

By Martin Eberhard

August 17, 2014

Revision History

Revision Date Author Notes

1.00 11 SEP 2013 M. Eberhard Created

1.01 16 SEP 2013 M. Eberhard
Shorten leader 20 60 bytes, add
60 byte trailer for D command.
This version was hosed.

1.02 17 SEP 2013 M. Eberhard Fixed mistake in 1.01

1.03 17 AUG 2014 M. Eberhard
Punch 60 bytes of 20h before the
leader, for MBL compatibility

August, 2014
88 UBMON 1.03 PROM 1

ABSTRACT

This document describes the operation of the Altair Universal Boot
Loader and PROM Monitor (UBMON). UBMON is a system program that allows
you to examine and change the contents of any memor y address or series
of addresses, start execution of a program at any s pecified address,
punch a tape from memory in Altair Binary Absolute Load format, and
boot from any Altair boot device.

UBMON is an improvement to the TURMON PROM by MITS. All commands
function the same way as TURMON, and three boot com mands (B,L, and T)
have been added. In addition, the D command now inc ludes a short null
trailer after the data dump is completed. Important subroutines remain
at the same addresses as in TURMON, for compatibili ty.

TABLE OF CONTENTS
1. SYSTEM REQUIREMENTS 3

Terminal I/O Port 3

PROM Addressing 3

Available RAM 3

Associated Loader PROMs 3

2. STARTING UBMON 4

3. OPERATION 4

The D Command 5

The J Command 5

The M Command 5

The B Command 6

The L Command 6

The T Command 6

Entering Numeric Values 7

4. LOADING BASIC WITH UBMON 7

Without a Loader PROM 7

With a Standard Loader PROM 8

With a Nonstandard Loader Program 8

5. LOADING A FILE THAT WAS PUNCHED WITH UBMON 8

APPENDIX A - ALTAIR BINARY ABSOLUTE LOAD FORMAT 9

APPENDIX B - UBMON ENTRY POINTS 10

APPENDIX C - SOURCE CODE LISTING 11

August, 2014
88 UBMON 1.03 PROM 3

1. SYSTEM REQUIREMENTS

UBMON has the same requirements for I/O Ports, avai lable RAM, and PROM
addressing as does the TURMON PROM from MITS.

Terminal I/O Port

UBMON requires a 6850-based serial port addressed a t 020 and 021
octal (10h and 11h), such as port A of an 88-2SIO, or the serial
port on an 88-UIO or on an 8800b Turnkey Module.

PROM Addressing

UBMON is 256 decimal (400 octal) bytes long and is assembled to
operate with a starting address of 176400 octal (FD 00h). This is
socket K1 on an 8800b Turnkey Module, and socket F on an 88-PMC.

Available RAM

UBMON requires a small amount of RAM for its stack. There are three
versions of UBMON. The only difference between thes e versions is in
which RAM page UBMON establishes its stack:

UBMON
Version PROM Board

RAM Page Address Range

Octal Hex

UBMONb e.g. 8K Bytesaver 157400-157777 DF00-DFFF

UBMONp 88-PMC 173400-173777 F700-F7FF

UBMONt 8800b Turnkey Module 1 175400-175777 FB00-FBFF

UBMON actually only uses the highest eight bytes in its RAM page.

Associated Loader PROMs

The three new load commands (B, L, and T) each requ ire an associated
loader PROM to be installed, to enable the command:

UBMON
Command

Boot
Device Loader PROM

PROM Address IC Socket

Octal Hex Turnkey 88-PMC

B 88-DCDD DBL or CDBL 177400 FF00 H1 H

B 88-MDS MDBL or CDBL 177400 FF00 H1 H

L 88-HDSK HDBL 176000 FC00 L1 E

T Various MBL or MBLe 177000 FE00 J1 G

1 UBMONt requires either the Turnkey Module’s RAM to be enabled or the Altair-
style “Phantom” rework to be installed on the Turnk ey Module, and 64K of RAM
installed in the Altair. Otherwise, use one of the other UBMON versions.

