
 C P / M 1 . 4 U S E R G U I D E

 TABLE OF CONTENTS

 INTRODUCTION 1

 1.1 CP/M Organization 1

 1.2 Operation of Transient Programs 1

 1.3 Operating System Facilities 3

 2. BASIC I/0 FACILITIES 4

 2.1 Direct and Buffered I/0 5

 2.2 A Simple Example 5

 3. DISK I/0 FACILITIES 9

 3.1 File System Organization 9

 3.2 File Control Block Format 10

 3.3 Disk Access Primitives 12

 3.4 Random Access 18

 4. SYSTEM GENERATION 18

 4.1 Initializing CP/M from an Existing Diskette 19

 5. CP/M ENTRY POINT SUMMARY 20

 6. ADDRESS ASSIGNMENTS 22

 7. SAMPLE PROGRAMS 23

 CP/M INTERFACE GUIDE

1. INTRODUCTION

 This manual describes the CP/M system organization including

the structure of memory, as well as system entry points. The

intention here is to provide the necessary information required

to write programs which operate under CP/M, and which use the

peripheral and disk I/0 facilities of the system.

 1.1 CP/M Organization

 CP/M is logically divided into four parts:

 BIOS - the basic I/0 system for serial peripheral control

 BDOS - the basic disk operating system primitives

 CCP - the console command processor

 TPA - the transient program area

The BIOS and BDOS are combined into a single program with a com-

mon entry point and referred to as the FDOS. The CCP is a dis-

tinct program which uses the FDOS to provide a human-oriented

interface to the information which is cataloged on the diskette.

The TPA is an area of memory (i.e, the portion which is not used

by the FDOS and CCP) where various non-resident operating system

commands are executed. User programs also execute in the TPA.

The organization of memory in a standard CP/M system is shown in

Figure 1.

 The lower portion of memory is reserved for system information

(which is detailed in later sections), including user defined inter-

rupt locations. The portion between tbase and cbase is reserved

for the transient operating system commands, while the portion

above cbase contains the resident CCP and FDOS. The last three

locations of memory contain a jump instruction to the FDOS entry

point which provides access to system functions.

 1.2 Operation of Transient Programs

 Transient programs (system functions and user-defined programs)

are loaded into the TPA and executed as follows. The operator

communicates with the CCP by typing command lines following each

prompt character. Each command line takes one of the forms:

 <command>

 <command> <filename>

 <command> <cfilename>.<filetype>

 2

Figure 1. CP/M Memory Organization

 +-------------------+

 | |

 fbase: | FDOS |

 +-------------------+

 | |

 cbase: | CCP |

 +-------------------+

 | |

 | |

 | TPA |

 | |

 tbase: | |

 +-------------------+

 | System Parameters |

 +-+-+-+-+-+-+-+-+ |

 boot: | | | | | | | | | |

 +-+-+-+-+-+-+-+-+---+

 ^ ^

 | |-- address field of jump is fbase

 |

 entry: the principal entry point,to FDOS is at location 0005

 which contains a JMP to fbase. The address field at

 location 0006 can be used to determine the size of

 available memory, assuming the CCP is being overlayed.

Note: The exact addresses for boot, tbase, cbase, fbase,

 and entry vary with the CP/M version (see

 Section 6. for version correspondence).

 3

Where <command> is either a built-in command (e.g., DIR or TYPE),

or the name of a transient command or program. If the <command>

is a built-in function of CP/M, it is executed immediately; other-

wise the CCP searches the currently addressed disk for a file

by the name

 <command>.COM

If the file is found, it is assumed to be a memory image of a

program which executes in the TPA, and thus implicitly originates

at tbase in memory (see the CP/M LOAD command). The CCP loads

the COM file from the diskette into memory starting at tbase,

and extending up to address cbase.

 If the <command> is followed by either a <filename> or

<filename>.<filetype>, then the CCP prepares a file control-

block (FCB) in the system information area of memory. This FCB

is in the form required to access the file through the FDOS, and

is given in detail in Section 3.2.

 The program then executes, perhaps using the I/0 facilities

of the FDOS. If the program uses no FDOS facilities, then the

entire remaining memory area is available for data used by the

program. If the FDOS is to remain in memory, then the transient

program can use only up to location fbase as data.* In any case,

if the CCP area is used by the transient, the entire CP/M system

must be reloaded upon the transient's completion. This system

reload is accomplished by a direct branch to location "boot" in

memory.

 The transient uses the CP/M I/0 facilities to communicate

with the operator's console and peripheral devices, including

the floppy disk subsystem. The I/0 system is accessed by passing

a "function number" and an "information address" to CP/M through

the address marked "entry" in Figure 1. In the case of a disk

read, for example, the transient program sends the number corres-

ponding to a disk read, along with the address of an FCB, and

CP/M performs the operation, returning with either a disk read

complete indication or an error number indicating that the disk

operation was unsuccessful. The function numbers and error in-

dicators are given in detail in Section 3.3.

 1.3 Operating System Facilities

 CP/M facilities which are available to transients are divided

into two categories: BIOS operations, and BDOS primitives. The

BIOS operations are listed first:**

* Address "entry" contains a jump to the lowest address in the

FDOS, and thus "entry+1" contains the first FDOS address which

cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres-

ponds exactly to Intel's peripheral definition, including I/0

port assignment and status byte format (see the Intel manual

which discusses the Intellec MDS hardware environment).

 4

 Read Console Character

 Write Console Character

 Read Reader Character

 Write Punch Character

 Write List Device Character

 Set I/0 Status

 Interrogate Device Status

 Print Console Buffer

 Read Console Buffer

 Interrogate Console Status

The exact details of BIOS access are given in Section 2.

The BDOS primitives include the following operations:

 Disk System Reset

 Drive Select

 File Creation

 File Open

 File Close

 Directory Search

 File Delete

 File Rename

 Read Record

 Write Record

 Interrogate Available Disks

 Interrogate Selected Disk

 Set DMA Address

The details of BDOS access are given in Section 3.

2. BASIC I/0 FACILITIES

Access to common peripherals is accomplished by passing a

function number and information address to the BIOS. In general,

the function number is passed in Register C, while the informa-

tion address is passed in Register pair D,E. Note that this

conforms to the PL/M conventions for parameter passing, and thus

the following PL/M procedure is sufficient to link to the BIOS

when a value is returned:

 DECLARE ENTRY LITERALLY '0005H'; /* MONITOR ENTRY */

 MON2: PROCEDURE (FUNC, INFO) BYTE;

 DECLARE FUNC BYTE, INFO ADDRESS;

 GO TO ENTRY;

 END MON2;

 5

or

 MON1: PROCEDURE (FUNC,INFO);

 DECLARE FUNC BYTE, INFO ADDRESS;

 GO TO ENTRY;

 END MON1

if no returned value is expected.

 2.1 Direct and Buffered I/0.

The BIOS entry points are given in Table I. in the case of

simple character I/0 to the console, the BIOS reads the console

device, and removes the parity bit. The character is echoed back

to the console, and tab characters (control-I) are expanded to

tab positions starting at column one and separated by eight char-

acter positions. The I/0 status byte takes the form shown in

Table I, and can be programmatically interrogated or changed.

The buffered read operation takes advantage of the CPM line edit-

ing facilities. That is, the program sends the address of a read

buffer whose first byte is the length of the buffer. The second

byte is initially empty, but is filled-in by CPM to the number

of characters read from the console after the operation (not

including the terminating carriage-return). The remaining posi-

tions are used to hold the characters read from the console. The

BIOS line editing functions which are performed during this oper-

ation are given below:

 break - line delete and transmit

 rubout - delete last character typed, and echo

 control-C - system rebout

 control-U - delete entire line

 control-E - return carriage, but do not transmit

 buffer (physical carriage return)

 <cr> - transmit buffer

The read routine also detects control character sequences other

than those shown above, and echos them with a preceding "^"

symbol. The print entry point allows an entire string of symbols

to be printed before returning from the BIOS. The string is

terminated by a "$" symbol.

 2.2 A Simple Example

 As an example, consider the following PL/M procedures and

procedure calls which print a heading, and successively read

the console buffer. Each console buffer is then echoed back in

reverse order:

6

PRINTCHAR: PROCEDURE (B);

 /* SEND THE ASCII CHARACTER B TO THE CONSOLE */

 DECLARE B BYTE:

 CALL MON1 (2, B)

 END PRINTCHAR;

CRLF: PROCEDURE;

 /* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */

 CALL PRINTCHAR (ODH);

 CALL PRINTCHAR (OAH);

 END CRLF;

PRINT: PROCEDURE (A);

 /* PRINT THE BUFFER STARTING AT ADDRESS A */

 DECLARE A ADDRESS;

 CALL MON1(9,A);

 END PRINT;

DECLARE RDBUFF (130) BYTE;

READ: PROCEDURE;

 /* READ CONSOLE CHARACTERS INTO 'RDBUFF' */

 RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */

 CALL MON1(10,.RDBUFF);

 END READ;

DECLARE I BYTE;

CALL CRLF; CALL PRINT (.'TYPE INPUT LINES $');

 DO WHILE 1; /* INFINITE LOOP-UNTIL CONTROL-C */

 CALL CRLF; CALL PRINTCHAR ('*'); /* PROMPT WITH '*' */

 CALL READ; I = RDBUFF(1);

 DO WHILE (I:= I -1) <> 255;

 CALL PRINTCHAR (RDBUFF(I+2));

 END;

 END;

The execution of this program might proceed as follows:

{ <cr> = carriage return }

 TYPE INPUT LINES

 *HELLO<cr>

 OLLEH

 *WALL WALLA WASH<cr>

 HSAW ALLAW ALLAW

 *mom wow<cr>

 *wow mom

 *^C (system reboot)

 7

 TABLE I

 BASIC I/0 OPERATIONS

+----------------+-----------------+-----------------+---------------------+

| FUNCTION/ | ENTRY | RETURNED | TYPICAL |

| NUMBER | PARAMETERS | VALUE | CALL |

+----------------+-----------------+-----------------+---------------------+

| Read Console | None | ASCII character | I = MON2(1,0) |

| 1 | | | |

+----------------+-----------------+-----------------+---------------------+

| Write Console | ASCII Character | None | CALL MON1(2,'A') |

| 2 | | | |

+----------------+-----------------+-----------------+---------------------+

| Read Reader | None | ASCII character | I = MON2(3,0) |

| 3 | | | |

+----------------+-----------------+-----------------+---------------------+

| Write Punch | ASCII Character | None | CALL MON1(4,'B') |

| 4 | | | |

+----------------+-----------------+-----------------+---------------------+

| Write List | ASCII Character | None | CALL MON1(5,'C') |

| 5 | | | |

+----------------+-----------------+-----------------+---------------------+

| Get I/0 Status | None | I/0 Status Byte | IOSTAT=M0N2(7,0) |

| 7 | | | |

+----------------+-----------------+-----------------+---------------------+

| | | | |

| Set I/0 Status | I/0 Status Byte | None | CALL MON1(8,IOSTAT) |

| 8 | | | |

+----------------+-----------------+-----------------+---------------------+

| Print Buffer | Address of | None | CALL MON1(9, .PRINT |

| 9 | string termi- | | THIS $') |

| | nated by '$' | | |

+----------------+-----------------+-----------------+---------------------+

 8

 TABLE I (continued)

+----------------+-----------------+-----------------+---------------------+

| FUNCTION/ | ENTRY | RETURNED | TYPICAL |

| NUMBER | PARAMETERS | VALUE | CALL |

+----------------+-----------------+-----------------+---------------------+

| Read Buffer | Address of | Read buffer is | CALL MON1(10, |

| 10 | Read Buffer |filled to maxi- | .RDBUFF); |

| | |mum length with | |

| | |console charac- | |

| | (See Note 1) | ters | |

+----------------+-----------------+-----------------+---------------------+

| Interrogate | None | Byte value with | I = MON2(11,0) |

| Console Ready | | least signifi- | |

| | | cant bit = 1 | |

| | | (true) if con- | |

| | | sole character | |

| | | is ready | |

+----------------+-----------------+-----------------+---------------------+

Note 1. Read buffer is a sequence of memory locations of the form:

 +---+---+----+----+----+-- -+----+---+---+---+

 | m | k | c1 | c2 | c3 | | ck | | | |

 +---+---+----+----+----+-- -+----+---+---+---+

 ^ ^

 | |--current buffer length

 +------Maximum buffer length

Note2 The I/0 status byte is defined as three fields A,B,C, and D

 2b 2b 2b 2b

 +---+---+---+---+

 | A | B | C | D |

 +---+---+---+---+

 MSB LSB

 requiring two bits each, listed from most significant to least

 significant bit, which define the current device assignment as

 follows:

 0 TTY 0 TTY 0 TTY 0 TTY

 D = 1 CRT C = 1 FAST READER B = 1 FAST PUNCH A = 1 CRT

 Console 2 BATCH Reader 2 - Punch 2 - List 2 -

 3 - 3 - 3 - 3 -

 9

3. DISK I/0 FACILITIES

 The BDOS section of CP/M provides access to files stored on

diskettes. The discussion which follows gives the overall file

organization, along with file access mechanisms.

 3.1 File organization

 CP/M implements a named file structure on each diskette, pro-

viding a logical organization which allows any particular file to

contain any number of records, from completely empty, to the full

capacity of a diskette. Each diskette is logically distinct,

with a complete operating system, disk directory, and file data

area. The disk file names are in two parts: the <filename>

which can be from one to eight alphanumeric characters, and the

<filetype> which consists of zero through three alphanumeric

characters. The <filetype> names the generic category of a par-

ticular file, while the <filename> distinguishes a particular

file within the category. The <filetype>s listed below give

some generic categories which have been established, although

they are generally arbitrary:

 ASM assembler source file

 PRN assembler listing file

 HEX assembler or PL/M machine code

 in "hex" format

 BAS BASIC Source file

 INT BASIC Intermediate file

 COM Memory image file (i.e., "Command"

 file for transients. produced by LOAD)

 BAK Backup file produced by editor

 (see ED manual)

 $$$ Temporary files created and normally

 erased by editor and utilities

Thus, the name

 X.ASM

is interpreted as an assembly language source file by the CCP

with <filename> X.

 The files in CPM are organized as a logically contigous se-

quence of 128 byte records (although the records may not be phys-

ically contiguous on the diskette), which are normally read or

written in sequential order. Random access is allowed under CPM

however, as described in Section 3.4. No particular format with-

in records in assumed by CPM, although some transients expect

particular formats:

 10

 (1) Source files are considered a sequence of

 ASCII characters, where each "line" of the

 source file is followed by carriage-return-

 line-feed characters. Thus, one 128 byte

 CP/M record could contain several logical

 lines of source text. Machine code "hex"

 tapes are also assumed to be in this for-

 mat, although the loader does not require

 the carriage-return-line-feed characters.

 End of text- is given by the character con-

 trol-z, or real end-of-file returned by

 CP/M.

and

 (2) COM files are assumed to be absolute machine

 code in memory image form, starting at tbase

 in memory. In this case, control-z is not

 considered an end of file. but instead is

 determined by the actual space allocated

 to the file being accessed.

 3.2 File Control Block Format

 Each file being accessed through CP/M has a corresponding

file control block (FCB) which provides name and allocation

information for all file operations. The FCB is a 33-byte area

in the transient program's memory space which is set up for each

file. The FCB format is given in Figure 2. When accessing CP/M

files, it is the programmer's responsibility to fill the lower

16 bytes of the FCB, along with the CR field. Normally, the FN

and FT fields are set to the ASCII <filename> and <filetype>,

while all other fields are set to zero. Each FCB describes up

to 16K bytes of a particular file (0 to 128 records of 128 bytes

each), and, using automatic mechanisms of CP/M, up to 15 addi-

tional extensions of the file can be addressed. Thus, each FCB

can potentially describe files up to 256K bytes (which is slightly

larger than the diskette capacity).

 FCB's are stored in a directory area of the diskette, and are

brought into central memory before file operations (see the OPEN

and MAKE commands) then updated in memory,as file operations pro-

ceed, and finally recorded on the diskette at the termination of

the file operation (see the CLOSE command). This organization

makes CP/M file organization highly reliable, since diskette file

integrity can only be disrupted in the unlikely case of hardware

failure during update of a single directory entry.

 It should be noted that the CCP constructs an FCB for all

transients by scanning the remainder of the line following the

transient name for a <filename> or <filename>.<filetype> com-

bination. Any field not specified is assumed to be all blanks.

A properly formed FCB is set up at location tfcb (see Section 6),

with an assumed I/0 buffer at tbuff. The transient can use tfcb

as an address in subsequent input or output operations on this

file.

 10a

 In addition to the default fcb which is set-up at address tfcb, the

CCP also constructs a second default fcb at address tfcb+16 (i.e., the

disk map field of the fcb at tbase). Thus, if the user types

 PROGNAME X.ZOT Y.ZAP

the file PROGNAME.COM is loaded to the TPA, and the default fcb at tfcb

is initialized to the filename X with filetype ZOT. Since the user typed

a second file name, the 16 byte area beginning at tfcb + 16D is also

initialized with the filename Y and filetype ZAP. It is the responsibility

of the program to move this second filename and filetype to another area

(usually a separate file control block) before opening the file which

begins at tbase, since the open operation will fill the disk map portion,

thus cverwriting the second name and type.

 If no file names were specified in the original command, then the

fields beginning at tfcb and tfcb + 16 both contain blanks (20H). If

one file name was specified, then the field at tfcb + 16 contains blanks.

If the filetype is omitted, then the field is assumed to contain blanks.

In all cases, the CCP translates lower case alphabetics to upper case

to be consistent with the CP/M file naming conventions.

 As an added programming convenience, the default buffer at tbuff

is initialized to hold the entire command line past the program name.

Address thuff contains the number of characters, and tbuff+l, tbuff+2,

..., contain the remaining characters up to, but not including, the

carriage return. Given that the above command has been typed at

the console, the area beginning at thuff is set up as follows:

 thuff:

 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15

 12 bl X . Z 0 T bl Y . Z A P ? ? ?

where 12 is the number of valid characters (in binary), and bl represents

an ASCII blank. Characters are given in ASCII upper case, with un-

initialized memory following the last valid character.

 Again, it is the responsibility of the program to extract the infor-

mation from this buffer before any file operations are performed since

the FDOS uses the tbuff area to perform directory functions.

 In a standard CP/M system, the following values are assumed:

 boot: 0000H bootstrap load (warm start)

 entry: 0005H entry point to FDOS

 tfcb: 005CH first default file control block

 tfcb+16 006CH second file name

 tbuff 0080H default buffer address

 tbase: 0100H base of transient,area

 11

 Figure 2. File Control Block Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ... 27 28 29 30 31 32

| _____________/ _____/ | | ____________________________/ |

ET FN FT EX RC DM NR

 FIELD FCB POSITIONS PURPOSE

 ET 0 Entry type (currently not used,

 but assumed zero)

 FN 1-8 File name, padded with ASCII

 blanks

 FT 9-11 File type, padded with ASCII

 blanks

 EX 12 File extent, normally set to

 zero

 13-14 Not used, but assumed zero

 RC 15 Record count is current extent

 Size (0 to 128 records)

 DM 16-31 Disk allocation map, filled-in

 and used by CP/M

 NR 32 Next record number to read or

 write

 12

 3.3 Disk Access Primitives

 Given that a program has properly initialized the FCB's for

each of its files, there are several operations which can be per-

formed, as shown in Table II. In each case, the operation is

applied to the currently selected disk (see the disk select oper-

ation in Table II), using the file information in a specific FCB.

The following PL/M program segment, for example, copies the con-

tents of the file X.Y to the (new) file NEW.FIL:

DECLARE RET BYTE,.

OPEN: PROCEDURE (A)

 DECLARE A ADDRESS;

 RET=MON2(15,A);

 END OPEN;

CLOSE: PROCEDURE (A);

 DECLARE A ADDRESS;

 RET=MON2(16,A);

 END;

MAKE: PROCEDURE (A);

 DECLARE A ADDRESS;

 RET=MON2(22.A);

 END MAKE;

DELETE: PROCEDURE (A);

 DECLARE A ADDRESS;

 /* IGNORE RETURNED VALUE */

 CALL MON1(19,A);

 END DELETE;

READBF: PROCEDURE (A);

 DECLARE A ADDRESS;

 RET=MON2(20,A);

 END READBF;

WRITEBF: PROCEDURE (A);

 DECLARE A ADDRESS;

 RET=MON2(2l,A);

 END WRITEBF;

INIT: PROCEDURE;

 CALL MON1(13,0);

 END INIT;

/* SET UP FILE CONTROL BLOCKS */

DECLARE FCB1 (33) BYTE

 INITIAL (0.'X ','Y ',0,0,0,0),

 FCB2 (33) BYTE

 INITIAL (0.'NEW ','FIL',0,0,0,0);

 13

CALL INIT;

/* ERASE 'NEW.FIL' IF IT EXISTS */

CALL DELETE (.FCB2);

/* CREATE''NEW.FIL' AND CHECK SUCCESS */

CALL MAKE (.FCB2);

IF RET = 255 THEN CALL PRINT (.'NO DIRECTORY SPACE $');

 ELSE

 DO; /* FILE SUCCESSFULLY CREATED, NOW OPEN 'X.Y' */

 CALL OPEN (.FCB1);

 IF RET = 255 THEN CALL PRINT (.'FILE NOT PRESENT $');

 ELSE

 DO; /* FILE X.Y FOUND AND OPENED, SET

 NEXT RECORD TO ZERO FOR BOTH FILES */

 FCB1(32), FCB2(32) = 0;

 /* READ FILE X.Y UNTIL EOF OR ERROR */

 CALL READBF (.FCB1); /*READ TO 80H*/

 DO WHILE RET = 0;

 CALL WRITEBF (.FCB2) /*WRITE FROM 80H*/

 IF RET = 0 THEN /*GET ANOTHER RECORD*/

 CALL READBF (.FCB1); ELSE

 CALL PRINT (.'DISK WRITE ERROR $');

 END;

 IF RET < >1 THEN CALL PRINT (.' TRANSFER ERROR $');

 ELSE

 DO; CALL CLOSE (.FCB2);

 IF RET = 255 THEN CALL PRINT (.'CLOSE ERROR$');

 END;

 END;

 END;

EOF

 This program consists of a number of utility procedures for

opening, closing, creating, and deleting files, as well as two

procedures for reading and writing data. These utility procedures

are followed by two FCB's for the input and output files. In

both caseS, the first 16 bytes are initialized to the <filename>

and <filetype> of the input and output files. The main program

first initializes the disk system, then deletes any existing

copy of "NEW.FIL" before starting. The next step is to create

a new directory entry (and empty file) for "NEW.FIL". If file

creation is successful, the input file "X.Y" is opened. If this

second operation is also successful, then the disk to disk copy

can proceed. The NR fields are set to zero so that the first

record of each file is accessed on subsequent disk I/0 operations.

The first call to READBF fills the (implied) DMA buffer at 80H

with the first record from X.Y. The loop which follows copies

the record at 80H to "NEW.PIL" and then reports any errors, or

reads another 128 bytes from X.Y. This transfer operation con-

tinues until either all data has been transferred, or an error

condition arises. If an error occurs, it in reported; otherwise

the new file is closed and the program halts.

 TABLE II

 DISK ACCESS PRIMITIVES

 FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL

 Lift Head None None CALL MON2(12,0)

 12 Head is lifted from

 current drive

 Initialize BDOS None None CALL MON1(13,0)

 and select disk Side effect is that

 "A" disk A is"logged-

 Set DMA address in" while all others

 to 80H are considered "off-

 13 line"

 Log-in and An integer value cor- None CALL MON1(14,1)

 select disk responding to the Disk X is considered

 X disk to log-in: on-line" and selec- (log-in disk "B")

 14 A=0, B=1, C=2, etc. ted for subsequent

 file operations

 Open file Address of the FCB Byte address of the I = MON2(15,.FCB)

 15 for the file to be FCB in the directory,

 accessed if found, or 255 if

 file not present.

 The DM bytes are set

 by the BDOS.

 Close file Address of an FCB Byte address of the I = MON2(16,.FCB)

 16 which has been pre- directory entry cor-

 viously created or responding to the

 opened FCB, or 255 if not

 present

 14

 TABLE II (continued)

 FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL

 Search for file Address of FCB con- Byte address of first I = MON2(17,.FCB)

 17 taining <filename> FCB in directory that

 and <filetype> to matches input FCB, if

 match. ASCII "?" any; otherwise 255

 in FCB matches any indicates no match.

 character.

 Search for next Same as above, but Byte address of next I = MON2(18,.FCB)

 occurrence called after func-

 18 tion 17 no other

 intermediate BDOS

 calls allowed)

 Delete File Address of FCB con- None I = MON2(19,.FC;:)

 19 taining <filename>

 and <filetype> of

 file to delete from

 diskette

 Read Next Record Address of FCB of a 0 = successful read I = MON2(20,4FCB)

 20 successfully OPENed 1 = read past end of

 file, with NR set file

 to the next record 2 = reading unwritten

 to read (see note 1) data in random

 access

Note 1. The I/0 operations transfer data to/from address 80H for the next 128 bytes unless

 the DMA address has been altered (see function 26). Further, the NR field of the

 FCB is automatically incremented after the operation. If the NR field exceeds 128,

 the next extent is opened automatically, and the NR field is reset to zero.

 15

 TABLE II (continued)

 FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL

 Write Next Record Same as above, except 0 = successful write MON2(21,.FCB)

 21 NR is set to the next 1 = error in extend-

 record to write ing file

 2 = end of disk data

 255 = no more dir-

 ectory space

 (see note 2)

 Make File Address of FCB with Byte address of dir- MON2(22,.FCB)

 22 <filename> and <file- ectory entry alloca-

 type> set. Direc- ted to the FCB, or

 tory entry is cre- 255 if no directory

 ated, the file is space is available

 initialized to empty.

 Rename FCB Address of FCB with Address of the dir- MON2(23,.FCB)

 23 old FN and FT in ectory entry which

 first 16 bytes, and matches the first

 new FN and FT in 16 bytes. The

 second 16 bytes <filename>and <file-

 type> is altered

 255 if no match.

Note 2. There are normally 64 directory entries available on each diskette (can be

 expanded to 255 entries), where one entry is required for the primary file,

 and one for each additional extent.

 16

 TABLE II (continued)

 FUNCTION/NUMBER ENTRY PARAMETERS RETURNED VALUE TYPICAL CALL

 Interrogate log- None Byte value with "1" I = MON2(24,0)

 in vector in bit positions of

 24 "on line" disks,

 with least signi-

 ficant bit corres-

 ponding to disk "A"

 Set DMA address Address of 128 byte None CALL MON1(26,2000H)

 26 DMA buffer Subsequent disk I/0

 takes place at spe-

 cified address in

 memory

 Interrogate None Address of the allo- MON3: PROCEDURE(...)

 Allocation cation vector for ADDRESS;

 27 the current disk

 (used by STATUS com- A = MON3(27,0);

 mand)

 Interrogate Drive None Disk number of currently I = MON2(25,0);

 number logged disk (i.e., the

 25 drive which will be used

 for the next disk operation

 17

 18

 3.4 Random Access

 Recall that a single FCB describes up to a 16K segment of a

(possibly) larger file. Random access within the first 16K seg-

ment is accomplished by setting the NR field to the record number

of the record to be accessed before the disk I/0 takes place.

Note, however, that if the 128th record is written, then the

BDOS automatically increments the extent field (EX), and opens

the next extent, if possible. in this case, the program must

explicitly decrement the EX field and re-open the previous extent.

If random access outside the first 16K segment is necessary,

then the extent number e be explicitly computed. given an absol-

ute record number r as

 | r |

 e = | --- |

 L 128 |

or equivalently,

 e = SHR(r,7)

this extent number is then placed in the EX field before the seg-

ment is opened. The NR value n is then computed as

 n= r mod 128

or

 n = r AND 7FH.

When the programmer expects considerable cross-segment accesses,

it may save time to create an FCB for each of the 16K segments,

open all segments for access, and compute the relevant FCB from

the absolute record number r.

4. SYSTEM GENERATION

 As mentioned previously, every diskette used under CP/M is assumed to

contain the entire system (excluding transient coomnds) on the first two

tracks. The operating system need not be present, however, if the diskette

is only used as secondary disk storage on drives B, C, ..., since the CP/M

system is loaded only from drive A.

 The CP/M file system is organized so that an IBM-compatible diskette

from the factory (or from a vendor which claims IBM compatibility) looks

like a diskette with an empty directory. Thus, the user must first copy

a version of the CP/M system from an existing diskette to the first two

tracks of the new diskette, followed by a sequence of copy operations,

using PIP, which transfer the transient command files from the original

diskette to the new diskette.

 19

NOTE: before you begin the CP/M copy operation, read your Licensing

Agreement. It gives your exact legal obligations when making reproductions

of CP/M in whole or in part, and specifically requires that you place the

copyright notice

 Copyright (c), 1976

 Digital Research

on each diskette which results from the copy operation.

 4.1. Initializing CP/M from an Existing Diskette

 The first two tracks are placed on a new diskette by running the tran-

sient command SYSGEN, as described in the document "An Introduction to CP/M

Features and Facilities." The SYSGEN operation brings the CP/M system from

an initialized diskette into memory, and then takes the memory image and

places it on the new diskette.

 Upon completion of the SYSGEN operation, place the original diskette

on drive A, and the initialized diskette on drive B. Reboot the system;

the response should be

 A>

indicating that drive A is active. Log into drive B by typing

 B:

and CP/M should respond with

 B>

indicating that drive B is active. If the diskette in drive B is factory

fresh, it will contain an empty directory. Non-standard diskettes may,

however, appear as full directories to CP/M, which can be emptied by typing

 ERA *.*

when the diskette to be initialized is active. Do not give the ERA command

if you wish to preserve files on the new diskette since all files will be

erased with this command.

 After examining disk B, reboot the CP/M system and return to drive A for

further operations.

 The transient commands are then copied from drive A to drive B using the

PIP program. The sequence of commands shown below, for example, copy the

principal programs from a standard CP/M diskette to the new diskette:

 A>PIP

 *B:STAT.COM=STAT.COM

 *B:PIP.COM=PIP.COM

 *B:LOAD.COM=LOAD.COM

 *B.ED.COM=ED.COM

 20

 *B:ASM.COM=ASM.COM

 *B:SYSGEN.COM=SYSGEN.COM

 *B:DDT.COM=DDT.COM

 *

 A>

The user should then log in disk B, and type the command

 DIR *.*

to ensure that the files were transferred to drive B from drive A. The

various programs can then be tested on drive B to check that they were

transferred properly.

 Note that the copy operation can be simplified somewhat by creating

a "submit" file which contains the copy commands. The file could be

named GEN.SUB, for example, and might contain

 SYSGEN

 PIP B:STAT.COM=STAT.COM

 PIP B:PIP.COM=PIP.COM

 PIP B:LOAD.COM=LOAD.COM

 PIP B:ED.COM=ED.COM

 PIP B:ASM.COM=ASM.COM

 PIP B:SYSGEN.COM=SYSGEN.COM

 PIP B:DDT.COM=DDT.COM

The generation of a new diskette from the standard diskette is then done

by typing simply

 SUBMIT GEN

5. CP/M ENTRY POINT SUMMARY

 The functions shown below summarize the functions of the

FDOS. The function number is passed in Register C (first para-

meter in PL/M), and the information is passed in Registers D,E

(second PL/M parameter). Single byte results are returned in

Register A. If a double byte result is returned, then the high-

order byte comes back in Register B (normal PL/M return). The

transient program enters the FDOS through location "entry" (see

Section 7.) as shown in Section 2. for PL/M, or

 CALL entry

in assembly language. All registers are altered in the FDOS.

 21

Function Number Information Result

-------- ------ ----------- ------

 0 System Reset

 1 Read Console ASCII character

 2 Write Console ASCII character

 3 Read Reader ASCII character

 4 Write Punch ASCII character

 5 Write List ASCII character

 6 (not used)

 7 Interrogate I/0 Status I/0 Status Byte

 8 Alter I/0 Status I/0 Status Byte

 9 Print Console Buffer Buffer Address

10 Read Console Buffer Buffer Address

11 Check Console Status True if character

 Ready

12 Lift Disk Head

13 Reset Disk System

14 Select Disk Disk number

15 Open File FCB Address Completion Code

16 Close File " "

17 Search First " "

18 Search Next " "

19 Delete File " "

20 Read Record " "

21 Write Record " "

22 Create File " "

23 Rename File " "

24 Interrogate Login Login vector

25 Interrogate Disk Selected Disk

 Number

26 Set DMA Address DMA Address

27 Interrogate Allocation Address of Allo-

 cation-vector

 22

6. ADDRESS ASSIGNMENTS

 The standard distribution version of CP/M is organized for an Intel

MDS microcomputer developmental system with 16K of main memory, and two

diskette drives. Larger systems are available in 16K increments, providing

management of 32K, 48K, and 64K systems (the largest MDS system is 62K

since the ROM monitor provided with the MDS resides in the top 2K of the

memory space). For each additional 16K increment, add 4000H to the values

of cbase and fbase.

 The address assignments are

 boot = 0000H warm start operation

 tfcb = 005CH default file control block location

 tbuff= 0080H default buffer location

 tbase= 0100H base of transient program area

 cbase= 2900H base of console command processor

 fbase= 3200H base of disk operating system

 entry= 0005H entry point to disk system from

 user programs

 23

7. SAMPLE PROGRAMS

 This section contains two sample programs which interface with the CP/M

operating system. The first program is written in assembly language, and

is the source program for the DUMP utility. The second program is the CP/M

LOAD utility, written in PL/M.

 The assembly language program begins with a number of "equates" for sys-

tem entry points and program constants. The equate

 BDOS EQU OOOSH

for example, gives the CP/M entry point for peripheral I/0 functions. The

defualt file control block Address is also defined (FCB), along with the

default buffer address (BUFF). Note that the program is set up to run at

location 100H, which is the base of the transient program area. The stack

is first set-up by saving the entry stack pointer into OLDSP, and resetting

SP to the local stack. The stack pointer upon entry belongs to the console

command processor, and need not be saved unless control is to return to the

CCP upon exit. That is, if the program terminates with a reboot (branch to

location 0000H) then the entry stack pointer need not be saved.

 The program then jumps to MAIN, past a number of subroutines which are

listed below:

 BREAK - when called, checks to see if there is a console

 character ready. BREAK is used to stop the listing

 at the console

 PCHAR - print the character which is in register A at the

 console.

 CRLF - send carriage return and line feed to the console

 PNIB - print the hexadecimal value in register A in ASCII

 at the console

 PHEX - print the byte value (two ASCII characters) in

 register A at the console

 ERR - print error flag #n at the console, where n is

 1 if file cannot be opened

 2 if disk read error occurred

 GNB - get next byte of data from the input file. If the

 IBP (input buffer pointer) exceeds the size of the

 input buffer, then another disk record of 128 bytes

 is read. Otherwise, the next character in the buffer

 is returned. IBP is updated to point to the next

 character.

 24

The MAIN program then appears, which begins by calling SETUP. The SETUP

subroutine, discussed below, opens the input file and checks for errors.

If the file is opened properly, the GLOOP (get loop) label gets control.

 On each successive pass through the GLOOP label, the next data byte

is fetched using GNB and save in register B. The line addresses are listed

every sixteen bytes, so there must be a check to see if the least signi-

ficant 4 bits is zero on each output. If so, the line address is taken

from registers h and l, and typed at the left of the line. In all cases,

the byte which was previously saved in register B is brought back to

register A, following label NONUM, and printed in the output line. The

cycle through GLOOP continues until an end of file condition is detected

in DISKR, as described below. Thus, the output lines appear as

 0000 bb bb bb bb bb bbibb bb bb bb bb bb bb bb bb bb

 0010 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

until the end of file.

 The label FINIS gets control upon end of file. CRLF is called first

to return the carriage from the last line output. The CCP stack pointer

is then reclaimed from OLDSP, followed by a RET to return to the console

command processor. Note that a JMP 0000H could be used following the

FINIS label, which would cause the CP/M system to be brought in again from

the diskette (this operation is necessary only if the CCP has been over-

layed by data areas).

 The file control block format is then listed (FCBDN ... FCBLN) which

overlays the fcb at location 05CH which is setup by the CCP when the

DUMP program is initiated. That is, if the user types

 DUMP X.Y

then the CCP sets up a properly formed fcb at location 05CH for the DUMP

(or any other) program when it goes into execution. Thus, the SETUP sub-

routine simply addresses this default fcb, and calls the disk system to

open it. The DISKR (disk read) routine is called whenever GNB needs another

buffer full of data. The default buffer at location 80H is used, along

with a pointer (IBP) which counts bytes a they are processed. Normally,

an end of file condition is taken as either an ASCII 1AH (control-z), or

an end of file detection by the DOS. The file dump program, however, stops

only on a DOS end of file.

