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The Benefits of Atmel’s RAPID™ 
Programming Algorithm

Introduction
In designing and manufacturing certain
modern-day products, the methods used
to build these products are often as
important to the design engineer as the
components themselves. This is true
about programmable memory devices as
well, especially EPROMs. Most EPROM
vendors use their own unique program-
ming algorithm, which is based on the
process used to make EPROMs, the
design engineer needs to know about
the algorithm during the system design
cycle to insure that the EPROMs can
ultimately be programmed.

This application note details the Atmel
RAPID programming algorithm and
briefly explains why this algorithm is
superior to others. In addition, it will give
an introduction to EPROM technology
and the mechanics of programming.
These should provide a basic under-
s tand ing  i n  the  grow ing  f i e ld  o f
EPROMs.

Programming EPROMs the 
RAPID™ Way
Several years ago, when Atmel reduced
the geometry of its EPROM products
from 1.5µ to 1.2µ linewidth, the Com-
pany adopted an entirely new program-
ming algorithm for these devices. A
reason for this algorithm change was to
improve programming y ie lds  and
lengthen long-term data retention. This
was accomplished by using a shorter
programming-pulse length during pro-
gramming. The new RAPID algorithm
reduces the 1 ms programming pulse
width of the original FAST algorithm to
only 100 µs, and it completely eliminates
extra overprogramming pulses. The
advantages of the RAPID programming
algorithm are production proven even
with today’s advanced 0.5 micron
EPROM technology.
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Figure 1.  Cross Section of a Typical EPROM Cell
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But higher yields and increased reliability aren’t the only
benefits the RAPID algorithm provides, it also takes less
time to program these devices. The RAPID algorithm can
reduce the programming overhead costs by a factor of 40!
Here’s how it works:

If you program an AT27C512R, 512K EPROM in a single-
device programmer, using the FAST or any other type of 1
ms algorithm (1 ms initial pulse, plus 3 ms overprogram-
ming pulse) the time spent programming will be:

524288 bits ÷ 8 bits/byte = 65536 bytes

65536 bytes × 0.004 seconds/byte = 262 seconds

That’s 262 seconds, or 4 minutes and 22 seconds. This
works out to about a 75 cents programming cost, assuming
an operator’s rate of $10 per hour. Here’s where the cost
savings start: since we cannot reduce the number of bits to
program, we reduce the total programming time by short-
ening the programming pulse width. Using 100 µs per byte,
this is what happens:

65536 bytes × 0.0001 seconds/byte = 6.5 seconds

This amount of programming-time savings is what can be
expected when using the RAPID algorithm. The big
improvement is from reducing the total byte-programming
time from 4 ms to 100 µs. With this example, total program-
ming cost is about three cents. The RAPID algorithm can
actually save up to 72 cents per device. Imagine how much
can be saved with 10,000 EPROMs!

There’s more to the RAPID algorithm than shorter pro-
gramming times and cost savings. It has a special way of
checking that each cell is correctly programmed, and that
cells are programmed with the required amount of charge.
In fact, the RAPID algorithm even guarantees that the
EPROM is correctly programmed. Programming algorithms
of the FAST type, or their relatives, the QUICK-PULSE
types, check each memory location for the programmed
data immediately after programming that location. This
check, which takes place before the final verify at the end
of the programming cycle, is basically an “insurance”
check, because it is performed at an elevated voltage,
which is a worst-case condition. There is a flaw, however,
in this type of programming algorithm: memory locations
that have been previously programmed can be partially
erased by programming subsequent locations (due to the
elevated voltage on the same row or column in the memory
array) and marginally programmed cells will go virtually
undetected. The question is, doesn’t the programmer
check each device during verify after programming?
Wouldn’t those failures be caught then? Not necessarily,
because when parts are checked during the program verify
mode, the voltage is not elevated as high as it was during
programming. 