4 August, 2014
88 UBMON 1.03 PROM

2. STARTING UBMON

To run UBMON in a Turnkey Module:

a) Install the UBMON PROM in PROM socket K1.
b) Set the AUTO-START address and PROM address switche s on your

Turnkey Module to 176400 octal (FD00h).
c) If your Turnkey Module has its RAM enabled, then se t the RAM

address switches to 174000 octal (F800h).
d) Otherwise, make sure you have RAM in the Altair at the address

that UBMON will put its stack.
e) Set the Serial Port address switches to 020 octal (10h).
f) Turn the Altair’s power on.
g) If you are using an Altair with a front panel, then reset the

Altair and press RUN.
h) UBMON prints its prompt character, a period (.).
i) The START switch (on an Altair 8800bt) or the RESET switch (on an

Altair with a front panel) restarts UBMON.

You can use an 88-PMC PROM board if your Altair has a front panel and
a RAM card as noted above. You must also have a com patible serial port
(e.g. an 88-2SIO or an 88-UIO.) addressed at 020 oc tal (10h). To run
UBMON in an 88-PMC PROM board:

a) Install the UBMON PROM in socket F.
b) Set the PROM address switches to 174000 octal (F800 h).
c) Make sure you have a RAM card with memory for UMBON ’s stack.
d) Make sure your serial port is addressed at 020 octa l (10h).
e) Turn the power on.
f) Use the Altair front panel to go to address 176400 octal:

a. Hold the STOP switch and press the RESET switch
b. Enter 176400 octal (FD00h) on the address switches
c. press the EXAMINE switch
d. press the RUN switch

g) UBMON prints its prompt character, a period (.).
h) To return control to the UBMMON, repeat step f abov e.

3. OPERATION

UBMON has six commands:

D Memory dump in “Altair Binary Absolute Load” form at

J Jump to another program

M Memory examine and modify

L Boot from 88-HDSK hard disk

B Boot from 88-DCDD floppy disk or 88-MDS minidisk

T Boot from paper tape or cassette tape

August, 2014
88 UBMON 1.03 PROM 5

The D Command

The D command allows you to dump (on the Terminal p ort) the contents
of the Altair’s memory between any two addresses, i n Altair Binary
Absolute Load Format. The D command has the followi ng form:

Dxxxxxx yyyyyy

To use the D command, type D in response to the pro mpt. UBMON will
then wait for the starting address xxxxxx (zero to six valid octal
digits). If six digits are input, UBMON prints a sp ace and then
waits for the ending address yyyyyy (zero to six va lid octal
digits). Fewer than six digits may be entered for e ither address, by
typing a space when done.

The data is dumped to port 021 octal (11h), which i s also the
Altair’s Terminal port. If you have a paper tape pu nch (for example,
the punch on a Teletype), then turn the punch on be fore the last
character of the ending address is typed.

Once UBMON receives a valid starting and ending add ress, it punches
a leader of 60 space characters (040 octal, 20h) fo llowed by 60 null
characters. It then punches out the contents of mem ory starting at
the starting address, up to and including the endin g address in the
Altair Binary Absolute Load format, as shown in App endix A. (The
word “punch” is used to refer to the output of the D command, no
matter what output device is used.) If the number o f bytes to be
punched is greater than 255 (377 octal), then UBMON punches as many
255-byte blocks as necessary until the number of by tes left to punch
is less than 255. The last block punched may have f ewer than 255
bytes, but a block of zero bytes will not be punche d. Upon
completion of the dump, UBMON prints a trailer of 6 0 null
characters, and then performs a carriage return and line feed, and
finally returns to the prompt.

The J Command

The J command allows you to transfer control to ano ther program. The
J command has the following form:

Jxxxxxx

where xxxxxx is the starting address (in octal) of the program to
run. Once all 6 address digits are entered (fewer, if terminated by
a space), UBMON will jump to the address you entere d.