 25

 ; FILE DUMP PROGRAM, READS AN INPUT FILE AND PRINTS IN HEX

 ;

 ; COPYRIGHT (C), DIGITAL RESEARCH, 1975, 1976

 ;

0100 ORG 100H

0005 = BDOS EQU 0005H ;DOS ENTRY POINT

000F = OPENF EQU 15 ;FILE OPEN

0014 = READF EQU 20 ;READ FUNCTION

0002 = TYPEF EQU 2 ;TYPE FUNCTION

0001 = CONS EQU 1 ;READ CONSOLE

000B = BRKF EQU 11 ;BREAK KEY FUNCTION (TRUE IF CHAR READY)

 ;

005C = FCB EQU 5CH ;FILE CONTROL BLOCK ADDRESS

0080 = BUFF EQU 80H ;INPUT DISK BUFFER ADDRESS

 ;

 ; SET UP STACK

0100 210000 LXI H,0

0103 39 DAD SP

0104 220F01 SHLD OLDSP

0107 315101 LXI SP,STKTOP

010A C3C401 JMP MAIN

 ; VARIABLES

010D IBP: DS 2 ;INPUT BUFFER POINTER

 ;

 ; STACK AREA

010F OLDSP: DS 2

0111 STACK: DS 64

0151 STKTOP EOU $

 ;

 ;SUBROUTINES

 ;

 BREAK: ;CHECK BREAK KEY (ACTUALLY ANY KEY WILL DO)

0151 E5D5C5 PUSH H! PUSH D! PUSH B; ENVIRONMENT SAVED

0154 0E0B MVI C,BRKF

0156 CD0500 CALL BDOS

0159 C1DIL1 POP B! POP D! POP H; ENVIRONMENT RESTORED

015C C9 RET

 ;

 PCHAR: ;PRINT A CHARACTER

015D E5D5C5 PUSH H! PUSH D! PUSH B; SAVED

0160 0E02 MVI C,TYPEF

0162 5F MOV E,A

0163 CD0500 CALL BDOS

0166 CID1E1 POP B! POP D! POP H; RESTORED

0169 C9 RET

 ;

 CRLF:

016A 3E0D MVI A,ODH

016C CDSDOI CALL PCHAR

016F 3E0A MVI A,OAH

0171 CD5DO1 CALL PCHAR

0174 C9 RET

 ;

 ;

 PNIB: ;PRINT NIBBLE IN REG A

0175 E6OF ANI 0FH ;LOW 4 BITS

0177 FEOA CPI 10

0179 D28101 JNC P10

 26

 ; LESS THAN OR EQUAL TO 9

017C C630 ADI '0'

017E C38301 JMP PRN

 ;

 ; GREATER OR EQUAL TO 10

0181 C637 P10: ADI 'A' - 10

0183 CD5DO1 PRN: CALL PCHAR

0186 C9 RET

 ;

 PHEX: ;PRINT HEX CHAR IN REG A

0187 F5 PUSH PSW

0188 0F RRC

0189 0F RRC

018A 0F RRC

018B 0F RRC

018C CD7501 CALL PNIB ;PRINT NIBBLE

018F Fl POP PSW

0190 CD7501 CALL PNIB

0193 C9 RET

 ;

 ERR: ;PRINT ERROR MESSAGE

0194 CD6A01 CALL CRLF

0197 3E23 MVI A,'#'

0199 CD5DO1 CALL PCHAR

019C 78 MOV A,B

0190 C630 ADI '0'

019F CD5DO1 CALL PCHAR

01A2 CD6A01 CALL CRLF

01AS C3F701 JMP FINIS

 ;

 GNB: ;GET NEXT BYTE

01A8 3A0DO1 LDA IBP

01AB FE80 CPI 80H

01AD C2B401 JNZ GO

 ; READ ANOTHER BUFFER

 ;

 ;

0180 CD1602 CALL DISKR

01B3 AF XRA A

 G0: ;READ THE BYTE AT BUFF+REG A

01B4 5F MOV E,A

01B5 1600 MVI D,0

01B7 3C INR A

01B8 320DO1 STA IBP

 ; POINTER IS INCREMENTED

 ; SAVE THE CURRENT FILE ADDRESS

01BB E5 PUSH H

01BC 218000 LXI H,BUFF

01BF 19 DAD D

01C0 7E MOV A,M

 ; BYTE IS IN THE ACCUMULATOR

 ;

 ; RESTORE FILE ADDRESS AND INCREMENT

01C1 El POP H

01C2 23 INX H

01C3 C9 RET

 ;

 MAIN: ; READ AND PRINT SUCCESSIVE BUFFERS

01C4 CDFF01 CALL SETUP ;SET UP INPUT FILE

 27

01C7 3E80 MVI A, 80H

01C9 320DO1 STA IBP ;SET BUFFER POINTER TO 80H

01CC 21FFFF LXI H,OFFFFH ;SET TO -1 TO START

 ;

 GLOOP:

01CF CDA801 CALL GNB

01D2 47 MOV B,A

 ; PRINT HEX VALUES

 ;

 ; CHECK FOR LINE FOLD

01D3 7D MOV A,L

01D4 E60F ANI 0FH ;CHECK LOW 4 BITS

01D6 C2EB01 JNZ NONUM

 ; PRINT LINE NUMBER

01D9 CD6A01 CALL CRLF

 ;

 ; CHECK FOR BREAK KEY

01DC CD5101 CALL BREAK

01DF 0F RRC

01E0 DAF701 JC FINIS ;DON'T PRINT ANY MORE

 ;

01E3 7C MOV A,H

01E4 CD8701 CALL PHEX

01E7 7D mov A,L

01E8 CD8701 CALL PHEX

 NONUM:

01EB 3E20 MVI A,' '

01ED CD5D01 CALL PCHAR

01F0 78 MOV A,B

01F1 CD8701 CALL PHEX

01F4 C3CF01 JMP GLOOP

 ;

 EPSA: ;END PSA

 ;END OF INPUT

 FINIS:

01F7 CD6A01 CALL CRLF

01FA 2A0F01 LHLD OLDSP

01FD F9 SPHL

01FE C9 RET

 ;

 ;

 ; FILE CONTROL BLOCK DEFINITIONS

005C = FCBDN EOU FCB+0 ;DISK NAME

005D = FCBFN EQU FCB+1 ;FILE NAME

0065 = FCBFT EQU FCB+9 ;DISK FILE TYPE (3 CHARACTERS)

0068 = FCBRL EOU FCB+12 ;FILE'S CURRENT REEL NUMBER

006B = FCBRC EQU FCB+15 ;FILE'S RECORD COUNT (0 TO 128)

007C = FCBCR EQU FCB+32 ;CURRENT (NEXT) RECORD NUMBER (0 TO 127)

007D = FCBLN EQU FCB+33 ;FCB LENGTH

 ;

 ;

 SETUP: ;SET UP FILE

 ; OPEN THE FILE FOR INPUT

01FF 115C00 LXI D,FCB

0202 0E0F MVI C,OPENF

0204 CD0500 CALL BOOS

 ; CHECK FOR ERRORS

0207 FEFF CPI 255

0209 C21102 JNZ OPNOK

 28

 ; BAD OPEN

020C 0601 MVI B,1 ;OPEN ERROR

020E CD9401 CALL ERR

 ;

 OPNOK: ;OPEN IS OK.

0211 AF XRA A

0212 327C00 STA FCBCR

0215 C9 RET

 ;

 DISKR: ;READ DISK FILE RECORD

0216 E5D5C5 PUSH H! PUSH D! PUSH B

0219 115C00 LXI D,FCB

021C 0E14 MVI C,READF

021E CD0500 CALL BDOS

0221 C1D1E1 POP B! POP D! POP H

0224 FEOO CPI 0 ;CHECK FOR ERRS

0226 C8 RZ

 ; MAY BE EOF

0227 FE01 CPI 1

0229 CAF701 JZ FINIS

 ;

022C 0602 MVI B,2 ;DISK READ ERROR

022E CD9401 CALL ERR

 ;

0231 END

 29

 The PL/M program which follows implements the CP/M LOAD utility. The

function is as follows. The user types

 LOAD filename

If filename.HEX exists on the diskette, then the LOAD utility reads the "hex"

formatted machine code file and produces the file

 filename.COM

where the COM file contains an absolute memory image of the machine code,

ready for load and execution in the TPA. If the file does not appear on

the diskette, the LOAD program types

 SOURCE IS READER

and reads an Addmaster paper tape reader which contains the hex file.

 The LOAD program is set up to load and run in the TPA, and, upon com-

pletion, return to the CCP without rebooting the system. Thus, the pro-

gram is constructed as a single procedure called LOADCOM which takes the

form

 0FAH:

 LOADCOM: PROCEDURE;

 /* LIBRARY PROCEDURES */

 MON1: ...

 /* END LIBRARY PROCEDURES */

 MOVE: ...

 GETCHAR: ...

 PRINTNIB: ...

 PRINTHEX: ...

 PRINTADDR: ...

 RELOC: ...

 SETMEM:

 RFADHEX:

 READBYTE:

 READCS:

 MAKEDOUBLE:

 DIAGNOSE:

 END RELOC;

 DECLARE STACK(16) ADDRESS, SP ADDRESS;

 SP = STACKPTR; STACKPTR = .STACK(LENGTH(STACK));

 ...

 CALL REIOC;

 ...

 STACKPTR = SP;

 RETURN 0;

 END LOADCOM;

 ;

 EOF

 30

The label 0FAH at the beginning sets the origin of the compilation to 0FAH,

which causes the first 6 bytes of the compilation to be ignored when loaded

(i.e., the TPA starts at location 100H and thus 0FAH,...,0FFH are deleted

from the COM file). In a PL/M compilation, these 6 bytes are used to set up

the stack pointer and branch around the subroutines in the program. In this

case, there is only one subroutine, called LOADCOM, which results in the

following machine memory image for LOAD

 0FAH: LXI SP,plmstack ;SET SP TO DEFAULT STACK

 0FDH: JMP pastsubr ;JUMP AROUND LOADCOM

 100H: beginning of LOADCOM procedure

 end of LOADCOM procedure

 RET

 pastsubr:

 EI

 HLT

Since the machine code between OFAH and OFFH is deleted in the load,

execution actually begins at the top of LOADCOM. Note, however, that

the initialization of the SP to the default stack has also been deleted;

thus, there is a declaration and initialization of an explicit stack and

stack pointer before the call to RELOC at the end of LOADCOM. This is

necessary only if we wish to return to the CCP without a reboot operation:

otherwise the origin of the program is set to 100H, the declaration of

LOADCOM as a procedure is not necessary, and termination is accomplished

by simply executing a

 GO TO 0000H;

at the end of the program. Note also that the overhead for a system re-

boot is not great (approximately 2 seconds), but can be bothersome for

system utilities which are used quite often, and do not need the extra

space.

 The procedures listed in LOADCOM as "library procedures" are a standard

set of PL/M subroutines which are useful for CP/M interface. The RELOC

procedure contains several nested subroutines for local functions, and

actually performs the load operation when called from LOADCOM. Control

initially starts on line 327 where the stackpointer is saved and re-initialized

to the local stack. The default file control block name is copied to

another file control block (SFCB) since two files may be open at the same

time. The program then calls SEARCH to see if the HEX file exists; if not,

then the high speed reader is used. If the file does exist, it is opened for

input (if possible). The filetype ODM is moved to the default file control

block area, and any existing copies of filename.COM files are removed from

the diskette before creating a new file. The MAKE operation creates a new

file, and, if successful, RELOC is called to read the HEX file and produce

the COM file. At the end of processing by RELOC, the COM file is closed

(line 350). Note that the HEX file does not need to be closed since it

was opened for input only. The data written to a file is not permanently

recorded until the file is successfully closed.

 31

 Disk input characters are read through the procedure GETCHAR on line

137. Although the DMA facilities of CP/M could be used here, the GETCHAR

procedure instead uses the default buffer at location 80H and moves each

buffer into a vector called SBUFF (source buffer) as it is read. on exit,

the GETCHAR procedure returns the next input character and updates the

source buffer pointer (SBP).

 The SETMEM procedure on line 191 performs the opposite function from

GETCHAR. The SETMEM procedure maintains a buffer of loaded machine code

in pure binary form which acts as a "window" on the loaded code. If there

is an attempt by RELOC to write below this window, then the data is ignored.

If the data is within the window, then it is placed into MBUFF (memory

buffer). If the data is to be placed above this window, then the window

is moved up to the point where it would include the data address by writing

the memory image successively (by 128 byte buffers), and moving the base

address of the window. Using this technique, the programmer can recover

from checksum errors on the high-speed reader by stopping the reader,

rewinding the tape for some distance, then restarting LOAD (in this case,

LOADing is resumed by interrupting with a NOP instruction). Again, the

SETMEM procedure uses the default buffer at location 80H to perform the

disk output by moving 128 byte segments to 80H through 0FFH before each

write.

 32

 00001 1

 00002 1 0FAH: DECLARE BDOS LITERALLY '0005H';

 00003 1 /* TRANSIENT COMMAND LOADER PROGRAM

 00004 1

 00005 1 COPYRIGHT (C) DIGITAL RESEARCH

 00006 1 JUNE, 1975

 00007 1 */

 00008 1

 00009 1 LOADCOM: PROCEDURE BYTE;

 00010 2 DECLARE FCBA ADDRESS INITIAL(5CH);

 00011 2 DECLARE FCB BASED FCBA (33) BYTE;

 00012 2

 00013 2 DECLARE BUFFA ADDRESS INITIAL(80H), /* I/0 BUFFER ADDRESS */

 00014 2 BUFFER BASED BUFFA (128) BYTE;

 00015 2

 00016 2 DECLARE SFCB(33) BYTE, /* SOURCE FILE CONTROL BLOCK */

 00017 2 BSIZE LITERALLY '1024-',

 00018 2 EOFILE LITERALLY '1AH',

 00019 2 SBUFF(BSIZE) BYTE /* SOURCE FILE BUFFER */

 00020 2 INITIAL(EOFILE),

 00021 2 RFLAG BYTE, /* READER FLAG */

 00022 2 SBP ADDRESS; /* SOURCE FILE BUFFER POINTER */

 00023 2

 00024 2 /* LOADCOM LOADS TRANSIENT COMMAND FILES TO THE DISK FROM THE

 00025 2 CURRENTLY DEFINED READER PERIPHERAL. THE LOADER PLACES THE MACH

 00026 2 CODE INTO A FILE WHICH APPEARS IN THE LOADCOM COMMAND */

 00027 2 /* ***************** LIBRARY PROCEDURES FOR DISKIO *************** */

 00028 2

 00029 2 MON1: PROCEDURE(F,A);

 00030 3 DECLARE F BYTE,

 00031 3 A ADDRESS;

 00032 3 GO TO BDOS;

 00033 3 END MON1;

 00034 2

 00035 2 MON2: PROCEDURE(F,A) BYTE;

 00036 3 DECLARE F BYTE,

 00037 3 A ADDRESS;

 00038 3 GO TO BDOS;

 00039 3 END MON2;

 00040 2

 00041 2 READRDR: PROCEDURE BYTE;

 00042 3 /* READ CURRENT READER DEVICE */

 00043 3 RETURN MON2(3,0);

 00044 3 END READRDR;

 00045 2

 00046 2 DECLARE

 00047 2 TRUE LITERALLY '1',

 00048 2 FALSE LITERALLY '0',

 00049 2 FOREVER LITERALLY 'WHILE TRUE',

 00050 2 CR LITERALLY '13',

 33

 00051 2 LF LITERALLY '10',

 00052 2 WHAT LITERALLY '63';

 00053 2

 00054 2 PRINTCHAR: PROCEDURE(CHAR);

 00055 3 DECLARE CHAR BYTE;

 00056 3 CALL MON1(2,CHAR);

 00057 3 END PRINTCHAR;

 00058 2

 00059 2 CRLF: PROCEDURE;

 00060 3 CALL PRINTCHAR(CR);

 00061 3 CALL PRINTCHAR(LF);

 00062 3 END CRLF;

 00063 2

 00064 2 PRINT: PROCEDURE(A);

 00065 3 DECLARE A ADDRESS;

 00066 3 /* PRINT THE STRING STARTING AT ADDRESS A UNTIL THE

 00067 3 NEXT DOLLAR SIGN IS ENCOUNTERED */

 00068 3 CALL CRLF;

 00069 3 CALL MON1(9,A);

 00070 3 END PRINT;.

 00071 2

 00072 2 DECLARE DCNT BYTE;

 00073 2

 00074 2 INITIALIZE: PROCEDURE;

 00075 3 CALL MON1(13,0);

 00076 3 END INITIALIZE;

 00077 2

 00078 2 SELECT: PROCEDURE(D);

 00079 3 DECLARE D BYTE;

 00080 3 CALL MON1(14,D);

 00081 3 END SELECT;

 00082 2

 00083 2 OPEN: PROCEDURE(FCB);

 00084 3 DECLARE FCB ADDRESS;

 00085 3 DCNT = MON2(15,FCB);

 00086 3 END OPEN;

 00087 2

 00088 2 CLOSE: PROCEDURE(FCB);

 00089 3 DECLARE FCB ADDRESS;

 00090 3 DCNT = MON2(16,FCB);

 00091 3 END CLOSE;

 00092 2

 00093 2 SEARCH: PROCEDURE(FCB);

 00094 3 DECLARE FCB ADDRESS;

 00095 3 DCNT = MON2(17,FCB);

 00096 3 END SEARCH;

 00097 2

 00098 2 SEARCHN: PROCEDURE;

 00099 3 DCNT = MON2(18,0);

 00100 3 END SEARCHN;

 00101 2

 00102 2 DELETE: PROCEDURE(FCB);

 00103 3 DECLARE FCB ADDRESS;

 00104 3 CALL MON1(19,FCB);

 00105 3 END DELETE;

 00106 2

 00107 2 DISKREAD: PROCEDURE(FCB) BYTE;

 00108 3 DECLARE FCB ADDRESS;

 00109 3 RETURN MON2(20,FCB);

 00110 3 END DISKREAD;

 34

 00111 2

 00112 2 DISKWRITE: PROCEDURE(FCB) BYTE;

 00113 3 DECLARE FCB ADDRESS;

 00114 3 RETURN MON2(2l,FCB);

 00115 3 END DISKWRITE;

 00116 2

 00117 2 MAKE: PROCEDURE(FCB);

 00118 3 DECLARE FCB ADDRESS;

 00119 3 DCNT = MON2(22,FCB);

 00120 3 END MAKE;

 00121 2

 00122 2 RENAME: PROCEDURE(FCB);

 00123 3 DECLARE FCB ADDRESS;

 00124 3 CALL MON1(23,FCB);

 00125 3 END RENAME;

 00126 2

 00127 2 /* ******************* END OF LIBRARY PROCEDURES ************** */

 00128 2

 00129 2 MOVE: PR6CEDURE(S,D,N);

 00130 3 DECLARE (S,D) ADDRESS, N BYTE,

 00131 3 A BASED S BYTE, B BASED D BYTE;

 00132 3 DO WHILE (N:=N-1) <> 255;

 00133 3 B = A; S=S+1; D=D+1;

 00134 4 END;

 00135 3 END MOVE;

 00136 2

 00137 2 GETCHAR: PROCEDURE BYTE;

 00138 3 /* GET NEXT CHARACTER */

 00139 3 DECLARE I BYTE;

 00140 3 IF RFLAG THEN RETURN READRDR;

 00141 3 IF (SBP := SBP+1) <= LAST(SBUFF) THEN

 00142 3 RETURN SBUFF(SBP);

 00143 3 /* OTHERWISE READ ANOTHER BUFFER FULL */

 00144 3 DO SBP = 0 TO LAST(SBUFF) BY 128;

 00145 3 IF (I:=DISKREAD(.SFCB)) = 0 THEN

 00146 4 CALL MOVE(80H,.SBUFF(SBP),80H); ELSE

 00147 4 DO; IF 1<>1 THEN CALL PRINT(.'DISK READ ERROR$');

 00148 5 SBUFF(SBP) = EOFILE;

 00149 5 SBP = LAST(SBUFF);

 00150 5 END;

 00151 4 END;

 00152 3 SBP = 0; RETURN SBUFF;

 00153 3 END GETCHAR;

 00154 2 DECLARE

 00155 2 STACKPOINTER LITERALLY 'STACKPTR';

 00156 2

 00157 2

 00158 2 PRINTNIB: PROCEDURE(N);

 00159 3 DECLARE N BYTE;

 00160 3 IF N > 9 THEN CALL PRINTCHAR(N+'A'-10); ELSE

 00161 3 CALL PRINTCHAR(N+'0');

 00162 3 END PRINTNIB;

 00163 2

 00164 2 PRINTHEX: PROCEDURE(B);

 00165 3 DECLARE B BYTE;

 00166 3 CALL PRINTNIB(SHR(B,4)); CALL PRINTNIB(B AND 0FH);

 00167 3 END PRINTHEX;

 00168 2

 35

 00169 2 PRINTADDR: PROCEDURE(A);

 00170 3 DECLARE A ADDRESS;

 00171 3 CALL PRINTHEX(HIGH(A)); CALL PRINTHEX(LOW(A));

 00172 3 END PRINTADDR;

 00173 2

 00174 2

 00175 2 /* INTEL HEX FORMAT LOADER */

 00176 2

 00177 2 RELOC: PROCEDURE;

 00178 3 DECLARE (RL, CS, RT) BYTE;

 00179 3 DECLARE

 00180 3 LA ADDRESS, /* LOAD ADDRESS */

 00181 3 TA ADDRESS, /* TEMP ADDRESS */

 00182 3 SA ADDRESS, /* START ADDRESS */

 00183 3 FA ADDRESS, /* FINAL ADDRESS */

 00184 3 NB ADDRESS, /* NUMBER OF BYTES LOADED */

 00185 3 SP ADDRESS, /* STACK POINTER UPON ENTRY TO RELOC */

 00186 3

 00187 3 MBUFF(256) BYTE,

 00188 3 P BYTE,

 00189 3 L ADDRESS;

 00190 3

 00191 3 SETMEM: PROCEDURE(B);

 00192 4 /* SET MBUFF TO B AT LOCATION LA MOD LENGTH(MBUFF) */

 00193 4 DECLARE (B,I) BYTE;

 00194 4 IF LA < L THEN /* MAY BE A RETRY */ RETURN;

 00195 4 DO WHILE LA > L + LAST(MBUFF); /* WRITE A PARAGRAPH */

 00196 4 DO I = 0 TO 127; /* COPY INTO BUFFER */

 00197 5 BUFFER(I) = MBUFF(LOW(L)); L = L + 1;

 00198 6 END;

 00199 5 /* WRITE BUFFER ONTO DISK */

 00200 5 P = P + 1;

 00201 5 IF DISKWRITE(FCBA) <> 0 THEN

 00202 5 DO; CALL PRINT(.'DISK WRITE ERROR$');

 00203 6 HALT;

 00204 6 /* RETRY AFTER INTERRUPT NOP */

 00205 6 L = L - 128;

 00206 6 END;

 00207 5 END;

 00208 4 MBUFF(LOW(LA)) = B;

 00209 4 END SETMEM;

 00210 3

 00211 3 READHEX: PROCEDURE BYTE;

 00212 4 /* READ ONE HEX CHARACTER FROM THE INPUT */

 00213 4 DECLARE H BYTE;

 00214 4 IF (H := GETCHAR) - '0' <= 9 THEN RETURN H - '0';

 00215 4 IF H - 'A' > 5 THEN GO TO CHARERR;

 00216 4 RETURN H - 'A' + 10;

 00217 4 END READHEX;

 00218 3

 00219 3 READBYTE: PROCEDURE BYTE;

 00220 4 /* READ TWO HEX DIGITS */

 00221 4 RETURN SHL(READHEX,4) OR READHEX;

 00222 4 END READBYTE;

 00223 3

 00224 3 READCS: PROCEDURE BYTE;

 00225 4 /* READ BYTE WHILE COMPUTING CHECKSUM */

 36

 00226 4 DECLARE B BYTE;

 00227 4 CS = CS + (B := READBYTE);

 00228 4 RETURN B;

 00229 4 END READCS;

 00230 3

 00231 3 MAKE$DOUBLE: PROCEDURE(H,L) ADDRESS;

 00232 4 /* CREATE A BOUBLE BYTE VALUE FROM TWO SINGLE BYTES */

 00233 4 DECLARE (H,L) BYTE;

 00234 4 RETURN SHL(DOUBLE(H),8) OR L;

 00235 4 END MAKE$DOUBLE;

 00236 3

 00237 3 DIAGNOSE: PROCEDURE;

 00238 4

 00239 4 DECLARE M BASED TA BYTE;

 00240 4

 00241 4 NEWLINE: PROCEDURE;

 00242 5 CALL CRLF; CALL PRINTADDR(TA); CALL PRINTCHAR(':');

 00243 5 CALL PRINTCHAR(' ');

 00244 5 END NEWLINE;

 00245 4

 00246 4 /* PRINT DIAGNOSTIC INFORMATION AT THE CONSOLE */

 00247 4 CALL PRINT(.'LOAD ADDRESS $'); CALL 'PRINTADDR(TA);

 00248 4 CALL PRINT(.'ERROR ADDRESS $'); CALL PRINTADDR(LA);

 00249 4

 00250 4 CALL PRINT(.'BYTES READ:$'); CALL NEWLINE;

 00251 4 DO WHILE TA < LA;

 00252 4 IF (LOW(TA) AND 0FH) = 0 THEN CALL NEWLINE;

 00253 5 CALL PRINTHEX(MBUFF(TA-L)); TA=TA+1;

 00254 5 CALL PRINTCHAR(');

 00255 5 END;

 00256 4 CALL CRLF;

 00257 4 HALT;

 00258 4 END DIAGNOSE;

 00259 3

 00260 3

 00261 3 /* INITIALIZE */

 00262 3 SA, FA, NB = 0;

 00263 3 SP = STACKPOINTER;

 00264 3 P = 0; /* PARAGRAPH COUNT */

 00265 3 TA,LA,L = 100H; /* BASE ADDRESS OF TRANSIENT ROUTINES */

 00266 3 IF FALSE THEN

 00267 3 CHARERR: /* ARRIVE HERE IF NON-HEX DIGIT IS ENCOUNTERED */

 00268 3 DO; /* RESTORE STACKPOINTER */ STACKPOINTER = SP;

 00269 4 CALL PRINT(.'NON-HEXADECIMAL DIGIT ENCOUNTERED $');

 00270 4 CALL DIAGNOSE;

 00271 4 END;

 00272 3

 00273 3

 00274 3 /* READ RECORDS UNTIL :00XXXX IS ENCOUNTERED */

 00275 3

 00276 3 DO FOREVER;

 00277 3 /* SCAN THE : */

 00278 3 DO WHILE GETCHAR <> ':';

 00279 4 END;

 37

 00280 4

 00281 4 /* SET CHECK SUM TO ZERO, AND SAVE THE RECORD LENGTH */

 00282 4 CS = 0;

 00283 4 /* MAY BE THE END OF TAPE */

 00284 4 IF (RL := READCS) = 0 THEN

 00285 4 GO TO FIN;

 00286 4 NB = NB + RL;

 00287 4

 00288 4 TA, LA = MAKE$DOUBLE(READCS,READCS);

 00289 4 IF SA = 0 THEN SA = LA;

 00290 4

 00291 4

 00292 4 /* READ THE RECORD TYPE (NOT CURRENTLY USED) */

 00293 4 RT = READCS;

 00294 4

 00295 4 /* PROCESS EACH BYTE */

 00296 4 DO WHILE (RL := RL - 1) <> 255;

 00297 4 CALL SETMEM(READCS); LA = LA+1;

 00298 5 END;

 00299 4 IF LA > FA THEN FA = LA - 1;

 00300 4

 00301 4 /* NOW READ CHECKSUM AND COMPARE */

 00302 4 IF CS + READBYTE <> 0 THEN

 00303 4 DO; CALL PRINT(.'CHECK SUM ERROR$');

 00304 5 CALL DIAGNOSE;

 00305 5 END;

 00306 4 END;

 00307 3

 00308 3 FIN:

 00309 3 /* EMPTY THE BUFFERS */

 00310 3 TA = LA;

 00311 3 DO WHILE L < TA;

 00312 3 CALL SETMEM(0); LA = LA+1;

 00313 4 END;

 00314 3 /* PRINT FINAL STATISTICS */

 00315 3 CALL PRINT(.'FIRST ADDRESS $'); CALL PRINTADDR(SA);

 00316 3 CALL PRINT(.'LAST ADDRESS $'); CALL PRINTADDR(FA);

 00317 3 CALL PRINT(.'BYTES READ $'); CALL PRINTADDR(NB);

 00318 3 CALL PRINT(.'RECORDS WRITTEN $'); CALL PRINTHEX(P);

 00319 3 CALL CRLF;

 00320 3

 00321 3 END RELOC;

 00322 2

 00323 2 /* ARRIVE HERE FROM THE SYSTEM MONITOR, READY TO READ THE HEX TAPE */

 00324 2

 00325 2 /* SET UP STACKPOINTER IN THE LOCAL AREA */

 00326 2 DECLARE STACK(16) ADDRESS, SP ADDRESS;

 00327 2 SP = STACKPOINTER; STACKPOINTER = .STACK(LENGTH(STACK));

 00328 2

 00329 2 SBP = LENGTH(SBUFF);

 00330 2 /* SET UP THE SOURCE FILE */

 00331 2 CALL MOVE(FCBA,.SFCB,33);

 00332 2 CALL MOVE(.('HEX',0),.SFCB(9),4);

 00333 2 CALL SEARCH(.SFCB);

 00334 2 IF (RFLAG := DCNT = 255) THEN

 00335 2 CALL PRINT(.'SOURCE IS READER$'); ELSE

 00336 2 DO; CALL PRINT(.'SOURCE IS DISK$');

 38

 00337 3 CALL OPEN(.SFCB);

 00338 3 IF DCNT = 255 THEN CALL PRINT(.'-CANNOT OPEN SOURCE$');

 00339 3 END;

 00340 2 CALL CRLF;

 00341 2

 00342 2 CALL MOVE(.'COM',FCBA+9,3);

 00343 2

 00344 2 /* REMOVE ANY EXISTING FILE BY THIS NAME */

 00345 2 CALL DELETE(FCBA);

 00346 2 /* THEN OPEN A NEW FILE */

 00347 2 CALL MAKE(FCBA); FCB(32) = 0; /* CREATE AND SET NEXT RECORD */

 00348 2 IF DCNT = 255 THEN CALL PRINT(.'NO MORE DIRECTORY SPACE$'); ELSE

 00349 2 DO; CALL RELOC;

 00350 3 CALL CLOSE(FCBA);

 00351 3 IF DCNT = 255 THEN CALL PRINT(.'CANNOT CLOSE FILE$');

 00352 3 END;

 00353 2 CALL CRLF;

 00354 2

 00355 2 /* RESTORE STACKPOINTER FOR RETURN */

 00356 2 STACKPOINTER = SP;

 00357 2 RETURN 0;

 00358 2 END LOADCOM;

 00359 1

 00360 1 EOF

 C P / M 1 . 4 A L T E R A T I O N G U I D E

 Table of Contents

 Section Page

 l. INTRODUCTION 1

 2. FIRST LEVEL SYSTEM REGENERATION 1

 3. SECOND LEVEL SYSTEM REGENERATION 5

 4. SAMPLE GETSYS AND PURSYS PROGRAMS 8

 5. DISKETTE ORGANIZATION 9

 6. THE BIOS ENTRY POINTS 11

 7. A SAMPLE BIOS 17

 8. A SAMPLE COLD START LOADER 17

 9. RESERVED LOCATIONS IN PAGE ZERO 17

 Appendix

 A. THE MDS LOADER MOVE PROGRAM

 B. THE MDS COLD START LMDER

 C. THE MDS BASIC I/0 SYSTEM (BIOS)

 D. A SKELETAL CBIOS

 E. A SKELETAL GETSYS/PUTSYS PROGRAM

 F. A SKELETAL COLD START LOADER

 CP/M System Alteration Guide

 1. INTRODUCTION

 The standard CP/M system assumes operation on an Intel MDS microcomputer

development system, but is designed so that the user can alter a specific set

of subroutines which define the hardware operating enviornment. In this way,

the user can produce a diskette which operates with a non-standard (but

IBM-compatible format) drive controller and/or peripheral devices.

 In order to achieve device independence, CP/M is separated into three

distinct modules:

 BIOS - basic I/0 system which is environment dependent

 BDOS - basic disk operating system which is not dependent unon

 the hardware configuration

 CCP - the console command processor which uses the BDOS

of these mdules, only the BIOS is dependent upon the particular hardware.

That is, the user can "patch" the distribution version of CP/M to provide a

new BIOS which provides a customized interface between the remaining CP/M

modules and the user's own hardware system. The purpose of this document is

to provide a step-by-step procedure for patchinq the new BIOS into CP/M.

 The new BIOS requires some relatively simple software development and

testing; the current BIOS, however, is listed in Appendix C, and can be used

as a model for the customized packaqe. A skeletal version of the BIOS is

given in Appendix D which can form the base for a modified BIOS. In addition

to the BIOS, the user must write a simple memory loader, called GETSYS, which

brings the operating system into memory. In order to patch the new BIOS into

CP/M, the user must write the reverse of GETSYS, called PUTSYS, which places

an altered version of CP/M back onto the diskette. PUTSYS is usually derived

from GETSYS by chanqinq the disk read commands into disk write commands.

Sample skeletal GETSYS and PUTSYS programs are described in Section 3, and

listed in Appendix E. In order to make the CP/M system work automatically,

the user must also supply a cold start loader, similar to the one provided wi

CP/M (listed in Appendices A and B). A skeletal form of a cold start loader

is given in Appendix F which can serve as a model for your leader.

2. FIRST LEVEL SYSTEM REGENERNTION

 The procedure to follow to patch the CP/M system is given below in several

steps. Address references in each step are shown with a following "H" which

denotes the hexadecimal radix, and are given for a 16K CP/M system. For

larger CP/M systems, add a "bias" to each address which is shown with a "+b"

following it, where b is actual to the memory size - 16K. Values for b in

various standard memory sizes are

 32K: b = 32K - 16K = 16K = 04000H

 1

 48K: b = 48K = 16K = 32K = 08000H

 62K: b = 62K = 16K = 46K = 0B800H

 64K: b = 64K = 16K = 48K = 0C000H

 (1) Review Section 4 and write a GETSYS program which reads the first two

tracks of a diskette into memory. The data from the diskette must begin at

location 2880H+b. Code GETSYS so that it starts at location 100H (base of the

TPA), as shown in the first part of Appendix E.

 (2) Test the GE'ISYS program by reading a blank diskette into memory, and

check to see that the data has been read properly, and that the diskette has

not been altered in any way by the GETSYS program.

 (3) Run the GETSYS program using an initialized CP/M diskette to see if

GETSYS loads CP/M startinq at 2880H+b (the operating system actually starts

128 bytes later at 2900H+b)

 (4) Review Section 4 and write the PUTSYS Program which writes memory

starting at 2880H+b back onto the first two tracks of the diskette. The

PU.RSYS proqram should be located at 200H, as shown in the second part of

Appendix E.

 (5) Test the PUTSYS program using a blank uninitialized diskette by

writing a portion of memory to the first two tracks; clear memory and read it

back using GETSYS. Test PUTSYS completely, since this program will be used to

alter CP/M on disk.

 (6) Study Sections 5, 6, and 7, along with the distribution version of

the BIOS given in Appendix C, and write a simple version vhich performs a

similar function for the customized environment. Use the program given in

Appendix D as a model. Call this new BIOS by the name CBIOS (customized

BIOS). Implement only the primitive disk operations on a single drive, and

simple console input/output functions in this phase.

 (7) Test CBIOS completely to ensure that it properly performs console

character I/0 and disk reads and writes. Be especially careful to ensure that

no disk write operations occur accidently durinq read operations, and check

that the proper track and sectors are addressed on all reads and writes.

Failure to make these checks way cause distruction of the initialized CP/M

system after it is patched.

 (8) Referring to Figure 1 in Section 5, note that the BIOS is located

between locations 3E00H+b and 3FFFH+b. Read the CP/M system using GETSYS and

replace the BIOS segment by the new CBIOS developed in step (6) and tested in

step (7). This replacement is done in the memory of the machine, and will be

placed on the diskette in the next step.

 (9) Use PUTSYS to place the patched memory image of CP/M onto the first

two tracks of a blank diskette for testinq.

 2

 (10) Use GETSYS to bring the copied memory image from the test diskette

back into memory at 2880H+b, and check to ensure that it has loaded @ck

properly (clear memory, if possible, before the load). Upon,successful load,

branch to the CCP module at location 2900H+b. The CCP will call the BDOS,

which will call the CBIOS. The CBIOS will be asked to read several sectors on

track 2 twice in succession, and, if successful, CP/M will type "A>".

When you make it this far, you are almost on the air. If you have trouble,

use whatever debug facilities you have available to trace and breakpoint your

CBIOS.

 (11) Upon completion of step (10), CP/M has prompted the console for a

command input. Test the disk write operation by typing

 SAVE 1 X.COM

(recall that all commands must be followed by a carriage return). CP/M should

respond with another prompt (after several disk accesses):

 A>

If it does not, debug your disk write functions and retry.

 (12) Then test the directory command by typing

 DIR *.*

CP/M should respond with

 X COM

 (13) Test the erase command by typing

 ERA X.COM

CP/M should respond with the A prompt. When you make it this far, you have an

operational system which only requires a bootstrap loader to function

completely.

 (14) Write a bootstrap loader which is similar to GETSYS, and place it

into read-only-memory, or into track 0, sector 1 usinq PUTSYS (again using the

test diskette, not the distribution diskette). See Sections 5 and 8 for more

information on the bootstrap operation.

 (15) Retest the new test diskette with the bootstrap loader installed by

executing steps (11), (12), and (13). Upon completion of these tests, type a

control-C (control and C keys simultaneously). The system should then execute

a "warm start" which reboots the system, and types the A prompt.

 (16) At this point, you probably have a good version of your customized

 3

CP/M system on your test diskette. Use GETSYS to load CP/M from your test

diskette. Remove the test diskette place the distribution diskette (or a

legal copy) into the drive, and use PUTSYS to replace the distribution version

by your customized version. Do not make this replacement if you are unsure of

your patch since this step destroys the system which was sent to you from

Digital Research.

