
 i

ME27000
Martin Eberhard’s Orphan EPROM Programmer II

User’s Manual

 ME27000 Programmer

18 March 2024 ii Martin Eberhard

 ME27000 Programmer

18 March 2024 iii Martin Eberhard

ME27000
Martin Eberhard’s Orphan EPROM Programmer II

Rev C PC Boards, Rev 1.02 Firmware

The ME27000 is a “universal” programmer, designed t o program 24-pin and 28-pin
EPROMs up to 64K-byte (512K-bit) EPROMs. Aside from the “standard” EPROMs (2708,
2716, 2732, 2764, 27128, 27256, 27512) the ME27000 is designed to program many of
the "orphan" NMOS and CMOS EPROMs and EEPROMs - tho se with non-standard voltages,
peculiar pinouts, proprietary programming algorithm s, etc., especially those
EPROMs that cannot be programmed by most other "uni versal" EPROM programmers. In
particular, the ME27000 supports single-voltage and 3-voltage variants of the 2708
and 2716, all variants of the 2732, programming vol tages from 12V through 26V,
most 8K-byte EPROMs in 24-pin packages, and “Skinny DIP” packages as well as
standard-width packages. It has provisions for an e xternal negative programming
voltage supply, to support EPROMs such as the Inter sil IM6654, which needs Vpp=-
40V.

The ME27000 supports many 28XXX-type EEPROMs (with or without software locking),
as well as several of the 29XXX-type Flash EPROMs.

The list of supported EPROMs in Appendix A only inc ludes EPROMs for which
datasheets were found, so that programming compatib ility could be verified. Most
of these EPROMs (including the Soviet and East Germ an variants) have been tested
on the ME27000.

The ME27000 can program with the slow-and-standard methods, as well as pretty much
any of the Smart/Quick/Fast/Express algorithms spec ified by the various EPROM
manufacturers. For the supported EPROMs, the algori thms provided are faithful
implementations of the algorithms specified by thei r manufacturers.

The ME27000 requires no special host-side software. It is completely self-
contained and menu-driven, requiring only a termina l program (e.g. Hyperterm or
Teraterm) that can send and receive ASCII files, an d a 9600-baud RS232 serial
port. It will accept and produce EPROM image files in either Intel Hex format or
Motorola S-Record format.

A unique feature of the ME27000 is the Custom EPROM Editor, which lets you define
and save (in onboard EEPROM) up to five custom EPRO M specifications. You can
specify the functions for many of the pins, the pro gramming voltage, special
voltage requirements for Vcc during programming, cu stom programming algorithm,
etc. If your EPROM is not supported, and it has its data pins and address pins A0
through A9 in the standard locations, then you prob ably can create a custom EPROM
spec to program it with the ME27000.

The ME27000 firmware can be updated via its serial port. If a future firmware
release supports an EPROM that you need to program, or fixes a bug that’s been
bugging you, you can easily update the firmware in your ME27000.

The ME27000 can attempt to read the EPROM’s ID byte s. If the EPROM supports this
feature and the particular EPROM is supported by th e ME27000, the the ME27000 will
set itself up automatically for the EPROM. If the E PROM does not support the ID
feature, then it is a good idea not to use the ID c ommand.

The ME27000’s uses a universal 12V AC adapter that is rated for line input from
100V to 240V, 50Hz or 60 Hz, so it should work anyw here in the world. The menus
and this manual, however, are only in English.

-Martin Eberhard
13 February 2024

 ME27000 Programmer

18 March 2024 iv Martin Eberhard

ME27000 Revision History

PCB Firmware Manual Date Change Notes

A 1.00 Prelim 17 JUL 2022 First complete version

B 1.00 B-00 19 FEB 2023 Rev B boards, new commands, etc.

C 1.00 C-00 06 APR 2023 Rev C boards, etc.

C 1.00 C-01 09 APR 2023
Some typos fixed. Substitute KSC2690 for
Intersil Option

C 1.00 C-02 13 APR 2023

Various typos fixed. Fix Cypress 27C256 & 27C128
ID’s. (Note: CY27C128 does not program
properly.) Specify different 2.2K 1/2W resistor
with correct body size.

C 1.01 C-03 14 APR 2023
Add resistor network to BOM & assembly
instructions

C 1.01 C-04 14 APR 2023 Correct 2N3906 placement

C 1.01 C-05 14 APR 2023 Fix RP1 installation in ass embly instructions

C 1.01 C-06 18 APR 2023
Fix diodes in BOM and assembly instructions.
(Thanks, Gary!)

C 1.01 C-07 20 APR 2023 Correct resistor pack part number

C 1.01 C-08 23 APR 2023

Change C5 & C6 from 10 uF to 47 uF. (This makes
the MAX660 work better with EPROMs that draw
more current from their -5V pin. This is not an
issue with the ADM660, but the higher
capacitance does not hurt either.)

C 1.01 C-09 24 APR 2023
Fix typos in the manual. (No circuit or
functional changes.)

C 1.01 C-10 3 MAY 2023
C5, C6 back to 10 uF. Jumper pin 1 to pin 8 of
MAX660 (but not ADM660)

C 1.01 C-11 8 MAY 2023
Adjust R7, R9, R11 for better Vpp adjustment
range

C 1.01 C-12 10 MAY 2023
Fix typo on page 43. Specify Digikey part number
for C3.

C 1.01 C-13 13 FEB 2024 Better component for C3: 0. 2” lead spacing, 50V

C&D 1.02 D-01 15 MAR 2024
Support Rev D PCBA. Correction for Intersil
EPROMs (Delete C31)

C&D 1.02 D-02 18 MAR 2024 Fix typo in assembly step 8

 ME27000 Programmer

18 March 2024 v Martin Eberhard

Contents

Section 1. Getting Started......................... 1

Section 2. ME27000 Programmer Usage................ 3

2.1 Worldwide Operation 3

2.2 Serial Port Connector Pinout 3

2.3 USB Port 3

2.4 LEDs 3

2.5 Manual Voltage Adjustment 4

2.6 Intersil Option 4

2.7 Power Supply Voltage Checking 5

2.8 Programming an EPROM from a File 5

2.9 Reading an EPROM into a File 6

2.10 Copying an EPROM 6

2.11 File Address Offset 6

2.12 Buffer Address Offset 7

2.13 Data Invert 9

Section 3. ME27000 Commands........................ 10

3.1 EPROM Commands 10

3.2 File Transfer Commands 12

3.3 Buffer Commands 14

3.4 Miscellaneous Commands 15

3.5 Diagnostic Commands 15

Section 4. Custom EPROM Editor..................... 18

4.1 CEE General Commands 18

4.2 CEE Pin Assignment Commands 19

4.3 CEE Programming Parameter Commands 21

Section 5. Algorithms.............................. 24

5.1 Simple Programming Algorithm 25

5.2 Smart Programming Algorithms 26

5.3 EEPROM Software Lock and Unlock Algorithms 28

5.4 Device ID Algorithm 29

Section 6. ME27000 Theory of Operation............. 31

6.1 Architecture 31

6.2 Microcontroller 31

6.3 Logic Supplies 31

6.4 +6.35V Supply 31

6.5 Negative 5V Supply 32

6.6 Microcontroller-Controlled High-Voltage Supply 32

6.7 EPROM Digital Pin Interface 32

 ME27000 Programmer

18 March 2024 vi Martin Eberhard

Section 7. Downloading Firmware via the Serial Port 33

7.1 Firmware Download Instructions 33

7.2 Intel Hex File Format for Firmware Downloads 34

Section 8. ME27000 Programmer Assembly............. 35

8.1 Printed Circuit Board Assembly 36

Section 9. Checkout and Adjustment................. 41

9.1 Basic PCBA Checkout 41

9.2 Microcontroller Bring-Up 43

9.3 Microcontroller-Assisted Checkout and Adjustmen t 44

Section 10. Functional Testing..................... 51

10.1 Basic Buffer Operations and File Transfer 51

10.2 EPROM Reading and Programming 55

Section 11. Printed Circuit Board.................. 59

11.1 Bill of Materials 59

11.2 Component Placement 61

11.3 PCBA Schematic 62

Appendix A. Supported Devices...................... 67

Supported Devices Sorted by Device Type 67

Supported Devices Sorted by Manufacturer 72

Device Manufacturer Codes 75

Device Codes 76

 ME27000 Programmer

18 March 2024 1 Martin Eberhard

Section 1. Getting Started

This section is a quick overview of basic ME27000 o peration. Follow these
steps to load a hex file into the ME27000’s buffer, and then program the
buffer contents into an EPROM.

1. Set up your computer’s terminal program (and RS-232 port if you are
connecting that way) for 9600 baud, no handshaking.

2. Connect the ME27000 to your computer’s USB port, or its RS232 port with
a straight-through 9-pin male to 9-pin female cable , plug it in, and
turn it on. You should see the startup message in y our terminal
program’s window:

=====================================
* ME27000 *
=====================================
* Orphan EPROM Programmer II *
* By Martin Eberhard *
* Firmware Version 1.00 *
=====================================

Serial Number: C001
Current Device Type is 00: 2704
EPROM data invert off
Type ? for command list
>

(The ”Current Device Type” is saved when the ME2700 0 is turned off.)

3. Type “EL” for a list of supported EPROM Device Type s. Find your EPROM
Device Type, and note its index number (the 2-digit number from the EL
list). Use the “ET” command to select that EPROM De vice Type, for
example,

>ET 1D
Current Device Type is 1D: TMS2532
>

If you are unsure if this is the correct type of EP ROM, use the “ETD”
command to see the EPROM pinout, as well as a list of the manufacturer
part numbers supported by this EPROM Device Type. F or example:

>ETD
Type 1D: TMS2532, size: 4096 x 8
 -----v-----
 -| x x |-
 -| x x |-
 -----v-----
 A7 -| 1 24 |- Vcc Programming Vcc = 5V
 A6 -| 2 23 |- A8
 A5 -| 3 22 |- A9
 A4 -| 4 21 |- Vpp 25.2V
 A3 -| 5 20 |- -CE/-PGM
 A2 -| 6 19 |- A10
 A1 -| 7 18 |- A11
 A0 -| 8 17 |- D7 Supported Devices:
 D0 -| 9 16 |- D6 Hitachi HM62532
 D1 -| 10 15 |- D5 SGS M2532
 D2 -| 11 14 |- D4 TI TMS2532
GND -| 12 13 |- D3

Vpp during read: 5.0V
Programming pulse on PGM pin

 ME27000 Programmer

18 March 2024 2 Martin Eberhard

Programming pulse width: 50 mS
Programming algorithm:
 Pass 1: write each byte once
 Maximum P=1
>

4. Send an Intel hex file of the EPROM image from your terminal program to the
ME27000. The ME27000 will echo the data as it is se nt. Any errors will be
flagged at the end of the line with a question mark followed by a 3-letter
error code (e.g. “?Csm” for a checksum error). When the file finishes loading,
the ME27000 will give a count of the errors, as wel l as a count of the records
that were successfully loaded into the buffer. If t he error count is not 0,
then check your serial port connection and setup, a nd try again.

5. Insert a blank EPROM of the selected type into the ZIF socket. If it is a 24-
pin EPROM, then position it toward the bottom of th e socket, farthest from the
ZIF socket’s handle.

6. Program the EPROM with the “EP” command.

>EP
Check the Device Type, and that the EPROM is insert ed with its pin 1
in the ZIF socket's pin 3.
Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

The “-“ following the word “Programming” will spin like a propeller while the
EPROM is being programmed. Depending on the EPROM D evice Type, this may take
several minutes.

Once the programming completes, the ME27000 will ve rify the programming by
comparing the EPROM contents to the buffer contents .

7. When the prompt returns and the Busy LED turns off, remove the
programmed EPROM from the ZIF socket.

That’s all there is to it! Once you get to know the rest of the ME27000
commands, you will be able to read an EPROM and upl oad its contents as a hex
file, edit the EPROM data and write it back to anot her EPROM, and a whole lot
more.

 ME27000 Programmer

18 March 2024 3 Martin Eberhard

Section 2. ME27000 Programmer Usage

The previous section walked you through the most ba sic ME27000 Programmer
operation. Here are some specifications, and the pr ocedures for some more
common EPROM operations.

2.1 Worldwide Operation

The ME27000’s AC adaptor is a world-wide adapter, s uited for 50 Hz or 60 Hz,
90VAC to 260V. The adapter’s output is regulated 12 VDC, 1.5A minimum.

2.2 Serial Port Connector Pinout

The DA-9 connector is a compatible with standard PC serial port.

Female DA-9 Pin Signal

2 Data Out (out of the ME27000)

3 Data In (in to the ME27000)

5 Ground

For a normal PC connection, you will need a standar d straight-through male
DA-9 to female DA-9 cable like this. (Other pins do n’t matter.)

Male DA-9 Pin Signal Female DA-9 Pin

2 Data Out (out of the ME27000) 2

3 Data In (in to the ME27000) 3

5 Ground 5

2.3 USB Port

The ME27000 has a USB Type B connector that can be used instead of the RS-232
connector. This USB port presents itself as a 9600 baud COM port to a PC.
Once the USB link is established, the ME27000 behav es exactly the same as
when connected via RS-232.

Most versions of Windows already have a driver that supports this USB port.
If not, you will need a USB driver that is for the Microchip MCP2221A (which
is the USB chip on the ME27000).

The USB port takes precendence over the RS-232 port - if both are connected
to a computer, only the USB port will be active.

The blue USB LED will light when the USB port is co nnected to a USB host and
has been enumerated on the USB interface.

2.4 LEDs

Four LEDs tell you the most basic state of the prog rammer.

• The white ‘POWER’ LED indicates that the AC adapter is energized and the
power switch is on.

• The amber LED indicates that the ME27000 is ‘BUSY’. When lit, the EPROM
socket is energized, and an EPROM should not be rem oved or inserted.

• The red “ERROR” LED is let whenever an error (such as a programming error)
has been detected for the most recent command. Typi ng anything on the
keyboard clears this error state.

• The blue ‘USB” LED is lit whenever the ME27000 has successfully connected
to a USB host.

 ME27000 Programmer

18 March 2024 4 Martin Eberhard

2.5 Manual Voltage Adjustment

The five voltage adjustments on the ME27000 are nor mally adjusted to
“nominal” voltages, which allow programming of most EPROMs without further
adjustment. Four of these adjustments (VR1 through VR4) adjust four Vpp
settings, while the fifth adjusts a high Vcc settin g that is used to program
some EPROMs.

The nominal Vpp settings are adjusted using the AVP P command, while measuring
the voltage at TP6 (with the meter grounded on TP 1). Type “AVPP 1”, and then
adjust VR1 until TP6 measures 12.8V. Then do the sa me for the other three
adjustments.

AVPP Adjustment Nominal TP6 Voltage

0 - About 11.5V

1 VR1 12.80V ± 0.05V

2 VR2 13.20V ± 0.05V

3 VR3 21.10V ± 0.05V

4 VR4 25.20V ± 0.05V

Adjust the programming Vcc by measuring the voltage at TP7 and adjusting VR5.
The nominal voltage for this adjustment is 6.25V ± 0.03V.

A few of the more obscure EPROMs supported by the M E27000 require you to
adjust the programming Vcc manually. If your select ed EPROM Device Type
requires this Vcc adjustment, then a message will p rompt you to make the
adjustment. (When you later select an EPROM that pr ograms with nominal
voltages, you will also be prompted to readjust the programming Vcc supply.)

2.6 Intersil Option

The Intersil IM6654 and IM6658 (and perhaps some ot her EPROMs) require a
negative Vpp programming voltage, rather than the p ositive voltages required
by practically every other NMOS EPROM. The ME27000 can program EPROMs that
require a negative Vpp with the installation of the Intersil Option
components, and the attachment of an external, regu lated negative power
supply (-41 volts for the Intersil IM6654, -31V for the IM6658).

The Intersil Option requires installation of the fo llowing components, not
normally installed in the ME27000. (The inclusion o f these components will
not affect programming other EPROM Device Types.)

√√√√ Qty Location Value Digikey Part Number

 1 R65 6.8 1/4W Resistor S6.8HCT-ND

 1 R63 330 ohm 1/4W Resistor 330QBK-ND

 1 R64 1K ohm 1/4W Resistor CF14JT1K00CT-ND

 2 D20,D21 1N4004 Diode 1N4004-TPMSCT-ND

 1 C31 NO COMPONENT --NO--

 1 C32 33 µF 50V Electrolytic Capacitor P5180-ND

 1 Q23 2N6520 Transistor 2N6520TACT-ND

 1 Q24 KSC2690 Transistor KSC2690AYSFS-ND

 1 J6 3-pin male 0.1” connector S9411-ND

 ME27000 Programmer

18 March 2024 5 Martin Eberhard

When programming an Intersil IM6654 or IM6658 EPROM , connect an external
power supply to J6:

Pin IM6654 Programming Function IM6658 Programming function

1 41 volt positive terminal 31 volt positive termin al

2 41 volt negative terminal 31 volt negative termin al

3 No Connection No Connection

Select the EPROM Device Type (04 for the IM6654 or Type 28 for the IM6658),
and program the EPROM.

2.7 Power Supply Voltage Checking

The ME27000 tests Vpp during programming, and will abort programming if the
measured voltage is more than about 15% high or low from the expected
voltage. However, the external (Intersil Option) su pply does not get checked.

Vpp will be low if the EPROM is drawing too much cu rrent - because the EPROM
is defective, because it is inserted incorrectly, o r if the wrong EPROM
Device Type is selected. Although the ME27000 will shut down quickly when
overcurrent is detected this way, the EPROM may sti ll be damaged.

Vpp will be too high only due to some fault with th e ME27000 itself.

2.8 Programming an EPROM from a File

Here is how you program an EPROM from a file, using the (default) automatic
file address offset mode, and assuming an EPROM tha t supports the Device ID
function. (Use the ET command to select the EPROM t ype, for EPROMs that don’t
support the Device ID function.)

{Power-on}
>ET {correct EPROM Device Type}
{insert blank EPROM in the socket}
> {send S-Record or Intel Hex file to the ME27000}
>ID
Device ID: 00200D
Device: ST/SGS M27512
Type 4F
Use this device type (Y/N)? Y
Current Device Type is 4F: 27C512
>EP
Buffer Address Offset: 00
Check the Device Type, and that the EPROM is
inserted with its pin 1 by the socket handle.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

 ME27000 Programmer

18 March 2024 6 Martin Eberhard

2.9 Reading an EPROM into a File

You can read an EPROM, and save the data in a stand ard format (either Intel
Hex or Motorola S-Record) on your computer. Again, use the ET command if your
EPROM does not support the Device ID function.)

{Power-on}
>ID
Device ID: 002013
Device: ST/SGS M2732A
Type 18
Use this device type (Y/N)? Y
Current Device Type is 18: 2732A-Fast
>ER
Buffer Address Offset: 00
EPROM read into buffer. checksum: B2
>UI {start file capture on your computer before hitting return}
{Intel Hex file follows}
>

Use US instead of UI to create a file in Motorola S-Record format.

