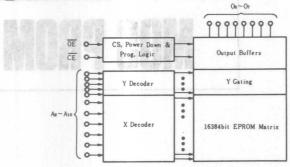

HN462716, HN462716G

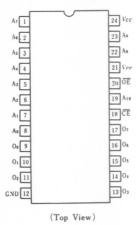

2048-word × 8-bit U.V. Erasable and Electrically Programmable Read Only Memory

The HN462716 is a 2048 word by 8 bit erasable and electrically programmable ROMs. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent-lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

- Single Power Supply · · · · +5V ±5%
- Simple Programming · · · · Program Voltage: +25V DC
 Programs with One 50ms Pulse
- Static · · · · · · No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Modes
- Fully Decoded-on Chip Address Decode
- Access Time · · · · · 450ns Max.
- Low Power Dissipation 555mW Max. Active Power 161mW Max. Standby Power
- Three State Output · · · · · OR- Tie Capability
- Interchangeable with Intel 2716

BLOCK DIAGRAM

■ PROGRAMMING OPERATION


Pins	(18)	OE (20)	V _{PP} (21)	Vcc (24)	Outputs (9~11,13~17)
Read	VIL	VIL	+5	+5	Dout
Deselect	Don't Care	V_{IH}	+5	+5	High Z
Power Down	VIH	Don't Care	+5	+5	High Z
Program	Pulsed VIL to VIH	V_{IH}	+25	+5	Din
Program Verify	VIL	VIL	+25	+5	Dout
Program Inhibit	VIL	V_{IH}	+25	+5	High Z

MASSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	
Operating Temperature Range	Topr	0 to +70	°C	
Storage Temperature Range	Tate	-65 to +125	°C	
All Input and Output Voltages*	V _T	-0.3 to +7	V	
VPP Supply Voltage*	V_{PP}	-0.3 to $+28$	V	

^{*} With respect to Ground

PIN ARRANGEMENT

READ OPERATION

OTYPICAL CHARACTERSTICS • DC AND OPERATING CHARACTERISTICS ($T_a=0$ to $+70^{\circ}$ C, $V_{cc}=5$ V $\pm 5\%$, $V_{PP}=V_{cc}\pm 0.6$ V)

Item	Symbol	Test Condition	min.	typ.	max.	Unit
Input Leakage Current	Iu	$V_{IN} = 5.25 \text{ V}$	- 1		10	μA
Output Leakage Current	ILO	Vour=5.25 V/0.4 V			10	μΑ
VPP Current	IPP1	$V_{PP} = 5.85 \mathrm{V}$		-	5	m A
Vcc Current (Standby)	Icci	$\overline{\text{CE}} = V_{IH}, \overline{\text{OE}} = V_{IL}$	-	13	25	m A
Vcc Current (Active)	Iccz	$\overline{OE} = \overline{CE} = V_{IL}$		56	100	m A
Input Low Voltage	VIL		-0.1		0.8	V
Input High Voltage	VIH		2.0	-	Vcc+1	V
Output Low Voltage	Vol	$I_{OL}=2.1\mathrm{mA}$		-	0.4	V
Output High Voltage	Vон	$I_{OH} = -400 \mu\text{A}$	2.4	· · ·		V

Note: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

• AC CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm5\%$, $V_{PP}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
Address to Output Delay	tacc	$\overline{OE} = \overline{CE} = V_{IL}$		1 + 1	450	ns
CE to Output Delay	tce	$\overline{OE} = V_{IL}$	-	11 + 1	450	ns
OE to Output Delay	toe	$\overline{\text{CE}} = V_{IL}$			120	ns
OE High to Output Float*	tor	$\overline{\text{CE}} = V_{IL}$	0	To be seen as a second	100	ns
Address to Output Hold	toн	$\overline{OE} = \overline{CE} = V_{IL}$	0	1 + 1	4	ns

^{* :} tus defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• CAPACITANCE ($Ta=25^{\circ}C$, f=1MHz)

Item (W) 32W	Symbol	Test Condition	typ.	max.	Unit
Input Capacitance	Cin	$V_{IN} = 0 \text{ V}$	-	6	pF
Output Capacitance	Cout	Vour=0V	NAGISTICS .	12	pF

SWITCHING CHARACTERISTICS

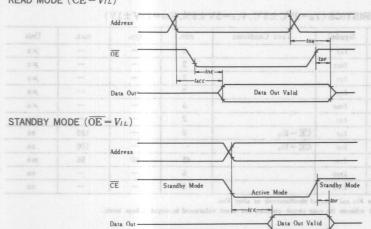
Test Conditions

Am Input Pulse Levels:

Input Rise and Fall Times:

Output Load:

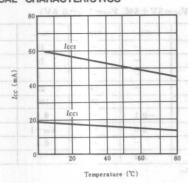
Reference Level for Measuring Timing:

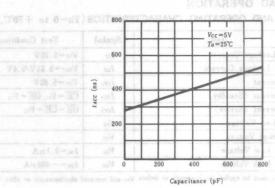

0.8V to 2.2V ≤ 20 ns

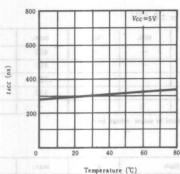
1TTL Gate + 100 pF

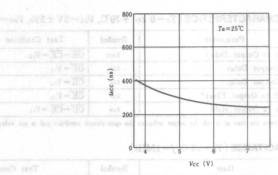
Inputs 1V and 2V

Outputs 0.8V and 2V


READ MODE $(\overline{CE} = V_{IL})$




Input Leakage Carront


Program Pulse Rise Time

• TYPICAL CHARACTERISTICS

• DC PROGRAMMING CHARACTERISTICS ($Ta=25^{\circ}\text{C}\pm5^{\circ}\text{C}$, $V_{cc}=5\text{V}\pm5\%$, $V_{PP}=25\text{V}\pm1\text{V}$)

Parameter	Symbol	Test Condition	min. 20	typ.	max.	Unit
Input Leakage Current	Iu	$V_{IN} = 5.25 \mathrm{V}$	_	_	10	μΑ
VPP Supply Current	I_{PP1}	$\overline{CE} = V_{IL} \forall S.S. \text{ at } \forall 8.0$	_	— tale	wad as 5 9	igni mA
VPP Supply Current During Programming	I _{PP2}	$\overline{\text{CE}} = V_{IH}$	_	ance T lis	30	m A
Vcc Supply Current	Icc	TITL Gate + 100 pt	_	_	100	m A
Input Low Level	VIL	VS bits VI Studini	-0.1	THE STATE OF THE S	0.8	V
Input High Level	VIH	A7 DES ATO SIDINO	2.0	_	$V_{cc}+1$	V
THE PROPERTY OF THE PARTY OF TH					I CE - VI	SAD MODE

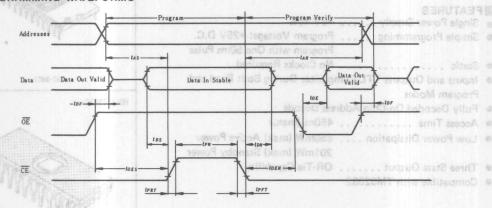
• AC PROGRAMMING CHARACTERISTICS ($T_a=25^{\circ}C\pm 5^{\circ}C$, $V_{CC}=5V\pm 5\%$, $V_{PP}=25V\pm 1V$)

Parameter	Symbol	Test Condition	min.	typ.	max.	Unit
Address Setup Time	tas		2	- T	-	μs
OE Setup Time	toes	·	2	_	_	μs
Data Setup Time	tos		2	_	_	μs
Address Hold Time	-tan	fetay sed seed	2		_	μs
OE Hold Time	t oeh		5	_	_	μs
Data Hold Time	t DH		2	Toy	- 30) Hg0i	Y PS ATE
OE to Output Float Delay*	tor	$\overline{\text{CE}} = V_{IL}$	0	_	120	ns
OE to Output Delay	toE	$\overline{\text{CE}} = V_{IL}$			120	ns
Program Pulse Width	t pw -	· · · · · · · · · · · · · · · · · · ·	45	50	55	ms
Program Pulse Rise Time	tPRT		5	_	-	ns
Program Pulse Fall Time	tpft	N V	meld 5 diesed	- 5	_	ns

Notes: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

^{*:} tor defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

a new pattern can then be written into the device.


SWITCHING CHARACTERISTICS

Test Conditions

The HN462532 is a 4036 word by 8 bit erasable and electrically Input Pulse Level: 0.8V to 2.2V Input Rise and Fall Times:

≤ 20 ns 6011-31-16Ub (nig-AS & all begaloss) a solveb and (MOR siderums apong Output Load: 1 TTL Gate + 100 pF to a self-secula bil the recent self. bil the recent of the seculation Reference Level for Measuring Timing: American arranged the safe of right relative the of clina and records Inputs; 1V and 2V, Outputs; 0.8V and 2V

PROGRAMMING WAVEFORMS

OFRASE

Erasure of HN462716 is performed by exposure to ultraviolet light with a wavelength of 2537Å, and all the output data are changed to "1" after this erasure procedure. The minimum integrated close (i.e., UV intensity x exposure time) for erasure is 15W · sec/cm2

DEVICE OPERATION

READ MODE

Dataout is available 450ns (t'ACC) from addresses with OE low or 120ns (toE) from OE with addresses stable.

DESELECT MODE

The outputs may be OR-tied together with the other HN462716s. When HN462716s are deselected, the OE inputs must be at high TTL level.

POWER DOWN MODE

Power down is achieved with CE high TTL level, In this mode the outputs are in a high impedance state.

PROGRAMMING

Initially, and after each erasure, all bits of the HN462716 are in the "High" state (Output High). Data is introduced by selectively programming "low" into the desired bit locations. In the programming mode, Vpp power supply is at 25V and OE input is at high TTL level. Data to be programmed are presented 8-bits in parallel, to the data output lines (00 to 07).

The addresses and inputs are at TTL levels.

After the address and data setup, a 50 ms, active high program pulse is applied to the CE input. The CE is at TTL level.

The HN462716 must not be programmed with a DC signal applied to the CE input.

PROGRAM VERIFY

The HN462716 has a program verify mode. A verify should be performed on the programmed bits to determine that they were correctly programmed. In this mode Vpp is at 25V.

PROGRAM INHIBIT

Programming of multiple HN462716s in parallel with different data is easily accomplished by using this mode. Except for CE, all like inputs of the parallel HN462716s may be common.

A TTL program pulse applied to a HN462716's CE input will program that HN462716. A low level CE inhibits the other HN462716s from being programmed.