 (17) Load your modified CP/M system and test it by typing

 DIR

CP/M should respond with a list of files which are provided on the initialized

diskette. One such file should be the memory image for the debugger, called

DDT.COM.

 NOTE: from now on, it is important that you always reboot

 the CP/M system when the diskette is removed and replaced

 by another diskette, unless the new diskette is read-only.

 (18) Load and test the debugger by typing

 DDT

(see the document "CP/M Dynamic Debugging Tool (DDT)" for operating

information and examples). Take time to familiarize yourself with DDT; it

will be your best friend in later steps.

 (19) Before making further CBIOS modifications, practice using the editor

(see the ED user's guide), and assembler (see the ASM user's guide). Then

recode and test the GETSYS, RJTSYS, and CBIOS programs using ED, ASM, and

DDT. Code and test a COPY program which does a sector-to-sector copy from one

diskette to another to obtain back-up copies of the original diskette (NOTE:

read your CP/M Licensing Agreement; it specifies your legal responsibilities

when copying the CP/M system). Place the copyright notice

 Copyright (c) 1976

 Digital Research

on each copy vbich is made with your COPY program.

 (20) Modify your CBIOS to include the extra functions for punches,

readers, siqnon messages, and so-forth, and add the facilities for a second

drive, if it exists on your system. You can make these changes with the

GETSYS and PUTSYS programs which you have developed, or you can refer to the

following section, which outlines CP/M facilities which will aid you in the

regeneration process.

 You now have a good copy of the customized CP/M system. Note that

although the CBICS portion of CP/M which you have developed belongs to you,

the modified version of CP/M which you have created can be copied for your use

only (again, read your Licensing Agreement), and cannot be legally copied for

 4

 anyone else's use. If you wish, you may send vou name and address to Digital

 Research, along with a description of your hardware environment and the

 modifications which you have made. Diaital Research will make the information

 available to other interested parties, and inform them of the prices and

 availability of your CBIOS.

 It should be noted that your system remains file-compatible with all other

 CP/M systems, which allows transfer of non-proprietary software between users

 of CP/M.

 3. SECOND LEVEL SYSTEM GENERATION

 Now that you have the CP/M system running, you may wish to use CP/M

 facilities in the system regeneration process. In general, we will first qet

 a memory image of CP/M from the first two tracks of an initialized diskette

 and place this memory image into a named disk file. The disk file can then be

 loaded, examined, patched, and replaced using the editor, assembler, debugger,

 and system generation program.

 The SYSGEN program, supplied with your diskette, is first used to get a

 CP/M memory image from the first two tracks. Run the SYSGEN program as shown

 below

 SYSGEN start the SYSGEN program

 *SYSGEN VERSION 1.0 SYSGEN siqnon messace

 GET SYSTEM (Y/N)?Y Answer yes to GET request

 SOURCE ON B, THEN TYPE RETURN

 at this point, place an initialized diskette into drive B and type a return

 (if you are operating with a single drive, answer "A" to the GET request,

 rather than "Y", and place the initialized diskette into drive A before typinq

 the return). The program should respond with:

 FUNCTION COMPLETE Load is complete

 PUT SYSTEM (Y/N)?N Answer no to PUT request

 system will automatically reboot at this point, with the memory image loaded

 into memory starting at location 900H and ending at 207FH in the transient

 program area. The memory image for CP/M can then be saved (if you are

 operating with a single drive, replace your original diskette and reboot).

 The save operation is accomplished by typing:

 SAVE 32 CPM.COM Save 20H = 32 paqes of memory

 The memory image created by the GET function is offset by a negative bias so

 that it loads into the free area of the TPA, and thus does not interfere with

 the operation of CP/M in higher memory. This memory image can be subsequently

 loaded under DDT and examined or chanqed in preparation for a new generation

 of the svstem. DDT is loaded with the memory image by typing

 5

 DDT CPM.COM Load DDT, then read the CPM

image

DDT should respond with

 NEXT PC

 2100 0100

You can then use the display and disassembly commands to examine portions of

the memory image between 900H and 207FH. Note, however, that to find any

particular address within the memory image, you must apply the negative bias

to the CP/M address to find the actual address. Track 00, sector 01 is loaded

to location 900H (you should find the cold start loader at 900H to 97FH),

track 00, sector 02 is loaded into 980H (this is the base of the CCP), and

so-forth through the entire CP/M system load. In a 16K system, for example,

the CCP resides at the CP/M address 2900H, but is placed into memory at 980H

by the SYSGEN program. Thus, the negative bias, denoted by n, satisfies

 2900H + n = 980H, or n = 980H - 2900H

Assuming two's canplement arithmetic, n = 0E080H, which can be checked by

 2900H + 0E080H = 10980H = 0980H (iqnorinq high-order overflow).

Note that for larger systems, n satisfies

 (2900H+b) + n = 980H, or

 n = 980H - (2900H + b), or

 n = 0E080H - b.

The value of n for common CP/M systems is given below

 memory size bias b negative offset n

 16K 0000H 0E080H - 0000H = 0E0B0H

 32K 4000H 0E0B0H - 4000H = 0A080H

 48K 8000H 0E080H - 8000H = 6080H

 62K 0B800H 0E080H - 0B800H = 2880H

 64K 0C000H 0E080H - OC000H = 2080H

Assume, for example, that you want to locate the address x within the memory

image loaded under DDT in a 16K system. First type

 Hx,n Hexadecimal sum and difference

and DDT will respond with the value of x+n (sum) and x-n (difference). The

first number printed by DDT will be the actual memory address in the image

where the data or code will be found. The input

 H2900,E080

 6

for example, will produce 980H as the sum, which is where the CCP is located

in the memory image under DDT.

Use the L command to disassemble portions of your CBIOS located at (3E00H+b)-n

which, when you use the H command, produces an actual address of 1E80H. The

disassembly command would thus be

 L1E80

Terminate DDT by "inq a control-c or "G0" in order to prepare the patch

program. Your CBIOS, for example, can be modified using the editor, and

assembled usinq ASM, producing a file called CBIOS.HEX which contains the

Intel formatted machine code for CBIOS in "hex" format. In order to integrate

your new CBIOS, return to DDT by typing

 DDT CPM.COM Start DDT and load the CPM image

Examine the area at 1E80H where the previous version of the CBIOS resides.

Then type

 ICBIOS.HEX Ready the "hex" file for Loading

Assume that your CBIOS is being integrated into a 16K CP/M system, and is thus

"org'ed" at location 3E00H. In order to properly locate the CBIOS in the

memory image under DDT, we must apply the negative bias n for a 16K system

when loading the hex file. This is accomplished by typing

 RE080 Read the file with bias 0E080H

Upon completion of the read, re-examine the area where the CBIOS has been

loaded (use a "L1E80" command), to ensure that it was loaded properly. When

you are satisfied that the patch has been made, return from DDT usinq a

control-c or "G0" canmand.

 Now use SYSGEN to replace the patched memory imaqe back onto a diskette

(use a test diskette until you are sure of your patch), as shown in the

following interaction

 SYSGEN Start the SYSGEN program

 *SYSGEN VERSION 1.0 Siqnon message from SYSGEN

 GET SYSTEM (Y/N)?N Answer no to GET reauest

 PUT SYSTEM (Y/N)?Y Answer yes to PUT request

 DESTINATION ON B, THEN TYPE RETURN

Place the test diskette on drive B (if you are operating with a single drive

system, answer "A" rather than "Y" to the PUT request, then remove vour

diskette, and replace by the test diskette), and type a return. The system

will be replaced on the test diskette, and the system will automatically boot

from drive A.

 Test the new CP/M system, and place the Digital Research copyriqht notice

 7

on the diskette, as specified in your Licensinq Aqreement:

 Copyriqht (c), 1976

 Diqital Research

4. SAMPLE GETSYS AND PUTSYS PROGRAMS

 The followirxg program provides a framework for the GEISYS and PURSYS

programs referenced in Section 2. The READSEC and WRITESEC subroutines must

be inserted by the user to read and write the specific sectors.

 ; GETSYS PROGRAM READ TRACKS 0 AND 1 TO MEMORY AT 2880H

 ; REGISTER USE

 ; A (SCRATCH REGISTER)

 ; B TRACK COUNT (0, 1)

 ; C SECTOR COUNT,(1,2,...,26)

 ; DE (SCRATCH REGISTER PAIR)

 ; HL LOAD ADDRESS

 ; SP SET TO STACK ADDRESS

 ;

 START: LXI SP,2880H ;SET STACK POMER TO SCRATCH AREA

 LXI H, 2880H ;SET BASE LOAD ADDRESS

 MVI B, 0 ;START WITH TPACK 0

 RDTRK: ;READ NEXT TRACK (INITIALLY 0)

 MVI C,1 ;READ STARTING WITH SECTOR 1

 PDSEC: ;READ NEXT SBCMR

 CALL READSEC ;USER-SUPPLIED SUBROUTINE

 LXI D,128 ;MOVE LOAD ADDRESS TO NEXT 1/2 PAGE

 DAD D ;HL = HL + 128

 INR C ;SECTOR = SECTOR + 1

 MOV A,C ;CHECK FOR END OF TRACK

 CPI 27

 JC RDSEC ;CARRY GENERATED IF SECTOR < 27

 ; ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

 INR B

 MOV A,B ;TEST FOR LAST TRACK

 CPI 2

 JC RDTRK ;CARRY GENERATED IF TRACK < 2

 ;

 ; ARRIVE HERE AT END OF LOAD, HALT FOR NOW

 HLT

 ;

 ; USER-SUPPLIED SUBROUTINE TO READ THE DISK

 READSEC:

 ; ENTER WITH TRACK NUMBER IN REGISTER B,

 ; SECTOR NUMBER IN REGISTER C, AND

 ; ADDRESS TO FILL IN HL

 ;

 8

 PUSH B ;SAVE B AND C REGISTERS

 PUSH H ;SAVE HL REGISTERS

 ...

 perform disk read at this point, branch to

 label START if an error occurs

 ...

 POP H ;RECOVER HL

 POP B ;RECOVER B AND C REGISTERS

 RET ;BACK TO MAIN PROGRAM

 END START

Note that this program is assembled and listed in Appendix D for reference

purposes, with an assumed oriain of 100H. The hexadecimal operation codes

which are listed on the left may be useful if the program has to be entered

throuqh your machine's front panel switches.

 The PUTSYS proqram can be constructed from GETSYS by chanqing only a few

operations in the GETSYS program qiven above, as shown in Appendix E. The

register pair HL become the dump address (next address to write), and

operations upon these registers do not change within the program. The READSEC

subroutine is replaced by a WITESEC subroutine which performs the opposite

function: data from address HL is written to the track given by reqister B

and sector given by register C. It is often useful to combine GETSYS and

PUTSYS into a single proqram during the test and development phase, as shown

in the Appendix.

5. DISKETRE ORGANIZATION

 The sector allocation for the distribution version of CP/M is given here

for reference purposes. The first sector (see Fiqure 1) contains an optional

software boot section. Disk controllers are often set up to bring track 0,

sector 1 into memory at a specific location (often location 0000H). The

proqram in this sector, called LBOOT has the responsibility of bringing the

rernaining, sectors into memory startinq at location 2900H+b. If your

controller does not have a built-in sector load, you can iqnore the program in

track 0, sector 1, and beqin the load from track 0 sector 2 to location

2900H+b.

 As an example, the Intel MDS hardware cold start loader brinqs track 0,

sector 1 into absolute address 3000H. Thus, the distribution version contains

two very small programs in track 0, sector 1:

 MBOOT - a storaqe move proqram which moves LBOOT into

 place following the cold start (Appendix A)

 LBOOT - the cold start boot loader (Appendix B)

 Upon MDS start-up, the 128 byte segment on track 0, sector 1 is brouqht

 9

into 3000H. The MBOOT program gets control, and moves the LBOOT proqram from

location 301EH down to location 80H in memory, in order to qet out the

the area where CP/M is loaded in a 16K system. Note that the MBOOT program

would not be needed if the MDS loaded directly to 80H. In general, the

program could be located anyvhere below the CP/M load location, but is most

often located in the area between 000H and 0FFH (below the TPA).

 After the move, MBOOT transfers to LBOOT at 80H. LBOOT, in turn, loads

the remainder of track 0 and the initialized portion of track 1 to memory,

starting at 2900H+b. The user should note that MBOOT and LBOOT are of little

use in a non-MDS environment, although it is useful to study them since some

of their actions will have to be duplicated in your cold start loader.

 Figure 1. Diskette Allocation

 Track# Sector# Page# Memory Address CP/M Module name

 00 01 (boot address) Cold Start Loader

 00 02 00 2900H+b CCP

 " 03 " 2980H+b "

 " 04 01 2A00H+b "

 " 05 " 2A80H+b "

 " 06 02 2B00H+b "

 " 07 " 2B80H+b "

 " 08 03 2C00H+b "

 " 09 " 2C80H+b "

 " 10 04 2D00H+b "

 " 11 " 2D80H+b "

 " 12 05 2E00H+b "

 " 13 " 2E80H+b "

 " 14 06 2F00H+b "

 " 15 " 2F80H+b "

 " 16 07 3000H+b "

 " 17 " 3080H+b "

 " 18 08 3100H+b "

 00 19 " 3180H+b CCP

 00 20 09 3200H+b BDOS

 " 21 " 3280H+b "

 " 22 10 3300H+b "

 " 23 " 3380H+b "

 " 24 11 3400H+b "

 " 25 " 3480H+b "

 " 26 12 3500H+b "

 01 01 " 3580H+b "

 " 02 13 3600H+b "

 " 03 " 3680H+b "

 " 04 14 3700H+b "

 " 05 " 3780H+b "

 10

 " 06 15 3800H+b "

 " 07 " 3880H+b "

 " 08 16 3900H+b "

 " 09 " 3980H+b "

 " 10 17 3A00H+b "

 " 11 " 3A8OH+b "

 " 12 18 3B00H+b "

 " 13 " 3B80H+b "

 " 14 19 3C00H+b "

 " 15 " 3C80H+b "

 " 16 20 3D00H+b "

 " 17 " 3D80H+b BDOS

 01 18 21 3E00H+b BIOS

 " 19 " 3E80H+b "

 " 20 22 3F00H+b "

 01 21 " 3F80H+b BIOS

 01 22-26 (not currently used)

 02-76 01-26 (directory and data)

6. THE BIOS ENTRY POINTS

 The entry points into the BIOS from the cold start loader and BDOS are

detailed below. Entry to the BIOS is throuqh a "jump vector" between

locations 3E00H+b and 3E2CH+b, as shown below (see also Appendices, pages C-2

and D-1). The jump vector is a sequence of 15 jump instructions which send

program control to the individual BIOS subroutines. The BIOS subroutines may

be empty for certain functions (i.e., they may contain a single RET operation)

during regeneration of CP/M, but the entries must be present in the jump

vector.

 It should be noted that there is a 16 byte area reserved in page zero (see

Section 9) starting at location 40H, which is available as a "scratch" area in

case the BIOS is implemented in ROM by the user. This scratch area is, never

accessed by any other CP/M subsystem during operation.

 The jump vector at 3E00H+b takes the form shown below, where the

individual jump addresses are given to the left:

 3E00H+b JMP BOOT ;ARRIVE HERE FROM COLD START LOAD

 3E03H+b imp WBOOT ;ARRIVE HERE FOR WARM START

 3E06H+b JMP CONST ;CHECK FOR CONSOLE CHAR READY

 3E09H+b JMP CONIN ;READ CONSOLE CHARACTER IN

 3E0CH+b JMP CONOUT ;WRITE CONSOLE CHARACTER OUT

 3E0FH+b JMP LIST ;WRITE LISTING CHARACTER OUT

 3E12H+b JMP PUNCH ;WRITE CHARACTER TO PUNCH DEVICE

 3E15H+b JMP READER ;READ READER DEVICE

 11

 3E18H+b JMP HOME ;MOVE TO TRACK 00 ON SELECTED DISK

 3E1BH+b JMP SELDSK ;SELECT DISK DRIVE

 3ElEH+b JMP SETTRK ;SET TRACK NUMBER

 3E21H+b JMP SETSEC ;SET SECTOR NUMBER

 3E24H+b JMP SETDMA ;SET DMA ADDRESS

 3E27H+b JMP READ ;READ SELECTED SECTOR

 3E2AH+b JMP WRITE ;WRITE SELECTED SECTOR

 Each jump address corresponds to a particular subroutine which performs the

 specific function, as outlined below. There are three mjor divisions in the

 jump table: the system (re)initialization which results from calls on BOOT

 and WBOOT, simple character I/0 performed by calls on CONST, CONIN, CONOUT,

 LIST, PUNCH, and READER, and diskette I/0 performed by calls on HOME, SELDSK,

 SETTRK, SETSEC, SETDMA, READ, and WRITE.

 All simple character I/0 operations are assumed to be performed in ASCII,

 upper and lower case, with high order (parity bit) set to zero. An

 end-of-file condition is given by an ASCII control-z (1AH). Peripheral

 devices are seen by CP/M as "logical" devices, and are assigned to physical

 devices within the BIOS. In order to operate, the BDOS needs only the CONST,

 CONIN, and CONOUT subroutines (LIST, PUNCH, and READER are used by PIP, but

 not the BDOS). Thus, the initial version of CBIOS may have empty subroutines

 for the remaining ASCII devices. The characteristics of each device are

 CONSOLE The principal interactive console which

 communicates with the operator, accessed

 through CONST, CONIN, and CONOUT. Typi-

 cally, the CONSOLE is a device such as a

 CRT or Teletype.

 LIST The principal listing device, if it

 exists on your system, which is usually

 a hard-copy device, such as a printer

 or Teletype.

 PUNCH The principal tape punching device, if it

 exists, which is normally a high-speed

 paper tape punch or Teletype.

 RFADER The principal tape reading device, such as

 a simple optical reader or Teletype.

 Note that a single peripheral can be assigned as the LIST, PUNCH, and READER

 device simultaneously. If no peripheral device is assiqned as the LIST,

 PUNCH, or READER device, the CBIOS created by the user should qive an

 appropriate error message so that the system does not "hang" if the device is

 accessed by PIP or some other user program.

 For added flexibility, the user can or)tionally implement the "iobyte"

 function which allows reassignment of physical and logical devices. The

 12

iobyte function creates a mappinq of loqical to physical devices which can be

altered during CP/M processing. The definition of the iobyte function

corresponds to the Intel standard as follows: a sinqle location in memory

(currently location 0003H) is maintained, called IOBYTE, which defines the

logical to physical device mapping wbich is in effect at a particular time.

The mappinq is performed by splitting the IOBYTE into four distinct fields of

two bits each, called the CONSOLE, READER, PUNCH, and LIST fields, as shown

below

 most significant least significant

 IOBYTE AT 0003H | LIST | PUNCH | READER | CONSOLE |

 bits 6,7 bits 4,5 bits 2,3 bits 0,1

The value in each field can be in the ranqe 0-3, defining the assiqned source

or destination of each Logical device. The values which can be assigned to

each field are given below

 CONSOLE field (bits 0,1)

 0 - console is assiqned to the Teletype device (TTY)

 1 - console is assiqned to the CRT device (CRT)

 2 - batch mode: use the READER as the CONSOLE input,

 and the LIST device as the CONSOLE output

 3 - user defined console device

 READER field (bits 2,3)

 0 - READER is the Teletype device

 1 - READER is the high-speed reader device (RDR)

 2 - user defined reader # 1

 3 - user defined reader # 2

 PUNCH field (bits 4,5)

 0 - PUNCH is the Teletype device

 1 - PUNCH is the high speed punch device (PUN)

 2 - user defined punch # 1

 3 - user defined punch # 2

 LIST field (bits 6,7)

 0 - LIST is the Teletype device

 1 - LIST is the CRT device

 2 - LIST is the line printer device

 3 - user defined list device

Note again that the implementation of the IOBYRE is optional, and affects only

the organization of your CBIOS. No CP/M systems use the IOBYTE (althouqh they

tolerate the existence of the IOBYTE at location 0003H), except for PIP which

allows access to the TTY: and CRT: devices. If you do not implement the

ICBYTE, you cannot access these physical devices throuqh PIP. In any case,

the IOBYTE implementation should be omitted until your basic CBIOS is fully

 13

implemented and tested; then add the IOBYTE to increase your facilities.

 Disk I/0 is always performed through a sequence of calls on the various

disk access subroutines which set up the disk number to access, the track and

sector on a particular disk, and the direct memory access (DMA) address

involved in the I/0 operation. After all these parameters have been set up, a

call is made on the READ or WRITE function to perform the actual I/0

operation. Note that there is often a single call to SELDSK to select a disk

drive, followed by a number of read or write operations to the selected disk

before selecting another drive for subsequent operations. Similarly, there

may be a single call to set the DMA address, followed by several calls which

read or write from the selected DMA address before the DMA address is

changed. The track and sector subroutines are called before the read and

write operations are performed. Note, however, that the BIOS does not attempt

error recovery when a read or write fails, but instead reports the error

condition to the BDOS. The BDOS then retries the read or write, assuming the

track and sector address remain the same. The HOME subroutine may be called

during error recovery, following by a re-seek of the particular track and

sector. The HOME subroutine may or may not actually perform the track 00

seek, depending upon your controller characteristics; the important point is

that track 00 has been selected for the next operation, and is often treated

in exactly the same manner as SETTRK with a parameter of 00.

 The exact responsibilities of each entry point subroutine are given below:

 BDOT The BOOT entry point gets control from the cold start loader

 and is responsible for basic system initialization, includ-

 ing sending a signon message (which can be omitted in the

 first version). If the IOBYTE function is implemented, it

 must be set at this point. The various system parameters

 which are set by the WBOOT entry point must be initialized,

 and control is transferred to the CCP at 2900H+b for further

 processing.

 WBOOT The WBOOT entry point gets control when a warm start occurs.

 A warm start is performed whenever a user program branches to

 location 0000H, or when the CPU is reset from the front panel.

 The CP/M system must be loaded from the first two tracks of

 drive A up to, but not including, the BIOS (or CBIOS, if you

 have completed your patch). System parameters must be ini-

 tialized as shown below:

 location 0,1,2 set to JTMP WBOOT for warm starts

 (0000H: JMP 3E03H+b)

 location 3 set initial value of IOBYTE, if

 implemented in your CBIOS

 location 5,6,7 set to JMP BDOS, which is the

 primary entry point to CP/M for

 transient proqrams.

 (0005H: JMP 3206H+b)

 (see Section 9 for complete details of page zero use)

 14

 Upon completion of the initialization, the WBOOT proqran

 must branch to the CCP at 2900H+b to (re)start the system.

 Upon entry to the CCP, register C is set to the drive to

 select after system initialization (normally drive A is

 selected by setting register C to zero).

 CONST Sample the status of the currently assigned console device

 and return a 0FFH in register A if a character is ready to

 read, and 00H in register A if no console characters are

 ready.

 CONIN Read the next console character into register A, and set the

 parity bit (high order bit) to zero. If no console character

 is ready, wait until a character is typed before returning.

 CONOUT Send the character from register C to the console output de-

 vice. The character is in ASCII, with high order parity bit

 set to zero. You may want to include a time-out on a line

 feed or carriage return, if your console device requires some

 time interval at the end of the line (such as a TI Silent 700

 terminal). You can, if you wish, filter out control char-

 acters vhich cause your console device to react in a strange

 way (a control-z causes the Lear Seigler terminal to clear

 the screen, for example).

 LIST Send the character from register C to the currently assigned

 listing device. Ihe character is in ASCII with zero parity.

 PUNCH Send the character from register C to the currently assiqned

 pinch device. The character is in ASCII with zero parity.

 READER Read the next character from the currently assigned reader de-

 vice into register A with zero parity (high order bit must be

 zero), an end of file condition is reported by returning an

 ASCII control-z (1AH).

 HOME Return the disk head of the currently-selected disk (initially

 disk A) to the track 00 position. If your controller allows

 access to the track 0 flag from the drive, step the head until

 the track 0 flag is detected. If your controller does not

 support this feature, you can translate the HOME call into a

 call on SETTRK with a parameter of 0.

 SELDSK Select the disk drive given by register C for further opera-

 tions, where reqister C contains 0 for drive A, and 1 for

 drive B (the standard CP/M distribution version supports a

 maximum of two drives). If your system has only one drive,

 you may wish to give an error message at the console, and

 terminate execution. You can, if you wish, type a message at

 the console to switch diskettes to simulate a two drive

 15

 system. In this case, you must keep account of the current

 drive and type an appropriate messaqe when the drive chanaes.

 SEEK Register C contains the track number for subsequent disk

 accesses on the currently selected drive. You can choose to

 seek the selected track at this time, or delay the seek until

 the next read or write actually occurs. Register C can take

 on values in the range 0-76 corresponding to valid track

 numbers.

 SETSEC Register C contains the sector number (1 through 26) for sub-

 secjuent disk accesses on the currently selected drive. You

 can choose to send this information to the controller at this

 point, or instead delay sector selection until the read or

 write operation occurs.

 SETDMA Registers B and C (high order 8 bits in B, low order 8 bits

 in C) contain the DMA (direct memory access) address for sub-

 sequent read or write operations. For example, if B = 00H

 and C = 80H when SETDMA is called, then all subsequent read

 operations fill their data into 80H throuqh 0FFH, and all

 subsequent write operations get their data from 80H through

 0FFH, until the next call to SETDMA occurs. The initial

 DMA address is assumed to be 80H. Note that the controller

 need not actually support direct memory access. If, for

 example, all data is received and sent through I/0 ports, the

 CBIOS which you construct uses the 128 byte area starting at

 the selected DMA address for the memory buffer during the

 I/0 operation.

 READ Assuminq the drive has been selected, the track has been set, the

 sector has been set, and the DMA address has been specified, this

 subroutine attempts to read the selected sector. The read

operation

 may involve several retries (10 is a qood number) if errors occur

 durinq the read operation. If the read is completed correctly, the

 READ subroutine should return a 00 in reqister A. If the read

cannot

 be performed, a 01 should be returned: in this case CP/M prints the

 message

 PERM ERROR DISK x.

 where x is the disk number.

 16

WRITE Write the data from the currently selected DMA address to the

 currently selected drive, track, and sector. The data should

 be marked as "non deleted data" to maintain compatibility

 with other CP/M systems. The error codes qiven in the READ

 command are returned in register A, with error recovery at-

 tempts as described above.

7. A SAMPLE BIOS

 The program shown in Appendix D can serve as a basis for your first BIOS.

The simplest functions are assumed in this BIOS, so that you can enter it

through the front panel, if absolutely necessary. Note that the user must

alter and insert code into the subroutines for CONST, CONIN, CONOUT, READ,

WRITE, and WAITIO subroutines. Storaqe is reserved for user-supplied code in

these regions. The scratch area reserved in page zero (see Section 9) for the

BIOS is used in this program, so that it could be imolemented in ROM, if

desired.

 Once operational, this skeletal version can be enhanced to print the

initial sign-on message and perform better error recovery. The subroutines

for LIST, PUNCH, and READER can be filled-out, and the IOBYTE function can be

implemented.

8. A SAMPLE COLD START LOADER

 The program shown in Appendix E can serve as a basis for your cold start

loader. The disk read function must be supplied by the user, and the proaram

must be loaded somehow starting at location 0000. Note that space is reserved

for your patch so that the total amount of storage required for the cold start

loader is 128 bytes. Eventually, you will probably want to get this loader

onto the first disk sector (track 0, sector 1) , and cause your controller to

load it into memory automatically upon system start-up. Alternatively, you

may wish to place the cold start loader into ROM, and place it above the CP/M

system. In this case, it will be necessary to originate the proqram at a

higher address, and key-in a jump instruction at system start-up which

branches to the loader. Subsequent warm starts will not require this key-in

operation, since the entry point 'WBOOT' gets control, thus bringing the

system in from disk automatically. Note also that the skeletal cold start

loader has minimal error recovery, which may be enhanced on later versions.

9. RESERVED LOCATIONS IN PAGE ZERO

 Main memory page zero, between locations 00H and 0FFH, contains several

segments of code and data which are used during CP/M processing. The code and

 17

data areas are given below for reference purposes.

 Locations Contents

 from to

 0000H - 0002H Contains a jump instruction to the warm start entry

 point at location 3E03H+b. This allows a simple

 programmed restart (JMP 0000H) or manual restart from

 the front panel.

 0003H - 0003H Contains the Intel standard IOBYTE, which is optionally

 included in the user's CBIOS, as described in Section 6.

 0004H - 0004H (not currently used - reserved)

 0005H - 0007H Contains a jump instruction to the BDOS, and serves two

 purposes: JMP 0005H provides the primary entry coint to

 the BDOS, as described in the manual "CP/M Interface

 Guide," and LHLD 0006H brings the address field of the

 instruction to the HL register pair. This value is the

 lowest address in memory used by CP/M (assuming the CCP

 is beinq overlayed). Note that the DDT program will

 chanqe the address field to reflect the reduced memory

 size in debug mode.

 0008H - 0027H (interrupt locations 1 through 5 not used)

 0030H - 0037H (interrupt location 6, not currently used - reserved)

 0038H - 003AH Contains a jump instruction into the DDT program when

 running in debug mode for programmed breakpoints, but

 is not otherwise used by CP/M.

 003BH - 003FH (not currently used - reserved)

 0040H - 004FH 16 byte area reserved for scratch by CBIOS, but is not

 used for any purpose in the distribution version of CP/M

 0050H - 005BH (not currently used - reserved)

 005CH - 007CH default file control block produced for a transient pro-

 gram by the Console Command Processor.

 007DH - 007FH (not currently used - reserved)

 0080H - OOFFH default 128 byte disk buffer (also filled with the com-

 mand line when a transient is loaded under the CCP).

 Note that this information is set-up for normal operation under the CP/M

system, but can be overwritten by a transient program if the BDOS facilities

are not reguired by the transient. If, for example, a particular program

 18

performs only simple 1/0 and must beain execution at location 0, it can be

first loaded into the TPA, using normal CP/M facilities, with a small memory

move program which gets control when loaded (the memory move program must qet

control from location 100H, which is the assumed beginning of all transient

proqrams). The move program can then proceed to move the entire memory imaqe

down to location 0, and pass control to the starting address of the memory

load. Note that if the BIOS is overwritten, or if location 0 (containing the

warm start entry point) is overwritten, then the programmer must bring the

CP/M system back into memory with a cold start sequence.

 19

 ; MDS LOADER MOVE PROGRAM, PLACES COLD START BOOT AT BOOTB

 ;

 3000 ORG 3000H ;WE ARE LOADED HERE ON COLD START

 0080 = BOOTB EQU 80H ;STARR OF COLD BOOT PROGRAM

 0080 = BOOTL EQU 80H ;LENGTH OF BOOT

 D900 = MBIAS EQU 900H-$;BIAS TO ADD DURING LOAD

 0078 = BASE EQU 078H ;'BASE' USED BY DISK

CONTROLLER

 0079 = RTYPE EQU BASE+1 ;RESULT TYPE

 007B = RBYTE EQU BASE+3 ;RESULI TYPE

 ;

 OOFE = BSW EQU 0FFH ;BOOT SWITCH

 ;

 ;CLEAR DISK STATUS

 3000 DB79 IN RTYPE

 3002 DB7B IN RBYTE

 ;

 COLDSTART:

 3004 DBFF IN BSW

 3006 E602 ANI 2H ;SWITCH ON?

 3008 C20430 JNZ COLDSTART

 ;

 300B 211E30 LXI H,BOOTV ;VIRTUAL BASE

 300E 0680 MVI B,BOOTL ;LENGTH OF BOOT

 3010 118000 LXI D,BOOTB ;DESTINATION OF BOOT

 3013 7E MOVE: MOV A,M

 3014 12 STAX D ;TRANSFERRED ONE BYTE

 3015 23 INX H

 3016 13 INX D

 3017 05 DCR B

 3018 C21330 JNZ MOVE

 301B C38000 JMP BOOTB TO BOOT SYSTEM

 ;

 BOOTV: ;BOOT LOADER PLACE HERE AT SYSTEM GENERATICN

 089E = LBIAS EQU $-80H+MBIAS ;COLD START BOOT BEGINS AT

80H

 301E END

 A-

1

 ;MDS COLD START LOADER FOR CP/M

 0000 = FALSE EQU 0

 FFFF = TRUE EQU NOT FALSE

 0000 = TESTING EQU FALSE ;IF TRUE, THEN GO TO MON80 ON

ERRORS

 ;

 0010 = MSIZE EQU 16 ;MEMORY SIZE IN KILOBYTES

 2000 = CBASE EQU (MSIZE-8)*1024 ;CPM BASE

ADDRESS BIAS BEYOND 8K

 2900 = BDOSB EQU CBASE+900H ;BASE OF DOS

LOAD

 3206 = BDOS EQU CBASE+1206H ;ENTRY OF DOS

FOR CALLS

 4000 = BDOSE EQU MSIZE*1024 ;END OF DOS LOAD

 3E00 = BOOT EQU BDOSE-2*256 ;COLD START

ENTRY POINT

 3E03 = RBOCT EQU BOOT+3 ;WARM START

ENTRY POINT

 ;

 0080 ORG 80H ;LOADED DOWN FROM HARDWARE BOOT AT

3000H

 ;

 1700 = BDOSL EQU BDOSE-BDOSB

 0002 = NTRKS EQU 2 ;NUMBER OF TRACKS TO READ

 002E = BDOSS EC)U BDOSL/128 ;NUMBER OF SECTORS IN DOS

 0019 = BDOS0 EQU 25 ;NUMBER OF BDOS SECTORS ON

TRACK 0

 0015 = BDOS1 EQU BDOSS-BDOSO ;NUMBER OF SECTORS

ON TRACK 1

 ;

 F800 = MON80 EQU OF800H ;INTEL MONITOR BASE

 FF0F = RMON80 EQU OFFOFH ;RESTART LWATION FOR MON80

 0078 = BASE EQU 078H ;'BASE' USED BY CONTROLLER

 0079 = RTYPE EQU BASE+1 ;RESULT TYPE

 007B = RBYTE EQU BASE+3 ;RESULT BYTE

 007F = RESET EQU BASE+7 ;RESET CONTROLLER

 ;

 0078 = DSTAT EQU BASE ;DISK STATUS PORT

 0079 = LOW EQU BASE+1 ;LOW IOPB ADDRESS

 007A = HIGH EQU BASE+2 ;HIGH IOPB ADDRESS

 0003 = RECAL EQU 3H ;RECALIBRATE SELECTED DRIVE

 0004 = READF EQU 4H ;DISK READ FUNCTION

 0100 = STACK EQU 100E ;USE END CF BOOT FOR STACK

 ;

 RSTART:

 0080 310001 LXI SP,STACK;IN CASE OF CALL TO MON80

 ;CLEAR THE CONTROLLER

 0083 D37F OUT RESET ;LOGIC CLEARED

 ;

 ;

 0085 0602 MVI NTRKS ;NUMBER CF TRACKS TO READ

 0087 21B700 LXI H,IOPB0

 ;

 START:

 ;

 ; READ FIRST/NEXT TRACK INTO BDOSB

 008A 7D MOV A,L

 B-1

 008B D379 OUT LOW

 008D 7C MOV A,H

 008E D37A OUT HIGH

 0090 D878 WAIT0: IN DSTAT

 0092 E604 ANI 4

 0094 CA9000 JZ WAIT0

 ;

 ; CHECK DISK STATUS

 0097 DB79 IN RTYPE

 0099 E603 ANI 11B

 0098 FE02 CPI 2

 ;

 IF TESTING

 CNC RMON80 ;GO TO MONITOR IF 11 OR 10

 ENDIF

 IF NOT TESTING

 009D D28000 JNC RSTART ;RETRY THE LOAD

 ENDIF

 ;

 00A0 DB7B IN RBYTE ;I/0 COMPLETE, CHECK STATUS

 ;IF NOT READY, THEN GOTO MON80

 00A2 17 RAL

 00A3 ECOFFF CC RMON80 ;NOT READY BIT SET

 00A6 1F RAR ;RESTORE

 00A7 E61E ANI 11110B ;OVERRUN/ADDR ERR/SEEK/CRC/XXXX

 ;

 IF TESTING

 CNZ RMON80 ;GO TO MDNIICR

 ENDIF

 IF NOT TESTING

 00A9 C28000 JNZ RSTART ;RETRY THE LOAD

 ENDIF

 ;

 ;

 00AC 110700 LXI D,IOPBL ;LENGTH OF IOPB

 00AF 19 DAD D ;ADDRESSING NEXT IOPS

 00B0 05 DCR B ;COUNT DOWN TPACKS

 00B1 C28A00 JNZ START

 ;

 ;

 ;JMP TO BOOT TO PRINT INITIAL MESSAGE, AND SET UP JMPS

 00B4 C3003E JMP BOOT

 ;

 ; PARAMETER BLOCKS

 00B7 80 IOPB0: DB 80H ;IOCW, NO UPDATE

 00B8 04 DB READF ;READ FUNCTION

 00B9 19 DB BDOS0 ;# SECTORS TO READ ON TRACK 0

 00BA 00 DB 0 ;TRACK 0

 00BB 02 DB 2 ;START WITH SECTOR 2 ON TRACK 0

 00BC 0029 DW BDOSB ;START AT BASE OF BDOS

 B-2

 0007 = IOPBL EQU $-IOPBO

 ;

 00BE 80 IOPB1: DB 80H

 00BF 04 DB READF

 00C0 15 DB BDOS1 ;SECTORS TO READ ON TRACK 1

 00C1 01 DB 1 ;TRACK 1

 00C2 01 DB 1 ;SECTOR 1

 00C3 8035 DW BDOSB+BDOS0*128 ;BASE OF SECOND

 ;

 00C5 END

 B-3

 ; MDS I/0 DRIVERS FOR CP/M

 ; VERSION 1.1 OCTOBER, 1976

 ;

 ; COPYRIGHT (C) 1976

 ; DIGITAL RESEARCH

 ; BOX 579, PACIFIC GROVE CA.

