

2.2 BOOS Serial Oevice 1/0 CP/M 3 Programmer's Guide

The basic 110 functions also monitor the console to stop and start console output
scroll at the user's request. To provide this support, the console output functions
make internal status checks for an input character before writing a character to the
output device. The console input and console status functions also check the input
character. If the user types a CTRL-S, these functions make an additional BIOS
console input call. This input call suspends execution until a character is typed. If the
typed character is not a CTRL-Q, an additional BIOS console input call is made.
Execution and console scrolling resume when the user types a CTRL-Q.

When the BDOS is suspended because of a typed CTRL-S, it scans input for three
special characters: CTRL-Q, CTRL-C, and CTRL-P. If the user types any other
character, the BOOS echoes a bell character, CTRL-G, to the console, discards the
input character, and continues the scan. If the user types a CTRL-C, the BOOS
executes a warm start which terminates the calling program. If the user types a
CTRL-P, the BOOS toggles the printer echo switch. The printer echo switch controls
whether console output is automatically echoed to the list device, LST:. The BOOS
signals when it turns on printer echo by sending a bell character to the console.

All basic console 110 functions discard any CTRL-Q or CTRL-P character that is
not preceded by a CTRL-S character. Thus, BOOS function 1 cannot read a CTRL
S, CTRL-Q, or CTRL-P character. Furthermore, these characters are invisible to the
console status function.

The second category of console 110 is direct console 1/0. BDOS function 6 can
provide direct console 110 in situations where unadorned console 1/0 is required.
Function 6 actually consists of several sub-functions that support direct console input,
output, and status checks. The BDOS does not filter out special characters during
direct console 1/0. The direct output sub-function does not expand tabs, and the
direct input sub-function does not echo typed characters to the console.

The third category of console 1/0 accepts edited input from the console. The only
function in this category, Function 10, Read Buffer Input, reads an input line from a
Duffer and recognizes certain control characters that edit the input. As an option, the
line to be edited can be initialized by the calling program.

In the nonbanked version of CP/M 3, editing within the buffer is restricted to the
last character on the line. That is, to edit a character embedded in the line, the user
must delete all characters that follow the erroneous character, correct the error, and
then retype the remainder of the line. The banked version of CP/M 3 supports
complete line editing in which characters can be deleted and inserted anywhere in the
line. In addition, the banked version can also recall the previously entered line.

------------------------ [ij]DIGITAL RESEARCWM

2-4

CP/M 3 Programmer's Guide 2.2 BDOS Serial Device liD

Function 10 also filters input for certain control characters. If the user types a
CTRL-C as the first character in the line, Function 10 terminates the calling program
by branching to the BIOS warm start entry point. A CTRL-C in any other position
is simply echoed at the console. Function 10 also watches for a CTRL-P keystroke,
and if it finds one at any position in the command line, it toggles the printer echo
switch. Function 10 does not filter CTRL-S and CTRL-Q characters, but accepts
them as normal input. In general, all control characters that Function 10 does not
recognize as editing control characters, it accepts as input characters. Function 10
identifies a control character with a leading caret, ", when it echoes the control
character to the console. Thus, CTRL-C appears as "C in a Function 10 command
line on the screen.

The final category of console 110 functions includes special functions that modify
the behavior of other console functions. These functions are:

109. Get/Set Console Mode
110. Get/Set Output Delimiter

Function 110 can get or set the current delimiter for Function 9, Print String. The
delimiter is $, when a transient program begins execution. Function 109 gets or sets
a 16-bit system variable called the Console Mode. The following list describes the
bits of the Console Mode variable and their functions:

bit 0: If this bit is set, Function 11 returns true only if a CTRL-C is typed at the
console. Programs that make repeated console status calls to test if execution
should be interrupted, can set this bit to interrupt on CTRL-C only. The
CCP DIR and TYPE built-in commands run in this mode.

bit 1 Setting this bit disables stop and start scroll support for the basic console
110 functions, which comprise the first category of functions described in
this section. When this bit is set, Function 1 reads CTRL-S, CTRL-Q, and
CTRL-P, and Function 11 returns true if the user types these characters. Use
this mode in situations where raw console input and edited output is needed.
While in this mode, you can use Function 6 for input and input status, and
Functions 1, 9, and 111 for output without the possibility of the output
functions intercepting input CTRL-S, CTRL-Q, or CTRL-P characters.

bit 2: Setting this bit disables tab expansion and printer echo support for Functions
2, 9, and 111. Use this mode when non-edited output is required.

IIIDDIGITAL RESEARCWM

2-5

2.2 BOOS Serial Oevice 1/0 CPIM 3 Programmer's Guide

bit 3 This bit disables all CTRL-C intercept action in the BOOS. This mode is
useful for programs that must control their own termination.

bits 8 and 9: The BOOS does not use these bits, but reserves them for the CP/M 3
GET RSX that performs console input redirection from a file. With one
exception, these bits determine how the GET RSX responds to a program
console status request (Function 6, Function 11, or direct BIOS).

bit 8 = 0, bit 9 = ° -conditional status
bit 8 = 0, bit 9 = 1 - false status
bit 8 1, bit 9 = ° -true status
bit 8 = 1, bit 9 = 1 - do not perform redirection

In conditional status mode, GET responds false to all status requests except for a
status call preceded immediately by another status call. On the second call, GET
responds with a true result. Thus, a program that spins on status to wait for a
character is signaled that a character is ready on the second call. In addition, a
program that makes status calls periodically to see if the user wants to stop is not
signaled.

When a transient program begins. execution, the Console Mode bits are normally
set to zero. However, the CP/M 3 utility GENCOM can attach an RSX header to a
COM file so that when it is loaded, the console mode bits are set differently. This
feature allows you to modify a program's console 110 behavior without having to
change the program.

2.2.2 Other Serial 110

The BOOS supports single character output functions for the logical devices LST:
and AUXOUT:, an input function for AUXIN:, and status functions for AUXIN:
and AUXOUT:. A block output function is also supported for the LST: device.
Unlike the console I/O functions, the BOOS does not intercept control characters or
expand tabs for these functions. Note that AUXIN: and AUXOUT: replace the
READER and PUNCH devices supported by earlier versions of CP/M.

------------------------ i!IDDIGITAL RESEARCH™

2-6

CP/M 3 Programmer's Guide 2.3 BDOS File System

2.3 BDOS File System

Transient programs depend on the BDOS file system to create, update, and main
tain disk files. This section describes the capabilities of the BDOS file system in detail.
You must understand the general features of CP/M 3 described in Section 1 before
you can use the detail presented in this section.

The remaining introductory paragraphs define the four categories of BDOS file
functions. This is followed by a review of file naming conventions and disk and file
organization. The section then describes the data structure used by the BDOS file,
and directory oriented functions: the File Control Block (FCB). Subsequent discus
sions cover file attributes, user numbers, directory labels and extended File Control
Blocks (XFCBs), passwords, date and time stamping, blocking and deblocking, multi
sector 110, disk reset and removable media, byte counts, and error handling. These
topics are closely related to the BDOS file system. You must be familiar with the
contents of Section 2 before attempting to use the BDOS functions described individ
ually in Section 3.

The BDOS file system supports four categories of functions: file access functions,
directory functions, drive related functions, and miscellaneous functions. The file
access category includes functions to create a file, open an existing file, and close a
file. Both the make and open functions activate the file for subsequent access by
BDOS file access functions. The BDOS read and write functions are file access func
tions that operate either sequentially or randomly by record position. They transfer
data in units of 128 bytes, which is the basic record size of the file system. The close
function makes any necessary updates to the directory to permanently record the
status of an activated file.

[!ID DIGITAL RESEARCWM

2-7

2.3 BOOS File System CP/M 3 Programmer's Guide

BOOS directory functions operate on existing file entries in a drive's directory.
This category includes functions to search for one or more files, delete one or more
files, truncate a file, rename a file, set file attributes, assign a password to a file, and
compute the size of a file. The search and delete functions are the only BOOS func
tions that support ambiguous file references. All other directory and file related func
tions require a specific file reference.

The BOOS drive-related category includes functions that select the default drive,
compute a drive's free space, interrogate drive status, and assign a directory label to
a drive. A drive's directory label controls whether or not CP/M 3 enforces file pass
word protection, or stamps files with the date and time. Note that the nonbanked
version of CP/M 3 does not support file passwords.

The miscellaneous category includes functions to set the current OMA address,
access and update the current user number, chain to a new program, and flush
internal blocking/deblocking buffers. Also included are functions that set the BOOS
multi-sector count, and the BOOS error mode. The BOOS multi-sector count deter
mines the number of 128-byte records to be processed by BOOS read and write
functions. It can range from 1 to 128. The BOOS error mode determines how the
BOOS file system handles certain classes of errors.

Also included in the miscellaneous category are functions that call the BIOS directly,
set a program return code, and parse filenames. If the LOAOER RSX is resident in
memory, programs can also make a BOOS function call to load an overlay. Another
miscellaneous function accesses system variables in the System Control Block.

------------------------ IiIDDlGITAL RESEARCH™
2-8

CP 1M 3 Programmer's Guide 2.3 BOOS File System

The following list summarizes the operations performed by the BDOS file system:

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Selected Disks
Set DMA Address
Set/Reset File Attributes
Reset Drive
Set BDOS Multi-Sector Count
Set BDOS Error Mode
Get Disk Free Space
Chain to Program
Flush Buffers
Get/Set System Control Block
Call BIOS
Load Overlay
Call RSX
Truncate File
Set Directory Label
Get File's Date Stamps and Password Mode
Write File XFCB
Set/Get Date and Time
Set Default Password
Return CP/M 3 Serial Number
Get/Set Program Return Code
Parse Filename

2.3.1 File Naming Conventions

Under CP/M 3, a file specification consists of four parts: the drive specifier, the
filename field, the filetype field, and the file password field. The general format for a
command line file specification is shown below:

{d: }filename{. typ }{;password}

!!IDDIGITAL RESEARCH'M -----------------------

2-9

2.3 BOOS File System CP 1M 3 Programmer's Guide

The drive specifier field specifies the drive where the file is located. The filename and
type fields identify the file. The password field specifies the password if a file is
password protected.

The drive, type, and password fields are optional, and the delimiters :.; are required
only when specifying their associated field. The drive specifier can be assigned a letter
from A to P where the actual drive letters supported on a given system are deter
mined by the BIOS implementation. When the drive letter is not specified, the current
default drive is assumed.

The filename and password fields can contain one to eight non-delimiter charac
ters. The filetype field can contain one to three non-delimiter characters. All three
fields are padded with blanks, if necessary. Omitting the optional type or password
fields implies a field specification of all blanks.

The CCP calls BOOS Function 152, Parse Filename, to parse file specifications
from a command line. Function 152 recognizes certain ASCII characters as valid
delimiters when it parses a file from a command line. The valid delimiters are shown
in Table 2-1.

Table 2-1. Valid Filename Delimiters

ASCII

null
space
return

tab

<
>
I

I HEX EQUIVALENT

00
20
OD
09
3A
2E
3B
3D
2C
5B
50
3C
3E
7C

------------------------ I!QlDIGITAL RESEARCWM
2-10

CP/M 3 Programmer's Guide 2.3 BDOS File System

Function 152 also excludes all control characters from the file fields, and translates all
lower-case letters to upper-case.

Avoid using parentheses and the backslash character, \, in the filename and filetype
fields because they are commonly used delimiters. Use asterisk and question mark
characters, * and ?, only to make an ambiguous file reference. When Function 152
encounters an * in a filename or filetype field, it pads the remainder of the field with
question marks. For example, a filename of X*.* is parsed to X?????????? The
BDOS search and delete functions treat a ? in the filename and type fields as follows:
A ? in any position matches the corresponding field of any directory entry belonging
to the current user number. Thus, a search operation for X?????????? finds all the
current user files on the directory beginning in X. Most other file related BDOS
functions treat the presence of a ? in the filename or type field as an error.

It is not mandatory to follow the file naming conventions of CP/M 3 when you
create or rename a file with BDOS functions. However, the conventions must be used
if the file is to be accessed from a command line. For example, the CCP cannot locate
a command file in the directory if its filename or type field contains a lower-case
letter.

As a general rule, the filetype field names the generic category of a particular file,
while the filename distinguishes individual files in each category. Although they are
generally arbitrary, the following list of filetypes names some of the generic categories
that have been established.

ASM
PRN
HEX
BAS
INT
COM
PRL
SPR

Assembler Source
Printer Listing
Hex Machine Code
Basic Source File
Intermediate File
Command File
Page Relocatable
Sys. Page Reloc.

2.3.2 Disk and File Organization

PLI
REL
TEX
BAK
SYM
$$$
DAT
SYS

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File
Data File
System File

The BDOS file system can support from one to sixteen logical drives. The maxi
mum file size supported on a drive is 32 megabytes. The maximum capacity of a
drive is determined by the data block size specified for the drive in the BIOS. The
data block size is the basic unit in which the BDOS allocates disk space to files.

l!IDDIGITAL RESEARCH'M ------------------------
2-11

2.3 BOOS File System CP/M 3 Programmer's Guide

Table 2-2 displays the relationship between data block size and drive capacity.

Table 2-2. Logical Drive Capacity

Data Block Size I Maximum Drive Capacity

lK
2K
4K
8K

16K

256 Kilobytes
64 Megabytes

128 Megabytes
256 Megabytes
512 Megabytes

Logical drives are divided into two regions: a directory area and a data area. The
directory area contains from one to sixteen blocks located at the beginning of the
drive. The actual number is set in the BIOS. This area contains entries that define
which files exist on the drive. The directory entries corresponding to a particular file
define those data blocks in the drive's data area that belong to the file. These data
blocks contain the file's records. The directory area is logically subdivided into six
teen independent directories identified as user 0 through 15. Each independent direc
tory shares the actual directory area on the drive. However, a file's directory entries
cannot exist under more than one user number. In general, only files belonging to
the current user number are visible in the directory.

Each disk file consists of a set of up to 262,144 128-byte records. Each record in
a file is identified by its position in the file. This position is called the record's random
record number. If a file is created sequentially, the first record has a position of zero,
while the last record has a position one less than the number of records in the file.
Such a file can be read sequentially in record position order beginning at record zero,
or randomly by record position. Conversely, if a file is created randomly, records are
added to the file by specified position. A file created in this way is called sparse if
positions exist within the file where a record has not been written.

The BDOS automatically allocates data blocks to a file to contain its records on
the basis of the record positions consumed. Thus, a sparse file that contains two
records, one at position zero, the other at position 262,143, consumes only two data
blocks in the data area. Sparse files can only be created and accessed randomly, not
sequentially. Note that any data block allocated to a file is permanently allocated to
the file until the file is deleted or truncated. These are the only mechanisms supported
by the BDOS for releasing data blocks belonging to a file.

------------------------ fiIDDiGITAL RESEARCH™

2-12

CP/M 3 Programmer's Guide 2.3 BOOS File System

Source files under CPIM 3 are treated as a sequence of ASCII characters, where
each line of the source file is followed by a carriage return line-feed sequence, OOH
followed by OAH. Thus a single 128-byte record could contain several lines of source
text. The end of an ASCII file is denoted by a CTRL-Z character, lAH, or a real end
of file, returned by the BOOS read operation. CTRL-Z characters embedded within
machine code files such as COM files are ignored. The actual end-of-file condition
returned by the BOOS is used to terminate read operations.

2.3.3 File Control Block Definition

The File Control Block, FCB, is a data structure that is set up and initialized by a
transient program, and then used by any BDOS file access and directory functions
called by the transient program. Thus the FCB is an important channel for informa
tion exchange between the BDOS and a transient program. For example, when a
program opens a file, and subsequently accesses it with BOOS read and write record
functions, the BOOS file system maintains the current file state and position within
the program's FCB. Some BOOS functions use certain fields in the FCB for invoking
special options. Other BOOS functions use the FCB to return data to the calling
program. In addition, all BDOS random 1/0 functions specify the random record
number with a 3-byte field at the end of the FCB.

When a transient program makes a file access or directory BDOS function call,
register pair OE must address an FCB. The length of the FCB data area depends on
the BOOS function. For most functions, the required length is 33 bytes. For random
110 functions, the Truncate File function, and the Compute File Size function, the
FCB length must be 36 bytes. The FCB format is shown on the next page.

[!ill DIGITAL RESEARCI-FM

2-13

2.3 BOOS File System CP 1M 3 Programmer's Guide

00 01 02

where
dr

f1. .. f8

t1,t2,t3

ex

sl

s2

rc

08 09 10 11 12 13 14 15 16

drive code (0 - 16)
o = > use default drive for file
1 = > auto disk select drive A,
2 = > auto disk select drive B,

16 = > auto disk select drive P.

contain the filename in ASCII
upper-case, with high bit = o.
£1', ... , f8' denote the high
order bit of these positions,
and are file attribute bits.

contain the filetype in ASCII
upper-case, with high bit = o.
t1 " t2', and t3' denote the
high bit of these positions,
and are file attribute bits.
t1' 1 = > Read/Only file
t2' 1 = > System file
t3' 1 = > File has been archived

31 32 33 34 35

contains the current extent number,
usually set to 0 by the calling program,
but can range 0 - 31 during file 110

reserved for internal system use

reserved for internal system use

record count for extent "ex"
takes on values from 0 - 255
(values greater than 128 imply
record count equals 128)

------------------------ [jQ] DIGITAL RESEARCH™
2-14

CP 1M 3 Programmer's Guide

dO ... dn

cr

rO,rl,r2

filled-in by CP/M 3, reserved for
system use

current record to read or write in
a sequential file operation, normally
set to zero by the calling program
when a file is opened or created

optional random record number in the
range 0-262,143 (0 - 3FFFFH).
ro,rl,r2 constitute a 18 bit value
with low byte rO, middle byte rl, and
high byte r2.

2.3 BOOS File System

For BDOS directory functions, the calling program must initialize bytes ° through
11 of the FCB before issuing the function call. The Set Directory Label and Write
File XFCB functions also require the calling program to initialize byte 12. The Rename
File function requires the calling program to place the new filename and type in bytes
17 through 27.

BDOS open or make function calls require the calling program to intialize bytes °
through 12 of the FCB before making the call. Usually, byte 12 is set to zero. In
addition, if the file is to be processed from the beginning using sequential read or
write functions, byte 32, cr, must be zeroed.

After an FCB is activated by an open or make operation, a program does not have
to modify the FCB to perform sequential read or write operations. In fact, bytes °
through 31 of an activated FCB should not be modified. However, random 1/0
functions require that a program set bytes 33 through 35 to the requested random
record number prior to making the function call.

File directory entries maintained in the directory area of each disk have the same
format as FCBs, excluding bytes 32 through 35, except for byte ° wliich contains the
file's user number. Both the Open File and Make File functions bring these entries,
excluding byte 0, into memory in the FCB specified by the calling program. All read
and write operations on a file must specify an FCB activated in this manner.

[j]] DIGITAL RESEARCHrM ------------------------
2-15

2.3 BOOS File System CP/M 3 Programmer's Guide

The BOOS updates the memory copy of the FCB during file processing to maintain
the current position within the file. Ouring file write operations, the BOOS updates
the memory copy of the FCB to record the allocation of data to the file, and at the
termination of file processing, the Close File function permanently records this infor
mation on disk. Note that data allocated to a file during file write operations is not
completely recorded in the directory until the calling program issues a Close File call.
Therefore, a program that creates or modifies files must close the files at the end of
any write processing. Otherwise, data might be lost.

The BOOS Search and Oelete functions support multiple or ambiguous file refer
ences. In general, a question mark in the filename, filetype, or extent field matches
any value in the corresponding positions of directory FCBs during a directory search
operation. The BOOS search functions also recognize a question mark in the drive
code field, and if specified, they return all directory entries on the disk regardless of
user number, including empty entries. A directory FCB that begins with ESH is an
empty directory entry.

2.3.4 File Attributes

The high-order bits of the FCB filename, £1', ... ,f8', and filetype, tl',t2',t3', fields
are called attribute bits. Attributes bits are 1 bit Boolean fields where 1 indicates on
or true, and 0 indicates off or false. Attribute bits indicate two kinds of attributes
within the file system: file attributes and interface attributes.

The file attribute bits, £1', ... ,f4' and tl',t2',t3', can indicate that a file has a defined
file attribute. These bits are recorded in a file's directory FCBs. File attributes can be
set or reset only by the BOOS Set File Attributes function. When the BOOS Make
File function creates a file, it initializes all file attributes to zero. A program can
interrogate file attributes in an FCB activated by the BOOS Open File function, or in
directory FCBs returned by the BOOS Search For First and Search For Next functions.

Note: the BOOS file system ignores file attribute bits when it attempts to locate a file
in the directory.

The file system defines the file attribute bits, tl' ,t2' ,t3', as follows:

tl': Read-Only attribute - The file system prevents write operations to a file with
the read-only attribute set.

------------------------- IlIDDIGITAL RESEARCH™
2-16

CP/M 3 Programmer's Guide 2.3 BOOS File System

t2': System attribute - This attribute, if set, identifies the file as a CP/M 3 system
file. System files are not usually displayed by the CP/M 3 DIR command. In
addition, user-zero system files can be accessed on a read-only basis from other
user numbers.

t3': Archive attribute - This attribute is designed for user written archive programs.
When an archive program copies a file to backup storage, it sets the archive
attribute o£ the copied files. The file system automatically resets the archive
attribute o£ a directory FCB that has been issued a write command. The archive
program can test this attribute in each o£ the file's directory FCBs via the BDOS
Search and Search Next functions. If all directory FCBs have the archive attri
bute set, it indicates that the file has not been modified since the previous
archive. Note that the CP/M 3 PIP utility supports file archival.

Attributes £1' through f4' are available for definition by the user.

The interface attributes are indicated by bits f5' through £8' and cannot be used as
file attributes. Interface attributes £5' and f6' can request options for BDOS Make
File, Close File, Delete File, and Set File Attributes functions. Table 2-3 defines options
indicated by the £5' and f6' interface attribute bits for these functions.

Table 2-3. BDOS Interface Attributes

BDOS Function

16. Close File

19. Delete File

22. Make File

30. Set File Attributes

Interface Attribute Definition

£5' = 1: Partial Close

£5' = 1 : Delete file XFCBs
only

£6' 1 : Assign password to
file

£6' = 1: Set file byte count

Section 3 discusses each interface attribute in detail in the definitions of the above
functions. Attributes f5' and f6' are always reset when control is returned to the
calling program. Interface attributes f7' and f8' are reserved for internal use by the
BDOS file system.

~DIGITAL RESEARCHTM ------------------------
2-17

2.3 BDOS File System CP/M 3 Programmer's Guide

2.3.5 User Number Conventions

The CP/M 3 User facility divides each drive directory into sixteen logically inde
pendent directories, designated as user 0 through user 15. Physically, all user direc
tories share the directory area of a drive. In most other aspects, however, they are
independent. For example, files with the same name can exist on different user num
bers of the same drive with no conflict. However, a single file cannot reside under
more than one user number.

Only one user number is active for a program at one time, and the current user
number applies to all drives on the system. Furthermore, the FCB format does not
contain any field that can be used to override the current user number. As a result,
all file and directory operations reference directories associated with the current user
number. However, it is possible for a program to access files on different user num
bers; this can be accomplished by setting the user number to the file's user number
with the BDOS Set User function before making the desired BDOS function call for
the file. Note that this technique must be used carefully. An error occurs if a program
attempts to read or write to a file under a user number different from the user
number that was active when the file was opened.

When the CCP loads and executes a transient program, it initializes the user num
ber to the value displayed in the system prompt. If the system prompt does not
display a user number, user zero is implied. A transient program can change its user
number by making a BDOS Set User function call. Changing the user number in this
way does not affect the CCP's user number displayed in the system prompt. When
the transient program terminates, the CCP's user number is restored. However, an
option of the BDOS Program Chain command allows a program to pass its current
user number and default drive to the chained program.

User 0 has special properties under CP/M 3. When the current user number is not
equal to zero, and if a requested file is not present under the current user number,
the file system automatically attempts to open the file under user zero. If the file
exists under user zero, and if it has the system attribute, t2', set, the file is opened
from user zero. Note, however, that files opened in this way cannot be written to;
they are available only for read access. This procedure allows utilities that may
include overlays and any other commonly accessed files to be placed on user zero,
but also be available for access from other user numbers. As a result, commonly
needed utilities need not be copied to all user numbers on a directory, and you can
control which user zero files are directly accessible from other user numbers.

------------------------- I!Q)DIGITAL RESEARCH™
2-18

CP 1M 3 Programmer's Guide 2.3 BOOS File System

2.3.6 Directory Labels and XFCBs

The BDOS file system includes two special types of FCBs: the XFCB and the
Directory Label. The XFCB is an extended FCB that optionally can be associated
with a file in the directory. If present, it contains the file's password. Note that
password protected files and XFCBs are supported only in the banked version of
CP/M 3. The format of the XFCB follows.

DR PASSWORD

00 01... 09 .. 1 2 13 14 15 16

dr
file
type
pm

sl,s2,rc
password -
reserved

Figure 2-1. XFCB Format

drive code (0 - 16)
filename field
filetype field
password mode
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mo4e
* * - bit references are right to left,

relative to 0
reserved for system use
8-byte password field (encrypted)
8-byte reserved area

RESERVED

24

AN 069

I!IDDIGITAL RESEARCHTM -----------------------

2-19

2.3 BDOS File System CP/M 3 Programmer's Guide

An XFCB can be created only on a drive that has a directory label, and only if the
directory label has activated password protection. For drives in this state, an XFCB
can be created for a file in two ways: by the BDOS Make function or by the BDOS
Write File XFCB function. The BDOS Make function creates an XFCB if the calling
program requests that a password be assigned to the created file. The BDOS Write
File XFCB function can be used to assign a password to an existing file. Note that in
the directory, an XFCB is identified by a drive byte value, byte 0 in the FCB, equal
to 16 + N, where N equals the user number.

For its drive, the directory label specifies if file password support is to be activated,
and if date and time stamping for files is to be performed. The format of the Direc
tory Label follows.

DR PASSWORD TS2

00 01.. 09 .. 1 2 13 1 4 1 5 16 24. 28.
L...--_______________________ ---1 AN 070

cir
name
type
dl

sl,s2,rc
password -
ts1
ts2

Figure 2-2. Directory Label Format

drive code (0 - 16)
Directory Label name
Directory Label type
Directory Label data byte
bit 7 - require passwords for password

protected files
bit 6 - perform access time stamping
bit 5 - perform update time stamping
bit 4 - perform create time stamping
bit 0 - Directory Label exists
* * - bit references are right to left,

relative to 0
nla
8-byte password field (encrypted)
4-byte creation time stamp field
4-byte update time stamp field

------------------------ I!IDDIGITAL RESEARCH™
2-20

CP/M 3 Programmer's Guide 2.3 BOOS File System

Only one Directory Label can exist in a drive's directory. The Directory Label name
and type fields are not used to search for a Directory Label; they can be used to
identify a disk. A Directory Label can be created, or its fields can be updated by
BDOS function 100, Set Directory Label. This function can also assign a Directory
Label a password. The Directory Label password, if assigned, cannot be circum
vented, whereas file password protection is an option controlled by the Directory
Label. Thus, access to the Directory Label password provides a kind of super-user
status on that drive.

The nonbanked version of CP/M 3 does not support file passwords. However, it
does provide password protection of directory labels. The CP/M 3 RSX, DIRLBL.RSX,
which implements BDOS Function 100 in the nonbanked version of CP/M 3, pro
vides this support.

The BDOS file system has no function to read the Directory Label FCB directly.
However, the Directory Label data byte can be read directly with the BDOS Function
101, Return Directory Label. In addition, the BDOS Search functions, with a ? in the
FCB drive byte, can be used to find the Directory Label on the default drive. In the
directory, the Directory Label is identified by a drive byte value, byte ° in the FCB,
equal to 32, 20H.

