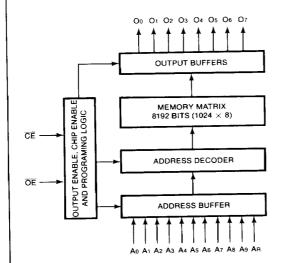
CRIG

MARCH 1980

(-383

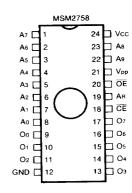
MSM2758 8,192-BIT (1024 imes 8) UV ERASABLE PROM

GENERAL DESCRIPTION


The Oki MSM2758 is a 8192-bit ultraviolet erasable and electrical programmable read-only memory organized as 1024-words by 8-bits using Oki's Floating Gate N-channel Silicon Gate MOS technology. It uses fully static circuitry and therefore requires no clocks or refreshing to operate. Directly TTL compatible inputs, outputs and operation from a single +5V supply with low-power stand-by mode simplify system designs. Common data input/output pins using three-state outputs are provided.

The MSM2758 is offered in a 24-pin dual-in-line ceramic (AS suffix) package with quartz glass window. Operation is guaranteed from 0°C to 70°C.

FEATURES


- 450 ns maximum Access Time
- Low Power Dissipation 525 mW operating 132 mW standby
- Single +5V Supply
- 1024-word × 8-bit Organization
- UV Erasable and Electrically Programmable
- Minimal Programming Time
 50 seconds for all 8192 bits
 50 milliseconds for single location
- Pin compatible with MSM2128-1, 16,384 Bit Static RAM
- · Interchangeable with Intel 2758 Devices

FUNCTIONAL BLOCK DIAGRAM

CE	ŌĒ	AR	Vpp	Outputs	Mode
L	L	L	+5	Dout	Read
Н	×	L	+5	Hi-Z	Standby
	н	L	+ 25	Din	Program
L	L	<u> </u>	+ 25	D ouт	Program Verify
L	н	L	+ 25	Hi-Z	Program Inhibit

PIN CONFIGURATION

Ao to Ao: Address Inputs

An: Address Reference Input

00 to 07: Outputs CE: Chip Enable

OE: Output Enable

V_{pp}: +25V Program Supply

Vcc: +5V Supply GND: Ground

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Temperature Under Bias	Тор	0 to + 70	°C
Storage Temperature	Tstg	- 55 to +125	°C
Program Voltage (Respect to Gnd)	V _{pp}	-0.3 to +28	V
Supply Voltage (Respect to Gnd)	Vcc	-0.3 to +6	٧
Input Voltage (Respect to Gnd)	Vin	0.3 to +6	٧
Output Voltage (Respect to Gnd)	Vout	-0.3 to +6	V
Power Dissipation	Pw	0.6	w

Note: Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

OPERATING CONDITIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	Vcc	4.75	5	5.25	٧	5V ± 5%
	Vpp	Vcc - 0.6		Vcc + 0.6	٧	Read Mode
Program Voltage	V _{pp}	24.0		26.0	V	Program Mode
	Vін	2.2	5	6.0	V	Beanast to Cod
Input Signal Level	VIL	-0.1	0	0.8	V	Respect to Gnd
Operating Temperature	Ta	0		+ 70	°C	

DC CHARACTERISTICS

(Vcc = 5V \pm 5%; Vpp = Vcc \pm 0.6V; TA = 0 to \pm 70°C unless otherwise noted)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Input Load Current	lu			10	μΑ	Vin = 5.25V/0.45V
Output Leakage Current	ILO			10	μΑ	Vоит = 5.25V
	Ірр			5	mA	V _{pp} = 5.85V
V _{PP} Current	lpp1			6	mA	$V_{pp} = 25V \pm 1V$, $\overline{CE} = V_{IL}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$
	lpp2			30	mA	$V_{pp} = 25V \pm 1V$, $\overline{CE} = V_{IH}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$
	Icc1		10	25	mA	CE = ViH, OE = VIL
Vcc Current	ICC2		60	100	mA	ČE = VIL, OE = VIL
	Icc			100	mA	$V_{pp} = 25V \pm 1V, T_a = 25^{\circ}C \pm 5^{\circ}C$
Output High Voltage	Voн	2.4			V	Іон = −400μА
Output Low Voltage	VoL	-		0.45	V	IoL = 2.1 mA

Notes: 1. VCC must be supplied before or when VPP is supplied, and must be cut off when or after VPP is cut off.