Figure 2.  Process of Hot Electron Injection
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The RAPID programming algorithm was designed to fix this
oversight. First, it goes through the entire device and pro-
grams every cell without checking. Then it goes back to the
beginning of the memory array and verifies the data in each
cell at the elevated voltage. Once the device passes,
another final verification is done at 5V. The RAPID algo-
rithm will do a better job at preventing any marginally pro-
grammed parts from passing the programmer than other
algorithms.

An important fringe benefit of the RAPID algorithm,
because of the way it guarantees successful programma-
bility, is long-term data retention. Basically, long-term data
retention is how long the EPROM stays programmed,
which is typically greater than ten years. Although long-
term data retention is not the same as device programma-
bility, they are related in this way: programmability tells how
well the electrons have accumulated on the EPROM’s
floating gate, long-term data retention tells how long the
electrons will stay there. The programming algorithm has
an overwhelming influence on programmability, making it
an overwhelming influence on long-term data retention as
well. Therefore, a poor programming algorithm, one that
doesn’t guarantee programmability, can be responsible for
poor long-term data retention. The RAPID algorithm can
add years of data retention to your parts, because of the
way it checks for programmability. Marginally programmed
parts just don’t stand a chance of getting past the program-
mer.

EPROM Programming, How it Works
Contemporary EPROM programming algorithms can be
divided into two main sections, programming and verifying
(or reading). Programming begins by selecting the desired
voltage levels and byte address. It continues with a pro-
gramming pulse applied to that byte, followed by a verify at
the elevated VCC used for programming. Verifying checks
the data in two passes with the original data, with VCC set to
5.5V on the first pass, and 4.5V on the second.

Basically, EPROMs are programmed through the accumu-
lation of electrons on the floating gate of an N-Channel
EPROM cell (see Figure 1) by the process of hot-electron
injection. Hot-electron injection is where electrons, flowing
as a current between the drain and source of a saturated
EPROM cell, gain enough energy from the high electric
field to jump the oxide barrier between the channel and the
floating gate (see Figure 2). Before programming, the MOS
threshold voltage, VTH (otherwise known as the gate
threshold voltage) of the erased floating-gate EPROM cell
is about 1.0V to 2.0V (see Figure 3). After programming, its
threshold voltage is about 6.5V to 9.0V, due to the accumu-
lated electrons on the floating gate. In read mode, the
address decoding circuitry in the chip selects the desired
cell by pulling the gate voltage of the cell to VCC. Since VCC
is typically 4.5V to 5.5V, an erased cell with a VTH = 1.5V
would be turned on (Figure 3), while a programmed cell
with a VTH = 7.5V would remain off (see Figure 4). This
floating-gate process is how a single MOSFET-like transis-
tor can provide for the two logic levels used in digital cir-
cuitry.

If VCC is gradually raised in voltage to a point near the
threshold voltage of a programmed EPROM cell, the cell
would just begin to conduct, and would no longer appear to
be programmed. This point, where the programmed
EPROM cell begins to look unprogrammed, is defined as
the programming margin (see Figure 5). The value of the
programming margin can, in some cases, be simply equal
to the value of the VCC voltage present during program-
ming. This is why the RAPID algorithm holds the value of
VCC constant at 6.5V during programming; to insure that
each EPROM cell has a programming margin of at least
that voltage. This margin is verified by reading each byte
twice, once during the initial programming operation and
again during the final read (or verify) operation, where the
data from the EPROM is compared to the desired data.
The difference between the value of VCC during program-
ming (the guaranteed programming margin) and the 5.5V
VCC maximum supply rating (from the data sheet) serves as
a reliability guardband for long-term data retention and,
more importantly, for system noise immunity. Poor pro-
gramming margin can reduce system noise immunity and
lead to EPROM chip instability due to power-supply noise
on the VCC pin. This instability can cause oscillations and
read-mode data glitching that can be a problem in even in

Figure 4.  Programmed Cell. Note how VTH raises after
electrons are accumulated on the EPROM floating gate
from programming.
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the slowest and most noiseless of systems. Since power-
supply noise is a somewhat random occurrence, data
errors can happen intermittently, which can undermine the
reliability and integrity of the host system. These problems
can be avoided by using the programming algorithm rec-
ommended by the EPROM chip vendor. The higher the
guaranteed programming margin, the less likely any prob-
lems will occur.