2.10 Copying an EPROM

You can read an EPROM, and then write it into any n umber of blank EPROMs.
(This example uses the ET command instead of ID, ju st to show how it’s done.)

{Power-on}
>ET {correct EPROM Device Type}
{insert source EPROM in the socket}
>ER
Success
{insert blank EPROM in the socket}
>EP
Buffer Address Offset: 00
Check the Device Type, and that the EPROM is
inserted with its pin 1 by the socket handle.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
{insert another blank EPROM in the socket}
>EP
Check the Device Type, and that the EPROM is
inserted with its pin 1 by the socket handle.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

2.11 File Address Offset

Simple Intel Hex files and Motorola S-record files have 2-byte (4 hex digit)
addresses. The address in a hex file can be thought of as having 2 parts: The
high byte (the first 2 hex digits) is the page addr ess and can be 00 through
FF (depending on EPROM size). The low byte (the sec ond 2 hex digits) is the
address within the EPROM page.

The EPROM data may be a computer program intended t o run at address 0000, or

 ME27000 Programmer

18 March 2024 7 Martin Eberhard

it may be intended to run at some other address. If it is intended to run at
some other address besides 0000, then the high byte of the 2-byte addresses
in the hex file that you will send to the EPROM wil l not start at 00.
Instead, it will start with the high byte of the in tended target address.

You can use FAO (File Address Offset) command to co mpensate for this address,
so that the loaded file goes in the buffer starting at 0000, regardless of
the address in the file. If you specify automatic F ile Address Offset mode
(by typing the F AO command with no value), then the File Address Offs et for
downloads will be set to the high address byte from the first received record
of the file. Automatic File Address Offset mode is the default after reset.

When you download a hex file to the ME27000, the Fi le Address Offset is
subtracted (modulo 10000) from the high address byt es for the data in the
file.

If you are reading an EPROM that is intended to run at an address besides
0000, you can generate the correct hex file by sett ing the File Address
Offset before uploading the buffer. The File Addres s Offset that you specify
with the F AO command will be added to the high address byte in every record
uploaded. If automatic File Address Offset mode is selected, then the File
Address Offset will be 00.

2.12 Buffer Address Offset

The Buffer Address Offset allows you to specify the high byte of the buffer
starting address for EPROM operations, including re ading (ER command),
comparing (EC command), and programming (EP command). The specified Buffer
Address Offset is added to the high byte of the EPR OM address to compute the
high byte of the buffer address for these operation s.

Using the Buffer Address Offset, you can load a lar ge file or read a larger
EPROM (as large as 64K bytes), and then program it into several smaller
EPROMs. For example, if you have already loaded a 4 K-byte Intel Hex file
into the buffer, then you could program it into fou r 2708 (1Kx8) EPROMs:

>ET 5
Current Device Type is 05: 2708
>BAO 0
Buffer Address Offset: 00h
{insert first 2708 EPROM}
>EP
Check the Device Type, and that the EPROM is
inserted with its pin 1 in the ZIF socket's pin 3.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>BAO 4
Buffer Address Offset: 04h
{insert second 2708 EPROM}
>EP
Check the Device Type, and that the EPROM is
inserted with its pin 1 in the ZIF socket's pin 3.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer

 ME27000 Programmer

18 March 2024 8 Martin Eberhard

>BAO 8
Buffer Address Offset: 08h
{insert third 2708 EPROM}
>EP
Check the Device Type, and that the EPROM is
inserted with its pin 1 in the ZIF socket's pin 3.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>BAO C
Buffer Address Offset: 0Ch
{insert fourth 2708 EPROM}
>EP
Check the Device Type, and that the EPROM is
inserted with its pin 1 in the ZIF socket's pin 3.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer

You can also read several smaller EPROMs into the b uffer, and then program their
combined data into one single larger EPROM:

>BAO 0
Buffer Address Offset: 00h
{insert first 2708 EPROM}
>ER
EPROM read into buffer, checksum 12
>BAO 4
Buffer Address Offset: 04h
{insert second 2708 EPROM}
>ER
EPROM read into buffer, checksum BE
>FAO 8
Buffer Address Offset: 08h
{insert third 2708 EPROM}
>ER
EPROM read into buffer, checksum 87
>BAO C
Buffer Address Offset: 0Ch
{insert first 2708 EPROM}
>ER
EPROM read into buffer, checksum 91
>ET 1C
Current Device Type is 1C: TMS2532
{insert blank TMS2532 EPROM}
>BAO 0
Buffer Address Offset: 00h
>EP
Check the Device Type, and that the EPROM is
inserted with its pin 1 in the ZIF socket's pin 3.

Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer

 ME27000 Programmer

18 March 2024 9 Martin Eberhard

2.13 Data Invert

If your EPROM will be used in a host system that ha s inverting data buffers
(such as the Memory Merchant MM65K16S S-100 memory board), then you can
specify Data Inversion with the “DI 1” command. Thi s will invert the data
when written to the EPROM, as well as when it is re ad back from the EPROM.
“DI 0” disables the data invert mode.

 ME27000 Programmer

18 March 2024 10 Martin Eberhard

Section 3. ME27000 Commands

3.1 EPROM Commands

The EPROM commands generally deal with the EPROM, a nd the 64K-byte buffer in
the ME27000. For Compare, Program, and Read command s, the buffer address
always equals the EPROM address plus the Buffer Add ress Offset (set with the
BAO command).

For these EPROM commands, <beg> is the beginning ad dress, both for the EPROM
and for the buffer. <cnt> is the byte count for the command. <cnt>=0000 is
interpreted as <cnt>=10000 hex (the entire buffer) when the command refers to
the buffer, and is interpreted as the full EPROM si ze when the command refers
to the EPROM. If you don’t enter values for <beg> a nd <cnt>, they both
default to 0000. If you enter only one value, it is assumed to be <beg>, and
<cnt> defaults to 0000. The EPROM commands will alw ays stop after the last
address of the selected EPROM Device Type.

>BAO <offset> Buffer Address Offset

BAO sets the Buffer Address Offset for reading, com paring, and
programming EPROMs to <offset>. The Buffer Address Offset is added to
the upper address byte of the buffer’s starting add ress of the ER, EC,
and EP commands.

See the Buffer Address Offset subsection under ME27000 Programmer Usage
for further details about the Buffer Address Offset , and how it is
used.

>DI {0/1} Data Invert

DI 1 selects inverted data mode. (This is useful wh en the EPROM will be
used in a system that has inverting data buffers. W hen Data Invert is
enabled, all data bytes are inverted when the EPROM is programmed, and
also when the EPROM is read. DI 0 turns off Data In vert mode.

>EB <beg> <cnt> Blank-Check EPROM

EB starts at address <beg> and checks <cnt> bytes o f the EPROM to see
if they are blank. Any non-blank bytes are reported to the console. If
all bytes in the specified range are blank, this co mmand responds with
“EPROM is blank”. Note that a few EPROMs erase to 00 instead of FF.
Also, a few EPROMs erase to an indeterminate state.

>EC <beg> <cnt> Compare EPROM to Buffer

EC compares <cnt> bytes of the buffer to the EPROM, starting at address
<beg>. Any differences are reported to the console. If all bytes are
the same, this command responds with “EPROM matches buffer”.

>ED <beg> <cnt> Display EPROM Contents

ED displays the specified range of EPROM contents (without affecting
the buffer), 16 hex bytes to a line, (except the fi rst line if its
least-significant digit is not 0). Each line is pre ceded by a 4-digit
hex address. After the hex display, the same data a re displayed in
ASCII. Non-printing ASCII characters are represente d as a period. If
you don’t enter values for <beg> and <cnt>, then th e entire EPROM
contents will be displayed. The checksum of the spe cified region of the
EPROM is printed last.

You can pause and resume the display with the space bar, and abort with
either <Control-C> or ESC.

 ME27000 Programmer

18 March 2024 11 Martin Eberhard

>EE <Device Type> Invoke Custom EPROM Editor

The last 4 EPROM Device Types are custom EPROMs, al lowing you to define
your own EPROM. The EE command allows you to edit t he specified EPROM,
which must be one of the last four listed EPROMs. S ee section 4 for
details about editing a custom EPROM.

>EL List supported EPROMs

EL lists all of the EPROM Device Types, for use wit h the ETD, EE, and
ET commands.

>EP <beg> <cnt> Program EPROM from Buffer

EP programs <cnt> bytes of the EPROM with data from the buffer, with
the EPROM starting at <beg>, and the buffer address starting at <beg>
plus the Buffer Address Offset. The programmed rang e is verified when
programming is complete, and any errors are reporte d to the console. If
the programmed range matches the buffer when done, then this command
will respond with “Success”.

Before programming, the relevant states of the ME27 000 (Programming
algorithm, programming cycles) are displayed, and y ou are asked if you
want to proceed.

Typing control-C or ESC during programming will abo rt cleanly, leaving
the EPROM in a reasonable state.

See Section 5, Programming Algorithms , for additional details.

>ER <beg> <cnt> Read EPROM into Buffer

ER reads <cnt> bytes of data from the EPROM into th e buffer, the EPROM
starting at <beg>, and the buffer address starting at <beg> plus the
Buffer Address Offset. This command always responds with “EPROM read
into buffer” followed by “EPROM checksum: XX”.

>ES <beg> <cnt> Compute EPROM Checksum

ES reads and adds together <cnt> bytes of data from the EPROM, starting
at address <beg>. Only the low byte of the sum is k ept. This command
responds with “EPROM checksum: XX”.

>ET <index> Select EPROM Device Type

ET sets the current EPROM Device Type for all other operations.
Selecting an <index> that specifies a custom EPROM that has not yet
been defined produces an error.

>ETD <Device Type> Display EPROM Specs

ETD displays details about the specified EPROM Devi ce Type, including a
picture of the EPROM’s pinout and its programming s pecifications, as
well as a list of manufacturer’s part numbers for E PROMs that are
compatible with this Device Type. If no <Device Typ e> is specified,
then the currently-selected EPROM Device Type will be displayed.

With a maximum of 12 entries, the list of supported EPROMs is not
complete. If your EPROM is not listed, then compare its specifications
to those displayed with the ETD command, to verify compatibility.

 ME27000 Programmer

18 March 2024 12 Martin Eberhard

>ID Read and Display the EPROM’s ID

ID reads, decodes, and displays the device ID, from EPROMs that support
this function. If a valid ID is found for a device type that is
different than the currently-selected device type, then you are given
the option to select this device type.

This function applies +12V to pin 24 of the ZIF soc ket (the pin that is
normally address line A9). 12 volts is out of spec for earlier EPROMs
that do not support the ID function. The ME27000 tr ies to detect if the
EPROM does not support the ID function by limiting the current to this
pin, measuring the pin’s current when 12V is applie d, and shutting down
quickly if excess current is detected.

>LOCK Lock an EEPROM or Flash Device

This will activate the software lock in an EEPROM o r Flash device that
supports this feature. It is not allowed for device s that don’t support
software locking.

>UNLOCK Unlock an EEPROM or Flash Device

This will deactivate the software lock in an EEPROM or Flash device
that supports this feature. It is not allowed for d evices that don’t
support software locking.

?E Help with EPROM Commands

?E prints a help screen for these EPROM commands.

3.2 File Transfer Commands

>FAO Automatic File Address Offset Mode (default)

FAO (with no parameter) selects automatic File Addr ess Offset mode.
When downloading a file to the ME27000, the File Ad dress Offset will be
taken from the high address byte of the first recei ved record. When
uploading a file from the ME27000, the File Address Offset will be 00.

>FAO <offset> Set File Address Offset

FAO sets the File Address Offset for uploads and do wnloads to <offset>.
The File Address Offset is added to the upper addre ss byte when
uploading buffer data, and subtracted from the addr ess of downloaded
Intel Hex records and Motorola S-Records.

See the File Address Offset setion for details about the File Address
Offset, and how it is used during uploading and dow nloading.

>UI <beg> <cnt> Upload Buffer as Intel Hex

UI prints <cnt> bytes of the buffer contents, start ing at address
<beg>, on the console as Intel Hex files. The File Address Offset is
added to the high address byte for each record. All records (except
perhaps the last one) are 16 bytes long, and the tr ansfer ends with an
Intel Hex end-of-file (type 01) record. To upload i nto a file, start
the file capture after you type UI, but before you type <return>.

If no value is provided for <cnt> then the byte cou nt will be set to
the size of the currently selected EPROM Type.

 ME27000 Programmer

18 March 2024 13 Martin Eberhard

>US Upload Buffer as Motorola S-Records

US prints <cnt> bytes of the buffer contents, start ing at address
<beg>, on the console as Motorola S-record files. T he File Address
Offset is added to the high address byte for each r ecord. All records
(except perhaps the last one) are 16 bytes long, an d the transfer ends
with a Motorola S-record end-of-file (S9) record. T o upload into a
file, start the file capture after you type US, but before you type
<return>.

If no value is provided for <cnt> then the byte cou nt will be set to
the size of the currently selected EPROM Type.

>: Begin Intel Hex record

Buffer addresses are calculated by subtracting the File Address Offset
from the address in each record, and then increment ing after each data
byte of the record has been handled.

If the record type is 00 (a data record), then all data whose target
buffer address is between 0000 and FFFF will be loa ded into the buffer.

If the record’s checksum does not match the compute d checksum, then “?
Csm” will be printed, and the error count will be i ncremented.

Invalid hex characters (including lowercase a-f) pr int “? Hex” and
cause the error count to be incremented.

Record types other than 00 (data) and 01 (end-of-fi le) print “? Rec”
and cause the error count incremented.

Byte count other than 00 for a type 01 record (end- of-file) print “?
Rec” and cause the error count to be incremented.

The prompt is not normally displayed after receipt of an Intel Hex
record. If the record type is either 00 (data) or 0 1 (end-of-file), and
the record byte count is 00, then the record count, the count of
records loaded into the buffer, and error count are displayed and then
cleared, and the prompt is displayed.

>S Begin Motorola S-record

(Note that no commands start with S.)

Buffer addresses are calculated by subtracting the File Address Offset
from the address in each record, and then increment ing after each data
byte of the record has been handled.

If the record type is S1 (a data record), then all data whose target
buffer address is between 0000 and FFFF will be loa ded into the buffer.

An S5 (record count) record will compare the ME2700 0’s record count to
the record count in the record. If they do not matc h, then “? Cnt” is
printed, and the error count is incremented.

If the checksum in the record does not match the co mputed checksum,
then “? Csm” is printed and the error count is incr emented.

Invalid hex characters (including lowercase a-f), w ill print “? Hex”
and cause the error count to be incremented.

Any record type besides S1 (data), S5 (record count), and S9 (end-of-
file) will print “? Rec” and cause the error count incremented.

An end-of-file record may be a full S9 record (with byte count,

 ME27000 Programmer

18 March 2024 14 Martin Eberhard

address, and checksum fields), or it may be just ‘S 9’. (This
abbreviated S9 record is sometimes found in old S-r ecord files.)

If the byte count for a type S5 (record count) or S 9 (end-of-file)
record is not 00, then “? Rec” is printed, and the error count is
incremented.

The prompt is not normally displayed after receipt of a Motorola S-
record. If the record type is either S1 (data) or S 9 (end-of-file), and
the record byte count is 00, then the record count, the count of
records loaded into the buffer, and error count are displayed and then
cleared, and the prompt is displayed.

?F Help with File Transfer Commands

?F prints a help screen for these file transfer com mands.

3.3 Buffer Commands

>BD <beg> <cnt> Display Buffer Contents

BD displays the specified range of buffer contents, 16 hex bytes to a
line, (except the first line if its least-significa nt digit is not 0).
Each line is preceded by a 4-digit hex address. Aft er the hex display,
the same data are displayed in ASCII. Non-printing ASCII characters are
represented as a period. If you don’t enter values for <beg> and <cnt>,
then the entire buffer contents will be displayed. The checksum of the
specified region of the buffer is printed last.

You can pause and resume the display with the space bar, and abort with
either <Control-C> or ESC.

>BE <addr> Edit Buffer

BE allows you to edit the buffer contents starting at address <addr>.
The address and its contents are first printed on t he console. If you
type <return>, the contents will remain unchanged. If you type a
hexadecimal number and then <return>, the value you type will replace
the buffer contents at that address.

After you type <return>, the contents of the next a ddress in the buffer
are displayed, allowing you to modify that address. This continues
until you type <control-C> or ESC.

Every address that ends with 0 or 8 will start a ne w line, displaying
first the address, then the data.

>BF <val> Fill Buffer with Value

FB fills the entire buffer with <val>. If you don’t enter a value for
<val>, then the buffer will be filled with 00.

This command responds with “Buffer filled with <val >”.

?B Help with Buffer Commands

?B prints a help screen for these buffer commands.

 ME27000 Programmer

18 March 2024 15 Martin Eberhard

3.4 Miscellaneous Commands

>DS Display all Settings

Displays various settings for the ME27000.

>ECHO {0/1} Set Terminal Echo

ECHO 0 turns terminal echo off; ECHO 1 turns it on.

>RESET Reset ME27000 Programmer

RESET is just like power-cycling the ME27000.

>? Help

Typing a question mark prints a help screen that br iefly explains the
main commands.

>?N General notes on ME27000

This command prints a page of general notes about t he ME27000.

>?L View Firmware Loader Notes

?L displays notes on loading new firmware into the ME27000 via the
serial port. Firmware loading is discussed in a lat er section.

^S Pause Serial Port Output

Control-S (XOFF) tells the ME27000 to stop sending data. Any subsequent
character (including XON, which is control-Q) will re-enable the
ME27000 output, and that character will be discarde d by the ME27000.

3.5 Diagnostic Commands

These commands are intended only for diagnosing the ME27000, especially
during initial bring-up and when you want to adjust the programming voltages.
They allow you to control various signals to the EP ROM socket directly, so
that you can measure and adjust voltages, and test functionality.

For these commands, if you don’t enter a value (0 o r 1), then 0 is assumed.

Most of these commands will leave the BUSY light li t. Use the RESET command
to turn it off prior to programming any EPROMs.

>AVPP {0-4} Adjust Vpp

AVPP allows you to adjust the five Vpp voltages, us ing a voltmeter at
TP6. AVPP 0 disables the switching power supply, re sulting in Vpp about
0.5V lower than the voltage from the wall adapter. The following table
shows the nominal adjustment voltages for each sett ing:

AVPP Adjustment Nominal TP6 Voltage

0 - About 11.5V

1 VR1 12.80V ±0.05V

2 VR2 13.20V ±0.05V

3 VR3 21.10V ±0.05V

4 VR4 25.20V ±0.05V

>TAS {0/1} Test -AS pin

If the selected EPROM Device Type has a -AS pin, th en this command
tests it. TAS 0 will set the -AS signal inactive, a t TTL high (>3V).
TAS 1 will set the -AS signal active, at TTL low (< 0.7V).