AC CHARACTERISTICS

READ MODE

(Vcc = 5V \pm 5%; Vpp = Vcc \pm 0.6V; Ta = 0 to 70°C unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Access Time	tacc		250	450	ns
Chip Enable to Output Valid	tce		280	450	ns
Output Enable to Output Valid	toe			120	ns
Output Disable to Output Float	tor .	0		100	ns

2

READ MODE ADDRESS VALID ADDRESS ĊĒ - tge --ÓΕ DATA VALID OUTPUT .

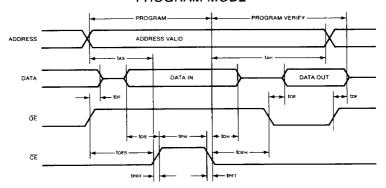
Notes: 1. A Read occurs during the overlap of a low \overline{CE} and a low \overline{OE} .

2. tacc is specified with $\overline{CE} = \overline{OE} = VIL$.

3. tcE is specified with $\overline{OE} = VIL$.

- 4. Input Pulse Levels: 0.8V to +2.2V
- 5. Input Rise and Fall Time: 20 ns
- 6. Timing Measurements Reference Level: Input = 1.0V and 2.0V, Output = 0.8V and 2.4V

IMPEDANCE


7. Output Load: 1 TTL Gate and CL = 100 pF

PROGRAM MODE

(Vcc = 5V \pm 5%; Vpp = 25V \pm 1V; Ta = 25°C \pm 5°C unless otherwise noted)

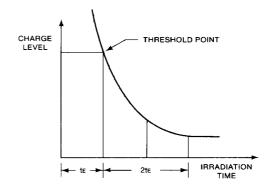
Parameter	Symbol	Min.	Typ.	Max.	Unit
Address Setup Time	tas	2			μS
OE Setup Time	toes	2			μS
Data Setup Time	tos	2			μS
Address Hold Time	tah	2			μS
OE Hold Time	toen	2			μS
Data Hold Time	tрн	2			μS
Output Disable Delay Time	tor	0		120	ns
Output Enable Delay Time	toe			120	ns
Program Pulse Width	tpw	45	50	55	ms
Program Pulse Rise Time	tprt	5			ns
Program Pulse Fall Time	tPFT	5			ns

PROGRAM MODE

Notes: 1. Programming occurs with $V_{pp}=25V\pm IV$ during the overlap of a high \overline{OE} and pulsed-high \overline{CE} .

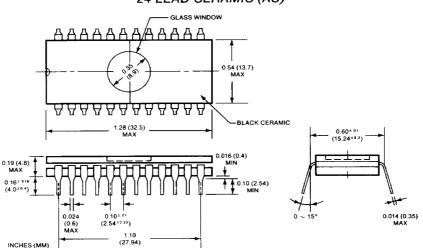
2. Measurement conditions same as those for Read Mode. (Notes 4-7).

CAPACITANCE


 $T_A = 25$ °C, f = 1 MHz

Parameter	Symbol	Min.	Тур.	Max.	Unit
Output Capacitance	Соит			12	pF
Input Capacitance	Cin			6	pF

Note: This parameter is periodically sampled and not 100% tested.


FUNCTIONAL DESCRIPTION

PROGRAMMING: All bits of the EPROM are set to the "1" state at the time of delivery or after erasure. Data is introduced by selectively programming "0's" into the desired bit locations. The only way to change a "0" to a "1" is by ultraviolet light erasure. ERASURE: The contents of the EPROM can be erased by irradiation of ultraviolet rays having a wavelength of 2537 Angstroms. The irradiation energy for erasure should be a minimum of 15W-sec/cm². The charge (electrons) in the floating gates decreases with irradiation time, but erasing time "1E" until reaching the threshold point (where all bits are sensed as "1's") is insufficient. Irradiate for another 2 × te for sufficient discharge of electrons.

PACKAGE SPECIFICATIONS

24 LEAD CERAMIC (AS)

OKI SEMICONDUCTOR 1333 LAWRENCE EXPRESSWAY, SANTA CLARA, CALIF. 95051

TELEPHONE: (408) 984-4842 TELEX (25) 910-3380508

OKI Semiconductor reserves the right to make changes in specifications at any time and without notice. The information furnished by OKI Semiconductor in this publication is believed to be accurate and reliable. However, no responsibility is assumed by OKI Semiconductor for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of OKI.

© 1980 OKI SEMICONDUCTOR

PRINTED IN U.S.A.