Another important benefit of high-programming margin is
that it extends the long-term data retention of the device. If
the 6.0V programming margin (FAST algorithm) on the
EPROM gradually diminishes to 5.5V over a 10-year time
span, the randomly occurring noise spikes on the VCC line
can cause the EPROM to yield faulty data. On the other
hand, given the same discharge rate (as a function of the
silicon processing), an EPROM with a programming margin
of 6.5V (RAPID algorithm) would take over 20 years to
reach the 5.5V threshold that would lead to faulty data
yield. All things being equal, better programming margin
leads to longer data retention.

Guaranteeing Programmability 
Most people might ask, “What’s in a programming algo-
rithm? Aren’t they all the same?” That question would have
been answered with a resounding “YES” 10 years ago
when, quite frankly, they were the same. But it’s not true
today. There are over 20 manufacturers making EPROMs,
and few of them use the same programming algorithm.
Today, the programming algorithm is as important to
EPROM testing as the actual device testing procedure. In
fact, the device test procedures are often (if not always)
based upon the programming algorithm. The programming
algorithm has a direct effect on EPROM test yield, and
manufacturers select their programming algorithms so they
can obtain the highest yield possible. Additionally, the pro-
gramming algorithm is directly responsible for the number
of devices that pass the customers programmer, which is
called programming yield. This is of vital importance to an
EPROM manufacturer like Atmel, since the worst place for

Figure 5.  Programming Margin. To find programming mar-
gin, increase gate voltage (VCC) until the first “0” turns into a
“1”.

Figure 6.  QUICK-PULSE Type
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an EPROM to fail programming is in the customer’s pro-
grammer. With this in mind, let’s look at how the RAPID
algorithm can guarantee better programmability than a
common type of quick-pulsing algorithm. 

We’ll begin by comparing a common type of quick-pulsing
algorithm with the Atmel RAPID algorithm. Examine Figure
6, which is the flowchart for the QUICK-PULSE type of
algorithm. If you look very closely you will see that the algo-
rithm is broken up in to two major sections. The main part is
the program/verify section, the other part is the final verify
section. Basically, the first section starts at byte address
0000H, programs the eight EPROM cells at that address,
and verifies that those cells contain the correct data with a
verify at 6.25V on VCC. If the byte passes, it goes on to the
next byte. If it fails, it repeats everything up to 25 times
before it fails the device. The second section lowers the
VCC voltage to 5.0V and checks if all address locations read
with the correct data. Although the flowchart specifies a
one-pass final verify at 5.0V, many programmers verify in
two passes, one with VCC at 4.75V and the other with VCC
at 5.25V. 

Now examine Figure 7, the Atmel RAPID algorithm. It looks
similar to the quick-pulsing type of algorithm, but with a
slight difference. If you look closely you’ll see that it con-
sists of three sections instead of just two. The first section
is the programming section, where the programmer pro-
grams every location in the EPROM without verifying. Next
there is the verify/repair section, where the programmer
starts at the beginning of the EPROM and verifies every
location for the correct data at 6.5V. Any cells that don’t
pass are reprogrammed up to ten times before the device
is failed. The last section lowers VCC to 5.0V and does a
final verify of the data (here again, most programmers ver-
ify in two passes, one with VCC at 4.75V and the other with
VCC at 5.25V). This type of programming algorithm is called
a two-pass algorithm, because it goes through the memory
array twice during programming. 