2.3.7 File Passwords

Only the banked version of CP/M 3 supports file passwords. In the nonbanked
version, all BOOS functions with password related options operate the same way the
banked version does when passwords are not enabled.

Files can be assigned passwords in two ways: by the Make File function or by the
Write File XFCB function. A file's password can also be changed by the Write File
XFCB function if the original password is supplied.

Password protection is provided in one of three modes. Table 2-4 shows the differ
ence in access level allowed to BDOS functions when the password is not supplied.

DIGITAL RESEARCWM

2-21

2.3 BOOS File System CP 1M 3 Programmer's Guide

Table 2-4. Password Protection Modes

Password Access level allowed when the password
Mode is not supplied.

1. Read The file cannot be read.

2. Write The file can be read, but not modified.

3. Delete The file can be modified, but not
deleted.

If a file is password protected in Read mode, the password must be supplied to open
the file. A file protected in Write mode cannot be written to without the password.
A file protected in Delete mode allows read and write access, but the user must
specify the password to delete the file, rename the file, or to modify the file's attri
butes. Thus, password protection in mode 1 implies mode 2 and 3 protection, and
mode 2 protection implies mode 3 protection. All three modes require the user to
specify the password to delete the file, rename the file, or to modify the file's attributes.

If the correct password is supplied, or if password protection is disabled by the
Directory Label, then access to the BOOS functions is the same as for a file that is
not password protected. In addition, the Search For First and Search For Next func
tions are not affected by file passwords.

Table 2-5 lists the BOOS functions that test for password.

Table 2-5. BOOS Functions That Test For Password

15.
19.
23.
30.
99.

100.
103.

Open File
Delete File
Rename File
Set File Attributes
Truncate File
Set Directory Label
Write File XFCB

------------------------ lIIDDIGITAL RESEARCHTM
2-22

CP 1M 3 Programmer's Guide 2.3 BOOS File System

File passwords are eight bytes in length. They are maintained in the XFCB Direc
tory Label in encrypted form. To make a BOOS function call for a file that requires
a password, a program must place the password in the first eight bytes of the current
DMA, or specify it with the BDOS function, Set Default Password, prior to making
the function call.
Note: the BDOS keeps an assigned default password value until it is replaced with a
new assigned value.

2.3.8 File Date and Time Stamps

The CP/M 3 File System uses a special type of directory entry called an SFCB to
record date and time stamps for files. When a directory has been initialized for date
and time stamping, SFCBs reside in every fourth position of the directory. Each SFCB
maintains the date and time stamps for the previous three directory entries as shown
in Figure 2-3.

FeB 1

FeB 2

FeB 3

21
STAMPS FOR STAMPS FOR STAMPS FOR • FeB 1 FeB 2 FeB 3

AN 068

Figure 2-3. Directory Record with SFCB

This figure shows a directory record that contains an SFCB. Directory records consist
of four directory entries, each 32 bytes long. SFCBs always occupy the last position
of a directory record.

The SFCB directory item contains five fields. The first field is one byte long and
contains the value 21H. This value identifies the SFCB in the directory. The next
three fields, the SFCB subfields, contain the date and time stamps for their corre
sponding FCB entries in the directory record. These fields are 10 bytes long. The last
byte of the SFCB is reserved for system use. The format of the SFCB subfields is
shown in Table 2-6.

!lID DI~ITAL RESEARCH™ ------------------------
2-23

2.3 BDOS File System CP 1M 3 Programmer's Guide

Table 2-6. SFCB Subfields Format

Offset in Bytes I
0-3
4-7

8
9

SFCB Subfield Contents

Create or Access Date and Time Stamp field
Update Date and Time Stamp field
Password mode field
Reserved

An SFCB subfield contains valid information only if its corresponding FCB in the
directory record is an extent zero FCB. This FCB is a file's first directory entry. For
password protected files, the SFCB sub field also contains the password mode of the
file. This field is zero for files that are not password protected. The BDOS Search and
Search Next functions can be used to access SFCBs directly. In addition, BDOS
Function 102 can return the file date and time stamps and password mode for a
specified file. Refer to Section 3, function 102, for a description of the format of a
date and time stamp field.

CPIM 3 supports three types of file stamping: create, access, and update. Create
stamps record when the file was created, access stamps record when the file was last
opened, and update stamps record the last time the file was modified. Create and
access stamps share the same field. As a result, file access stamps overwrite any create
stamps.

The CP/M 3 utility, INITDIR, initializes a directory for date and time stamping by
placing SFCBs in every fourth directory entry. Date and time stamping is not sup
ported on disks that have not been initialized in this manner. For initialized disks the
disks' Directory Label determines the type of date and time stamping supported for
files on the drive. If a disk does not have a Directory Label, or if it is Read-Only, or
if the disk's Directory Label does not specify date and time stamping, then date and
time stamping for files is not performed. Note that the Directory Label is also time
stamped, but these stamps are not made in an SFCB. Time stamp fields in the last
eight bytes of the Directory Label record when it was created and last updated.
Access stamping for Directory Labels is not supported.

------------------------ I!IDDIGITAL RESEARCH™
2-24

CP 1M 3 Programmer's Guide 2.3 BOOS File System

The BOOS file system uses the CP/M 3 system date and time when it records a
date and time stamp. This value is maintained in a field in the System Control Block
(SCB). On CP/M 3 systems that support a hardware clock, the BIOS module directly
updates the SCB system date and time field. Otherwise, date and time stamps record
the last initialized value for the system date and time. The CP/M 3 DATE utility can
be used to set the system date and time.

2.3.9 Record Blocking and Deblocking

Under CP/M 3, the logical record size for disk 110 is 128 bytes. This is the basic
unit of data transfer between the operating system and transient programs. However,
on disk, the record size is not restricted to 128 bytes. These records, called physical
records, can range from 128 bytes to 4K bytes in size. Record blocking and deblock
ing is required on systems that support drives with physical record sizes larger than
128 bytes.

The process of building up physical records from 128 byte logical records is called
record blocking. This process is required in write operations. The reverse process of
breaking up physical records into their component 128 byte logical records is called
record deblocking. This process is required in read operations. Under CP/M 3, record
blocking and deblocking is normally performed by the BOOS.

Record deblocking implies a read-ahead operation. For example, if a transient
program makes a BDOS function call to read a logical record that resides at the
beginning of a physical record, the entire physical record is read into an internal
buffer. Subsequent BOOS read calls for the remaining logical records access the
buffer instead of the disk. Conversely, record blocking results in the postponement
of physical write operations but only for data write operations. For example, if a
transient program makes a BDOS write call, the logical record is placed in a buffer
equal in size to the physical record size. The write operation on the physical record
buffer is postponed until the buffer is needed in another 110 operation. Note that
under CP/M 3, directory write operations are never postponed.

Postponing physical record write operations has implications for some applications
programs. For those programs that involve file updating, it is often critical to guar
antee that the state of the file on disk parallels the state of the file in memory after
the update operation. This is only an issue on systems where physical write opera
tions are postponed because of record blocking and deblocking. If the system should
crash while a physical buffer is pending, data would be lost. To prevent this loss of
data, the BOOS Flush Buffers function, function 48, can be called to force the write
of any pending physical buffers.

I!ID DIGITAL RESEARCH™ ------------------------
2-25

2.3 BDOS File System CP/M 3 Programmer's Guide

Note: the CCP automatically discards all pending physical data buffers when it
receives control following a system warm start. However, the BDOS file system
automatically makes a Flush Buffers call in the Close File function. Thus, it is suffi
cient to close a file to ensure that all pending physical buffers for that file are written
to the disk.

2.3.10 Multi-Sector 1/0

CP/M 3 can read or write multiple 128-byte records in a single BDOS function
call. This process, called multi-sector 1/0, is useful primarily in sequential read and
write operations, particularly on drives with physical record sizes larger than 128
bytes. In a multi-sector 110 operation, the BDOS file system bypasses, when possible,
all intermediate record buffering. Data is transferred directly between the TP A and
the drive. In addition, the BDOS informs the BIOS when it is reading or writing
multiple physical records in sequence on a drive. The BIOS can use this information
to further optimize the 1/0 operation resulting in even better performance. Thus, the
primary objective of multi-sector 110 is to improve sequential 110 performance. The
actual improvement obtained, however, depends on the hardware environment of the
host system, and the implementation of the BIOS.

The number of records that can be supported with multi-sector 110 ranges from 1
to 128. This value can be set by BDOS function 44, Set multi-sector Count. The
multi-sector count is set to one when a transient program begins execution. However,
the CPIM 3 LOADER module executes with the multi-sector Count set to 128 unless
the available TPA space is less than 16K. In addition, the CPIM 3 PIP utility also
sets the multi-sector count to 128 when sufficient buffer space is available. Note that
the greatest potential performance increases are obtained when the multi-sector count
is set to 128. Of course, this requires a 16K buffer.

The multi-sector count determines the number of operations to be performed by
the following BDOS functions:

• Sequential Read and Write functions
• Random Read and Write functions including Write Random with Zero Fill

If the multi-sector count is N, calling one of the above functions is equivalent to
making N function calls. If a multi-sector 110 operation is interrupted with an error
such as reading unwritten data, the file system returns in register H the number of
128-byte records successfully processed.

------------------------- I!IDDIGITAL RESEARCH™
2-26

CP 1M 3 Programmer's Guide 2.3 BOOS File System

2.3.11 Disk Reset and Removable Media

The BOOS functions, ~isk Reset (function 13) and Reset Drive (function 37) allow
a program to control when a disk's directory is to be reinitialized for file operations.
This process of initializing a disk's directory is called logging-in the drive. When
CP/M 3 is cold started, all drives are in the reset state. Subsequently, as drives are
referenced, they are automatically logged-in by the file system. Once logged-in, a
drive remains in the logged-in state until it is reset by BOOS function 13 or 37.
Following the reset operation, the drive is again automatically logged-in by the file
system when it is next used. Note that BDOS functions 13 and 37 have similar effects
except that function 13 is directed to all drives on the system. Any combination of
drives can be reset with Function 37.

Logging-in a drive consists of several steps. The most important step is the initiali
zation of the drive's allocation vector. The allocation vector records the allocation
and deallocation of data blocks to files, as files are created, extended, deleted, and
truncated. Another function performed during drive log-in is the initialization of the
directory check-sum vector. The file system uses the check-sum vector to detect media
changes on a drive. Note that permanent drives, which are drives that do not support
media changes, might not have check-sum vectors. If directory hashing has been
specified for the drive, a BIOS and GENCPM option, the file system creates a hash
table for the directory during log-in.

The primary use of the drive reset functions is to prepare for a media change on a
drive. Subsequently, when the drive is accessed by a BDOS function call, the drive is
automatically logged-in. Resetting a drive has two important side effects. First of all,
any pending blocking/deblocking buffers on the reset drive are discarded. Secondly,
any data blocks that have been allocated to files that have not been closed are lost.
An application program should close files, particularly files that have been written to,
prior to resetting a drive.

Although CP/M 3 automatically relogs in removable media when media changes
are detected, the application program should still explicitly reset a drive before
prompting the user to change disks.

[!ID DIGITAL RESEARCHfM

2-27

2.3 BOOS File System CP/M 3 Programmer's Guide

2.3.12 File Byte Counts

Although the logical record size of CP/M 3 is restricted to 128 bytes, CP/M 3 does
provide a mechanism to store and retrieve a byte count for a file. This facility can
identify the last byte of the last record of a file. The BOOS Compute File Size
function returns the random record number, plus 1, of the last record of a file.

The BOOS Set File Attributes function can set a file's byte count. Conversely, the
Open function can return a file's byte count to the cr field of the FCB. The BOOS
Search and Search Next functions also return a file's byte count. These functions
return the byte count in the sl field of the FCB returned in the current OMA buffer
(see BOOS Functions Returned 17 and 26).

Note that the file system does not access or update the byte count value in file read
or write operations. However, the BOOS Make File function does set the byte count
of a file to zero when it creates a file in the directory.

2.3.13 BDOS Error Handling

The BOOS file system responds to error situations in one of three ways:

Method 1.

Method 2.

Method 3.

It returns to the calling program with return codes in register
A, H, and L identifying the error.

It displays an error message on the console, and branches to
the BIOS warm start entry point, thereby terminating execu
tion of the calling program.

It displays an error message on the console, and returns to
the calling program as in method 1.

The file system handles the majority of errors it detects by method 1. Two examples
of this kind of error are the file not found error for the open function and the reading
unwritten data error for a read function. More serious errors, such as disk I/O errors,
are usually handled by method 2. Errors in this category, called physical and extended
errors, can also be reported by methods 1 and 3 under program control.

------------------------ IlIDDIGITAL RESEARCH™
2-28

CP/M 3 Programmer's Guide 2.3 BOOS File System

The BOOS Error Mode, which can exist in three states, determines how the file
system handles physical and extended errors. In the default state, the BOOS displays
the error message, and terminates the calling program, method 2. In return error
mode, the BOOS returns control to the calling program with the error identified in
registers A, H, and L, method 1. In return and display mode, the BOOS returns
control to the calling program with the error identified in registers A, H, and L, and
also displays the error message at the console, method 3. While both return modes
protect a program from termination because of a physical or extended error, the
return and display mode also allows the calling program to take advantage of the
built-in error reporting of the BOOS file system. Physical and extended errors are
displayed on the console in the following format:

CP/M Error on d: error message
BOOS function = nn File = filename.typ

where d identifies the drive selected when the error condition is detected; error mes
sage identifies the error; nn is the BOOS function number, and filename.typ identifies
the file specified by the BDOS function. If the BDOS function did not involve an
FCB, the file information is omitted. Note that the second line of the above error
message is displayed only in the banked version of CP/M 3 if expanded error message
reporting is requested in GENCPM. It is not displayed in the nonbanked version of
CP/M 3.

The BDOS physical errors are identified by the following error messages:

• Disk 110
• Invalid Drive
• Read-Only File
• Read-Only Disk

The Disk 110 error results from an error condition returned to the BDOS from the
BIOS module. The file system makes BIOS read and write calls to execute file-related
BDOS calls. If the BIOS read or write routine detects an error, it returns an error
code to the BDOS resulting in this error.

The Invalid Drive error also results from an error condition returned to the BDOS
from the BIOS module. The BDOS makes a BIOS Select Disk call prior to accessing
a drive to perform a requested BDOS function. If the BIOS does not support the
selected disk, the BDOS returns an error code resulting in this error message.

I!IDDIGITAL RESEARCH'M -------------------------

2-29

2.3 BOOS File System CP 1M 3 Programmer's Guide

The Read-Only File error is returned when a program attempts to write to a file
that is marked with the Read-Only attribute. It is also returned to a program that
attempts to write to a system file opened under user zero from a nonzero user
number. In addition, this error is returned when a program attempts to write to a
file password protected in Write mode if the program does not supply the correct
password.

The Read-Only ~isk error is returned when a program writes to a disk that is in
read-only status. A drive can be placed in read-only status explicitly with the BOOS
Write Protect ~isk function.

The BDOS extended errors are identified by the following error messages:

• Password Error
• File Exists
• ? in Filename

The File Password error is returned when the file password is not supplied, or
when it is incorrect. This error is reported only by the banked version of CP/M 3.

The File Exists error is returned by the BOOS Make File and Rename File func
tions when the BOOS detects a conflict such as a duplicate filename and type.

The ? in Filename error is returned when the BDOS detects a ? in the filename or
type field of the passed FCB for the BDOS Rename File, Set File Attributes, Open
File, Make File, and Truncate File functions.

The following paragraphs describe the error return code conventions of the BDOS
file system functions. Most BDOS file system functions fall into three categories in
regard to return codes: they return an Error Code, a Directory Code, or an Error
Flag. The error conventions of CP/M 3 are designed to allow programs written for
earlier versions of CP/M to run without modification.

The following BOOS functions return an Error Code in register A.

20. Read Sequential
21. Write Sequential
33. Read Random
34. Write Random
40. Write Random w/Zero Fill

------------------------- I!IDDIGITAL RESEARCHTM
2-30

CP/M '3 Programmer's Guide 2.3 BOOS File System

The Error Code definitions for register A are shown in Table 2-7.

Code I
00

255
01

02
03
04
05
06
09

10

Table 2-7. Register A BDOS Error Codes

Meaning

Function successful
Physical error : refer to register H
Reading unwritten data or no available directory space (Write
Sequential)
No available data block
Cannot close current extent
Seek to unwritten extent
No available directory space
Random record number out of range
Invalid FCB (previous BDOS close call returned an error code
and invalidated the FCB)
Media Changed (A media change was detected on the FCB's
drive after the FCB was opened)

For BDOS read or write functions, the file system also sets register H when the
returned Error Code is a value other than zero or 255. In this case, register H
contains the number of 128-byte records successfully read or written before the error
was encountered. Note that register H can contain only a nonzero value if the calling
program has set the BOOS Multi-Sector Count to a value other than one; otherwise
register H is set to zero. On successful functions, Error Code = 0, register H is also
set to zero. If the Error Code equals 255, register H contains a physical error code
(see Table 2-11).

!fIDDlGITAL RESEARCHrM ----------------_______ _

2-31

2.3 BOOS File System CP/M 3 Programmer's Guide

The following BOOS functions return a Directory Code in register A:

15. Open File
16. Close File
17. Search For First
18. Search For Next
19. Delete File
22. Make File
23. Rename File
30. Set File Attributes
35. Compute File Size
99. Truncate File

* 100. Set Directory Label
102. Read File Date Stamps and Password Mode

* * 103. Write File XFCB

* - This function is supported in the DIRLBL.RSX in the nonbanked version of
CP/M 3.

* * - This function is supported only in the banked version of CP/M 3.

The Directory Code definitions for register A are shown in Table 2-8.

Table 2-8. BOOS Directory Codes

Code I Meaning

00 - 03:
255

successful function
unsuccessful function

With the exception of the BDOS search functions, all functions in this category
return with the directory code set to zero on successful returns. However, for the
search functions, a successful Directory Code also identifies the relative starting posi
tion of the directory entry in the calling program's current DMA buffer.

------------------------ I!IDDIGITAL RESEARCH™

2-32

CP/M 3 Programmer's Guide 2.3 BOOS File System

If the Set BDOS Error Mode function is used to place the BDOS in return error
mode, the following functions return an Error Flag on physical errors:

14. Select Disk
46. Get Disk Free Space
48. Flush Buffers
98. Free Blocks

101. Return Directory Label Data

The Error Flag definition for register A is shown in Table 2-9.

Table 2-9. BDOS Error Flags

Code I Meaning

00 successful function
255 physical error: refer to register H

The BDOS returns nonzero values in register H to identify a physical or extended
error if the BDOS Error Mode is in one of the return modes. Except for functions
that return a Directory Code, register A equal to 255 indicates that register H iden
tifies the physical or extended error. For functions that return a Directory Code, if
register A equals 255, and register H is not equal to zero, register H identifies the
physical or extended error. Table 2-10 shows the physical and extended error codes
returned in register H.

I!ID DIGITAL RESEARCH'" ------------------------
2-33

2.3 BOOS File System CP/M 3 Programmer's Guide

Table 2-10. BOOS Physical and Extended Errors

Code I Meaning

00
01
02
03

04
07
08
09

no error, or not a register H error
Disk 1/0 error
Read-Only Disk
Read-Only File or File Opened
under user zero from another user
number or file password protected
in write mode and correct pass
word not specified.
Invalid Drive : drive select error
Password Error
File Exists
? in Filename

The following two functions represent a special case because they return an address
in registers Hand L.

27. Get Addr(Alloc)
31. Get Addr(Oisk Parms)

When the BDOS is in return error mode, and it detects a physical error for these
functions, it returns to the calling program with registers A, H, and L all set to 255.
Otherwise, they return no error code.

2.4 Page Zero Initialization

Page Zero is the region of memory located from OOOOH to OOFFH. This region
contains several segments of code and data that are used by transient programs while
running under CPIM 3. The code and data areas are shown in Table 2-11 for reference.

------------------------ IIIDDIGITAL RESEARCHTM

2-34

CP 1M 3 Programmer's Guide 2.4 Page Zero Initialization

Table 2-11. Page Zero Areas

Location I Contents

From To
OOOOH - 0002H Contains a jump instruction to the BIOS warm start entry

point at BIOS_base + 3. The address at location 0001H can
also be used to make direct BIOS calls to the BIOS console
status, console input, console output, and list output primitive
functions.

0003H - 0004H (Reserved)

0005H - 0007H Contains a jump instruction to the BDOS, the LOADER, or
to the most recently added RSX, and serves two purposes:
JMP 0005H provides the primary entry point to the BDOS,
and LHLD 0006H places the address field of the jump
instruction in the HL register pair. This value, minus one, is
the highest address of memory available to the transient
program.

0008H - 003AH Reserved interrupt locations for Restarts 1 - 7

003BH - 004FH (Not currently used - reserved)

0050H Identifies the drive from which the transient program was load
ed. A value of one to sixteen identifies drives A through P.

0051H - 0052H Contains the address of the password field of the first command
tail operand in the default DMA buffer beginning at 0080H.
The CCP sets this field to zero if no password for the first
command-tail operand is specified.

0053H Contains the length of the password field for the first command
tail operand. The CCP also sets this field to zero if no password
for the first command tail is specified.

0054H - 0055H Contains the address of the password field of the second com
mand-tail operand in the default DMA buffer beginning at
0080H. The CCP sets this field to zero if no password for the
second cpmmand-tail operand is specified.

IIIDDIGITAL RESEARCH 1M ------------------------

2-35

2.4 Page Zero Initialization CP/M 3 Programmer's Guide

Location I
From To

0056H

Table 2-11. (continued)

Contents

Contains the length of the password field for the second com
mand-tail operand. The CCP also sets this field to zero if no
password for the second command tail is specified.

0057H - 005BH (Not currently used - reserved)

005CH - 007BH Default File Control Block, FCB, area 1 initialized by the CCP
from the first command-tail operand of the command line, if
it exists.

006CH - 007BH Default File Control Block, FCB, area 2 initialized by the CCP
from the second command-tail operand of the command line,
if it exists.

007CH

Note: this area overlays the last 16 bytes of default FCB
area 1. To use the information in this area, a transient program
must copy it to another location before using FCB area 1.

Current record position of default FCB area 1. This field is used
with default FCB area 1 in sequential record processing.

007DH - 007FH Optional default random record position. This field is an exten
sion of default FCB area 1 used in random record processing.

0080H - OOFFH Default 128-byte disk buffer. This buffer is also filled with the
command tail when the CCP loads a transient program.

------------------------i!ID DIGITAL RESEARCH™

2-36

CP/M 3 Programmer's Guide 2.4 Page Zero Initialization

The CCP initializes Page Zero prior to initiating a transient program. The fields at
0050H and above are initialized from the command line invoking the transient pro
gram. The command line format was described in detail in Section 1.6.2. To sum
marize, a command line usually takes the form:

<command> <command tail>

where

<command> => <file spec>

<command tail> => (no command tail)
=> <file spec>
=> <file spec> <delimiter> <file spec>

<file spec> => {d:}filename{.type} {;password}

The CCP initializes the command drive field at 0050H to the drive index, A = 1, ... ,
P = 16, of the drive from which the transient program was loaded.

The default FCB at 005CH is defined if a command tail is entered. Otherwise, the
fields at 005CH, 0068H to 006BH are set to binary zeros, the fields from 005DH to
0067H are set to blanks. The fields at 0051H through 0053H are set if a password
is specified for the first <file spec> of the command tail. If not, these fields are set to
zero.

The default FCB at 006CH is defined if a second <file spec> exists in the com
mand tail. Otherwise, the fields at 006CH, 0078H to 007BH are set to binary zeros,
the fields from 005DH to 0067H are set to blanks. The fields at 0054H through
0056H are set if a password is specified for the second <file spec> of the command
tail. If not, these fields are set to zero.

Transient programs often use the default FCB at 005CH for file operations. This
FCB may even be used for random file access because the three bytes starting at
007DH are available for this purpose. However, a transient program must copy the
contents of the default FCB at 006CH to another area before using the default FCB
at 005CH, because an open operation for the default FCB at 005CH overwrites the
FCB data at 006CH.

Ii]] DIGITAL RESEARCH™ ------------------------

2-37

2.4 Page Zero Initialization CP 1M 3 Programmer's Guide

The default DMA address for transient programs is 0080H. The CCP also initial
izes this area to contain the command tail of the command line. The first position
contains the number of characters in the command line, followed by the command
line characters. The character following the last command tail character is set to
binary zero. The command line characters are preceded by a leading blank and are
translated to ASCII upper-case. Because the 128-byte region beginning at 0080H is
the default DMA, the BDOS file system moves 128-byte records to this area with
read operations and accesses 128-byte records from this area with write operations.
The transient program must extract the command tail information from this buffer
before performing file operations unless it explicitly changes the DMA address with
the BDOS Set DMA Address function.

The Page Zero fields of 0051H through 0056H locate the password fields of the
first two file specifications in the command tail if they exist. These fields are provided
so that transient programs are not required to parse the command tail for password
fields. However, the transient program must save the password, or change the DMA
address before performing file operations.

The following example illustrates the initialization of the command line fields of
Page Zero. Assuming the following command line is typed at the console:

D :> A: PROGRAM B: FILE t TYPE; PASS C ; FILE f TYPE; PASSWORD

A hexadecimal dump of 0050H to 00A5H would show the Page Zero initialization
performed by the CCP.

0050H: 01 80 00 04 90 00 08 00 00 00 00 00 02 48 49 4C ••••••••••••• FIL
0080H: 45 20 20 20 20 54 59 50 00 00 00 00 03 48 49 4C E •••• TYP ••••• FIL
0070H: 45 20 20 20 20 54 59 50 00 00 00 00 00 00 00 00 E •••• TYP ••••••••
0080H: 24 20 42 3A 48 49 4C 45 2E 54 59 50'36 50 41 53 • 6:FILE.TYPiPAS
0090H: 53 20 43 3A 48 49 4C 45 2E 54 59 50 ;36 50 41 53 S C:FILE.TYPiPAS
OOAOH: 53 57 4F 52 44 00 SWORD.

End of Section 2

------------------------ I!ID DIGITAL RESEARCH'M

2-38

Section 3
BDOS Function Calls

This section describes each CP/M 3 system function, including the parameters a
program must pass when calling the function, and the values the function returns to
the program. The functions are arranged numerically for easy reference. You should
be familiar with the BDOS calling conventions and other concepts presented in Section 2
before referencing this section.

BDOS FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: OOH

The System Reset function terminates the calling program and returns control to
the CCP via a warm start sequence (see Section 1.3.2). Calling this function has the
same effect as a jump to location OOOOH of Page Zero.

Note that the disk subsystem is not reset by System Reset under CP/M 3. The
calling program can pass a return code to the CCP by calling Function 108, Get/Set
Program Return Code, prior to making a System Reset call or jumping to location
OOOOH.

I!ID DIGITAL RESEARCH'" ------------------------

3-1

3 BDOS Calls: Function 1 CP/M 3 Programmer's Guide

BDOS FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next character from the logical console,
CONIN:, to register A. Graphic characters, along with carriage return, line-feed, and
backspace, CTRL-H, are echoed to the console. Tab characters, CTRL-I, are expanded
in columns of 8 characters. CTRL-S, CTRL-Q, and CTRL-P are normally intercepted
as described below. All other non-graphic characters are returned in register A but
are not echoed to the console.