 ;

 ;

 ;

 0010 = MSIZE EQU 16 ;MEMORY SIZE IN KILOBYTES

 000B = VERS EQU 11 ;CPM VERSION NUMBER

 3E00 = PATCH EQU MSIZE*1024-2*256 ;BASE OF THIS MODULE

(ABOVE DOS)

 ;

 3E00 ORG PATCH

 2000 = CBASE EQU (MSIZE-8)*1024 ;BIAS FOR SYSTEMS

LARGER THAN 8K

 2900 = CPMB EQU CBASE+900H ;BASE OF CPM (CONSOLE

PROCESSOR

 3206 = BDOS EQU CBASE+1206H ;BASIC DOS (RESIDENT

PORTION)

 1500 = CPML EQU $-CPMB ;LENGTH (IN BYTES) OF CPM SYSTEM

 002A = NSECTS EQU CPML/128 ;NUMBER OF SECTORS TO LOAD

 E080 = LBIAS EQU 980H-CPMB ;LOADER BIAS VALUE USED IN SYSGEN

 0002 = OFFSET EQU 2 ;NUMBER OF DISK TRACKS USED BY

CP/M

 0080 = BUFF EQU 80H ;DEFAULT BUFFER ADDRESS

 000A = RETRY EQU 10 ;MAX RETRIES ON DISK I/0 BEFORE

ERROR

 ;

 ;PERFORM FOLLOWING FUNCTIONS

 ;BOOT COLD START

 ;WBOOT WARM START (SAVE I/0 BYTE)

 ;(BOOT AND WBOOT ARE THE SAME FOR MDS)

 ;CONST CONSOLE STAIUS

 ; REG-A = 00 IF NO CHARACTER READY

 ; REG-A = FF IF CHARACTER READY

 ;CONIN CONSOLE CHARACTER IN (RESULT IN REG-A)

 ;CONOUT CONSOLE CHARACTER OUT (CHAR IN REG-C)

 ;LIST LIST OUT (CHAR IN REG-C)

 ;PUNCH PUNCH OUT (CHAR IN REG-C)

 ;READER PAPER TAPE READER IN (RESULT TO REG-A)

 ;HOME MOVE TO TRACK 00

 ;

 ;(THE FOLLOWING CALLS SET-UP THE IO PARAMETER BLOCK FOR THE

 ;MDS, WHICH IS USED TO PERFORM SUBSEQUENT READS AND WRITES)

 ;SELDSK SELECT DISK GIVEN BY REG-C (0,1,2 ...)

 ;SETTRK SET TRACK ADDRESS (0,...76) FOR SUBSEQUENT READ/WRITE

 ;SETSEC SET SECTOR ADDRESS (1,...,26) FOR SUBSEQUENT

READ/WRITE

 ;SETDMA SET SUBSEQUENT DMA ADDRESS (INITIALLY 80H)

 ;

 ;(READ AND WRITE ASSUME PREVIOUS CALLS TO SET UP THE IO

PARAMETERS)

 ;READ READ TRACK/SECTOR TO PRESET DMA ADDRESS

 ;WRITE WRITE TRACK/SECTOR FROM PRESET DMA ADDRESS

 C-1

 ;

 ;JUMP VECTOR FOR INDIVIDUAL ROUTINES

 3E00 C3443E JMP BOOT

 3E03 C3543E WBOOTE: JMP WBOOT

 3E06 C3073F JMP CONST

 3E09 C30A3F JMP CONIN

 3E0C C3103F JMP CONOUT

 3E0F C3293F JMP LIST

 3E12 C32C3F JMP PUNCH

 3E15 C32F3F JMP READER

 3E18 C3323F JMP HOME

 3E1B C3373F JMP SELDSK

 3E1E C3503F JMP SETTRK

 3E21 C3553F JMP SETSEC

 3E24 C35A3F JMP SETDMA

 3E27 C3603F JMP READ

 3E2A C3693F JMP WRITE

 ;

 ;

 ; END OF CONTROLLER - INDEPENDENT CODE, THE REMAINING SUBROUTINES

 ; ARE TAILORED TO THE PARTICULAR OPERATING ENVIRONMENT, AND MUST

 ; BE ALTERED FOR ANY SYSTEM WHICH DIFFERS FROM THE INTEL MDS.

 ;

 ;THE FOLLOWING CODE ASSUMES THE MDS MONITOR EXISTS AT OF800H

 ; AND USES THE I/0 SUBROUTINES WITHIN THE MONITOR

 ;

 ;WE ALSO ASSUME THE MDS SYSTEM HAS TWO DISK DRIVES AVAILABLE

 0002 = NDISKS EQU 2 ;NUMBER OF DRIVES AVAILABLE

 00FD = REVRT EQU OFDH ;INTERRUPT REVERT PORT

 00FC = INX EQU OFCH ;INTERRUPT MASK PORT

 00F3 = ICON EQU OF3H ;INTERRUPT CONTROL PORT

 007E = INTE EQU 0111$1110B ;ENABLE RST 0(WARM

BOOT), RST 7

 ;

 ; MDS MDNITOR EQUATES

 F800 = MON80 EQU OF800H ;MDS MONITOR

 FF0F = RMON80 EQU OFFOFH ;RESTART MON80 (DISK SELECT

ERROR)

 F803 = CI EQU OF803H ;CONSOLE CHARACTER TO REG-A

 F806 = RI EQU OF806H ;READER IN TO REG-A

 F809 = CO EQU OF809H ;CONSOLE CHAR FROM C TO CONSOLE

OUT

 F80C = PO EQU OF8OCH ;PUNCH CHAR FROM C TO PUNCH

DEVICE

 F80F = LO EQU OF8OFH ;LIST FROM C TO LIST DEVICE

 F812 = CSTS EQU OF812H ;CONSOLE STATUS 00/FF TO REGISTER

A

 ;

 ;DISK PORTS AND COMMANDS

 0078 = BASE EQU 78H ;BASE OF DISK COMMAND IO PORTS

 0078 = DSTAT EQU BASE ;DISK STATUS (INPUT)

 0079 = RTYPE EQU BASE+1 ;RESULT TYPE (INPUT)

 007B = RBYTE EQU BASE+3 ;RESULT BYTE (INPUT)

 ;

 0079 = LOW EQU BASE+1 ;IOPB LOW ADDRESS (OUTPUT)

 C-2

 007A = HIGH EQU BASE+2 ;IOPB HIGH ADDRESS (OUTPUT)

 ;

 0004 = READF EQU 4H ;READ FUNCTION

 0006 = WRITF EQU 6H ;WRITE FUNCTICN

 0003 = RECAL EQU 3H ;RECALIBRATE DRIVE

 0004 = IORDY EQU 4H ;I/0 FINISHED MASK

 000D = CR EQU 0DH ;CARRIAGE RETURN

 000A = LF EQU 0AH ;LINE FEED

 ;

 SIGNON: ;SIGNON MESSAGE: XXK CP/M VERS Y.Y

 3E2D 0D0A0A DB CR, LF, LF

 3E30 3136 DB MSIZE/10+'0',MSIZE MOD 10 + '0'

 3E32 4B2043502F DB '.K CP/M VERS '

 3E3E 312E31 DB VERS/10+'0','.',VERS MOD 10+'0'

 3E41 0D0A00 DB CR,LF,0

 ;

 BOOT: ;PRINT SIGNON MESSAGE AND GO TO DOS

 3E44 310001 LXI SP,BUFF+80H

 3E47 212D3E LXI H,SIGNON

 3E4A CD723F CALL PRMSG ;PRINT MESSAGE

 3E4D AF XRA A ;CLEAR ACCUMULATOR

 3E4E 32D33F STA DISKT ;SELECT DISK 0 ON ENTRY

 3E51 C3A63E JET GOPM ;GO TO CP/M

 ;

 WBOOT:; LOADER ON TRACK 0, SECTOR 1, WHICH WILL BE SKIPPED

FOR WARM BOOT

 ; READ CP/M FROM DISK - ASSUMING THERE IS A 128 BYTE COLD START

 ; START.

 ;

 3E54 318000 LXI SP,BUFF ;USING DMA - THUS 80 THRU FF AVAILABLE FOR

STACK

 3ES7 3AD23F LDA DISKN ;CURRENTLY LOGGED DISK, RETURN TO DISKN IF

NOT 0

 3E5A 32D33F STA DISKT ;STORE INTO DISK TEMP SINCE WE BOOT OFF OF

0

 ;

 3E50 0E0A MVI C,RETRY ;MAX RETRIES

 3ESF C5 PUSH B

 WBOOT0: ;ENTER HERE ON ERROR RETRIES

 3E60 010029 LXI B,CPMB ;SET DMA ADDRESS TO START OF DISK SYSTEM

 3E63 CD5A3F CALL SETDMA

 3E66 0E02 MVI C,2 ;STA1RT READING SECTOR 2

 3E68 CD553F CALL SETSEC

 3E6B 0E00 MVI C,0 ;START RFADING TRACK 0

 3E6D CD503F CALL SETTRK

 3E70 0E00 MVI C,0 ;START WITH DISK 0

 3E72 CD373F CALL SELDSK ;CHANGES DISKN TO 0

 ;

 ;READ SECTORS, COUNT NSECTS TO ZERO

 3E75 Cl POP B ;10-ERROR COUNT

 3E76 062A MVI B,NSECTS

 RDSEC: ;READ NEXT SECTOR

 3E78 C5 PUSH B ;SAVE SECTOR COUNT

 C-3

 3E79 CD603F CALL READ

 3E7C C2E03E JNZ BOOTERR ;RETRY IF ERRORS OCCUR

 3E7F 2AD93F LHLD IOD ;INCREMENT DMA ADDRESS

 3882 118000 LXI D,128 ;SECTOR SIZE

 3E85 19 DAD D ;INCREMENTED DMA ADDRESS IN HL

 3E86 44 MOV B,H

 3E87 4D MOV C,L ;READY FOR CALL TO SET DMA

 3E88 CD5A3F CALL SETDMA

 3E8B 3AD83F LDA IOS ;SECTOR NUMBER JUST READ

 3E8E FE1A CPI 26 ;READ LAST SECTOR?

 3E90 DA9C3E JC RD1

 ;MUST BE SECTOR 26, ZERO AND GO TO NEXT TRACK

 3E93 3AD73F LDA IOT ;GET TRACK TO REGISTER A

 3E96 3C INR A

 3E97 4F MOV C,A ;READY FOR CALL

 3E98 CD503F CALL SETTRK

 3E9B AF XRA A ;CLEAR SECTOR NUMBER

 3E9C 3C RD1: INR A ;TO NEXT SECTOR

 3E9D 4F MOV C,A ;READY FOR CALL

 3E9E CD553F CALL SETSEC

 3EA1 Cl POP B ;RECALL SECTOR COUNT

 3EA2 05 DCR B ;DONE?

 3EA3 C2783E JNZ RDSEC

 ;

 ;DONE WITH THE LOAD, RESET DEFAULT BUFFER ADDRESS

 GOCPM: ;(ENTER HERE FROM COLD START BOOT)

 ;ENABLE RST0 AND RST7

 3EA6 F3 DI

 3EA7 3E12 MVI A,12H ;INITIALIZE COMMAND

 3EA9 D3FD OUT REVRT

 3EAB AF XRA A

 3EAC D3FC OUT INTC ;CLEARED

 3EAE 3E7E MVI A,INTE ;RST0 AND RST7 BITS CN

 3EB0 D3FC OUT INTC

 3EB2 AF XRA A

 3EB3 D3F3 OUT ICON ;INTERRUPT CONTROL

 ;

 ;SET DEFAULT BUFFER ADDRESS TO 80H

 3EB5 018000 LXI B,BUFF

 3EB8 CD5A3F CALL SETDMA

 ;

 ;RESET MONITOR ENTRY POINTS

 3EBB 3EC3 MVI A,JMP

 3EBD 320000 STA 0

 3ECO 21033E LXI H,WBOOTE

 3EC3 220100 SHLD 1 ;JMP WBOOT AT LOCATION 00

 3EC6 320500 STA 5

 3EC9 210632 LXI H,BDOS

 3ECC 220600 SHLD 6 ;JMP BDOS AT LOCATICN 5

 3ECF 323800 STA 7*8 ;JMP TO MON80 (MAY HAVE BEEN CHANGED BY

DDT)

 C-4

 3ED2 2100F8 LXI H,MON80

 3ED5 223900 SHLD 7*8+1

 ;LEAVE IOBYTE SET

 ;PREVIOUSLY SELECTED DISK WAS B, SEND PARAMETER TO CPM

 3ED8 3AD33F LDA DISKT

 3EDB 4F MOV C,A ;LOOKS LIKE A SINGLE PARAMETER TO CPM

 3EDC FB EI

 3EDD C30029 JMP CPMB

 ;ERROR CONDITION OCCURRED, PRINT MESSAGE AND RETRY

 BOOTERR:

 3EE0 Cl POP B ;RECALL COUNTS

 3EE1 0D DCR C

 3EE2 CAE93E JZ BOOTER0

 ;TRY AGAIN

 3EES C5 PUSH B

 3EE6 C3603E JMP WBOOT0

 ;

 BOOTER0:

 ;OTHERWISE TOO MANY RETRIES

 3EE9 21F23E LXI H,BOOTMSG

 3EEC CD7F3F CALL ERROR

 3EEF C3543E JMP WBOOT ;FOR ANOTHER TRY

 ;

 BOOTMSG:

 3EF2 2A43414E4E DB 'CANNOT BOOT SYSTEM*',0

 ;

 ;

 CONST: ;CONSOLE STATUS TO REG-A

 ;(EXACTLY THE SAME AS MDS CALL)

 3F07 C312F8 JMP CSTS

 ;

 CONIN: ;CONSOLE CHARACTER TO REG-A

 3F0A CD03F8 CALL CI

 3F0D E67F ANI 7FH ;REMOVE PARITY BIT

 3F0F C9 RET

 CONOUR: ;CONSOLE CHARACTER FROM C TO CONSOLE OUT

 ; SAME AS MDS CALL, BUT WAIT FOR SLOW CONSOLES ON LINE FEED

 3F10 79 MOV A,C -GET CHARACTER TO ACCUM

 3F11 FEOA CPI LF ;END OF LINE?

 3F13 F5 PUSH FSW ;SAVE CDNDITION FOR LATER

 3F14 CD09F8 CALL CO ;SEND THE CHARACTER (MAY BE LINE FEED)

 3F17 Fl POP PSW

 3F18 C0 RNZ ;RETURN IF IT WASN'T A LINE FEED

 ;

 ; WAIT 13 CHARACTER TIMES (AT 2400 BAUD) FOR LINE FEED TO HAPPEN

 ; (THIS WORKS OUT TO ABOUT 50 MILLISECS)

 3F19 0632 MVI B,50 ;NUMBER CF KILLISECS TO WikIT

 3F1B 0EB6 Tl: MVI C,182 ;COUNTER TO CONTROL 1 MILLISEC

LOOP

 C-5

 3F1D 0D T2: DCR C ;1 CYCLE = .5 USEC

 3F1E C21D3F JNZ T2 ;10 CYCLES= 5.5 USEC

 ; ----------

 ; = 5.5 USEC PER LOOP* 182 = 1001 USEC

 3F21 05 DCR B

 3F22 C21B3F JNZ Tl ;FOR ANOTHER LOOP

 3F25 C9 RET

 ;

 3F26 C309F8 JMP CD

 ;

 LIST: ;LIST DEVICE OUT

 ;(EXACTLY THE SAME AS MDS CALL)

 3F29 C30FF8 JMP LO

 ;

 PUNCH: ;PUNCH DEVICE OUT

 ;(EXACTLY THE SAME AS MDS CALL)

 3F2C C30CF8 JMP PO

 ;

 READER: ;READER CHARACTER IN TO REG-A

 ;(EXACTLY THE SAME AS MDS CALL)

 3F2F C306F8 JMP RI

 ;

 HOME: ;MOVE TO HOME POSITION

 ;TREAT AS TRACK 00 SEEK

 3F32 0E00 MVI C,0

 3F34 C3503F JMP SETTRK

 ;

 SELDSK: ;SELECT DISK GIVEN BY REGISTER C

 ;CP/M HAS CHECKED FOR DISK SELECT 0 OR 1, BUT WE MAY HAVE

 ;A SINGLE DRIVE MDS SYSTEM, SO CHECK AGAIN AND GIVE ERROR

 ;BY CALLING MON80

 3F37 79 MOV A,C

 3F38 FE02 CPI NDISKS ;TOO LARGE?

 3F3A D40FFF CNC RMON80 ;GIVES #ADDR MESSAGE AT CONSOLE

 3F3D 32D23F STA DISKN ;SELECT DISK N

 ;

 3F40 17 RAL

 3F41 17 RAL

 3F42 17 RAL

 3F43 17 RAL

 3F44 E610 ANI 10000B ;UNIT NUMBER IN POSITION

 3F46 4F MOV C,A ;SAVE IT

 3F47 21D53F LXI H,IOF ;IO FUNCTION

 3F4A 7E MOV A,M

 3F4B E6CF ANI 11001111B ;MASK OUT DISK NUMBER

 3F4D Bl ORA C ;MASK IN NEW DISK NUMBER

 3F4E 77 MOV M,A ;SAVE IT IN IOPB

 3F4F C9 RET

 ;

 C-6

 ;

 ;SET TRACK ADDRESS GIVEN BY C

 3F50 21D73F LXI H, IOT

 3F53 71 MOV M,C

 3F54 C9 RET

 ;

 SETSEC: ;SET SECTOR NUMBER GIVEN BY C

 3F55 21083F LXI H,IOS

 3F58 71 MOV M,C

 3F59 C9 RET

 ;

 SETDMA: ;SET DMA ADDRESS GIVEN BY REGS B,C

 3F5A 69 MOV L,C

 3F5B 60 MOV H,B

 3F5C 22D93F SHLD IOD

 3F5F C9 RET

 ;

 READ: ;READ NEXT DISK RECORD (ASSUMING DISK/TRK/SEC/DMA

SET)

 3F60 0E04 MVI C,READF ;SET TO READ EDCTICN

 3F62 CD903F CALL SETFUNC

 3F65 CD993F CALL WAITIO ;PERFORM READ FUNCTICN

 3F68 C9 RET ;MAY HAVE ERROR SET IN REG-A

 ;

 WRITE: ;DISK WRITE FUNCTION

 3F69 0E06 MVI C,WRITF

 3F6B CD903F CALL SETFUNC ;SET TO WRITE FUNCTION

 3F6E CD993F CALL WAITIO

 3F71 C9 RET ;MAY HAVE ERROR SET

 ;

 ;

 ;UTILITY SUBROUTINES

 PRMSG: ;PRINT MESSAGE AT H,L TO 0

 3F72 7E MOV A,M

 3F73 B7 ORA A ;ZERO?

 3F74 C8 RZ

 ;MORE TO PRINT

 3F75 E5 PUSH H

 3F76 4F MOV C,A

 3F77 CD09F8 CALL CO

 3F7A El POP H

 3F7B 23 INX H

 3F7C C3723F JMP PRMSG

 ;

 ERROR: ;ERROR MESSAGE ADDDRESSES BY H,L

 3F7F CD723F CALL PRMSG

 ;ERROR MESSAGE WRITTEN, WAIT FOR RESPONSE FROM CONSOLE

 3F82 CD0A3F CALL CONIN

 3F85 0E0D MVI C,CR ;CARRIAGE RETURN

 3F87 CD103F CALL

 C-7

 3F8A 0E0A MVI C,LF ;LINE FEED

 3F8C CD103E CALL CONOUT

 3F8F C9 RET ;MAY BE RETURNING FOR ANOTHER, RETRY

 ;

 SETFUNC:

 ;SET FUNCTION FOR NEXT I/0 (COMMAND IN REG-C)

 3F90 21D53F LXI H,IOF ;IO FUNCTION ADDRESS

 3F93 7E MOV A,M ;GET IT TO ACCUMULATOR FOR MASKING

 3F94 E6F8 ANI 11111000B ;REMOVE PREVIOUS COMMAND

 3F96 Bl ORA C ;SET TO NEW COMMAND

 3F97 77 MOV M,A ;REPLACED IN IOPB

 3F98 C9 RET

 ;

 WAITIO:

 3F99 0E0A MVI C,RETRY ;MAX RETRIES BEFORE PERM ERROR

 RWAIT:

 ;START THE I/0 FUNCTION AND WAIT FOR COMPLETION

 3F9B DB79 IN RTYPE

 3F9D DB7B IN RBYTE ;CLEARS THE CONTROLLER

 ;

 3F9F 3E04 MVI A,IOPB AND 0FFH ;LOW ADDRESS FOR IOPB

 3FA1 D379 OUT LOW ;TO THE CONTROLLER

 3FA3 3E3F MVI A,IOPB SHR 8 ;HIGH ADDRESS FOR IOPB

 3FA5 D37A OUT HIGH ;TO THE CONTROLLER, STARTS

OPERATION

 ;

 3FA7 DB78 WAITO: IN DSTAT ;WAIT FOR COMPLETION

 3FA9 E604 ANI IORDY ;READY?

 3FAB CAA73F JZ WAIT0

 ;

 ;CHECK IO COMPLETION OK

 3FAE DB79 IN RTYPE ;MUST BE I/0 ODMPLETE (00)

UNLINKED

 ; 00 UNLINKED I/0 COMPLETE, 01 LINKED I/0 COMPLETE (NOT

USED)

 ;10 DISK STATUS CHANGED 11 (NOT USED)

 3FB0 FE02 CPI 10B ;READY STATUS CHANGE?

 3FB2 CAC63F JZ WREADY

 ;

 ; MUST BE 00 IN THE ACCUMULATOR

 3FBS B7 ORA A

 3FB6 C2CB3F JNZ WERROR ;SOME OTHER CONDITION, RETRY

 ;

 ;CHECK I/0 ERROR BITS

 3FB9 DB7B IN RBYTE

 3FBB 17 RAL

 3FBC IAC63F JC WREADY ;UNIT NOT READY

 3FBF 1F RAR

 3FC0 E6FE ANI 11111110B ;ANY OTHER ERRORS? (DELETED DATA CK)

 3FC2 C2CB3F JNZ WERROR

 ;

 ;READ OR WRITE IS OK, ACCUMULATOR C0NTAINS ZERO

 3FC5 C9 RET

 C-8

 ;

 WREADY: ;NOT READY, TREAT AS ERROR FOR NOW

 3FC6 DB7B IN RBYTE ;CLEAR RESULT BYTE

 3FC8 C3CB3F JMP TRYCOUNT

 ;

 WERROR: ;RETURN HARDWARE MALFUNCTION (CRC, TRACK, SEEK,

ETC.)

 ; THE MDS CONTROLLER HAS RETURNED A BIT IN EACH POSITION

 ; OF THE ACCUMULATOR, CORRESPONDING TO THE CONDITIONS:

 ;0 -DELETED DATA (ACCEPTED AS OK ABOVE)

 ;1 -CRC ERROR

 ;2 -SEEK ERROR

 ;3 -ADDRESS ERROR (HARDWARE MALFNCTICN)

 ;4 -DATA OVER/UNDER FLOW (HARDWARE MALFUNCTION)

 ;5 -WRITE PROTECT (TREATED AS NOT READY)

 ;6 -WRITE ERROR (HARDWARE MALFUNCTION)

 ;7 -NOT READY

 ; (ACCUMULATOR BITS ARE NUMBERED 7 6 5 4 3 2 1 0)

 ;

 ; IT MAY BE USEFUL TO FILTER OUT THE VARIOUS CONDITIONS,

 ; BUT WE WILL GET A PERMANENT ERROR MESSAGE IF IT IS NOT

 ; RECOVERABLE. IN ANY CASE, THE NOT READY CONDITION IS

 ; TREATED AS A SEPARATE CONDITION FOR LATER IMPROVEMENT

 TRYCOUNT:

 ; REGISTER C CONTAINS RETRY COUNT, DECREMENT 'TIL ZERO

 3FCB 0D DCR C

 3FCC C29B3F JNZ REWAIT ;FOR ANOTHER TRY

 ;

 ; CANNOT RECOVER FROM ERROR

 3FCF 3E01 MVI A,1 ;ERROR CODE

 3FD1 C9 RET

 ;

 ;DATA AREAS (MUST BE IN RAM)

 3FD2 00 DISKN: DB 0 ;CURRENT DISK

 3FD3 00 DISKR: DB 0 ;TEMP FOR CURRENT DISK DURING

WARM START

 ICPB: ;IO PARAMETER BLOCK

 3FD4 80 DB 80H ;NORMAL I/0 OPERATION

 3FD5 04 IOF: DB READF ;IO FUNCTION, INITIAL READ

 3FD6 01 ION: DB 1 ;NUMBER OF SECTORS TO READ

 3FD7 02 IOT: DB OFFSET ;TRACK NUMBER

 3FD8 01 IOS: DB 1 ;SECTOR NUMBER

 3FD9 8000 IOD: DW BUFF ;IO ADDRESS

 ;

 ;

 3FDB END

 C-9

 ;SKELETAL CBIOS FOR FIRST LEVEL OF CP/M ALTERATION

 ;

 ;NOTE : MSIZE DETERMINES WHERE THIS CBIOS IS LOCATED

 0010 = MSIZE EQU 16 ;CP/M VERSION MEMORY SIZE IN

KILOBYTES

 3E00 = PATCH EQU MSIZE*1024-2*256 ;START OF THE CBIOS

PATCH

 ;

 ;WE WILL USE THE AREA RESERVED STARTING AT LOCATION

 ;40H IN PAGE 0 FOR HOLDING THE VALUES OF:

 ; TRACK = LAST SELECTED TRACK

 ; SECTOR = LAST SELECTED SECTOR

 ; DMAAD = LAST SELECTED DMA ADDRESS

 ; DISKNO = LAST SELECTED DISK NUMBER

 ;(NOTE THAT ALL ARE BYTE VALUES EXCEPT FOR DMAAD)

 ;

 ;

 0040 = SCRAT EQU 40H ;BASE OF SCRATCH AREA

(FROM 40H T

 0040 = TRACK EQU SCRAT ;CURRENTLY SELECTED

TRACK

 0041 = SECTOR EQU SCRAT+1 ;CURRERILY SELECTED

SECTOR

 0042 = DMAAD EQU SCRAT+2 ;CURRENT DMA ADDRESS

 0046 = DISKNO EQU DMAAD+4 ;CURRENT DISK NUMBER

 ;

 ;

 3E00 ORG PATCH ;0RGIN OF THIS PROGRAM

 0000 = CBASE EQU (MSIZE-16)*1024 ;BIAS FOR SYSTEMS

LARGER THAN 16K

 2900 = CPMB EQU CBASE+2900H ;BASE OF CP/M (= BASE

OF CCP)

 3206 = BDOS EQU CBASE+3206H ;BASE OF RESIDENT

PORTION OF CP/M

 1500 = CPML EQU $-CPMB ;LENGTH OF THE CPM

SYSTEM IN BYTES

 002A = NSECTS EQU CPML/128 ;NUMBER OF SECTORS TO LOAD ON

WARM START

 ;

 ;JUMP VECTOR FOR INDIVIDUAL SUBROUTINES

 3E00 C32D3E JMP BOOT ;COLD START

 WBOOTE:

 3E03 C33038 JMP WBOOT ;WARM START

 3E06 C3993E JMP CONST ;CONSOLE STATUS

 3E09 C3AC3E JMP CONIN ;CONSOLE CHARACTER IN

 3E0C C38F3E JMP CONOUT ;CONSOLE CHARACTER OUT

 3E0F C3D13E JMP LIST ;LIST CHARACTER OUT

 3E12 C3D33E JMP PUNCH ;PUNCH CHARACTER OUT

 3E15 C3D53E JMP READER ;READER CHARACTER OUT

 3E18 C3DA3E JMP HOME ;MOVE HEAD TO HOME POSITION

 3E1B C3E03E JMP SELDSK ;SELECT DISK

 3E1E C3F53E JMP SETTRK ;SET TRACK NUMBER

 3E21 C30A3F JMP SETSEC ;SET SECTOR NUMBER

 3E24 C31F3F JMP SETDMA ;SET DMA ADDRESS

 3E27 C3353F JMP READ ;READ DISK

 3E2A C3483F JMP WRITE ;WRITE DISK

 ;

 ;INDIVIDUAL SUBROUTINES TO PERFORM EACH FUNCTION

 D-1

 BOOT: ;SIMPLEST CASE IS TO JUST PERFORM PARAMETER

INITIALIZATION

 3E2D C3793E JMP GOCPM ;INITIALIZE AND GO TO CP/M

 ;

 WBOOT: ;SIMPLEST CASE IS TO READ THE DISK UNTIL ALL SECTORS

LOADED

 3E30 318000 LXI SP,80H ;USE SPACE BELOW BUFFER FOR

STACK

 3E33 0E00 JMP C,0 ;SELECT DISK 0

 3E35 CDE03E CALL SELDSK

 3E38 CD1A3E CALL HOME ;GO TO TRACK 00

 ;

 3E3B 062A MVI B,NSECTS ;B COUNTS THE NUMBER OF SECTORS TO LOAD

 3E3D 0E00 MVI C,0 ;C HAS THE CURRENT TRACK NUMBER

 3E3F 1602 MVI D,2 ;D HAS THE NEXT SECTOR TO READ

 ;NOTE THAT WE BEGIN BY READING TRACK 0, SECTOR 2 SINCE SECTOR 1

 ;CONTAINS THE COLD START LOADER, WHICH IS SKIPPED IN A WARM START

 3E41 210029 LXI H,CPMB ;BASE OF CP/M (INITIAL LOAD

POINT)

 LOAD1: ;LOAD ONE MORE SECTOR

 3E44 C5 PUSH B ;SAVE SECTOR COUNT, CURRENT TRACK

 3E45 D5 PUSH D ;SAVE NEXT SECTOR TO READ

 3E46 E5 PUSH H ;SAVE DMA ADDRESS

 3E47 4A MOV C,D ;GET SECTOR ADDRESS TO REGISTER C

 3E48 CD0A3F CALL SETSEC ;SET SECTOR ADDRESS FROM REGISTER C

 3E4B Cl POP B ;RECALL DMA ADDRESS TO B,C

 3E4C C5 PUSH B ;REPLACE ON STACK FOR LATER RECALL

 3E4D CD1F3F CALL SETDMA ;SET DMA ADDRESS FROM B,C

 ;

 ;DRIVE SET TO 0, TRACK SET, SECTOR SET, DMA ADDRESS SET

 3E50 CD353F CALL READ

 3E53 FE00 CPI 00H ;ANY ERRORS?

 3E55 C2303E JNZ WBOOT ;RETRY THE ENTIRE BOOT IF AN ERROR OCCURS

 ;

 ;NO ERROR, MOVE TO NEXT SECTOR

 3E58 El POP H ;RECALL DMA ADDRESS

 3ES9 118000 LXI D,128 ;DMA=DMA+128

 3E5C 19 DAD D ;NEW DMA ADDRESS IS IN H,L

 3E5D Dl POP D ;RECALL SECTOR ADDRESS

 3E5E Cl POP B ;RECALL NUMBER OF SECTORS REMAINING, AND

CURRENT TRK

 3ESF 05 DCR B ;SECTORS=SECTORS-1

 3E60 CA793E JZ GOCPM ;TPANSFER TO CP/M IF ALL HAVE BEEN LOADED

 ;

 ;MORE SECTORS REMAIN TO LOAD, CHECK FOR TRACK CHANGE

 3E63 14 INR D

 3E64 7A MOV A,D ;SECTOR=27?, IF SO, CHANGE TRACKS

 3E65 FE1B CPI 27

 3E67 DA443E JC LOAD1 ;CARRY GENERATED IF SECTOR<27

 ;

 ;END OF CURRENT TRACK, GO TO NEXT TRACK

 3E6A 1601 MVI D,1 ;BEGIN WITH FIRST SECTOR OF NEXT TRACK

 3E6C 0C INR C ;TRACK=TRACK+1

 ;

 ;SAVE REGISTER STATE, AND CHANGE TRACKS

D-2

 3E6D C5 PUSH B

 3E6E D5 PUSH D

 3E6F E5 PUSH H

 3E70 CDF53E CALL SETTRK ;TRACK ADDRESS SET FROM REGISTER C

 3E73 El POP H

 3E74 Dl POP D

 3E75 Cl POP B

 3E76 C3443E JMP LOAD1 ;FOR ANOTHER SECTOR

 ;

 ;END OF LOAD OPERATION, SET PARAMETERS AND GO TO CP/M

 GOCPM:

 3E79 3EC3 MVI A,0C3H ;C3 IS A JMP INSTRUCTION

 3E7B 320000 STA 0 ;FOR JMP TO WBOOT

 3E7E 21033E LXI H,WBOOTE ;WBOOT ENTRY POINT

 3E81 220100 SHLD 1 ;SET ADDRESS FIELD FOR JMP AT 0

 ;

 3E84 320500 STA 5 ;FOR JMP TO BDOS

 3E87 210632 LXI H,BDOS ;BDOS ENTRY POINT

 3E8A 220600 SHLD 6 ;ADDRESS FIELD OF JUMP AT 5 TO BDOS

 ;

 3E8D 018000 LXI B,80H ;DEFAULT DM ADDRESS IS 80H

 3E90 CD1F3F CALL SETDMA

 ;

 3E93 FB EI ;ENABLE THE INTERRUPT SYSTEM

 ;FUTURE VERSIONS OF CCP WILL SELECT THE DISK GIVEN BY REGISTER

 ;C UPON ENTRY, HENCE ZERO IT IN THIS VERSION OF THE BIOS FOR

 ;FUTURE COMPATIBILITY.