Well, this all sounds fine, but what difference can the pro-
gramming algorithm possibly make? We can find the
answer to that question in a particularly sneaky deprogram-
ming mode that EPROMs can exhibit. We all know that
EPROMs are erased by exposing them to short-wave ultra-
violet light, right? Nothing more than applying Einstein’s
discovery of the photoelectric effect. But there is another
erasure mode that can occur, one that people in the
E2PROM business know about. If you were to examine
some EPROM cells in an electron microscope, you might
find a few that have small, tooth-like projections (called
asperities) on the top of the floating gate polysilicon. These
projections won’t affect the normal operation of the
EPROM, but they could give you problems during program-
ming. When you program a row of cells on an EPROM,
cells that have been previously programmed still feel the
full brunt of the high VPP voltage on their gates when sub-

sequent cells on the same row are programmed, because
all of the cells on a row have their gates connected
together. The combination of high voltage on the gate and
ground on the drain and source causes an intense electric
field in each previously programmed cell. If any one of the
cells on that row have these tooth-like projections on their
floating gate polysilicon, the resulting electric field in the
oxide above the projections will be much more intense than
normal. This intensified electric field can give some of the
electrons on the floating gate enough energy to jump the
oxide barrier, thereby partially erasing the EPROM cell.
This unwanted effect, called programming erase, can be
responsible for poor programming margins unless the pro-
gramming algorithm takes this problem into account.

Figure 7.  RAPID Programming Algorithm
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Before we continue, it’s important to realize that this type of
cell doesn’t have a reliability  problem, it has a program-
mability  problem. This cell will have the same long-term
data retention as any other cell in the device, even if it
loses part of its programming charge. Although it is an
EPROM, it has the same charge retention characteristics
as many manufacturers’ E2PROM cells that use this type of
erasure mode, and they all exhibit excellent long-term data
retention. The challenge is to find these low-margin cells in
the device with our programming algorithm, and to repair
them so that the device functions normally. 

Let’s see what kind of impact a cell like this can have on
programming margin by programming a row of EPROM
cells from our AT27C010 one-megabit EPROM with both
algorithms. The array geometry on the one-megabit is 128
columns by 1024 rows, by 8 outputs. This means that a sin-
gle row from a single output has 128 EPROM cells. Let’s
say that the second cell on this row, bit 1 (we’ll call them
bits and start with bit 0), has an asperity, just like the one
mentioned above. When we go to program bits 2, 3, 4, etc.,
the voltage present on the gate of bit 1 causes the
E2PROM-like erasure mode. Given enough subsequent
bits to program, bit 1 may lose enough charge to appear
unprogrammed. Let’s take a look at how the QUICK-
PULSE type of algorithm will fail the device, or even worse,
pass it with poor programming margin. Then we’ll see how
the RAPID algorithm will program it such that it works per-
fectly! 

If we examine Figure 8, we see the row of EPROM cells
taken from our AT27C010 one-megabit device. Recall that
bit 1 is the cell that’s having the programmability problem,
while the rest of the bits function normally. For the sake of
example, let’s say that for each subsequent bit after bit 1
that’s programmed, bit 1 will lose eight millivolts (mV) of
programming margin. Let’s also assume that the nominal
programming margin for each cell is at least the value of
VCC present during programming, which is 6.25V for
QUICK-PULSE type algorithms and 6.5V for the RAPID
algorithm. Starting with the QUICK-PULSE type of algo-
rithm at bit 0, we program it, verify it, and find that it passes
(remember our flowchart from Figure 6?) with the correct
margin (see Figure 9). We move to cell 1, program it, verify
it, and it passes (see Figure 10). Remember, bit 1 only
loses voltage margin when subsequent cells are pro-
grammed. Now we move on to bit 2, program it, verify it,
and in the process reduce bit 1’s programming margin
down to 6.242V (see Figure 11). Next we go to bit 3, pro-
gram it, verify it, and in turn reduce bit 1’s programming
margin down to 6.234V (see Figure 12). This process con-
tinues until we get to bit 127. By this time bit 1 has experi-
enced 126 subsequent cell programming cycles, and its
programming margin will be reduced to 5.242V (see Figure
13). Since the QUICK-PULSE type of algorithm does its
high-voltage verify immediately after programming, the

algorithm has no way of knowing what has happened to bit
1, once it finishes programming it. Only when the algorithm
does its final verify with VCC set at 5.25V could it detect that
bit 1 is not fully programmed. 