When the Console Mode is in the default state (see Section 2.2.1), Function 1
intercepts the stop scroll, CTRL-S, start scroll, CTRL-Q, and start/stop printer echo,
CTRL-P, characters. Any characters that are typed following a CTRL-S and preced
ing a CTRL-Q are also intercepted. However, if start/stop scroll has been disabled
by the Console Mode, the CTRL-S, CTRL-Q, and CTRL-P characters are not inter
cepted. Instead, they are returned in register A, but are not echoed to the console.

If printer echo has been invoked, all characters that are echoed to the console are
also sent to the list device, LST:.

Function 1 does not return control to the calling program until a non-intercepted
character is typed, thus suspending execution if a character is not ready.

------------------------ I!Q] DIGITAL RESEARCWM

3-2

CP 1M 3 Programmer's Guide 3 BDOS Calls: Function 2

BDOS FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Registers C: 02H

E: ASCII Character

The Console Output function sends the ASCII character from register E to the
logical console device, CONOUT:. When the Console Mode is in the default state
(see Section 2.2.1), Function 2 expands tab characters, CTRL-I, in columns of 8
characters, checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes charac
ters to the logical list device, LST:, if printer echo, CTRL-P, has been invoked.

[!ill DIGITAL RESEARCH'M -----------------------
3-3

3 BDOS Calls: Function 3 CP 1M 3 Programmer's Guide

BDOS FUNCTION 3: AUXILIARY INPUT

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Auxiliary Input function reads the next character from the logical auxiliary
input device, AUXIN:, into register A. Control does not return to the calling program
until the character is read.

------------------------ I!ID DIGITAL RESEARCH™
3-4

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 4

BOOS FUNCTION 4: AUXILIARY OUTPUT

Entry Parameters:
Registers C: 04 H

E: ASCII Character

The Auxiliary Output function sends the ASCII character from register E to the
logical auxiliary output device, AUXOUT:.

[!Ql DIGITAL RESEARCH fM

3-5

3 BDOS Calls: Function 5 CP/M 3 Programmer's Guide

BDOS FUNCTION 5: LIST OUTPUT

Entry Parameters:
Registers C: OSH

E: ASCII Character

The List Output function sends the ASCII character in register E to the logical list
device, LST:.

------------------------ IIID DIGITAL RESEARCH™
3-6

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 6

BOOS FUNCTION 6: DIRECT CONSOLE 110

Entry Parameters:
Registers C: 06H

Returned Value:

E: OFFH (input/status) or
OFEH (status) or
OFDH (input) or
char (output)

Register A: char or status (no value)

CPIM 3 supports direct 110 to the logical console, CONIN:, for those specialized
applications where unadorned console input and output is required. Use Direct Con
sole 1/0 carefully because it bypasses all the normal control character functions.
Programs that perform direct 110 through the BIOS under previous releases of CP/M
should be changed to use direct 1/0 so that they can be fully supported under future
releases of MP/M and CP/M.

A program calls Function 6 by passing one of four different values in register E.
The values and their meanings are summarized in Table 3-1.

I!ID DIGITAL RESEARCH'M ------------------------
3-7

3 BDOS Calls: Function 6 CP/M 3 Programmer's Guide

Table 3-1. Function 6 Entry Parameters

Register
E value Meaning

OFFH Console input/status command returns an input character; if no
character is ready, a value of zero is returned.

OFEH Console status command (On return, register A contains 00 if no
character is ready; otherwise it contains FFH.)

OFDH Console input command, returns an input character; this func-
tion will suspend the calling process until a character is ready.

ASCII Function 6 assumes that register E contains a valid ASCII char-
character acter and sends it to the console.

------------------------- I!ID DIGITAL RESEARCH™
3-8

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 7

BOOS FUNCTION 7: AUXILIARY INPUT STATUS

Entry Parameters:
Register C: 07H

Returned Value:
Register A: Auxiliary Input Status

The Auxiliary Input Status function returns the value OFFH in register A if a
character is ready for input from the logical auxiliary input device, AUXIN:. If no
character is ready for input, the value OOH is returned.

I!ID DIGITAL RESEARCHfM ------------------------
3-9

3 BDOS Calls: Function 8 CP/M 3 Programmer's Guide

BDOS FUNCTION 8: AUXILIARY OUTPUT STATUS

Entry Parameters:
Register C: 08H

Returned Value:
Register A: Auxiliary Output Status

The Auxiliary Output Status function returns the value OFFH in register A if the
logical auxiliary output device, AUXOUT:, is ready to accept a character for output.
If the device is not ready for output, the value OOH is returned.

------------------------ I!IDDIGITAL RESEARCH™
3-10

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 9

BDOS FUNCTION 9: PRINT STRING

Entry Parameters:
Registers C: 09H

DE: String Address

The Print String function sends the character string addressed by register pair DE
to the logical console, CONOUT:, until it encounters a delimiter in the string. Usu
ally the delimiter is a dollar sign, $, but it can be changed to any other value by
Function 110, Get/Set Output Delimiter. If the Console Mode is in the default state
(see Section 2.2.1), Function 9 expands tab characters, CTRL-I, in columns of 8
characters. It also checks for stop scroll, CTRL-S, start scroll, CTRL-Q, and echoes
to the logical list device, LST:, if printer echo, CTRL-P, has been invoked.

I!ID DIGITAL RESEARCH'M ------------------------
3-11

3 BDOS Calls: Function 10 CP/M 3 Programmer's Guide

BDOS FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Registers C: OAH

DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Console Buffer function reads a line of edited console input from the
logical console, CONIN:, to a buffer that register pair DE addresses. It terminates
input and returns to the calling program when it encounters a return, CTRL-M, or a
line feed, CTRL-], character. Function 10 also discards all input characters after the
input buffer is filled. In addition, it outputs a bell character, CTRL-G, to the console
when it discards a character to signal the user that the buffer is full. The input buffer
addressed by DE has the following format:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n

where mx is the maximum number of characters which the buffer holds, and nc is
the number of characters placed in the buffer. The characters entered by the operator
follow the nc value. The value mx must be set prior to making a Function 10 call
and may range in value from 1 to 255. Setting mx to zero is equivalent to setting fiX

to one. The value nc is returned to the calling program and may range from zero to
fiX. If nc < mx, then uninitialized positions follow the last character, denoted by ??
in the figure. Note that a terminating return or line feed character is not placed in
the buffer and not included in the count nco

If register pair DE is set to zero, Function 10 assumes that an initialized input
buffer is located at the current DMA address (see Function 26, Set DMA Address).
This allows a program to put a string on the screen for the user to edit. To initialize
the input buffer, set characters c1 through cn to the initial value followed by a binary
zero terminator.

------------------------ IiID DIGITAL RESEARCH™

3-12

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 10

When a program calls Function 10 with an initialized buffer, Function 10 operates
as if the user had typed in the string. When Function 10 encounters the binary zero
terminator, it accepts input from the console. At this point, the user can edit the
initialized string or accept it as it is by pressing the RETURN key. However, if the
initialized string contains a return, CTRL-M, or a line feed, CTRL-J, character, Func
tion 10 returns to the calling program without giving the user the opportunity to edit
the string.

The level of console editing supported by Function 10 differs for the banked and
nonbanked versions of CP/M 3. Refer to the CP/M Plus (CP/M Version 3) Operating
System User's Guide for a detailed description of console editing. In the nonbanked
version, Function 10 recognizes the edit control characters summarized in Table 3-2.

Table 3-2. Edit Control Characters (Nonbanked CP/M 3)

Character I Edit Control Function

rub/del Removes and echoes the last character; GENCPM can change
this function to CTRL-H

CTRL-C Reboots when at the beginning of line; the Console Mode can
disable this function

CTRL-E Causes physical end of line

CTRL-H Backspaces one character position; GENCPM can change this
function to rub/del

CTRL-J (Line-feed) terminates input line

CTRL-M (Return) terminates input line

CTRL-P Echoes console output to the list device

CTRL-R Retypes the current line after new line

CTRL-U Removes current line after new line

CTRL-X Backspaces to beginning of current line

I!ID DIGITAL RESEARCH'" ------------------------

3-13

3 BDOS Calls: Function 10 CP 1M 3 Programmer's Guide

The banked version of CP/M 3 expands upon the editing provided in the non
banked version. The functionality of the two versions is similar when the cursor is
positioned at the end of the line. However, in the banked version, the user can move
the cursor anywhere in the current line, insert characters, delete characters, and
perform other editing functions. In addition, the banked version saves the previous
command line; it can be recalled when the current line is empty. Table 3-3 summa
rizes the edit control characters supported by Function 10 in the banked version of
CP/M 3.

Character I
rub/del

CTRL-A

CTRL-B

CTRL-C

CTRL-E

CTRL-F

CTRL-G

CTRL-H

Table 3-3. Edit Control Characters (Banked CP/M 3)

Edit Control Function

Removes and echoes the last character if at the end of the line;
otherwise deletes the character to the left of the current cursor
position; GENCPM can change this function to CTRL-H.

Moves cursor one character to the left.

Moves cursor to the beginning of the line when not at the begin
ning; otherwise moves cursor to the end of the line.

Reboots when at the beginning of line; the Console Mode can
disable this function.

Causes physical end-of-line; if the cursor is positioned in the
middle of a line, the characters at and to the right of the cursor
are displayed on the next line.

Moves cursor one character to the right.

Deletes the character at the current cursor position when in the
middle of the line; has no effect when the cursor is at the end of
the line.

Backspaces one character position when positioned at the end
of the line; otherwise deletes the character to the left of the
cursor; GENCPM can change this function to rub/del.

------------------------ I!ID DIGITAL RESEARCH™
3-14

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 10

Character I
CTRL-J

CTRL-K

CTRL-M

CTRL-P

CTRL-R

CTRL-U

CTRL-W

CTRL-X

Table 3-3. (continued)

Edit Control Function

(Line-feed) terminates input; the cursor can be positioned any
where in the line; the entire input line is accepted; sets the pre
vious line buffer to the input line.

Deletes all characters to the right of the cursor along with the
character at the cursor.

(Return) terminates input; the cursor can be positioned any
where in the line; the entire input line is accepted; sets the pre
vious line buffer to the input line.

Echoes console output to the list device.

Retypes the characters to the left of the cursor on the new line.

Updates the previous line buffer to contain the characters to the
left of the cursor; deletes current line, and advances to new line.

Recalls previous line if current line is empty; otherwise moves
cursor to end-of-line.

Deletes all characters to the left of the cursor.

For banked systems, Function 10 uses the console width field defined in the System
Control Block. If the console width is exceeded when the cursor is positioned at the
end of the line, Function 10 automatically advances to the next line. The beginning
of the line can be edited by entering a CTRL-R.

When a character is typed while the cursor is positioned in the middle of the line,
the typed character is inserted into the line. Characters at and to the right of the
cursor are shifted to the right. If the console width is exceeded, the characters disap
pear off the right of the screen. However, these characters are not lost. They reappear
if characters are deleted out of the line, or if a CTRL-E is typed.

[jID DIGITAL RESEARCH™ -------------------'-------
3-15

3 BOOS Calls: Function 11 CP/M 3 Programmer's Guide

BDOS FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: OBH

Returned Value:
Register A: Console Status

The Get Console Status function checks to see if a character has been typed at
the logical console, CONIN:. If the Console Mode is in the default state (see
Section 2.2.1), Function 11 returns the value 01H in register A when a character is
ready. If a character is not ready, it returns a value of OOH.

If the Console Mode is in CTRL-C Only Status mode, Function 11 returns the
value 01H in register A only if a CTRL-C has been typed at the console.

------------------------ f!IDDIGITAL RESEARCH™
3-16

CP 1M 3 Programmer's Guide 3 BDOS Calls: Function 12

BDOS FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value:
Register HL: Version Number

The Return Version Number function provides information that allows version
independent programming. It returns a two-byte value in register pair HL: H con
tains OOH for CP/M and L contains 31H, the BDOS file system version number.
Function 12 is useful for writing applications programs that must run on multiple
versions of CP/M and MP/M.

!lID DIGITAL RESEARCH™ ------------------------
3-17

3 BDOS Calls: Function 13 CP/M 3 Programmer's Guide

BDOS FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

The Reset Disk System function restores the file system to a reset state where all
the disk drives are set to read-write (see Functions 28 and 29), the default disk is set
to drive A, and the default DMA address is reset to 0080H. This function can be
used, for example, by an application program that requires disk changes during
operation. Function 37, Reset Drive, can also be used for this purpose.

------------------------ l!ID DIGITAL RESEARCH™
3-18

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 14

BOOS FUNCTION 14: SELECT DISK

Entry Parameters:
Registers C: OEH

E: Selected Disk

Returned Value:
Registers A: Error Flag

H: Physical Error

The Select Disk function designates the disk drive named in register E as the
default disk for subsequent BOOS file operations. Register E is set to 0 for drive A,
1 for drive B, and so on through 15 for drive P in a full 16-drive system. In addition,
Function 14 logs in the designated drive if it is currently in the reset state. Logging
in a drive activates the drive's directory until the next disk system reset or drive reset
operation.

FCBs that specify drive code zero (dr = OOH) automatically reference the currently
selected default drive. FCBs with drive code values between 1 and 16, however,
ignore the selected default drive and directly reference drives A through P.

Upon return, register A contains a zero if the select operation was successful. If a
physical error was encountered, the select function performs different actions depend
ing on the BOOS error mode (see Function 45). If the BOOS error mode is in the
default mode, a message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the select function returns to the calling
program with register A set to OFFH and register H set to one of the following
physical error codes:

01 : Disk 110 Error
04 : Invalid drive

!lID DIGITAL RESEARCH™ ------------------------
3-19

3 BOOS Calls: Function 15 CP 1M 3 Programmer's Guide

BOOS FUNCTION 15: OPEN FILE

Entry Parameters:
Registers C: OFH

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical or Extended Error

The Open File function activates the FCB for a file that exists in the disk directory
under the currently active user number or user zero. The calling program passes the
address of the FeB in register pair DE, with byte 0 of the FeB specifying the drive,
bytes 1 through 11 specifying the filename and filetype, and byte 12 specifying the
extent. Usually, byte 12 of the FeB is initialized to zero.

If the file is password protected in Read mode, the correct password must be
placed in the first eight bytes of the current DMA, or have been previously estab
lished as the default password (see Function 106). If the current record field of the
FeB, cr, is set to OFFH, Function 15 returns the byte count of the last record of the
file in the cr field. You can set the last record byte count for a file with Function 30,
Set File Attributes. Note that the current record field of the FeB, cr, must be zeroed
by the calling program before beginning read or write operations if the file is to be
accessed sequentially from the first record.

If the current user is non-zero, and the file to be opened does not exist under the
current user number, the open function searches user zero for the file. If the file exists
under user zero, and has the system attribute, t2', set, the file is opened under user
zero. Write operations are not supported for a file that is opened under user zero in
this manner.

------------------------ [lID DIGITAL RESEARCH™
3-20

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 15

If the open operation is successful, the user's FCB is activated for read and write
operations. The relevant directory information is copied from the matching directory
FCB into bytes dO through dn of the FCB. If the file is opened under user zero when
the current user number is not zero, interface attribute f8' is set to one in the user's
FCB. In addition, if the referenced file is password protected in Write mode, and the
correct password was not passed in the OMA, or did not match the default pass
word, interface attribute f7' is set to one. Write operations are not supported for an
activated FCB if interface attribute f7' or f8' is true.

When the open operation is successful, the open function also makes an Access
date and time stamp for the opened file when the following conditions are satisfied:
the referenced drive has a directory label that requests Access date and time stamp
ing, and the FeB extent number field is zero.

Upon return, the Open File function returns a directory code in register A with the
value OOH if the open was successful, or FFH, 255 decimal, if the file was not found.
Register H is set to zero in both of these cases. If a physical or extended error was
encountered, the Open File function performs different actions depending on the
BOOS error mode (see Function 45). If the BOOS error mode is in the default mode,
a message identifying the error is displayed at the console and the program is termi
nated. Otherwise, the Open File function returns to the calling program with register
A set to OFFH, and register H set to one of the following physical or extended error
codes:

01 : ~isk I/O Error
04 : Invalid drive error
07 : File password error
09 : ? in the FCB filename or filetype field

[j]) DIGITAL RESEARCH'M -------------------------
3-21

3 BOOS Calls: Function 16 CP 1M 3 Programmer's Guide

BOOS FUNCTION 16: CLOSE FILE

Entry Parameters:
Registers C: 10H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical or Extended Error

The Close File function performs the inverse of the Open File function. The calling
program passes the address of an FCB in register pair DE. The referenced FCB must
have been previously activated by a successful Open or Make function call (see
Functions 15 and 22). Interface attribute f5' specifies how the file is to be closed as
shown below:

£5' = 0 - Permanent close (default mode)
£5' = 1 - Partial close

A permanent close operation indicates that the program has completed file operations
on the file. A partial close operation updates the directory, but indicates that the file
is to be maintained in the open state.

If the referenced FCB contains new information because of write operations to the
FCB, the close function permanently records the new information in the referenced
disk directory. Note that the FCB does not contain new information, and the direc
tory update step is bypassed if only read or update operations have been made to the
referenced FCB.

------------------------ I!ID DIGITAL RESEARCH™
3-22

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 16

Upon return, the close function returns a directory code in register A with the
value OOH if the close was successful, or FFH, 255 Decimal, if the file was not found.
Register H is set to zero in both of these cases. If a physical or extended error is
encountered, the close function performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is d,isplayed at the console, and the calling program is
terminated. Otherwise, the close function returns to the ca!ling program with register
A set to OFFH and register H set to one bf the following physical error codes:

01 : Disk 110 error
02 : Read/only disk
04 : Invalid drive error

I!ID DIGITAL RESEARCWM

3-23

3 BOOS Calls: Function 17 CP/M 3 Programmer's Guide

BDOS FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Registers C: 11H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical Error

The Search For First function scans the directory for a match with the FCB addressed
by register pair DE. Two types of searches can be performed. For standard searches,
the calling program initializes bytes 0 through 12 of the referenced FCB, with byte 0
specifying the drive directory to be searched, bytes 1 through 11 specifying the file or
files to be searched for, and byte 12 specifying the extent. Usually byte 12 is set to
zero. An ASCII question mark, 63 decimal, 3F hex, in any of the bytes 1 through 12
matches all entries on the directory in the corresponding position. This facility, called
ambiguous reference, can be used to search for multiple files on the directory. When
called in the standard mode, the Search function scans for the first file entry in the
specified directory that matches the FCB, and belongs to the current user number.

The Search For First function also initializes the Search For Next function. After
the Search function has located the first directory entry matching the referenced FCB,
the Search For Next function can be called repeatedly to locate all remaining match
ing entries. In terms of execution sequence, however, the Search For Next call must
either follow a Search For First or Search For Next call with no other intervening
BDOS disk-related function calls.

If byte 0 of the referenced FCB is set to a question mark, the Search function
ignores the remainder of the referenced FCB, and locates the first directory entry
residing on the current default drive. All remaining directory entries can be located
by making multiple Search For Next calls. This type of search operation is not
usually made by application programs, but it does provide complete flexibility to
scan all current directory values. Note that this type of search operation must be
performed to access a drive's directory label (see Section 2.3.6).

------------------------ I!IDDIGITAL RESEARCH™
3-24

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 17

Upon return, the Search function returns a Directory Code in register A with the
value 0 to 3 if the search is successful, or OFFH, 255 Decimal, if a matching directory
entry is not found. Register H is set to zero in both of these cases. For successful
searches, the current DMA is also filled with the directory record containing the
matching entry, and the relative starting position is A * 32 (that is, rotate the A
register left 5 bits, or ADD A five times). Although it is not usually required for
application programs, the directory information can be extracted from the buffer at
this position.

If the directory has been initialized for date and time stamping by INITDIR, then
an SFCB resides in every fourth directory entry, and successful Directory Codes are
restricted to the values 0 to 2. For successful searches, if the matching directory
record is an extent zero entry, and if an SFCB resides at offset 96 within the current
DMA, contents of (DMA Address + 96) = 21H, the SFCB contains the date and
time stamp information, and password mode for the file. This information is located
at the relative starting position of 97 + (A * 10) within the current DMA in the
following format:

o - 3 : Create or Access Date and Time Stamp Field
4 - 7 : Update Date and Time Stamp Field
8 : Password Mode Field

(Refer to Section 2.3.8 for more information on SFCBs.)

If a physical error is encountered, the Search function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is in
the default mode, a message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the Search function returns to the calling
program with register A set to OFFH, and register H set to one of the following
physical error codes:

01 : Disk I/O error
04 : Invalid drive error

[iID DIGITAL RESEARCHTM ------------------------
3-25

3 BOOS Calls: Function 18 CP/M 3 Programmer's Guide

BDOS FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Registers A: Directory Code

H: Physical Error

The Search For Next function is identical to the Search For First function, except
that the directory scan continues from the last entry that was matched. Function 18
returns a Directory code in register A, analogous to Function 17.

Note: in execution sequence, a Function 18 call must follow either a Function 17 or
another Function 18 call with no other intervening BDOS disk-related function calls.

------------------------ IiIDDlGITAL RESEARCWM
3-26

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 19

BDOS FUNCTION 19: DELETE FILE

Entry Parameters:
Registers C: 13 H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Extended or Physical Error

The Delete File function removes files or XFCBs that match the FCB addressed in
register pair DE. The filename and filetype can contain ambiguous references, that is,
question marks in bytes f1 through t3, but the dr byte cannot be ambiguous, as it
can in the Search and Search Next functions. Interface attribute f5' specifies the type
of delete operation that is performed.

f5' = 0 - Standard Delete (default mode)
f5' = 1 - Delete only XFCBs

If any of the files that the referenced FCB specify are password protected, the correct
password must be placed in the first eight bytes of the current DMA buffer, or have
been previously established as the default password (see Function 106).

For standard delete operations, the Delete function removes all directory entries
belonging to files that match the referenced FCB. All disk directory and data space
owned by the deleted files is returned to free space, and becomes available for allo
cation to other files. Directory XFCBs that were owned by the deleted files are also
removed from the directory. If interface attribute f5' of the FCB is set to 1, Function
19 deletes only the directory XFCBs that match the referenced FeB.

Note: if any of the files that match the input FCB specification fail the password
check, or are Read-Only, then the Delete function does not delete any files or XFCBs.
This applies to both types of delete operations.

f!ID DIGITAL RESEARCWM

3-27

3 BDOS Calls: Function 19 CP 1M 3 Programmer's Guide

In nonbanked systems, file passwords and XFCBs are not supported. Thus, if the
Delete function is called with interface attribute f5' set to true, the Delete function
performs no action but returns with register A set to zero.

Upon return, the Delete function returns a Directory Code in register A with the
value 0 if the delete is successful, or OFFH, 255 Decimal, if no file that matches the
referenced FCB is found. Register H is set to zero in both of these cases. If a physical,
or extended error is encountered, the Delete function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is
the default mode, a message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, the Delete function returns to the calling
program with register A set to OFFH and register H set to one of the following
physical or extended error codes:

01 : Disk I/O error
02 : Read-Only disk
03 : Read-Only file
04 : Invalid drive error
07 : File password error

------------------------ fiIDDIGITAL RESEARCH™
3-28

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 20

BOOS FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Registers C: 14 H

DE: FCB Address

Returned Value:
Registers A: Error Code

H: Physical Error

The Read Sequential function reads the next 1 to 128 128-byte records from a file
into memory beginning at the current DMA address. The BOOS Multi-Sector Count
(see Function 44) determines the number of records to be read. The default is one
record. The FCB addressed by register pair DE must have been previously activated
by an Open or Make function call.

Function 20 reads each record from byte cr of the extent, then automatically
increments the cr field to the next record position. If the cr field overflows, then the
function automatically opens the next logical extent and resets the cr field to 0 in
preparation for the next read operation. The calling program must set the cr field to
o following the Open call if the intent is to read sequentially from the beginning of
the file.

Upon return, the Read Sequential function sets register A to zero if the read oper
ation is successful. Otherwise, register A contains an error code identifying the error
as shown below:

01 : Reading unwritten data (end-of-file)
09 : Invalid FCB
10 : Media change occurred

255 : Physical Error; refer to register H

!lID DIGITAL RESEARCH™ ------------------------
3-29

3 BOOS Calls: Function 20 CP 1M 3 Programmer's Guide

Error Code 01 is ret'-1rned if no data exists at the next record position of the file.
Usually, the no data situation is encountered at the end of a file. However, it can
also occur if an attempt is made to read a data block that has not been previously
written, or an extent which has not been created. These situations are usually restricted
to files created or appended with the BDOS random write functions (see Functions
34 and 40).

Error Code 09 is returned if the FCB is invalidated by a previous BDOS close call that
returns an error.

Error Code 10 is returned if a media change occurs on the drive after the refer
enced FCB is activated by a BDOS Open, or Make Call.

Error Code 255 is returned if a physical error is encountered and the BDOS error
mode is Return Error mode, or Return and Display Error mode (see Function 45). If
the error mode is the default mode, a message identifying the physical error is dis
played at the console, and the calling program is terminated. When a physical error
is returned to the calling program, register H contains one of the following error
codes:

01 : Disk 110 error
04 : Invalid drive error

On all error returns except for physical error returns, A = 255, Function 20 sets
register H to the number of records successfully read before the error is encountered.
This value can range from 0 to 127 depending on the current BDOS Multi-Sector
Count. It is always set to zero when the Multi-Sector Count is equal to one.

------------------------- [!Q) DIGITAL RESEARCWM
3-30

CP/M 3 Programmer's Guide 3 BDOS Calls: Function 21

BDOS FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Registers C: iSH

DE: FCB Address

Returned Value:
Registers A: Error Code

H: Physical Error

The Write Sequential function writes 1 to 128 128-byte data records, beginning at
the current D MA address into the file named by the FCB addressed in register pair
DE. The BDOS Multi-Sector Count (see Function 44) determines the number of 128
byte records that are written. The default is one record. The referenced FCB must
have been previously activated by a BDOS Open or Make function call.

Function 21 places the record into the file at the position indicated by the cr byte
of the FCB, and then automatically increments the cr byte to the next record posi
tion. If the cr field overflows, the function automatically opens, or creates the next
logical extent, and resets the cr field to 0 in preparation for the next write operation.
If Function 21 is used to write to an existing file, then the newly written records
overlay those already existing in the file. The calling program must set the crfield to
o following an Open or Make call if the intent is to write sequentially from the
beginning of the file.

Function 21 makes an Update date and time for the file if the following conditions
are satisfied:· the referenced drive has a directory label that requests date and time
stamping, and the file has not already been stamped for update by a previous Make
or Write function call.

l!ID DIGITAL RESEARCWM

3-31

3 BDOS Calls: Function 21 CP 1M 3 Programmer's Guide

Upon return, the Write Sequential function sets register A to zero if the write
operation is successful. Otherwise, register A contains an error code identifying the
error as shown below:

01 : No available directory space
02 : No available data block
09 : Invalid FCB
10 : Media change occurred

255 : Physical Error: refer to register H

Error Code 01 is returned when the write function attempts to create a new extent
that requires a new directory entry, and no available directory entries exist on the
selected disk drive.

Error Code 02 is returned when the write command attempts to allocate a new
data block to the file, and no unallocated data blocks exist on the selected disk drive.

Error Code 09 is returned if the FCB is invalidated by a previous BDOS close call
that returns an error.

Error Code 10 is returned if a media change occurs on the drive after the refer
enced FCB is activated by a BDOS Open or Make call.

----------------.---------- !lID DIGITAL RESEARCWM

3-32

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 21

Error Code 255 is returned if a physical error is encountered and the BOOS error
mode is Return Error mode, or Return and Display Error mode (see Function 45). If
the error mode is the default mode, a message identifying the physical error is dis
played at the console, and the calling program is terminated. When a physical error
is returned to the calling program, register H contains one of the following error
codes:

01 : Disk I/O error
02 : Read-Only disk
03 : Read-Only file or

File open from user 0 when
the current user number is non-zero or
File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical error returns, A = 255, Function 21 sets
register H to the number of records successfully written before the error was encoun
tered. This value can range from 0 to 127 depending on the current BOOS Multi
Sector Count. It is always set to zero when the Multi-Sector Count is set to one.

