

ABSOLUTE MAXIMUM RATINGS

Rating	Value	Unit
Temperature Under Bias	- 10 to + 80	°C
Operating Temperature Range	0 to + 70	°C
Storage Temperature	-65 to +125	°C
All Input or Output Voltages with Respect to VSS	+6 to -0.3	Vdc
Vpp Supply Voltage with Respect to VSS	+ 28 to - 0.3	Vdc

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERAT-ING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

MODE SELECTION

	Pin Number							
Mode	9-11, 13-17 DQ	12 VSS	18 E/Progr	20 G*	21 Vpp	24 VCC		
Read	Data Out	Vss	VIL	VIL	Vcc*	Vcc		
Output Disable	High Z	Vss	Don't Care	⊻ін	Vcc*	Vcc		
Standby	High Z	VSS	VIH	Don't Care	Vcc*	Vcc		
Program	Data In	VSS	Pulsed VIL to VIH	VIH	VIHP	Vcc .		
Program Verify	Data Out	Vss	VIL	VIL	VIHP	Vcc		
Program Inhibit	High Z	VSS	VIL	VIH	VIHP	Vcc		

*In the Read Mode if Vpp≥VIH, then G (active low) Vpp≤VIL, then G (active high)

BLOCK DIAGRAM

,

CAPACITANCE (f = 1.0 MHz, T_A = 25°C, periodically sampled rather than 100% tested)

Characteristic	Symbol	Тур	Max	Unit
Input Capacitance (V _{in} =0 V)	Cin	4.0	6.0	pF
Output Capacitance (Vout = 0 V)	Cout	8.0	12	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = \frac{i\Delta_t}{i}$

ΔV

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

RECOMMENDED DC OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage* MCM27L16/MCM2716 MCM27L16-35/MCM27L16-25/MCM2716-35/MCM2716-25	Vcc	4.75 4.5	5.0 5.0	5.25 5.5	Vdc
	VPP	VCC-0.6	5.0	VCC+0.6	· ·
Input High Voltage	⊻н	2.0	-	Vcc+1.0	Vdc
Input Low Voltage	VIL	-0.1	-	0.8	Vdc

RECOMMENDED DC OPERATING CHARACTERISTICS

Chamatariatia	Condition	Condition Symbol		ICM27	16	M	CM271	L16	Links
Characteristic	Condition			Тур	Max	Min	Тур	Max	Onite
Address, G and E/Progr Input Sink Current	V _{in} = 5.25 V	lin	-	-	10	-	-	10	μA
Output Leakage Current	$V_{out} = 5.25 V$ $\overline{G} = 5.0 V$	^I LO	-	-	10	-	-	10	۸щ
V _{CC} Supply Current (Standby) 2716/2716-35	\vec{E} /Progr = V _{IH} \vec{G} = V _{IL}	ICC1	-	-	25	-	-	10	mA
V _{CC} Supply Current (Standby) 2716-25	Ē/Progr = VIH G/VIL	ICC1	-	-	25	-	-	15	mA
V _{CC} Supply Current (Active) 2716/2716-35 (Outputs Op	$\overline{G} = \overline{E}/Progr = V_{IL}$	ICC2	-	-	100	-	-	50	mA
V _{CC} Supply Current (Active) 2716-25 (Outputs Op	$\overline{G} = \overline{E}/Progr = V_{IL}$	ICC2	-	-	120	-	-	70	mA
Vpp Supply Current*	Vpp = 5.85 V	IPP1	-	-	5.0	-	-	5.0	mA
Output Low Voltage	IOL = 2.1 mA	VOL	-	-	0.45	-	-	0.45	V
Output High Voltage	IOH = -400 µA	VOH	2.4	-	-	2.4	-	-	V

*V_{CC} must be applied simultaneously or prior to Vpp. V_{CC} must also be switched off simultaneously with or after Vpp. With Vpp connected directly to V_{CC} during the read operation, the supply current would then be the sum of Ipp1 and I_{CC}. The additional 0.6 V tolerance on Vpp makes it possible to use a driver circuit for switching the Vpp supply pin from V_{CC} in Read mode to ± 25 V for programming. Typical values are for T_A = 25°C and nominal supply voltages.

AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted)

Input Pulse Levels	
Input Rise and Fall Times	

Characterizia	Condition	Sumbal	MCM2	716-25	MCM	2716-36	MCN	12716	Links
Characteristic	Condition	Зутью	Min	Max	Min	Max	Min	Max	Units
Address Valid to Output Valid	\overline{E} /Progr = G = V _{IL}	tAVQV	-	250	-	350	-	450	
E/Progr to Output Valid	(Note 2)	^t ELQV	-	250	-	350	-	450	
Output Enable to Output Valid	E/Progr = VIL	tGLQV	-	150	-	150	-	150	
E/Progr to Hi-Z Output	-	^t EHQZ	0	100	0	100	0	100	113
Output Disable to Hi-Z Output	$\overline{E}/Progr = V_{IL}$	tGHQZ	0	100	0	100	0	100	
Data Hold from Address	$\vec{E}/Progr = G = V_{ L }$	tAXDX	0	-	0	1	0	-	

READ MODE TIMING DIAGRAMS (E/Progr = VIL)

STANDBY MODE (Output Enable = VIL)

NOTE 2: tELOV is referenced to E/Progr or stable address, whichever occurs last.