 ME27000 Programmer

18 March 2024 16 Martin Eberhard

>TCE {0/1} Test CE Pin

If the selected EPROM Device Type has a CE pin, the n this command tests
it. “Active” and “inactive” voltages for this pin d epend on the
polarity of the CE signal, for the selected EPROM D evice Type. TCE 0
will set the CE signal inactive. TCE 1 will set the PGM signal active.

>THI {0/1} Test Stuck-High Pin

If the selected EPROM Device Type has a stuck-high pin, then this
command will test it. THI 1 sets the pin to +5V, TH I 0 sets low.

>TID {0/1} Test Device ID function

This applies +12V to ZIF pin 24, reads the actual v oltage at the pin
and reports the A/D converter’s resulting value for that pin. The
parameter applies either 0000 or 0001 to the addres s pins. If the ADC
result is too low, then the +12V will be turned off .

>TOE {0-2} Test -OE Pin

If the selected EPROM Device Type has a -OE pin, th en this command
tests it. TOE 0 will set the -OE signal inactive, a t TTL high (>3V).
TOE 1 will set the -OE signal active, at TTL low (< 0.7V). If the
selected EPROM Device Type requires +12V on the -OE pin during
programming, then TOE 2 will test this voltage on t he -OE pin.

>TOFF Cancel all test modes

This command powers off the ZIF socket, de-energizi ng all pins. It also
turns off the busy and error lights.

>TPGM {0/1} Test PGM Pin

If the selected EPROM Device Type has a PGM pin, th en this command
tests it. “Active” and “inactive” voltages for this pin depend on the
polarity of the PGM signal, for the selected EPROM Device Type. TPGM 0
will set the PGM signal inactive. TPGM 1 will set t he PGM signal
active.

>TPROG Test Programming

TPROG will continuously write the buffer data to th e EPROM socket, for
the purpose of testing the ME27000 (not for program ming the EPROM!) End
this command with either Control-C or ESC. All of t he EPROM signals and
timing will be the same as during normal programmin g for the selected
EPROM Device Type. If the programming algorithm is a “Smart” algorithm
(with verification), then this loop will behave as though the EPROM
verified on the last possible try. Together with an oscilloscope, this
command is useful to test hardware, and to verify t hat a programming
algorithm (particularly a custom algorithm) is corr ect.

>TREAD Test Reading

TREAD will continuously read the EPROM socket, for the purpose of
testing the ME27000 (not for reading the EPROM!) En d this command with
either Control-C or ESC. All of the EPROM signals a nd timing will be
the same as during normal reading for the selected EPROM Device Type.
Data from the EPROM does not get written to the buf fer.

 ME27000 Programmer

18 March 2024 17 Martin Eberhard

>TVBD {0/1} Test Vbb and Vdd Pins

If the selected EPROM Device Type has a Vbb pin and /or Vdd pin, then
this command tests them. TVBD 0 turns these pins of f (near 0V). TVBD 1
sets the Vbb pin (pin 21) to -5V and the Vdd pin (p in 19) to +12V.

>TVCC {0-2} Test Vcc Pin

TVCC 0 turns Vcc (on pin 24) off. TVCC 1 turns it o n to the normal
voltage during reading: +5V. TVCC 2 turns pin 24 on to its programming
voltage for the selected EPROM Device Type, which i s one of the
following: 0V, +5V, +6.2V, or +12V.

>TVPP {0-3} Test VPP Pin

This command tests the VPP pin, if it exists. TVPP 0 turns the Vpp pin
off (near 0V). TVPP 1 sets the Vpp pin to the requi red voltage for a
normal EPROM read operation (0V or 5V, depending on the selected EPROM
Device Type). TVPP 2 sets the Vpp to its programmin g-inactive state
(the voltage between write pulses, if this EPROM De vice Type pulses the
Vpp pin). This will be either 0V or 5V, depending o n the EPROM Device
Type. TVPP 3 sets the Vpp pin to its programming vo ltage.

>WA <val> Write Address Pins

WD writes <val> to the address pins of the EPROM so cket. Every ‘0’ bit
will drive the corresponding pin to TTL low (<0.7V) . Every 1 bit will
drive the corresponding pin to TTL high (>3V).

>WD <val> Write Data Pins

WD writes <val> to the eight data pins of the EPROM socket. Every ‘0’
bit will drive the corresponding pin TTL low (<0.7V). Every 1 bit will
drive the corresponding pin to TTL high (>3V).

>RD Read Data Pins

RD reads the EPROM data pins and displays the resul ts on the screen.
Use a jumper wire to ground or 5V, to test each pin .

?D Help with Diagnostics

?D prints a help screen for these diagnostic comman ds.

 ME27000 Programmer

18 March 2024 18 Martin Eberhard

Section 4. Custom EPROM Editor

The last five EPROMs displayed by the EP command ar e custom EPROMs. If any of
these EPROMs has not been defined (meaning named), then it will be listed as
“undefined” with the EL command. You can define a c ustom EPROM using the
Custom EPROM Editor (CEE). Enter the CEE by typing EEnn at the main prompt,
where nn is the EPROM Device Type number for one of the five custom EPROMs.

If you have an oscilloscope, you can use the TREAD and TPROG commands to
observe the EPROM reading and programming waveforms (without an EPROM
inserted in the socket) for custom EPROM Device Typ es that you have created.

The CEE’s prompt is “EEnn>”, where nn is the number of the EPROM that you are
editing. Exit the CEE with the Q or Abort command. Until a name is assigned
to a custom EPROM (with the EN command), it will ap pear as “unassigned” in
the list of supported EPROMs.

4.1 CEE General Commands

EEnn>? Print General Help Menu

EEnn>?A Print Pin Assignment Help Menu

EEnn>?P Print Programming Parameters Help Menu

EEnn>COPY <Device Type> Copy EPROM Specs

Copy all specifications from EPROM the specified De vice Type. Use this
command when you want to create a new EPROM Device Type that is similar
to an existing one. You may edit the copied EPROM D evice Type
specifications once it is copied.

EEnn>DELETE Delete EPROM

Deletes all parameters for the current EPROM Device Type. The current
EPROM Device Type will then become “unassigned” in the EL command.

EEnn>ETD <Device Type> Display EPROM Specs

ETD displays details about the specified EPROM Devi ce Type, including a
picture of the EPROM’s pinout and its programming s pecifications, as
well as a list of manufacturer’s part numbers for E PROMs that are
compatible with this type. If no <Device Type> is s pecified, then the
EPROM Device Type that you are editing will be disp layed.

EEnn>EN <name> Name EPROM

Assigns name to current EPROM Device Type. Until a name is assigned to
a custom EPROM Device Type, it will appear as “unas signed” in the list
of supported EPROM Device Types displayed by the EL command.

EEnn>PINS <24/28> Specify EPROM pin count

Ony 24- and 28-pin EPROMs are supported.

EEnn>TPROG Test Programming

TPROG will continuously write the buffer data to th e EPROM socket, for
the purpose of testing a custom EPROM Device Type (not for programming
the EPROM!) End this command with either Control-C or ESC. All of the
EPROM signals and timing will be the same as during normal programming
for custom EPROM Device Type that you are editing. If the programming
algorithm is a “Smart” algorithm (with verification), then this loop
will behave as though the EPROM verified on the las t possible try.

 ME27000 Programmer

18 March 2024 19 Martin Eberhard

Together with an oscilloscope, this command is usef ul to verify that
the custom EPROM Device Type’s programming algorith m is correct.

EEnn>TREAD Test Reading

TREAD will continuously read the EPROM socket, for the purpose of
testing the custom EPROM setup (not for reading the EPROM). End this
command with either Control-C or ESC. All of the EP ROM signals and
timing will be the same as during normal reading fo r the EPROM. Data
from the EPROM does not get written to the buffer.

EEnn>Q Quit the Custom EPROM Editor

Saves all changes and returns to the main command p rompt.

4.2 CEE Pin Assignment Commands

The ZIF socket pin numbers for these commands depen d on whether the EPROM is
a 24-pin device or a 28-pin device, as set by the P INS command.

Pins 1, 2, and 20 through 27 on the ZIF socket (18 through 22 for a 24-pin
device) are initially unassigned, and each may be a ssigned to one of several
possible signals. (Due to hardware limitations, not every signal may be
assigned to every pin. However, most EPROMs can be supported with the
available pin choices.) If you assign more than one signal to the same pin,
then the last one assigned will override previous a ssignments. There are a
few exceptions to this rule:

• Vpp may be assigned to the same pin as either Outpu t Enable or Chip Enable
• PGM may be assigned to the same pin as either Outpu t Enable or Chip Enable

EEnn>A9 <pp> Assign A9 Signal to Pin

Signal A9 is assigned to the specified pin, where < pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A9.

EEnn>A10 <pp> Assign A10 Signal to Pin

Signal A10 is assigned to the specified pin, where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A10.

EEnn>A11 <pp> Assign A11 signal to pin

Signal A11 is assigned to the specified pin, where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A11.

Enn>A12 <pp> Assign A12 Signal to Pin

Signal A12 is assigned to the specified pin, where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A12.

EEnn>A13 <pp> Assign A13 signal to pin

Signal A13 is assigned to the specified pin, where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A13.

EEnn>A14 <pp> Assign A14 Signal to Pin

Signal A14 is assigned to the specified pin, where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A14.

 ME27000 Programmer

18 March 2024 20 Martin Eberhard

EEnn>A15 <pp> Assign A15 Signal to Pin

Signal A15 is assigned to the specified pin, where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign A15.

EEnn>AS <pp> Assign Address Strobe Signal to Pin

The (active-high) Address Strobe Signal is assigned to the specified
pin, where <pp> may be {0,1,2,20,21,22,23,24,25,26, 27} for a 28-pin
device, or {0,18,19,20,21,22,23} for a 24-pin devi ce. 0 means unassign
Address Strobe.

EEnn>CE <pp> Assign Chip Enable Signal to Pin

The Chip Enable Signal is assigned to the specified pin, where <pp> may
be {0,1,2,20,21,22,23,24,25,26,27} for a 28-pin dev ice, or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign Chip
Enable. Note that Chip Enable may share a pin with either Vpp or PGM.

EEnn>CEP {0/1} Assign polarity to Chip Enable Signal

CEP defines the polarity of the Chip Enable signal, where negative
polarity is the default. 0 means negative polarity, 1 means positive
polarity.

EEnn>HI <pp> Assign Stuck-High Pin

The specified pin will be stuck high, where <pp> ma y be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign Stuck-High
pin. Note that any unassigned pins will be stuck-lo w.

EEnn>OEN <pp> Assign Output Enable Signal to Pin

The (active-low) Output Enable signal is assigned t o the specified pin,
where <pp> may be {0,1,2,20,21,22,23,24,25,26,27} f or a 28-pin device,
or {0,18,19,20,21,22,23} for a 24-pin device. 0 me ans unassign Output
Enable. Note that Output Enable may share a pin wit h either Vpp or PGM.
It also may be assigned to be at +12V during progra mming - see OEV
command. (If the -OE pin assigned to be +12V during programming, then
that pin may not also be assigned to the Vpp or PGM signals.)

EEnn>PGM <pp> Assign Program Signal to Pin

The Program Signal is assigned to the specified pin , where <pp> may be
{0,1,2,20,21,22,23,24,25,26,27} for a 28-pin device , or
{0,18,19,20,21,22,23} for a 24-pin device. 0 means unassign Program.
Note that PGM may share a pin with either Chip Enab le or Output Enable.

EEnn>PGP {0/1} Assign polarity to Program Signal

PGP defines the polarity of the Program signal, whe re negative polarity
is the default. 0 means negative polarity, 1 means positive polarity.

EEnn>PPP <pp> Assign Vpp Signal to Pin

The Vpp Signal is assigned to the specified pin, wh ere <pp> may be {0,1
20,22,23} for a 28-pin device, or {0,18,20,21} for a 24-pin device. 0
means unassign Vpp. Note that Vpp may share a pin w ith either Chip
Enable or Output Enable.

EEnn>VBB {0/1} Assign Vbb to ZIF socket Pin 21

VBB 1 assigns -5V Vbb to ZIF pin 21. VBB 0 unassign s Vbb.

 ME27000 Programmer

18 March 2024 21 Martin Eberhard

EEnn>VDD {0/1} Assign Vdd to ZIF socket Pin 19

VDD 1 assigns +12V Vdd to ZIF socket pin 19. VDD 0 unassigns Vdd.

4.3 CEE Programming Parameter Commands

EEnn>BCK {0/1/2} Blank Check before Programming

BCK 0 disables a blank-check before programming. BC K 1 enables blank
check for a device that erases to 0x00. BCK 2 enabl es blank check for a
device that erases to 0xFF. (Disable blank check fo r most EEPROMs, and
for any EPROM Device Type that erases to an indeter minate state.)

EEnn>LWD (0/1) Lock EEPROM When Done Programming

“LWD 1” Performs the EEPROM software lock algorithm when programming is
completed. “LWD 0” disables this feature. This comm and is ignored
unless the Pass 1 algorithm to 10 (which unlocks th e EEPROM)

EEnn>P1A <p> Define Programming Pass 1

Selects one of 12 possible programming algorithms f or pass 1:

<p> Algorithm

0 None (Pass 2 only)

1 Program n times with data = 0xFF (EEPROM erase)

2 Program each byte n times

3 Program each byte with one pulse that is n * PPW 1 long

4 Same as 3, but Vcc=5V

5
Program each byte until it matches, then program it an
additional n times

6 Same as 5, but Vcc = 5V

7
Program each byte until it matches (P times), then program it
an additional nP times

8
Program each byte until it matches, then program it with one
additional pulse that is n * PPW 1 long

9
Program each byte until it matches (P times), then program it
one additional time with a pulse that is nP * PPW 1 long

10 Unlock EEPROM (Pass 1 only)

11 SuperFlash erase

1. PPW is the amount of time set by the combination of the PPW and PTU commands

EEnn>P2A <p> Define Programming Pass 2

Selects one of 10 possible programming algorithms f or pass 2. (See
table for FP1. The max allowed value for pass 2 is 9.)

EEnn>P1N <nn> Define n for Programming Pass 1

Defines the n parameter for programming pass 1, whe re n must be between
0 and 7. See PTU command for time units and FP1 com mand for an
explanation of what n means.

 ME27000 Programmer

18 March 2024 22 Martin Eberhard

EEnn>P2N <nn> Define n for Programming Pass 2

Defines the n parameter for programming pass 2, whe re n must be between
0 and 7. See PTU command for time units and FP2 com mand for an
explanation of what n means.

EEnn>P64 <0/1> Write With 64-byte Pages

“P64 1” enables writing to the device with 64-byte pages. “P64 0”
disables this function.

When this mode is enabled, writes to the device mus t include only whole
64-byte pages.

EEnn>OEV {0/1} Set Output Enable Pin to +12V during Pro gramming

OEV 1 will cause the Output Enable pin to be driven to +12V during
Programming. This is only allowed if the Output Ena ble signal is
assigned to either ZIF socket pin 21 or pin 22 (pin s 19 or 20 for a 24-
pin device).

EEnn>PMX <mm> Define Max Value for P, or Number of Prog ramming Passes

If any smart programming algorithm is selected that programs until each
byte matches (P), then this command defines the max imum value for P. If
the Simple Programming Algorithm is selected (using the SPA command),
then this command defines the number of programming passes. P < 256.

EEnn>POL {0/1} Enable EEPROM-Type Completion Polling

POL 1 will cause polling after each byte written, r eading back the data
and waiting for it to match the written data. (This is how many EEPROMs
signal the end of their write cycles.)

EEnn>PPW <nn> Define Programming Pulse Width

Defines the programming pulse width, in units defin ed by the PTU
command. <nn> =0 means 250 nS pulse. <nn> must be l ess than 128.

EEnn>PSS <nn> Define Programming Strobe Separation

Defines the minimum time between programming strobe pulses, in units
defined by the PTU command. <nn> =0 means as short as possible. <nn>
must be less than 128.

EEnn>PTU {0/1} Define Programming Pulse Time Units

PTU 0 means that values given with the PSS and PPW commands are in
units of 10 uS. PTU 1 means that these values are i n units of 1 mS.

EEnn>PUL <p> Define Write Pulse Signal

Defines which EPROM signal is used as the write pul se:

<p> Signal

0
High-voltage pulse on the Vpp signal, returning to 0V
between pulses

1
High-voltage pulse on the Vpp signal, returning to +5V
between pulses

2 Digital programming pulse on the Program (PGM) si gnal

 ME27000 Programmer

18 March 2024 23 Martin Eberhard

EEnn>SPA Specify Simple Programming Algorithm

This will overwrite any Smart programming algorithm specified by FP1 or
FP2. The simple programming algorithm writes once p er byte for the
entire EPROM range, and then repeats this sequence the number of times
specified by the PMX command.

EEnn>VCP <v> Define Vcc During Programming

Defines the voltage on the Vcc pin (pin 24 or 28) d uring programming:

<v> Vcc during Programming

0 0V

1 5V

2 5.5V

3 6.0V

4 6.25V

5 6.50V

6 12V

EEnn>VPP <v> Define Vpp During Programming

Defines the voltage on the Vpp pin during programmi ng:

<v> Vpp if ZIF pin 20 Vpp if ZIF pin 22 or 23

0 Switcher off Switcher off

1 13.45V 12.80V ±0.05V

2 13.85V 13.20V ±0.05V

3 21.70V 21.10V ±0.05V

4 25.90V 25.20V ±0.05V

EEnn>VPR <v> Define Vpp During Reading

Defines the voltage on the Vpp pin during read oper ations:

<v> Vpp during Reads

0 0V

1 5V

 ME27000 Programmer

18 March 2024 24 Martin Eberhard

Section 5. Algorithms

The ME27000 has a very flexible programming algorit hm - or more accurately,
selection of algorithms. All of these algorithms ar e based around the idea
that programming a single byte involves the followi ng steps:

1. Write the address to the EPROM address pins
2. If the EPROM Device Type has an address strobe pin, then strobe it to

the inactive state (high), and then back to the act ive state (low)
3. Write the data to the EPROM data pins
4. Pulse the appropriate signal for the specified amou nt of time
5. Wait (if so required) for the specified amount of t ime between pulses,

or (if so required) poll (EEPROM-style) for write c ompletion

For each EPROM Device Type, the following constants are defined:

• The EPROM’s pinout
• Any stuck-high pins
• The programming voltage, Vpp
• Special programming voltage requirement for Vcc
• Special programming voltage requirement Output Enab le
• The programming pulse width
• On which signal the programming pulse is applied
• The minimum separation between programming pulses
• The programming algorithm (see below)
• Whether or not to blank-check the EPROM before prog ramming
• Whether a device erases to 0x00 or 0xFF
• Whether or not to write 0xFF to each byte before pr ogramming it (as

required for some EEPROMs)
• Whether or not to poll each byte for completion (as required for some

EEPROMs)
• Whether or not the device requires EEPROM software unlocking prior to

programming
• Whether or not to lock the EEPROM when done

During the entire programming cycle:

• The Output Enable pin is disabled, if it exists (ex cept during verify)
• The Chip Enable pin is enabled, if it exists
• The Vcc pin is raised to an elevated voltage, if re quired
• The Output Enable pin is raised to an elevated volt age, if required
• The Vpp pin is driven to the specified voltage, unl ess it is pulsed

per-byte

 ME27000 Programmer

18 March 2024 25 Martin Eberhard

5.1 Simple Programming Algorithm

This algorithm sequentially writes every byte of th e specified range of the
EPROM, and then repeats the specified number of tim es.