!lID DIGITAL RESEARCH™ -------------------------
3-33

3 BDOS Calls: Function 22 CP 1M 3 Programmer's Guide

BDOS FUNCTION 22: MAKE FILE

., Entry Parameters:
Registers C: 16H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical or Extended Error

The Make File function creates a new directory entry for a file under the current
user number. It also creates an XFCB for the file if the referenced drive has a direc
tory label that enables password protection on the drive, and the calling program
assigns a password to the file.

The calling program passes the address of the FCB in register pair DE, with byte 0
of the FCB specifying the drive, bytes 1 through 11 specifying the filename and
filetype, and byte 12 set to the extent number. Usually, byte 12 is set to zero. Byte
32 of the FCB, the cr field, must be initialized to zero, before or after the Make call,
if the intent is to write sequentially from the beginning of the file.

Interface attribute f6' specifies whether a password is to be assigned to the created
file.

f6' = 0 - Do not assign password (default)
f6' = 1 - Assign password to created file

When attribute f6' is set to 1, the calling program must place the password in the
first 8 bytes of the current DMA buffer, and set byte 9 of the DMA buffer to the
password mode (see Function 102). Note that the Make function only interrogates
interface attribute f6' if passwords are activated on the referenced drive. In non
banked systems, file passwords are not supported, and attribute f6' is never interrogated.

The Make function returns with an error if the referenced FCB names a file that
currently exists in the directory under the current user number.

------------------------ I!ID DIGITAL RESEARCH™
3-34

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 22

If the Make function is successful, it activates the referenced FCB for file opera
tions by opening the FCB, and initializes both the directory entry and the referenced
FCB to an empty file. It also initializes all file attributes to zero. In addition, Function
22 makes a Creation date and time stamp for the file if the following conditions are
satisfied: the referenced drive has a directory label that requests Creation date and
time stamping and the FCB extent number field is equal to zero. Function 22 also
makes an Update stamp if the directory label requests update stamping and the FCB
extent field is equal to zero.

If the referenced drive contains a directory label that enables password protection,
and if interface attribute f6' has been set to 1, the Make function creates an XFCB
for the file. In addition, Function 22 also assigns the password, and password mode
placed in the first nine bytes of the OMA, to the XFCB.

Upon return, the Make function returns a directory code in register A with the
value 0 if the make operation is successful, or OFFH, 255 decimal, if no directory
space is available. Register H is set to zero in both of these cases. If a physical or
extended error is encountered, the Make function performs different actions depend
ing on the BOOS error mode (see Function 45). If the BOOS error mode is the
default mode, a message identifying the error is displayed at the console, and the
calling program is terminated. Otherwise, the Make function returns to the calling
program with register A set to OFFH, and register H set to one of the following
physical or extended error codes:

01 : ~isk I/O error
02 : Read-Only disk
04 : Invalid drive error
08 : File already exists
09 : ? in filename or filetype field

[!ill DIGITAL RESEARCH'" ------------------------

3-35

3 BOOS Calls: Function 23 CP/M 3 Programmer's Guide

BOOS FUNCTION 23: RENAME FILE

Entry Parameters:
Registers C: 17H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical or Extended Error

The Rename function uses the FCB, addressed by register pair DE, to change all
directory entries of the file specified by the filename in the first 16 bytes of the FCB
to the filename in the second 16 bytes. If the file specified by the first filename is
password protected, the correct password must be placed in the first eight bytes of
the current DMA buffer, or have been previously established as the default password
(see Function 106). The calling program must also ensure that the filenames specified
in the FCB are valid and unambiguous, and that the new filename does not already
exist on the drive. Function 23 uses the dr code at byte 0 of the FCB to select the
drive. The drive code at byte 16 of the FCB is ignored.

------------------------ I!IDDIGITAL RESEARCH™
3-36

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 23

Upon return, the Rename function returns a Directory Code in register A with the
value 0 if the rename is successful, or OFFH, 255 Decimal, if the file named by the
first filename in the FCB is not found. Register H is set to zero in both of these cases.
If a physical or extended error is encountered, the Rename function performs differ
ent actions depending on the BOOS error mode (see Function 45). If the BOOS error
mode is the default mode, a message identifying the error is displayed at the console
and the program is terminated. Otherwise, the Rename function returns to the calling
program with register A set to OFFH and register H set to one of the following
physical or extended error codes:

01 : Disk 110 error
02 : Read-Only disk
03 : Read-Only file
04 : Invalid drive error
07 : File password error
08 : File already exists
09 : ? in filename or filetype field

[lID DIGITAL RESEARCH™ ------------------------
3-37

3 BOOS Calls: Function 24 CP 1M 3 Programmer's Guide

BOOS FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Register HL: Login Vector

Function 24 returns the login vector in register pair HL. The login vector is a 16-
bit value with the ~east s~gnificant bit of L corresponding to drive A, and the high
order, bit of H corresponding to the 16th drive, labelled P. A 0 bit indicates that the
drive is not on-line, while a 1 bit indicates the drive is active. A drive is made active
by either an explicit BOOS Select ~isk call, number 14, or an implicit selection when
a BDOS file operation specifies a non-zero dr byte in the FCB. Function 24 maintains
compatibilty with earlier releases since registers A and L contain the same values
upon return.

------------------------ IIIDDIGITAL RESEARCHTM

3-38

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 25

BOOS FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number in register A. The
disk numbers range from 0 through 15 corresponding to drives A through P.

IIID DIGITAL RESEARCH™ -----------------------

3-39

3 BOOS Calls: Function 26 CP/M 3 Programmer's Guide

BDOS FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Registers C: 1AH

DE: DMA Address

DMA is an acronym for Direct Memory Address, which is often used in connec
tion with disk controllers that directly access the memory of the computer to transfer
data to and from the disk subsystem. Under CP/M 3, the current DMA is usually
defined as the buffer in memory where a record resides before a disk write, and after
a disk read operation. If the BDOS Multi-Sector Count is equal to one (see Function
44), the size of the buffer is 128 bytes. However, if the BDOS Multi-Sector Count is
greater than one, the size of the buffer must equal N * 128, where N equals the
Multi-Sector Count.

Some BDOS functions also use the current DMA to pass parameters, and to return
values. For example, BDOS functions that check and assign file passwords require
that the password be placed in the current DMA. As another example, Function 46,
Get Disk Free Space, returns its results in the first 3 bytes of the current DMA. When
the current DMA is used in this context, the size of the buffer in memory is deter
mined by the specific requirements of the called function.

When a transient program is initiated by the CCP, its DMA address is set to
0080H. The BDOS Reset Disk System function, Function 13, also sets the DMA
address to 0080H. The Set DMA function can change this default value to another
memory address. The DMA address is set to the value passed in the register pair DE.
The DMA address remains at this value until it is changed by another Set DMA
Address, or Reset Disk System call.

-------------...,..------------ IlIDDIGITAL RESEARCH™
3-40

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 27

BOOS FUNCTION 27: GET AOOR(ALLOC)

Entry Parameters:
Register C: IBH

Returned Value:
Register HL: ALLOC Address

CP/M 3 maintains an allocation vector in main memory for each active disk drive.
Some programs use the information provided by the allocation vector to determine
the amount of free data space on a drive. Note, however, that the allocation infor
mation might be inaccurate if the drive has been marked Read-Only.

Function 27 returns in register pair HL, the base address of the allocation vector
for the currently selected drive. If a physical error is encountered when the BOOS
error mode is one of the return modes (see Function 45), Function 27 returns the
value OFFFFH in the register pair HL.

In banked CP/M 3 systems, the allocation vector can be placed in bank zero. In
this case, a transient program cannot access the allocation vector. However, the
BOOS function, Get ~isk Free Space (Function 46), can be used to directly return
the number of free 128-byte records on a drive. The CP/M 3 utilities that display a
drive's free space, OIR and SHOW, use Function 46 for that purpose.

I!ID DIGITAL RESEARCHTM -------------------------
3-41

3 BDOS Calls: Function 28 CP/M 3 Programmer's Guide

BDOS FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: 1CH

The Write Protect Disk function provides temporary write protection for the cur
rently selected disk by marking the drive as Read-Only. No program can write to a
disk that is in the Read-Only state. A drive reset operation must be performed for a
Read-Only drive to restore it to the Read-Write state (see Functions 13 and 37).

------------------------ !!IDDIGITAL RESEARCHTM
3-42

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 29

BDOS FUNCTION 29: GET READ-ONLY VECTOR

Entry Parameters:
Register C: lOH

Returned Value:
Register HL: RIO Vector Value

Function 29 returns a bit vector in register pair HL that indicates which drives
have the temporary Read-Only bit set. The Read-Only bit can be set only by a BDOS
Write Protect ~isk call.

The format of the bit vector is analagous to that of the login vector returned by
Function 24. The least significant bit corresponds to drive A, while the most signifi
cant bit corresponds to drive P.

I!ID DIGITAL RESEARCWM

3-43

3 BOOS Calls: Function 30 CP/M 3 Programmer's Guide

BOOS FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Registers C: 1EH

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical or Extended error

By calling the Set File Attributes function, a program can modify a file's attributes
and set its last record byte count. Other BDOS functions can be called to interrogate
these file parameters, but only Function 30 can change them. The file attributes that
can be set or reset by Function 30 are £1' through f4', Read-Only, tl', System, t2',
and Archive, t3'. The register pair DE addresses an FCB containing a filename with
the appropriate attributes set or reset. The calling program must ensure that it does
not specify an ambiguous filename. In addition, if the specified file is password pro
tected, the correct password must be placed in the first eight bytes of the current
DMA buffer or have been previously established as the default password (see Func
tion 106).

Interface attribute f6' specifies whether the last record byte count of the specified
file is to be set:

f6' = 0 - Do not set byte count (default mode)
f6' = 1 - Set byte count

If interface attribute f6' is set, the calling program must set the cr field of the refer
enced FCB to the byte count value. A program can access a file's byte count value
with the BDOS Open, Search, or Search Next functions.

Function 30 searches the referenced directory for entries belonging to the current
user number that matches the FCB specified name and type fields. The function then
updates the directory to contain the selected indicators, and if interface attribute f6'
is set, the specified byte count value. Note that the last record byte count is main
tained in byte 13 of a file's directory FCBs.

------------------------ I!IDDIGITAL RESEARCHTM
3-44

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 30

File attributes tl', t2', and t3' are defined by CP/M 3. (They are described in
Section 2.3.4.) Attributes fl' through f4' are not presently used, but can be useful for
application programs, because they are not involved in the matching program used
by the BOOS during Open File and Close File operations. Indicators fS' through f8'
are reserved for use as interface attributes.

Upon return, Function 30 returns a Directory Code in register A with the value 0
if the function is successful, or OFFH, 255 Decimal, if the file specified by the refer
enced FCB is not found. Register H is set to zero in both of these cases. If a physical
or extended error is encountered, the Set File Attributes function performs different
actions depending on the BOOS error mode (see Function 4S). If the BOOS error
mode is the default mode, a message identifying the error is displayed at the console,
and the program is terminated. Otherwise, Function 30 returns to the calling pro
gram with register A set to OFFH, and register H set to one of the following physical
or extended error codes:

01 : ~isk 110 error
02 : Read-Only disk
04 : Select error
07 : File password error
09 : ? in filename or filetype field

[jill DIGITAL RESEARCH™ -------------------'-------
3-45

3 BOOS Calls: Function 31 CP/M 3 Programmer's Guide

BOOS FUNCTION 31: GET ADDR(DPB PARMS)

Entry Parameters:
Register C: 1FH

Returned Value:
Register Hi: DPB Address

Function 31 returns in register pair Hi the address of the BIOS-resident Disk
Parameter Block, DPB, for the currently selected drive. (Refer to the CP/M Plus
(CP/M Version 3) Operating System System Guide for the format of the DPB). The
calling program can use this address to extract the disk parameter values.

If a physical error is encountered when the BDOS error mode is one of the return
modes (see Function 45), Function 31 returns the value OFFFFH in the register pair
Hi.

------------------------ !lID DIGITAL RESEARCH™
3-46

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 32

BOOS FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Registers C: 20H

E: OFFH (get) or User Code (set)

Returned Value:
Register A: Current Code or

(no value)

A program can change, or interrogate the currently active user number by calling
Function 32. If register E = OFFH, then the value of the current user number is
returned in register A, where the value is in the range of 0 to 15. If register E is not
OFFH, then the current user number is changed to the value of E, modulo 16.

!lID DIGITAL RESEARCWM -----------------------
3-47

3 BOOS Calls: Function 33 CP/M 3 Programmer's Guide

BOOS FUNCTION 33: READ RANDOM

Entry Parameters:
Registers C: 21H

DE: FCB Address

Returned Value:
Registers A: Error Code

H: Physical Error

The Read Random function is similar to the Read Sequential function except that
the read operation takes place at a particular random record number, selected by the
24-bit value constructed from the three byte, rO, r1, r2, field beginning at position
33 of the FCB. Note that the sequence of 24 bits is stored with the least significant
byte first, rO, the middle byte next, r1, and the high byte last, r2. The random record
number can range from ° to 262,143. This corresponds to a maximum value of 3 in
byte r2. .

To read a file with Function 33, the calling program must first open the base
extent, extent 0. This ensures that the FCB is properly initialized for subsequent
random access operations. The base extent mayor may not contain any allocated
data. Function 33 reads the record specified by the random record field into the
current DMA address. The function automatically sets the logical extent and current
record values, but unlike the Read Sequential function, it does not advance the
current record number. Thus, a subsequent Read Random call rereads the same
record. After a random read operation, a file can be accessed sequentially, starting
from the current randomly accessed position. However, the last randomly accessed
record is reread or rewritten when switching from random to sequential mode.

If the BOOS Multi-Sector Count is greater than one (see Function 44), the Read
Random function reads multiple consecutive records into memory beginning at the
current DMA. The rO, r1, and r2 field of the FCB is automatically incremented to
read each record. However, the FCBs random record number is restored to the first
record's value upon return to the calling program.

------------------------ !lID DIGITAL RESEARCHTM
3-48

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 33

Upon return, the Read Random function sets register A to zero if the read opera
tion was successful. Otherwise, register A contains one of the following error codes:

01 : Reading unwritten data (end-of-file)
03 : Cannot close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
10 : Media change occurred

255 : Physical Error : refer to register H

Error Code 01 is returned if no data exists at the next record position of the file.
Usually, the no data situation is encountered at the end of a file. However, it can
also occur if an attempt is made to read a data block that has not been previously
written.

Error Code 03 is returned when the Read Random function cannot close the
current extent prior to moving to a new extent.

Error Code. 04 is returned when a read random operation accesses an extent that
has not been created.

Error Code 06 is returned when byte 35, r2, of the referenced FCB is greater than
3.

Error Code lOis returned if a media change occurs on the drive after the refer
enced FCB is activated by a BDOS Open or Make Call.

Error Code 255 is returned if a physical error is encountered, and the BOOS error
mode is one of the return modes (see Function 45). If the error mode is the default
mode, a message identifying the physical error is displayed at the console, and the
calling program is terminated. When a physical error is returned to the calling pro
gram, register H contains one of the following error codes:

01 : Disk I/O error
04 : Invalid drive error

On all error returns except for physical errors, A = 255, the Read Random
function sets register H to the number of records successfully read before the error is
encountered. This value can range from 0 to 127 depending on the current BDOS
Multi-Sector Count. It is always set to zero when the Multi-Sector Count is equal to
one.

I!ID DIGITAL RESEARCHTM -------------------------
3-49

3 BDOS Calls: Function 34 CP/M 3 Programmer's Guide

BDOS FUNCTION 34: WRITE RANDOM

Entry Parameters:
Registers C: 22H

DE: FCB Address

Returned Value:
Registers A: Error Code

H: Physical Error

The Write Random function is analagous to the Read Random function, except
that data is written to the disk from the current DMA address. If the disk extent or
data block where the data is to be written is not already allocated, the BDOS auto
matically performs the allocation before the write operation continues.

To write to a file using the Write Random function, the calling program must first
open the base extent, extent o. This ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, the calling program must
create the base extent with the Make File function before calling Function 34. The
base extent might or might not contain any allocated data, but it does record the file
in the directory, so that the file can be displayed by the DIR utility.

The Write Random function sets the logical extent and current record positions to
correspond with the random record being written, but does not change the random
record number. Thus, sequential read or write operations can follow a random write,
with the current record being reread or rewritten as the calling program switches
from random to sequential mode.

Function 34 makes an Update date and time stamp for the file if the following
conditions are satisfied: the referenced drive has a directory label that requests Update
date and time stamping if the file has not already been stamped for update by a
previous BDOS Make or Write call.

------------------------ [!IDDIGITAL RESEARCH™
3-50

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 34

If the BOOS Multi-Sector Count is greater than one (see Function 44), the Write
Random function reads multiple consecutive records into memory beginning at the
current OMA. The rO, ri, and r2 field of the FCB is automatically incremented to
write each record. However, the FCB's random record number is restored to the first
record's value when it returns to the calling program. Upon return, the Write Ran
dom function sets register A to zero if the write operation is successful. Otherwise,
register A contains one of the following error codes:

02 : No available data block
03 : Cannot Close current extent
05 : No available directory space
06 : Random record number out of range
10 : Media change occurred

255 : Physical Error: refer to register H

Error Code 02 is returned when the write command attempts to allocate a new
data block to the file and no unallocated data blocks exist on the selected disk drive.

Error Code 03 is returned when the Write Random function cannot close the
current extent prior to moving to a new extent.

Error Code 05 is returned when the write function attempts to create a new extent
that requires a new directory entry and no available directory entries exist on the
selected disk drive.

Error Code 06 is returned when byte 35, r2, of-the referenced FeB is greater than
3.

Error Code lOis returned if a media change occurs on the drive after the refer
enced FCB is activated by a BOOS Open or Make Call.

I!ID DIGITAL RESEARCH™ -------------------------

3-51

3 BOOS Calls: Function 34 CP/M 3 Programmer's Guide

Error Code 255 is returned if a physical error is encountered and the BOOS error
mode is one of the return modes (see Function 45). If the error mode is the default
mode, a message identifying the physical error is displayed at the console, and the
calling program is terminated. When a physical error is returned to the calling pro
gram, it is identified by register H as shown below:

01 : ~isk I/O error
02 : Read-Only disk
03 : Read-Only file or

File open from user 0 when the current user number is nonzero or
File password protected in Write mode

04 : Invalid drive error

On all error returns, except for physical errors, A = 255, the Write Random
function sets register H to the number of records successfully written before the error
is encountered. This value can range from 0 to 127 depending on the current BOOS
Multi-Sector Count. It is always set to zero when the Multi-Sector Count is equal to
one.

-------------------------i!ID DIGITAL RESEARCH™
3-52

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 35

BOOS FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Registers C: 23H

DE: FCB Address

Returned Value:
Registers A: Error Flag

H: Physical or Extended error

Random Record Field Set

The Compute File Size function determines the virtual file size, which is, in effect,
the address of the record immediately following the end of the file. The virtual size
of a file corresponds to the physical size if the file is written sequentially. If the file is
written in random mode, gaps might exist in the allocation, and the file might con
tain fewer records than the indicated size. For example, if a single record with record
number 262,143, the CP/M 3 maximum is written to a file using the Write Random
function, then the virtual size of the file is 262,144 records even though only 1 data
block is actually allocated.

To compute file size, the calling program passes in register pair DE the address of
an FCB in random mode format, bytes rO, r1 and r2 present. Note that the FCB
must contain an unambiguous filename and filetype. Function 35 sets the random
record field of the FCB to the random record number + 1 of the last record in the
file. If the r2 byte is set to 04, then the file contains the maximum record count
262,144.

A program can append data to the end of an existing file by calling Function 35 to
set the random record position to the end of file, and then performing a sequence of
random writes starting at the preset record address.

Note: the BDOS does not require that the file be open to use Function 35. However,
if the file has been written to, it must be dosed before calling Function 35. Other
wise, an incorrect file size might be returned.

I!ID DIGITAL RESEARCHTM ------------------------
3-53

3 BDOS Calls: Function 35 CP/M 3 Programmer's Guide

Upon return, Function 35 returns a zero in register A if the file specified by the
referenced FCB is found, or an OFFH in register A if the file is not found. Register H
is set to zero in both of these cases. If a physical error is encountered, Function 35
performs different actions depending on the BDOS error mode (see Function 45).
If the BDOS error mode is the default mode, a message identifying the error is
displayed at the console and the program is terminated. Otherwise, Function 35
returns to the calling program with register A set to OFFH, and register H set to one
of the following physical errors:

01 : Disk 110 error
04 : Invalid drive error

DIGITAL RESEARCHTM
3-54

CP 1M 3 Programmer's Guide 3 BDOS Calls: Function 36

BDOS FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Registers C: 24H

DE: FCB Address

Returned Value: Random Record Field Set

The Set Random Record function returns the random record number of the next
record to be accessed from a file that has been read or written sequentially to a
particular point. This value is returned in the random record field, bytes rO, r1, and
r2, of the FCB addressed by the register pair DE. Function 36 can be useful in two
ways.

First, it is often necessary to initially read and scan a sequential file to extract the
positions of various key fields. As each key is encountered, Function 36 is called to
compute the random record position for the data corresponding to this key. If the
data unit size is 128 bytes, the resulting record number minus one is placed into a
table with the key for later retrieval. After scanning the entire file and tabularizing
the keys and their record numbers, you can move directly to a particular record by
performing a random read using the corresponding random record number that you
saved earlier. The scheme is easily generalized when variable record lengths are involved,
because the program need only store the buffer-relative byte position along with the
key and record number to find the exact starting position of the keyed data at a later
time.

A second use of Function 36 occurs when switching from a sequential read or
write over to random read or write. A file is sequentially accessed to a particular
point in the file, then Function 36 is called to set the record number, and subsequent
random read and write operations continue from the next record in the file.

IiID DIGITAL RESEARCH™ -------------------------
3-55

3 BDOS Calls: Function 37 CP/M 3 Programmer's Guide

BDOS FUNCTION 37: RESET DRIVE

Entry Parameters:
Registers C: 2SH

DE: Drive Vector

Returned Value:
Register A: OOH

The Reset Drive function programmatically restores specified drives to the reset
state. A reset drive is not logged-in and is in Read-Write status. The passed parame
ter in register pair DE is a 16-bit vector of drives to be reset, where the least signifi
cant bit corresponds to the first drive A, and the high-order bit corresponds to the
sixteenth drive, labelled P. Bit values of 1 indicate that the specified drive is to be
reset.

------------------------ I!ID DIGITAL RESEARCHTM
3-56

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 38

BOOS FUNCTION 38: ACCESS DRIVE

Entry Parameters:
Register C: 26H

This is an MP/M function that is not supported under CP/M 3. If called, the file
system returns a zero in register A indicating that the access request is successful.

[!]J DIGITAL RESEARCHTM -----------------------
3-57

3 BDOS Calls: Function 39 CP/M 3 Programmer's Guide

BDOS FUNCTION 39: FREE DRIVE

Entry Parameters:
Register C: 27H

This is an MP/M function that is not supported under CP/M 3. If called, the file
system returns a zero in register A indicating that the free request is successful.

------------------------ I!ID DIGITAL RESEARCH™

3-58

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 40

BOOS FUNCTION 40: WRITE RANDOM WITH
ZERO FILL

Entry Parameters:
Registers C: 28H

DE: FCB address

Returned Value:
Registers A: Error Code

H: Physical Error

The Write Random With Zero Fill function is identical to the Write Random
function (Function 34) with the exception that a previously unallocated data block is
filled with zeros before the record is written. If this function has been used to create
a file, records accessed by a read random operation that contain all zeros identify
unwritten random record numbers. Unwritten random records in allocated data blocks
of files created using the Write Random function (Function 34) contain uninitialized
data.

I!ID DIGITAL RESEARCH™ ------------------------
3-59

3 BDOS Calls: Function 41 CP 1M 3 Programmer's Guide

BDOS FUNCTION 41: TEST AND WRITE RECORD

Entry Parameters:
Registers C: 29H

DE: FCB Address

Returned Value:
Registers A: Error Code

H: Physical Error

The Test and Write Record function is an MP/M IITM function that is not sup
ported under CP/M 3. If called, Function 41 returns with register A set to OFFH and
register H set to zero.

------------------------llID DIGITAL RESEARCHrM

3-60

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 42

BDOS FUNCTION 42: LOCK RECORD

Entry Parameters:
Registers C: 2AH

DE: FCB Address

Returned Value:
Register A: OOH

The Lock Record function is an MP/M II function that is supported under CP/M 3
only to provide compatibility between CP/M 3 and MP/M. It is intended for use in
situations where more than one running program has Read-Write access to a com
mon file. Because CP/M 3 is a single-user operating system in which only one pro
gram can run at a time, this situation cannot occur. Thus, under CP/M 3, Function
42 performs no action except to return the value OOH in register A indicating that
the record lock operation,is successful.

[lID DIGITAL RESEARCHTM ------------------------
3-61

3 BDOS Calls: Function 43 CP 1M 3 Programmer's Guide

BDOS FUNCTION 43: UNLOCK RECORD

Entry Parameters:
Registers C: 2BH

DE: FCB Address

Returned Value:
Register A: OOH

The Unlock Record function is an MP/M II function that is supported under
CP/M 3 only to provide compatibility between CP/M 3 and MP/M. It is intended for
use in situations where more than one running program has Read-Write access to a
common file. Because CP/M 3 is a single-user operating system in which only one
program can run at a time, this situation cannot occur. Thus, under CP/M 3, Func
tion 43 performs no action except to return the value OOH in register A indicating
that the record unlock operation is successful.

------------------------ l!ID DIGITAL RESEARCH™
3-62

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 44

BOOS FUNCTION 44: SET MULTI-SECTOR COUNT

Entry Parameters:
Registers C: 2CH

E: Number of Sectors

Returned Value:
Register A: Return Code

The Set Multi-Sector Count function provides logical record blocking under
CP/M 3. It enables a program to read and write from 1 to 128 records of 128 bytes
at a time during subsequent BOOS Read and Write functions.

Function 44 sets the Multi-Sector Count value for the calling program to the value
passed in register E. Once set, the specified Multi-Sector Count remains in effect until
the calling program makes another Set Multi-Sector Count function call and changes
the value. Note that the CCP sets the Multi-Sector Count to one when it initiates a
transient program.

The Multi-Sector Count affects BOOS error reporting for the BOOS Read and
Write functions. If an error interrupts these functions when the Multi-Sector is greater
than one, they return the number of records successfully read or written in register
H for all errors except for physical errors (A = 255).

Upon return, register A is set to zero if the specified value is in the range of 1 to
128. Otherwise, register A is set to OFFH.

[lID DIGITAL RESEARCH™ -------------------------
3-63

3 BOOS Calls: Function 45 CP 1M 3 Programmer's Guide

BOOS FUNCTION 45: SET BDOS ERROR MODE

Entry Parameters:
Registers C: 2DH

E: BDOS Error Mode

Returned Value: None

Function 45 sets the BOOS error mode for the calling program to the mode speci
fied in register E. If register E is set to OFFH, 255 decimal, the error mode is set to
Return Error mode. If register E is set to OFEH, 254 decimal, the error mode is set
to Return and Display mode. If register E is set to any other value, the error mode is
set to the default mode.