 3E94 0E00 MVI C,0 ;SELECT DISK ZERO AFTER INITIALIZATION

 3E96 C30029 JMP CPMB ;GO TO CP/M FOR FURTHER PROCESSING

 ;

 ;

 ;SIMPLE I/0 HANDLERS. (MUST BE FILLED IN BY USER)

 ;IN EACH CASE, THE ENTRY POINT IS PROVIDED, WITH SPACE RESERVED

 ;TO INSERT YOUR OWN CODE

 ;

 CONST: ;CONSOLE STATUS,RETURN 0FFH IF CHARACTER READY, 00H

IF NOT

 3E99 DS 10H ;SPACE FOR STATUS SUBROUTINE

 3EA9 3E00 MVI A,00H

 3EAB C9 RET

 ;

 CONIN: ;CONSOLE CHARACTER INTO REGISTER A

 3EAC DS 10H ;SPACE FOR INPUT ROUTINE

 3EBC E67F ANI 7FH ;STRIP PARITY BIT

 3EBE C9 RET

 ;

 CONOUT: ;CONSOLE CHARACTER OUTPUT FROM REGISTER C

 3EBF 79 MOV A,C ;GET TO ACCUMULATOR

 3EC0 DS 10H ;SPACE FOR OUTPUT ROUTINE

 3ED0 C9 RET

 ;

 D-3

 ;LIST: ;LIST CHARACTER FROM REGISTER C

 3ED1 79 MOV A,C ;CHARACTER TO REGISTER A

 3ED2 C9 RET ;NULL SUBROUTINE

 ;

 PUNCH: ;PUNCH CHARACTER FROM REGISTER C

 3ED3 79 MOV A,C ;CHARACTER TO REGISTER A

 3ED4 C9 RET ;NULL SUBROUTINE

 ;

 READER: ;READ CHARACTER INTO REGISTER A FROM READER DEVICE

 3ED5 3E1A MVI A,1AH ;ENTER END OF FILE FOR NOW (REPLACE LATER)

 3ED7 E67F ANI 7FH ;REMEMBER TO STRIP PARITY BIT

 3ED9 C9 RET

 ;

 ;

 ; I/0 DRIVERS FOR THE DISK FOLLOW

 ; FOR NOW, WE WILL SIMPLY STORE THE PARAMETERS AWAY FOR USE

 ; IN THE READ AND WRITE SUBROUTINES

 ;

 HOME: ;MOVE TO THE TRACK 00 POSITION OF CUPRENT DRIVE

 ;TPANSLATE THIS CALL INTO A SETTRK CALL WITH PARAMETER 00

 3EDA OEOO MVI C,0 ;SELECT TRACK 0

 3EDC CDFS3E CALL SETTRK

 3EDF C9 RET ;WE WILL MOVE TO 00 ON FIRST READ/WRITE

 ;

 SELDSK: ;SELECT DISK GIVEN BY REGISTER C

 3EEO 79 MOV A,C

 3EE1 324600 STA DISKNO

 3EE4 DS 10H ;SPACE FOR DISK SELECTION ROUTINE

 3EF4 C9 RET

 ;

 SETTRK: ;SET TRACK GIVEN BY REGISTER C

 3EF5 79 MOV A,C

 3EF6 324000 STA TRACK

 3EF9 DS 10H ;SPACE FOR TRACK SELECT

 3F09 C9 RET

 ;

 SETSEC: ;SET SECTOR GIVEN BY REGISTER C

 3FOA 79 MOV A,C

 3FOB 324100 STA SECTOR

 3F0E DS 10H ;SPACE FOR SECTOR SELECT

 3F1E C9 RET

 ;

 SETDMA: ;SET DMA ADDRESS GIVEN BY REGISTERS B AND C

 3FIF 69 MOV L,C ;LOW ORDER ADDRESS

 3F20 60 MOV H,B ;HIGH ORDER ADDRESS

 3F21 224200 SHLD DMAAD ;SAVE THE ADDRESS

 3F24 DS 10H ;SPACE FOR SETTING THE DMA ADDRESS

 3F34 C9 RET

D-4

 READ: ;PERFORM READ OPERATION (USUALLY THIS IS SIMILAR TO

WRITE

 ;SO WE WILL ALLOW SPACE TO SET UP READ COMMAND, THEN USE

 ;COMMON CODE IN WRITE)

 3F35 DS 10H ;SET UP READ COMMAND

 3F45 C3583F JMP WAITIO ;TO PERFORM THE ACTUAL I/0

 ;

 WRITE: ;PERFORM A WRITE OPERATION

 3F48 DS 10H ;SET UP WRITE COMMAND

 ;

 WAITIO: ;ENTER HERE FROM READ AND WRITE TO PERFORM THE

ACTUAL I/0

 ;OPERATION. RETURN A 00H IN REGISTER A IF THE OPERATION COMPLETES

 ;PROPERLY, AND 01H IF AN ERROR OCCURS DURING THE READ OR WRITE

 ;

 ; IN THIS CASE, WE HAVE SAVED THE DISK NUMBER IN 'DISKNO' (0,1)

 ; THE TRACK NUMBER IN 'TRACK' (0-

76)

 ; THE SECTOR NUMBER IN 'SECTOR'

(1-26)

 ; THE DMA ADDRESS IN 'DMAAD' (0-

65535)

 ;ALL REMAINING SPACE FROM $ THRU MSIZE*1024-1 IS AVAILABLE:

 00A7 LEFT EQU (MSIZE*1024-1)-$;SPACE REMAINING IN

CBIOS

 ;

 3F58 3E01 MVI A,1 ;ERROR CONDITION

 3F5A C9 RET ;REPLACED WHEN FILLED-IN

 3F5B END

D-5

 ;COMBINED GETSYS AND PUTSYS PROGRAMS FROM SECTION 4

 ;

 ;START THE PROGRAMS AT THE BASE OF THE TRANSIENT PROGRAM AREA

 0100 ORG 100H

 0010 = MSIZE EQU 16 ;SIZE OF MEMORY IN KILOBYTES

 ;BIAS IS THE AMOUNT TO ADD TO ADDRESSES FOR SYSTEMS LARGER THAN

16K

 ;(REFERRED TO AS 'B' THROUGHOUT THE TEXT)

 0000 = BIAS EQU (MSIZE-16)*1024

 ;

 ;GETSYS PROGRAM - READ TRACKS 0 AND 1 TO MEMORY AT 2880H+BIAS

 ;REGISTER USE

 ; A (SCRATCH REGISTER)

 ; B TRACK COUNT (0...76)

 ; C SECTOR COUNT (1...26)

 ; D,E (SCRATCH REGISTER PAIR)

 ; H,L LOAD ADDRESS

 ; SP SET TO STACK ADDRESS

 ;

 GSTART: ;START OF THE GETSYS

PROGRAM

 0100 318028 LXI SP,2880H+BIAS ;SET STACK POINTER TO SCRATCH

AREA

 0103 218028 LXI H,2880H+BIAS ;SET BASE LOAD ADDRESS

 0106 0600 MVI B,0 ;START WITH TRACK 00

 RDTRK: ;READ FIRST (NEXT)

TRACK

 0108 0E01 MVI C,1 ;READ STARTING WITH SECTOR 1

 RDSEC:

 010A CD0003 CALL READSEC ;READ NEXT SECTOR

 010D 118000 LXI D,128 ;CHANGE LOAD ADDRESS TO NEXT 1/2

PAGE

 0110 19 DAD D ;HL=HL+128 TO NEXT ADDRESS

 0111 0C INR C ;SECTOR=SECTOR+1

 0112 79 MOV A,C ;CHECK FOR END OF TRACK

 0113 FE1B CPI 27

 0115 CA0A01 JC RDTRK ;CARRY GENERATED IF C<27

 ;

 ; ARRIVE HERE AT END CF TRACK, MOVE TO NEXT TRACK

 0118 04 INR B ;TRACK=TRACK+1

 0119 78 MOV A,B ;CHECK FOR LAST TRACK

 011A FE02 CPI 2 ;TRACK=2?

 011C DA0801 JC RDTRK ;CARRY GENERATED IF TRACK < 2

 ;

 ARRIVE HERE AT END OF LOAD, HALT FOR NOW

 011F FB EI

 0120 76 HIT

 ;

 ;PUTSYS PROGRAM - PLACE MEMORY STARTING AT 2880H+BIAS BACK TO

TRACKS

 ;0 AND 1. START THIS PROGRAM ON THE NEXT PAGE

 0200 ORG ($+100H) AND 0FF00H

 ;REGISTER USE

 ; A (SCRATCH REGISTER)

E-1

 ; B TRACK COUNT (0, 1)

 ; C SECTOR COUNT (1 ... 26)

 ; D,E (SCRATCH REGISTER PAIR)

 ; H,L DUMP ADDRESS

 ; SP SET TO STACK ADDRESS

 ;

 PSTART: ;START OF THE PUTSYS PROGRAM

 0200 318028 LXI SP,2880H+BIAS ;SET STACK POINTER TO SCRATCH

AREA

 0203 218028 LXI H,2880H+BIAS ;SET BASE DUMP ADDRESS

 0206 0600 MVI B,0 ;START WITH TRACK 0

 MTRK: ;WRITE FIRST (NEXT)

TRACK

 0208 0E01 MVI C,1 ;START WRITING AT SECTOR 1

 WSEC: ;WRITE FIRST (NEXT)

SECTOR

 020A CD8003 CALL WRITESEC ;PERFORM THE WRITE

 020D 118000 LXI D,128 ;MOVE DUMP ADDRESS TO NEXT 1/2

PAGE

 0210 19 DAD D ;HL=HL+128

 0211 OC INR C ;SECTOR=SECTOR+1

 0212 79 MOV A,C ;CHECK FOR END OF TRACK

 0213 FE1B CPI 27 ;SECTOR=27?

 0215 DA0A02 JC WRSEC ;CARRY GENERATED IF SECTOR < 27

 ;

 ;ARRIVE HERE AT END OF TRACK, MOVE TO NEXT TRACK

 0218 04 INR B ;TRACK=TRACK+1

 0219 78 MOV A,B ;TEST FOR LAST TRACK

 021A FE02 CPI 2 ;TRACK=2?

 021C A0802 JC WRTRK ;CARRY GENERATED IF TRACK < 2

 ;

 ;ARRIVE HERE AT END OF DUMP, HALT FOR NOW

 021F FB EI

 0220 76 HIT

 ;

 ;

 ;USER-SUPPLIED SUBROUTINES FOR SECTOR READ AND SECTOR WRITE

 ;

 ;MOVE TO NEXT PAGE FOR SECTOR READ AND SECTOR WRITE

 0300 ORG ($+100H) AND 0FF00H

 ;

 READSEC: ;READ THE NEXT SECTOR

 ;TRACK TO READ IS IN REGISTER B

 ;SECTOR TO READ IS IN REGISTER C

 ;BRANCH TO LABEL GSTART, IF ERROR OCCURS

 ;READ 128 BYTES OF DATA TO ADDRESS GIVEN BY H,L

 0300 C5 PUSH B

 0301 E5 PUSH H

 ;** PLACE READ OPERATION HERE **

 0302 El POP H

 0303 Cl POP B

 0304 C9 ;RET

 ;MOVE TO NEXT 1/2 PAGE FOR WRITESEC SUBROUTINE

E-2

 0380 ORG ($ AND 0FF00H) + 80H

 WITESEC: ;WRITE THE NEXT PE)C'I'OR

 ;TRACK TO WRITE IS IN REGISTER B

 ;SECTOR TO WRITE IS IN REGISTER C

 ;BRANCH TO LABEL PSTART IF ERROR OCCURS

 ;WRITE 128 BYTES OF DATA FROM ADDRESS GIVEN BY H,L

 0380 C5 PUSH B

 0381 ES PUSH H

 ;** PLACE WRITE OPERATION HERE **

 0382 El POP H

 0383 Cl POP B

 0384 C9 RET

 ;END OF GETSYS/PUTSYS PROGRAM

 0385 END

 E-3

 ; THIS IS A SAMPLE COLD STAR@T LOADER WHICH, WHEN MODIFIED,

RESIDES

 ; ON TRACK 00, SECTOR 01 (THE FIRST SECTOR ON THE DISKETTE). WE

 ; ASSUME THAT THE CONTROLLER HAS LOADED THIS SECTOR IN MEMORY

 ; UPON SYSTEM STARTUP (THIS PROGRAM CAN BE KEYED-IN, OR EXIST IN

 ; A PAGE OF READ-ONLY MEMORY BEYOND THE ADDRESS SPACE OF THE CP/M

 ; VERSION YOU ARE RUNNING). THE COLD START LOADER BRINGS THE CP/M

 ; SYSTEM INT0 MEMORY AT 'LOADP' (NOMINALLY 29OOH) + 'BIAS' WHERE

 ; THE BIAS VALUE ACCOUNTS FOR MEMORY SYSTEMS LARGER THM 16K, AND

 ; CP/M VERSIONS WHICH HANDLE THE LARGER MEMORY SPACE. IN A 16K

 ; SYSTEM, THE VALUE OF BIAS IS 0000H. AFTER LOADING THE CP/M

SYS-

 ; TEM, THE COLD START LOADER BRANCHES TO THE 'BOOT' ENTRY POINT

OF

 ; THE BIOS, WHICH BEGINS AT 'BIOS' + 'BIAS'. THE COLD START

LOADER

 ; IS NOT USED AGAIN UNTIL THE SYSTEM IS POWERED UP AGAIN, AS LONG

 ; AS THE BIOS IS NOT OVEWRITTEN.

 ;

 ; THE ORIGIN IS 0, ASSUMING THE CONTROLLER LOADS THE COLD START

 ; PROGRAM AT THE BASE OF MEMORY. THIS ORIGIN MUST BE IN HIGH

 ; MEMORY (BEYOND THE END OF THE BIOS) IF THE COLD START LOADER

 ; IS IMPLEMENTED IN READ-ONLY-MEMORY.

 0000 ORG 0000H ;BASE OF MEMORY

 0010 = MSIZE EQU 16 ;MEMORY SIZE IN KILOBYTES

 0000 = BIAS EQU (MSIZE-16)*1024 ;BIAS TO ADD TO LOAD

ADDRESSES

 2900 = LOADP EOU 2900H ;LOAD POINT FOR CP/M SYSTEM

 3E00 = BIOS EQU 3E00H ;BASIC I/0 SYSTEM (2 PACES = 512

BYTES)

 3E00 = BOOT EQU BIOS ;COLD START ENTRY P0INT IN BIOS

 1700 = SIZE EQU BIOS+512-LOADP ;SIZE OF THE CP/M

SYSTEM TO LOAD

 002E = SECTS EQU SIZE/128 ;NUMBER OF SECTORS TO LOAD

 ;

 ;BEGIN THE LOAD OPERATION

 0000 010200 COLD: LXI B,2 ;CLEAR B TO 0, SET C TO

SECTOR 2

 0003 162E MVI D,SECTS ;NUMBER OF SECTORS TO LOAD IS IN D

 0005 21002C LXI H,LOADP+BIAS ;LCAD POINT IN H,L

 ;

 LSECT: ;LOAD NEXT SECTOR

 ;INSERT INLINE CODE AT THIS POINT TO READ ONE 128-BYTE SECTOR

 ;FROM TRACK GIVEN BY REGISTER B,

 ; SECTOR GIVEN BY REGISTER C,

 ;INTO ADDRESS GIVEN BY REGISTER PAIR H,L

 ;BRANCH TO LOCATION 'COLD' IF A READ ERROR OCCURS

 ;

 ;**

 ; USER SUPPLIED READ OPERATION GOES HERE

 ;**

 ;(SPACE IS RESERVED FOR YOUR RATCH)

 0008 C36B00 JMP PASTPATCH ;REMOVE THIS JUMP WHEN PATCHED

 000B DS 60H

 ;

 PASTPATCH:

 F-1

 ;GO TO NEXT SECTOR IF LCAD IS INCOMPLETE

 006B 15 DCR D ;SECTS=SECTS-1

 006C CA003E JZ BOOT+BIAS ;GO TO BOOT LOADER AT 3E00H+BIAS

 ;

 ;MORE SECTORS TO LOAD

 ;USE SP FOR SCRATCH REGISTER TO HOLD LOAD ADDRESS INCREMENT

 006F 318000 LXI SP,128

 0072 39 DAD SP ;HL=HL+128 TO NEXT LOAD ADDRESS

 ;

 0073 OC INR C ;SECTOR=SECTOR+1

 0074 79 MOV A,C ;MOVE SECTIOR COUNT TO A FOR

COMPARE

 0075 FE1B CPI 27 ;END OF CURRENT TRACK?

 0077 DA0800 JC LECT ;CARRY GENERATED IF SECTOR < 27

 ;

 ;END OF TRACK, MOVE TO NEXT TRACK

 007A 0E01 MVI C,1 ;SECTOR=1

 007C 04 INR B ;TRACK-TRACK+1

 007D C30800 JMP LSECT ;FOR ANOTHER SECTOR

 0080 END

 F-2

 CP/M

 SYMBOLIC INSTRUCTION

 DEBUGGER

 USER'S GUIDE

{NB This is an old SID - for CP/M Version 1.3.

 However I doubt much changed in later SID's. }

 DIGITAL RESEARCH

 S I D

 Symbolic Instruction Debugger

 USER'S GUIDE

 Copyright (c) 1978 and 1981

 Digital Research

 P.O. Box 579

 801 Lighthouse Avenue

 Pacific Grove, CA 93950

 (408) 649-3896

 TWX 910 360 5001

 All Rights Reserved

COPYRIGHT

Copyright (c) 1978 and 1981 by Digital Research.

All rights reserved. No Part of this publication

may be reproduced, transmitted, transcribed, stored

in a retrieval system, or translated into any

language or computer language, in any form or by any

means, electronic, mechanical, magnetic, optical,

chemical, manual or otherwise, without the prior

written permission of Digital Research, Post Office

Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or

warranties with resr)ect to the contents hereof and

specifically disclaims any implied warranties of

merchantability or fitness for any particular

purpose. Further, Digital Research reserves the

right to revise this r)ublication and to make changes

from time to time in the content hereof without

obligation of Digital Research to notify any person

of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.

SID and MAC are trademarks of Digital Research.

The SID USER'S GUIDE was Prepared using the Digital

Research TEX Text Formatter.

 * Third Printing: Januarv 1981 *

 TABLE OF CONTENTS

SECTION PAGE

1. SID OPERATION UNDER CPM 1

 1.1. SID Startup 1

 1.2. SID Command Input 5

2. SID SYMBOLIC EXPRESSIONS 8

 2.1. Literal Hexadecimal Numbers 8

 2.2. Literal Decimal Numbers 8

 2.3. Literal Character Values 9

 2.4. Symbolic References 9

 2.5. Qualified Symbols 10

 2.6. Symbolic Operators 11

 2.7. Sample Symbolic Expressions 12

3. SID COMMANDS 14

 3.1. The Assemble (A) Command 14

 3.2. The Call (C) Command 15

 3.3. The Display Memory (D) Command 16

 3.4. The Fill Memory (F) Command 18

 3.5. The Go (G) Command 19

 3.6. The Hexadecimal Value (H) Command 21

 3.7 The Input Line (I) Command 22

 3.8. The List Code (L) Command 25

 3.9. The Move Memory (M) Command 27

 3.10. The Pass Counter (P) Command 27

 3.11. The Read Code/Symbols (R) Command 30

 3.12. The Set Memory (S) Command 34

 3.13. The Trace Mode (T) Command 36

 3.14. The Untrace Mode (U) Command 38

 3.15. The Examine CPU State (X) Command 39

4. SID UTILITIES 42

 4.1. Utility Operation 42

 4.2. The HIST Utility 43

 4.3. The TRACE Utility 45

5. SID SAMPLE DEBUGGING SESSIONS 50

 1. SID OPERATION UNDER CP/M

 The CP/M symbolic debugger, called SID, expands upon

the features of the CP/M standard debugger described in the

manual "CP/M Dynamic Debugging Tool (DDT) User's Guide" and

provides greatly enhanced facilities for assembly level

program checkout. Specifically, SID includes real-time

breakpoints, fully monitored execution, symbolic

disassembly, assembly, and memory display and fill

functions. Further, SID operates with 'utilities" which can

be dynamically loaded with SID to provide traceback and

histogram facilities. The various functions of SID are

given in the sections which follow.

 1.1. SID Startup.

 The SID program is initiated by typing one of the

following commands:

 (a) SID

 (b) SID x.y

 (c) SID X.HEX

 (d) SID X.UTL

 (e) SID x.y u.v

 (f) SID * u.v

In each case, SID loads into the topmost portion of the

Transient Procram Area (TPA) and overlays the Console

Command Processor portion of CP/M (see the "CP/M Interface

Guide" and "CP/M Alteration Guide" for a discussion of

memory use conventions). Memory organization before SID is

loaded is shown in Figure 1, while Figure 2 shows the memory

configuration after SID is loaded and relocated. Due to the

relocation process, SID is independent of the exact memory

size which CP/M manages in a particular computer

configuration.

 (High Memory) | |

 | BDOS |

 | |

 | |

 | CCP |

 | |

 | |

 | TPA |

 | |

 (Low Memory) | JMP BDOS |

 Figure 1. Memory Configuration Before SID Loads.

 1

SID Users Guide Section 1

 | |

 | BDOS |

 | |

 | |

 | SID |

 | |

 | JMP BDOS |

 | |

 | TPA |

 | |

 | JMP SID 1 |

 Figure 2. Memory Configuration After SID Loads.

 After loading and relocating, SID alters the BDOS

entry address to reflect the reduced memory size, as shown

in Figure 2, and frees the lower portion of the TPA for use

by the program under test. Note that although SID occupies

only 6K of upper memory when operating, the self-relocation

process necessitates a minimum 20K CP/M system for initial

setup, leaving about 10K for the test program.

 Command form (a) above loads and executes SID without

loading a test program into the TPA. This form is often

used when the operator wishes to examine memory or write and

test simple programs using the built-in assembly features of

SID.

 Form (b) above is similar to (a) except that the

program given by x.y is automatically loaded for subsequent

test. Note that although x.y is loaded into the TPA, it is

not executed until SID r)asses program control to the program

under test using one of the commands C (Call), G (Go), T

(Trace), or U (Untrace). It is the programmer's

responsibility to ensure there is enough space in the TPA to

hold the test program as well as the de6ugger. If the

program x.y does not exist on the diskette or cannot be

loaded, the standard "?' error response is issued by SID.

If no load error occurs, the SID response is:

 NEXT PC END

 nnnn pppp eeee

where nnnn, pppp, and eeee are hexadecimal values which

indicate the next free address following the loaded program,

the initial value of the program counter, and the logical

end of the TPA, respectively. Thus, nnnn is normally the

beginning of the data area of the Drogram under test, pppp

is the starting program counter (set to the beginning of the

TPA), and eeee is the last memory location available to the

test program, as shown in Figure 3. Although x.y usually

 2

SID Users Guide Section 1

contains machine code, the operator can name an ASCII file,

in which case these program addresses are less meaningful.

 | |

 | BDOS |

 | |

 | SID |

 eeee: |(Free SDace) |

 | |

 nnnn: | |

 | |

 | (Test |

 pppp: | program) |

 | JMP SID |

 Figure 3. memory Configuration After Test Program Load.

 Command form (c) is similar to form (b) except that

the test program is assumed to be in Intel 'hex" format, as

directly produced by ASM or MAC. In this case, the initial

program counter is obtained from the last record of the hex

file unless this value is zero, in which case the program

counter is set to the beginning of the TPA. As discussed in

the ASM and MAC manuals, the program counter value can be

given on the 'END' statement in the source program. Again,

it is the programmer's responsibility to ensure that the hex

records do not overlay portions of the SID debuqger or CP/M

Operating System. If the hex file does not exist, or if

errors occur in the hex format, the "?" response is issued

by SID. Otherwise, the principal program locations shown in

the previous paragraph are listed at the console.

 Command form (d) is used when a SID utility function

is to be included. In this case, SID is first loaded and

relocated as above. The utility function is then loaded

into the TPA. Utility functions are also self-relocating

and immediately move to the top of the TPA, placing

themselves directly below the SID program. The BDOS entry

address is changed to reflect the reduced TPA, as shown in

Figure 4. Generally, the utility program.prints sign-on

information and may or may not prompt for input from the

console. Exact details of utility or)eration are given in

the section entitled "SID Utilities."

 3

SID Users Guide Section 1

 | BDOS |

 | SID |

 | UTL |

 | JMP BDOS |

 | |

 | TPA |

 | |

 | JMP UTL |

 Figure 4. Memory Configuration Following Utility Load.

 Command form (e) is similar to (c), except that the

symbol table given by u.v is loaded with the program x.y.

Symbol information is loaded from the base of SID downward

toward the program under test, as shown in Figure 5.

 | BDOS |

 | SID |

 | (UTL If |

 | Present) |

 | |

 | SYMBOLS |

 | |

 | JMP BDOS |

 | Free Space |

 | |

 | Test Program |

 | |

 | JMP SYMBOLS |

 Figure 5. Memory Configuration Following Symbol Load.

 The symbol table is in the format produced by the CP/M

Macro Assembler. In particular, the symbol table must be a

sequence of address and symbol name pairs, where the address

consists of four hexadecimal digits, separated by a space

from the symbol which takes on this address value. The

symbol consists of up to 16 graphic ASCII characters

terminated by one or more tabs (ctl-I) or a carriage return

line feed sequence. Note that the operator can optionally

create or alter a symbol table using the CP/M editor, as

 4

SID Users Guide Section 1

long as this format is followed (see the manual "ED: the

CP/M Context Editor" for editing details).

 The response following program load will be as shown

in command form (b) above, giving essential program

locations. When SID begins symbol load, the message:

 SYMBOLS

is printed indicating that any subsequent error is due to

the symbol load process. In particular, the "?" error

following the SYMBOLS response is due to a non-existent or

incorrectly formatted symbol file.

 Examples of typical commands which start the SID

program are shown below.

 COMMAND FORM COMMAND EXAMPLE

 (a) SID

 (b) SID DUMP.COM

 (b) SID DUMP.ASM

 (c) SID SAMPLE.HEX

 (c) SID DUMP.HEX

 (d) SID TRACE.UTL

 (a) SID HIST.UTL

 (e) SID DUMP.COM DUMP.SYM

 (e) SID DUMP.HEX DUMP.SYM

 (e) SID TEST.COM TEST.ZOT

 (f) SID * DUMP.SYM

 1.2. SID Command Input.

 Command input to SID consists of a series of "command

lines" which direct the actions of the SID program. These

commands allow display of memory and CPU registers, and

direct the execution and breakpoint operations during test

program debugging.

 SID prompts the console for input by typing "#" when

ready to accept the next command. Each command is based

upon a single letter, followed by optional parameters, and

terminated by a carriage return. Note that all standard

line editing features of CP/M are available, with a maximum

of 64 command command characters. The CP/M line editing

functions are:

 5

SID Users Guide Section 1

 ctl-C CP/M system reboot, return to CCP

 ctl-E Physical end-of-line

 ctl-P Print console output (on/off toggle)

 ctl-R Retype current inidut line

 ctl-S Stop/start console outidut

 ctl~U Delete current input line

 cti-x (Same as ctl-U)

 ctl-Z End of console inout (not used in SID)

 rubout Delete and echo last character

where the "ctl" function indicates that the control key is

held down while the particular function key is depressed.

Note further that the ctl-R, ctl-U, and ctl-X keys cause

CP/M to type a "#" at the end of the line to indicate that

the line is being discarded.

 Various SID commands produce long typeouts at the

console (see the "D" command which displays memory, for

example). In this case, the operator can abort the typeout

before it completes by typing any key at the console (a

"return" suffices).

 The single letter commands which direct the actions of

SID are typed at the beginning of the command line. The

valid commands are summarized below (lower case command

letters are translated to upper case automatically):

 A Assemble directly to memory

 C Call to memory location from SID

 D Display memory in hex and ASCII

 F Fill memory with constant value

 G Go to test program for execution

 H Hexadecimal arithmetic

 I InDut CCP command line

 L List 8080 mnemonic instructions

 M Move memory block

 p Pass point set, reset, and display

 R Read test program and symbol table

 S Set memory to data values

 T Trace test program execution

 U Untrace (monitor) test program

 X Examine state of CPU registers

Although the details of each of the commands are given in

later sections, nearly all of the commands accept parameters

following the letter which governs the command actions. The

parameters may be counters or memory addresses, and may

appear in both literal and symbolic form, but eventually

reduce to values in the range 0-65535 (four hexadecimal

digits).

 As an examole, the "display memory' command can take

the form

 Dssss,eeee

 6

SID Users Guide Section 1

where D is the command letter, and ssss and eeee are

"command parameters" which give the starting and ending

addresses for the display, respectively. In their simplest

form, ssss and eeee can be literal hexadecimal values, such

as

 D100,300

which instructs SID to print the hexadecimal and ASCII

values contained in memory locations 0100 through 0300.

 Although the operator can usually refer to program

listings to obtain absolute machine addresses, SID supports

more comprehensive mechanisms for quick access to machine

addresses through orogram symbols. In particular, the

command parameters can consist of "symbolic expressions"

which are described fully in the following section.

 7

 2. SID SYMBOLIC EXPRESSIONS

 An important facility of SID is the ability to

reference absolute machine addresses through symbolic

expressions. Symbolic expressions may involve names

obtained from the program under test which are included in

the "SYM" file produced by the CP/M Macro Assembler, or may

consist of literal values in hexadecimal, decimal, or ASCII

character string form. These values can then be combined

with various ooerators to provide access to subscripted and

indirectly addressed data or program areas. The purpose of

this section is to completely describe symbolic expressions

so that they may be incorporated as command parameters in

the individual command forms which follow this section.

 2.1. Literal Hexadecimal Numbers.

 SID normally accepts and displays values in the

hexadecimal number base to form 16-bit values from up to

four hexadecimal digits. The valid hexadecimal digits

consist of the decimal digits 0 through 9 along with the

hexadecimal digits A, B, C, D, E, and F, corresponding to

the decimal values 10 through 15, respectively. Note that

SID translates lower case hexadecimal digits to upper case

outside of string apostrophes.

 A literal hexadecimal number in SID consists of one or

more contiguous hexadecimal digits. If four digits are

typed then the leftmost digit is most significant, while the

rightmost digit is least significant. If the number

contains more than four digits, the rightmost four are taken

as significant, and the remaining leftmost digits are

discarded. The values to the left below produce the

hexadecimal and decimal values shown following the "#" to

the right below.

 INPUT VALUE HEXADECIMAL DECIMAL

 1 0001 #1

 100 0100 #256

 fffe FFFE #65534

 10000 0000 #0

 38001 8001 #32769

 2.2. Literal Decimal Numbers.

 Although SID's normal number base is hexadecimal, the

operator can override this base on input by preceding the

number by a "#" symbol which indicates that the following

number is in the decimal base. In this case, the number

which follows must consist of one or more decimal digits (0

through 9) with the most significant digit on the left and

the least significant digit on the right. Decimal values

are padded or truncated according to the rules of

hexadecimal numbers, as described above, by converting the

decimal number to the equivalent hexadecimal value.

 8

SID Users Guide Section 2

 The input values shown to the left below produce the

internal hexadecimal values shown to the right below:

 INPUT VALUE HEXADECIMAL VALUE

 #9 0009

 #10 OOOA

 #256 0100

 #65535 FFFF

 #65545 0009

 2.3. Literal Character Values.

 As an operator convenience, SID also accepts one or

more graphic ASCII characters enclosed in string apostrophes

(') as literal values in expressions. Characters remain as

typed within the paired apostrophes (i.e., no case

translation occurs) with the leftmost character treated as

the most significant, and the rightmost character treated as

least significant. Each character is translated internally

to its two hexadecimal digit ASCII encoded form. Similar to

hexadecimal numbers, character strings of length one are

padded on the left with zero, while strings of length

greater than two are truncated to the rightmost two

characters, discarding the leftmost remaining characters.

 Note that the enclosing apostrophes are not included

in the character string, nor are they included in the

character count, with one exception. In order to include

the possibility of writing strings which include

apostrophes, a pair of contiguous apostrophes are reduced to

a single apostrophe and included in the string as a normal

graphic character.

 The strings shown to the left below produce the

hexadecimal values shown to the right below. (For these

examples, note that upper case ASCII alphabetics begin at

the encoded hexadecimal value 41, lower case alphabetics

begin at 61, a space is hexadecimal 20, and an apostrophe

is encoded as hexadecimal 60).

 INPUT STRING HEXADECIMAL VALUE

 'A' 0041

 'AB' 4142

 'ABC' 4243

 'aA' 6141

 '''' 0060

 '''''' 6060

 ' A' 2041

 'A ' 4120

 2.4. Symbolic References.

 Given that a symbol table is present during a SID

debugging session, the operator may reference values

 9

SID Users Guide Section 2

associated with symbols through three forms of a symbol

reference:

 (a) .s

 (b) @s

 (c) =S

where s represents a sequence of one to sixteen characters

which match a symbol in the table.

 Form (a) produces the address value (i.e., the value

associated with the symbol in the table) corresponding to

the symbol s. Form (b) produces the double precision 16-bit

"word" value contained in the two memory locations given by

.s, while form (c) results in the single precision 8-bit

'byte" value at s in memory. Suppose, for example, that

the input symbol table contains two symbols, and appears as:

 0100 GAMMA 0102 DELTA

Further, suppose that memory starting at 0100 contains the

following byte data values:

 0100: 02, 0101: 3E, 0102: 4D, 0103: 22

 Based upon this symbol table and these memory values,

the symbol references shown to the left below produce the

hexadecimal values shown to the right below. Recall that

16-bit 8080 memory values are stored with the least

significant byte first, and thus the word values at 0100 and

0102 are 3E02 and 224D, respectively.

 SYMBOL REFERENCE HEXADECIMAL VALUE

 .GAMMA 0100

 .DELTA 0102

 @GAMMA 3E02

 @DELTA 2240

 =GAMMA 0002

 =DELTA 0040

 2.5. Qualified Symbols.

 It should be noted that duplicate symbols can occur in

the symbol table due to separately assembled or compiled

modules which independently use the same name for differing

subroutines or data areas. Further, block structured

languages, such as PL/M, allow nested name definitions which

are identical, but non-conflicting. Thus, SID allows

reference to "qualified symbols" which take the form

 Sl/S2/ . . . /Sn

where Sl through Sn represent symbols which are present in

the table during a oarticular session.

 SID always searches the symbol table from the first to

 10

SID Users Guide Section 2

last symbol, in the order the symbols appear in the input

file. In the case of a qualified symbol, SID begins by

matching the first Sl symbol, then scans for a match with

symbol S2, continuing until symbol Sn is matched. If this

search and match procedure is not successful, SID prints the

"?" response to the console. Suppose, for examr)le, that the

symbol table appears as

 0100 A 0300 B 0200 A 3E00 C 20F0 A 0102 A

in the input file, with memory initialized as shown in the

previous section. The unqualified and qualified symbol

references shown to the left below produce the hexadecimal

values shown to the right below.

 SYMBOL REFERENCE HEXADECIMAL VALUE

 .A 0100

 @A 3E02

 .A/A 0200

 .C/A/A 0102

 =C/A/A 0040

 @B/A/A 20F0

 2.6. Symbolic Operators.

 Literal numbers, strings, and symbol references can be

combined into symbolic expressions using unary and binary

#C + 01 and " - " delimiters. The entire sequence of numbers,

symbols, and operators must be written without imbedded

blanks. Further, the sequence is evaluated from

left-to-right, producing a four digit hexadecimal value at

each step in the evaluation. Overflow and underflow are

both ignored as the evaluation proceeds. The final value

becomes the command parameter, whose interpretation depends

upon the particular command letter which precedes it.

 When placed between two operands, the "+" indicates

addition of the previously accumulated value. The value of

the following literal or symbolic value is added, and

becomes the new accumulated value to this point in the

evaluation. If the expression begins with a unary "+" then

the immediately preceding (completed) symbolic expression is

taken as the initial accumulated value (zero is assumed at

SID startup). For example, the command:

 DFEOO+#128,+5

contains the first expression "FEOO+#128" which adds FEOO

and (decimal) 128 to produce FE80 as the starting value for

this display command. The second expression +5 begins

with a unary "+" which indicates that the previous

expression value (FE80) is to be used as the base for this

symbolic expression, producing the value FE85 for the end of

the display operation. Thus, the command given above is

equivalent to:

 11

SID Users Guide Section 2

 DFE8O,FE85

 The "-" symbol causes SID to subtract the literal

number or symbol reference from the 16-bit value accumulated

thusfar in the symbolic expression. If the expression

begins with a minus sign, then the initial accumulated value

is taken as zero. That is,

 -X is computed as 0-x

where x is any valid symbolic expression. The command:

 DFFOO-200,-#512

for example, is equivalent to the simple command

 DFDOO,FEOO

 A special up-arrow operator, denoted by "^" is

present in SID to denote the top-of-stack in the program

under test. In general, a secuence of n up-arrow operators

extracts the nth stacked item in the test program, but does

not change the test program stack content or stack pointer.

This particular operator is used most often in conjunction

with the G (Go) command to set a breakpoint at a return from

a subroutine during test, and is described fully under the G

command.

 2.7. Sample Symbolic Expressions.

 The formulation of SID symbolic expressions is most

often closely related to the program structures in the

program under test. Suppose we wish to debug a sorting

program which contains the data items listed below:_

 LIST: names the base of a table of byte values to

sort, assuming there are no more than, 255 elements, denoted

by LIST(O), LIST(1), ... , LIST(255).

 N: is a byte variable which gives the actual number

of items in LIST, where the value of N is less than 256.

The items to sort are stored in LIST(O) through LIST(N-1).

 I: is the byte subscript which indicates the next

item to compare in the sorting process. That is, LIST(I) is

the next item to place in sequence, where I is in the range

0 through N-1.

 Given these data areas, the command

 D.LIST,+255

for example, displays the entire area reserved for sorting:

 LIST(O), LIST(1), LIST(255)

 12

SID Users Guide Section 2

The command

 D.LIST,+=I

displays the LIST vector up to and including the next item

to sort:

 LIST (0) , LIST (1) LIST (I)

The command:

 D.LIST+=I,+0

displays only LIST(I). Finally, the command:

 D.LIST,+=N-1

displays only the area of LIST which holds active items to

sort:

 LIST (0) , LIST (1) LIST (N-1)

 The exact manner in which symbolic expressions are

used within SID is dependent upon the individual command

which is issued by the operator These commands are listed

in some detail in the section which follows.

 13

 3. SID COMMANDS.

 SID commands are entered at the console following the

prompt, and direct the debugging process by allowing

alteration and display of machine functions as well as

controlling execution of the program under test.

 The commands which SID accepts are listed and

described in alohabetical order in the sections which follow.

 3.1. The Assemble (A) Command.

 The A command allows the operator to insert 8080

machine code and operands into the current memory image

using standard intel mnemonics, along with symbolic

references to operands. The command forms are:

 (a) As

 (b) A

 (c) -A

where s represents any valid symbolic expression. Form (a)

begins inline assembly at the address given by s, where each

successive address is displayed until a null line (i.e., a

single carriage return) is typed by the operator. Form (b)

is equivalent to (a), except the starting address for the

assembly is taken from the last assembled, listed, or traced

address (see the "L", "T", and "U" commands). The following

command sequence, for example, assembles a short program

into the transient program area (note that each command line

is terminated by a carriage return):

 A100 begin assembly at 0100

 0100 MVI A,10 load A with hex 10

 0102 DCR A decrement A register

 0103 JNZ 100 loop until zero

 0106 RST 7 return to debugger

 0107 single carriage return

As each successive address is Promoted, the operator may

either enter a mnemonic instruction, or return to SID

command mode by entering a single carriage return (a single

"." is also accepted to terminate inline assembly to be

consistent with the "S" command).

 Delimiter characters which are acceptable between

mnemonic and operand fields include space or tab sequences.

 Invalid mnemonics or ill-formed operand fields produce

"?" errors. In this case, control returns back to command

mode, where the operator can proceed with another command

line, or simply return to assembly mode by tyoing a single

"A" since the assumed starting address is automatically

taken from the last assembled address.

 14

SID Users Guide Section 3

 The assembler/disassembler portion of SID is a

separate module, and can be removed to increase the

available debugging space. Thus, form (c) is entered to

remove the module, returning approximately 1 1/2 K bytes.

Since the entire SID debugger requires approximately 6 K

bytes, this reduces SID requirements to about 4 1/2 K bytes.

When the assembler/disassembler module is removed in this

manner, the A and L commands are effectively removed.

Further, the trace and untrace functions display only the

hexadecimal codes, and the traceback utility displays only

hexadecimal addresses. Any existing symbol information is

also discarded at this point, although such information can

be reloaded (see the "I" and "R" commands).

Examples of valid assemble commands are shown below:

 A100

 A#100

 A.CRLF+5

 A@GAMMA+@X-=I

 A+30

 Given that the command A100 has been entered, the

following interaction could take place between SID and the

operator:

 SID PROMPT OPERATOR INPUT

 0100 MVI C,.A-.B

 0102 LXI H,.SOURCE

 0105 LXI D,+100

 0108 MOV A,M

 0109 INX H

 010A STAX D

 010B INX D

 010C DCR C

 010D JNZ 108

 0110 ("return" only)

where A, B, and SOURCE are symbols which are active in the

symbol table. In this case, SID computes the address

difference between A and B as the operand for the MVI

instruction. The LXI H Operand becomes the address of

SOURCE, while the LXI D instruction receives the operand

value .SOURCE+100 since .SOURCE was the immediately

proceeding symbolic expression value. This particular

program segment would mo@e a block of memory determined by

the address values of the corresponding symbols.

