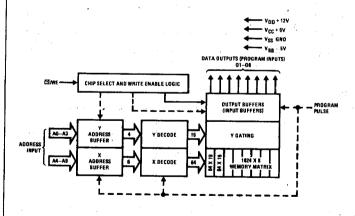


MM2708, MM2708-1 8192-Bit (1024 × 8) UV Erasable PROMs

General Description

The MM2708, MM2708-1 are high speed 8192 UV erasable and electrically reprogrammable EPROMs ideally suited for applications where fast turn-around and pattern experimentation are important requirements.


The MM2708, MM2708-1 are packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the devices by following the programming procedure.

These EPROMs are fabricated with the reliable, high volume, time proven, N-channel silicon gate technology.

Features

- 1024 x 8 organization
- 800 mW max
- Low power during programming
- Access time MM2708, 450 ns; MM2708-1, 350 ns
- Standard power supplies: 12V, 5V, -5V
- Static—no clocks required
- Inputs, and outputs TTL compatible during both read and program modes
- TRI-STATE® output

Order Number MM2708Q or MM2708Q-1 See NS Package J24CQ

Pin Connection During Read or Program

MODE	PIN NUMBER							
	9-11, 13-17	12	18	19	20	21	24	
Read	Pout	VSS	V _{SS}	VDD	VIL	VBB	Vcc	
Program	D _{IN}	VSS	Pulsed	V _{DD}	VIHW	VBB	Vcc	
			VIHP					

Pin Description

A0-A9 Address inputs O1-O8 Data outputs

CS/WE Chip select/write enable input

Absolute Maximum Ratings (Note 1)

Temperature Under Bias -25°C to +85°C
Storage Temperature -65°C to +125°C
VDD with Respect to VBB
VCC and VSS with Respect to VBB
All Input or Output Voltages with

CS/WE Input with Respect to VBB

During Programming

Program Input with Respect to VBB

Power Dissipation

Lead Temperature (Soldering, 10 seconds)

20V to -0.3V

35V to -0.3V

1.5 W

300°C

Read Operation

Respect to VRB During Read

DC Operating Characteristics

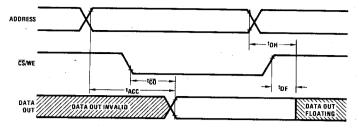
 $T_A = 0^{\circ}C$ to +70°C, $V_{CC} = 5V \pm 5\%$, $V_{DD} = 12V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted, (Note 3)

15V to -0.3V

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ILI	Address and Chip Select Input Sink Current	V _{IN} = 5.25V or V _{IN} = V _{IL}	-	1	10	μΑ
ILO	Output Leakage Current	V _{OUT} = 5.25V, CS /WE = 5V		1	10	μА
IDD	V _{DD} Supply Current	Worst-Case Supply Currents, All Inputs High, $\overline{CS}/WE = 5V$, $T_A = 0^{\circ}C$			65	mA
lcc	V _{CC} Supply Current	Worst-Case Supply Currents, All Inputs High, $\overline{CS}/WE = 5V$, $T_A = 0^{\circ}C$		7	10	mA
IBB	VBB Supply Current	Worst-Case Supply Currents, All Inputs High, $\overline{CS}/WE = 5V$, $T_A = 0^{\circ}C$		34	45	m A
- ال	Input Low Voltage		VSS		0.65	٧
ViH	Input High Voltage		3.0	\	V _{CC} +1	٧
V _{OH1}	Output High Voltage	I _{OH} = -100 μA	3.7			ν
V _{OH2}	Output High Voltage	I _{OH} = -1 mA	2.4			٧
VOL	Output Low Votlage	I _{OL} = 1.6 mA			0.45	٧
PD	Power Dissipation				800	mW

AC Electrical Characteristics

 $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 5\%$, $V_{DD} = 12V \pm 5\%$, $V_{BB} = -5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted


SYMBOL	DADAMETED	COMPLETIONS		MM2708		MM2708-1	
	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	UNITS
tACC	Address to Output Delay	Output Load: 1 TTL Gate and CL = 100 pF,		450		350	ns
tCO	Chip Select to Output Delay	Input Rise and Fall Times ≤ 20 ns: Timing Measurement Reference Levels: 0.8V	:	120		120	ns
^t DF	Chip Deselect to Output Delay	and 2.8V for Inputs; 0.8V and 2.4V for	0	120		120	ns
tOH.	Address to Output Hold	Outputs, Input Pulse Levels: 0.65V to 3V			0		ns
CAPACI	TANCE (Note 2)						
CIN	Input Capacitance	V _{IN} = 0V, T _A = 25°C, f = 1 MHz		6		6	pF
COUT	Output Capacitance	V _{OUT} = 0V, T _A = 25°C, f = 1 MHz	, i	12		12	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing. T_A = 25°C, f = 1 MHz

Note 3: Typical conditions are for operation at: $T_A = 25^{\circ}C$, $V_{CC} = 5V$, $V_{DD} = 12V$, $V_{BB} = -5V$, and $V_{SS} = 0V$.

Switching Time Waveforms

Programming Instructions

Initially, and after each erasure, all bits of the MM2708, MM2708-1 are in the "1" state (output high). Inforation is introduced by selectively programming "0" into the desired bit locations. A programmed "0" can only be changed to a "1" by UV erasure.