The SET BDOS Error Mode function determines how physical and extended errors
(see Section 2.2.13) are handled for a program. The Error Mode can exist in three
modes: the default mode, Return Error mode, and Return and Display Error mode.
In the default mode, the BDOS displays a system message at the console that identi
fies the error and terminates the calling program. In the return modes, the BDOS sets
register A to OFFH, 255 decimal, places an error code that identifies the physical or
extended error in register H and returns to the calling program. In Return and
Display mode, the BDOS displays the system message before returning to the calling
program. No system messages are displayed, however, when the BOOS is in Return
Error mode.

________________________ l!ID DIGITAL RESEARCHTM

3-64

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 46

BOOS FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Registers C: 2EH

E: Drive

Returned Value: First 3 bytes
of current D MA
buffer

Registers A: Error Flag
H: Physical Error

The Get Disk Free Space function determines the number of free sectors, 128 byte
records, on the specified drive. The calling program passes the drive number in
register E, with 0 for drive A, 1 for B, and so on, through 15 for drive P in a full 16-
drive system. Function 46 returns a binary number in the first 3 bytes of the current
DMA buffer. This number is returned in the following format:

Disk Free Space Field Format

fsO = low byte
fs 1 = middle byte
fs2 = high byte

Note that the returned free space value might be inaccurate if the drive has been
marked Read-Only.

lIIDDIGITAL RESEARCHTM ------------------------

3-65

3 BOOS Calls: Function 46 CP 1M 3 Programmer's Guide

Upon return, register A is set to zero if the function is successful. However, if the
BDOS Error Mode is one of the return modes (see Function 45), and a physical error
is encountered, register A is set to OFFH, 255 decimal, and register H is set to one of
the following values:

01 - Disk I/O error
04 - Invalid drive error

------------------------- I!ID DIGITAL RESEARCH™
3-66

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 47

BOOS FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Registers C: 2FH

E: Chain Flag

The Chain To Program function provides a means of chaining from one program
to the next without operator intervention. The calling program must place a com
mand line terminated by a null byte, OOH, in the ..9.d$!J.dtOMApllffer. If register E is
set to OFFH, the CCP initializes the default drive and user number to the current
program values when it passes control to the specified transient program. Otherwise,
these parameters are set to the default CCP values. Note that Function 108, Get/Set
Program Return Code, can be used to pass a two byte value to the chained program.

Function 47 does not return any values to the calling program and any encoun
tered errors are handled by the CCP.

[j]] DIGITAL RESEARCH™ ------------------------
3-67

3 BDOS Calls: Function 48 CP/M 3 Programmer's Guide

BDOS FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Registers C: 30H

E: Purge Flag

Returned Value:
Registers A: Error Flag

H: Physical Error

The Flush Buffers function forces the write of any write-pending records contained
in internal blocking/deblocking buffers. If register E is set to OFFH, this function also
purges all active data buffers. Programs that provide write with read verify support
need to purge internal buffers to ensure that verifying reads actually access the disk
instead of returning data that is resident in internal data buffers. The CP/M 3 PIP
utility is an example of such a program.

Upon return, register A is set to zero if the flush operation is successful. If a
physical error is encountered, the Flush Buffers function performs different actions
depending on the BDOS error mode (see Function 45). If the BDOS error mode is in
the default mode, a message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, the Flush Buffers function returns to the
calling program with register A set to OFFH and register H set to the following
physical error code:

01 : Disk I/O error
02 : Read/only disk
04 : Invalid drive error

------------------------ [lID DIGITAL RESEARCHTM
3-68

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 49

BOOS FUNCTION 49: GET / SET SYSTEM
CONTROL BLOCK

Entry Parameters:
Registers C: 31 H

DE: SCB PB Address

Returned Value:
Registers A: Returned Byte

HL: Returned Word

Function 49 allows access to parameters located in the CP/M 3 System Control
Block (SCB). The SCB is a lOO-byte data structure residing within the BDOS that
contains flags and data used by the BDOS, CCP and other system components. Note
that Function 49 is a CP/M 3 specific function. Programs intended for both MP/M II
and CP/M 3 should either avoid the use of this function or isolate calls to this
function in CP/M 3 v{!rsion-dependent sections.

To use Function 49, the calling program passes the address of a data structure
called the SCB parameter block in register pair DE. This data structure identifies the
byte or word of the SCB to be updated or returned. The SCB parameter block is
defined as:

SCBPB: DB OFFSET Offset within SCB
DB SET OFFH if settin!t a byte

OFEH if settin!t a word
00lH - OFDH are rese rved
OOOH if a !tet operation

OW VALUE Byte or word value to be set

The OFFSET parameter identifies the offset of the field within the SCB to be updated
or accessed. The SET parameter determines whether Function 49 is to set a byte or
word value in the SCB or if it is to return a byte from the SCB. The VALUE
parameter is used only in set calls. In addition, only the first byte of VALUE is
referenced in set byte calls.

IiIDDIGITAL RESEARCH™ -----------------------

3-69

3 BOOS Calls: Function 49 CP/M 3 Programmer's Guide

Use caution when you set SCB fields. Some of these parameters reflect the current
state of the operating system. If they are set to invalid values, software errors can
result. In general, do not use Function 49 to set a system parameter if another BOOS
function can achieve the same result. For example, Function 49 can be called to
update the Current DMA Address field within the SCB. This is not equivalent to
making a Function 26, Set DMA Address call, and updating the SCB Current DMA
field in this way would result in system errors. However, you can use Function 49 to
return the Current DMA address. The System Control Block is summarized in the
following table. Each of these fields is documented in detail in Appendix A.

Offset

00 - 04
05
06 - 09
OA- OF
10 - 11
12 - 19
lA
lB
lC
lD- 21
22 - 23
24 - 25
26 - 27
28 - 29
2A-2B
2C
2D
2E
2F
30 - 32
33 - 34
35 - 36
37
38
39 - 3B

Table 3-4. System Control Block

I Description

Reserved For System Use
BDOS version number
User Flags
Reserved For System Use
Program Error return code
Reserved For System Use
Console Width (columns)
Console Column Position
Console Page Length
Reserved For System Use
CONIN Redirection flag
CONOUT Redirection flag
AUXIN Redirection flag
AUXOUT Redirection flag
LSTOUT Redirection flag
Page Mode
Reserved For System Use
CTRL-H Active
Rubout Active
Reserved For System Use
Console Mode
Reserved For System Use
Output Delimiter
List Output Flag
Reserved For System Use

--------------=----------- [j]J DIGITAL RESEARCH™
3-70

CP/M 3 Programmer's Guide

Offset

3C-3D
3E
3F - 43
44
45 - 49
4A
4B
4C- 4F
50
51
52 - 56
57
58 -5C
5D- 5E
SF - 63

I

3 BOOS Calls: Function 49

Table 3-4. (continued)

Description

Current DMA Address
Current Disk
Reserved For System Use
Current User Number
Reserved For System Use
BOOS Multi-Sector Count
BDOS Error Mode
Drive Search Chain (DISKS A: ,E: ,F:)
Temporary File Drive
Error Disk
Reserved For System Use
BDOS flags
Date Stamp
Common Memory Base Address
Reserved For System Use

If Function 49 is called with the OFFSET parameter of the SCB parameter block
greater than 63H, the function performs no action but returns with registers A and
HL set to zero.

[!]I DIGITAL RESEARCH'" -----------------------

3-71

3 BDOS Calls: Function 50 CP/M 3 Programmer's Guide

BDOS FUNCTION 50: DIRECT BIOS CALLS

Entry Parameters:
Registers C: 32H

DE: BIOS PB Address

Returned Value: BIOS RETURN

Function 50 provides a direct BIOS call through the BDOS to the BIOS. The
calling program passes the address of a data structure called the BIOS Parameter
Block (BIOSPB) in register pair DE. The BIOSPB contains the BIOS function number
and register contents as shown below:

BIOSPB: db FUNC BIOS function no.
db AREG A resister contents
d BCREG BC resister contents
dl DEREG DE reSister contents
dw HLREG HL reSister contents

System Reset (Function 0) is equivalent to Function 50 with a BIOS function
number of 1.

Note that the register pair BIOSPB fields (BCREG, DEREG, HLREG) are defined
in low byte, high byte order. For example, in the BCREG field, the first byte contains
the C register value, the second byte contains the B register value.

Under CP/M 3, direct BIOS calls via the BIOS jump vector are only supported for
the BIOS Console I/O and List functions. You must use Function 50 to call any other
BIOS functions. In addition, Function 50 intercepts BIOS Function 27 (Select Mem
ory) calls and returns with register A set to zero. Refer to the CP/M Plus (CP/M
Version 3) Operating System System Guide for the definition of the BIOS functions
and their register passing and return conventions.

------------------------ I!ID DIGITAL RESEARCHTM
3-72

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 59

BOOS FUNCTION 59: LOAD OVERLAY

Entry Parameters:
Registers C: 3BH

DE: FCB Address

Returned Value:
Registers A: Error Code

H: Physical Error

Only transient programs with an RSX header can use the Load Overlay function
because BDOS Function 59 is supported by the LOADER module. The calling pro
gram must have a header to force the LOADER to remain resident after the program
is loaded (see Section 1.3).

Function 59 loads either an absolute or relocatable module. Relocatable modules
are identified by a filetype of PRL. Function 59 does not call the loaded module.

The referenced FCB must be successfully opened before Function 59 is called. The
load address is specified in the first two random record bytes of the FCB, rO and r1.
The LOADER returns an error if the load address is less than 100H, or if performing
the requested load operation would overlay the LOADER, or any other Resident
System Extensions that have been previously loaded.

When loading relocatable files, the LOADER requires enough room at the load ad
dress for the complete PRL file including the header and bit map (see Appendix B).
Otherwise an error is returned. Function 59 also returns an error on PRL file load
requests if the specified load address is not on a page boundary.

Upon return, Function 59 sets register A to zero if the load operation is successful.
If the LOADER RSX is not resident in memory because the calling program did not
have a RSX header, the BDOS returns with register A set to OFFH and register H set
to zero. If the LOADER detects an invalid load address, or if insufficient memory is
available to load the overlay, Function 59 returns with register A set to OFEH. All
other error returns are consistent with the error codes returned by BDOS Function
20, Read Sequential.

[!ID DIGITAL RESEARCH'M ------------------------

3-73

3 BOOS Calls: Function 60 CP 1M 3 Programmer's Guide

BDOS FUNCTION 60: CALL RESIDENT SYSTEM
EXTENSION

Entry Parameters:
Registers C: 3CH

DE: RSX PB Address

Returned Value:
Registers A: Error Code

H: Physical Error

Function 60 is a special BDOS function that you use when you call Resident
System Extensions. The RSX subfunction is specified in a structure called the RSX
Parameter Block, defined as follows:

RSXPB: db FUNC RSX F'-l~.ct i on nUMber
db NUMPARMS Number of word parameters
dw PARMETERl ParalTleter 1
d PARMETER2 ParalTleter 2
• • •
d PAR MET ERn ParalTleter n

RSX modules filter all BDOS calls and capture RSX function calls that they can
handle. If there is no RSX module present in memory that can handle a specific RSX
function call, the call is not trapped, and the BDOS returns OFFH in registers A and
L. RSX function numbers from 0 to 127 are available for CP/M 3 compatible soft
ware use. RSX function numbers 128 to 255 are reserved for system use.

------------------------ [!]]DIGITAL RESEARCH™
3-74

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 98

BOOS FUNCTION 98: FREE BLOCKS

Entry Parameters:
Register C: 62H

Returned Value:
Registers A: Error Flag

H: Physical Error

The Free Blocks function scans all the currently logged-in drives, and for each
drive returns to free space all temporarily-allocated data blocks. A temporarily-allo
cated data block is a block that has been allocated to a file by a BDOS write
operation but has not been permanently recorded in the directory by a BDOS close
operation. The CCP calls Function 98 when it receives control following a system
warm start. Be sure to close your file, particularly any file you have written to, prior
to calling Function 98.

In the nonbanked version of CP/M 3, Function 98 frees only temporarily allocated
blocks for systems that request double allocation vectors in GENCPM.

Upon return, register A is set to zero if Function 98 is successful. If a physical
error is encountered, the Free Blocks function performs different actions depending
on the BDOS error mode (see Function 45). If the BDOS error mode is in the default
mode, a message identifying the error is displayed at the console and the calling
program is terminated. Otherwise, the Free Blocks function returns to the calling
program with register A set to OFFH and register H set to the following physical
error code:

04 : Invalid drive error

I!ID DIGITAL RESEARCWM

3-75

3 BDOS Calls: Function 99 CP/M 3 Programmer's Guide

BDOS FUNCTION 99: TRUNCATE FILE

Entry Parameters:
Registers C: 63H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Extended or Physical Error

The Truncate File function sets the last record of a file to the random record
number contained in the referenced FCB. The calling program passes the address of
the FeB in register pair DE, with byte ° of the FCB specifying the drive, bytes 1
through 11 specifying the filename and filetype, and bytes 33 through 35, rO, r1, and
r2, specifying the last record number of the file. The last record number is a 24 bit
value, stored with the least significant byte first, rO, the middle byte next, rl, and the
high byte last, r2. This value can range from ° to 262,143, which corresponds to a
maximum value of 3 in byte r2.

If the file specified by the referenced FCB is password protected, the correct pass
word must be placed in the first eight bytes of the current DMA buffer, or have been
previously established as the default password (see Function 106).

Function 99 requires that the file specified by the FCB not be open, particularly if
the file has been written to. In addition, any activated FCBs naming the file are not
valid after Function 99 is called. Close your file before calling Function 99, and then
reopen it after the call to continue processing on the file.

------------------------ I!ID DIGITAL RESEARCHTM
3-76

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 99

Function 99 also requires that the random record number field of the referenced
FCB specify a value less than the current file size. In addition, if the file is sparse, the
random record field must specify a record in a region of the file where data exists.

Upon return, the Truncate function returns a Directory Code in register A with the
value 0 if the Truncate function is successful, or OFFH, 255 decimal, if the file is not
found or the record number is invalid. Register H is set to zero in both of these
cases. If a physical or extended error is encountered, the Truncate function performs
different actions depending on the BOOS error mode (see Function 45). If the BOOS
error mode is in the default mode, a message identifying the error is displayed at the
console and the program is terminated. Otherwise, the Truncate function returns to
the calling program with register A set to OFFH and register H set to one of the
following physical or extended error codes:

01 : Disk I/O error
02 : Read-Only disk
03 : Read-Only file
04 : Invalid drive error
07 : File password error
09 : ? in filename or filetype field

I!ID DIGITAL RESEARCH'M ------------------------

3-77

3 BOOS Calls: Function 100 CP/M 3 Programmer's Guide

BDOS FUNCTION 100: SET DIRECTORY LABEL

Entry Parameters:
Registers C: 64H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical or Extended Error

The Set Directory Label function creates a directory label, or updates the existing
directory label for the specified drive. The calling program passes in register pair DE
the address of an FCB containing the name, type, and extent fields to be assigned to
the directory label. The name and type fields of the referenced FCB are not used to
locate the directory label in the directory; they are simply copied into the updated or
created directory label. The extent field of the FCB, byte 12, contains the user's
specification of the directory label data byte. The definition of the directory label
data byte is:

bit 7 - Require passwords for password-protected files
(Not supported in nonbanked CP/M 3 systems)

6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
a -Assign a new password to the directory label

If the current directory label is password protected, the correct password must be
placed in the first eight bytes of the current DMA, or have been previously estab
lished as the default password (see Function 106). If bit 0, the low-order bit, of byte
12 of the FCB is set to 1, it indicates that a new password for the directory label has
been placed in the second eight bytes of the current DMA.

Note that Function 100 is implemented as an RSX, DIRLBL.RSX, in nonbanked
CP/M 3 systems. If Function 100 is called in nonbanked systems when the DIRLBL.RSX
is not resident, an error code of OFFH is returned.

------------------------ [!ill DIGITAL RESEARCH™
3-78

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 100

Function 100 also requires that the referenced directory contain SFCBs to activate
date and time stamping on the drive. If an attempt is made to activate date and time
stamping when no SFCBs exist, Function 100 returns an error code of OFFH in
register A and performs no action. The CP/M 3 INITDIR utility initializes a directory
for date and time stamping by placing an SFCB record in every fourth entry of the
directory.

Function 100 returns a Directory Code in register A with the value 0 if the direc
tory label create or update is successful, or OFFH, 255 decimal, if no space exists in
the referenced directory to create a directory label, or if date and time stamping was
requested and the referenced directory did not contain SFCBs. Register H is set to
zero in both of these cases. If a physical error or extended error is encountered,
Function 100 performs different actions depending on the BOOS error mode (see
Function 45). If the BDOS error mode is the default mode, a message identifying the
error is displayed at the console and the calling program is terminated. Otherwise,
Function 100 returns to the calling program with register A set to OFFH and register
H set to one of the following physical or extended error codes:

01 : Disk 110 error
02 : Read-Only disk
04 : Invalid drive error
07 : File password error

I!ID DIGITAL RESEARCHTM ------------------------
3-79

3 BOOS Calls:. Function 101 CP 1M 3 Programmer's Guide

BOOS FUNCTION 101: RETURN DIRECTORY
LABEL DATA

Entry Parameters:
Registers C: 65H

E: Drive

Returned Value:
Registers A: Directory Label

Data Byte
H: Physical Error

The Return Directory Label Data function returns the data byte of the directory
label for the specified drive. The calling program passes the drive number in register
E with 0 for drive A, 1 for drive B, and so on through 15 for drive P in a full sixteen
drive system. The format of the directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Perform create date and time stamping
o - Directory label exists on drive

Function 101 returns the directory label data byte to the calling program in register
A. Register A equal to zero indicates that no directory label exists on the specified
drive. If a physical error is encountered by Function 101 when the BDOS Error mode
is in one of the return modes (see Function 45), this function returns with register A
set to OFFH, 255 decimal, and register H set to one of the following:

01 : Disk I/O error
04 : Invalid drive error

------------------------ !!ID DIGITAL RESEARCH™

3-80

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 102

BOOS FUNCTION 102: READ FILE DATE STAMPS
AND PASSWORD MODE

Entry Parameters:
Registers C: 66H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical Error

Function 102 returns the date and time stamp information and password mode for
the specified file in byte 12 and bytes 24 through 32 of the specified FCB. The calling
program passes in register pair DE, the address of an FCB in which the drive, file
name, and filetype fields have been defined.

If Function 102 is successful, it sets the following fields in the referenced FCB:

byte 12 : Password mode field
bit 7 - Read mode
bit 6 - Write mode
bit 4 - Delete mode

Byte 12 equal to zero indicates the file has not been assigned a password. In non
banked systems, byte 12 is always set to zero.

byte 24 - 27 : Create or Access time stamp field
byte 28 - 31 : Update time stamp field

The date stamp fields are set to binary zeros if a stamp has not been made. The
format of the time stamp fields is the same as the format of the date and time
structure described in Function 104.

[!ID DIGITAL RESEARCHHI -----------------------

3-81

3 BOOS Calls: Function 102 CP/M 3 Programmer's Guide

Upon return, Function 102 returns a Directory Code in register A with the value
zero if the function is successful, or OFFH, 255 decimal, if the specified file is not
found. Register H is set to zero in both of these cases. If a physical or extended error
is encountered, Function 102 performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the calling program is
terminated. Otherwise, Function 102 returns to the calling program with register A
set to OFFH and register H set to one of the following physical or extended error
codes:

01 : Disk 1/0 error
04 : Invalid drive error
09 : ? in filename or filetype field

------------------------ I!ID DIGITAL RESEARCH'"
3-82

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 103

BOOS FUNCTION 103: WRITE FILE XFCB

Entry Parameters:
Registers C: 67H

DE: FCB Address

Returned Value:
Registers A: Directory Code

H: Physical Error

The Write File XFCB function creates a new XFCB or updates the existing XFCB
for the specified file. The calling program passes in register pair DE the address of an
FCB in which the drive, name, type, and extent fields have been defined. The extent
field specifies the password mode and whether a new password is to be assigned to
the file. The format of the extent byte is shown below:

FCB byte 12 (ex) : XFCB password mode
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
bit 0 - Assign new password to the file

If the specified file is currently password protected, the correct password must reside
in the first eight bytes of the current DMA, or have been previously established as
the default password (see Function 106). If bit 0 is set to 1, the new password must
reside in the second eight bytes of the current DMA.

I!ID DIGITAL RESEARCH'" ------------------------

3-83

3 BOOS Calls: Function 103 CP/M 3 Programmer's Guide

Upon return, Function 103 returns a Directory Code in register A with the value
zero if the XFCB create or update is successful, or OFFH, 255 decimal, if no directory
label exists on the specified drive, or the file named in the FCB is not found, or no
space exists in the directory to create an XFCB. Function 103 also returns with OFFH
in register A if passwords are not enabled by the referenced directory's label. On
non banked systems, this function always returns with register A = OFFH because
passwords are not supported. Register H is set to zero in all of these cases. If a
physical or extended error is encountered, Function 103 performs different actions
depending on the BOOS error mode (see Function 45). If the BOOS error mode is
the default mode, a message identifying the error is displayed at the console and the
calling program is terminated. Otherwise, Function 103 returns to the calling pro
gram with register A set to OFFH and register H set to one of the following physical
or extended error codes:

01 : Disk 1/0 error
02 : Read-Only disk
04 : Invalid drive error
07 : File password error
09 : ? in filename or filetype field

------------------------ IiIDDiGITAL RESEARCHfM

3-84

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 104

BDOS FUNCTION 104: SET DATE AND TIME

Entry Parameters:
Registers C: 68H

DE: DAT Address

Returned Value: none

The Set Date and Time function sets the system internal date and time. The calling
program passes the address of a 4-byte structure containing the date and time speci
fication in the register pair DE. The format of the date and time (DAT) data structure
IS:

byte 0 - 1 : Date field
byte 2 : Hour field
byte 3 : Minute field

The date is represented as a 16-bit integer with day 1 corresponding to January 1,
1978. The time is represented as two bytes: hours and minutes are stored as two
BCD digits.

This function also sets the seconds field of the system date and time to zero.

[!]] DIGITAL RESEARCH'M ------------------------

3-85

3 BOOS Calls: Function 105 CP/M 3 Programmer's Guide

BOOS FUNCTION 105: GET DATE AND TIME

Entry Parameters:
Registers C: 69H

DE: OAT Address

Returned Value:
Register A: seconds
OAT set

The Get Date and Time function obtains the system internal date and time. The
calling program passes in register pair DE, the address of a 4-byte data structure
which receives the date and time values. The format of the date and time, DAT, data
structure is the same as the format described in Function 104. Function 105 also
returns the seconds field of the system date and time in register A as a two digit BCD
value.

,---------------------- i!IDDIGITAL RESEARCH fM

3-86

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 106

BOOS FUNCTION 106: SET DEFAULT PASSWORD

Entry Parameters:
Registers C: 6AH

DE: Password Address

Returned Value: none

The Set Default Password function allows a program to specify a password value
before a file protected by the password is accessed. When the file system accesses a
password-protected file, it checks the current DMA, and the default password for the
correct value. If either value matches the file's password, full access to the file is
allowed. Note that this function performs no action in nonbanked CP/M 3 systems
because file passwords are not supported.

To make a Function 106 call, the calling program sets register pair DE to the
address of an 8-byte field containing the password.

[!ill DIGITAL RESEARCH1M

3-87

3 BOOS Calls: Function 107 CP/M 3 Programmer's Guide

BOOS FUNCTION 107: RETURN SERIAL NUMBER

Entry Parameters:
Registers C: 6BH

DE: Serial Number Field

Returned Value: Serial number field set

Function 107 returns the CP/M 3 serial number to the 6-byte field addressed by
register pair DE.

-----------------------!IID DIGITAL RESEARCH'M
3-88

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 108

BOOS FUNCTION 108: GET/SET PROGRAM RETURN
CODE

Entry Parameters:
Registers C: 6CH

DE: OFFFFH (Get) or
Program Return Code (Set)

Returned Value:
Register HL: Program Return Code or (no value)

CP/M 3 allows programs to set a return code before terminating. This provides a
mechanism for programs to pass an error code or value to a following job step in
batch environments. For example, Program Return Codes are used by the CCP in
CP/M 3's conditional command line batch facility. Conditional command lines are
command lines that begin with a colon, :. The execution of a conditional command
depends on the successful execution of the preceding command. The CCP tests the
return code of a terminating program to determine whether it successfully completed
or terminated in error. Program return codes can also be used by programs to pass
an error code or value to a chained program (see Function 47, Chain To Program).

A program can set or interrogate the Program Return Code by calling Function
108. If register pair DE = OFFFFH, then the current Program Return Code is returned
in register pair HL. Otherwise, Function 108 sets the Program Return Code to the
value contained in register pair DE. Program Return Codes are defined in Table 3-5.

!lID DIGITAL RESEARCH'M -----------____________ _

3-89

3 BDOS Calls: Function 108 CPIM 3 Programmer's Guide

Code I
0000 - FEFF

FFOO - FFFE

0000

FF80 - FFFC

FFFD

FFFE

Table 3-5. Program Return Codes

Meaning

Successful return

Unsuccessful return

The CCP initializes the Program Return Code to zero unless
the program is loaded as the result of program chain.

Reserved

The program is terminated because of a fatal BDOS error.

The program is terminated by the BDOS because the user
typed a CTRL-C.

------------------------ IIID DIGITAL RESEARCH™

3-90

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 109

BOOS FUNCTION 109: GET/SET CONSOLE MODE

Entry Parameters:
Registers C: 60 H

DE: OFFFFH (Get) or Console Mode (Set)

Returned Value:
Register HL: Console Mode or (no value)

A program can set or interrogate the Console Mode by calling Function 109. If
register pair DE = OFFFFH, then the current Console Mode is returned in register
HL. Otherwise, Function 109 sets the Console Mode to the value contained in regis
ter pair DE.

The Console Mode is a 16-bit system parameter that determines the action of
certain BOOS Console 1/0 functions. The definition of the Console Mode is:

bit 0 = 1 - CTRL-C only status for Function 11.
= 0 - Normal status for Function 11.

bit 1 = 1 - Disable stop scroll, CTRL-S, start scroll, CTRL-Q, support.
= 0 - Enable stop scroll, start scroll support.

bit 2 = 1 - Raw console output mode. Disables tab expansion for Functions 2,
9 and 111. Also disables printer echo, CTRL-P, support.

= 0 - Normal console output mode.

bit 3 = 1 - Disable CTRL-C program termination
= 0 - Enable CTRL-C program termination

I!]] DIGITAL RESEARCHTM ------------------------
3-91

3 BDOS Calls: Function 109 CP 1M 3 Programmer's Guide

bits 8,9 - Console status mode for RSXs that perform console input redirec-
tion from a file. These bits determine how the RSX responds to
console status requests.

bit 8 = 0, bit 9 = ° -conditional status
bit 8 = 0, bit 9 = 1 - false status
bit 8 1, bit 9 = ° -true status
bit 8 = 1, bit 9 = 1 - bypass redirection

Note that the Console Mode bits are numbered from right to left.

The CCP initializes the Console Mode to zero when it loads a program unless the
program has an RSX that overrides the default value. Refer to Section 2.2.1 for
detailed information on Console Mode.

------------------------ I!ID DIGITAL RESEARCH™
3-92

CP 1M 3 Programmer's Guide 3 BOOS Calls: Function 110

BOOS FUNCTION 110: GET/SET OUTPUT DELIMITER

Entry Parameters:
Registers C: 6EH

DE: OFFFFH (Get) or
E: Output Delimiter (Set)

Returned Value:
Register A: Output Delimiter or (no value)

A program can set or interrogate the current Output Delimiter by calling Function
110. If register pair DE = OFFFFH, then the current Output Delimiter is returned in
register A. Otherwise, Function 110 sets the Output Delimiter to the value contained
in register E.