Power up for reading

Blank - check EPROM

Power down

no

yes no

yes

Ask user: continue anyway?

Power up for programming

 Blank?

 Yes?

Verify EPROM & report

Pass = 0

Write EPROM
at Address

Address = Address + 1

Count = Count + 1

no

no

yes

Address = <adr>

 Address
> max?

Done

Power down

Power up for reading

Power down

Abort

yes

 Pass >
max?

 ME27000 Programmer

18 March 2024 26 Martin Eberhard

5.2 Smart Programming Algorithms

The ME27000’s Smart Programming is a flexible syste m, designed to allow
implementation of all (or at least most) Smart/Fast /Quick/Express/Rapid/
Turbo/Whatever programming algorithms specified by the various EPROM
manufacturers. All of these Smart Programming algor ithms have either one or
two phases. Each phase may be defined independently , each comprising one pass
through the specified address range of the EPROM.

Each of the two Smart Programming phases is one of 6 possible types:

1. Program each byte until it matches, then program it an additional n times,
where n is a value between 0 and 15

2. Program each byte until it matches, then program it with one additional
pulse that is n * PPW long, where n is a value betw een 0 and 15

3. Program each byte until it matches (P times), then program it an
additional nP times, where n is a value between 0 a nd 15, and where the
maximum P is specified (and is less than 256)

4. Program each byte until it matches (P times), then program it one
additional time with a pulse that is nP * PPW long, where n is a value
between 0 and 15, and where the maximum P is specif ied (and is less than
256)

5. Program each byte n times, where n is a value betwe en 0 and 255

6. Program each byte with one pulse that is n * PPW lo ng, where n is a value
between 0 and 15

The first pass may also perform the following:

1. Write 0FFh to every byte, instead of writing buffer data. This is for
erasing some EEPROMs, such as the Intel 2816A.

2. SuperFlash erase, which applies programming voltage to Vpp, +12V to ZIF
socket pin 24, and then pulses the PGM pin for n * PPW, where n is between
0 and 15.

3. EEPROM unlock sequence. (See Section 5.3 for detail s.)

The following page shows the general Smart programm ing algorithm, where one
of the above six byte-programming algorithms is use d for each phase of the
algorithm.

 ME27000 Programmer

18 March 2024 27 Martin Eberhard

Power up for reading

Blank - check EPROM

Power down

no

yes no

Address = <adr>

Write EPROM at Address
with Phase 1 Smart algorithm

yes

no

no yes

Ask user: continue anyway?

Power up for programming

 Blank?

 Yes?

 Address
> max?

Abort

Verify EPROM & report

Address = Address + 1

Done

no

Power down

Power up for reading

Power down

Abort

yes

 Fail?

yes
Address = <adr>

Write EPROM at Address
with Phase 2 Smart algorithm

yes

no

no yes Address
> max?

Abort

Address = Address + 1

 Fail?

 Phase 2
defined?

 ME27000 Programmer

18 March 2024 28 Martin Eberhard

5.3 EEPROM Software Lock and Unlock Algorithms

EEPROMS that support software locking and unlocking all use similar
algorithms. The ME27000’s algorithms are designed t o be compatible with all
EEPROMs that support this feature. These algorithms require writing a
specific sequence of data to a specific sequence of addresses, and require
writing these sequences fast enough that the EEPROM recognizes the lock or
unlock sequence, instead of actually writing to the EEPROM memory array.
Typically, EEPROMs require that each byte of the se quence is written no more
than 100 uS after the previous byte. The ME27000 re quires less than 45 uS to
write each byte.

Some EEPROMs require an actual data-write or a 64-b yte page write to complete
the unlock or lock sequence. The ME27000 pre-read E EPROM data, so that it can
write it back as needed at the end of the unlock or lock sequence.

Note that smaller EEPROMs don’t have the upper addr ess bits, so the addresses
will be truncated as needed.

 Unlock Algorithm Lock Algor ithm

Write 0xAA to
address 0x5555

Write 0x55 to
address 0xAAAA

Write 0x80 to
address 0x5555

Write 0xAA to
address 0x5555

Write 0x55 to
address 0xAAAA

Write 0x20 to
address 0x5555

Unlocked

Wait >12 mS

Optionally save 64
bytes from Page 0

Write any saved
data to Page 0

Optionally save 64
bytes from Page 0
or read and save

one byte from
address 0x0000

Write 0xAA to
address 0x5555

Write 0x55 to
address 0xAAAA

Write 0xA0 to
address 0x5555

Write saved data
back to Page 0 or
to address 0x0000

Locked

Wait >12 mS

 ME27000 Programmer

18 March 2024 29 Martin Eberhard

5.4 Device ID Algorithm

Later EPROMs include a mechanism for programmers to query the EPROM, to
determine the manufacturer and the particular devic e form that manufacturer.
This is the algorithm for reading the Device ID, co mprising a 16-bit
Manufacturer Code, and an 8-bit Device Code:

Early devices that do not support the Device ID fun ction may be damaged by
applying +12V to the signal on pin 24 of the ZIF so cket. The ME27000 tries to
minimize this possibility two ways: 1) current to t his pin is limited to
about 7 mA, and 2) the 12V signal is removed within about 38 uS if the
current exceeds about 3 mA (meaning the pin does no t support application of
+12V). Nonetheless, it would be better not to try t o read the ID for a device
that is known not to support this function.

No

Yes

No

Yes

Power up the EPROM for
reading (-OE and CS active)

Apply +12V to ZIF pin 24
(which is usually A9)

Use ADC to Measure voltage
at ZIF pin 24

12V
OK?

mfg_lo = (addr)
dev = (addr+1)

mfg_hi=0
addr=0x0200

(with A9 at +12V)

Quickly remove +12V
from ZIF pin 24

Device
does not
support

ID

mfg_lo:dev =
0x7F7F?

addr = addr+2

Manufacturer Code = mfg_hi:mfg_lo
Device Code = dev

 ME27000 Programmer

18 March 2024 30 Martin Eberhard

EPROM specifications are incinsistant about how som e of the high-address bits
should be set (high or low) when reading the device ID. For this reason, the
ME27000 goes through a sequence of trials to read t he EPROM’s ID. It will try
valid address combinations until either a valid-loo king ID is found, or all
allowed possibilities have been tried.

Attempting to read the ID from a device that does n ot support the ID feature
and that is not blank, may result in reading the EP ROM’s (non-blank) data.
This data may look like a valid ID and fool the ME2 7000.

Some early EPROMs will give a Manufacturer Code = 0 x0000 and a Device Code =
0x00. This means that the device allows the ID to b e read without damage, but
the actual ID is not supported.

The ME27000 firmware includes a fairly extensive li st of Manufacturer and
Device Codes, and in most cases can automatically s et up for the correct
Device Type based on the ID read, if the device div ulges its ID. If the
Device Code is unrecognized, the ME27000 can usuall y still recognize the
manufacturer code, and will at lest tell you who ma de the device. Note that
sometimes the Manufacturer Code does not match the manufacturer that is
printed on the package. This is usually because one manufacturer has bought
the device masks from another manufacturer. (This i s especially common with
Microchip and ST.)

 ME27000 Programmer

18 March 2024 31 Martin Eberhard

Section 6. ME27000 Theory of Operation

6.1 Architecture

The following is a very brief description of the ME 27000 Programmer’s circuit
operation.

6.2 Microcontroller

At the heart of the ME27000 Programmer is a 40-pin PIC18F45K20
microcontroller, running at 16 MHz (meaning a 250 n S instruction cycle time),
which includes the following functions:

• 32K of Flash program memory, which holds the ME2700 0 firmware. This
Flash memory can be reprogrammed in place via the 6 -pin PIC ICP
connector and a Microchip PICkit III programming de vice.

• Internal SRAM, used for transmit and receive queues , variable storage,
and general purpose registers.

• Internal EEPROM, used to store settings that will b e retained when the
power is off, as well as custom EPROM definitions.

• An internal UART that is connected to the serial po rt through a MAX232
RS232C transceiver. and to the USB port through an MCP2221A USB
tranceiver

• An external 64K-byte serial SRAM chip (which is use d for the EPROM
buffer), attached to the PIC’s SPI bus

• An internal voltage reference, PWM circuit, and vol tage comparator,
combined together to become the Vpp voltage regulat or.

• A multi-channel A/D converter, used to measure Vpp for foldback current
limiting, and to check for overcurrent when reading the EPROM ID

The PIC’s Flash memory has been programmed with two pieces of firmware:
the Loader and the Programming Firmware.

6.3 Logic Supplies

V1 regulates the Wall adapter’s +12V down to about +5.4V, used for some of
the logic, as well as for powering the EPROM. (This voltage is a little high
because of the voltage drop across protection diode s and switching
transistors in the circuit that supplies power to t he EPROM.) It is normal
for this regulator to get warm during operation, pa rticularly during
programming. (This is the only component that shoul d ever get warm.)

V2 regulates the +5.4V supply down to 3.3V for the PIC microcontroller, the
serial SRAM, and the data buffer that sits between the microcontroller and
the EPROM.

6.4 +6.35V Supply

This power supply is used to provide special Vcc vo ltage for some EPROMs
during programming. The voltage drop across the pro tection diode and the
transistor switch reduce this voltage by 0.35V by t he time it reaches one of
the Vcc pins of the EPROM.

The ME27000 can boost this voltage by 0.37V, so tha t the ME27000 can provide
the following Vcc voltages to the EPROM: 5.00V, 6.0 0V, 6.37V, and 12V. The
6.37V option is within tolerance for EPROMs that re quire either 6.25V ±5% or
6.50V ±5%.

This supply is adjustable because a few EPROMs need 5.5V. When such EPROMs
are to be programmed, the user can adjust this supp ly (with VR5) as needed.

 ME27000 Programmer

18 March 2024 32 Martin Eberhard

Note: when measuring at TP7, adjust VR5 to be 0.25V higher than the target
EPROM Vcc.

6.5 Negative 5V Supply

U11, together with C5 and C6, comprise a switched-c apacitor voltage inverter
that produces -5.4V from the +5.4V supply.

6.6 Microcontroller-Controlled High-Voltage Supply

The various Vpp voltages are produced by a switchin g power supply that is
directly controlled by the PIC microcontroller. The PIC’s internal PWM is set
up to produce a 108 KHz pulse-train to the base of Q1, which in turn kicks
current through inductor L1, to boost voltage at C3 , using diode D2.

The PIC’s internal voltage comparator compares the output from one of the
four voltage dividers (R5-R12 and VR1-VR4) to its i nternal voltage reference.
When the measured voltage is too high, the PIC’s in ternal PWM circuit stops
producing pulses to Q1. Once the measured voltage f alls below the reference,
the PIC’s PWM again generates pulses. In this way, Vpp is produced and
regulated by the PIC.

Firmware selects which of the four voltage dividers is used for this
feedback, depending on what Vpp voltage is required . The resistor values of
each divider have been chosen to produce the variou s Vpp values needed for
the various EPROMs supported by the ME27000.

Resistor R3, transistor Q2, and diodes D3 and D4 se rve as an approximately
100 mA current limiter for Vpp. Q2 is normally satu rated, and the voltage
drop across this circuit is 1.4V. If Vpp current ex ceeds about 100 mA, Q2
will come out of saturation, and the voltage drop a cross it will rise,
causing Vpp to be reduced proportionally to Vpp cur rent. While generating
Vpp, the firmware connects another one of the volta ge dividers to it’s A/D
converter, to verify that the produced voltage is w ithin ±15% of the intended
voltage, and shuts the power supply (with an error message) down if not.
Thus, when Vpp current is very much in excess of ab out 100 mA (which will
occur only when something is wrong with the EPROM b eing programmed), the
firmware performs a foldback current limiting funct ion for Vpp.

Vpp can be directed to any one of the following ZIF socket pins: 1, 20, 22,
23. If Vpp is directed to ZIF pin 20, then it will be one diode drop (about
0.7V) higher than on the other pins. This is to sup port EPROMs like the 2708,
which need about 26V for Vpp, compared to about 25V for other EPROM Device
Types.

6.7 EPROM Digital Pin Interface

All signals to the EPROM are buffered.

The EPROM data pins are buffered with a 74LVC245 (t he External Data Buffer).
The EPROM address pins 0 through 7 are buffered wit h a 74LS374 8-bit latch
(the Low Address Latch). The remaining EPROM addres s and control pins are
buffered by logic that allow these signals to be as signed to one of several
pins, and to be set to more than just digital signa l voltages. Many of these
signals are controlled by another 74LS374 8-bit lat ch, called Port F. The
remaining digital signals are controlled by the PIC ’s internal ports.

The the External Data Buffer, Low Address Latch, an d Port F are all driven by
the same 8 data Port D pins of the PIC microcontrol ler. The latch signal for
the Low Address Latch is also the signal that drive s the BUSY light. The
latch signal of Port F is also the signal that driv es the ERROR light.

 ME27000 Programmer

18 March 2024 33 Martin Eberhard

Section 7. Downloading Firmware via the Serial Port

You can load new ME27000 firmware via the serial po rt. Most likely, you will
load a firmware update that I have emailed to you. However, if you have the
programming skills and I am not providing some firm ware feature that you
need, then you can create your own firmware (probab ly by modifying mine), and
download that to your ME27000.

The ME27000 firmware is divided into two components : the ME27000 Loader
(which cannot be downloaded via the serial port) an d the ME27000 Programming
Firmware (the Programming Firmware). The primary fu nction of the Loader is to
load new Programming Firmware via the serial port, eliminating the need to
use a PIC programming device, such as the PICkit 3.

This section describes how to load new Programming Firmware.

7.1 Firmware Download Instructions

Connect your ME27000 to the serial port of your com puter (or a serial port
dongle on the USB port of your computer) and start a terminal program, such
as Hyperterm. Set up the terminal program this way: 9600 baud, 8 data bits,
no parity, XOFF/XON handshaking enabled .

Install a shunt between pins 1 and 2 of J4, the IC P connector, and then
power the programmer on. You will see the Loader me ssage, instead of the
ME27000 sign-on banner:

 ME27000 Loader 1.0

When you see this message, the ME27000 is ready to receive a Programming
Firmware file in Intel Hex format. The Loader expec ts to see an Intel Hex
file exactly like that produced by Microchip’s MPAS M assembler.

Send the hex file (typically, ME27000.hex) to the M E27000. It will take a few
minutes to download, and you should see the hex fil e as it downloads. If
there are any errors, they will be flagged with a b rief error message:

Message Meaning
 ?Csm Checksum error in Intel Hex record
 ?Hex Illegal (non-hex) character received
 (Only ‘0’-‘9’ and ‘A’-‘F’ are allowed)

The Loader will first read the entire Intel Hex fil e into its RAM (and so
does not require any serial port handshaking).

When the firmware load is complete, the Loader will print the total number of
Intel Hex records loaded, as well as the number of errors detected. If the
error count is anything but 0000, the firmware load failed, and the
downloaded firmware is most likely corrupted. (The original programmer
firmware is still intact and can vbe run by removin g the shunt on J4 and
power-cycling the programmer.)

If no errors were detected during the Hex load, the Loader will then write
the file to its program flash memory, and the read it back to verify the
write. Verify errors are reported to the console.

If the load is successful, you can jump to the new Programming Firmware by
typing the ESC key several times. Or you can power- cycle the ME27000.

If the load fails for any reason, you can try again immediately after the
failed load, when Loader message is printed. Or, yo u can power-cycle the
ME27000 (with the shunt in place in J4) to invoke t he Loader again.

 ME27000 Programmer

18 March 2024 34 Martin Eberhard

7.2 Intel Hex File Format for Firmware Downloads

This section specifies the format of Intel Hex file s that are accepted by the
Loader, as well as the error messages that are prin ted by the Loader. This
Intel hex format is exactly the format produced by Microchip’s MPASM
assembler. Note that this specification is slightly different than Intel Hex
files accepted by the Programming Firmware.

An Intel Hex record is defined as follows:

:NNAAaaTTDDDDDD..DDDDCC

• A colon marks the beginning of an Intel Hex record. All characters are
ignored until a colon has been received. This means that comment lines in
the Intel Hex file (that contain no colons) will be ignored. This also
means that any record where the initial colon has b een corrupted will be
ignored without being caught as an error .

• NN defines the number of Data bytes in the record.

• AAaa is the address field of the record. AA is the most significant
address byte; aa is the least significant address b yte.

• TT is the record type.

• DD is a data byte. Data bytes belong in memory at s equential addresses,
starting at AAaa. The record should have NN data by tes.

• CC is the checksum of the record. The low byte of t he sum of NN, AA, aa,
TT, all the DDs, and CC should be 00.

• A carriage return (CR), a line feed (LF), or both, is optional.

Three Intel Hex record types are accepted; all othe r records are ignored.

1) Type 00 records are data records. Data records are written to FLAS H only
if a Type 04 record has already been received, with extended address =
0000. If no Type 04 record has been received yet, o r if the last Type 04
record set the extended address to something other than 0000, then the
data record will be ignored. This means (for exampl e) that an Intel Hex
file cannot write to the Config registers of the PI C.

2) A Type 01 record (with 0 bytes of data) is an End-Of-File record, a nd is
required at the end of the file to force a write to FLASH of the last RAM
buffer full of data. NOTE: a data record (Type 00) with 0 bytes of data is
NOT treated as an End-of-file record.

3) Type 04 records set the extended address for the subsequent record s. The
"address" field of the Type 04 record (bytes 2 and 3) is ignored. The
first 2 bytes of the "data" field (bytes 5 and 6) s et the extended
address. MPASM sets the extended address to 0000 fo r FLASH data, and to
other values for the PIC Config registers, EEPROM, etc.

The hex file must end with a type 01 (End-Of-File) record.

 ME27000 Programmer

18 March 2024 35 Martin Eberhard

Section 8. ME27000 Programmer Assembly

Assembly requires basic electronics skills, a decen t soldering iron and
solder, needle-nosed pliers, diagonal cutters, wire strippers, and a couple
of screwdrivers.

Take your time to install all components in their c orrect locations, with the
correct orientation. Install all components flush t o the PC board, and with
good, clean soldering. Inspect your work when you a re done.

The silkscreen on the PC board is verbose, mainly t o help you assemble it
correctly and to aide in debugging. But the silkscr een may not be perfect.
When in doubt, refer to these assembly instructions .

Be careful with diode type and orientation: the dio de’s stripe must align
with the stripe on the silkscreen. The silkscreen h as an abbreviation of the
diode number, to aide in putting the correct diode in each location.