In this example we were able to detect bit 1 as being bad,
and we would fail the device. But what if bit 1’s erasure rate
was slightly less than 8 mV per subsequent cell, say 7.7
mV? Bit 1’s margin might be somewhere around 5.3V,
which would probably pass the 5.25V verify check on our
programmer. But remember the problem that we discussed
earlier, about the power supply noise glitches messing up
the operation of devices with low programming margin? A
device with only 5.3V of margin is a prime candidate for this
type of problem. A small noise glitch occurring during data
access on the VCC line of this EPROM could easily change
the output from a “0” to a “1”. And, to make matters worse,
this problem would probably occur randomly; the eventual
diagnosis being that the device was intermittent. The unfor-
tunate truth is that there is nothing wrong with the EPROM,
it’s the programming algorithm that’s at fault. 

So let’s go back to our row of 128 EPROM cells, erase
them, and reprogram them with the RAPID algorithm.
Remember that with the RAPID algorithm the initial pro-

Figure 8.  Row of EPROM cells from AT27C010. Note that
the programming margin of each cell is 0, which allows
each bit to read a “1”.

Figure 9.  Bit 0 has been programmed, (QUICK-PULSE
algorithm).

Figure 10.  Bit 0 and bit 1 have been programmed.
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gram and verify routines are located in different sections of
the algorithm, they are not contained within the same loop.
Starting at bit 0, we program it (to 6.5V this time, see Figure
14). Then move to bit 1, and program it (see Figure 15).
Next to bit 2, program it, and in turn reduce bit 1’s program-
ming margin to 6.492V (see Figure 16). Then on to bit 3,
program it, and further reduce bit 1’s programming margin
to 6.484V. We continue programming until we get to bit
127, and you’ll find that the programming margin for all the
cells looks similar to figure 8 (see Figure 17). But wait,
we’re not finished yet. We move back to the beginning of
the EPROM array, which is bit 0, and verify that it has 6.5V
of programming margin. Since we are verifying at 6.5V, we
pass it. We now move to bit 1 and notice that its program-
ming margin is 5.492V. This fails our 6.5V verify, so we pro-
gram it one more time and raise its margin back to 6.5V,
then pass it (see Figure 18). Then we move to bit 2, and
pass it, since its programming margin is also 6.5V. Notice
that we didn’t deprogram bit 1 in the process of verifying bit
2. We only deprogram bit 1 when we program subsequent

cells; reading or verifying (which is reading) doesn’t gener-
ate the intense electric fields needed to deprogram
EPROM cells. After verifying (and repairing) this row of
cells, we return VCC to 5.25V, do a final data verify, then
pass the row (see Figure 18). Now compare Figure 18 with
Figure 13. That’s how the RAPID algorithm can guarantee
programmability! 

Well, you may ask, what if we had five problem cells on the
same row? Wouldn’t the additional programming pulses
during the verify function deprogram previously pro-
grammed and verified cells? They probably would, but the
maximum amount of deprogramming on the first bit (using
this model) would be only 32 mV (4 x 8 mV). This gives us
a programming margin of 6.468V, which is still an excellent
programming margin. 

When you compare the QUICK-PULSE type algorithms to
the RAPID algorithm, there really is no comparison. The
RAPID algorithm simply guarantees programmability, and
we demonstrated this with the deprogramming bit example,

Figure 11.  Bits 0, 1, and 2 are programmed. Notice that bit
1 has been slightly erased.

Figure 12.  Bit 3 has just been programmed. Notice that bit
1 has been further erased.

Figure 13.  The entire row has been programmed. Notice
how much bit 1 has been erased.
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Figure 14.  Bit 0 has just been reprogrammed (RAPID
algorithm).

Figure 15.  Bit 1 has just been programmed.

Figure 16.  Bit 2 has just been programmed. Notice how bit
1 has been slightly erased again.
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which is one of the trickiest programming problems you can
have. But the RAPID algorithm caught the problem, and
repaired the bit so that the EPROM will function normally. 

Figure 17.  The entire row has just been programmed.
Notice how much bit 1 has been erased.

Figure 18.  The entire row has just be verified at 6.50 volts.
Notice how bit 1 has been repaired, its margin being
returned to 6.50 volts using the RAPID algorithm.
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