Function 110 sets the string delimiter for Function 9, Print String. The default
delimiter value is a dollar sign, $. The CCP restores the Output Delimiter to the
default value when a transient program is loaded.

[!ID DIGITAL RESEARCH™ -----------------------

3-93

3 BDOS Calls: Function 111 CP/M 3 Programmer's Guide

BDOS FUNCTION 111: PRINT BLOCK

Entry Parameters:
Registers C: 6FH

DE: CCB Address

Returned Value: none

The Print Block function sends the character string located by the Character Con
trol Block, CCB, addressed in register pair DE, to the logical console, CONOUT:. If
the Console Mode is in the default state (see Section 2.2.1), Function 111 expands
tab characters, CTRL-I, in columns of eight characters. It also checks for stop scroll,
CTRL-S, start scroll, CTRL-Q, and echoes to the logical list device, LST:, if printer
echo, CTRL-P, has been invoked.

The CCB format is:

byte 0 - 1 : Address of character string (word value)
byte 2 - 3 : Length of character string (word value)

----~-------------------- I!ID DIGITAL RESEARCH™
3-94

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 112

BOOS FUNCTION 112: LIST BLOCK

Entry Parameters:
Registers C: 70H

DE: CCB Address

Returned Value: none

The List Block function sends the character string located by the Character Control
Block, CCB, addressed in register pair DE, to the logical list device, LST:.

The CCB format is:

byte 0 - 1 : Address of character string (word value)
byte 2 - 3 : Length of character string (word value)

I!ID DIGITAL RESEARCH™ -----------------------
3-95

3 BDOS Calls: Function 152 CP 1M 3 Programmer's Guide

BDOS FUNCTION 152: PARSE FILENAME

Entry Parameters:
Registers C: 98H

DE: PFCB Address

Returned Value:
Register HL: Return code
Parsed file control block

The Parse Filename function parses an ASCII file specification and prepares a File
Control Block, FCB. The calling program passes the address of a data structure called
the Parse Filename Control Block, PFCB, in register pair DE. The PFCB contains the
address of the input ASCII filename string followed by the address of the target FCB
as shown below:

PFCB: OW INPUT
OW FCB

Address of input ASCII strin~

Address of tar~et FCB

The maximum length of the input ASCII string to be parsed is 128 bytes. The target
FCB must be 36 bytes in length.

Function 152 assumes the input string contains file specifications in the following
form:

{d:}filename{.typ}{;password}

where items enclosed in curly brackets are optional. Function 152 also accepts iso
lated drive specifications d: in the input string. When it encounters one, it sets the
filename, filetype, and password fields in the FCB to blank.

------------------------ IiID DIGITAL RESEARCH™

3-96

CP 1M 3 Programmer's Guide 3 BDOS Calls: Function 152

The Parse Filename function parses the first file specification it finds in the input
string. The function first eliminates leading blanks and tabs. The function then assumes
that the file specification ends on the first delimiter it encounters that is out of
context with the specific field it is parsing. For instance, if it finds a colon, and it is
not the second character of the file specification, the colon delimits the entire file
specification.

Function 152 recognizes the following characters as delimiters:

space
tab
return
null
; (semicolon) - except before password field
= (equal)
< (less than)
> (greater than)
. (period) - except after filename and before filetype
: (colon) - except before filename and after drive
, (comma)
I (vertical bar)
[(left square bracket)
] (right square bracket)

If Function 152 encounters a non-graphic character in the range 1 through 31 not
listed above, it treats the character as an error. The Parse Filename function initializes
the specified FCB shown in Table 3-6.

liID DIGITAL RESEARCH™ ------------------------
3-97

3 BOOS Calls: Function 152 CP 1M 3 Programmer's Guide

Location

byte 0

byte 1-8

byte 9-11

byte 12-15

byte 16-23

byte 24-31

I
Table 3-6. FeB Format

Contents

The drive field is set to the specified drive. If the drive is not
specified, the default drive code is used. 0 = default, 1 = A,
2 = B.

The name is set to the specified filename. All letters are con
verted to upper-case. If the name is not eight characters long,
the remaining bytes in the filename field are padded with blanks.
If the filename has an asterisk, *, all remaining bytes in the
filename field are filled in with question marks, ? An error
occurs if the filename is more than eight bytes long.

The type is set to the specified filetype. If no filetype is speci
fied, the type field is initialized to blanks. All letters are con
verted to upper-case. If the type is not three characters long,
the remaining bytes in the filetype field are padded with blanks.
If an asterisk, *, occurs, all remaining bytes are filled in with
question marks, ? An error occurs if the type field is more
than three bytes long.

Filled in with zeros.

The password field is set to the specified password. If no pass
word is specified, it is initialized to blanks. If the password is
less than eight characters long, remaining bytes are padded
with blanks. All letters are converted to upper-case. If the pass
word field is more than eight bytes long, an error occurs. Note
that a blank in the first position of the password field implies
no password was specified.

Reserved for system use.

-------------.. ----------- I!ID DIGITAL RESEARCH™
3-98

CP/M 3 Programmer's Guide 3 BOOS Calls: Function 152

If an error occurs, Function 152 returns an OFFFFH in register pair HL.

On a successful parse, the Parse Filename function checks the next item in the
input string. It skips over trailing blanks and tabs and looks at the next character. If
the character is a null or carriage return, it returns a ° indicating the end of the input
string. If the character is a delimiter, it returns the address of the delimiter. If the
character is not a delimiter, it returns the address of the first trailing blank or tab.

If the first non-blank or non-tab character in the input string is a null, 0, or
carriage return, the Parse Filename function returns a zero indicating the end of
string.

If the Parse Filename function is to be used to parse a subsequent file specification
in the input string, the returned address must be advanced over the delimiter before
placing it in the PFCB.

End of Section 3

!lID DIGITAL RESEARCH™ -------------------------

3-99

Section 4
Programming Examples

The programs presented in this section illustrate how to use the BDOS functions
described in the previous section. The examples show how to copy a file, how to
dump a file, how to create or access a random access file, and how to write an RSX
program.

4.1 A Sample File-To-File Copy Program

The following program illustrates simple file operations. You can create the pro
gram source file, COPY.ASM, using ED or another editor, and then assemble
COPY.ASM using MAC™. MAC produces the file COPY. HEX. Use the utility
HEXCOM to produce a COPY. COM file that can execute under CP/M 3.

The COpy program first sets the stack pointer to a local area, then moves the
second name from the default area at 006CH to a 33-byte file control block named
DFCB. The DFCB is then prepared for file operations by clearing the current record
field. Because the CCP sets up the source FCB at OOSCH upon entry to the COpy
program, the source and destination FCBs are now ready for processing. To prepare
the source FCB, the CCP places the first name into the default FCB, with the proper
fields zeroed, including the current record field at 007CH.

COPY continues by opening the source file, deleting any existing destination file,
and then creating the destination file. If each of these operations is successful, the
COpy program loops at the label COpy until each record is read from the source
file and placed into the destination file. Upon completion of the data transfer, the
destination file is closed, and the program returns to the CCP command level by
jumping to BOOT.

~ DIGITAL RESEARCH'M ------------------------
4-1

4.1 A Sample Copy Program CP/M 3 Programmer's Guide

0000
0005
005c
005c
006c
0080
0100

0008
OOOf
0010
0013
0014
0015
0016

0100
0100 311b02

0103 Oel0
0105 116cOO
0108 21daOl
010b la
010c 13
010d 77
010e 23
010f Od
0110 c20bOl

0113 af
0114 32faOl

boot
bdos
fcbl
sfcb
fcb2
dbuff
tpa

printf
openf
closef
deletef
readf
writef
Makef

Mfcb:

saMPle file-to-file copy pro~raM

at the ccp level I the cOMMand

COpy a:x.y b:u.v

copies the file naMed x.y froM drive
a to a file naMed u.v on drive b.

equ OOOOh SYsteM reboot
equ 0005h bdos en try point
equ 005ch firs t file naMe
eq u fcbl source feb
equ 006ch second file naMe
equ 0080h default buffer
eq u 0100h be!finnin~ of tpa

equ 8 print buffer func#
equ 15 open file func#
equ 16 close file func#
eq u 18 delete file func#
equ 20 sequential re ad
eq u 21 sequential w rite
equ 22 Make file func#

oH tpa buinnin~ of tpa
lxi sPlstack; local stack

Move second file naMe to dfcb
Mvi c d6 half an fcb
lxi dlfcb2 source of Move
I x i h Idfcb destination fcb
ldax d source fcb
inx d ready next
MOV MIa dest feb
inx h ready next
dcr c count 16 ... 0
jnz Mfcb loop 16 tiMes

naMe has been Movedl zero cr
x ra
sta

a a = OOh
dfeber ; current ree o

----------------------------- [IQ] DIGITAL RESEARCH!M
4-2

CP/M 3 Programmer's Guide 4.1 A Sample Copy Program

source and destination fcbs re ad y

0117 115cOO lxi d ,sfcb source file
011a cd6901 call open e r ro r if 255
011d 118701 lxi d,nofile; ready MessaH
0120 3c in r a 255 becoMes 0
0121 cc6101 cz finis done if no file

source f i Ie open, prep destination
01211 I1daOl lxi d ,dfcb destination
0127 cd7301 call delete reMove if present

012a IldaOl lxi d ,dfcb destination
012d cd8201 call MaKe create the file
0130 119601 lxi d,nodir ready Messa!te
0133 3c in r a 255 becoMes 0
01311 cc8101 cz finis done if no d i r space

source file open, dest file open
COpy until end of file on source

0137 115cOO co py: lxi d ,sfcb source
013a cd7801 call read re ad next record
013d b7 ora a end of file?
013e c25101 jnz eofile sKip write if so

not end of file, write the record
01111 IldaOl 1 x i d ,dfcb destination
01411 cd7dOl call w r it e w ri t e record
01117 l1a901 lxi d,space ready Messa!te
0111a b7 ora a 00 if write oK
0111b c1l6101 cnz finis end if so
Ollie c33701 jMP COpy loop until eof

eofile: ; end of f i 1 e , close destination
0151 IldaOl 1 x i d ,dfcb destination
01511 cd6eOl call close 255 if e r ro r
0157 21bbOl I x i h,wrprct; ready Messa!te
015a 3c in r a 255 becoMes 00
015b cc6101 cz finis should not happen

copy operation cOMPlete, end
015e l1ccOl lxi d ,no rMal ; ready Messa!te

finis: ; write Messa!te !tiven by de, reboot
0161 Oe09
0163 cd0500
0166 c30000

I!ID DIGITAL RESEARCH™

Mvi
call
jMP

c ,printf
bdos
boot

write MessaH
reboot SYsteM

4-3

4.1 A Sample Copy Program CP 1M 3 Programmer's Guide

system interface subroutines
(all return directly from bdos)

0169 OeOf open: mvi
016b c30500 jmp

016e Oel0 close: mvi
0170 c30500 jmp

0173 Oe13 delete: mvi
0175 c30500 jmp

0178 Oe14 read: mvi
017a c30500 jmp

017d Oe15 write: mvi
017f c30500 jmp

0182 Oe16 maKe: mvi
0184 c30500 jmp

c,openf
bdos

c,closef
bdos

c,deletef
bdos

c,readf
bdos

c,writef
bdos

c ,maKe f
bdos

console messa!tes
0187 6e6f20fnofile: db 'no source file$'
01966e6f209nodir: db 'no directory space$'
01a9 6f7574fspace: db 'out of data space$'
01bb 7772695wrprot: db 'write protected?$'
01cc 636f700normal: db 'copy complete$'

data areas
01da dfcb: ds 33 destination fcb
Olta Hcbc r e"lu dfcb+32 current reco rd

Oltb ds 32 16 level stacK
stacK:

021b end

Note that this program makes several simplifications and could be enhanced. First,
it does not check for invalid filenames that could, for example, contain ambiguous
references. This situation could be detected by scanning the 32-byte default area
starting at location OOSCH for ASCII question marks. To check that the filenames
have, in fact, been included, COPY could check locations OOSDH and 006DH for
nonblank ASCII characters. Finally, a check should be made to ensure that the source
and destination filenames are different. Speed could be improved by buffering more
data on each read operation. For example, you could determine the size of memory
by fetching FBASE from location 0006H, and use the entire remaining portion of
memory for a data buffer. You could also use CP/M 3's Multi-Sector 110 facility to
read and write data in up to 16K units.

-------------------------- [Q] DIGITAL RESEARCHIM
4-4

CP / M 3 Programmer's Guide 4.2 A Sample File Dump Utility

4.2 A Sample File Dump Utility

The following dump program reads an input file specified in the CCP command
line, and then displays the content of each record in hexadecimal format at the
console.

DUMP pro!fraM reads input fi I e and displays hex data

0100 o r!f 100h
0005 bdos equ 0005h idos en trY point
0001 cons equ 1 iread console
0002 typef equ 2 itype function
0009 printf equ 9 ibuffer print en trY
OOOb brKf equ 11 ibreaK Key function (t rue if char
OOOf openf eq u 15 if i Ie open
0014 readf equ 20 ire ad function

005c fcb equ 5ch if il e control blocK address
0080 buff equ 80h iinput disK buffer address

non !fraphic characters
OOOd cr equ Odh icarria!fe return
OOOa If equ Oah nine feed

file control blocK definitions
005c fcbdn equ fcb+O idiSK naMe
005d fcbfn equ fcb+l ifile naMe
0065 fcbft equ fcb+9 idisK file type (3 characters)
0068 f c b r I equ fcb+12 ifile's current reel nUMber
006b fcb rc equ fcb+15 ifile's reco rd count (0 to 128)
007c fcbcr equ fcb+32 ;current (next) record nUMber (0
007d fcbln equ fcb+33 if cb lenHh

set UP stacK
0100 210000 lxi h,O
0103 39 dad SP

ent ry stacK pointer in hI froM the ccp
0104 221502 shld oldsp

set SP to local stacK area (restored at finis)
0107 315702 !xi sP,stKtop

read and print successive buffers
010a cdc101 call setup iset UP input file
010d feff cpi 255 i255 if file not present
010f c21b01 jnz openoK isKip if open is oK

I!ID DIGITAL RESEARCH™

4-5

4.2 A Sample File Dump Utility CP 1M 3 Programmer's Guide

file not there, !tive error Messa!te and return
0112 llf301 1 x i d,opnMs!t
0115 cd9cOl call err
0118 c35101 jMP fi n i s ito return

openok: ;open operation ok, set buffer index to end
011b 3eBO Mvi a,BOh
011d 321302 sta ibp ;set buffer pointer to 80h

hI contains next address to p r i n t
0120 210000 1 x i h ,0 ;start I,~ it h 0000

!tloop:
0123 e5 push ;save line position
0124 cda201 call !1nb
0127 el pop h ;recall line position
0128 da5101 jc finis ;carrY set by !1nb if end file
012b 47 MOV b ,a

print hex values
check for line fold

012c 7d MOV ad
012d e80f an i Ofh icheck low 4 bits
012f e24401 jnz nonUM

print line nUMber
0132 ednOl call c r 1 f

check for break key
0135 ed5901 call break

aCCUM Isb = 1 if character ready
0138 Of r rc iinto carry
0139 daSl0l jc finis ido not p r i nt an Y More
i 013c 7c MOV a,h
013d ed8fOl call phex
0140 7d MOV ad
0141 cd8fOl call phex

nonUM:
0144 23 inx h ito next line nUMber
0145 3e20 Mvi a, I I

0147 cd6S01 call pchar
014a 78 MOV a,b
014b cd8fOl call phex
014e c32301 jMP !tloop

~ DIGITAL RESEARCH'''
4-6

CP/M 3 Programmer's Guide 4.2 A Sample File Dump Utility

finis:
end of dUMP

0151 cd7201 call c r If
0154 2a1502 lhld oldsp
0157 f9 sphl

stacK pointer contains ccp's stacK location
0158 c9 re t j t 0 the ccp

subroutines

b re aK : jchecK b re aK Key <actuallY any Key will do)
0159 e5d5c5 push h! push d! push b j environMent saved
015c OeOb Mvi ctbrKf
015e cd0500 call bdos
0161 cldlel pop b! pop d! pop h j environMent restored
0164 c9 ret

pchar: jprint a character
0165 e5d5c5 push h! push d! push b j saved
0168 Oe02 Mvi c ttypef
016a Sf MOV eta
016b cd0500 call bdos
Ol6e cldlel pop b! pop d! pop h; restored
0171 c9 ret

c r If:
0172 3eOd Mvi at c r
0174 cd6501 call pchar
0177 3eOa Mvi a tl f
0179 cd6501 call pchar
017c c9 re t

pnib: jprint nibble in re !1 a
017d e60f an i Ofh il ow 4 bits
017f feOa cpi 10
0181 d28901 jnc pl0

less than or eq ua I to 9
0184 c630 adi '0 '
0186 c38bOl jMP 1" rn

!1reater or equal to 10
0189 c637 pl0: adi 'a' - 10
018b cd6501 P rn: call pchar
Ol8e c9 ret

[!ill DIGITAL RESEARCHfM

4-7

4.2 A Sample File Dump Utility CP 1M 3 Programmer's Guide

phex: ;print hex char in re!l a
018f f5 push psw
0190 Of r rc
0191 Of r rc
0192 Of r rc
0193 Of r rc
01911 cd7dOl call pnib ;print nibble
0197 fl pOP psw
0198 cd7dOl call pnib
019b c9 ret

err: ;print error Messa!le
d ,e addresses Messa!le endin!l with"$"

019c Oe09 Mvi c,printf ;print buffer function
01ge cd0500 call bdos
Olal c9 re t

!lnb: ;!let next byte
Ola2 3a1302 Ida ibp
OlaS fe80 c pi 80h
Ola7 c2b301 jnz !l0

read another buffer

Olaa cdceOl call disKr
Olad b7 ora a ; zero value if re ad oK
Olae cab301 jz !l0 ; for another byte

end of data, return with carry set for eof
01bl 37 stc
01b2 09 ret

!l0: ; read the byte at buff+re!l a
01b3 Sf MOV e, a ; I s byte of buffer index
Olbll 1600 Mvi d,O ;double precision index to de
01bB 3c in r a iindex=index+l
01b7 321302 sta ibp ib acK to MeMO rY

pointer is increMented
save the current file address

Olba 218000 I x i hlbuff
Olbd 19 dad d

absolute character address is in hI
Olbe 7e MOV a,M

byte is in the accuMulator
Olbf b7 ora a ireset ca r rY bit
OlcO 09 ret

------------------------------ IIID DIGITAL RESEARCH'M

4-8

CP/M 3 Programmer's Guide 4.2 A Sample File Dump Utility

01cl af
01c2 327cOO

01c5 115cOO
01cB OeOf
01ca cd0500

01cd c9

01ce e5d5c5
01dl 115cOO
01d4 Oe14
01d6 cd0500
01d9 cldlel
01dc c9

setup: iset UP file

diskr:

open the file for input
x ra
sta

I x i
Mvi
call
255
ret

in

a
fcbcr

d Ifc b
c lopenf
bdos

aCCUM if

izero to accuM
iclear current record

open e r ro r

ire ad disk file record
push h! push d! push b
I x i d I fcb
Mvi clreadf
call bdos
pop b! pop d! pop h
ret

fixed MeSSage area
01dd 46494cOsignon: db 'file dUMP version 2.0$'
01f3 OdOa4eOopnMSg: db crllfl'no input file present on disk$'

variable area
0213 ibp: ds 2 iinput buffer pointer
0215 oldsp: ds 2 ientrY SP value froM cCP

stack a rea
0217 ds 64 ireserve 32 level stack

stktop:

0257 end

[l]J DIGITAL RESEARCH'M

4-9

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

4.3 A Sample Random Access Program

This example is an extensive but complete example of random access operation.
The following program reads or writes random records upon command from the
terminal. When the program has been created, assembled, and placed into a file
labeled RANDOM. COM, the CCP level command

A)RANDOM X.DAT

can start the test program. In this case, the RANDOM program looks for a file
X.DAT and, if it finds it, prompts the console for input. If X.DAT is not found,
RANDOM creates the file before displaying the prompt. Each prompt takes the
form:

next command?

and is followed by operator input, terminated by a carriage return. The input com
mands take the form:

nW nR nF Q

where n is an integer value in the range 0 to 262143, and W, R, F, and Q are simple
command characters corresponding to random write, W, random read, R, random
write with zero fill, F, and quit processing, Q. If you enter a W or F command, the
RANDOM program issues the prompt:

type data:

You then respond by typing up to 127 characters, followed by a carriage return.
RANDOM then writes the character string into the X.DAT file at record n. If you
enter anF command, the RANDOM program fills previously unallocated data blocks
with zeros before writing record n. If you enter the R command, RANDOM reads
record number n and displays the string value at the console. If you enter the Q
command, the X.DA T file is closed, and the program returns to the console com
mand processor. In the interest of brevity, the only error message is:

error, try a!1ain

------------------------ I!ID DIGITAL RESEARCH'M

4-10

CP 1M 3 Programmer's Guide 4.3 A Sample Random Access Program

The program begins with an initialization section where the input file is opened or
created, followed by a continuous loop at the label ready where the individual com
mands are interpreted. The program uses the default file control block at 005 CH and
the default buffer at 0080H in all disk operations. The utility subroutines that follow
contain the principal input line processor, called readc. This particular program shows
the elements of random access processing and can be used as the basis for further
program development.

0100

0000
OOOS

0001
0002
0009
OOOA
OOOC
OOOF
0010
0016
0021
0022
0028
0098

OOSC
0070
007F
0080

0000
OOOA

i***
i* *
i* saMPle randoM access pro~raM for CP/M 3 *

*
i***

or~ 100h ibase of tpa

reboot equ
bdos equ

coninp equ
con out equ
pstrin~ equ
rstrin~ equ
version equ
openf equ
closef equ
Makef equ
readr equ
writer equ
wrtrzf equ
parsef equ

fcb equ
ranrec equ
ranovf equ
buff equ

c r equ
If equ

OOOOh
OOOSh

1
2
9
10
12
lS
16
22
33
34
lIO

lS2

OOSch
fcb+33
fcb+3S
0080h

Odh
Oah

iSYsteM reboot
ibdos entry point

iconsole input function
iconsole output function
iprint strin~ until '$'

iread console buffer
ireturn version nUMber
ifile open function
iclose function
iMake file function
i read randoM
iwrite randoM
iwrite randoM zero fill
iparse function

idefault file control block
irandoM record position
ihi~h order (overflow) byte
ibuffer address

icarria~e return
jline feed

I!ID DIGITAL RESEARCH'M

4-11

4.3 A Sample Random Access Program CP 1M 3 Programmer's Guide

0100 313703

0103 OEOC
0105 C00500
0108 FE20
010A 021601

0100 118102
0110 C03102
0113 C30000

0116 OEOF
01183A5000
0116 FE20
0110 C22COl
0120 l1E002
0123 C03102
0126 C02002
0129 C31801
012C 115COO
012F C00500
0132 3C
0133 C24601

0136 OE16
0138 115COO
0136 C00500
013E 3C
013F C24601

0142 l1A002
0145 C03102
0148 C30000

i***
i*
i* load SP, set-up file for random access

*
*

i* *
i***

ve rsok:

rdname:

oPfile:

lxi sP,stack

version 3.1?
c,version
bdos

mvi
call
cpi 31h iversion 3.1 or better?
jnc versok
bad version, messa9'e and 9'0 back
Ix i d ,badve r
call print
jmp reboot

correct version for random access
mvi c ,openf iopen default fcb
Ida fcb+l
cpi
jnz oPfile
I x i d,entms9'
call p r i n t
call parse
jmp rdname
I x i d ,fcb
call bdos
in r a ierr 255 becomes zero
jnz re ad y

cannot open f i Ie, so create it
mvi c,makef
lxi d ,f cb
call bdos
in r a ierr 255 becomes ze ro
jnz re ad y

cannot create file, directory full
lxi d ,nospace
call print
jmp reboot iback to ccp

------------------------------ I!ID DIGITAL RESEARCH'M

4-12

CP 1M 3 Programmer's Guide 4.3 A Sample Random Access Program

0146 CD3C02
014E 227000
0151 217FOO
0154 71
0155 FE51
0157 C26801

015A OE10
015C 115COO
015F CD0500
0162 3C
0163 CAFF01
0166 C30000

0168 FE57
0166 C28C01

016E 116302
0171 CD3102
0174 OE7F
0176 218000

0178 C5
017A E5
0176 CD0802
017E El
017F Cl
0180 FEOO
0182 CA8601

;**
* ;* loop bacK to "readY" after each cOMMand *

;* *
;**

ready:
file is ready for processin~

call
shld
lxi
MOV
cpi
jnz

quit
Mvi
lxi
call
in r
jz
jMP

readcoM ;read next COMMand
ranrec ;store input record#
h,ranovf
M,C
'Q'

notq

processin~,

c,closef
d ,fcb
bdos
a
e r ro r
reboot

;set ranrec hi~h byte
;quit?

close file

;err 255 beCOMes 0
;error Messa~e, ret rY

;bacK to cCP

;***
;*
;* end of quit cOMMand, process write

*
*

;* *
;***
notq:

rloop:

not the quit cOMMand, randOM write?
cpi
jnz

this
I x i
call
Mvi
lxi
;read
push
push
call
pOP
pOP
cpi
jz

is

'W'
notw

a randoM
d ,datMs~
print
c ,127
h,buff

write, fill buffer until

;data proMPt
;up to 127 characters
;destination

next character to buff
b ;save counter
h ;next destination
~etchr ;character to a
h ;restore counter
b ;restore next to fill
c r ; end of line?
erloop

cr

I!ID DIGITAL RESEARCHfM

4-13

4.3 A Sample Random Access Program CP/M 3 Programmer's Guide

0185 77
0186 23
0187 00
0188 C27901

0186 3800

0180 OE22
018F 115COO
0192 C00500
0195 67
0198 C2FFOl
0188 C311601

018C FE1I8
018E C2CFOl

OlAl 116302
OlAlI CD3102
01A7 OE7F
01A8 218000

01AC C5
01AD E5
01AE CD0802
0161 El
0162 Cl
0163 FEOD
0165 CA6EOl

0168 77
0168 23
016A 00
0166 C2ACOl

not end, store character
mov m,a
inx h inext to fill
dcr c icounter ~oes down
jnz r100p iend of buffer?

er100p:
end of read loop, s tore 00
mvi m,O

write the record to selected record number
mvi c,writer
1 x i d ,fcb
call bdos
ora a ierror code zero?
jnz e r ro r imessa~e if not
jmp ready if 0 r another record

i**
i* *
i* end of write command, process write random zero fill *
i* *
i**
notw:

not the "Iuit command, random write ze ro fill?
cpi 'F I

jnz notf

this is a random write, fill buffer until c r
1 x i d,datms~

call p r i n t idata prompt
mvi c 1127 iup to 127 characters
Ixi h ,buff idestination

rloopl : iread next character to buff
push b is av e counter
push h ine x t destination
call Htch r icharacter to a
pop h !restore counter
pop b irestore next to fill
cpi cr iend of line?
jz eriooPl
not end, s tore character
mov m,a
inx h in ext to fill
dcr c icounter ~oes down
jnz rloopl iend ::If buffer?