Also pay attention to the orientation of the electr olytic capacitors.
Reversing these capacitors can cause some excitemen t.

There is logic to the order of assembly: the lower- profile components first,
the higher ones later. Also, unusual components are installed first, so that
bulk components will not be installed in the wrong places.

All unlabeled transistors are 2N3906. Most unlabele d resistors are 1K, 5%.
All unlabeled diodes are 1N5917.

When installing IC sockets, check their orientation , and make sure they seat
completely against the PC board with no pins bent u nder. I suggest soldering
them in place with just two diagonally-opposite pin s, then re-heating these
solder connections while gently pressing the socket to the board, to get them
nice and tight. Solder the rest of the pins once th e socket is flush to the
PC board.

This manual has check boxes next to every step, so you can check off each
step when it is complete. Some of the check boxes a re at the left margin;
others are the left column of tables.

 ME27000 Programmer

18 March 2024 36 Martin Eberhard

8.1 Printed Circuit Board Assembly

Follow these steps to assemble the PC board. The or der of component
installation has been chosen to ease assembly and t o minimize mistakes. Low-
profile components are inserted first, so that the PC board will lie flat on
your workbench during soldering, and less-common co mponents are installed
before more-common components. Most component value s are printed (or
abbreviated) on the PC board silkscreen.

Step 1. Install the following diodes. Be very careful about orientation and
also be very careful to put the correct diode in each location. It’s a
good idea to bend the leads such that the last 2 or 3 digits of the
diode number will be readable when the diodes are s oldered in place.

√√√√ Qty Locations Component Digikey Part Number

 1 D19 BZX79C4V7 BZX79C4V7-T50ACT-ND

 10 D6-D13,D15,D16 BAT46 BAT46CT-ND

Step 2. Install the following 1/4 W, 1% resistors.

√√√√ Qty Locations Value Digikey Part Number

 1 R49 93.1 Ω 1% 93.1XBK-ND

 3 R2,R22,R50 274 Ω 1% 274XBK-ND

 1 R52 866 Ω 1% 866XBK-ND

 1 R1 910 Ω 1% 13-MFR-25FTE52-910RCT-ND

Step 3. Install the following 1/4 W and 1/2 W, 5% resistors . Note that the
silkscreen valuses for R7, R9, and R11 are incorrec t.

√√√√ Qty Locations Value Digikey Part Number

 1 R3 6.8 Ω 6.8QBK-ND

 5 R29,R35,R37,R43,R61 100 Ω 100QBK-ND

 6 R23,R30,R40,R48,R57,R59 330 Ω 330QBK-ND

 4 R24,R27,R31,R58 470 Ω 470QBK-ND

 7 R17,R38,R41,R44,R45,R51,R53 680 Ω 680QBK-ND

 3 R5,R7,R11 2 KΩ 2.0KQBK-ND

 5 R25,R26,R28,R32,R62 2.2 KΩ 1/2W S2.2KHTR-ND

 1 R9 2.4 KΩ 2.4KQBK-ND

 3 R16,R18,R34 4.7 KΩ 4.7KQBK-ND

 2 R15,R20 10 KΩ 2019-CFS1/4C103J-ND

 6 R6,R8,R19,R21,R39,R47 22 KΩ MFR-25FBF52-22K-ND

 2 R10,R12 43 KΩ MFR-25FBF52-43K-ND

 9 R13,R14,R33,R36,R46,R54-R56,R60 1 KΩ 1.00KXBK-ND

Step 4. Install the following 1 W, 5% (small form-factor) r esistors.

√√√√ Qty Locations Value Digikey Part No.

 1 R4 1 KΩ 738-RSMF1JB1K00-ND

 1 R42 2 KΩ or 2.2 KΩ 2.0KW-1-ND

 ME27000 Programmer

18 March 2024 37 Martin Eberhard

Step 5. Install the following diodes. Be very careful about orientation

√√√√ Qty Locations Component Digikey Part Number

 3 D1,D17, D18 1N5817 1N5817GOS-ND

 4 D3-D5,D14 1N4004 1N4004-TPMSCT-ND

Step 6. Install all of the DIP sockets flush to the PC boar d, paying attention
to their orientation:

√√√√ Qty Locations Component Digikey Part Number

 2 U7,U11 8-pin DIP 2057-ICS-308-T-ND

 5 U3,U8-U10,U16 14-pin DIP ED3045-5-ND

 5 U1,U2,U5,U6,U15 16-pin DIP 2057-ICS-316-T-ND

 3 U12-U14 20-pin DIP 2057-ICS-320-T-ND

 1 U4 40-pin DIP ED3048-5-ND

Step 7. Install the resistor pack, being careful to orient it with pin 1
toward the top of the PC board:

√√√√ Qty Locations Component Digikey Part Number

 1 RP1 10K, 9-pin, 8-resistor SIP R-pack 4609x-101-103LF-ND

Step 8. Install the large power diode in D2. Be very careful about
orientation. The leads need to be bent close to the diode body.

√√√√ Qty Locations Component Digikey Part Number

 1 D2 Diode, 1N5821 1N5821RLGOSCT-ND

Step 9. Install the following ceramic capacitors.

√√√√ Qty Locations Value Digikey Part Number

 3 C27-C29 0.047 µF, 50V 445-173599-1-ND

 1 C17 0.47 µF 25V 445-181293-ND

 7 C9-C12,C14-C16 1µF, 16V 445-173583-1-ND

 3 C5,C6,C20 10 µF, 10V 445-181283-ND

12

C4,C7,C8,C13,C18,C19,

C21-C26
0.1µF, 100V 399-4329-ND

 ME27000 Programmer

18 March 2024 38 Martin Eberhard

Step 10. Install the following TO-92 devices. Be very sure y ou put the
right component in each location. Double-check thei r orientation. When
installed, these components should stand straight, and have about 3/16
inch of lead between the PC board and their plastic bodies.

√√√√ Qty Locations Component Digikey Part Number

 1 V2 MCP1700-3302E/TO MCP1700-3302E/TO-ND
 1 V3 LM317L 497-1573-5-ND
 1 Q9 2N3904 2N3904FS-ND
 1 Q13 2N6520 2N6520TACT-ND
 2 Q3,Q22 2N7000 2N7000FS-ND
 16 Q4-Q8, Q10-Q12,Q14-21 2N3906 641-1946-ND

Step 11. Install 5 trim-pots in the following locations, and set them to
approximately the center of their ranges. Push them firmly into the
holes in the PCB before soldering - they will snap into place.

√√√√ Qty Locations Component Digikey Part Number

 5 VR1-VR5 500 ohm Trimpot 3306P-501-ND

Step 12. Install LEDs in the following locations, paying att ention to
their orientation. (The LEDs have a flat side that should match the
flat side shown on the silkscreen LED outline and t he shorter lead goes
in the square pad, toward the bottom edge of the bo ard.)

√√√√ Qty Locations Component Digikey Part Number

 1 LED1 Blue LED 67-1751-ND
 1 LED2 White LED 1516-QBL8IW60D-NW-ND
 1 LED3 Amber LED 754-1872-ND

 1 LED4 Red LED 1516-1359-ND

Step 13. Install the four electrolytic capacitors. Be sure t o install them
with the correct orientation. The negative sign on each capacitor
should be farthest from the + sign on the PC board. Note that C3 is
incorrectly labeled “470 uF” on Rev C PC boards.

√√√√ Qty Locations Value Digikey Part Number

 1 C3 100 µF, 50V, low ESR 399-ESX107M050AH2AA-ND

 2 C1-C2 470 µF, 35V, low ESR 399-6086-ND

Step 14. Install the inductor snugly against the PC board. M ake sure the
wires are pulled tight through their holes before s oldering.

√√√√ Qty Locations Value Digikey Part Number

 1 L1 100 uH 732-1424-ND

 ME27000 Programmer

18 March 2024 39 Martin Eberhard

Step 15. Install the following power transistors, standing s traight up
from the board. Note that although the orientations are not the same,
both transistors should be installed with their wri ting facing toward
the left side of the PV board.

√√√√ Qty Location Component Digikey Part Number

 1 Q1 KSC2690 KSC2690AYSFS-ND
 1 Q2 2SA2222SG 2SA2222SGOS-ND

Step 16. Install connectors in the following locations. Be s ure they are
installed completely flush to the board. Also be su re that the larger
holes are completely filled with solder.

√√√√ Qty Locations Component Digikey Part Number

 1 J1 Barrel, 5.5mm x 2.0mm CP-063AH-ND
 1 J2 DC9F AE10921-ND
 1 J3 USB-B 2057-USB-B-S-RA-WT-SPCC-ND
 1 J4 Header, 6-pin A31116-ND

Step 17. Screw the TO-220 voltage regulator to its heatsink, and then
solder this subassembly onto the PC board.

√√√√ Qty Location Component Digikey Part Number

 1 V1 LM317 497-1575-5-ND

 1 V1 Heat sink 345-1023-ND

 1 V1 6-32 x 3/8” screw H356-ND

 1 V1 6-32 nut H220-ND

Step 18. Install the ZIF socket . Install the socket with its handle toward
the top edge of the PC board - the handle should be closest to the
marked pin-1 pad. It is very important to open the socket (handle
perpendicular to the PC board) before you solder it in place. Failure
to open the socket before soldering will cause the socket to open
incorrectly during use.

√√√√ Qty Locations Component Digikey Part Number

 1 ZIF1 28-pin ZIF socket

Step 19. Install the power switch. Make sure it is flush to the board
while soldering and that all holes are completely f illed with solder.

√√√√ Qty Locations Component Digikey Part Number

 1 SW1 SPDT switch EG2365-ND

Step 20. Install a 4-40 x 5/8” screw and a 4-40 nut as a sup port leg in

each of the four corner holes. Install one more scr ew and nut in the
hole near the lower left corner of the ZIF socket. (This 5 th screw is
to prevent board flexing when using the ZIF socket.)

√√√√ Qty Locations Component Digikey Part Number

 5 PCB corners & near Q13 4-40 x 5/8” screw H348-ND

 5 PCB corners & near Q13 4-40 nut 36-9600-ND

 ME27000 Programmer

18 March 2024 40 Martin Eberhard

Step 21. If you will use a MAX660 in location U11, then sold er a jumper
wire from pin 1 of u11 to pin 8 of U11. (Do not ins tall this jumper if
you are using an ADM660.)

Step 22. Inspect your work! Check for shorts, inadequate sol der, component
orientation, etc. This is a high-current circuit, a nd construction
mistakes will probably damage components.

Note that the ICs are not yet installed on the PCBA . This will be done
after some power supply checkout.

 ME27000 Programmer

18 March 2024 41 Martin Eberhard

Section 9. Checkout and Adjustment

Basic checkout requires a voltmeter and either a co mputer terminal (such as
the most excellent Wyse WY-30 1) or a PC with a serial port and a terminal
emulation program. These tests are sequential - if you find a defect, do not
move on until the defect has been corrected!

CAUTION: There are high voltages present on this bo ard - not high enough to
hurt you (unless you really try), but definitely hi gh enough to damage
components if you accidentally short a high-voltage signal to a digital
signal. Be especially careful when probing the two 7407’s, as these chips
have both high-voltage signals on their pins, as we ll as digital signals from
other chips, including from the PIC. One false move with your meter or scope
probe and you will blow the output driver on some o ther chip. Voice of
experience here...

9.1 Basic PCBA Checkout

These measurements are mainly made on the labeled t est points along the top
edge of the PC Board.

Step 1. At this point, no ICs should be installed. Turn the power switch off
(toggle toward the board edge), and plug the AC Ada pter into J1. Hook
the ground lead of your voltmeter to the GND test p oint (TP1). Turn
the power on. The white “POWER” LED should light.

Step 2. Measure the following voltages to confirm power sup ply operation:

√√√√ Measure Measurement Meaning

TP2

12.0V to 12.3V Correct operation

 >12.3V Incorrect wall adapter?

<12V
Incorrect wall adapter? PC board short?
Wrong component somewhere?

TP4

5.38V to 5.49V Correct operation

 otherwise R1 and R2 correct? PC board short?

TP3

3.25V to 3.35V Correct operation

 otherwise Correct component in V2? PC board short?

TP7

Adjust VR5 for
6.25V ± 0.03V

Correct operation

 Can’t adjust Incorrect R46 or R47? PC board short?

TP6

11.1V to 11.7V Correct operation

 Otherwise Check switcher circuit: L1,D1,R3,Q1,D4, e tc.

Step 3. Turn the ME27000 off and install the ADM660 IC in U 11. Turn the
ME27000 back on, and measure the -5V supply.

√√√√ Measure Measurement Meaning

TP5

-5V to -5.3V Correct operation

 Otherwise
Incorrect C6 or C8? U11 installed correctly?
PC board short?

1 The Wyse Technology WY-30 was the first product th at I designed professionally.

 ME27000 Programmer

18 March 2024 42 Martin Eberhard

Step 4. Turn off the ME27000 Programmer. Install ICs in the following
locations, paying attention to orientation. Be care ful not to bend any
leads as you insert the ICs.

√√√√ Qty Locations Component Digikey Part #

 1 U1 MAX232 RS232 Tranceiver 296-26139-5-ND

 1 U3 MCP2221A USB Tranceiver MCP2221A-I/P-ND

 1 U10 74ACT04 Hex inverter, CMOS outputs 296-4351-5-ND

 3 U8, U9,U16 74LS07 Hex open collector driver 296-14878-5-ND

 3 U5,U6,U15 74LS139 Dual 2:4 decoder, CMOS outputs 296-1640-5-ND

 1 U2 74LS157 Quad 2:1 multiplexor 296-1645-5-ND

 2 U12,U14 74LS374 8-bit flipflop, CMOS outputs 296-1662-5-ND

1 U13

 74LVC245A 8-bit bi-directional driver,3.3V

outputs, 5V tolerant inputs
296-8503-5-ND

 1 U7 23A512 65K-byte serial SRAM 23LC512-I/P-ND

1 U4

PIC Microcontroller, pre-programmed with

ME27000 firmware

PIC18F45K20-I/P-ND

+ ME27000 Firmware

U4 is a PIC microcontroller with internal flash mem ory. You must use
a PIC that has been pre-programmed with the ME27000 Loader Kernel
1.0, or program it in place yourself, using a PC, a Microchip PICkit-
3 programming device, and my program file. (J4 is t he PICkit-3
compatible in-circuit programming connector for thi s purpose.) The
PIC must also be loaded with the ME27000 Programmin g Firmware, which
can be loaded via the serial port - see section 7. If you are using
the PIC that I supplied, then it has already been p rogrammed with
both the loader and the programming firmware.

Step 5. Turn the ME27000 back on, and re-check the voltages from
steps 2 and 3 above.

 ME27000 Programmer

18 March 2024 43 Martin Eberhard

9.2 Microcontroller Bring-Up

Step 2. Plug a terminal (or a PC with a terminal program) i nto the ME27000
Programmer’s serial port connector, making sure to connect the
transmit signal (TxD, pin 2) from the ME27000 to re ceive signal of the
terminal and the receive signal (RxD, pin 3) from t he ME27000 to the
transmit signal of the terminal. (No hardware hands haking signals are
required.) For a normal PC, you will need a straigh t-through DA-9S to
DA-9P.

Step 3. Set up the terminal (or terminal program) this way:

Baud Rate 9600

Stop Bits 1

Parity None

Handshake XON/XOFF

Step 4. Plug in the ME27000 Programmer and turn it on. On t he terminal screen,
you should see a sign-on banner and a prompt like t his:

=============================
* ME27000 *
=============================
* Orphan EPROM Programmer II *
* By Martin Eberhard *
* Firmware Version 1.00 *
=============================

Serial Number: C001
Current Device Type is 00: 2704
EPROM data invert: off
Type ? for command list
>

 If you do not see this banner, check the following :

√√√√ Check

 Is the terminal setup right? - baud rate, etc. as above

 If you are using a PC (maybe with an RS-232C - to - USB dongle),
check that this is all working correctly. You can r oughly test it
with a loop-back from pin 2 to pin 3.

 TxD, RxD and GND wiring from the ME27000 Programmer to the
terminal. Are TxD and RxD reversed?

 Are IC1 and IC2 inserted correctly?

 Is IC2 in fact programmed? (With the right code?)

Step 5. Just the white “POWER” LED should now be lit. Debug if not.

√√√√ LED State Meaning

 LED2
Power

On Correct

Off PC Board short? IC inserted backwards?

 LED3

Busy

Off Correct

On Short on PC board?

 LED4 Off Correct

 Error On Short on PC board?

 ME27000 Programmer

18 March 2024 44 Martin Eberhard

Step 6. Type ‘?’ to see a full help screen. You will try ou t all of the
commands on this screen in the following sections.

9.3 Microcontroller-Assisted Checkout and Adjustment

NOTE: The following steps involve dialog with the ME2700 0’s monitor. The
monitor’s prompt is ‘>’. You should type what is in bold , and the monitor
will respond as indicated. If you turn off the powe r between steps, you may
need to repeat the dialog up to the point where you are working, when you
power back on. Most settings (such as the selected EPROM Device Type) are
stored in EEPROM, and will be retained when the pow er is off.

All voltages are referenced to ground - reconnect t he voltmeter ground lead
to the PCBA GND pin (TP1). If the terminal and/or M E27000 Programmer are off,
then turn them back on.

Step 1. Test and Adjust Vpp Supply

Connect the positive lead of your voltmeter to TP6 for the following
tests.

>AVPP 1
Vpp set for 12.80V (Measure at TP6)
Note: Vpp will be about 0.7V higher on ZIF pin 20
>

Now, both LEDs should be lit:

√√√√ LED State Meaning

 LED2
Power

On Correct

Off LED1 Orientation?

 LED3

Busy

On Correct

Off LED orientation? PC board short?

 LED4 On Short circuit in Vpp circuit?

 Error Off Correct

Measure the voltage at TP6

√√√√ Measurement Meaning Action

 11V to 16V Correct operation Adjust VR1 for 12.80V ± 0.05V

0V to 10.9V Problem

• Correct component in R5 and R6?
• Problem with Vpp Switcher

circuit?

 >16V Problem • Correct component in R5 and R6?

>AVPP 2
Vpp set for 13.2V (Measure at TP6)
Note: Vpp will be about 0.7V higher on pin 20 of th e ZIF socket
>

Measure the voltage at TP6

√√√√ Measurement Meaning Action

 11V to 17V Correct operation Adjust VR2 for 13.20V ± 0.05V

0V to 10.9V Problem

• Correct component in R7 and R8?
• Problem with Vpp Switcher

circuit?

 >17V Problem • Correct component in R7 and R8?

 ME27000 Programmer

18 March 2024 45 Martin Eberhard

>AVPP 3
Vpp set for 21.1V (Measure at TP6)
Note: Vpp will be about 0.7V higher on pin 20 of th e ZIF socket
>

Measure the voltage at TP6

√√√√ Measurement Meaning Action

 16V to 25V Correct operation Adjust VR3 for 21.10V ± 0.05V

0V to 15.9V Problem

• Correct component in R9 and R10?
• Problem with Vpp Switcher

circuit?