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS

 $(T_A = 25^{\circ}C \pm 5^{\circ}C)$

RECOMMENDED PROGRAMMING OPERATING CONDITIONS

Parameter	Symbol	Min	Nom	Max	Unit
Supply Voltage	VCC VPP	4.75 24	5.0 25	5.25 26	Vdc
Input High Voltage for Data	VIH	2.2	-	Vcc + 1	Vdc
Input Low Voltage for Data	VIL	-0.1	-	0.8	Vdc
PROGRAMMING OPERATION DC CHARACTERISTICS					

Characteristic	Condition	Symbol	Min	Тур	Max	Unit
Address, G and E/Progr Input Sink Current	V _{in} = 5.25 V/0.45 V	10	-	- •	10	µAdc
Vpp Supply Current (Vpp = 25 V ± 1 V)	E/Progr = VIL	IPP1		-	10	mAdc
Vpp Programming Pulse Supply Current (Vpp=25 V±1 V)	E/Progr = VIH	IPP2	-	-	30	mAdc
VCC Supply Current (Outputs Open)		1cc	-	-	160	mAdc

AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Address Setup Time	TAVEH	2.0	-	μS
Output Enable High to Program Pulse	^t GHEH	2.0	-	μS
Data Setup Time	TDVEH	2.0	-	μS
Address Hold Time	TELAX	2.0	-	μS
Output Enable Hold Time	^t ELGL	2.0	-	μs
Data Hold Time	^t ELQZ	2.0		μs
Vpp Setup Time	TPHEH	0	-	ns
Vpp to Enable Low Time	TELPL	0	-	ns
Output Disable to High Z Output	tGHQZ	. 0	150	ns
Output Enable to Valid Data (E/Progr = VIL)	IGLOV	-	150	ns
Program Pulse Width	TEHEL	1•	55	ms
Program Pulse Rise Time	^t PR	5	-	ns
Program Pulse Fall Time	tPF	5	-	ns

••If shorter than 45 ms (min) pulses are used, the same number of pulses should be applied after the specific data has been verified.

PROGRAMMING OPERATION TIMING DIAGRAM

PROGRAMMING INSTRUCTIONS

After the completion of an ERASE operation, every bit in the device is in the "1" state (represented by Output High). Data are entered by programming zeros (Output Low) into the required bits. The words are addressed the same way as in the READ operation. A programmed "0" can only be changed to a "1" by ultraviolet light erasure.

To set the memory up for Program Mode, the Vpp input (Pin 21) should be raised to +25 V. The V_{CC} supply voltage is the same as for the Read operation and G is at V_{IH}. Programming data is entered in 8-bit words through the data out (DQ) terminals. Only "0"s" will be programmed when "0"s" and "1"s" are entered in the 8-bit data word.

After address and data setup, a program pulse (V_{IL} to V_{IH}) is applied to the \overline{E} /Progr input. A program pulse is applied to each address location to be programmed. To minimize programming time, a 2 ms pulse width is recommended. The maximum program pulse width is 55 ms; therefore, programming must not be attempted with a dc signal applied to the \overline{E} /Progr input.

Multiple MCM2716s may be programmed in parallel by connecting together like inputs and applying the program pulse to the E/Progr inputs. Different data may be programmed into multiple MCM2716s connected in parallel by using the PROGRAM INHIBIT mode. Except for the E/Progr pin, all like inputs (including Output Enable) may be common. The PROGRAM VERIFY mode with Vpp at 25 V is used to determine that all programmed bits were correctly programmed.

READ OPERATION

After access time, data is valid at the outputs in the READ mode. With stable system addresses, effectively faster access time can be obtained by gating the data onto the bus with Output Enable.

The Standby mode is available to reduce active power dissipation. The outputs are in the high impedance state when the $\overline{E}/Progr$ input pin is high (V_{IH}) independent of the Output Enable input.

ERASING INSTRUCTIONS

The MCM2716/27L16 can be erased by exposure to high intensity shortwave ultraviolet light, with a wavelength of 2537 angstroms. The recommended integrated dose (i.e., UV-intensity X exposure time) is 15 Ws/cm². As an example, using the "Model 30-000" UV-Eraser (Turner Designs, Mountain View, CA 94043) the ERASE-time is 36 minutes. The lamps should be used without shortwave filters and the MCM2716/MCM27L16 should be positioned about one inch away from the UV-tubes.

TIMING PARAMETER ABBREVIATIONS

signal name from which interval is defined transition direction for first signal signal name to which interval is defined transition direction for second signal

The transition definitions used in this data sheet are:

- H = transition to high
- L = transition to low
- V = transition to valid
- X = transition to invalid or don't care
- Z = transition to off (high impedance)

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

	WAVEFORMS	
Waveform Symbol	Input	Output
	Must Be Valid	Will Be Valid
_////	Change From H to L	Will Change From H to L
	Change From L to H	Will Change From L to H
	Don't Care: Any Change Permitted	Changing: State Unknown
		High Impedance

t X X X X