------------------------------ I!ID DIGITAL RESEARCH'M
4-14

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

018E 3BOO

01CO OE28
01C2 115COO
01C5 C00500
01C8 87
01CS C2FFOl
01CC C311801

01CF FE52
0101 C2FFOl

0101l OE21
010B ll5COO
010S C00500
010C 87
0100 C2FFOl

OlEO C01502
01E3 OE80
01E5 218000

01E8 7E
OlES 23
OlEA EB7F
01EC CA1I801
01EF C5
01FO E5
01Fl FE20
OlF3 01l0E02
01FB El
01F7 Cl
01F8 00
01F9 C2E801
01FC C311BOl

erloopl:
end of read lOOPt store 00
Mvi MtO

write the record to selected record nUMber
Mvi
lxi
call
ora
In z
JMP

ctwrtrzf
d t f cb
bdos
a
e r ro r
ready

ierror code zero?
;Messa!le if not
ifer another record

i***
i*
i* end of write COMMands t process read

*
*

i* *
i***
notf:

wloop:

not a write cOMMandt read record?
cpi
Jnz

'R'
err e r iskip if not

read randoM rece rd
Mvi
1 x i
call
ora
Jnz

ctreadr
d If e b
bdos
a
e r ro r

ireturn code OO?

read was successful t write to console
call crlf inew line
Mvi ct128 iMax 128 characters
lxi htbuff inext to !let

MOV
inx
an i
Jz
push
push
cpi
cne
pop
pop
dcr
jnz
jMP

atM
h
7fh
ready
b

inext character
inext to !let
iMask parity
ifor another COMMand if 00
isave counter
isave next to !let
iHaphic?

putehr iskip output if not
h

c icount=count-l
wloop
ready

I!ID DIGITAL RESEARCWM

4-15

4.3 A Sample Random Access Program CP 1M 3 Programmer's Guide

01FF 116F02
0202 C03102
0205 C3£1B01

0208 OE01
020A COOSOO
0200 C9

020E OE02
0210 SF
0211 COOSOO
021£1 C9

0215 3EOO
0217 COOE02
021A 3EOA
021C COOE02
021F C9

0220 11F102
0223 OEOA
0225 COOSOO
0228 111303
0226 OE98
0220 COOSOO
0230 C9

;***
i* *
i* end of read cOMMand, all errors end-up here *
i* *
i***

error:
I x i
call
jMP

d,errMsg
p r i n t
ready

i***
i*
;* utility subroutines for console i/o

*
*

i* *
i***
getchr:

putchr:

c rl f:

parse:

iread next console character to a
Mvi
call
ret

c ,coninp
bdos

;write character froM a to console
Mvi
MOV
call
ret

c ,conout
e ,a icharacter to send
bdos isend character

isend carriage return line feed
Mvi
call
Mvi
call
re t

a,cr icarriage return
putch r
a,lf iline feed
putch r

iread and parse filespec
lxi d ,conbuf
Mvi
call
lxi
Mvi
call
re t

c ,rstring
bdos
d ,pfncb
c ,parsef
bdos

----------------------------- I!ID DIGITAL RESEARCH™
4-16

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

OZ31 05
OZ3Z C0150Z
OZ35 01
OZ36 OE09
OZ38 C00500
OZ36 C9

OZ3C 11010Z
OZ3F C0310Z
OZliZ OEOA
OZlili 11F10Z
OZlI7 C00500

OZliA OEOO
OZliC Z10000
OZliF 11F30Z
OZ5Z 1A
OZ53 13
OZ5l1 67
OZ55 C8

OZ56 0630
OZ58 FEOA
OZ5A OZ790Z

print:

readcom:

iprint the buffer addressed by de until $

push d
call crlf
pop d inew line
mvi
call
re t

c,pstrin~

bdos iprint the strin~

lread the next command line to the conbuf
lxi d,promPt
call print icommand?
mvi
I x i
call

c,rstrin~

d ,conbuf
bdos iread command line

command line is present, scan it
mvi c,O istart with 00
lxi h,O 0000
I x i d,conlinicommand line

readc: ldax d inext command character
inx
ora
rz

d
a

ito next command position
icannot be end of command

not zero, numeric?
sui
cpi
jnc

'0 '
10
en d rd

icarrY if numeric

f!ID DIGITAL RESEARCHTM -----------------------------
4-17

4.3 A Sample Random Access Program CP 1M 3 Programmer's Guide

0250 F5
025E 79
025F 29
0260 8F
0261 F5
0262 E5
0263 29
0264 8F
0265 29
0266 8F
0267 Cl
0268 09
0269 C1
026A 88
0266 C1
026C 48
0260 0800
026F 09
0270 CEOO
0272 4F
0273 025202
0278 C33C02

0279 C830
0276 FE81
0270 08

027E E85F
0280 C9

add-in
push
MOV
dad
adc
push
push
dad
adc
dad
adc
pOP
dad
pOP
adc
pOP
MOV
Mvi
dad
aci
MOV
jnc
jMP

endrd:
end of
adi
cpi
rc
lower
an i
re t

next di!lit
psw
a,c ivalue in ahl
h
a i*2
a isave value * 2
h
h i*4
a
h i*8
a
b
b
b
b
b i+di!lit
c , b
b ,0
b
o
c ,a
re adc
readcoM

read, restore value
'0 ' icoMMand
'a' itranslate

case, Mask lower case
101$1111b

in a

case?

bits

ireturn with value in chI

i***
i* *
i* strin!l data area for console Messa!les *
i* *
i***
badver:

0281736F727279 db 'sorry, yOU need CP/M version 3$'
nospace:

02AO 8E8F208489 db 'no directory space$'
datMS!l:

0263 7479708520 db 'type data: $'

errMs!l:
026F 8572728F72 db 'error, try a!lain.$'

proMPt:
0201 6E85787420 db 'next cOMMand? $'

entMs!l:
02EO 856E748572 db 'enter filenaMe: $'

----------------------------- I!ID DIGITAL RESEARCHfM
4-18

CP 1M 3 Programmer's Guide 4.3 A Sample Random Access Program

02F1 21
02F2
02F3
0021

0313 F302
0315 5COO

0317

0337

i***
i* *
i* fixed and variable data area *
i* *
i***
conbuf: db c on len ilenfth of console buff! r
consiz: ds 1 iresultin~ size a fte r re ad
conlin: ds 32 ilen~th 32 buffer
conlen equ $-consiz

pfncb:
dw conlin
dw fcb

ds 32 i 18 level stack
stack:

end

You could make the following major improvements to this program to enhance its
operation. With some work, this program could evolve into a simple data base
management system. You could, for example, assume a standard record size of 128
bytes, consisting of arbitrary fields within the record. You could develop a program
called GETKEY that first reads a sequential file and extracts a specific field defined
by the operator. For example, the command

GETKEY NAMES. OAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract the
"LASTNAME" field from each record, starting at position 10 and ending at charac
ter 20. GETKEY builds a table in memory consisting of each particular LASTNAME
field, along with its 16-bit record number location within the file. The GETKEY
program then sorts this list and writes a new file, called LASTNAME.KEY. This list,
sometimes called an inverted index, is an alphabetical list of LASTNAME fields with
their corresponding record numbers.

You could rename the program shown above to QUERY, and modify it so that it
reads a sorted key file into memory. The command line might appear as

QUERY NAMES.OAT LASTNAME.KEY

!lID DIGITAL RESEARCH™ -------------------------
4-19

4.3 A Sample Random Access Program CP 1M 3 Programmer's Guide

Instead of reading a number, the QUERY program reads an alphanumeric string
which is a particular key to find in the NAMES.DAT data base. Because the LAST
NAME. KEY list is sorted, you can find a particular entry quickly by performing a
binary search, similar to looking up a name in the telephone directory. Start at both
ends of the list and examine the entry halfway in between and, if not matched, split
either the upper half or the lower half for the next search. You will quickly reach the
item you are looking for, in log2(n) steps, where you will find the corresponding
record number. Fetch and display this record at the console as the program illustrates.

At this point, you are just getting started. With a little more work, you can allow
a fixed grouping size, which differs from the 128-byte record shown above. You can
accomplish this by keeping track of the record number as well as the byte offset
within the record. Knowing the group size, you can randomly access the record
containing the proper group, offset to the beginning of the group within the record,
and read sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing Boolean expressions
that compute the set of records that satisfy several relationships, such as a LAST
NAME between HARDY and LAUREL and an AGE less than 45. Display all the
records that fit this description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

4.4 Construction of an RSX Program

This section describes the standard prefix of a Resident System Extension (RSX)
and illustrates the construction of an RSX with an example. (See Section 1.6.4 for a
discussion of how RSXs operate under CP/M 3.) RSX programs are usually written
in assembler, but you can use other languages if the interface between the language
and the calling conventions of the BDOS are se~ up properly.

------------------------ [j]J DIGITAL RESEARCH'M
4-20

CP/M 3 Programmer's Guide 4.4 Construction of an RSX Program

4.4.1 The RSX Prefix

The first 27 bytes of an RSX program contain a standard data structure called the
RSX prefix. The RSX prefix has the following format:

serial:
db

start:
jMP

next:
'I db
/i dw

0.0.0.0.0.0

ftest

Oc3h
0

start of pro!1raM

JUMP instruction to
next Module in line

pre v:
c. dw 0

(,1

pre vi 0 us Mod U 1 e.(';:", r oui
:)

/1
reMove:

f db
nonbank:

r-db
naMe:

{0 db
loader:

.~ db
db

Offh

0

' 12345878 '

0
0.0

reMove fla!1 \ vile
"

nonbank flag

any 8-character naMe

loader fla!1
reserved area

) -

The only fields of the RSX prefix that you must initialize are the remove: flag, the
nonbank: flag, and the name: of the RSX.

For compatibility with previous releases of CP/M, the serial: field of the prefix is
set to the serial number of the operating system by the LOADER module when the
RSX is loaded into memory. Thus, the address in location 6 locates the byte follow
ing the serial number of the operating system with or without RSXs in memory.

The start: field contains a jump instruction to the beginning of the RSX code
where the RSX tests to see if this BDOS function call is to be intercepted or passed
on to the next module in line.

The next: field contains a jump instruction to the next module in the chain or the
LOADER module if the RSX is the oldest one in memory. The RSX program must
make its own BDOS function calls by calling the next: entry point.

I!ID DIGITAL RESEARCH™ ------------------------
4-21

\

4.4 Construction of an RSX Program CP/M 3 Programmer's Guide

~ .. 1
The prev: field contains the address of the preceding RSX in memory or location iJ\

if the RSX is the first RSX in the chain.

The remove: field controls whether the RSX is removed from memory by the next
call to the LOADER module via BDOS function 59. If the remove: flag is OFFH, the
LOADER removes the RSX from memory. Note that the CCP always calls the
LOADER module during a warm start operation. An RSX that remains in memory
past warm start because its remove: flag is zero, must set the flag at its termination
to ensure its removal from memory at the following warm start.

The nonbank: field controls when the RSX is loaded. If the field is OFFH, the
LOADER only loads the module into memory on nonbanked CP/M 3 systems.
Otherwise, the RSX is loaded into memory under both banked and nonbanked ver
sions of CP/M 3.

The loader: flag identifies the LOADER RSX. When the LOADER module loads
an RSX into memory, it sets this prefix flag of the loaded RSX to zero. However, the
loader: flag in the LOADER's prefix contains OFFH. Thus, this flag identifies the last
RSX in the chain, which is always the LOADER.

4.4.2 Example of RSX Use

These two sample programs illustrate the use of an RSX program. The first
program, CALL VERS, prints a message to the console and then makes a BDOS
Function 12 call to obtain the CP/M 3 version number. CALLVERS repeats this
sequence five times before terminating. The second program, ECHOVERS, is an RSX
that intercepts the BDOS Function 12 call made by CALL VERS, prints a second
message, and returns the version 0031H to CALL VERSo Although this example is
simple, it illustrates BDOS function interception, stack swapping, and BDOS function
calls within an RSX.

------------------------ (j]J DIGITAL RESEARCH 'M
4-22

CP 1M 3 Programmer's Guide 4.4 Construction of an RSX Program

; CALLVERS pro~raM

0005
0009
OOOC
0000
OOOA

bdos equ 5 entry point for BOOS
print strin~ function
~et version function
carria~e return

0100
0100 1605
0102 05
0103 OE09
0105 l11EOl
0108 C00500
0106 OEOC
0100 C00500

0110 70
0111 323401
0114 01
0115 15
0116 C20201
0119 OEOO

prtstr equ
vers equ
c r eq u
If equ

loop:

OH
Mvi
push
Mvi
lxi
call
Mvi
call

MOV
sta
pop
dcr
jnz
Mvi

0116 C30500 jMP
call$Ms~:

011E 000A2A2A2A db
0134 00
0135

0009
0000
OOOA

0000 0000000000
0006 C31600

curvers db
en d

ECHOVERS RSX

pstrin~ equ
c r
If

0009 C3 next:

db
jMP
db
dw OOOA 0000

OOOC 0000 prev: dw
OOOE FF reMOV: db
00 OF 00 nonbnk: db
0010 4543484F56 db
0018 000000 db

[lID DIGITAL RESEARCH'''

9
12
Odh
Oah

100h
d ,5
d
c,prtstr
d ,callhH
bdos
c,vers
bdos

a, I
curl)ers
d
d
loop
c ,0
bdos

line feed

PerforM 5 tiMes
save counter

print call Messa~e

trY to ~et version #

CALLVERS will intercept

decreMent counter

cr,lf ,'**** CALLVERS **** $'
o

9
Odh
Oah

strin~ print function

RSX PREFIX STRUCTURE

0,0,0,0,0,0
ftest
Oc3H

° o
Offh
o
'ECHOVERS'
0,0,0

rOOM for serial nUMber
be~in of pro~raM

JUMP
next Module in line
previous Module
reMove fla~ set

4-23

4.4 Construction of an RSX Program CP/M 3 Programmer's Guide

001B 79
001C FEOC
001E CA2400
0021 C30900

0024 210000
0027 39
0028 225400
002B 317600

002E OE09
0030 113EOO
0033 COO900

0036 2A5400
0039 F9
003A 213100
0030 C9

003E 000A2A2A2A

0054 0000
0056

0076

ftest:
MOV
cpi
jz
jMP

buin:
lxi
dad
shld
hi

Mvi
hi
call

lhld
sphl
hi
ret

tesUMH:
db

rethtack:
dw
ds

lochtack:
en d

a,c
12
be ~i n
next

h,O
SP
rethtack
sPlloc$stack

c,pstrin~

d ,test$MH
next

rethtack

h,0031h

is this function 121

yes - intercept
SOMe other function

save stack

print MessUe
call BOOS

restore user stack

return version nUMber

cr,lf,'**** ECHOVERS ****$'

o
32 1S level stack

---------------------------- [!ID DIGITAL RESEARCH™

4-24

CP 1M 3 Programmer's Guide 4.4 Construction of an RSX Program

You can prepare the above programs for execution as follows:

1. Assemble the CALL VERS program using MAC as follows:

MAC CALLVERS

2. Generate a COM file for CALLVERS with HEXCOM:

HEXCOM CALLVERS

3. Assemble the RSX program ECHOVERS using RMAC:

RMAC ECHOVERS

4. Generate a PRL file using the LINK command:

LINK EC.HOVERS [OP]

5. Rename the PRL file to an RSX file:

RENAME ECHOVERS.RSX=ECHOVERS.PRL

6. Generate a COM file with an attached RSX using the GENCOM command:

GENCOM CALLVERS ECHOVERS

7. Run the CALLVERS.COM module:

CALLIJERS

The message

**** CALLVERS ****
followed by the message

**** ECHOVERS ****
appears on the screen five times if the RSX program works.

End of Section 4

!!ill DIGITAL RESEARCW" -----------------------

4-25

Appendix A
System Control Block

The System Control Block (SCB) is a CP/M 3 data structure located in the BDOS.
CP/M 3 uses this region primarily for communication between the BDOS and the
BIOS. However, it is also available for communication between application pro
grams, RSXs, and the BDOS. Note that programs that access the System Control
Block are not version independent. They can run only on CP/M 3.

The following list describes the fields of the SCB that are available for access by
application programs and RSXs. The location of each field is described as the offset
from the start address of the SCB (see BDOS Function 49). The RW/RO column
indicates if the SCB field is Read-Write or Read-Only.

Offset I
00-04

05

06-09

OA-OF

10-11

12-19

Table A-1. SCB Fields and Definitions

RW /R 0 I Definition

RO Reserved for system use.

RO BDOS Version Number.

RW Reserved for user use. Use these four bytes for your
own flags or data.

RO Reserved for system use.

R W Program Error Return Code. This 2-byte field can be
used by a program to pass an error code or value to a
chained program. CP/M 3 's conditional command facil
ity also uses this field to determine if a program exe
cutes successfully. The BDOS Function 108 (Get/Set
Program Return Code) is used to get/set this value.

RO Reserved for system use.

[!ID DIGITAL RESEARCH™ -----------------------
A-l

A System Control Block CP 1M 3 Programmer's Guide

Table A-I. (continued)

Offset I RW/RO I Definition

1A RW Console Width. This byte contains the number of col
umns, characters per line, on your console relative to
zero. Most systems default this value to 79. You can
set this default value by using the GENCPM or the
DEVICE utility. The console width value is used by the
banked version of CP/M 3 in BDOS function 10,
CP/M 3's console editing input function. Note that typ
ing a character into the last position of the screen, as
specified by the Console Width field, must not cause
the terminal to advance to the next line.

1B RO Console Column Position. This byte contains the cur
rent console column position.

1 C R W Console Page Length. This byte contains the page length,
lines per page, of your console. Most systems default
this value to 24 lines per page. This default value may
be changed by using the GENCPM or the DEVICE util
ity (see the CP/M Plus (CP/M Version 3) Operating
System User's Guide).

1D - 21 RO Reserved for system use.

22 - 2B R W Redirection flags for each of the five logical character
devices. If your system's BIOS supports assignment of
logical devices to physical devices, you can direct each
of the five logical character devices to any combination
of up to 12 physical devices. The 16-bit word for each
device represents the following:

Each bit represents a physical device where bit 15 cor
responds to device zero and bit 4 corresponds to device
11. Bits zero through 3 are reserved for system use.

You can redirect the input and output logical devices
with the DEVICE command (see CP/M Plus (CP/M
Version 3) Operating System User's Guide).

------------------------!!ID DIGITAL RESEARCH™

A-2

CP 1M 3 Programmer's Guide A System Control Block

Table A-l. (continued)

Offset I RWIRO I Definition

22 - 23 R W CONIN Redirection Flag.

24 - 25 RW CONOUT Redirection Flag.

26 - 27 RW AUXIN Redirection Flag.

28 - 29 RW AUXOUT Redirection Flag.

2A - 2B RW LSTOUT Redirection Flag.

2C RW Page Mode. If this byte is set to zero, some CP/M 3
utilities and CCP built-in commands display one page
of data at a time; you display the next page by pressing
any key. If this byte is not set to zero, the system dis
plays data on the screen without stopping. To stop and
start the display, you can press CTRL-S and CTRL-Q,
respectively.

2D RO Reserved for system use.

2E RW Determines if CTRL-H is interpreted as a rub/del char
acter. If this byte is set to 0, then CTRL-H is a back
space character (moves back and deletes). If this byte is
set to OFFH, then CTRL-H is a rub/del character, echoes
the deleted character.

2F RW Determines if rub/del is interpreted as CTRL-H charac
ter. If this byte is set to 0, then rub/del echoes the deleted
character. If this byte is set to OFF, then rub/del is inter
preted as a CTRL-H character (moves back and deletes).

30 - 32 RO Reserved for system use.

33 - 34 RW Console Mode. This is a 16-bit system parameter that
determines the action of certain BDOS Console 110
functions. (See Section 2.2.1 and BDOS Function 109,
Get/Set Console Mode, for a thorough explanation of
Console Mode.)

IiID DIGITAL RESEARCH™ -----------------------
A-3

A System Control Block CP 1M 3 Programmer's Guide

Table A-I. (continued)

Offset I RWIRO I Definition

35 - 36 RO Reserved for system use.

37 RW Output delimiter character. The default output delim
iter character is $, but you can change this value by
using the BDOS Function 110, Get/Set Output Delimiter.

38 RW List Output Flag. If this byte is set to 0, console output
is not echoed to the list device. If this byte is set to 1
console output is echoed to the list device.

39 - 3B RO Reserved for system use.

3C - 3D RO Current DMA Address. This address can be set by BDOS
Function 26 (Set DMA Address) . .;The CCP initializes
this value to 0080H. BDOS Function 13, Reset Disk
System, also sets the DMA address to 0080H.

3E RO Current Disk. This byte contains the currently selected
default disk number. This value ranges from 0-15 cor
responding to drives A-P, respectively. BDOS Function
25, Return Current Disk, can be used to determine the
current disk value.

3F - 43 RO Reserved for system use.

44 RO Current User Number. This byte contains the current
user number. This value ranges from 0-15. BDOS Func
tion 32, Set/Get User Code, can change or interrogate
the currently active user number.

45 - 49 RO Reserved for system use.

4A RW BDOS Multi-Sector Count. This field is set by BDOS
Function 44, Set Multi-Sector Count.

------------------------ Illl DIGITAL RESEARCH™
A-4

CP/M 3 Programmer's Guide A System Control Block

Table A-1. (continued)

Offset I RW/RO I Definition

4B RW BDOS Error Mode. This field is set by BDOS Function
45, Set BDOS Error Mode.

4C-4F RW

50 RW

51 RO

52-56 RO

If this byte is set to OFFH, the system returns to the
current program without displaying any error messages.
If it is set to OFEH, the system displays error messages
before returning to the current program. Otherwise, the
system terminates the program and displays error mes
sages. See description of BDOS Function 45, Set BDOS
Error Mode, for discussion of the different error modes.

Drive Search Chain. The first byte contains the drive
number of the first drive in the chain, the second byte
contains the drive number of the second drive in the
chain, and so on, for up to four bytes. If less than four
drives are to be searched, the next byte is set to OFFH
to signal the end of the search chain. The drive values
range from 0-16, where 0 corresponds to the default
drive, while 1-16 corresponds to drives A-P, respec
tively. The drive search chain can be displayed or set
by using the SETDEF utility (see CP/M Plus (Version 3)
Operating System User's Guide).

Temporary File Drive. This byte contains the drive
number of the temporary file drive. The drive number
ranges from 0-16, where 0 corresponds to the default
drive, while 1-16 corresponds to drives A-P, respectively.

Error drive. This byte contains the drive number of the
selected drive when the last physical or extended error
occurred.

Reserved for system use.

!lID DIGITAL RESEARCH™ ------------------------
A-5

A System Control Block CP 1M 3 Programmer's Guide

Table A-I. (continued)

Offset I RWIRO I Definition

57 RO BDOS Flags. Bit 7 applies to banked systems only. If
bit 7 is set, then the system displays expanded error
messages. The second error line displays the function
number and FCB information. (See Section 2.3.13).

58 -59 RW

SA RW

5B RW

5C RW

5D-5E RO

5F-63 RO

Bit 6 applies only to nonbanked systems. If bit 6 is set,
it indicates that GENCPM has specified single alloca
tion vectors for the system. Otherwise, double alloca
tion vectors have been defined for the system. Function
98, Free Blocks, returns temporarily allocated blocks to
free space only if bit 6 is reset.

Date in days in binary since 1 Jan 78.

Hour in BCD (2-digit Binary Coded Decimal).

Minutes in BCD.

Seconds in BCD.

Common Memory Base Address. This value is zero for
nonbanked systems and nonzero for banked systems.

Reserved for system use.

End of Appendix A

------------------------ 1m DIGITAL RESEARCH™
A-6

B.l PRL Format

Appendix B
PRL File Generation

A Page Relocatable Program has an origin offset of 100H bytes that is stored on
disk as a file of type PRL. The format is shown in Table B-1.

Table B-1. PRL File Format

Address I Contents

0001-0002H Program size

0004-000SH Minimum buffer requirements (additional memory)

0006-00FFH Currently unused, reserved for future allocation

0100 + Program size = Start of bit map

The bit map is a string of bits identifying those bytes in the source code that
require relocation. There is one byte in the bit map for every 8 bytes of source code.
The most significant bit, bit 7, of the first byte of the bit map indicates whether or
not the first byte of the source code requires relocation. If the bit is on, it indicates
that relocation is required. The next bit, bit 6, of the first byte corresponds to the
second byte of the source code, and so forth.

~ DIGITAL RESEARCH™ -----------------------
B-1

B PRL Generation CP/M 3 Programmer Guide

B.2 Generating a PRL

The preferred technique for generating a PRL file is to use the CP/M LINK-80™,
which can generate a PRL file from a REL relocatable object file. This technique is
described in the Programmer's Utilities Guide for The CP/M Family of Operating
Systems. A sample link command is shown below.

A>linl< dUMP[OP]

End of Appendix B

----------------------- !iID DIGITAL RESEARCHTM
B-2

Appendix C
SPR Generation

System Page Relocatable, SPR, files are similar in format to PRL files except that
SPR files have an origin offset of OOOOH (see Appendix B). SPR Files are provided as
part of the standard CP/M 3 System: the resident and banked portions of the banked
BDOS, named RESBDOS3.SPR and BNKBDOS3.SPR, and the nonbanked BDOS,
named BDOS3.SPR. The customized BIOS must also be generated in SPR format
before GENCPM can create a CP/M 3 system. The BIOS SPR file is named
BNKBIOS3.SPR for banked systems and BIOS3.SPR for nonbanked systems. A detailed
discussion of the generation of BIOS3.SPR or BNKBIOS3.SPR is provided in the
CP/M Plus (CP/M Version 3) Operating System System Guide.

The method of generating an SPR is analogous to that of generating a Page Relo
eatable Program (described in Appendix B) with the following exceptions:

• If LINK-80 is used, the output file of type SPR is specified with the [os] or [b]
option. The [b] option is used when linking BNKBIOS3.SPR .

• The code in the SPR is ORGed at OOOH rather than 100H.

End of Appendix C

[!ill DIGITAL RESEARCH™ -----------------------
C-l

Appendix D
ASCII and Hexadecimal Conversions

This appendix contains tables of the ASCII symbols, including their binary, deci
mal, and hexadecimal conversions.