 >25V Problem • Correct component in R9 and R10?

>AVPP 4
Vpp set for 25.2V (Measure at TP6)
Note: Vpp will be about 0.7V higher on pin 20 of th e ZIF socket
>

Measure the voltage at TP6

√√√√ Measurement Meaning Action

 19V to 32V Correct operation Adjust VR4 for 25.20V ± 0.05V

0V to 18.9V Problem

• Correct component in R11 and R12?
• Problem with Vpp Switcher

circuit?

 >32V Problem • Correct component in R11 and R12?

>TOFF {Turns off the Vpp supply and the Busy light .}

Step 2. Test Data Outputs

>WD 55
>

The BUSY light should now be on. Use a voltmeter to measure the
voltages on the ZIF socket data pins (11-13 and 15- 19) to see 55h
there. Logic low should be less than 0.2V, and logi c high should be
more than 3V. Try it again with the opposite polari ties:

>WD AA
>

Resolve any problems with the data driver before co ntinuing.

Step 3. Test the Address Drivers

First, select a 64K EPROM, which will have 16 addre ss lines:

>ET 4E
Current Device Type is 4E: 27512
>

Now write a pattern to the address lines:

>WA AAAA
>

 ME27000 Programmer

18 March 2024 46 Martin Eberhard

The ETD command will show you a picture of the EPRO M:

Type 4E: 27512, size: 65536 x 8
 -----v-----
 A15 -| 1 28 |- Vcc Programming Vcc = 6.0V
 A12 -| 2 27 |- A14
 A7 -| 3 26 |- A13
 A6 -| 4 25 |- A8
 A5 -| 5 24 |- A9
 A4 -| 6 23 |- A11
 A3 -| 7 22 |- -OE/Vpp 13.15V
 A2 -| 8 21 |- A10
 A1 -| 9 20 |- -CS/-PGM Supported Devic es:
 A0 -| 10 19 |- D7 AMD AM2751 2
 D0 -| 11 18 |- D6
 D1 -| 12 17 |- D5
 D2 -| 13 16 |- D4
 GND -| 14 15 |- D3

Vpp during read: 5.0V
Programming pulse on PGM pin
Programming pulse width: 1000 uS
Programming algorithm:
 Pass 1: write each byte until it matches (P times)
 Pass 2: write each byte until it matches (P times),
 and then with one 2 * 1000 uS pulse
 Maximum P=25
>

Use this picture as a guide to measure the 16 addre ss line voltages.
Try it again with address bits at the opposite pola rities:

>WA 5555
>

Resolve any problems with the address drivers befor e continuing. N ote that
the absence of a load on the upper address lines ma y cause a false voltage
reading. If a signal is not a solid logic-low, test it agai n after inserting
a 1K resistor in the ZIF socket, between ground (pi n 14) and the pin you are
testing. If the voltage levels are acceptable with this test resistor, then
the driver is okay.

Step 4. Test the Data Receivers

>TVCC 1
Vcc pin 28 active state
(ZIF pin 28 should measure about 5.25V.)
>WD 0
>RD
Data Read: 00
>

Use a 220 ohm resistor to pull each of the data pin s high (to pin 28
of the ZIF socket) or low (to pin 12 of the ZIF soc ket), and test the
result with the RD command. (Floating pins will hav e random results.)

Step 5. Test ZIF pin 28 modes

Pin 28 should now measure about 5.2V.

>TVCC 2
Vcc pin 28 at programming level
>

 ME27000 Programmer

18 March 2024 47 Martin Eberhard

Pin 28 should now measure 6.00V.

>TVCC 0
Vcc pin 28 inactive state
>

Pin 28 should now measure less than 0.3V.

Step 6. Test Vcc = 6.37V on ZIF pin 28

Select an EPROM with programming Vcc=6.25V.

>ET 50

Current Device Type is 50: 27C512-Intel

Turn on Vcc for programming.

>TVCC 2
Vcc pin 28 at programming level
>

Pin 28 should now measure 6.37V.

>TVCC 0
Vcc pin 28 inactive state
>

Step 7. Test ZIF pin 22 modes

>ET 53
Current Device Type is 53: 27C512AMC
>TVPP 3
Vpp pin 22 programming mode 13.15V
>

Pin 22 should now measure 13.1V.

>TVPP 1
Vpp pin 22 read mode
>

Pin 22 should now measure about 4.8V

>TVPP 0
Vpp pin 22 powered off
>

Pin 22 should be less than 0.3V

Step 8. Test Vbb and Vdd

>ET 5
Current Device Type is 05: 2708

(The Busy LED should have turned off.)
>TVBD 1
-5V Vbb pin 21 and +12V Vdd pin 19 active state
>

ZIF socket pin 23 should now measure about -5.1V, a nd ZIF socket pin 21
should now measure about +12V.

>TVBD 0
-5V Vbb pin 21 and +12V Vdd pin 19 inactive state
>

ZIF socket pins 23 and 21 should now measure about 0V.

 ME27000 Programmer

18 March 2024 48 Martin Eberhard

Step 9. Test -OE modes on ZIF pin 22

>TOE 2
-OE pin 20 at programming level
>

ZIF pin 22 should now measure about +12V

>TOE 1
-OE pin 20 active state
>

ZIF pin 22 should now measure about 0V

>TOE 0
-OE pin 20 inactive state
>

ZIF pin 22 should now measure about 4.8V.

Step 10. Test ZIF pin 20 positive voltage modes

>TVPP 3
Vpp pin 18 programming mode 25.8V
>

ZIF pin 20 should now measure about 25.8V.

>TVPP 0
Vpp pin 18 powered off
>

ZIF pin 20 should now measure less than 0.4V.

>ET 25
Current Device Type is 25: 27HC641S
>WA 1000
>

ZIF pin 20 should now measure more than 3.2V
>WA 0
>

ZIF pin 20 should now measure less than 0.4V.

Step 11. Test ZIF pin 21 logic modes

>WA 800
>

ZIF pin 21 should now measure about 4.5V.

>WA 000
>

ZIF pin 21 should now measure less than 0.4V.

Step 12. Test ZIF pin 23 positive modes

>ET 6
Current Device Type is 06: TMS2758
>TVPP 3
Vpp pin 21 programming mode 25.2V
>

ZIF pin 23 should now measure about 25.2V.

>TVPP 1
Vpp pin 21 read mode
>

ZIF pin 23 should now measure about 4.5V

 ME27000 Programmer

18 March 2024 49 Martin Eberhard

>TVPP 0
Vpp pin 21 powered off
>

ZIF pin 23 should now measure less than 0.2V. (Less than 0.4V with no load)

Step 13. Test ZIF pin 1 modes

>ET 36
Current Device Type is 36: 27128-Intel
>TVPP 3
Vcc pin 24 at programming level
>

ZIF pin 1 should now measure about 21V.

>TVPP 1
Vcc pin 24 read mode
>

ZIF pin 1 should now measure about 4.5V.

>TVPP 0
Vcc pin 24 powered off
>

ZIF pin 1 should now measure less than 0.39V.

Step 14. Test ZIF pin 26 modes

>ET E
Current Device Type is 0E: TMS2716
>TVCC 2
Vcc pin 24 at programming level
>

ZIF pin 26 should now measure about 12V.

>TVCC 1
Vcc pin 24 on
>

ZIF pin 26 should now measure about 5.2V.

>TVCC 0
Vcc pin 24 off
>

ZIF pin 26 should now measure less than 0.2V.

>ET 10
Current Device Type is 10: 57C191C
>TVCC 2
Vcc pin 24 at programming level
>

ZIF pin 26 should now measure about 6.37V.

>TVCC 1
Vcc pin 24 on
>

ZIF pin 26 should now measure about 5.2V.

>TVCC 0
Vcc pin 24 off
>

ZIF pin 26 should now measure less than 0.2V.

 ME27000 Programmer

18 March 2024 50 Martin Eberhard

Step 15. Test EPROM ID function on ZIF pin 24

>TID 0
ZIF Pin 24 ADC result: A0 {The exact hex valu e may vary)
Press any key to end
>

ZIF pin 24 should now measure about 12V.

Press any key.

Step 16. Reset When Done

>RESET
=============================
* ME27000 *
=============================
* Orphan EPROM Programmer II *
* By Martin Eberhard *
* Firmware Version 1.00 *
=============================

Serial Number: C001
Current Device Type is 10: 57C191C
EPROM data invert: off
Type ? for command list
>

Step 17. Test with some EPROMs

Use the BF command to fill the buffer with a patter n. Select the
correct EPROM Device Type with the ET command, and then program a
few EPROMs to verify basic functionality.

 ME27000 Programmer

18 March 2024 51 Martin Eberhard

Section 10. Functional Testing

Power-off the ME27000 Programmer. If you were testi ng using a terminal, then
connect it to a computer with a terminal program th at can send and receive
files. Set up the terminal program for 9600 baud, 1 stop bit, no parity. This
program expects a display screen that is at least 2 4 rows of 80 columns, so
adjust the display of your terminal appropriately.

Power-on the ME27000, and see that your terminal pr ogram can talk to it.

Note: The ME27000 Programmer uses a ‘File Address O ffset’ when uploading and
downloading files. The File Address Offset is set b y the user (with the F AO
command), and defines an 8-bit offset for the high address byte in the hex
files. During uploads, this file address offset is added to the high address
byte in the hex records. During downloads, the reco rd data is only loaded
into the buffer if the high address byte in the hex record minus the File
Address Offset is 00 through 1F. If you issue the F AO command with no
parameters, then you have selected automatic file a ddress offset mode, where
the file address offset is assumed to be the high-b yte of the address in the
first received hex record.

During downloads, the hex records are checked for v alid record types, correct
checksum, legitimate hexadecimal characters, correc t record count (for
Motorola S5 records). Any errors in these checks wi ll generate a brief error
message and bump the error count.

The record count, loaded record count (records with where the address high
byte minus the File Address Offset was between 00 a nd 1F), and error count
are displayed, and then reset whenever an end-of-fi le record is encountered.

Note that no command is required to start downloadi ng to the ME27000
Programmer. The ME27000 simply detects a valid Inte l Hex (any line that
starts with ‘:’) or Motorola record (any line that starts with ‘S’).
(Interestingly, you could mix and match S-records a nd Intel Hex records in
the same download...)

10.1 Basic Buffer Operations and File Transfer

You can always pause ME27000 transmission using the space bar on your
keyboard. Any key will restart transmission when pa used.

Step 1. Display the Default Buffer Data

>BD
0000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

<etc.>

1FC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1FD0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1FE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
1FF0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Buffer checksum: 00
>

 ME27000 Programmer

18 March 2024 52 Martin Eberhard

Step 2. Fill the Buffer with a Constant

>BF 55
>Buffer filled with 55
>BD 40 100
040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0A0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
0F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 5 5 UUUUUUUUUUUUUUUU
Buffer range checksum: 00
>FB AA
>Buffer filled with AA
>BD 32 81
032: AA AA AA AA AA AA AA AA AA AA AA AA AA AA **************
040: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
050: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
060: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
070: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
080: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
090: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
0A0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
0B0: AA AA AA ***
Buffer range checksum: AA
>

(Note that you can display portions of the buffer b y specifying the
start address and the number of bytes to display.)

Step 3. Edit the Buffer

>BE 110
110: AA 01 AA 02 AA 03 AA 04 AA 05 AA 06 AA 07 AA 08
118: AA 09 AA <control-C>

>BD 100 40
100: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
110: 01 02 03 04 05 06 07 08 09 AA AA AA AA AA AA A A *******
120: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
130: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
Buffer range checksum: B3
>

Step 4. Upload Buffer Contents to your Computer as an Intel Hex File

You will need to use your terminal program to captu re the file in your
computer. I suggest calling the file INTEST.TXT.

For this demonstration, I am randomly setting the p age address to 0x68
- you will see the result in the file.

>FAO 68
>File Address Offset: 68

 ME27000 Programmer

18 March 2024 53 Martin Eberhard

>UI 0 200 {start file capture before hitting Return}
:10680000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8
:10681000AAAAAAAAAAAAAAAAA9AAAAAAAAAAAAAAD8
:10682000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8
:10683000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8
:10684000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8
:10685000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98
:10686000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88
:10687000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA78
:10688000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA68
:10689000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA58
:1068A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA48
:1068B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA38
:1068C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA28
:1068D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18
:1068E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA08
:1068F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8
:10690000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE7
:10691000010203040506070809AAAAAAAAAAAAAAA4
:10692000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7
:10693000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7
:10694000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7
:10695000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA97
:10696000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87
:10697000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77
:10698000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67
:10699000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57
:1069A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47
:1069B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA37
:1069C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA27
:1069D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA17
:1069E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07
:1069F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF7
:00000001FF
>

{Stop capturing and close the file on your computer }
Use a text editor to examine the file INTEST.TXT, t o make sure it
transferred correctly, and to delete the ‘>’ at the end.

Step 5. Upload Buffer Contents to your Computer as a Motoro la S-record File

You will need to use your terminal program to captu re the file in your
computer. I suggest calling the file STEST.TXT.

For this demonstration, I am randomly setting the p age address to 0x31
- you will see the result in the file.

>FAO 31
>File Address Offset: 31
>US 0 200 {start file capture before hitting Return}

S1133100AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1B
S1133110AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0B
S1133120AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFB
S1133130AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEB
S1133140AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADB
S1133150AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACB
S1133160AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB
S1133170AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
S1133180AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9B
S1133190AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8B
S11331A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7B
S11331B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6B
S11331C0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5B

 ME27000 Programmer

18 March 2024 54 Martin Eberhard

S11331D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4B
S11331E0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3B
S11331F0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2B
S1133200AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1A
S1133210010203040506070809AAAAAAAAAAAAAAD7
S1133220AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFA
S1133230AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEA
S1133240AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA
S1133250AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA
S1133260AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA
S1133270AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
S1133280AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9A
S1133290AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8A
S11332A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7A
S11332B0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6A
S11332C0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5A
S11332D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4A
S11332E0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3A
S11332F0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2A
S9030000FC
>

{Stop capturing and close the file on your computer }

Use a text editor to examine the file STEST.TXT, to make sure it
transferred correctly, and to delete the ‘>’ at the end.

Step 6. Test downloading files to the ME27000 Programmer, u sing the two files
we just created. First we will fill the buffer with something
different, to be sure. (If you are paranoid, power- cycle the ME27000.)
Note that we set the File Address Offset to match t he base address in
the hex file - otherwise nothing will get loaded in to the buffer.

>BF 99
>Buffer filled with 99
>BD 25 44
25: 99 99 99 99 99 99 99 99 99 99 99
30: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
40: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
50: 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99
60: 99 99 99 99 99 99 99 99 99
Buffer range checksum: A4
>FAO 68
>File Address Offset: 68

{Now, start sending the file INTEST.TXT to the ME27 000}

>:10680000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE8
:10681000AAAAAAAAAAAAAAAAA9AAAAAAAAAAAAAAD8
:10682000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8
:10683000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB8
:10684000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8
:10685000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA98
:10686000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA88
:10687000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA78
:10688000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA68
:10689000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA58
:1068A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA48
:1068B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA38
:1068C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA28
:1068D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA18
:1068E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA08
:1068F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF8
:10690000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE7
:10691000010203040506070809AAAAAAAAAAAAAAA4

 ME27000 Programmer

18 March 2024 55 Martin Eberhard

:10692000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7
:10693000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7
:10694000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7
:10695000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA97
:10696000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87
:10697000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77
:10698000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67
:10699000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA57
:1069A000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA47
:1069B000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA37
:1069C000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA27
:1069D000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA17
:1069E000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA07
:1069F000AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF7
:00000001FF
Records: 21, Bad Records: 00
20 records loaded into buffer with Address File Off set: 68
>BD 100 100
100: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
110: 01 02 03 04 05 06 07 08 09 AA AA AA AA AA AA A A *******
120: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
130: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
140: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
150: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
160: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
170: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
180: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
190: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1A0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1B0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1C0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1D0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1E0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
1F0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA A A ****************
Buffer range checksum: 33
>

You can test with the file STEST.TXT the same way. Remember that its
File Address Offset is 31.

10.2 EPROM Reading and Programming

Here, you need a few blank EPROMs - preferably seve ral types. This section
assumes 2732 EPROMs, but you can test with other ty pes instead. Known-good
EPROMs would be nice. You will also want an EPROM e raser, as you will be
filling EPROMs with junk.

Step 1. Low-voltage Operations

>ET 16
Current Device Type is 16: 2732

Install a blank 2732 into the ZIF socket, with pin 1 closest to the
ZIF socket handle.

>EB
EPROM is blank
>

{or...}
Error Address: XXXX EPROM: ZZ
{perhaps several errors}
Fail
>

Whether or not the EPROM is blank, you can read it back and see what

 ME27000 Programmer

18 March 2024 56 Martin Eberhard

it contains:

>ER
EPROM read into buffer
EPROM checksum:00
>BD 0 100
0000: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0010: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0020: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0030: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0070: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0080: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0090: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00A0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00B0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00C0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00D0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
Buffer range checksum: 00
>

(Obviously, if the EPROM was not blank, it would no t read as all
FF’s and the checksum would be different.) You can now compare the
buffer to the EPROM. Then, you can change the buffe r data to force a
failure.

>EC
EPROM matches buffer
>BE 85
0085: 00 77 00 <control-C>
>EC
Error Address: 0085 Buffer: 77 EPROM: 00
Fail
>

Step 2. Programming Operations

First, create some interesting data.

>BF 55
>Buffer filled with 55
>BE
0000: 55 1 55 2 55 4 55 8 55 10 55 20 55 40 55 80
0008: 55 AA 55 <control-C>
>BE 19A
019A: 55 12 55 34 55 56 55 78 55 9A 55 BC
01B0: 55 DE 55 F0 55 <control-C>
>BD 0 200
0000: 01 02 04 08 10 20 40 80 AA 55 55 55 55 55 55 55 @.*UUUUUUU
0010: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0020: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0030: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

 ME27000 Programmer

18 March 2024 57 Martin Eberhard

00D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0140: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0150: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0160: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0170: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0180: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0190: 55 55 55 55 55 55 55 55 55 55 12 34 56 78 9A BC UUUUUUUUUU.4VX.<
01A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ^pUUUUUUUUUUUUUU
01B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
Buffer range checksum: 3C
>

Now, program an EPROM. (The “-“ character following the word
“Programming” in the following example will rotate through the
characters -\|/ to create the effect of a spinning propeller, while
the EPROM is being programmed.)

>EB
EPROM is blank
>EP
Please be sure the EPROM is inserted correctly, wit h pin 1
closest to the socket handle. Ready to program (Y/N)? Y
Programming -
Verifying
EPROM matches buffer
>

If you get any error messages, try again with anoth er EPROM, to
determine if the problem is with the EPROM or the M E27000 Programmer.