 3.2. The Call (C) Command.

 The C command performs a call to an absolute location

in memory, without disturbing the register state of the

program under test. The forms are:

 15

SID Users Guide Section 3

 (a) Cs

 (b) Cs,b

 (c) Cs,b,d

Although the C command is designed for use with SID

utilities, it can be used to perform calls on test program

subroutines to perform program initialization, or to make

CP/M BDOS calls which initialize various system parameters

before executing the test program.

 Form (a) above performs a call on absolute location s,

where s is a symbolic expression. In this case, registers

BC = 0000 and DE = 0000 in the call. Normal exit from the

subroutine is through execution of a RET instruction which

returns control to SID, followed by a normal system prompt.

 Form (b) above is equivalent to (a), except that the

BC register pair is set to the value of expression b, while

DE is set to 0000.

 Form (c) is similar to (b): the BC register pair is

set to the value b while the DE pair is set to the value of

d. Several examples of valid C commands are shown below.

Refer also to the SID utility discussion for examples of the

C command in utility initialization, data collection, and

display functions.

 C100

 C#4096

 C.DISPLAY

 C@JMPVEC+=X

 C.CRLF,#34

 C.CRLF,@X,+=X

 3.3. The Display Memory (D) Command.

 The D command is used to display selected segments of

memory in both byte (8-bit) and word (16-bit) formats. The

display appears in both byte and ASCII form in the output.

The forms of the D command are:

 (a) Ds

 (b) Ds,f

 (c) D

 (d) D,f

 (e) DWs

 (f) DWs,f

 (g) DW

 (h) DW,f

 Forms (a) through (d) display memory in byte format,

while forms (e) through (h) display memory in word format.

The byte format display appears as:

 aaaa bb bb bb . . . bb cc . . . cc

 16

SID Users Guide Section 3

where aaaa is the base address of the display line and the

sequence of (up to) 16 bb oairs represents the hexadecimal

representation of the data stored starting at address aaaa.

The sequence of c's represent the same data area displayed

in ASCII format, where possible. A period (.) is displayed

as a place holder when the data item does not correspond to

a graphic character.

 Byte mode displays are "normalized" to address

boundaries which are a multiple of 16. That is, if the

starting address aaaa is not a multiple of 16, then the

display line is printed to the next boundary address which

is a multiple of 16. Each display line which follows

contains 16 data elements until the last display line is

encountered.

 Command forms (e) through (h) display in word mode

which is similar to the byte mode display described above,

except that the data elements are printed in a double byte

format:

 aaaa wwww wwww . . . wwww cc . . . cc

where aaaa is the starting address for the display line and

the sequence of (up to 8) wwww's represent the data items

which are stored in memory beginning at aaaa. Similar to

the byte mode display, the sequence of c's represent the

decoded ASCII characters starting at address aaaa. As in

the byte mode display, a period is displayed as a place

holder when the character in that position is non-graphic.

Contrary to the byte mode display, address normalization to

modulo 16 address boundaries does not occur in the word mode

display. Recall that 8080 double words are stored with the

least significant byte first, and thus the word mode display

reverses each byte pair so that the individual data items

are displayed as four digit hexadecimal numbers with the

most significant digits in the high order positions.

 Command form (a) displays memory in byte format

starting at location s for 1/2 of a standard CRT screen (12

lines). This form of the command is useful when the

operator wishes to view a segment of memory beginning at a

particular Dosition, with an indefinite ending address.

Command form (b) is similar to (a), but soecifies a

particular ending address. In this case, the start address

is taken as s with the display continuing through address f.

Recall that excessively long typeouts can be aborted by

depressing any keyboard character, such as a return. Form

(c) is similar to (a) and (b), exceot the starting address

for the display is taken from the last displayed address, or

from the value of the memory address registers (HL) in the

case that no previous display has occurred since the last

breakpoint. It is often convenient, for example, to use

form (a) to display a segment of memory, followed by a

 17

SID Users Guide Section 3

sequence of D commands of form (c) to continue the display.

Each D command displays another 1/2 screen of memory.

Command form (d) is similar to (b) exceot the starting

address is taken automatically as described in form (c)

above.

 Assume, for example, that decimal values 1 through 256

are stored in memory starting at hexadecimal address 0100.

The command:

 D100,12A

will produce the expanded form of the display shown below:

 0100 01 02 03 04 (etc.) OE OF 10 .. (etc.) ..

 0110 11 12 13 14 (etc.) 1E 1F 20 .. (etc.) .

 0120 21 22 23 24 (etc.) 29 2A 2B !"#$%&'()*+

 Command forms (e) through (h) parallel the byte

display formats given by (a) through (h) , except that the

display is given in word format. Form (e) displays in word

format from location s for 1/2 screen, while form (f)

displays from location s through location f. Form (g)

displays from the last display location, or from HL if there

has been an immediately preceding breakpoint with no

intervening display. Form (h) is similar to (g), but

displays through location f. The command:

 DW100,128

for example, Droduces the expanded form of the following

output lines:

 0100 0201 0403 (etc.) OEOD 10OF .. (etc.) ..

 0110 1211 1413 (etc.) 1E1D 201F .. (etc.) .

 0120 2221 2423 (etc.) 2928 2B2A !"#$%&'()*+

Examples of valid D commands are:

 DF3F

 D#100,#200

 D.GAMMA,.DELTA+#30

 D.GAMMA

 DW@ALPHA,+#100

 3.4. The Fill Memory (F) Command.

 The F command fills memory with a constant byte value,

and takes the form:

 Fs,f,d

where s is the starting address for the fill, f is the

ending (inclusive) address for the fill, and d is the 8-bit

data item to store in locations s through f. It is the

 18

SID Users Guide Section 3

operator's responsibility to not fill memory locations which

are occupied by the resident Portions of CP/M, including areas

reserved for SID. Examples of valid F commands are:

 F100,3FF,FF

 F.GAMMA,+#100,#23

 F@ALPHA,+=I,=X

 3.5. The GO (G) Command.

 The G command is used to pass Program control to a

program under test. Execution proceeds in real-time from the

address specified by the G command. That is, the G command

releases processor control from SID to the program under test.

Execution does not return to SID until a break or pass point is

reached (see the "P" command for a discussion of Pass points).

The operator can force a return to SID, however, by

interrupting the processor with a "restart 7" (RST 7), provided

by the program under test, or forced by external hardware such

as front Panel control switches, if available.

 The several G command forms are:

 (a) G

 (b) Gp

 (c) G,a

 (d) Gp,a

 (e) G,a,b

 (f) Gp,a,b

 (g) -G

 (h) -Gp

 (i) -G,a

 (j) -Gp,a

 (k) -G,a,b

 (l) -G,p,a,b

 Forms (a) through (f) start test proqram execution with

symbolic features enabled, while forms (g) through (l) are

identical in function, but disable the symbolic features of

SID. In particular, form (a) starts test program execution

from the program counter (PC) given in the machine state of the

program under test (see the "X" command for machine state

display). In this case, no breakpoints are set in the test

program. Form (b) is similar to (a) , but initializes the test

program's PC to p before starting execution. Again, no

breakpoints are set in the test program. Similar to (a), form

(c) starts execution from the current value of PC but sets a

breakpoint at location a. The test program receives control

and runs in real-time until the address a is encountered. Note

that control will return to SID upon encountering a pass point

or RST 7, as described above.

 Upon encountering the breakpoint address a, the break

address is printed at the console in the form:

 *a .s

 19

SID Users Guide Section 3

where s is the first symbol in the table which matches address

a, if it exists. Note that the temporary breakpoint at address

a is automatically cleared when SID returns to command mode

(see the "P" command for permanent breakpoints).

 Form (d) combines the functions of (b) and (c): the

test program PC is set to the address p and a temporary

breakpoint is set at location a. As above, the breakpoint is

cleared when location a is encountered. It should be noted

that an immediate breakpoint will alwavs occur if p = a. If

this is not desired, however, the operator can use the trace

function to single step past the current address, followed by a

G command (see the "G" command for actions of the trace

facility).

 Form (e) extends the breakpoint facility bv allowing two

temporary break addresses at a and b. Program execution begins

at the current PC and continues until either address a or b is

encountered. Both temporary break addresses are cleared when

SID returns to command mode. Form (f) is similar to (e),

except the initial value of PC is set to location p before

starting the test program.

 It should be noted that the instruction at a breakpoint

address is not executed when the G command is used. Suppose,

for example, that a subroutine named TYPEOUT is located at

address 0302 in a test Program, consisting of the machine code:

 TYPEOUT:

 0302 MOV C,A

 0303 MVI C,2

 0305 JMP 0005

Suppose further that the operator is testing a program which

makes calls on the TYPEOUT subroutine where a break address is

to be set. The command:

 G,.TYPEOUT

is entered by the operator. Test program\execution proceeds

from the current PC value and stops when the@TYPEOUT subroutine

is reached, with the breakpoint message

 *0302 .TYPEOUT

indicating that control has returned from the test program to

the SID debugger. At this point the program counter of the

test program is at location 0302 (i.e., .TYPEOUT), and the

instruction at this location has not yet been executed.

 20

SID Users Guide Section 3

The operator can execute through the TYPEOUT subroutine

using any of the commands G, T, or U. One useful command in

this situation is

 G,^

which continues execution from 0302, and sets a breakpoint

at the topmost stacked element (given by "^"). Since the

topmost stacked element must be the subroutine return

address, this particular G command has the effect of

executing the TYPEOUT subroutine, with a break upon return

to the instruction following the original call to TYPEOUT.

 Command forms (g) through (l) correspond directly to

functions (a) through (f), except that pass points are not

displayed until the corresponding pass counters reach 1 (see

the "P" command for details of intermediate pass point

display).

 Note that the essential difference between the G

command and the U (Untrace) command is that execution

proceeds unmonitored in real-time with the G command, while

each instruction is executed in single-step mode when the U

command is used. Fully-monitored execution under the U

command has the advantage that the operator can regain

control at any point in the test program execution.

However, execution time of the test program is seriously

degraded in Untrace mode since automatic breakpoints are set

and cleared following each instruction.

 Examples of valid G commands are:

 G100

 G100,103

 G.CRLF,.PRINT,#1024

 G@JMPVEC+=I,.ENDC,.ERRC

 G,.ERRSUB

 G,.ERRSUB,+30

 -G100,+10,+10

 3.6. The Hexadecimal Value (H) Command.

 The H command is used to perform hexadecimal

computations including number base conversion operations.

The forms of the H command are:

 (a) Ha,b

 (b) Ha

 (c) H

Form (a) computes the hexadecimal sum and difference using

the two operands, resulting in the display:

 ssss dddd

where ssss is the sum a+b, and dddd is the difference a-b,

 21

SID Users Guide Section 3

ignoring overflow and underflow conditions.

 Form (b) is used to perform number and character

conversion, where a is a symbolic expression. The display

format in this case is:

 hhhh #ddddd 'c' .s

where hhhh is the four digit hexadecimal value of a, #ddddd

is the (up to) six digit decimal value of a, c is the ASCII

value of a when a is graphic, and s is the first symbol in

the table which matches the value a, when such a symbol

exists. Assume, for example, that the symbol GAMMA is

located at address 0100, as in previous examples. The H

commands shown to the left below result in the displays

shown to the right below:

 COMMAND RESULTING DISPLAY

 H0,1 0001 FFFF

 H41 0041 #65 'A'

 H100 0100 #256 .GAMMA

 H.GAMMA 0100 #256 .GAMMA

 H=GAMMA 0001 #1

 H@GAMMA 0201 #513

 HFF+@GAMMA 0100 #256 .GAMMA

 H'A' 0041 #65 'A'

 H'A'+=GAMMA 0042 #66 'B'

 Command form (c) prints the complete list of symbols

along with their corresponding address values. The list is

printed from the first to last symbol loaded, and can be

aborted during typeout by depressing any keyboard character.

 3.7. The Input Line (I) Command.

 When testing programs which run in the CP/M

environment, it is often useful to simulate the command line

which is normally prepared by the CCP upon program load.

The form of the I command is:

 Iccccc ... ccc

where the secuence of c's reoresent ASCII characters which

would normally follow the test program name in the CCP

command line. For example, the CP/M "DUMP" program is

normally started in CCP command mode by typing:

 DUMP X.COM

which causes the CCP to search for and load the DUMP.COM

file, and pass the file name "X.COM" as a parameter to the

DUMP program. In particular, the CCP initializes two

default file control blocks, along with a default command

line which contains the characters following the DUMP

command.

 22

SID Users Guide Section 3

 In order to trace and debug a program such as DUMP,

the SID program would normally be invoked by typing:

 SID DUMP.COM

which loads the command file containing the DUMP machine

code. If the symbol table is available, the SID invocation

would be:

 SID DUMP.COM DUMP.SYM

In either case, SID loads the DUMP program and prompts the

console for a command. In order to simulate the CCP's

command line preparation, the operator would then type:

 IX.COM

where the "I" denotes the Input command, which is followed

by the simulated command line. The operator may then

commence the debug run with default areas properly setup.

 The I command specifically initializes the default

file control block in low memory, labelled DFCB1, which is

normally located at 005C. The file control block which is

initialized by the I command is complete in the sense that

the program can simply address DFCB1 and perform and open,

make, or delete operation without further initialization.

As a convenience, a second file name is initialized at

location DFCB2, which is at address DFCB1+0010

(hexadecimal). It is the programmer's responsibility to

move the second drive number, file name, and file type to

another region of memory before performing file operations

at DFCB1 since the 16-byte region at DFCB2 will be

immediately overwritten by any file operation. Further, the

default buffer, labelled DBUFF, is initialized to contain

the entire command line with a preceding blank character.

In a standard CP/M system, the DBUFF area is assumed to be

located start at 0080 and end at 00FF. Note, however, that

the I command restricts the simulated CCP command line to 63

characters since SID's line buffer is used in the

simulation.

 Given an I command of the form:

 I dl:fl.tl d2:f2.tl

where dl: and d2: are (optional) drive identifiers, fl and

f2 are (up to eight character) file names, and tl and t2 are

(up to three character optional) file types, two default

file control block names are prepared in the form:

 DFCB1: dl' fl' tl' 00 00 00 00

 DFCB2: d2' f2' t2' 00 00 00 00

 00 (current record field)

 23

SID Users Guide Section 3

If dl: is empty in the original command line, then dl' = 00

(which automatically selects the default drive) , otherwise if

dl = A, B, C, or D, then dl' = 01, 02, 03, or 04,

respectively, which properly initializes the file control

block for automatic disk selection. Field fl' is initialized

to the ASCII file name/given by fl, Dadded to an eight

character field with ASCII blanks. Similarly, tl' is

initialized to the ASCII file type, padded with blanks in a

field of length three. Lower case alohabetics in dl, fl, and

tl are translated to upider case in dl', fl', and tl',

respectively. Names which exceed their respective length

fields are truncated on the right. Finally, the extent field

is zeroed in preparation for a BDOS call to open or make the

file.

 The second default file control block given by d2, f2,

and t2 is prepared in a similar fashion and stored starting

at location 006C. Note that the current record field at

location 007C is also initialized to 00. If any of the

fields f1, t1, f2, and t2 are not included in the command

line, their corresponding fields in the default file control

blocks are filled with blanks.

 Ambiguous references which use the **n or "?" character

are processed in the same manner as in the CCP: the "*"

symbol in a name or type field causes the field to be right-

filled with "?' characters. The input lines shown below

illustrate the default area initialization which takes place

for various unambiguous and ambiguous file names. The areas

shown to the right give the hexadecimal values which begin at

the labelled addresses, where ASCII values A, B, C, and D

have the hexadecimal values 41, 42, 43, and 44, respectively.

Further, the special characters ":", ".", "*" , and "?" have

the ASCII encoded values 3A, 2E, 2A, and 3F, while an ASCII

space has the hexadecimal value 20:

 COMMAND LINE DEFAULT DATA AREA INITIALIZATION

 I DFCB1: 00

 20 20 20 20 20 20 20 20

 20 20 20 00 00 00 00

 DFCB2: 00

 20 20 20 20 20 20 20 20

 20 20 20 00 00 00 00

 00

 00

 DBUFF: 00 00

 24

SID Users Guide Section 3

 I A.B DFCBI: 00

 41 20 20 20 20 20 20 20

 42 20 20 00 00 00 00

 DFCB2: 00

 20 20 20 20 20 20 20 20

 20 20 20 00 00 00 00

 00

 00

 DBUFF: 05 20 20 41 2E 42 00

 IA:B.C b:d.e DFCB1: 01

 42 20 20 20 20 20 20 20

 43 20 20 00 00 00 00

 DFCB2: 02

 44 20 20 20 20 20 20 20

 45 20 20 00 00 00 00

 00

 00

 DBUFF: 0B 41 3A 42 2E 43 20

 42 3A 44 2E 45 00

 I AA*.B?C D: DFCB1: 00

 41 41 3F 3F 3F 3F 3F 3F

 42 3F 43 00 00 00 00

 DFCB2: 04

 20 20 20 20 20 20 20 20

 20 20 20 00 00 00 00

 00

 00

 DBUFF: OC 20 20

 41 41 2A 2E 42 3F 43

 20 44 3A 00

 Note that the I command is used in conjunction with the

R command to read program files and symbol tables after SID

has initially loaded. Details of the use of I in this

situation are given with the R command which follows.

 Additional valid I commands are given below:

 I x.dat

 Ix.inp y.out

 Ia:x.inp b:y.out $-p

 ITEST.COM

 I TEST.HEX TEST.SYM

 3.8. The List Code (L) Command.

 The L command disassembles machine code in the memory

of the machine, with symbolic labels and operands placed in

the appropriate fields, where possible. The forms of the L

command are:

 25

SID Users Guide Section 3

 (a) Ls

 (b) Ls,f

 (c) L

 (d) -Ls

 (e) -Ls,f

 (f) -L

 Form (a) lists disassembled machine code starting at

symbolic location s for 1/2 CRT screen (12 lines). Form (b)

specifies an exact range for disassembly: s specifies the

starting location, and f gives the final disassembly

location. Form (c) is similar to (a), but disassembles from

the last listed, assembled (see the A command), traced (see

the T and U commands), or break address (see the G and P

commands). Since form (c) also lists 1/2 CRT screen, it is

often used following form (a) to continue the disassembly

process through another segment of the oroaram. Forms (d)

through (f) parallel (a) through (c) but disable the

symbolic features of SID. In particular, the minus prefix

prevents any symbol lookup operations during the disassembly.

 The format of the L command output is:

 sssss:

 aaaa oocode operand .ttttt

where "sssss:" represent a symbol which labels the program

location given by the hexadecimal address aaaa, when the

symbol exists. The "opcode" field gives the 8080 mnemonic

for the instruction at location aaaa, and the 'operand"

field, when present, gives the hexadecimal values which

follow the opcode in memory. The symbol ".ttttt" is printed

when the instruction references a memory address which

matches a symbol in the table. Note that instructions may

directly reference memory through their operand fields (e.g.,

CALL, JMP, LDA, LHLD), while other instructions imply a

memory address (e.g., STAX B, LDAX D). Instructions which

reference memory, such as INR M, are listed with the memory

operand in the form:

 opcode m =hh

where "opcode" is the memory referencing instruction, and hh

is the hexadecimal value contained in the memory address

given by the HL register pair before the operation takes

place.

 When the operation code at the list address is not a

valid 8080 mnemonic, the output form is:

 ??= hh

where hh is the hexadecimal value of the invalid operation

code.

 26

SID Users Guide Section 3

Several valid L commands are listed below.

 L100

 L#1024,#1034

 L.CRLF

 L@ICALL,+30

 -L.PRBUFF+=I,+ A

 3.9. The Move Memory (M) Command.

 The M command allows the operator to move blocks of

data values from one area of memor y to another. The form of

the M command is:

 Ms,h,d

where s is the start address of the move operation, h is the

high (last) address of the move, and d is the starting

destination address to receive the data. Data moves one byte

at a time from the start address to the destination address.

Each time a byte value is moved, the start and destination

addresses are incremented by one. The move process

terminates when the start address increments past the final f

address. The command:

 M100,1FF,3000

for example, replicates the entire block of memory

from 0100 through 01FF at the destination area from

3000 through 3OFF in memory. The data block from

0100 through 01FF remains intact.

 Note that data areas may overlap in the move process:

the command

 M100,1FF,101

shows an instance where the value at location 0100 is

propagated throughout the entire block from 0101 through

0200.

 A number of valid M commands are listed below:

 M-100,FFDO,100

 M.X,+=Z,.Y

 M.GAMMA,+FF,.DELTA

 M@ALPHA+=X,+#50,+100

 3.10. The Pass Counter (P) Command.

 The P command allows the operator to set and clear

"pass points" and "pass counts" in the program under test.

 27

SID Users Guide Section 3

The forms of the P command are:

 (a) Pp

 (b) Pp, c

 (c) P

 (d) -Pp

 (e) -P

A"pass point" is a program location to monitor during

execution of t6e test program. Similar to a temoorary

breakpoint (see the G command), a Dass r>oint causes SID to

stop execution of the test program each time an active pass

point is reached. Unlike a temporary breakpoint, a pass

point is not automatically cleared each time it is reached

during execution. Further, unlike a temporary breakpoint, a

pass point break occurs after the instruction as the pass

address is executed. In this way, the operator can simply

continue the execution of the test program under control of

a G command until the next pass point is executed, or until

a temporary breakpoint is reache@.

 Each pass point can have an optional "pass count"

which defaults to the value 1. The pass count enhances this

facility by allowing several passes through a pass point

before the break actually occurs. In particular, a pass

count in the range 1-FF (decimal 1 through 255) can be

associated with a particular pass point. Each time a pass

point is executed, its corresponding pass count is

decremented. The decrementing process proceeds until the

pass count reaches 1, at which time the break address is

printed and execution of the test program stops. When a

pass count reaches 1, the pass point becomes a permanent

break address which halts execution each time the

instruction is executed. Note that a pass count does not

change once it has reached 1.

 Form (a) sets a pass point at address p with a pass

count of 1, causing address p to become a permanent

breakpoint. Form (b) is similar, except that the pass count

is initialized to c. Up to eight distinct pass points can

be actively set at any particular time. Form (c) displays

these active pass points in the format:

 cc oppp sssss

where cc is the hexadecimal value of the pass count which is

currently associated with the pass address pppp, and sssss

is a symbol which matches the address pppp, if such a symbol

exists.

 Form (d) clears the pass point at address p, while

form (e) clears all active pass points. Note that the

command:

 Pp,0

 28

SID Users Guide Section 3

is equivalent to form (d).

 Each time a pass point is encountered, SID prints the

pass information in the format:

 cc PASS pppp .sssss

where cc is the current pass count at pass point pppp (cc is

decremented when greater than 1). As above, the symbol

sssss corresponding to address pppp is printed when

possible.

 The special command forms "-G" and "-U" can be used to

disable the intermediate pass trace as the counters are

decremented down to 1. Suppose, for example, the TYPEOUT

subroutine is a part of a program under test, as shown in

the G command above. The command:

 P.TYPEOUT,#30

is issued by the operator. The effect of this particular P

command is to set a pass point at the location labelled by

"TYPEOUT" which is assumed to exist in the symbol table.

The pass count is set to decimal 30, which allows the pass

point to execute 30 times before a breakpoint is taken.

Given that the pass point at TYPEOUT is in effect, the

command:

 G

starts execution of the test program with no temporary

breakpoint. Each time the ass point is executed, the pass

trace:

 1E PASS 0302 TYPEOUT

 (register trace)

 1D PASS 0302 @.TYPEOUT

 (register trace)

 1C PASS 0302 TYPEOUT

 (register trace)

 . . .

 01 PASS 0302 TYPEOUT

 (register trace)

 *303

where the "register trace" shows the state of the CPU

registers before the "MOV C,A" at TYPEOUT is executed (see

the "X" command for register display format). Note that the

final breakpoint address is 0303, which follows the "MOV"

instruction at the pass address 0302. The operator can

depress any keyboard character during the pass point trace,

and SID will immediately stop execution following the

instruction at the pass point address. If instead, the

command

 29

SID Users Guide Section 3

 -G

had been issued above, the intermediate pass traces would not

appear at the console. In this particular case, only the

final trace:

 01 PASS 0302 TYPEOUT

 (register trace)

 *303

is printed. Although the intermediate pass traces are not

displayed, the operator can abort execution by depressing a

keyboard character: if an intermediate pass point is

encountered with trace disabled, SID aborts execution and

returns control to the keyboard.

 Temporary breakpoints can also be set while pass points

are in effect. That is, commands such as

 Ga,b Ga,b,c G,b G,b,c

can be issued which intermix with the permanent breakpoints

which are set with the P command. Note, however, that

permanent breakpoints override the temporary breakpoints

which are given by b and c when they occur at the same

address. Further, T and U command can be used to trace

sections of the test program while permanent breakpoints are

in effect. in this case, the pass counts decrement as

described above, with a break taken when the count reaches 1.

 Valid P commands are shown below:

 P100,FF

 P.BDOS

 P@ICALL+30,#20

 -P.CRLF

 3.11. The Read Code/Symbols (R) Command.

 The R command is used in conjunction with the I command

to read program segments, symbol tables, and utility

functions into the transient program area. The forms of the

R command are:

 (a) R

 (b) Rd

The 1 command is first used to set the file names which will

be involved in the read operation. Form (a) reads the

program and/or symbol table given by the I command without

applying an offset to the load addresses. Form (b) adds the

displacement value d to each program load address and/or

symbol table address. Note that this addition takes place

without overflow checks so that negative bias values can be

 30

SID Users Guide Section 3

applied. As a simple case, the usual initiation of SID:

 SID X.COM

could be replaced by the sequence of commands:

 SID Starts SID without a test program

 IX.COM Initialize the input line

 R Read the test program to memory

The response from SID in this case is exactly the same as

the normal initialization, with the "NEXT PC END" message as

described in Section 1.

A program and symbol file can be read by preceding the

R command with an I command of the form:

 I x.y u.v

where x.y is the program to load, and u.v is the symbol

table file. Note that y is usually the type "COM", x is

usually the same as u, and v is usually the type "SYM".

Thus, a typical command sequence of this form would be

 IDUMP.COM DUMP.SYM

 R

which reads the DUMP.COM program file into the Transient

Program Area, and loads the symbol table with the

information given by DUMP.SYM. Programs with file

type "HEX" load into the locations specified in the Intel

formatted hexadecimal records, while programs with file type

"UTL" are assumed to be SID utility functions which load and

relocate automatically. All other file types are assumed

absolute, and load starting at the base of the transient

area. Utility functions automatically remove any existing

symbol information when they relocate, but in all other

cases the symbol load operations are cumulative. In

particular the special input form:

 I* u.v

 R

skips the program load since there is an asterisk in the

program name position, and loads only the symbol table file.

Thus, a secuence of the above form could be used to load the

symbol tables for selective portions of a large program

which was initially developed in small modules.

Suppose, for example, that a report generation program

has been developed using MAC, which consists of the several

modules:

 31

SID Users Guide Section 3

 IOMOD.ASM I/0 Module

 SORT.ASM File Sorting Module

 MERGE.ASM File merge Module

 FORMAT.ASM Report Format Module

 MAIN.ASM Main Program Module

 DATA.ASM Common Data Definitions

Suppose further that each module has been separately

assembled using MAC, resulting in several "HEX" and "SYM"

files corresponding to the individual program segments. The

program segments have been brought together using SID to

form a memory image by typing the sequence of commands:

 SID Start the SID program

 IIOMOD.HEX Initialize IOMOD

 R Read I/0 Module

 ISORT.HEX Initialize SORT

 R Read Sort Module

 IMERGE.HEX Initialize MERGE

 R Read Merge Module

 IFORMAT.HEX Initialize FORMAT

 R Read Format Module

 IMAIN.HEX Initialize MAIN

 R Read Main Module

 IDATA.HEX Initialize DATA Area

 R Read Initialized Data

Following this sequence, the Transient Program Area contains

the complete memory image of the report generation program.

Suppose the information printed following the last R command is:

 NEXT PC END

 1B3E 0100 8E00

which indicates that the high memory address is 1B3E. Using

the H command:

 H1B

the operator finds that 1B (hexadecimal) pages is the same

as 27 (decimal) pages. At this point, the operator returns

to CCP mode by typing either a control-C (warm start), or

"G0" command, which leaves the memory image intact. The

command:

 SAVE 27 REPORT.COM

is then issued to create a memory image file on the

diskette. The operator then re-enters SID using a command

of the form:

 SID REPORT.COM

to load the entire module for testing. Individual portions

 32

SID Users Guide Section 3

of the report generator can then be symbolically accessed by

selectively loading symbol tables from the original modules.

For example, the MAIN and SORT modules could be debugged by

subsequently loading the corresponding symbol information:

 I* MAIN.SYM

 R

 I* SORT.SYM

 R

which readies the symbol information for subsequent

debugging. Individual segments of the report generator are

then tested and reassembled. If an error is found in the

SORT module, for example, the SORT.ASM file is edited to

make necessary changes, and the module is reassembled with

MAC, resulting in new "HEX" and "SYM" files for the SORT

module only. Given that enough "expansion" area has been

provided following the SORT module, SID is reinitiated

and the SORT module is included:

 SID REPORT.COM

 ISORT.HEX SORT.SYM

 R

which overlays the changed SORT module in the original

report generator memory image. The operator may then load

addition symbol tables by typing I and R commands such as:

 I* MAIN.SYM

 R

 I* DATA.SYM

 R

in order to access symbols in the SORT, MAIN, and DATA

modules.

 Note that several symbol table files can be

concatenated using the PIP program (see the "CP/M Features

and Facilities" manual for PIP operation) in command mode.

For example, the PIP command:

 PIP NOBUGS.SYM=IOMOD.SYM,SORT.SYM,MERGE.SYM,FORMAT.SYM

creates a file called NOBUGS.SYM which holds the symbols for

IOMOD, SORT, MERGE, and FORMAT. The SID command:

 SID REPORT.COM NOBUGS.SYM

loads the memory image for the report generator, along with

the symbol tables for these particular modules. Additional

symbol files can then be selectively loaded using I and R

commands. The symbol file for the entire memory image can

then be constructed using the PIP command:

 PIP REPORT.SYM=NOBUGS.SYM,MAIN.SYM,DATA.SYM

 33

SID Users Guide Section 3

which allows the operator. to type

 SID REPORT.COM REPORT.SYM

in order to load the memory image for the report generator,

along with the entire symbol table. Recall, however, that

the symbol table is always searched in load-order, and thus

symbol names which are the same in two module must be

distinguished using qualified symbolic names (see Section

1).

 As mentioned above, form (b) allows a displacement

value d to be added to each program address and symbol

value. The displacement value has no effect, however, when

the program is a SID utility (file type "UTL"). The

commands

 IDUMP.HEX DUMP.SYM

 R1000

for example, cause the DUMP program to be loaded 1000

(hexadecimal) locations above its normal origin, with

properly adjusted symbol addresses. Note that the bias

value can be any symbolic expression, and thus the

command:

 R-200

first produces a (two's complement) negative number which is

added to each address. Since overflow from a 16-bit counter

is ignored, this R command has the effect of loading the

program 200 (hexadecimal) locations below the normal load

address, with symbol addresses biased by this same amount.

 Error reporting during the R command is limited to the

standard "?' response, which indicates that either the

program or symbol file does not exist, or the program or

symbol file is improperly formed. Similar to the SID

startup messages, the response

 SYMBOLS

occurs following program load, and appears before the symbol

load. Thus, a error before the SYMBOLS response

indicates that the error occurred during the program load,

while the "?" error after the SYMBOLS message indicates that

an error occurred during the symbol file load operation.

The exact position of a symbol file error can be found by

subsequently using the H command to view the portion of the

symbol table which was actually loaded.

 3.12. The Set Memory (S) Command.

 The S command allows the operator to enter data into

main memory. The forms of the S command are:

 34

SID Users Guide Section 3

 (a) Ss

 (b) SWs

Form (a) allows data to be entered at location s in byte

(8-bit) or character string mode, while form (b) is used to

store word (16-bit) mode data items. In either case, the

SID program proceeds to prompt the console with successive

addresses, starting at location s, along with the data item

presently located at that address. As each line prompt

occurs, the operator has the option of typing a single

carriage return or typing a symbolic expression (followed by

a carriage return) which is evaluated and becomes the new

data item at that location. If a single carriage return is

typed, then the data element at that location remains

unchanged. The S command terminates whenever an invalid

data item is detected, or when the operator types a single

"." followed by a carriage return. Form (a) allows single

byte data, and produces the standard "?" when a double byte

value is entered with a non-zero high order byte. In

addition, form (a) also allows long ASCII string data to be

entered in the format:

 "ccccc . . . ccccc

where the sequence of c's represent graphic ASCII characters

to be entered at the prompted location. No translation from

lower to upper case takes place during entry. Further, the

next prompted address is automatically set to the first

unfilled location following the input string.

 A valid input sequence following the command:

 S100

is shown below, where the SID prompt is given on the left,

and the oderator's input lines are shown to the right, where

"cr" denotes the carriage return key.

 SID PROMPT OPERATOR INPUT

 0100 C3 34cr

 0101 24 #254cr

 0102 CF cr

 0103 4B "ASCIIcr

 0108 6E =X+5cr

 0109 E2 '%'cr

 010A D4 cr

 A valid double byte input sequence following the

command

 SW.X+#30

is shown below:

35

SID Users Guide Section 3

 SID PROMPT OPERATOR INPUT

 2300 006D 44Fcr

 2302 4F32 @GAMMAcr

 2304 33E2 cr

 2306 FF11 X+=1-#20cr

 2308 348F .cr

 3.13. The Trace Mode (T) Command.

 The T command allows the operator to single or multiple

step a test program while viewing the CPU registers as they

change. In addition, the T command can be used in

conjunction with SID utilities to collect test program data

for later display (see the section entitled "SID Utilities").

The forms of the T command are:

 (a) Tn

 (b) T

 (c) Tn,c

 (d) T,c

 (e) -T (with options a - d)

 (f) TW (with options a - d)

 (g) -TW (with otions a- d)

Form (a) traces program execution from the current value of

the program counter PC (see the 'X' command for PC value as

well as the format of the CPU state disolay). Form (b) is

the trivial case of (a), with an assumed single step count of

n = 1. In either case, the SID program displays the register

state, along with the decoded instruction (assuming "-A" is

not in effect) before each instruction is executed. For

example, the command:

 T4

traces four program steps, producing the format:

 (register state 1) opcode 1

 label:

 (register state 2) opcode 2

 label:

 (register state 3) opcode 3

 label:

 (register state 4) opcode 4 *bbbb

showing the register state before each corresponding

operation code is executed. Each operation code is written

in the same format as in the L and X commands, with

interspersed symbolic operands decoded wherever possible.

The interspersed labels show program addresses when they

occur in the flow of execution. The final break address,

denoted by "*bbbb" above, shows the value of the program

counter after opcode 4 is executed.

 36

SID Users Guide Section 3

 The CPU state can optionally be displayed at this point

by typing the single character "X" command.

 Forms (c) and (d) are used only in conjunction with the

SID utilities, and automatically perform a CALL c after each

instruction executes. The value of c corresponds to a

utility entry address for data collection. Details of the

use of these forms are given in sections which follow. Note,

however, that form (d) is equivalent to (c) with a single

step count of n = 1.

 Forms given by (e) parallel (a) through (e), but the

preceding minus sign disables the symbolic features of SID.

In particular, neither the symbolic operands nor the symbolic

labels are decoded in the trace process. This option

increases the operation of SID slightly in trace mode when

large symbol tables are present.

 Forms given by (f) parallel (a) through (d), but

perform a "trace without call" function. It is often useful,

for example, to trace mainline program code, but not trace

into the subroutines which are called from the mainline

execution. The TW command performs this function by running

the test program in real time whenever a subroutine is

entered, returning to fully traced mode upon return to the

current subroutine level. If a return operation takes place

at the current level (i.e., a RET is executed in fully traced

mode), then tracing continues at the encompassing subroutine

or mainline program level. For example, suppose the mainline

and subroutine structure shown below exists in a particular

program:

MAINLINE SUBROUTINE 1 SUBROUTINE 2 ... SUBROUTINE n

 . . . Sl: MOV A,C S2: MOV A,D Sn: MOV A,L

 CALL Sl

 MOV B,C CALL S2

 MOV C,D MOV C,E CALL S3 ... MOV C,L

 . . . MOV D,E MOV D,H MOV D,L

 JMP 0000 RET RET RET

Suppose further that the test orogram is stooped within

subroutine Sl before the call to subroutine S2. The command:

 T#100

would have the effect of tracing from Sl through S2, S3, and

so-forth until level Sn is encountered. Although this form

of the trace could be useful, it is often more enlightening

to trace only at a particular subroutine level, and view the

effects of the subroutine levels above S1. in this manner,

an offending subroutine is often easily discovered without

tracing non-essential program flows. If instead, the command:

 37

SID Users Guide Section 3

 TW#100

is typed while at subroutine level S1, all subsequent levels

from S2 and beyond are executed in real time as if a "G"

command had been Performed at each CALL within Sl. Upon

executing the RET instruction within Sl, tracing resumes at

the mainline level. Any subroutine calls following CALL Sl

at the main level are not subsequently traced.

 Forms given by (9) parallel (a) through (d), but

disable the symbolic features of SID in the same manner as

form (e).

