ-5523 SJ5523-0-ND

1 IEC Line Cord 993-1039-ND

Various Hookup Wire

 ME5204 Programmer

21 October 2018 63 Martin Eberhard

9.3 Chassis Wiring Diagram

The following page is the schematic for the ME5204 chassis.

A

A

B

B

C

C

D

D

1 1

2 2

3 3

4 4

5 5

Chassis Wiring

1 of 1

Ring Terminal

Green

White

Black

Black

Black

White

Multifunction Inlet

56VAC

56VCT

56VAC

Orange

Brown
Yellow

Yellow

Black

GND

TxD

RxD

DA-9

ME5204 EPROM Programmer

15 January 2013Date:

Title:

Drawn by:Revision:

Sheet:

M.Eberhard

Description:

1

3

5

7

8

2

4

T2

24V

N

G

L

A

B

1B

2A

1A

2B

1

2

3

4

J1

1

2

3

4

5

6

J2

1
6
2
7
3
8
4
9
5

J3

 ME5204 Programmer

21 October 2018 65 Martin Eberhard

9.4 PCBA Component Placement

The following drawings the Rev A and Rev B printed circuit board outlines and
silkscreen layers. This can help you find component s on the printed circuit
board assemblies.

 ME5204 Programmer

21 October 2018 66 Martin Eberhard

 ME5204 Programmer

21 October 2018 67 Martin Eberhard

9.5 PCBA Schematics

The following three pages are the schematics for th e ME5204 Programmer’s
printed circuit board assembly.

M
a
r
t
i
n

E
b
e
r
h
a
r
d

M
a
r
t
i
n

E
b
e
r
h
a
r
d

M
a
r
t
i
n

E
b
e
r
h
a
r
d

 ME5204 Programmer

21 October 2018 71 Martin Eberhard

9.6 MM5204 EPROM Specification

The following pages are National Semiconductor’s MM M5204 MOS EPROM
specification.