Clear the buffer, and then calculate the EPROM’s ch ecksum. It should
be the same as it was in the buffer:

>BF 0
Buffer filled with 00
>ES
EPROM checksum: 3C
>

Read the EPROM back into the buffer and have a look . If all goes well,
it will go like this:

>ER
EPROM read into buffer
EPROM checksum: 3C
>BD 0 200
0000: 01 02 04 08 10 20 40 80 AA 55 55 55 55 55 55 55 @.*UUUUUUU
0010: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0020: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0030: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0040: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0050: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0060: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0070: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0080: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU

 ME27000 Programmer

18 March 2024 58 Martin Eberhard

0090: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
00F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0100: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0110: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0120: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0130: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0140: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0150: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0160: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0170: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0180: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
0190: 55 55 55 55 55 55 55 55 55 55 12 34 56 78 9A BC UUUUUUUUUU.4VX.<
01A0: DE F0 55 55 55 55 55 55 55 55 55 55 55 55 55 55 ^pUUUUUUUUUUUUUU
01B0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01C0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01D0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01E0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
01F0: 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 UUUUUUUUUUUUUUUU
Buffer checksum: 3C
>

Congratulations, your ME27000 EPROM Programmer appe ars to function
correctly.

 ME27000 Programmer

18 March 2024 59 Martin Eberhard

Section 11. Printed Circuit Board

11.1 Bill of Materials

The following is the complete Bill of Materials for the the Rev C ME27000 PC
Board, without the Intersil Option. (See page 4 for the Intersil Option
components.) Digikey part numbers are current at th e time this was written.

Save about $10: buy the ZIF socket on eBay. Buy the type with wider pin slots
for both the normal 0.6” wide EPROMs, and “Skinny D IP” 0.3” wide EPROMs.

Component Value Reference Name Qty Digikey Part #

Zener Diode, 4.7V BZX79C4V7 D19 1 BZX79C4V7-T50ACT-ND

Schottky Diode BAT46 D6-D13,D15,D16 10 BAT46CT-ND

¼ W Resistor 93.1 Ω 1% R49 1 93.1XBK-ND

¼ W Resistor 274 Ω 1% R2,R22,R50 3 274XBK-ND

¼ W Resistor 866 Ω 1% R52 1 866XBK-ND

¼ W Resistor 910 Ω 1% R1 1 13-MFR-25FTE52-910RCT-ND

¼ W Resistor 6.8 Ω R3 1 6.8QBK-ND

¼ W Resistor 100 Ω R29,R35,R37,R43,R61 5 100QBK-ND

¼ W Resistor 330 Ω R23,R30,R40,R48,R57,R59 6 330QBK-ND

¼ W Resistor 470 Ω R24,R27,R31,R58 4 470QBK-ND

¼ W Resistor 680 Ω R17,R38,R41,R44,R45,R51,R53 7 680QBK-ND

¼ W Resistor 2 KΩ R5,R7,R11 3 2.0KQBK-ND

½ W Resistor 2.2 KΩ 1/2W R25,R26,R28,R32,R62 5 S2.2KHTR-ND

¼ W Resistor 2.4 KΩ R9 1 2.4KQBK-ND

¼ W Resistor 4.7 KΩ R16, R18, R34 3 4.7KQBK-ND

¼ W Resistor 10 KΩ R15,R20 2 2019-CFS1/4C103J-ND

¼ W Resistor 22 KΩ R6,R8,R19,R21,R39,R47 6 MFR-25FBF52-22K-ND

¼ W Resistor 43 KΩ R10,R12 2 MFR-25FBF52-43K-ND

¼ W Resistor 1 KΩ R13,R14,R33,R36 ,R46,R54-R56,R60 9 1.00KXBK-ND

1W Resistor 1 KΩ R4 1 738-RSMF1JB1K00-ND

1W Resistor 2 KΩ or 2.2 KΩ R42 1 2.0KW-1-ND

Schottky Diode 1N5817 D1,D17,D18 3 1N5817GOS-ND

Silicon Diode 1N4004 D3,D4,D5, D14 4 1N4004-TPMSCT-ND

8-pin DIP socket U7,U11 2 2057-ICS-308-T-ND

14-pin DIP socket U3,U8-U10,U16 5 ED3045-5-ND

16-pin DIP socket U1,U2,U5,U6,U15 5 2057-ICS-316-T-ND

20-pin DIP socket U12-U14 3 2057-ICS-320-T-ND

40-pin DIP socket U4 1 ED3048-5-ND

Schottky Diode 1N5821 (30V, 3A) D2 1 1N5821RLGOSCT-ND

Ceramic Capacitor 0.047 µF, 50V C26-C28 3 445-173599-1-ND

Ceramic Capacitor 0.47 µF 25V C17 1 445-181293-ND

Ceramic Capacitor 1µF, 16V C9-C12,C14-C16 7 445-173583-1-ND

Ceramic Capacitor 10 µF, 10V C5,C6,C20 3 445-181283-ND

 ME27000 Programmer

18 March 2024 60 Martin Eberhard

Component Value Reference Name Qty Digikey Part #

Ceramic Capacitor 0.1µF, 100V C4,C7,C8,C13,C18,C19,C21-C26 12 399-4329-ND

8-resistor network 10K RP1 1 4609x-101-103LF-ND

3.3V Regulator MCP1700-3302E/TO V2 1 MCP1700-3302E/TO-ND

Adj. Regulator LM317L V3 1 497-1573-5-ND

NPN Transistor 2N3904 Q9 1 2N3904FS-ND

N-channel MOSFET 2N7000 Q3,Q22 2 2N7000FS-ND

PNP Transistor 2N6520 Q13 1 2N6520TACT-ND

PNP Transistor 2N3906 Q4-Q8, Q10-Q12,Q14-21 16 641-1946-ND

Electrolytic Cap. 100 µF, 50V C3 1 399-ESX107M050AH2AA-ND

Electrolytic Cap. 470 µF, 35V C1-C2 2 399-6086-ND

Trimpot Bournes 500Ω VR1-VR5 5 3306P-501-ND

NPN Transistor KSC2690 Q1 1 KSC2690AYSFS-ND

PNP Transistor 2SA2222SG Q2 1 2SA2222SGOS-ND

Barrel Connector 5.5mm x 2.0mm J1 1 CP-063AH-ND

9-pin Connector DC9F J2 1 AE10921-ND

6-pin connector USB-B J3 1 2057-USB-B-S-RA-WT-SPCC-ND

6-pin header 0.1” Spacing J4 1 A31116-ND

Torroidal Inductor 100 µH, 2A L1 1 732-1424-ND

Adj. Regulator LM317 V1 1 497-1575-5-ND

TO-220 Heat Sink 577102B04000G V1 1 345-1023-ND

6-32 x 5/8" screw V1 1 H356-ND

6-32 nut V1 1 H220-ND

4-40 x 5/8” screw

PCB corners & near Q13 5 H348-ND

4-40 nut

PCB corners & near Q13 5 36-9600-ND

28-pin ZIF socket Textool ZIF1 1 A302-ND

SPDT Switch 5A, 120V SW1 1 EG2365-ND

Blue LED 5 mm LED1 1 67-1751-ND

White LED 5 mm LED2 1 1516-QBL8IW60D-NW-ND

Amber LED 5 mm LED3 1 754-1872-ND

Red LED 5 mm LED4 1 1516-1359-ND

Switched Cap.

Inverting Regulator

 ADM660 or

MAX660
U11 1 ADM660ANZ-ND

RS232 Tranceiver MAX232 U1 1 296-26139-5-ND

USB Tranceiver MCP2221A U3 1 MCP2221A-I/P-ND

Hex Inverter 74ACT04 U10 1 296-4351-5-ND

Hex O.C. Driver 74LS07 U8, U9,U16 3 296-14878-5-ND

Dual Data Selector 74LS139 U5,U6,U15 3 296-1640-5-ND

Quad 2:1 Mux 74LS157 U2 1 296-1645-5-ND

8-Bit D-Flip-Flop 74LS374 U12,U14 2 296-1662-5-ND

8-Bit Bi-dir. Buffer 74LVC245A U13 1 296-8503-5-ND

512 kb Serial RAM 23A512 U7 1 23LC512-I/P-ND

 ME27000 Programmer

18 March 2024 61 Martin Eberhard

11.2 Component Placement

Rev C PC Board

Rev D PC Board

 ME27000 Programmer

18 March 2024 62 Martin Eberhard

11.3 PCBA Schematic

The following page is the schematic for the rev C M E27000 Programmer’s printed
circuit board assembly.

Martin

Eberhard

 ME27000 Programmer

18 March 2024 64 Martin Eberhard

Martin

Eberhard

 ME27000 Programmer

18 March 2024 66 Martin Eberhard

 ME27000 Programmer

18 March 2024 67 Martin Eberhard

Appendix A. Supported Devices

The following is a list of devicess supported by th e ME27000 firmware.
Although generally in order of size, the order is a rbitrary. As more devices
are supported in future firmware, new Device Types will be added to the end of
the list. (So these ME27000 Device Type numbers wil l not change 2.)

Underlined devices have been tested on the ME27000. The programming algorithm
for devices in [brackets] are just guesses, as I co uld not find programming
specifications for these devices.

Although some of these EPROM Device Types may have the same size and
programming voltages, they are separate types becau se of differences in
pinout, Vcc during programming, and/or programming algorithm.

Supported Devices Sorted by Device Type

Type 00: 2704 512x8 EPROM
Intel 2704, National Semiconductor MM2704, Signetic s 2704

Type 01: 2804A 512x8 EEPROM (time delay for write completion)
Exel X12804A, Seeq 2804A , Xicor X2804A

Type 02: 28C04 512x8 EEPROM (polled write completion)
Atmel AT28C04 , General Instruments 28C04, Microchip 28C04A, NEC 28C04

Type 03: 28C04N 512x8 EEPROM, not self-timed
(No devices tested)

Type 04: IM6654 512x8 EPROM (Requires Intersil Option)
Intersil IM6654

Type 05: 2708 1024x8 EPROM (Vcc=+5V, Vbb=-5V, Vdd=+12V)
AMD AM2708, Electronic Arrays EA2708 , Fairchild F2708 , Intel 2708 , Intel
D2708L, MME U555C , Motorola MCM2708, Motorola MCM68708, National
Semiconductor MM2708 , NTE NTE2708, Oki MSM2708AS, Signetics 2708, Tesla
MHB8708C, Texas Instruments TMS2708 , Toshiba TMM322

Type 06: 2758 1024x8 EPROM (Vcc=+5V, pin 19 low)
Harris HM-6758, Intel 2758, National Semiconductor MM2758Q-A, Oki 2758,
Texas Instruments TMS2508, Texas Instruments TMS275 8-JL0

Type 07: IM6658 1024x8 EEPROM, (Requires Intersil Option)
Intersil IM6658

Type 08: 2716 2048x8 EPROM (Vcc=+5V, Vpp=25V)
AMD AM2716, Eurotechnique ET2716Q , Fujutsi MBM2716, Hitachi HN462716, Intel
2716 , Mitsubishi M5L2716, MME U2716C, Motorola MCM2716 , National
Semiconductor MM2716, National Semiconductor MM27C1 6, NEC uPD2716, NTE
NTE2716, Oki MSM2716AS , SGS-Thomson M2716 , Signetics 2716 , Soviet 573RF2 ,
Tesla MHB2716C, Texas Instruments TMS2516 , Thomson-Mostek ET2716Q, Toshiba
TMM323D, Toshiba TMM323DI

Type 09: 2716A 2048x8 EPROM (Vcc=+5V, Vpp=21V)
(No datasheets found)

Type 0A: 2716-fast 2048x8 EPROM (Vcc=+5V, Vpp=21V)
ST M2716-fast

Type 0B: 2716B 2048x8 EPROM (Vcc=+5V, Vpp=12.7V)

AMD AM2716B

2 These Device Type numbers are not the same as thos e for the original Orphan
Eprom Programmer, the ME2700.

 ME27000 Programmer

18 March 2024 68 Martin Eberhard

Type 0C: 27C16H 2048x8 EPROM (Vcc=+5V, Vpp=25V)
Fairchild NMC27C16H, National Semiconductor NMC27C1 6H

Type 0D: 27C16B 2048x8 EPROM (Vcc=+5V, Vpp=12.7V)
Fairchild NMC27C16B, National Semiconductor NMC27C16B

Type 0E: TMS2716 2048x8 EPROM (Vcc=+5V, Vbb=-5V, Vdd=+12V)
Motorola TMS2716, Texas Instruments TMS2716

Type 0F: 57C191 2048x8 EPROM
Waferscale Integration WS57C191, Waferscale Integra tion WS57C191B ,
Waferscale Integration WS57C291, Waferscale Integra tion WS57C291B

Type 10: 57C191C 2048x8 EPROM
Waferscale Integration WS57C191C , Waferscale Integration WS57C291C

Type 11: LH57191 2048x8 EEPROM
Sharp LH57191

Type 12: 2816A 2048x8 EEPROM (time delay for write completion)
Samsung KM2816A, Seeq 2816A , Seeq 5516A

Type 13: 28C16 2048x8 EEPROM (polled write completion)

Atmel AT28C16 , Atmel 28C16E, Catalyst CAT28C16A, Exel XLS2816A, Exel
XLS28C16A, Microchip 28C16A , On Semiconductor CAT28C16A, Xicor X2816B

Type 14: 2816Ai 2048x8 EEPROM (erase before write, >10 mS write pulse)
Intel 2816A , Seeq 52B13

Type 15: 52B13H 2048x8 EEPROM, 1.2 mS write pulse
Seeq 52B13H

Type 16: 2732 4096x8 EPROM (Vpp=25V)
AMD AM2732, Electronic Arrays EA2732Q, Eurotech. ETC2732 , Fairchild F2732,
Fujitsu MBM2732 , Hitachi HN472732G , Intel 2732 , Mitsubishi M5L2732 , MME
U2732, Motorola MCM2732, NEC uPD2732 , Toshiba TMM2732D, Toshiba TMM2732DI

Type 17: 2732A 4096x8 EPROM (Vpp=21V)
AMD AM2732A, Fujitsu MBM2732A , Hitachi HN482732AG , Intel 2732A , NEC
uPD2732A, Rockwell R87C32 , SGS M2732A

Type 18: 2732A-fast 4096x8 EPROM (Vpp=21V)
SGS-Thomson M2732A-fast

Type 19: 2732B 4096x8 EPROM (Vpp=12.7V)
AMD AM2732B

Type 1A: 27C32H 4096x8 EPROM (Vpp=12.7V)
Fairchild NMC27C32H, National Semiconductor NMC27C3 2H

Type 1B: 27C32B 4096x8 EPROM (Vpp=12.7V)
Fairchild NMC27C32B , National Semiconductor NMC27C32B

Type 1C: TMS2532 4096x8 EPROM (TI-unique pinout, Vpp=25V)
Hitachi HN462532 , Motorola MCM2532, SGS M2532, Texas Instruments TM S2532

Type 1D: TMS2532A 4096x8 EPROM (TI-unique pinout, Vpp=21V)
Texas Instruments TMS2532A

Type 1E: TMS2732A 4096x8 EPROM (TI-unique programming, Vpp=21V)
Texas Instruments TMS2732A

Type 1F: 57C43 4096x8 EPROM
Waferscale Integration WS57C43 , Waferscale Integration WS57C43B

Type 20: 57C43C 4096x8 EPROM
[Waferscale Integration WS57C43C]

Type 21: LH5749 8192x8 EPROM
Sharp LH5749

 ME27000 Programmer

18 March 2024 69 Martin Eberhard

Type 22: 57C49 8192x8 EPROM
Waferscale Integration WS57C49 , Waferscale Integration WS57C49B

Type 23: 57C49C 8192x8 EPROM
[Waferscale Integration WS57C49C]

Type 24: 27HC641 8192x8 EPROM
Atmel AT27HC641 , Atmel AT27HC642, Microchip 27HC641

Type 25: 27HC641s 8192x8 EPROM (no blank-check)
Signetics 27HC641

Type 26: 27HC641R 8192x8 EPROM
Atmel AT27HC641R, Atmel AT27HC642R , Microchip 27HC641

Type 27: 27HC65 8192x8 EPROM
NEC uPD27HC65

Type 28: 68764 8192x8 EPROM
Motorola MCM68764 , Motorola MCM68766

Type 29: 2764 8192x8 EPROM
AMD 2764, Intel D2764 , NTE NTE2764, Rockwell R2764

Type 2A: 2764-Intel 8192x8 EPROM
Epson SPM27C64, Epson SPM27C64H , Fujitsu 2764, Fujitsu 27C64, Hitachi
482764AG, Intel D2764, Mitsubishi M5L2764 , Seeq 2764

Type 2B: 2764A 8192x8 EPROM
Atmel AT27HC64, Intel D2764A , NTE NTE27C64, Sharp LH5762J, Sharp LH5763J,
Sharp LH5764J, Signetics 2764A, ST/Eurotech. 27C64A , St.CGS 27C64A, Texas
Instruments 27C64, Toshiba TMM2764A

Type 2C: 2764A-AMD 8192x8 EPROM
AMD 2764A, Hyundai HY27C64

Type 2D: 27C64 8192x8 EPROM
Fairchild NM27C64, National Semiconductor NM27C64

Type 2E: 27C64-EXP 8192x8 EPROM
Microchip 27C64

Type 2F: 27C64-Intel 8192x8 EPROM
AMD 27C64, Hitachi HN27C64, Intel D27C64, Oki MSM2764A

Type 30: 27C64F 8192x8 EPROM
Waferscale 27C64F, Waferscale 57C64F

Type 31: TMS2564 8192x8 EPROM
Texas Instruments TMS2564

Type 32: 28C64 8192x8 EEPROM, no software lock feat ure
Atmel AT28C64 , Atmel AT28C64H, Catalyst 28C64A, Exel 28C64, Micr ochip
28C64A, NEC 28C64, Pyramid PYA28C64, Samsung KY2864 A, Seeq 28C64, Seeq
85B01

Type 33: 28C64-Lock 8192x8 EEPROM, with software lo ck feature
Atmel AT28C64B, Catalyst 28C64B , Exel 28C64B, Microchip 28C64B, Pyramid
PYA28C64B, Pyramid PYX28C64, ST 28C64, Turbo 28C64A , Xicor 28C64

Type 34: 27128 16384x8 EPROM
Toshiba TMM27128

Type 35: 27128-Fujitsu 16384x8 EPROM
Fujitsu 27128 , Fujitsu 27C128, Toshiba TMM27128

Type 36: 27128-Intel 16384x8 EPROM
Hitachi 4827128, Intel D27128 , Mitsubishi M5L27128 , Mitsubishi M5M27128,NEC
27128, Oki 27C128A, Seeq 27128 , Texas Instruments 27128

 ME27000 Programmer

18 March 2024 70 Martin Eberhard

Type 37: 27128A 16384x8 EPROM
Hitachi 4827128A, Intel 27128A , Intel 27C128, Microchip 27C128 , NTE 21128,
Sharp LH57127, Sharp LH57128, ST/SGS 27128A , Texas Instruments 27C128 ,
Toshiba TMM27128A