`It should be noted that SID allows tracing up to Read

Only Memory (ROM) program code. At the point ROM is entered,

SID stops the trace operation, and runs the ROM code in real

time. An automatic breakpoint is set which intercepts

program control when ROM code is exited. The assumption,

however, is that ROM code was entered via a subroutine call

(CALL or RST n), or via a PCHL or JMP instruction. In any

case, the return address following the ROM execution is taken

as the topmost address in the test program's stack. Note

further that SID does not trace execution of calls through

the BDOS code, since these operations are often quite

lengthy, and may occassionally require real time operation to

perform various disk functions. Thus, entry to the BDOS is

intercepted by SID, and resumed following completion of the

BDOS function.

 Tracing can be aborted at any time by depressing a

keyboard character. Do not use the RST instruction to

terminate trace functions.

 Valid trace commands are,shown below:

 T100

 T#30,.COLLECT

 -TW=I,3E03

 3.14. The Untrace Mode (U) Command.

 The U command is similar to the T command given above,

except that the CPU register state is not displayed at each

step. Instead, the test program runs fully monitored so that

program execution can be aborted at any time, or for the

collection of data for a SID utility function. The forms of

the U command parallel the T command:

 38

SID Users Guide Section 3

 (a) Un

 (b) U

 (c) Un,c

 (d) U,c

 (e) -U (with options a - d)

 (f) UW (with options a - d)

 (g) -UW (with options a - d)

Forms (a) through (d) perform the analogous functions of the

"T" command forms (a) through (d), without disz)laying the

register state at each step. Forms given by (e) differ from

the T command, however: instead of disabling the symbolic

features, command forms

 -Un -U -Un,c -U,c

disable the intermediate pass point display (see the "P"

command), until the corresponding pass counts reach 1.

 Forms given by (f) correspond to the "T" command

exactly, except that the trace display is disabled. In this

case, the current subroutine level is run fully monitored,

but higher subroutine levels run in real time.

 Forms given by (g) are similar to (f), but disable the

pass point display, as described above.

 Similar to the T command, execution can be aborted in

untrace mode by depressing any keyboard character. The

break address is displayed, and control returns to SID

command mode.

 Valid U commands are given below:

 UFFFF

 U#10000,.COLLECT

 UW=GAMMA,.COLLECT

 3.15. The Examine CPU State (X) Command.

 The X command allows the operator to examine and alter

the CPU state of the program under test. The forms of the X

command are:

 (a) X

 (b) Xf

 (c) Xr

Form (a) displays the entire CPU state in the format:

 CZMEI A=aa B=bbbb D-dddd H-hhhh S=ssss P=pppp op sym

where

C, Z, M, E, and I represent the true or false conditions of

 39

SID Users Guide Section 3

the CPU carry, zero, minus, even parity, and interdigit

carry, respectively. If the position contains a "-" then

the corresponding flag is false, otherwise the flag letter

is printed. The byte value aa is the value of the A

register, while the double byte values bbbb, dddd, hhhh,

ssss, and pppp, give the 16-bit values of the BC, DE, HL,

Stack Pointer, and Program Counter, respectively. The field

marked "op" gives the decoded mnemonic instruction at

location pppp, unless "-A" is in effect, in which case the

hexadecimal value of the operation code is printed. The

"sym" field contains a decoded operand, when possible.

Refer to the L command for the format of the symbolic

instruction decoding. The single letter "X" command might

result in a display of the form:

 C-M-- A=03 B=34EF D=2000 H=334E S=4323 P=0100 LDA 0223 .Q

which, for example, indicates that the carry and minus flags

are true, while the zero, even parity, and interdigit carry

flags are false. Further, the A register contains 03, while

the B, C, D, E, H, and L registers contain the hexadecimal

values 34, EF, 20, 00, 33, and 4E, respectively. The value

of the Stack Pointer register is 4323, and the Program

Counter is at location 0100. The next instruction to

execute at location 0100 is an accumulator load (LDA) from

location 0233. Further, the first symbol in the table which

matches address 0233 is Q.

 Form (b) allows the operator to change the state of

the CPU flags. In this case, f must be one of the condition

code letters C, Z, M, E, or I. The present state of the

flag is displayed (either the flag letter if true, or a "-"

if false). The operator can optionally type a single

carriage return, which leaves the flag in its present state,

or may type a 1 to set the flag true, or a 0 to reset the

flag to false. Given that the carry flag is true, for

example, the command

 XC

produces the SID response

 C

followed by a space, indicating that the carry is currently

set, awaiting possible change by the operator. Enter a

carriage return to leave the flag set, or a 0 to reset the

carry to false. Similarly, if the zero flag is false, the

command

 XZ

produces the SID response

 -

 40

SID Users Guide Section 3

indicating that the zero flag is false. Enter a carriage

return if the state is to remain unchanged, or a 1 to set

the zero flag to true.

 Form (c) allows alteration of the individual CPU

registers, where r is one of the register names A, B, D, H,

S, or P. In this case, the current content of the register

is displayed, and the console is Prompted for input. If the

operator types a single carriage return, the data value

remains unchanged. Otherwise, the symbolic expression typed

by the operator is evaluated and becomes the new value of

the register. Only byte values are acceptable when the "XA"

form is used, while double byte values are accepted in the

remaining forms. Note that the BC, DE, and HL registers

must be altered as a pair. The SID interaction shown below

is typical when the A register is altered:

 XA 03 45cr

where the "XA" is typed by the operator, the "03" is printed

by SID as the value of the A register, and "45" is typed by

the operator as a replacement for A's value. The "cr"

represents the carriage return key in this example, and in

the examples which follow. The following interactions with

SID provide additional examples in the format described

above:

 XB 34EF cr (data remains unchanged)

 XD 2000 2300 (D)changes to 23)

 XH 334E .GAMMA

 XS 4323 @STKPTR+#100

 41

 4. SID UTILITIES.

 SID Utilities are special programs which operate with

SID to provide additional debugging facilities. As

described in Section l., a SID Utility is loaded by

initially typing

 SID X.UTL

where x is the name of a utility program, described in the

sections which follow. Upon initiation, the utility program

loads, relocates, and prompts the console for any necessary

parameters. The operator then collects necessary program

test data (using the U or T command), and displays the

information using a call to the utility display subroutine.

The mechanisms for system initialization, data collection,

and data display are given in detail below.

 4.1. Utility Operation.

 A particular SID utility loads into memory in much the

same manner as a normal test program. The utilities,

however, automatically move themselves into high memory,

occupying the region directly below the SID program, as

described in Section 1. The utility load operation can be

accomplished by simply typing the utility name with the SID

command as shown above, or can be loaded during the SID

execution, as described in the I and R commands. Recall,

however, that all existing symbol information is removed

when the utility loads, and must therefore be reinitialized

if required for the debugging run.

 Normally, a SID utility has three primary entry

points: one for utility (re)initialization, called INITIAL,

one for data collection, called COLLECT, and one for data

display, called DISPLAY. After loading, the utility sets up

these symbols in the table, and types the entry point

addresses in the format:

 .INITIAL - iiii

 .COLLECT - cccc

 .DISPLAY - dddd

where iiii, cccc, and dddd are the hexadecimal addresses of

the three entry points. Note, however, that the three

symbolic names are equivalent to these three addresses.

 Following initial sign on, the utility may prompt the

console for additional debugging parameters. After the

interaction is complete, the operator may use the I and R

commands to load test programs and symbol tables in order to

proceed with the debug session.

 During the debug run, data collection takes place by

running the test program in monitored mode using the U or T

 42

SID Users Guide Section 4

commands. Either of the commands

 UFFFF,.COLLECT or UFFFF,cccc

direct the SID program to run the test program from the

current Program Counter, for a maximum of 65535 (FFFF

hexadecimal) steps, with a call to the data collection entry

point of the utility program. Each instruction breakpoint

sends information to the utility program, where it is

tabulated for later display. Note that in this particular

case, the operator would most likely stop the untrace mode

by depressing the return key before the sequence of 65535

steps completes.

 Following a series of data collection operations,

the utility DISPLAY entry point can be called to print the

accumulated data. Either of the command forms which follow

accomplish this function:

 C.DISPLAY or Cdddd

The operator may then resume the data collection process, as

described above, followed by additional display operations.

 At any point, the operator can reinitialize the

utility by typing either

 C.INITIAL or Ciiii

which causes reinitialization of the utility tables. The

utility may then prompt for additional parameters to

complete the reinitialization process.

 Note that loading and executing more than one utility

function during a debugging session may produce

unpredictable results.

 The functions of the SID utilities are presented

individually in the remaining sections.

 4.2. The HIST Utility.

 The HIST Utility creates a histogram (bar graph) of

the relative frequency of execution in selected program

segments of a program under test. The purpose of the HIST

utility is to allow the operator to monitor "hot spots" in

the test program where the program is executing most

frequently.

 After initial signon, as described in the previous

section, the HIST utility prompts the input console with

 TYPE HISTOGRAM BOUNDS

The operator must respond with two symbolic expressions,

 43

SID Users Guide Section 4

separated by a comma:

 llll,hhhh

where llll is the lowest address to monitor, and hhhh is the

highest address. In order to collect histogram information,

the operator must use one of the command forms

 Tn,c T,c TWn,c TW,c -Tn,c -T,c -TWn,c -TW,c

 Un,c U,C UWn,c UW,c -Un,c -U,c -UWn,c -UW,c

where c is either COLLECT, or the address corresponding to

the COLLECT entry point. Although all of these commands are

optional, the single form

 UN,.COLLECT

is nearly always used since the trace output is disabled,

the test program is fully monitored, and data collection

takes place at each program step.

 Following a series of data collection operations, the

histogram is displayed by typing

 C.DISPLAY or Cdddd

and the histogram is printed in the format:

HISTOGRAM:

 ADDR RELATIVE FREQUENCY, MAXIMUM VALUE = mmmm

 aaaa *****

 bbbb *******

 cccc *********

 xxxx ***********

 yyyy ***

 zzzz ******

where addresses aaaa through zzzz span the range from the

low to high address range given in the initialization of

HIST. The maximum value mmmm is the largest number of

instructions accumulated at any of the displayed addresses,

and the asterisks represent the bar graph of relative

instruction frequencies, scaled according to the maximum

value mmmm. The address range is automatically scaled over

64 difference address slots (aaaa, bbbb, ... zzzz, above),

with a maximum of 64 asterisks in any particular bar of the

graph.

 Given the above display, for example, the "hot spot"

is around the address range xxxx to zzzz. In this case, it

would be worthwhile reinitializing the HIST utility by typing

 C.INITIAL or Ciiii

 44

SID Users Guide Section 4

The HIST initialization prompt and response should then be

 TYPE HISTOGRAM BOUNDS xxxx,zzzz

The operator may then rerun the test program using the

command

 UFFFF,.COLLECT

After leaving enough time for the test program to reach

"steady state," the operator then interrupts program

execution by typing a return during the monitored execution.

The display function is then reinvoked to expand the region

between xxxx and zzzz, resulting in a more refined view of

the frquently executed region.

 The L command can subsequently be used to determine

the exact instructions which are most frequently executed.

If possible, the sequence of instructions can be somewhat

improved, with an overall improvement in program

performance.

 4.3. The TRACE Utility.

 The TRACE utility is used to obtain a backtrace of the

instructions which lead to a particular break address in a

program under test. A program may have an error condition,

for example, which arises from a sequence of instructions

which are difficult to find under normal testing. In this

case, TRACE can be used to collect program addresses as the

test program executes, and display these addresses and

instructions in most recent to least recent order when

requested by the operator. Normal invocation of SID with

the TRACE utility is:

 SID TRACE.UTL

with the normal utility response:

 INITIAL = iiii

 COLLECT = cccc

 DISPLAY = dddd

In this case, the TRACE utility also prints the message:

READY FOR SYMBOLIC BACKTRACE

which indicates that the assembler/disassembler portion of

SID is present, and will be used to disassemble instructions

when the backtrace is requested.

 The operator may then proceed to load a test program

with optional symbol table. The DUMP program, for example,

could be loaded by subsequently typing:

 45

SID Users Guide Section 4

 IDUMP.COM DUMP.SYM

 R

with the usual "NEXT PC END" response indicating that the

test program is loaded. At this point, the SID debugger is

executing in high memory, along with the TRACE utility. The

test program is present in low memory, ready for execution.

 The simplest backtrace is obtained by typing one of

the U or T command forms shown with the HIST utility. In

particular, a U command of the form:

 U#500,.COLLECT

executes 500 (decimal) program steps, and then automatically

stops program execution. The operator may then obtain a

backtrace to the stop address by typing:

 C.DISPLAY

which causes TRACE to display the label, address, and

mnemonic information in the form:

 label-255:

 addr-255 opcode-255 sym-255

 label -254:

 addr-254 opcode-254 sym-254

 label-253:

 addr-253 opcode-253 sym-253

 label-000:

 addr-000 opcode-000 sym-000

where label-255 down through label-000 represent the decoded

symbolic labels corresponding to addresses given by addr-255

down through addr-000, when the symbolic labels exist.

Opcode-255 down through opcode-000 represent the mnemonic

operation codes corresponding to the backtraced addresses,

and sym-255 down through sym-000 denote the symbolic

operands corresponding to the operation codes, when the

symbols exist. The operation codes are displayed in the

same format as the list command. Note that in this display,

the most recently executed instruction is at location

addr-255, while the least recently executed instruction is

at location addr-000. TRACE will account for up to 256

instructions, which accumulate in T or U mode. The

accumulated instructions are not affected by the DISPLAY

function, but are cleared by a call to reinitialize:

C.INITIAL

 Full benefit of the TRACE utility requires concurrent

use of TRACE with pass points (see the "P" command). In

particular, pass points are first set at program locations

which are of interest in the backtrace. The program is then

 46

SID Users Guide Section 4

run to an intermediate location where the test begins. At

this intermediate test point, the U command is used to

execute the test program in fully monitored mode, with data

collection at the COLLECT entry point of TRACE. Upon

encountering one of the pass points in U mode, program

execution breaks, and the operator regains control in SID

command mode. The DISPLAY function of TRACE is then invoked

to obtain the required backtrace information.

 As an example of this process, suppose the DUMP

program is in memory with the TRACE utility, as shown above.

Suppose further that the operator wishes to view the actions

of the DUMP program on the first call to BDOS (i.e., the

first call from DUMP to the CP/M Basic Disk Operating

System, through location 0005). Assuming the symbol table

is loaded, the operator first types:

 P.BDOS

which sets a pass point at the BDOS entry, with

corresponding pass count = 1. The operator then executes

DUMP in monitored mode, collecting data at each instruction:

 UFFFF,.COLLECT

The untrace count of FFFF (65535) instructions is, of

course, too many in this case, but the assumption is that

the DUMP program will stop at the BDOS call before the

instruction count is exceeded (if it does not, the operator

can depress any keyboard character to force a program stop).

In this case, the DUMP program executes only a few

instructions before the BDOS call, resulting in the break

information:

 01 PASS 0005 .BDOS

 -ZEI A-80 B=0014 D-OOSC H=OOOO S=0249 P=0005 JMP CCDF

 *CCDF

showing the pass count 1, pass address 0005, symbolic

location BDOS, register state, and break address. Since

execution to this point was monitored, and data was

collected, the TRACE function can be invoked:

 C.DISPLAY

which results in the display:

 47

SID Users Guide Section 4

 BDOS:

 0005 JMP CCDF

 01CA CALL 0005 .BDOS

 01C8 MVI C,0F

 01C5 LXI D,005C .FCB

 01C2 STA 007C .FCBCR

 SETUP:

 01C1 XRA A

 010A CALL 01C1 .SETUP

 0107 LXI SP,0257 .STKTOP

 0104 SHLD 0215 .OLDSP

 0103 DAD SP

 0100 LXI H,0000

Note that in this particular case, only 11 instructions were

executed before the BDOS call, and thus the full 256

instruction capacity had not been exceeded. In fact, the

backtrace shown above gives the complete history of the DUMP

execution, from the first instruction at address 0100. The

operator may then proceed to execute the DUMP program

further by simply typing:

 UFFFF,.COLLECT

with a break at the following call on BDOS. Given that the

program execution is to stop on the 20th call on BDOS, the

operator can type the pass command:

 P.BDOS,#20

to set the pass count at 20 (decimal). The command:

 UFFFF,.COLLECT

can be entered if intermediate passes are to be traced.

Alternatively, the command:

 -UFFFF,.COLLECT

can be typed to disable intermediate traces. In either

case, execution stops at the 20th BDOS call, and the

operator can enter the display command:

 C.DISPLAY

to view the trace to this particular BDOS call.

 Note that long typeouts can be aborted by typing any

keyboard character during the display. Further, the ctl-S

key freezes the display during output. Finally, recall that

"C.DISPLAY" can be issued any number of times to reproduce

the backtrace since the command does not clear the TRACE

buffer.

The TRACE utility can also be used when the

 48

SID Users Guide Section 4

disassembler module is not present. In this case, the

instruction addresses are listed in the trace, while the

mnemonics are not included. For example, the sequence of

commands shown below loads the TRACE utility without the

disassembler module, followed by the DUMP program without

its symbol table:

 SID Load the SID Program

 -A Remove the Disassembler

 ITRACE.UTL Ready the TRACE Utility

 R Read the TRACE Utility

 IDUMP.COM Load the DUMP Program

In this case, the TRACE utility prints the sign on message:

 "-A" IN EFFECT, ADDRESS BACKTRACE

The backtrace information is subsequently displayed in the

format:

 addr-255 addr-254 addr-253 . . . addr-248

 addr-247 addr-246 addr-245 . . . addr-240

 . . .

 addr-007 addr-006 addr-005 . . . addr-000

49

 5. SID SAMPLE DEBUGGING SESSIONS.

This section contains several examples of SID

debugging sessions. The examples are based upon a "bubble

sort" of a list of byte values. The bubble sort program is

first listed in its first undebugged form. A series of

test, edit, and reassembly processes are shown which result

in a final debugged program. In each case, the operator

interaction with CP/M, ED, MAC, or SID is shown in normal

type, while comments on each of the processes are given

alongside in italics. {Plain ASCII in this file.}

 The dialogue which follows contains the following

sequence of operations:

 (1) TYPE SORT.PRN Lists initial SORT program

 (2) TYPE SORT.SYM Shows the SORT symbol table

 (3) TYPE SORT.HEX Shows the SORT HEX file

 (4) SID SORT.HEX SORT.SYM lst debugging session

 (5) ED SORT.ASM lst re-edit of SORT :Drogram

 (6) MAC SORT lst reassembly of SORT

 (7) TYPE SORT.SYM Shows new symbol table

 (8) SID SORT.HEX SORT.SYM 2nd debugging session

 (9) ED SORT.ASM 2nd re-edit of SORT program

(10) MAC SORT 2nd reassembly of SORT

(11) SID SORT.HEX SORT.SYM 3rd debugging session

(12) ED SORT.ASM 3rd re-edit of SORT

(13) MAC SORT 3rd reassembly of SORT

(14) LOAD SORT Create a COM file for SORT

(15) SID SORT.COM SORT.SYM 4th debugging session

(16) SID SORT.COM SORT.SYM Re~entry to SID for debugging

(17) SID SORT.COM SORT.SYM Re-entry to SID for debugging

(18) SID SORT.COM SORT.SYM Re-entry to SID for debugging

(19) ED SORT.ASM 4th re-edit of SORT

(20) MAC SORT 4th reassembly of SORT

(21) SID SORT.HEX SORT.SYM 5th debugging session

(22) ED SORT.ASM 5th re-edit of SORT

(23) MAC SORT 5th reassembly of SORT

(24) SID SORT.HEX SORT.SYM 6th debugging session

(25) ED SORT.ASM 6th (last) re-edit of SORT

(26) MAC SORT $+S 6th (last) reassembly

Following the debugging sessions, the final corrected SORT

program is given in its debugged form.

 Three separate debugging sessions are then shown which

use the HIST and TRACE utilities to monitor the execution of

the tested SORT program. The operations shown here include:

(27) SID HIST.UTL Load the HIST Utility

(28) SID TRACE.UTL Load the TRACE Utility

(29) SID Load SID, TRACE follows

 As a final example, a simple program which calls the

 50

SID Users Guide Section 5

BDOS is listed, followed by a single debugging session. The

purpose of this particular example is to show the actions of

SID when subroutines are traced, followed by Calls on the

CP/M BDOS. The operations in this case are:

(30) TYPE IO.PRN List the IO program

(31) SID IO.HEX IO.SYM Enter SID for debugging

 51

SID Users Guide Section 5

[1]

TYPE SORT.PRN

 ; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

 ; ELEMENTS OF 'LIST' ARE PLACED INTO

 ; DESCENDING ORDER USING BUBBLE SORT

 ;

0100 ORG 100H ;BEGINNING OF TPA

0000 = REBOOT EQU 0000H ;CP/M REBOOT LOCATION

 ;

0100 213801 SORT: LXI H,SW

0103 3601 MVI M,l ;SW = 1

0105 213901 LXI H,I ;INDEX TO SORT LIST

0108 3600 MVI M,0 ;I = 0

 ;

 ; COMPARE I WITH ARRAY SIZE

 COMP: ;HL ADDRESS INDEX I

010A 3A6201 LDA N ;LENGTH OF VECTOR

0100 BE CMP M ;CHECK FOR N=I

010E C21901 JNZ CONT ;CONTINUE IF UNEQUAL

 ;

 ; END OF ONE PASS THROUGH LIST

0111 213801 LXI H,SW ;NO SWITCHES?

0114 7E MOV A,M ;FILL A WITH SW

0115 B7 ORA A ;SET FLAGS

 ; END OF SORT PROCESS, REBOOT

0116 C30000 STOP: JMP REBOOT ;RESTART CCP

 ;

 ; CONTINUE THIS PASS

 CONT:

 ; ADDRESSING I, S0 LOAD LIST(I)

0119 SF MOV E,A ;LOW(I) TO E REGISTER

011A 1600 MVI D,0 ;HIGH(I) = 0

011C 215A01 LXI H,LIST ;BASE OF LIST

011F 19 DAD D ;ADDR LIST(I)

0120 7E MOV A.M ;LIST(I) IN A REGISTER

0121 23 INX H ;ADDR OF LIST(I+1)

0122 BE CMP M ;LIST(I):LIST(I+1)

0123 DA3101 JC INCI ;SKIP IF PROPER ORDER

 ;

 ; CHECK FOR LIST(I) = LIST(1+1)

0126 CA3101 JZ INCI ;SKIP IF EQUAL

 ;

 ; ITEMS ARE OUT OF ORDER, SWITCH

0129 4E MOV C,M ;OLD LIST(I+1) TO C

012A 77 MOV M,A ;NEW LIST*I+1) TO M

012B 2B DCX H ;ADRR LIST(I)

012C 71 MOV M,C ;NEW LIST(I) TO M

 ;

012D 213801 LXI H,SW ;SWITCH COUNT IS SW

0130 34 INR M ;SW = SW + 1

 ;

 INCI: ;INCREMENT INDEX I

0131 213901 LXI H,I

0134 34 INR M ;I = I + 1

0135 C30A01 JMP COMP ;TO COMPARE I WITH N-1

 ;

 ; DATA AREAS

0138 SW: DS 1 ;SWITCH COUNT

0139 DS 1 ;INDEX

013A DS 32 ;16 LEVEL STACK

 STACK:

 ;

015A 0503040A08LIST: DB 5,3,4,10,8,130,10,4

0162 08 DB $-LIST ;LENGTH OF LIST

0163 END

 52

SID Users Guide Section 5

Section 5

[2]

 TYPE SORT.SYM

010A COMP 0119 CONT 0139 I 0131 INCI 0I5A LIST

0162 N 0000 REBOOT 0100 SORT 015A STACK 0116 STOP

0138 SW

[3]

 TYPE SORT.HEX

:10010000213801360121390136003A6201BEC21997

:10011000012138017EB7C300005F1600215A011982

:100120007E23BEDA3101CA31014E772B71213801AD

:080130003421390134C30A0136

:09015A000503040A08820A0408E6

:0000000000

[4]

 SID SORT.HEX SORT.SYM Start SID with HEX and SYM files

SID VERS 1.4

SYMBOLS

NEXT PC END

0163 0100 55B7 Next free address is 163, Program Counter is 100

#D.LIST,+=N-1 and end of TPA is 55B7

015A: 05 03 04 0A 08 82......

0160: OA 04 .. Display initial list of items to sort

#G,.STOP Execute test program until "STOP" symbol address encountered

*0116 .STOP Now at the STOP address examine data list:

#D.LIST,+=N-1

015A: 05 03 04 OA 08 82...... Hasn't changed!

0160: OA 04 ..

#XP where is the program counter?

P=0116 100 reset PC back to beginning and try again with trace on:

#TJO

----- A=01 B=0000 D=0008 H=0138 S=0100 P=0100 LXI H,0138 .SW

----- A=01 B=0000 D=0008 H=0138 S=0100 P=0103 MVI M,01 SW SW=1

----- A=01 B=0000 D=0008 H=0138 S=0100 P=0105 LXI H,0139 .I I=0

----- A=01 B=0000 D=0008 H=0139 S=0100 P=0108 MVI M,00 .I

COMP:

----- A=01 B=0000 D=0008 H=0139 S=0100 P=010A LDA 0162 .N N=I?

----- A=08 B=0000 D=0008 H=0139 S=0100 P=010D CMP M-00 .I

----I A=08 B=0000 D=0008 H=0139 S=0100 P=010E JNZ 0119 .CONT

CONT: No, so compare

----I A=08 B=0000 D=0008 H=0139 S=0100 P=0119 MOV E,A LIST(i), LIST(i+1)

----I A=08 B=0000 D=0008 H=0139 S=0100 P=011A MVI D,00

----I A=08 B=0000 D=0008 H=0139 S=0100 P=011C LXI H,015A .LIST

----I A=08 B=0000 D=0008 H=015A S=0100 P=011F DAD D

----I A=08 B=0000 D=0008 H=0162 S=0100 P=0120 MOV A,M .N What's this?

----I A=08 B=0000 D=0008 H=0162 S=0100 P=0121 INX H Why did we

----I A=08 B=0000 D=0008 H=0163 S=0100 P=0122 CMP M=58 fetch N?

C-M-I A=08 B=0000 D=0008 H=0163 S=0100 P=0123 JC 0131 .INCI

INCI:

C-M-I A.08 B=0000 D=0008 H=0163 S=0100 P=0131 LXI 4,0139 .I

*0134 Looks like we've discovered a bug! We have here entered at "CONT"

#GO with N in the accumulator, rather than I, which is expected!

[5]

 ED SORT.ASM Back to the editor to make the changes

Bring all the text into memory

*V Enter Verify mode for line numbers, then find the place to change

 1: *FADDRESSING

 28: *OLT

 28: ; ADDRESSING I, S0 LOAD LIST(I)

 28: *KT Delete the line

 28: MOV E,A ;LOW(I) TO E REGISTER

 28: *I

 29: LDA I ;LOAD I TO A REGISTER Insert the change

 29: ctl-Z

 29: *E Terminate the editing session

 53

SID Users Guide Section 5

[6]

 MAC SORT

CP/PM MACRO ASSEM 2.0

0166 Re-assemble the SORT program

001H USE FACIOR

ENO OF ASSEMBLY

[7]

 TYPE SORT.SYM Here's the symbol table.

010A COMP 0119 CONT 013C I 0134 INCI 015D LIST

0165 N 0000 REBOOT 0100 SORT 015D STACK 0116 STOP

0138 SW

[8]

SID SORT.HEX SORT.SYM

SID VERS 1.4 Let's try again, load the HEX and SYM files

SYMBOLS

NEXT PC END

0166 0100 55B7

#P.STOP Set a "pass point", at STOP to prevent reboot

#G Start (unmonitored) execution

01 PASS 0116 .STOP We mode it to the STOP label, check values

----- A=7C B=0008 D=0081 H=0138 S=0100 P=0116 JMP 0000 .REBOOT

*0000 .REBOOT

#H=N What's the value of the byte variable N?

0082 #130 130? Very strange! How did that happen?

D.LIST,+7 Oh well, let's look at the data values:

015D: 03 04 05 They are almost sorted, looks like we have

0160: 08 OA OA 04 08..... some trouble near the end of the vector,

#ISORT.HEX lets reload the machine code and try

#R again.

NEXT PC END

0166 0100 55B7

#XP

P=0100 Program counter remains at 0100, what

#P are the active pass points?

01 0116 .STOP The one at STOP remains set, let's also

#P.SORT,FF monitor the SORT loop point, but not

#G break right away.

FF PASS 0100 .SORT Here's the first time through SORT

----- A=7C B=0008 D=0081 H=013B S=0100 P=0100 LXI H,013B .SW

01 PASS 0116 .STOP It stopped immediately! It doesn't look good!

----- A=79 B=0008 D=0081 H=013B S=0100 P=0116 JMP 0000 .REBOOT

*0000 .REBOOT We know there should have been several loops

#ISORT.HEX through the SORT label, since the data is

#R unordered. Let's try again - reload the code

NEXT PC END (note that the reload is necessarv here, since

0166 0100 55B7 the data is initialized in the code area).

#P

01 0116 .STOP What active pass points exist?

FE 0100 .SORT Wait a minute - referring back to the

#GO original listing, it appears that the code

 preceding the STOP label is incomplete:

 there should be a conditional lump back to

 the SORT label - mavbe that's why the program

 never makes it back!

 54

SID Users Guide Section 5

[9]

 ED SORT.ASM Oh well, back to the editor for a

*#AV quick fix. Append all text (#A), and

 .1: *FSTOP: enter Verify mode (V). rhen find STOP.

 24: *OLT

 24: STOP: JMP REBOOT ;RESTART CCP

 24: *- Go up one line

 23: ; END OF SORT PROCESS, REBOOT

 23: *I and enter insert mode (I)

 23: JNZ CONT ;CONTINUE IF NOT EQUAL

 24: ; ctl-Z, and "return"

 25: E

 26: wait, I forgot the ctl-Z. now I've got the E command in

 26: *- my input buffer. Type the ctl-Z, go back up one line,

 25: E delete the E, then end the edit

 25: *KT

 25: ; END OF SORT PROCESS, REBOOT

 25: *E OK, we mode the change, now re-a:3emble

[10]

 MAC SORT Invoke the macro assembler with SORT as input.

CP/M MACRO ASSEM 2.0

0169 .

001H USE FACTOR

END OF ASSEMBLY

[11]

 SID SORT.HEX SORT.SYM Here we go again, I sure hope this is the

SID VERS 1.4 last time (but it probably isn't).

SYMBOLS

NEXT PC END

0169 0100 55B7

#P.SORT,FF Set a pass point at sort, with a high count.

P.STOP also set a pass point at STOP with count 1, this

#P will stop the first time through

FF 0100 .SORT

01 0119 .STOP

#G Execute the test program

FF PASS 0100 .SORT First time through SORT label:

----- A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,013E .SW

01 PASS 0119 .STOP Stopped cgain! Arrggh!

-Z-E- A=00 B=006A D=0007 H=013E S=0100 P=0119 JMP 0000 .REBOOT

*0000 .REBOOT

 Let's look at some values

H=N

0008 #8 N=8, looks better than last time

#D.LIST,+=N

0160: 01 01 03 04 04 05 07 08 08 These values look a bit

#ISORT.HEX strange?! Try again:

#R

NEXT PC END

0169 0100 55B7

#D.LIST,+=N-1 Machine code reloaded, display initial values..

0160: 05 03 04 OA 08 82 OA 04

#L.CONT

CONT: Let's take a look at the process of switching

011C LDA 013F .I two data items - the code appears down below

011F MOV E,A the 'CONT' label, so we'll disassemble a

0120 MVI 0,00 portion of the program.

0122 LXI H,0160 .LIST

0125 DAD D

0126 MOV A,M

0127 INX H

0128 CMP M

0129 JC 0137 .INCI

012C JZ 0137 .INCI

012F MOV C,M Here's where the switch occurs, let's set a pass

#P12F,FF point here and watch the data addresses:

#P

FE 0100 .SORT

01 Ol19 .STOP

FF 012F

 55

SID Users Guide Section 5

#G

FE PASS 0100 .SORT Here's the first pass through SORT

-Z-P- A=00 B=006A D=0007 H=013E S=0100 P=0100 LXI H,013E .SW

FF PASS 012F Switching at address 161, looks OK!

----I A=05 B=006A D=0000 H=0161 S=0100 P=012F MOV C,M

FE PASS 012F Switching at 162. looks good.

----I A=05 B=0003 D=0001 H=0162 S=0100 P=012F MOV C,M

FD PASS 012F 164 is the next to switch. looks good.

----I A=OA B=0004 D=0003 H=0164 S=0100 P=012F MOV C,M

FC PASS 012F 166 is probably the next one.

---E- A=82 B=0008 D=0005 H=0156 S=0160 P=012F MOV C,M

*0130 So what's wrong? This section of

code seems to work.

#-P Clear all the pass points, and reload

#ISORT.HEX the machine code for another test.

*R

NEXT PC END

0169 0100 55B7

#L.CONT+5

 0121 NOP

 0122 LXI H.0160 .LIST

 0125 DAD D

 0126 MOV A,M Here's the code where the element

 0127 INX H switching occurs, lets watch the

 0128 CMP M program switch the first element:

 0129 JC 0137 .INCI

 012C JZ 0137 .INCI

 012F MOV C,M

 0130 MOV M,A

 0131 DCX H

#G,129

*0129 OK, here we are, ready to test And

#T10 switch, if necessary.

----I A=05 B=0000 D=0000 H=0161 S=0100 P=0129 JC 0137 .INCI

----I A=05 B=0000 D=0000 H=0161 S=0100 P=012C JZ 0137 .INCI

----I A=05 B=0000 D=0000 H=0161 S=0100 P=012F MOV C,M

----I A=05 B=0003 D=0000 H=0161 S=0100 P=0130 MOV M,A

----I A=05 B=0003 D=0000 H=0161 S=0100 P=0131 DCX H

----I A=05 B=0003 D=0000 M=0160 S=0100 P=0132 MOV M,C .LIST

----I A=05 B=0003 D=0000 H=0160 S=0100 P=0133 LXI H,013E .SW

----I A=05 B=0003 D=0000 M=013E S=0100 P=0136 INR M=01 .SW

*0137 .INCI Well, that went nicely - elements switched, SW=1

#0.LIST,+7

0160: 03 05 04 OA 08 82 OA 04

#H=I The data looks good at this point.

0000 .REBOOT #0

#G,.INCI Proceed to the INCI label

*0137 .INCI Here we are, let's look at the data:

#0.LIST,+7

0160: 03 05 04 0A 08 82 0A 04

#H=I

0000 .REBOOT #0 Looks good, trace past the label and break

#T

----- A=05 B=0003 D=0000 H=013E S=0100 P=0137 LXI H,013F .I

*013A

#G,.INCI

*0137 .INCI Here we are (again), how's the data?

#D.LIST.+=I

0160: 03 04 ... Looks good, proceed past INCI

#T

---E- A=05 B=0004 D=0001 H=013E S=0100 P=0137 LXI H,013F .I

*013A And loop again . . .

#G,.INC:

#0137 .INCI Here we are (again), how's the data?

#D.LIST,+=I

0160: 03 04 05 ... Looks good, this is getting monotonous, lets

 go for it! Stop at either SORT or STOP

#0119 .STOP Egad! Here we at the the ST0P label. Why

#D.LIST,+=I aren't we making it back to SORT?

0160: 01 01 03 04 04 05 07 08 08

Tsk! Tsk! The data's messed up again.

 56

SID Users Guide Section 5

#ISORT.HEX Let's reload and try again.

#R

NEXT PC END

0169 0100 55B7

#L136,+3

 0136 INR M Here's where the swltch count is incremented

INCI:

 0137 LXI H,013F .I

 013A

#G,136 Execute the program and break

 at SW = SW + 1

*0136

#D.LIST,+=I Look at data values:

0160: 03 .

#U Use U to move past break address

----I A=05 B=0003 D=0000 H=013E S=0100 P=0136 INR M=01 .SW

*0137 .INCI It's actually easier to use the pass point feature

#P136 if we want to view the action of the INR M,

#G since the P command stops execution after the

 pass point is executed.

01 PASS 0136

----I A=05 B=0004 D=0001 H=013E S=0100 P=0136 INR M=02 .SW

*0137 .INCI SW = 2, looks good.

#D.LIST,+=I

0160: 03 04 Data values look good.

#S.N Let's change N to a smaller value so the program

0168 08 4 doesn't loop so many times: 4 is a good number.

0169 0A End input with "."

#G "GO" to pass point

01 PASS 0136 Here we are. switch value is incremented:

----I A=0A B=0008 D=0003 H=013E S=0100 P=0126 INR M=03 .SW

*0137 .INCI Stopped at next instruction.

#D.LIST,+=I

0160: 03 04 05 08 Data values so far.

#H=SW

0004 #4 SW value at this point is 4.

#TFFFF Let's watch it run for a few steps:

----- A=0A B=0008 D=0003 H=013E S=0100 P=0137 LXI H,013F .I

----- A=0A B=0008 0=0003 H=013F S=0100 P=013A INR M=03 .I

----- A=0A B=0008 D=0003 H=013F S=0100 P=013B IMP 010A .COMP

COMP:

----- A=0A B=0008 D=0003 H=013F S=0100 P=010A LDA 0168 .N

----- A=04 B=0008 D=0003 H=013F S=0100 P=010D CMP M=04 .I

-Z-EI A=04 B=0008 D=0003 H=013F S=0100 P=010E JNZ 011C .CONT

-Z-El A=04 B=0008 D=0003 H=013F S=0100 P=0111 LXI H,013E .SW

&Z-El A=04 B=0008 D=0003 H=013E S=0100 P=0114 MOV A,M .SW

-Z-EI A=04 B=0008 D=0003 H=013E S=0100 P=0115 ORA A

----- A=04 B=0008 0=0003 H=013E S=0100 P=0116 JNZ 011C .CONT

CONT:

----- A=04 B=0008 D=0003 H=013E S=0100 P=011C LDA 013F .I

*011F Very interesting! We seem to be

*GO going back to "CONT" rather than "SORT".