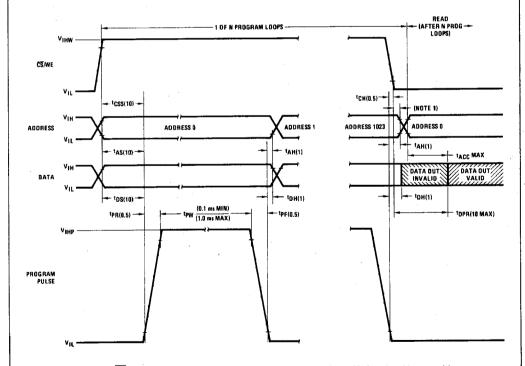
The circuit is set up for programming operation by raising the CE/WE input (pin 20) to +12V. The word address is selected in the same manner as in the read mode. Data to be programmed are presented, 8 bits in parallel, to the data output lines (O1–O8). Logic levels for address and data lines and the supply voltages are the same as for the read mode. After address and data set up, one program pulse per address is applied to the program input (pin 18). One pass through all addresses is defined as a program loop. The number of loops (N)

required is a function of the program pulse width (tp_W) according to N x tp_W \geq 100 ms.

The width of the program pulse is from 0.1 to 1 ms. The number of loops (N) is from a minimum of 100 (tpw = 1 ms) to greater than 1000 (tpw = 0.1 ms). There must be N successive loops through all 1024 addresses. It is not permitted to apply N program pulses to an address and then change to the next address to be programmed. Caution should be observed regarding the end of a program sequence. The $\overline{\text{CS}}/\text{WE}$ falling edge transition must occur before the first address transition when changing from a program to a read cycle. The program pin should also be pulled down to V₁Lp with an active instead of a passive device. This pin will source a small amount of current (I₁PL) when $\overline{\text{CS}}/\text{WE}$ is at V₁HW (12V) and the program pulse is at V₁Lp.

Programming Characteristics

 $T_A = 25^{\circ}$ C, $V_{CC} = 5$ V ± 5 %, $V_{DD} = 12$ V ± 5 %, $V_{BB} = -5$ V ± 5 %, $V_{SS} = 0$ V, unless otherwise noted


DC Programming Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
lu ,	Address and CS/WE Input Sink Current	V _{IN} = 5.25V			10	μΑ
IIPL	Program Pulse Source Current				3	mA
. IIPH	Program Pulse Sink Current				20	mA
IDD	VDD Supply Current	Worst-Case Supply Currents, All Inputs High, $\overline{\text{CS}}/\text{WE} = 5\text{V}$, $T_{\text{A}} = 0^{\circ}\text{C}$		44	65	mA
ICC	V _{CC} Supply Current	Worst-Case Supply Currents, All Inputs High, $\overline{\text{CS}}/\text{WE} = 5\text{V}$, $T_A = 0^{\circ}\text{C}$		7	10	mA
IBB	V _{BB} Supply Current	Worst-Case Supply Currents, All Inputs High, $\overline{\text{CS}}/\text{WE} = 5\text{V}$, $T_A = 0^{\circ}\text{C}$		34	45	mA
VIL	Input Low Level (Except Program)		VSS		0.65	٧
VIH	Input High Level, All Addresses and Data		3.0		V _{CC} +1	٧
VIHW	CS/WE Input High Level	Referenced to VSS	11.4		12.6	V -
VIHP	Program Pulse High Level	Referenced to VSS	25		27	V
VILP	Program Pulse Low Level	VIHP - VILP = 25V Min	V _{SS}		1	

AC Programming Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
†AS	Address Set-Up Time		10			μs
tCSS	CS/WE Set-Up Time		10			μs
†DS	Data Set-Up Time		10			μs
t _A H	Address Hold Time		1			μs
^t CH	CS/WE Hold Time		0.5			μs
tDH	Data Hold Time		1	·		μs
tDF	Chip Deselect to Output Float Delay		0		120	μs
tDPR	Program to Read Delay				10	μs
tPW	Program Pulse Width		0.1		1.0	ms
tPR	Program Pulse Rise Time		0.5		2.0	μs
tPF	Program Pulse Fall Time		0.5		2.0	μs

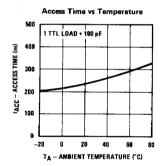
Programming Waveforms

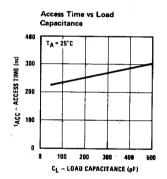
Note 1: The CS/WE transition must occur after the program pulse transition and before the address transition.

Note 2: Numbers in parentheses indicate minimum timing in microseconds unless otherwise specified.

Functional Description

ERASING


The MM2708 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the MM2708 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions.


An ultraviolet source of 2537 Å yielding a total integrated dosage of 15 watt-seconds/cm² is required. This will erase the part in approximately 15 to 20 minutes

if a UV lamp with a 12,000 μ W/cm² power rating is used. The MM2708 to be erased should be placed 1 inch away from the lamp and no filters should be used.

An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components and system designs have been erroneously suspected when incomplete erasure was the basic problem.

Typical AC Performance Characteristics