Type 38: 27128A-AMD 16384x8 EPROM
AMD 27128A

Type 39: 27C128 16384x8 EPROM
Fairchild NM27C128, National Semiconductor NM27C128

Type 3A: 27C128-Fast 16384x8 EPROM
AMD 27C128, National Semiconductor NM27C128, Oki M5M27128A

Type 3B: 27C128-Cyp 16384x8 EPROM
[Cypress CY27C128]

Type 3C: 27C128F 16384x8 EPROM
Waferscale 27C128F, Waferscale 57C128F

Type 3D: 57C51 16384x8 EPROM
Waferscale 57C51, Waferscale 57C51B

Type 3E: 57C51C 16384x8 EPROM
[Waferscale 57C51C]

Type 3F: 27256 32768x8 EPROM
Hitachi 27256, NEC uPD27256 , NEC uPD27C256 , Toshiba TC57256

Type 40: 27256-Intel 32768x8 EPROM
AMD 27256, Atmel AT27HC256, Cypress 27256, Epson SPM27C256, Epson
SPM27C256H, Intel 27256 , NEC uPD27C256A

Type 41: 27256-Fast 32768x8 EPROM
AMD 27C256, AMD 27C256H, Intel 27256 , ISSI 27C256, Macronix MX27C256,
National Semiconductor NM7C256 , Oki 27256, Oki 27C256, Sharp LH57256J, Sony
27C256, ST 27C256B, ST M87C257, Toshiba TC57256A, N TE NTE27C256

Type 42: 27C256 32768x8 EPROM
Atmel AT27C256, Eurotecnique 27C256, Fujitsu 27256 , Fujitsu 27C256 , Hitachi
27C256, Hitachi 27C256A, Intel 27C256 , Mitsubishi M5M27256, Mitsubishi
M5M27C256, Mitsubishi M5M27L256, Seeq 27C256, Sharp LH57254J, Signetics
27C256, ST 27256, Texas Instruments 27C256 , Toshiba TC57H256, Toshiba
TMM27256A

Type 43: 27256-AMD 32768x8 EPROM
AMD 27256

Type 44: 27C256-Rapid 32768x8 EPROM
Atmel 27BV256, Atmel 27C256R , Atmel 27LV256A, GI 27C256 , Microchip 27C256,
Microchip 27HC256, Microchip 27LV256

Type 45: 27C256-Turbo 32768x8 EPROM
Fairchild FM27C256 , National Semiconductor NM27C256

Type 46: 27C256F 32768x8 EPROM
Waferscale 27C256F, Waferscaler 57C256F , Microchip 27C256F, Microchip
57C256F

Type 47: 27C256L 32768x8 EPROM
Waferscale 27C256L

Type 48: 27SC256-Cypress 32768x8 EPROM
[Cypress CY27C256]

Type 49: 27SF256 32768x8 EPROM
SST 27SF256

 ME27000 Programmer

18 March 2024 71 Martin Eberhard

Type 4A: 57C71C 32768x8 EPROM
[Waferscale WS57C71C]

Type 4B: 28C256 32768x8 EEPROM (without software lo ck)
Hitachi HN58C256, Maxwell 28C256T, Samsung 28C256, SEEQ 28C256

Type 4C: 28C256-Lock 32768x8 EEPROM (with software lock and 64-byte pages)
Atmel AT28C256 , Catalyst CY28C256 , Exel 28C256, Hitachi HN58C256A , NEC
uPD28C256, Pyramid PYA28C256, Samsung KM28C256A, Se eq 28C256A, Turbo IC
28C256A, Xicor 28C256

Type 4D: 29F256 32768x8 Flash (with software lock a nd 64-byte pages)
Atmel AT29F256

Type 4E: 27512 65536x8 EPROM
AMD 27512

Type 4F: 27C512 65536x8 EPROM
Atmel AT27C512 , Cypress CY27C512, Fujitsu 27C512, Hitachi 27512 , Hitachi
27C512, Intel D27512 , Mitsubishi M5L27512 , Mitsubishi M5M27C512A, NEC
uPD27512, Signetics 27C512, ST 27512 , Texas Instruments 27C512 , Toshiba
TMM27512A, Toshiba TMM57C512

Type 50: 27C512-Intel 65536x8 EPROM
AMD 27C512, Intel D27C512, ISSI 27C512, National Semiconducto r NM27C512,
National Semiconductor NM27C512A, NTE NTE27C512, Ok i 27C512, Sony 27C512,
ST 27C512 , Toshiba 27C512A, Toshiba TMM27512A

Type 51: 27C512-Rapid 65536x8 EPROM
Atmel AT27BV512, Atmel AT27C512R , Atmel 27LV512

Type 52: 27C512-Turbo 65536x8 EPROM
Fairchild FM27C512, National Semiconductor NM27C512 , National Semiconductor
NM27C512A

Type 53: 27C512-MC 65536x8 EPROM
GI 27C512A, Microchip 27C512 , Microchip 27LV512

Type 54: 27C512-MX 65536x8 EPROM
Macronix MX27C512 , Macrinix MX27L512

Type 55: 27C512F 65536x8 EPROM
Waferscale WS27C512F, Waferscale WS57C512F

Type 56: 27C512L 65536x8 EPROM
Waferscale WS27C512L

Type 57: 27C512-EON 65536x8 EPROM
Eon EN27C512

Type 58: 27C512-Cypress 65536x8 EPROM
[Cypress CY27C512]

Type 59: 57512 65536x8 EPROM
Sharp LH57512J

Type 5A: 27SF512 65536x8 SuperFlash EPROM
SST 27SF512

 ME27000 Programmer

18 March 2024 72 Martin Eberhard

Supported Devices Sorted by Manufacturer

Numbers in parenthesis are the ME27000 Device Type. As above, chips that have
been tested on the ME27000 are underlined .

AMD
AM2708 (05), AM2716 (08), AM2716B (0B), AM2732 (16), AM2732A (17), AM2732B
(19), AM2764 (29), AM2764A (2C), AM27C64 (2F), AM27128A (3F), AM27C128 (3A),
AM27256 (43), AM27C256 (41), AM27H256 (41), AM27512 (4E), AM27C512 (50)

Atmel
AT28C04 (02), AT28C16 (13), 28C16E (13), AT27HC641 (24), AT27HC642 (24),
AT27HC641R (26), AT27HC642R (26), AT28C64 (32) , Atmel AT28C64H (32), AT27HC256
(40), AT27C256 (42), 27BV256 (44), 27C256R (44) , 27LV256A (44), AT28C256 (4C),
AT29F256 (4D), AT27C512 (4F), AT27BV512 (51), AT27C512R (51), 27LV512 (51)

Catalyst
CAT28C16A (13), CAT28C64A (32), CAT28C64B (33), CAT28C256 (4C)

Cypress
CY27C128 (3B), CY27C256 (48), CY27C512 (58)

Electronic Arrays
EA2708 (05)

Eon
EN27C512 (57)

Epson
SPM27C64 (2A), SPM27C64H (2A), SPM27C256 (40), SPM2 7C256H (40)

Eurotechnique
ET2716Q (08) ETC2732Q (16), 27C64A (2B), 27C256 (42)

Exel
X12804A (01), XLS2816A (13), XLS28C16A (13)

Fairchild
F2708 (05), NM2716H (0C), NM27C16B (0D), F2732 (16), NMC 27C32B (1B), NMC27C32H
(1C), NMC27C64 (2D), NM27C128 (39), FM27C256 (45), FM27C512 (52)

Fujitsu
MBM2716 (08), MBM2732 (16), MBM2732A (17), MBM2764 (2A), MBM27C64 (2B),
MBM27128 (35), MBM27256 (42), MBM27C256 (42)

General Instruments
28C04 (02), 27C256 (44), 27C512 (53)

Harris
HM-6758 (06)

Hitachi
HN462716 (08), HN462532 (16), HN472732AG (17), HN462532 (1C), 482764AG (2A),
HN27C64 (2F), HN4827128 (36), HN27128A (37), HN2725 6 (3F), HN27C256 (42),
HN27C256A (42), HN58C256 (4B), HN58C256A (4C), HN27512 (4F),

Hyundai
HY27C64 (2C)

Intel
D2704 (00), D2708 (05), D2708L (05), D2758 (06), D2716 (08), D2816A (14),
D2732 (16), D2732A (17), D2764 (29 or 2A), D2764A (2B), D27C64 (2F), D27128
(36), D27128A (37), D27C128 (37), D27256 (40 or 41), D27C256 (42), D27512 (4F)

 ME27000 Programmer

18 March 2024 73 Martin Eberhard

Intersil
IM6654 (04), IM6658 (07)

ISSI
27C256 (41), 27C512 (50)

Macronix
MX27C256 (41), MX27C512 (55), MX27L512 (55)

Microchip
28C04A (02), 28C16A (22), 27HC641 (23 or 25), 27C64 (2E), 28C64A (32), 28C64B
(33), 27C128 (37), 27C256 (44), 27HC256 (44), 27LV256 (44), 57C256F (46),
27C512 (54), 27C512A (54), 27LV512 (54)

Mitsubishi

M5L2716K (08), M5L2732 (16), M5L2764 (2A), M5L27128 (36), M5M27128 (36),
M5M27256 (42), M5M27C256 (42), M5M27L256(42), M5L27 512 (50), M5M27C512A (50)

MME
U555C (05), U2716C (08), U2732 (16)

Motorola
MCM2708 (05), MCM68708 (05), TMS2716 (0E), MCM2532 (16), MCM2732 (1C),
MCM68764 (28), MCM68766 (28)

National Semiconductor
MM2704 (00), MM2708 (05), MM2758A (06), MM2716E (08), NMC27C16 (08), NM2716H
(0C), NM27C16B (0D), NM2732H (1A), NM2732B (1B), NM27C64 (2D), NM27C128 (39 or
3A), NM27C256 (41 or 45), NM27C512 (4F or 51), NM27C512A (4F or 51)

NEC
uPD28C04 (02), uPD2716 (09),uPD2732 (16), uPD2732A (17), uPD27HC65 (27),
uPD28C64 (32), uPD27128 (36), uPD27256 (3F), uPD27C256 (3F), uPD27C256A (40),
uPD28C256 (4C), uPD27C512 (4F)

NTE
NTE2708 (05), NTE2716 (09), NTE2732A (17), NTE2532 (1C), NTE2764 (29),
NTE27C64 (2B), NTE21128 (37), NTE27C256 (41), NTE27 C512 (50)

On Semicondutor
(See Catalyst)

Oki
MSM2708AS (05), MSM2758 (06), MSM2716A (08), MSM2764A (2F), 27C128A (36),
M5M27128A (3A), MSM27256 (41), MSM27512 (50)

Pyramid
PYA28C64 (32), PYX28C64 (33), PYA28C64B (33), PYA28 C256 (4C)

Rockwell
R87C32 (17)

Samsung
KM2816A (12), KM2864A (32), KM28C64A (33), KM28C256 (4A), KM28C256A (4B)

Seeq
2804A (01), 2816A (12), 5516A (12), 52B13 (14), 52B13H (15), Seeq 2764 (2A),
28C64 (32), 85B01 (32) 27128 (36), 27C256 (42), 28C256 (4A), 28C256A (4C)

SGS-Thomson (ST)
M2716 (08), M2716-fast (0A), SGS M2532 (19), M2732A (17), M2732A-fast (18)
M2532 (1C), M2764A (2B), M27128A (37)

 ME27000 Programmer

18 March 2024 74 Martin Eberhard

Sharp
LH57191 (11), LH5749 (21), LH5762 (2B), LH5763 (2B), LH5764 (2B), LH57126(37),
LH57127(37), LH57128(37), LH57256 (41), LH57254 (42), LH57512 (59)

Signetics
2704 (00), 2708 (05), 2716 (08), 27HC641 (25), 2764A (2B), 27C256 (42), 27C512
(4F)

Sony
27C256 (41), 27C512 (50)

Soviet
573RF2 (08)

SST
27SF256 (48), 27SF512 (5A)

Tesla
MHB8708C (05), MHB2716C (08)

Texas Instruments
TMS2708 (05), TMS2508 (06) , TMS2758-JL0 (06), TMS2516 (08) , TMS2716 (0E) ,
TMS2532 (1C), TMS2532A (1D), TMS2732A (1E), TMS27C64 (2B), TMS2564 (31),
TMS27128 (36), TMS27C128 (37), TMS27C256 (42), TMS27C512 (4F)

Thomson-Mostek
ET2716Q (08)

Toshiba
TMM322 (05), TMM323D (08), TMM323DI (08), TMM2732D (16), TMM2732DI (16),
TMM2764A (2B), TMM27128 (35), TMM27128A (37), TC57256 (3F), TC57256A (41),
TMM27256A (42), TC57H256 (42), TMM27512A (4F), TMM27512A (50)

Turbo IC
28C64A (33), 28C256A (4C)

Waferscale Integration
WS57C191 (0F), WS57C191B (0F), WS57C191C (10), WS57C291 (0F), WS57C291B (0F),
WS57C291C (10), WS57C43 (1F), WS57C43B (1F), WS57C43C (20), WS57C49 (22),
WS57C49B (22), WS57C49C (23), WS27C64F (30), WS57C64F (30), WS27C128F (3C) ,
WS57C128F (3C), WS57C51 (3D), WS57C51B (3D), WS 57C51C (3E) , WS27C256F (46) , WS27C256L

(47), WS57C71C (4A), WS27C512F (55) , WS57C512F (56)

Xicor
X2804A (01), X2816B (13), 28C64 (33), 28C256 (4C)

 ME27000 Programmer

18 March 2024 75 Martin Eberhard

Device Manufacturer Codes

These are the JEDEC-assigned device manufacturer co des for most (all?) EPROM
manufacturers. The high byte if each code is the “c ontinuation code” for the
manufacturer.

Manufacturer Code Manufacturer Code
AMD 0x0001 Eurotech 0x009B
Fujitsu 0x0004 Exel 0x009E
Hitachi 0x0007 Hyundai 0x00A7
Intersil 0x000B Oki 0x00AE
Motorola 0x000E Sharp 0x00B0
NEC 0x0010 SST 0x00BF
Signetics 0x0015 Macronix 0x00C2
Xicor 0x0019 Samsung 0x00CE
Mitsubishi 0x001C ISSI 0x00D5
Atmel 0x001E Winbond 0x00DA
Atmel 0x001F
ST/SGS 0x0020
Waferscale 0x0023 Eon 0x011C
Microchip/GI 0x0029 Seiko-Epson 0x013E
Catalyst/Xicor 0x0031
Cypress 0x0034
Harris 0x0086
Intel 0x0089
Fairchild/National 0x008F
Seeq 0x0094
Texas Instruments 0x0097
Toshiba 0x0098

 ME27000 Programmer

18 March 2024 76 Martin Eberhard

Device Codes

This is a (probably incomplete) list of 3-byte devi ce codes for EPROMs. The
high 2 bytes are the manufacturer code, from the ab ove table. These codes are
read from the EPROM with the ID command.

Code Device Code Device Code Device
AMD Atmel Cypress

0x000104 27256 0x001E0D AT27C512R 0x00341A CY27C128
0x000107 2732B and AT27BV512 0x003421 CY27C256
0x000108 2764A and AT27LV512A 0x00341F CY27C512
0x000110 27C256 0x001E10 AT27HC641R
0x000115 27C64 and AT27HC642R Intel
0x000116 27C128 0x001E1F AT27HC641 0x008901 2732A
0x000185 27512 and AT27HC642 0x008902 2764
0x000186 2716B 0x001E8C AT27C256R 0x008904 27256
0x000189 27128A and AT27BV256 0x008907 27C64
0x000191 27C512 and AT27LV256 0x008908 2764A

 0x001F0D AT27C512 0x00890D 27512
Fujitsu 0x001F10 AT27HC641 0x008983 27128

0x000402 MBM27256 and AT27HC642 0x008988 27256
0x000462 MBM27C256A 0x001F91 AT27HC64 0x008989 M27128A
0x000472 MBM27C256A 0x001F94 AT27HC256 0x00898C 27256
0x0004A1 MBM27C128 0x00898D 27C256
0x0004E3 MBM27C512 ST/SGS 0x0089FC 27C128

 0x002000 M27128A 0x0089FD 27C512
Hitachi 0x002004 M27256

0x00070D HN27128A 0x002008 M27C64A Fairchild/National
0x000710 HN27256 0x00200D M27512 0x008F01 27C32B
0x000731 HN27C256A 0x002013 M2732A-Fast 0x008F04 27C256

and HN27C256H 0x00203D M27C512 and 27C256B
0x000737 HN27C64 0x002080 M87C257 and NM87C257
0x000794 HN27512 0x002089 M27128A 0x008F80 27C16B
0x0007B0 HN27C256 0x00208D M27C256B 0x008F83 27C128

 0x008F85 27C512
NEC Waferscale and 27C512A

0x001004 uPD27256 0x0023A6 WS57C128F 0x008FC2 27C64
0x001025 uPD27C512 0x0023A8 WS27C128F 0x008FC4 27C256
0x001064 uPD27C256A and WS27C64F (!) 0x008FC5 27C512
0x0010A4 uPD27C256 0x0023AA WS27C512F
0x0010C4 uPD27256A and WS57C512F Seeq

 0x0023C0 WS27C256L 0x009440 M2764
Signetics 0x0023C0 WS27C256F 0x0094C1 M27128
0x00150B 27C64A Microchip 0x0094C2 M27C256
0x00151D 27C512 0x002902 27C64
0x00158C 27C256 0x002904 27256 TI

 0x00290D 27C512A and 0x009704 TMS27256
Mitsubishi 27LV512 and TMS27C256

0x001C01 M5M27C256 0x002983 27C128 and SMJ27C256
0x001C04 M5L27256 and 0x00298C 27C256 and 0x009707 TMS27C64

 M5M27256 27LV256 0x009783 TMS27C128
0x001C07 M5M27C512A 0x002994 27HC256 0x009785 TMS27C512
0x001C0D M5L27512

 ME27000 Programmer

18 March 2024 77 Martin Eberhard

Code Device Code Device Code Device
Toshiba Sharp ISSI

0x009804 TC57256 0x00B0C0 27C256L 0x00D510 IS27C256 and
0x009813 TMM27128 0x00B0C2 LH57512 IS27DV256 and
0x009815 TMM27512 IS27HC256 and
0x009845 TC57H256 SST IS27LV256
0x009852 TMM2764A 0x00BFA3 27SF256 0x00D591 IS27C51 2 and
0x009854 TMM25256A 0x00BFA4 27SF512 IS27HC512

and TMM27256A
0x009885 TC57512A Macronix Eon
0x0098C4 TC57256A 0x00C210 MX27C256 and 0x011C512 E N27C512
0x0098D3 TMM27128A MX27L256

 0x00C291 MX27C512 and
Hyundai MX27L512

0x00A708 HY27C64

ST/Eurotech
0x009B04 ST27C256
0x009B08 27C64A