 Let's go back to the editor and fix it up.

[12]

ED SORT.ASM

*#AVFORA This is a simple change: append all text, enter line

 22: *OLT verify mode, find "ORA" and make the change:

 22: ORA A ;SET FLAGS

 22: * "return" to move down one line

 23: JNZ CONT ;CONTINUE IF NOT EQUAL

 23: *SCONT!ZSORT!ZOLT Substitute SORT for CONT

 23: JNZ SORT ;CONTINUE IF NOT EQUAL

 23. * "return" to move down another line

 24: ;

 24: * "return" again.

 25: ; END OF SORT PROCESS, REBOOT

 25: *E End the edit

57

SID Users Guide Section 5

[13]

.MAC SORT

CP/M MACRO ASSEM 2.0

0169 Call out MAC for another assembly

001H USE FACTOR

END OF ASSEM@LY

[14]

LOAD SORT

 Just for a little variation, we'll create a

FIRST AODRESS 0100 SORT.COM file for testing under SID.

LAST ADORESS 0168

BYTES READ 0047

RECORDS WRITTEN 01

[15]

SID SORT.COM SORT.SYM

SID VERS 1.4 Back to SID, using the COM and SYM files

SYMBOLS

NEXT PC END

0180 0100 55B7

#P.STOP Set a pass point at STOP to prevent reboot

#D.LIST,+=N-1 Her's the original data:

0160: 05 03 04 0A 08 82 0A 04

#G Unmonitored GO

 Oops! We didn't get control back, there must

 be on infinite loop - we can get control back by

63K CP/M VERS 1.3 forcing a front panel RST 7 (interrupt 7),

 or simply bail-out with a cold start.

[16]

SID SORT.COM SORT.SYM

SID VERS 1.4 Let's start again, but be a little more selective

SYMBOLS in setting breakpoints.

NEXT PC END

0180 0100 55B7

#P.STOP Set a pass point at STOP, as before

#P.SORT,FF and one at SORT with a Pass count of 255.

#-G GO with pass trace disabled.

01 PASS 0100 Stopped with 255 passes through SORT - too many!

----- A=01 B=006A D=00FF H=013E S=0100 P=0100 LXI H,013E

*0103

#D.LIST,+=N-1 How's the data?

0160: 03

#H=N Hmmm... looks like n was destroyed.

0000 .REBOOT #0

#H=I

0000 .REBOOT #0

#G,.COMP There's a good possibility that we're running off

 the end of the LIST vector into the variable N,

010A .COMP lets stop at the COMP label and watch the end test.

#T5

----- A=01 B=006A D=00FF H=013F S=0100 P=010A LDA 0168 .N

----- A=00 B=006A D=00FF H=013F S=0100 P=0100 CMP M-00 .I

-Z-El A=00 B=006A D=00FF H=013F S=0100 P=010E JNZ 011C .CONT

-Z-EI A=00 B=006A D=00FF H=013F S=0100 P=0111 LXI H,013E .SW

-Z-El A=00 B=006A D=00FF H=013E S=0100 P=0114 MOV A,M .SW

*0115 Hey. this isn't going to work! We'll be comparing

#GO LIST(N-1) with LIST(N), but the last LIST element is

 at LIST(N-1). Let's try a quick fix.

 58

SID Users Guide Section 5

[17]

 SID SORT.COM SORT.SYM

SID VERS 1.4 Let's re-enter SID with a clean memory

SYMBOLS image, and look at the machine code

NEXT PC END below the 'COMP' label.

0180 0100 55B7

#L.COMP

COMP:

 010A LDA 0168 .N Here's the reference to N - let's change this

 0100 CMP M to N1 with a "hot patch" in memory, to see

 010E JNZ 011C .CONT if it works, then we'll go back to the

 0111 LXI H,013E .SW origiNal source program and make the

 0114 MOV A,M necessary changes. We're not using the area

#AIOA of memory starting at 0200, so patch a lump

010A JMP 200 over the LDA instruction, and fix-up some

010D patch code.

#A200

0200 LDA .N Replace the LDA instruction which now has JMP 200.

0203 DCR A N-1 in accumulator (N better be 2 or larger!)

0204 CMP M and compare with memory (HL addresses I),

0205 JNZ .CONT jump to CONT if continuing, otherwise

0208 JMP 111 jump back to the next instruction in sequence

0208 after the patch.

#P205,FF Set a pass point to watch the JNZ take place

#P.STOP and catch any returns to the CCP.

#Plll,FF Set a pass point at the patch return addrem

#S.N Reduce the size of V for this test to 4.

0168 08 4

0169 00

#G Everything is ready, let's go...

FF PASS 0205 First pass through the patch code:

---EI A=03 B=0000 D=0000 H=013F S=0100 P=0205 JNZ 011C .CONT

FE PASS 0205 Went to CONT that time, second pass:

----I A=03 B=0003 D=0000 H=013F S=0100 P=0205 JNZ 011C .CONT

FD PASS 0205 Went to CONT again, next pass:

----I A=03 B=0004 D=0001 H=013F S=0100 P=0205 JNZ 011C .CONT

FC PASS 0205 And so-forth..

-Z-EI A=03 B=0004 D=0002 H=013F S=0100 P=0205 JNZ 011C .CONT

FF PASS Oll1 Must be the end of one cycle:

-Z-EI A=03 B=0004 D=0002 H=013F S=0100 P=0111 LXI H,013E .SW

FB PASS 0205 Now back through the patch code:

---EI A=03 B=0004 D=0002 H=013F S=0100 P=0205 JNZ 011C .CONT

FA PASS 0205

----I A=03 B=0004 D=0000 H=013F S=0100 P=0205 JNZ 011C .CONT

F9 PASS 0205

----I A=03 B=0004 D=0001 H=013F S=0100 P=0205 JNZ 011C .CONT

F8 PASS 0205

-Z-EI A=03 B=0004 D=0002 H=013F S=0100 P=0205 JNZ OJJC .CONT

FE PASS 0111

-Z-EI A=03 B=0004 D=0002 H=013F S=0100 P=0111 LXI H,013E .SW

*0114 This is getting monontonous again, so

#D.LIST,+=N-1 push the "return" key to stop the action.

0160: 03 04 05 OA Data looks good, run in monitored mode:

-UFFFF

-Z-EI A=03 B=0004 D=0002 H=013E S=0100 P=0114 MOV A,M

*0138 Push the 'return' kev to abort early.

#H=N Value of N is still 4 (that's nice!)

0004 #4 Value of I is currently 2. This program

#H=1 should have stopped, but didn't for some

0002 #2 reason.

 59

SID Users Guide Section 5

[18]

 SID SORT.COM SORT.SYM

SID VERS 1.4 Lets trv another approach. Suppose we

SYMBOLS a r we'll set

NEXT PC END ifea@v trar'vsioarl"faPn@

0180 0100 5587 LIST(O) = 0, LIST(1) = 1

#5.,4

016808 2

016900

#S.LIST

016005 0

016103 1

016204 .

P.STOP Things are ready to go, run completely traced..

#TFFFF

----- A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,013E .SW

----- A=00 B=0000 D=0000 H=013E S=0100 P=0103 MVI M,01 .SW

----- A=00 B=0000 D=0000 H=013E S=0100 P=0105 LXI H,013F .1

----- A=00 B=0000 D=0000 H=013F S=0100 P=0108 MVI M,00 .I

COMP:

----- A=00 B=0000 D=0000 H=013F S=0100 P=010A LDA 0168 .N

----- A=02 B=0000 D=0000 H=013F S=0100 P=0100 CMP M=00 .I

----I A=02 B=0000 D=0000 H=013F S=0100 P=010E JNZ 011C .CONT

CONT:

----I A=02 B=0000 D=0000 H=013F S=0100 P=011C LDA 013F .I

----I A=00 B=0000 D=0000 H=013F S=0100 P=011F MOV E,A

----I A=00 B=0000 D=0000 H=013F S=0100 P=0120 MVI D,00

----I A=00 B=0000 D=0000 H=013F S=0100 P=0122 LXI H,0160 .LIST

----I A=00 B=0000 D=0000 H=0160 S=0100 P=0125 DAD D

----I A=00 B=0000 D=0000 H=0160 S=0100 P=0126 MOV A,M .LIST

----I A=00 B=0000 D=0000 H=0160 S=0100 P=0127 INX H

----I A=00 B=0000 D=0000 H=0161 S=0100 P=0128 CMP M=01

C-ME- A=00 B=0000 D=0000 H=0161 S=0100 P=0129 JC 0137 .INCI

INCI- Not switched!

C-ME- A=00 B=0000 D=0000 H=0161 S=0100 P=0137 LXI H,013F .I

C-ME- A=00 B=0000 D=0000 H=013F S=0100 P=013A INR M=00 .I

C---- A=00 B=0000 D=0000 H=013F S=0100 P=0l3B JMP 010A .COMP

COMP:

C---- A=00 B=0000 D=0000 H=013F S=0100 P=010A LDA 0168 .N

C---- A=02 B=0000 D=0000 H=013F S=0100 P=0100 CMP M=01 .I

----I A=02 B=0000 D=0000 H=013F S=0100 P=010E JNZ 011C .CONT

CONT:

----I A=02 B=0000 D=0000 H=013F S=0100 P=011C LDA 013F .I

----I A=01 B=0000 D=0000 H=013F S=0100 P=011F MOV E,A

----I A=01 B=0000 D=0001 H=013F S=0100 P=0120 MVI D,00

----I A=01 B=0000 D=0001 H=013F S=0100 P=0122 LXI H,0160 .LIST

----I A=01 B=0000 D=0001 H=0160 S=0100 P=0125 DAD D

----I A=01 B=0000 D=0001 H=0161 S=0100 P=0126 MOV A,M

----I A=01 B=0000 D=0001 M=0161 S=0100 P=0127 INX H

----I A=01 B=0000 D=0001 H=0162 S=0100 P=0128 CMP M=04

C-M-- A=01 B=0000 D=0001 H=0162 S=0100 P=0129 JC 0137 .INCI

INCI: Not switched (again)!

C-M-- A=01 B=0000,D=0001 H=0162 S=0100 P=0137 LXI H,013F .I

C-M-- A=01 B=0000 D=0001 H=013F S=0100 P=013A INR M=01 .I

C---- A=01 B=0000 D=0001 H=013F S=0100 P=0138 JMP 010A .COMP

COMP:

C---- A=01 B=0000 D=0001 H=013F S=0100 P=010A LDA 0168 .N

C---- A=02 B=0000 D=0001 H=013F S=0100 P=0100 JMP M=02 .I

-Z-EI A=02 B=0000 D=0001 H=013F S=0100 P=010E JNZ 011C .CONT

-Z-EI A=02 B=0000 D=0001 H=013F S=0100 P=0111 LXI H,013E .SW

-Z-El A=02 B=0000 D=0001 H=013E S=0100 P=0114 MOV A,M .SW

-Z-EI A=01 B=0000 D=0001 H=013E S=0100 P=0115 ORA A

----- A=01 B=0000 D.0001 H=013E S=0100 P=0116 JNZ 0100 .SORT

SORT: No items were switched - SW not set to 0!

----- A=01 B=0000 D.0001 H=013E S=0100 P=0100 LXI H,313E .SW

*0103

 60

SID Users Guide Section 5

[19]

 ED SORT.ASM

*#AVFSORT:!ZOLT Back to the editor-change the

 8: SORT: LXI H,SW entry code to initialize SW

 8: *-

 7: ;

 7: *2

 9: MVI M,1 ;SW = 1

 9: *2S1!ZO!ZOLT

 9: MVI M,0 ;SW = 0

 9: *-

 8: SORT: LXI H,SW

 8- *I

 8: MVI A,1

 9: STA SW ;SW = 1 FIRST TIME THRU

 10:

 10: *E

[20]

MAC SORT

CP/M MACRO ASSEM 2.0

016E Re-assemble, again

001H USE FACTOR

END OF ASSEMBLY

[21]

 SID SORT.HEX SORT.SYM

SID VERS 1.4 We've fixed the SW initialization problem, which

SYMBOLS should halt the program at the proper time, but

NEXT PC END we may still have a problem with the end of

016E 0100 55B7 LIST test (remember that "hot patch"?).

#D.LIST,+=N Here's the initial data:

0165: 05 03 04 0A 08 82 0A 04 08

#G,.STOP

 GO, unmonitored to the STOP (how's that for

*011E STOP confidence?).

#D.LIST,+=N We made it, here's the data:

0165: 03 04 04 05 08 08 0A 0A 0B 7B 82

0170: E6 . Data is sorted in ascending order, but there's too

#ISORT.NEX much of it! We still have the problem that N is

#R altered during execution.

NEXT PC END Let's reload and make sure we know what the

016E 0100 55B7 problem is-

#P.SORT Set a pass point at SORT, check N

#G

01 PASS 0105 .SORT Here's the first pass through SORT:

-Z-E- A=01 B=0004 D=000A H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108 Break at 0108, check value of N:

#H=N

0008 #8

#G OK initially, continue the execution with G.

01 PASS 0105 .SORT We have passed through the data once:

----- A=75 B=002A D=007A H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108

#H=N

007B #123 N has been altered, which we expected, since we

#ISORT.HEX are testing LIST(N-1) against LIST(N) and performing

#R a switch if unordered.

NEXT PC END

016E 0100 55B7 Let's reload and scope in on the problem:

#G,.INCI Stop at the point where I becomes I + 1:

01 PASS 0105 .SORT Oops! The initial pass point is still set.

----- A=01 B=002A D=007A H=0143 S=0100 P=0105 LXI H,0143 .SW

*0108 Clear all pass points.

#-P

#G,.INCI Now, try agaim

*013C .INCI Stopped at first entry to INCI, check value of N:

#H=N N is still 8, looks good.

0008 #8

#G,.CONT Go to the CONT label, then stop at INCI.

*0121 CONT

#G,.INCI

 61

SID Users Guide Section 5

*013C .INCI Back at INCI now. Check value of N

#H=N

0008 #8 Remains at 8. If we keep this up. we'll be typing

#P.INCI,6 break addresses all day. We can run the next few passes

#-G through INCI automatically by setting a pass count (use 6

 in this case). then run with -C to disable intermediate

01 PASS 013C traces. We now stop 6 iterations Later..

---E- A=82 B=0004 D=0006 H=0143 S=0100 P=013C LXI H,0144

*013F

#H=N Check N: remains at 8, then

0008 #8 check I to compare passes: I=0,1,2,3,4,5,6 has been

#H=1 executed. We are now about to set I = 7, but the test

0006 #6 at COMP is "JNZ" which allows execution one too many

 times (which we already know about).

[22]

 ED SORT.ASM

*#AV Back to the editor, change the end of LIST test

 1: *FLDA to compare I with N-1 rather than N.

 17: *OLT

 17: LDA N ;LENGTH OF VECTOR

 17: * "return" to go to next line

 18: CMP M ;CHECK FOR N=I

 18: *I Insert the instruction before the "CMP" opcode.

 18: DCR A ;N-1 IN A REGISTER

 19: (NOTE THAT N MUST BE 2 OR LARGER)

 20: ctl-Z

 20: *F*I Now a little clean-up work - there is a typo in

 49: *OT a comment line at address 012A in the listing:

 49: MOV M,A ;NEW LIST*I*-C-DI(!ZOLT

 49: MOV M,A ;NEW LIST(I+1) TO M Looks better now.

 49: *F32 We are not using the 8080 stack, so get rid of it.

 64: *OLT

 64: DS 32 ;16 LEVEL STACK

 64: *2KT

 64: ;

 64: *E Complete the edit.

[23]

MAC SORT

CP/M MACRO ASSEM 2.0

014F Reassemble the source program.

OO1H USE FACTOR

END OF ASSEMBLY

[24]

 SID SORT.HEX SORT.SYM

SID VERS 1.4 Back to SID - this should be the last time!

SYMBOLS

NEXT PC END

014F 0100 55BF

#D.LIST,+=N Initial data:

0146: 05 03 04 0A 08 82 0A 04 08

#G,STOP

? Ok, ok. Let's try it with an "address reference" to

#G,.STOP the Label STOP:

*011F .STOP That's better, now look at the data:

#D.LIST,+=N hooray! It's finally sorted.

0146: 03 04 04 05 08 0A 0A 82 08

#H=N

0008 #8 Is N ok? Yes, it's still 8.

#GO Hold it! The data is in ascending order. but it is

 supposed to be in descending order! This will

 be an easy fix.

 62

SID Users Guide Section 5

[25]

 ED SORT.ASM

*#A

*T

; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

*

; ELEMENTS OF 'LIST' ARE PLACED INTO

*

; DESCENDING ORDER USING BUBBLE SORT

*SDES!ZASC!ZOLT

; ASCENDING ORDER USING BUBBLE SORT

*SCC!ZC!ZOLT

; ASCENDING ORDER USING BUBBLE SORT

*E Took care of that problem.

[26]

 MAC SORT $+S

@ P/M MACRO ASSEM 2.0

014F Re-assemble with the svmbol table option.

001H USE FACTOR

END OF ASSEMBLY

 At this point, we have checked-out this particular SORT program using this

particular set of data items. This does not, of course, mean that the program is fully

debugged. There could be cases which are not tested properly since we have not

inciuded all boundary conditions (the data items 00 and FF, for example, should be

included). Further, there ore program segments which could be incorrect, but which

have no negative effects on the program. The @tialization of SW to the value 1

before the label SORT, for example, does not affect the program, but is superfluous.

We now have a program which appears to w@ but must undergo further tests before

it is considered a production program.

 63

Section 5

SID Users Guide Section 5

 ; SORT PROGRAM IN CP/M ASSEMBLY LANGUAGE

 ; ELEMENTS OF 'LIST' ARE PLACED INTO

 ; ASCENDING ORDER USING BUBBLE SORT

 ;

0100 ORG 100H ;BEGINNING OF TPA

0000 = REBOOT EQU 0000H ;CP/M REBOOT LOCATION

 ;

0100 3E01 MVI A,1

0102 324401 STA SW ;SW = 1 FIRST TIME THRU

0105 214401 SORT: LXI H,SW

0108 3600 MVI M,0 ;SW = 0

010A 214501 LXI H,I ;INDEX TO SORT LIST

010D 3600 MVI M,0 ;I = 0

 ;

 ; COMPARE 1 WITH ARRAY SIZE

 COMP: ;HL ADDRESS INDEX I

01OF 3A4E01 LDA M ;LENGTH OF VECTOR

0112 30 DCR A ;N-1 IN A REGISTER

 ; (NOTE THAT N MUST BE 2 OR LARGER)

0113 BE CMP M ;CHECK FOR N=I

0114 C22201 JNZ CONT ;CONTINUE IF UNEQUAL

 ;

 ; END OF ONE PASS THROUGH LIST

0117 214401 LXI H,SW ;NO SWITCHES?

011A 7E MOV A,M ;FILL A WITH SW

0118 B7 ORA A ;SET FLAGS

011C C20501 JNZ SORT ;CONTINUE IF NOT EQUAL

 ;

 ;END OF SORT PROCESS, REBOOT

011F C30000 STOP: JMP REBOOT ;RESTART CCP

 ;

 ; CONTINUE THIS PASS

 CONT:

0122 3A4501 LDA I ;LOAD I TO A REGISTER

0125 5F MOV E,A ;LOW(I) TO E REGISTER

0126 1600 MVI D,0 ;HIGH(I) = 0

0128 214601 LXI H,LIST ;BASE OF LIST

012B 19 DAD D ;ADDR LIST(I)

012C 7E MOV A,M ;LIST(I) IN A REGISTER

0120 23 INX H ;ADDR OF LIST(I+1)

012E BE CMP M ;LIST(I):LIST(I-I)

012F DA3D01 JC INCI ;SKIP IF PROPER ORDER

 ;

 ; CHECK FOR LIST(I) = LIST(I+1)

0132 CA3D01 JZ INCI ;SKIP IF EQUAL

 ;

 ; ITEMS ARE OUT OF ORDER, SWITCH

0135 4E MOV C,M ;OLD LIST(I+1) TO C

0136 77 MOV M,A ;NEW LIST(I+1) TO M

0137 28 DCX H ;ADDR LIST(I)

0138 71 MOV M,C ;NEW LIST(I) TO M

 ;

0139 214401 LXI H,SW ;SWITCH COUNT IS SW

013C 34 INR M ;SW = SW = 1

 ;

 INCI: ;INCREMENT INDEX I

0130 214501 LXI H,I

0140 34 INR M ;I = I + 1

0141 C3OF01 JMP COMP ;TO COMPARE I WITH N-1

 ;

 ; DATA AREAS

0144 SW: DS 1 ;SWITCH COUNT

0145 I: DS 1 ;INDEX

 ;

0146 0503040A08LIST: DB 5,3,4,10, 8,130,10,4

014E 08 N: DB $-LIST ;LENGTH OF LIST

014F END

010F COMP 0122 CONT 0145 I 0130 INCI 0146 LIST

014E N 0000 REBOOT 0105 SORT 011F STOP 0144 SW

 64

SID Users Guide Section 5

 SID HIST.UTL Start SID with he HIST utility

SID VERS 1.4

TYPE HISTOGRAM BOUNDS 100,200 Monitor 0100 through 0200.

.INITIAL = 522.

.COLLECT = 5224 Entry Point addresses in HIST.

.DISPLAY = 5227

#ISORT.HEX SORT.SYM Load the SORT program with symbols.

#R

SYMBOLS Program loaded. now loading symbols.

NEXT PC END

0600 0100 51B7

#P.STOP Permanent break at STOP address.

#P.SORT,3 Execute to "Steady state" conditions by

#-G passing the SORT label three times before break.

 "-G" prevents intermediate pass traces.

01 PASS 0100

----- A=02 B=0004 D=0006 H=013F S=0100 P=0100 LXI H,013F

*0103 We're now at the third pass through SORT.

#-P.SORT Remove the pass point at SORT, run monitored

#UFFF,.COLLECT from this point for 0FFF steps, collect data.

----- A=02 B=0004 D=0006 H=013F S=0100 P=0103 MVI M,01 .SW

*0127 Stopped after OFFF steps, display collected data:

#C.DISPLAY

HISTOGRAM:

ADDR RELATIVE FREQUENCY, LARGEST VALUE = 0309

0100 *****

0104 **

0108 ********************** most frequently executed address..

010C ***

0110 **

0114 *******

....

011C *****************

0120 **

0124 **********************************

0128 **

012C *****

0130

0134

0138 **********************************

013C *****************

....

0200 *

#L1OC What's happening at the most frequently executed address?

 010C LXI B,BE30

 01OF JNZ 011D .CONT This is where the end of LIST test takes place,

 0112 LX! H 013F .SW so it is reasonable that this segment of code would

 0115 MOV A,M be executed heavily. We could improve performance

 0116 ORA A by reducing the length of this segment. The value

 0117 jNZ 0100 .SORT of N-1 could, for example, be maintained in register

STOP: C throughout the computations, while the value of

 011A JMP 0000 .REBOOT I could be kept in register E, with 00 in D.

#L11C There is also heavy execution around location 011C.

 011C NOP

CONT:

 0110 LDA 0140 .I This is where we go on each element comparison

 0120 M0V E,A whether we switch elements or not.

 0121 MVI D,00

 0123 LXI H,0161 .LIST

 0126 DAD D

 0127 MOV A,M

 0128 INX H

 0129 CMP M

 012A JC 0138 .INCI

 012D JZ 0138 .INCI

#GO

 65

SID Users Guide Section 5

[28]

 SID TRACE.UTL Load the TRACE utility with STD.

SID VERS 1.4

INITIAL = 5321

COLLECT = 5324 TRACE entry points.

DISPLAY = 5327

READY FOR SYMBOLIC BACKTRACE Indicates that assembler/disassembter is present.

#ISORT.HEX SORT.SYM Ready the SORT program and symbol table.

#R Load program and symbols to memory.

SYMBOLS

NEXT PC END

0600 0100 52B7

#P.STOP Permanent break at the STOP label.

#P.CONT,3 Pass through CONT three times before stopping.

#UFFFF,.COLLECT Untrace mode, print intermediate pass points.

----- A=00 B=0000 D=0000 H=0000 S=0100 P=0100 LXI H,013F .SW

03 PASS 011D .CONT

----I A=07 B=0000 D=0000 H=0140 S=0100 P=011D LDA 0140 .I

02 PASS 011D .CONT

---EI A=07 B=0003 D=0000 H=0140 S=0100 P=011D LDA 0140 .I

01 PASS 011D CONT

---EI A=07 B=0004 D=0001 H=0140 S=0100 P=011D LDA 0140 .I

*0120 Stopped on the third pass.

#C.DISPLAY Display the backtrace from CONT.

BACKTIRACE:

CONT: Most recently executed instruction.

 011D LDA 0140 .I

 OIOF JNZ 011D .CONT

 OIOE CMP M

 0100 DCR A

COMP:

 010A LDA 0169 .N

 013C JMP 010A .COMP

 0138 INR M

INCI:

 0138 LXI H,0140 .I

 0137 INR M

 0134 LXI H,013F .SW

 0133 MOV M,C

 0132 DCX H

 0131 MOV M,A

 0130 MOV C,M

 0120 JZ 0138 .INCI

 012A JC 0138 .INCI

 0129 CMP M

 0128 INX H

 0127 MOV A,M

 0126 DAD D

 0123 LXI H,0161 .LIST

 0121 MVI D,00

 0120 MOV E,A

CONT:

 0110 LDA 0140 .I

 OIOF JNZ 011D .CONT

 010E CMP M

 010D DCR A

COMP: Least recently executed instruction.

 010A LDA 0169 .N (aborted with "return")

#GO

 66

SID Users Guide Section 5

[29]

 SID Start SID without loading any programs.

SID VERS 1.4

#-A Remove assembler/disassembler package.

#ITRACE.UTL Ready the TRACE utility.

#R Read the TRACE package to memory.

INITIAL - 5921

COLLECT - 5924 TRACE entry point addresses.

DISPLAY - 5927

"-A" IN EFFECT, ADDRESS BACKTRACE No assembler/disassembler present.

#ISORT.HEX SORT.SYM Ready the SORT program

#R Read to memory.

SYMBOLS

NEXT PC END

0600 0100 58B7

#P.STOP Permanent break at STOP address,

#P.CONT,3 pass point at CONT with pass count 3

#-UFFFF,.COLLECT Run monitored, collect data, no intermediate

----- A=00 B=0000 D=0000 H=0000 S=0100 P=0100 21 013F pass information.

01 PASS 011D

---EI A=07 B=0004 D=0001 H=0140 S=0100 P=0110 3A 0140

*0120 Stopped on third pass through CONT

#C.DISPLAY

BACKTRACE. most recent addresses

011D 010F 010E OIOD 010A 013C 013B 0138

0137 0134 0133 0132 0131 0130 012D 012A

0129 0128 0127 0126 0123 0121 0120 011D

010F 010E 0100 010A O11C 0138 0138 0137

0134 0133 0132 0131 0130 0120 012A 0129

0128 0127 0126 0123 0121 0120 0110 01OF

010E 0100 010A 0108 0105 0103 0100 Least recent address.

#GO

[30]

TYPE IO.PRN

 ;SIMPLE BDOS OUTPUT PROGRAM

0100 ORG 100H ;BEGINNING OF TPA

0000 = REBOOT EQU OOOOH ;REBOOT ENTRY POINT

0005 = BOOS EQU 0005H ;BOOS ENTRY POINT

0002 = CONOUT EQU 2 ;CONSOLE OUTPUT #

 ;

0100 315401 LXI SP,STACK;LOCAL STACK

0103 C31501 JMP START ;START EXECUTION

 ;

 WRCHAR: ;WRITE CHARACTER FROM REGISTER A

0106 0E02 MVI C,CONOUT;CONSOLE OUTPUT #

0108 5F MOV E,A ;CHARACTE T0 E

0109 C30500 JMP BD0S ;RET THROUGH BOOS

 ;

 WRMSG: ;WRITE MESSAGE STARTING AT HL 'TIL 00

010C 7E MOV A,M ;NEXT CHARACTER

0100 B7 ORA A ;00?

010E C8 RZ ;RETURN IF S0

01OF CD0601 CALL WRCHAR ;OTHERWISE WRITE IT

0112 C30C01 JMP WRMSG ;FOR ANOTHER CHARACTER

 ;

 START: ;BEGINNING OF MAIN PROGRAM

0115 212A01 LXI H,WALLAMSG ;PART 1 OF MESSAGE

0118 CD0C01 CALL WRMSG ;WRITE IT

0118 212A01 LXI H,WALLAMSG ;PART 2 OF MESSAGE

011E CD0C01 CALL WRMSG ;WRITE IT

0121 213001 LXI H,WASHMSG ;PART 3 OF MESSAGE

0124 CDOC31 CALL WRMSG

0127 C30000 STOP: JMP REBOOT ;STOP THE PROGRAM

 ;

 ; DATA AREAS

 WALLAMSG:

012A 57414C4C41 DB 'WALLA '

 WASHMSG:

0130 57415348 DB 'WASH'

0134 DS 32 ;16 LEVEL STACK

 STACK:

0154 END

 67

SID Users Guide Section 5

[31]

 SID IO.HEX IO.SYM

SID VERS 1.4 Load the test program ustng the HEX and SYM files.

SYMBOLS

NEXT PC END

0134 0100 55A9

#G,.WRMSG GO from 0100 to the first call on WRMSG

*010C .WRMSG Now trace from the WRMSG subroutine:

#T100

 ----- A=00 B=0000 D=0000 H=012A S=0152 P=010C MOV A,M .WALLAMSG

 ----- A=57 B=0000 D=0000 H=012A S=0152 P=0100 ORA A

 ----- A=57 B=0000 D=0000 H=012A S=0152 P=OIOE RZ

 ----- A=57 B=0000 D=0000 H=012A S=0152 P=OIOF CALL 0106 .WRCHAR First

WRCHAR. call to WRCHAR

 ----- A=57 B=0000 D=0000 H=012A S=0150 P=0106 MVI C,02 with 57 (="W")

 ----- A=57 B=0002 D=0000 H=012A S=0150 0=0108 MOV E,A

 ----- A=57 B=0002 D=0057 H=012A S=0150 P=0109 JMP 0005 .BOOS

BDOS: Call to BDOS

 ----- A=57 B=0002 D=0057 H=012A S=0150 P=0005 JMP 55AA Function # 2,

 ----- A=57 B=0002 D=0057 H=012A S=0150 P=55AA JMP 5CA4 Character "W"

 ----- A=57 B=0002 D=0057 H=012A S=0150 P=5CA4 XTHL

 ----- A=57 B=0002 D=0057 H=0112 S=0150 P=5CA5 SHLD 6D52 (SID code to

 ----- A=57 B=0002 D=0057 H=0112 S=0150 P=5CA8 XTHL intercept call)

 ----- A=57 B=0002 D=0057 H=012A S=0150 P=SCA9 JMP 6E06W = first character

 -Z-E- A=00 B=0000 D=0200 H=793B S=0152 P=0112 JMP 010C .WRMSG now we're

WRMSG: back to our

 -Z-E- A=00 B=0000 D=0200 H=7938 S=0152 P=010C MOV A,M program, with

 -Z-E- A=00 B=0000 D=0200 H=7938 S=0152 P=010D ORA A another CALL.

 -Z-E- A=00 B=0000 D=0200 H=7938 S=0152 P=010E RZ

 -Z-E- A=00 B=0000 D=0200 H=7938 S=0154 P=011B LXI H,012A .WALLAMSG

 -Z-E- A=00 B=0000 D=0200 H=012A 5=0154 P=011E CALL 010C .WRMSG

WRMSG:

 -Z-E- A=00 B=0000 D=0200 H=012A S=0152 P=010C MOV A,M .WALLAMSG

 -Z-E- A=57 B=0000 D=0200 H=012A S=0152 P=010D ORA A

 ----- A=57 B=0000 D=0200 H=012A S=0152 P=010E RZ

 ----- A=57 B=0000 D=0200 H=012A S=0152 P=010F CALL 0106 .WRCHAR

WRCHAR:

 ----- A=57 B=0000 D=0200 H=012A S=0150 P=0106 MOV C,02

 ----- A=57 B=0002 D=0200 H=012A S=0150 P=0108 MOV E,A abort with "return"

*0109

#G,.WRMSG GO, skip traces

W Should be ALLA ..., what happened?

*010C .WRMSG

#TW100 Trace without call:

 -Z-E- A=00 B=0000 D=0200 H=793B S=0152 P=010C MOV A,M

 -Z-E- A=00 B=0000 D=0200 H=793B S=0152 P=0100 ORA A

 -Z-E- A=00 B=0000 D=0200 H=793B S=0152 P=010E RZ

 -Z-E- A=00 B=0000 D=0200 H=793B S=0154 P=0121 LXI H,0130 .WASHMSG

 -Z-E- A=00 B=0000 D=0200 H=0130 S=0154 P=0124 CALL 010C .WRMSGW

STOP: Called WRMSG, printed another "W" and stopped!

 -Z-E- A=00 B=C000 D=0200 H=793B S=0154 P=0127 JMP 0000 .REBOOT

REBOOT: abort with "return" so we can restart.

 -Z-E- A=00 B=0000 D=0200 H=793B S=0154 P=0000 JMP 7A03

*7A03

It appears that the WRMSG routine is not saving the HL

 register pair, nor is HL being incremented on each loop.

 68

SID Users Guide Section 5

#A10F

010F JMP 200 We'll put a "hot patch" at the end of the WRMSG

0112 subroutine to save the HL pair, call the WRCHAR

#A200 subroutine, restore the HL pair, then increment HL.

0200 PUSH H We're not using the region above 200. so place patch

0201 CALL .WRCHAR in this region.

0204 POP H

0205 INX H

0206 JMP WRMSG

0209

#G100,.WRMSG Ok, now restart the program and stop at the first call to WRMSG.

*010C WRMSG Here we are. HL addresses the message to print, which

#D is the default display address follow" a breakpoint:

012A: 57 41 4C 4C 41 20 WALLA= message to print.

0130: 57 41 53 48 56 45 52 53 20 31 2E 34 24 31 00 02 WASHVERS 1.4$1..

#TW100 Trace without calls: shows only the activity in WRMSG.

----- A=00 B=0000 D=0000 H=012A S=0152 P=010C MOV A,M .WALLAMSG

----- A=57 B=0000 D=0000 H=012A S=0152 P=0100 ORA A first character

----- A=57 B=0000 D=0000 H=012A S=0152 P=010E RZ is 57 = "W"

----- A=57 B=0000 D=0000 H=012A S=0152 P=010F JMP 0200 Now in patch

----- A=57 B=0000 D=0000 H=012A S=0152 P=0200 PUSH H area.

----- A=57 B=0000 D=0000 H=012A S=0150 P=0201 CALL 0106 .WRCHARW = character

-Z-E- A=00 B=0000 D=0200 H=793B S=0150 P=0204 POP H

-Z-E- A=00 B=0000 D=0200 H=012A S=0152 P=0205 INX H Move to next

-Z-E- A=00 B=0000 D=0200 H=0128 S=0152 P=0206 JMP 010C .WRMSG character

WRMSG: Looping beck.

-Z-E- A=00 B=0000 D=0200 H=0129 S=0152 P=010C MOV A,M

-Z-E- A=41 B=0000 D=0200 H=0129 S=0152 P=0100 ORA A

---E- A=41 B=0000 D=0200 H=0128 S=0152 P=010E RZ

---E- A=41 B=0000 D=0200 H=0123 S=0152 P=010F JMP 0200

---E- A=41 B=0000 D=0200 H=0128 S=0152 P=0200 PUSH H Here's the next

---E- A=41 B=0000 D=0200 H=0129 S=0150 P=0201 CALL 0106 .WRCHARA character

-Z-E- A=00 B=0000 D=0200 H=793B S=0150 P=0204 POP H (="A")

-Z-E- A=00 B=5000 D=0200 4=012B S=0152 P=0205 INX H

-Z-E- A=00 B=0000 D=0200 4=012C S=0152 P=0206 JMP 010C .WRMSG

WRMSG:

-Z-E- A=00 B=0000 D=0200 H=012C S=0152 P=010C MOV A,M

*010D Abort with "return"

#P.STOP Set a permanent break at STOP, then GO from

#G100 the beginning of the program:

WALLA WASHVERS 1.4$1WALLA WASHVERS 1 4$1WASHVERS 1.4$1

01 PASS 0127 STOP Things look better, -but "00" byte missing on messages.

-Z-E- A=00 B=0000 D=0200 H=013E S=0154 P=0127 JMP 0000 .REBOOT

*0000 REBOOT

*S.WALLAMSG+4 Place a 00 bvte at the end of each message.

012E 41 (leave this value, 41 = "A" in WALLA)

012F 20 0 (changed to 00 from blank)

013057

#S.WASHMSG+4 Place 00 byte at the end of the second message.

0134 56 0

0135 45

#G100 Break at STOP remains set, GO from the beginning.

WALLAWALLAWASH Looks good. we now have enough information to

01 PASS 0127 STOP go back and change the source program using ED.

-Z-E- A=00 B=0000 D=0200 H=0134 S=0154 P=0127 JMP 0000 .REB00T

#0000 REBOOT

#GO

69