Table D-l. ASCII Symbols

Symbol I Meaning I Symbol I Meaning

ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line-feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form-feed US unit separator

VT vertical tabulation

I!ID DIGITAL RESEARCWM -----------------------
D-1

D ASCII and HEX Conversions CP/M 3 Programmer's Guide

Table D-2. ASCII Conversion Table

Binary I Decimal I Hexadecimal I ASCII

0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-G)
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTRL-I)
0001010 010 OA LF (CTRL-])
0001011 011 OB VT (CTRL-K)
0001100 012 OC FF (CTRL-L)
0001101 013 OD CR (CTRL-M)
0001110 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-O)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DCl (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-S)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 025 19 EM (CTRL-Y)
0011010 026 lA SUB (CTRL-Z)
0011011 027 IB ESC (CTRL-[)
0011100 028 lC FS (CTRL-\)
0011101 029 lD GS (CTRL-])
0011110 030 lE RS (CTRL-A)
0011111 031 IF US (CTRL-_)
0100000 032 20 (SPACE)
0100001 033 21 !
0100010 034 22 I

0100011 035 23 #
0100100 036 24 $

--------------------- liIDDIGITAL RESEARCHTMI
D-2

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. (continued)

Binary I Decimal I Hexadecimal I ASCII

0100101 037 25 0/0
0100110 038 26 &
0100111 039 27

,

0101000 040 28 (
0101001 041 29)

0101010 042 2A *
0101011 043 2B +
0101100 044 2C ,
0101101 045 2D -
0101110 046 2E
0101111 047 2F /
0110000 048 30 0
0110001 049 31 1
0110010 050 32 2
0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A :
0111011 059 3B ;
0111100 060 3C <
0111101 061 3D =

0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 I

I!ID DIGITAL RESEARCH™ --------------------

0-3

D ASCII and HEX Conversions CP 1M 3 Programmer's Guide

Table D-2. (continued)

Binary I Decimal I Hexadecimal I ASCII

1001010 074 4A J
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 V
1010111 087 57 W
1011000 088 58 X
1011001 089 59 y

1011010 090 SA Z
1011011 091 5B [
1011100 092 5C \
1011101 093 5D]
1011110 094 5E A

1011111 095 SF <
1100000 096 60

,

1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d
1100101 101 65 e
1100110 102 66 f

-------------------- I!ID DIGITAL RESEARCH™

D-4

CP 1M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. (continued)

Binary I Decimal I Hexadecimal I ASCII

1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 111 6F 0

1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C I
1111101 125 7D }
1111110 126 7E --
1111111 127 7F DEL

End of Appendix D

I!ID DIGITAL RESEARCH™ --------------------

D-5

Appendix E
BDOS Function Summary

Table E-1. BDOS Function Summary

Function I Function Name

o System Reset
1 Console Input
2 Console Output
3 Auxiliary Input
4 Auxiliary Output
5 List Output
6 Direct Console I/O

7 Auxiliary Input
Status

8 Auxiliary Output
Status

9 Print String
10 Read Console Buffer
11 Get Console Status

I Input Parameters l
none
none
E = char
none
E = char
E = char
E = OFFH/

OFEHI
OFDH/
char

none

none

DE = .String
DE = .BufferO
none

Returned Values

none
A = char
A = OOH
A = char
A = OOH
A = OOH
A = char/status/

none

A = OO/OFFH

A = OO/OFFH

A = OOH
Characters in buffer
A = 00/01

12 Return Version Number
13 Reset Disk System

none
none

HL = Version (0031H)
A = OOH

14 Select Disk

15 Open File
16 Close File
17 Search for First
18 Search for Next
19 Delete File
20 Read Sequential
21 Write Sequential
22 Make File
23 Rename File
24 Return Login Vector
25 Return Current Disk

E = Disk
Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
none
none

A = Err Flag

A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL = Login Vector
A = Cur Disk#

[ij) DIGITAL RESEARCWM

E-1

E BDOS Function Summary CP/M 3 Programmer's Guide

Table E-1. (continued)

Function I Function Name I Input Parameters I Returned Values

25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA A = OOH
27 Get Addr(Alloc) none HL = .Alloc
28 Write Protect Disk none A = OOH
29 Get RIO Vector none HL = RIO Vector
30 Set File Attributes DE = .FCB A = Dir Code
31 Get Addr(DPB) none HL = .DPB
32 Set/Get User Code E = OFFH/ A = Curr User/

user number OOH
33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB rO, r1, r2

A = Err Flag
36 Set Random Record DE = .FCB rO, r1, r2
37 Reset Drive DE = Drive A = OOH

Vector
38 Access Drive none A = OOH
39 Free Drive none A = OOH
40 Write Random with DE = .FCB A = Err Code

Zero Fill
41 Test and Write Record DE = .FCB A = OFFH
42 Lock Record DE = .FCB A = OOH
43 Unlock Record DE = .FCB A = OOH
44 Set Multi-sector Count E = # Sectors A = Return Code
45 Set BDOS Error Mode E = BDOS Err A = OOH

Mode
46 Get Disk Free Space E = Drive Number of Free Sectors

number A = Err Flag
47 Chain to Program E = Chain Flag A = OOH
48 Flush Buffers E = Purge Flag A = Err Flag
49 Get/Set System DE = .SCB PB A = Returned Byte

Control Block HL = Returned Word
50 Direct BIOS Calls DE = .BIOS PB BIOS Return
59 Load Overlay DE = .FCB A = Err Code
60 Call Resident System DE = .RSX PB A = Err Code

Extension

Note: . indicates the address of

----------------------- [!]] DIGITAL RESEARCH™

E-2

CP/M 3 Programmer's Guide E BDOS Function Summary

Table E-1. (continued)

Function I Function Name t Input Parameters I Returned Values

98 Free Blocks none A = Err Flag
99 Truncate File DE = .FCB A = Dir Code

100 Set Directory Label DE = .FCB A = Dir Code
101 Return Directory E = Drive A = Dir label data byte

Label Data
102 Read File Date Stamps DE = .FCB A = Dir Code

and Password Mode
103 Write File XFCB DE = .FCB A = Dir Code
104 Set Date and Time DE = .DAT A = OOH
105 Get Date and Time DE = .DAT Date and Time

A = seconds
106 Set Default Password DE = .Password A = OOH
107 Return Serial Number DE = .Serial # Serial Number

field
108 Get/Set Program DE = OFFFFHI HL Program Ret Code

Return Code Code none
109 Get/Set Console Mode DE = OFFFFHI HL = Console Mode

Mode none
110 Get/Set Output DE = OFFFFHI A = Output Delimiter

Delimiter E = Delimiter none
111 Print Block DE = .CCB A = OOH
112 List Block DE = .CCB A = OOH
152 Parse Filename DE = .PFCB See definition

Note: . indicates the address of

End of Appendix E

[!]I DIGITAL RESEARCWM

E-3

Index

A

absolute module, 3-73
Access date and time stamp, 3-21
Access Drive MP/M, 3-57
access stamp types, 2-24
address maximum, 1-5
allocation vector, 3-41, 3-75
allocation file space, 1-13
ambiguous file reference, 1-13, 2-16,

3-24
Archive Attribute, 2-17
ASM, 2-11
assign password, 2-17, 2-20
associated command files, 1-18
asterisk, 1-13, 2-11
attach RSX, 1-9
Attributes

bits, 2-J6
Set File, 2-22

automatic submit option, 1-19, 1-20
Auxiliary Input, 2-2, 3-9

Output, 3-10

B

backspace, 3-2
BAK, 2-11
Bank 0, 1-2, 1-3
Bank 1, 1-3
bank switching, 1-2
bank-switched memory, 1-1, 1-2
BAS, 2-11
base extent, 3-48, 3-50
basic console 110, 2-3
Basic Disk Operating System BDOS,

1-6

Basic Input/Output System BDOS, 1-6
basic record size, 2-7
BDOS, 1-6, 1-7, 1-8, 1-11, 1-13
BDOS Call Resident System Extension,

1-24
Calling Conventions, 2-1
Chain to Program, 1-23
Directory Codes, 2-32
entry point, 2-35
Error Codes, 2-31
Error Flag, 2-33
Error Mode, 2-33
extended error codes, 2-34
file system, 2-7, 2-11
function entry parameters, 1-8
functional, 2-4
functions, 1-24
physical error codes, 2-33
Program Chain, 2-18
Read Console Buffer, 1-16
set directory label, 1-25
Set User, 2-18
size, 1-11
System Reset, 2-1
warm start entry point, 1-15, 1-23,

2-35
BDOS base, 1-8, 1-9, 1-11, 1-15
BIOS, 1-6, 1-7, 1-11, 1-15, 2-29
Cold Boot entry point, 1-14
DEVTBL, 2-2
entry points, 1-23
Parameter Block, 3-69
BDOS function, 1-8, 1-23, 2-29
BDOS Function calls:

ACCESS DRIVE, 3-57
AUXILIARY INPUT, 3-4
AUXILIARY INPUT STATUS, 3-9
AUXILIARY OUTPUT, 3-5

[jQ] DIGITAL RESEARCH™ -----------------------
Index-l

AUXILIARY OUTPUT STATUS,
3-10

CALL RESIDENT SYSTEM
EXTENSION, 3-74

CHAIN TO PROGRAM, 3-67
CLOSE FILE, 3-22
COMPUTE FILE SIZE, 3-53
CONSOLE INPUT, 3-2
CONSOLE OUTPUT, 3-3
DELETE FILE, 3-27
DIRECT BIOS CALLS, 3-72
DIRECT CONSOLE 1/0, 3-7
FLUSH BUFFERS, 3-68
FREE BLOCKS, 3-75
FREE DRIVE, 3-58
GET ADDR(ALLOC), 3-41
GET ADDR(DPB PARMS), 3-41
GET/SET CONSOLE MODE, 3-91
GET CONSOLE STATUS, 3-16
GET DATE AND TIME, 3-86
GET DISK FREE SPACE, 3-65
GET READ-ONLY VECTOR, 3-43
GET/SET PROGRAM RETURN

CODE, 3-89
GET/SET OUTPUT DELIMITER,

3-93
GET/SET SYSTEM CONTROL

BLOCK, 3-69
LIST BLOCK, 3-95
LOCK RECORD, 3-61
LIST OUTPUT, 3-6
LOAD OVERLAY, 3-73
MAKE FILE, 3-34
OPEN FILE, 3-20
PARSE FILENAME, 3-96
PRINT BLOCK, 3-94
PRINT STRING, 3-11
READ CONSOLE BUFFER, 3-12
READ FILE DATE STAMPS AND

PASSWORD MODE, 3-81
READ RANDOM, 3-48

READ SEQUENTIAL, 3-29
RENAME FILE, 3-36
RESET DISK SYSTEM, 3-18
RESET DRIVE, 3-56
RETURN CURRENT DISK, 3-39
RETURN DIRECTORY LABEL

DATA, 3-80
RETURN LOGIN VECTOR, 3-38
RETURN SERIAL NUMBER, 3-88
RETURN VERSION NUMBER,

3-17
SEARCH FOR FIRST, 3-24
SEARCH FOR NEXT, 3-26
SELECT DISK, 3-19
SET BDOS ERROR MODE, 3-64
SET DATE AND TIME, 3-85
SET DEFAULT PASSWORD, 3-87
SET DIRECTORY LABEL, 3-78
SET DMA ADDRESS, 3-40
SET FILE ATTRIBUTES, 3-44
SETIGET USER CODE, 3-47
SET MULTI-SECTOR COUNT,

3-63
SET RANDOM RECORD, 3-55
SYSTEM RESET, 3-1
TEST AND WRITE RECORD, 3-60
TRUNCATE FILE, 3-76
UNLOCK RECORD, 3-62
WRITE FILE XFCB, 3-83
WRITE PROTECT DISK, 3-42
WRITE RANDOM, 3-50
WRITE RANDOM WITH ZERO

FILL, 3-59
WRITE SEQUENTIAL, 3-31

BIOS-resident, 3-46
bit map, B-1
bit vector, 3-43
block size, 2-11
blocking record, 3-63
buffers, 1-2
built-in commands, 1-18, 1-19
Byte counts, 2-28

-------------------- I!IDDIGITAL RESEARCH™
Index-2

c
Call BIOS, 1-22
call RSX, 3-74
carriage return, 2-13, 3 -2
CCB format, 3-94
CCP, 1-6, 1-7, 1-8, 1-11, 1-13 1-15,

1-16, 1-27, 2-18
chain flag, 3-67
Chain to Program, 1-23, 3-67
change default drive, 1-16
Character Control Block CCB, 3-94,

3-95
character echo, 2-4
check-sum vector, 2-27
Close File, 2-17, 3-22
Cold Boot Loader, 1-14
cold start, 1-11, 1-14, 1-15
COM, 2-11
COM filetype, 1-20
command drive field, 2-37
command keyword, 1-17
command line, 1-17,2-37,2-38
command tail, 1-17
common memory, 1-3
common memory base address, 3-71
common region size, 1-5
compatibility, 1-22, 1-28
Compute File Size, 2-28, 3-53
conditional command, 1-23
CONIN, 1-7, 2-3
CONIN:, 3-2, 3-7
CONOUT, 2-3
CONOUT:, 3-3, 3-94
console characteristics, 1-27
console column position, 3-70
Console Command Processor, 1-13
console input, 1-26, 2-3, 3-2, 3-7

mode, 3-70
Console mode default state, 3-2
Console output, 2-3, 3-3, 3-7
console page length, 3-70

Console status, 2-3, 3-8
console width, 3-70

string output, 2-3
context, 1-3
control character A, 2-5
copy file, 1-12, 4-1
CP/M, 1-1, 1-2
CP/M 2, 2-1
CP/M version 2, 1-28
CPM3.SYS file, 1-15
CPMLDR, 1-14, 1-15
CPMLDR BDOS, 1-14
CPMLDR BIOS, 1-14
create directory entry, 3-34
create directory label, 3-80
create stamp types, 2-24
create XFCB, 3-34
Creation date and time stamp, 3-35
CTRL-A, 3-14
CTRL-B, 3-14
CTRL-C, 3-14
CTRL-E, 3-14
CTRL-F, 3-14
CTRL-G, 2-4, 3-12, 3-14
CTRL-H, 3-14
CTRL-I, 3-3
CTRL-J,3-15
CTRL-K, 3-15
CTRL-M, 3-12, 3-13, 3-15

return, 3 -13
CTRL-P, 3-15
CTRL-Q, 2-4, 2-5, 3-3
CTRL-R, 3-15
CTRL-S, 2-4, 2-5, 3-3
CTRL-U, 3-15
CTRL-W, 3-15
CTRL-X, 3-15
CTRL-Z, 2-3
current record, 2-15, 2-36
current user number, 1-28

[!Q] DIGITAL RESEARCH™ -----------------------
Index-3

D

Data, 2-12
area, 1-12, 2-12
block size, 2-12
space, 1-12
tracks, 1-12

data byte
directory label, 3-78, 3-80

date, 1-27, 3-70, 3-80
Date and Time, 3-80, 3-81
DATE utility, 2-25
default disk, 1-15
default DMA buffer, 2-35
default drive, 1-16
Default Error Mode, 3-64
default FCB, 2-36
default output delimiter, 3-93
Default Password, 3-87
Delete File, 2-17, 2-22, 3-27
Delete XFCBs, 2-17
delimiters, 1-17
Delimiter output, 3-93
DEVICE utility, 2-2
differences: banked and nonbanked,

1-1
DIR, 1-18
DIR.COM utility, 1-18
Dir~ctory Code, 2-32
direct BIOS calls, 1-22
Direct Console 1/0, 3-7
Direct Memory Address, 3-40
directory area, 1-12
directory check-sum vector, 2-27
Directory Code, 2-32, 2-33
directory entries, 2-15
directory functions, 2-7
directory hash tables, 1-2, 1-4
directory hashing, 2-27
Directory Label, 2-19, 2-20 2-23, 3-24,

3-79, 3-80
directory label data byte, 3-78, 3-80

Directory Label password, 2-21
directory label

create, 3-79
update, 3-79

directory space, 1-13
DIRLBL.RSX, 1-25, 2-21, 3-78
DIRSYS, 1-18
disk access, 1-12
disk change, 2-27
disk directory area, 2-12
Disk Drive Organization, 1-11
disk formatting program, 1-22
Disk 110 error, 2-29
Disk organization, 2-11
Disk Parameter Block, 3-46
disk record buffers, 1-2, 1-4
Disk Reset Function, 2-27
disk space, 1-13
Disk current, 3-71
disk select, 2-29
DMA

address, 3-70
buffer
default address, 2-35

DPB
address, 3-46
Disk Parameter Block, 3-46

drive A, 1-14
drive allocation vector, 2-27
drive capacity, 2-11
drive chain, 1-20
drive code, 2-14
drive functions, 2-8
drive reset, 2-27
drive search chain, 3-71
drive select code, 2-9
drive specification, 1-17
drive support, 1-11
drives

Read-Only, 3-43
Dump file, 4-5
dynamic allocation, 1-13

------------------------ !!ill DIGITAL RESEARCH™
Index-4

E

edit control characters, 3-14
empty directory entry, 2-16
end-of-file, 2-3
ERASE, 1-18
error codes, 2-30, 3-23
Error Flag, 2-30, 2-33
Error Handling, 2-28
error messages, 2-30
error mode, 3-71
Error mode

default, 2-29, 3-64
return, 2-29, 3-64
return and display, 2-29
return code, 3-70
Set, 3-64

error
? in Filename, 2-30
File Exists, 2-30
Invalid Drive, 2-29
Read-Only, 2-29

expanded error message, 2-29
extend operating system functions, 1-9,

1-24
extended error codes, 2-33, 3-21
extended errors, 2-29, 2-30
extended FCB, 2-19
extent 0, 3-48, 3-50
extent field format, 3-83
extent number, 2-14

F

FCB, 3-20
FCB format, 2-18, 3-98
FCB

length, 2-13
default, 2-36
parsed, 1-21
random record field, 3-55

file
access, 2-7
attributes, 2-16
byte count, 2-28, 3-44
Control Block, 2-13
File

Control Block, FCB, 2-13
default, 2-36
directory elements, 2-15
Dump, 4-5
Exists error, 2-30
format, 2-13
identification, 1-12
naming conventions, 2-11
organization, 2-11
Password error, 2-30
passwords, 2-23
size, 3-53
space allocation, 1-13
specification, 2-9
type field, 2-9, 2-10

filename, 1-13, 1-17, 2-9,2-14
Filename

parse, 3-96
filespec, 1-17
filetype, 1-13, 1-17, 2-14
Flush Buffers, 2-25, 2-33, 3-68
Free Blocks, 2-33
Free Drive MP/M, 3-58
Free Space Disk, 3-65
function calls, 1-6
functional BDOS, 2-4

G

GENCOM, 1-9, 1-24, 2-6
GENCPM, 1-2, 1-16
generic filetypes, 2-11
Get ADDR (Alloc), 2-34, 3-41
Get Addr (Disk Parms), 2-34, 3-46

I!ID DIGITAL RESEARCH™ -----------------------

Index-5

Get Console Mode, 3-91
Get Console Status, 3-16
Get Date and Time, 3-86
Get Disk Free Space, 2-33, 3-65
Get Output Delimiter, 3-93
Get Program Return Code, 3-89
Get Read-Only vector, 3-43
GET RSX, 2-6
Get User Code, 3-47
GET utility, 1-24, 1-26
GET.COM, 1-24, 1-26
GET.RSX, 1-24
Get/Set Console Mode, 2-5, 3-91
Get/Set Output Delimiter, 2-5, 3-93
Get/Set Program Return Code, 1-23,

3-89
graphic characters, 3-2

H

hard disks, 1-11
hash tables, 1-4, 2-27
HEX, 2-11
highest memory address, 2-35

I

INITDIR utility, 2-24, 3-79
initializing an FCB, 2-16
input buffer format, 3-12
INT,2-11
Intel PL/M systems programming

language, 2-1
interface attributes, 2-17, 3-22
internal date and time, 3-86
Invalid Drive error, 2-29

K

key fields, 3-55

L

line editing, 2-4
line feed, 2-13, 3-2
Link-80, B-2
List Block, 3-95
list device, 2-4, 3-2
List Output, 3-6, 3-70
Load Overlay, 1-9, 1-24
load RSX, 1-9, 1-24
LOADER, 1-6, 1-9, 1-11, 1-21, 1-24
LOADER module, 1-24, 3-73, 4-21
LOADER size, 1-11
LOADER base, 1-9, 1-10
Lock Record, 3-61
logged-in state, 2-27
logging-in the drive, 2-27
logical AUXIN, 2-2
logical AUXOUT, 2-2
logical CONIN, 2-2
logical CON OUT, 2-2
logical device names, 2-2
logical drive, 1-11, 2-12
logical LST, 2-2
Logical Memory Organization, 1-5
logical record size, 2-25
LST, 2-3, 2-6
LST:, 3-2, 3-6, 3-95

M

Make File, 2-17, 3-34
Make File function, 2-17
Make Write File XFCB, 2-20
maximum filesize, 1-11, 2-11
maximum memory, 1-2

----------------------- I!ID DIGITAL RESEARCH™
Index-6

maximum memory address, 1-1 °
maximum record count, 3-53
maximum TPA address, 1-21
media change, 2-27
memory map, 1-14
memory maximum, 1-2
memory organization, 1-1
Memory Region Boundaries, 1-9
memory regions, 1-9
miscellaneous functions, 2-7
modify file attribute byte count, 3-44
modify operating system functions, 1-9,

1-24
modules of operating system, 1-5
MP/M, 1-19, 1-28,2-1, 3-17
multi-sector count, 2-26 3-30, 3-71
multi-sector 110, 2-26
multiple file reference, 1-13

N

next record, 3-55
nonbanked Memory Organization, 1-2
nonbanked systems, 1-2
null byte, 3-67
null command file, 1-24

o
open file, 2-22
operating system modules, 1-5
output delimiter, 3-70, 3-93
overlay, 3-73

p

page, 1-10
alignment, 1-11
boundaries, 1-1 °

mode, 3-70
Relocatable, 1-19
Relocatable files, 1-24
Relocatable Program, B-1
Zero, 1-5, 1-7, 1-15, 1-20 1-23,

1-25, 2-1, 2-35
Zero fields, 1-21, 2-38

Parameter Block
BIOS, 3-72
RSX, 3-74
SCB, 3-69

Parse Filename, 2-9
Parse Filename Control Block PFCB,

3-96
parse procedure, 1-19
parsed FCB, 1-21
Partial close, 2-17, 3-22
password, 1-1, 1-13, 1-17, 1-19, 2-22
password address, 2-35
password field, 2-9, 2-16, 2-35, 2-38
password length, 2-35, 2-36
password mode, 3-83
Password Protection Modes, 2-22
password support, 1-1
password

assign, 2-17
default, 2-23, 3-87

permanent close, 3-22
physical drive, 1-11
physical error, 2-29, 2-31
physical error codes, 2-34, 3-19, 3-21,

3-23
physical file size, 3-53
physical record size, 2-25
PIP command, 1-12
PIP utility, 2-17
PL/M, 2-1
PLI, 2-11
Print Block, 3-94
Print String, 2-5, 3-11
printer echo, 2-4, 2-5, 3-2
PRL, 2-11, 3-73

!tID DIGITAL RESEARCH™ -----------------------
Index-7

PRL file, 1-19, 1-24
PRL File Fprmat, B-1
PRL filetype, 1-20
PRN, 2-11
PROFILE submit file, 1-16
PROFILE.SUB, 1-16
Program chain, 1-23, 3-67
Program Return Code, 1-23
PUNCH, 2-6
Purge flag, 3-68

Q

question mark, 1-13,2-11

R

Random Access, 4-10
random file, 2-12
random record field FCB, 3-55
random record number, 2-12, 2-13
random record position, 2-36
Read Buffer Input, 2-4
read character, 3-2
Read Console Buffer, 3-12
read edited console input, 3-12
read next record, 3-29
Read random, 2-30, 3-49
Read Sequential, 2-30, 3-29
Read-Only, 3-42
Read-Only attribute, 2-16
Read-Only Disk error, 2-29
Read-Only drives, 3-43
Read-Only File error, 2-29
READER, 2-6
record, 2-12
record blocking, 2-25, 3-63
record count, 2-14
record deblocking, 2-25
record size, 2-7

Record
Lock, MP/M II, 3-61
Unlock, MP/M II, 3-62

redirected input, 1-27
region boundaries, 1-9
register A, 2-30
REL,2-11
relocatable module, 3-73
remove file, 2-22
Remove flag RSX, 1-25
remove RSX, 1-25
RENAME, 1-18
Rename File, 3-36
reset disk system, 1-22, 3 -18
reset drive, 2-27, 3-56
resident operating system module, 1-2
resident portion, 1-2
Resident System Extension, 1-6, 1-9,

1-13, 1-24,4-20
Return and Display Error Mode, 3-64
Return Code Program, 3-89
return codes, 2-30
Return Current Disk, 3-39
Return Directory Label, 2-21
Return Directory Label Data, 2-33,

3-80
Return Error Mode, 3-64
Return Login Vector, 3-38
return modes, 3-64
Return Serial Number, 3-88
Return Version Number, 3-17
RSX, 1-6, 1-8, 1-9, 1-11, 1-22 1-23,

1-24, 1-26
active, 1-9
File Format, 1-25
flags, 1-25
header, 1-9, 1-21, 1-25, 3-73
Parameter Block, 3-74
prefix, 4-20
programs, 4-20
removal, 1-25

------------------------ I!ID DIGITAL RESEARCH™
Index-8

rub/del
remove last character, 3-13

s
SCB, 1-27
SCB parameter block, 3-71
scroll output, 2-4

support, 2-5
Search For First, 3-24
Search For Next, 3-24, 3-26
sectors, 3-65
select disk, 2-29, 2-33, 3-19
sequential file, 2-12
sequential I/O processing, 2-26
serial device I/O, 2-2
serial number, 3-88
SET BDOS Error Mode, 3-64
Set Console Mode, 3-91
Set Date and Time, 3-85
Set Default Password, 2-23, 3-87
Set Directory Label, 1-25, 2-21, 2-23,

3-79
SET DMA Address, 3-40
Set Error Mode, 2-29
Set File Attributes, 2-17, 2-22, 2-28,

3-44
set file byte count, 2-17
Set/Get User Code, 3-47
Set multi-sector count, 2-26, 3-63
Set Output Delimiter, 3-93
Set Program Return Code, 3-89
Set Random Record, 3-53
Set User Code, 3-47
SETDEF utility, 1-19, 1-20, 1-27
SFCB, 2-23, 3-79
sign-on message, 1-14
SIze

BDOS, 1-11
common region, 1-5
compute File BDOS, 3-53

LOADER, 1-11
record, 2-7
transient program, 1-11

Source files, 2-13
space

Disk, 3-65
Sparse files, 2-12
SPR, 2-11
Standard Delete, 3-27
standard search, 3-24
start scroll, 3-2
stop scroll, 3-2
SUB filetype, 1-19
SUBMIT, 1-19
submit command line, 1-27
submit file, 1-15, 1-19, 1-20, 1-27
SUBMIT RSX, 1-27
SUBMIT utility, 1-13, 1-27
SYM, 2-11
SYS, 2-11
System

Attribute, 2-17
cold start, 1-11, 1-12, 1-14
communication, .1-7
components, 1-5
Control Block, 3-70
date and time, 2-23
generation, 1-15
Interaction, 1-7
modules, 1-5
Operation, 1-13
prompt, 1-13, 1-16, 1-28
regions, 1-5
reset, 1-22, 3-1
tracks, 1-12, 1-15
warm start, 1-11, 1-12, 1-15

I!ID DIGITAL RESEARCH™ -----------------------
Index-9

T

tab characters, 3-2
tab expansion, 2-3, 2-5
temporarily-allocated data block, 3-75
temporary drive, 3-71
temporary file drive, 1-27
temporary submit file, 1-27
terminate execution, 1-23
terminate program execution, 1-8, 1-23
Test and Write Record, 3-60
TEX, 2-11
time, 1-27
Time and Date, 3-85
TPA, 1-7, 1-8, 1-11, 1-15, 1-21, 1-22
transient program, 1-7, 1-11, 1-13,

1-19, 1-22
Truncate File, 2-22
TYPE, 1-18
types of file stamps, 2-23

u

Unlock Record MP/M, 3-62
update date and time stamp, 3-34,

3-50
update directory label, 3-78
update stamp types, 2-23
USER, 1-18
user 0, 2-18
User 0 file access, 2-18
USER command, 1-12
user directories, 2-18
user number, 1-15, 1-20, 1-28 2-18,

3-47
User number conventions, 2-18
user numbers, 1-12

v
version number, 3-70
virtual file size, 3-53

w

warm start, 1-11, 1-15, 1-22, 1-23,
1-26, 3-1

wildcard characters, 1-13
write data record, 3-31
Write File XFCB, 2-22
Write Protect Disk, 3-42
Write Random function, 2-30, 3-50
Write Random with Zero Fill, 2-30,

3-59
Write Sequential, 2-31, 3-31
write-pending records, 3-68

x
XFCB, 2-19, 2-20, 2-23, 3-27

z
Zero Fill Write Random, 3-59

------------------------ [!ID DIGITAL RESEARCH™

Index-IO

Reader Comment Form
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ Manual Title ____________ Edition ____ _

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

- ---.,,-- -~-~ -""<".-~----- ... ~ ~--:~-- ~-----. --- -_ . .-' - - -- _ -.... - -:-.:..:- ,-~ --:-"'"-- ----_. "-- - -- -_ ,"->,----.;.-

Attn: Publication Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[!ill DIGITAL RESEARCHN
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