The M Command

The M command allows you to examine and modify addr ess in the Altair
memory. The M command has the following form:

Mxxxxxx

where xxxxxx stands for a memory address expressed as six valid
octal digits. UBMON reads the address specified and displays the
three digit octal contents of that address. UBMON t hen waits for
three valid octal digits. When this valid data has been received,

6 August, 2014
88 UBMON 1.03 PROM

UBMON attempts to write the data into the same addr ess. Once the
write has been made and verified, UBMON reads and d isplays the
following address.

If you attempt to write information into nonexisten t memory, ROM, or
protected RAM, the bad write will cause “?” to be p rinted on the
terminal and the UBMON prompt to be printed.

Assuming a valid write, this sequence continues unt il a non-valid
character (any character except the digits 0-7) is typed. This non-
valid character is flagged with a “?” and the promp t is printed.
This is the normal way to return to the prompt.

If a space is typed instead of any valid octal char acters, UBMON
moves the next address without writing.

The B Command

The B command initiates loading from either an 88-D CDD floppy disk
or an 88-MDS minidisk, via the DBL or MDBL PROM. Th e B command has
the following form:

B

UBMON examines memory at address 177400 octal (FF00 h), which is the
first address in the DBL, MDBL, and CDBL PROMs. If this address
contains anything except 377 octal (FFh), then UBMO N assumes a valid
floppy disk boot PROM is installed, and control is passed to the
PROM at this address to boot from either an 88-DCDD or an 88-MDS.

If this address contains 377 octal (FFh), then UBMO N assumes no
valid floppy disk loader PROM exists, and the comma nd is ignored.

The L Command

The L command initiates loading from an 88-HDSK har d disk, via the
HDBL PROM. The L command has the following form:

L

UBMON examines memory at address 176000 octal (FC00 h), which is the
entry point for the HDBL PROM. If this address cont ains anything
except 377 octal (FFh), then UBMON assumes a valid HDBL PROM is
installed, and control is passed to the HDBL PROM a t this address to
boot from an 88-HDSK.

If this address contains 377 octal (FFh), then UBMO N assumes no HDSK
PROM exists, and the command is ignored.

The T Command

The T command initiates loading from paper tape or cassette tape,
via the MBL (or MBLe) PROM. The T command has the f ollowing form:

T

UBMON examines memory at address 177000 octal (FE00 h), which is the
first address in the MBL PROM. If this address cont ains anything
except 377 octal (FFh), then UBMON assumes a valid MBL PROM is

August, 2014
88 UBMON 1.03 PROM 7

installed, and control is passed to the MBL PROM at this address to
boot or load a file from paper tape or cassette tap e.

If this address contains 377 octal (FFh), then UBMO N assumes no MBL
PROM exists, and the command is ignored.

Entering Numeric Values

When waiting for an address or data, UBMON will acc ept only valid
octal digits (0-7) and the “space” character. UBMON expects 6 digits
for an address, and 3 digits for data. All of the e xpected digits
need not be typed. The first “space” character term inates input and
may be used to delimit separate inputs. If no digit s have been typed
before the delimiting space character, UBMON will a ssume a value of
zero, except as noted above, when entering data for the M command.

Errors in numeric value entry can be corrected easi ly before the
last character is typed. Simply enter a non-octal c haracter and
UBMON will print a question mark followed by its pr ompt. The command
may then be typed again.

4. LOADING BASIC WITH UBMON

UBMON greatly speeds up the process of loading Alta ir BASIC, and can
be used whether or not a loader PROM is installed.

Without a Loader PROM

The usual procedure for loading BASIC involves togg ling in a
bootstrap loader program from the front panel and u sing it to load a
paper tape or cassette tape version of BASIC. If th e UBMON PROM is
installed, the bootstrap loader can be entered from the terminal in
octal instead of from the front panel switches in b inary.

To do this, type M000000 (or M<space>) in response to UBMON’s
prompt. After UBMON displays the current contents o f the first
address in memory, type the first entry in the “OCT AL DATA” column
of the applicable loader program. After three digit s are typed,
UBMON closes the current address and opens the next address. (The
loaders are found in Appendix B of the Altair BASIC Reference
Manual.) Repeat this process until the entire boots trap loader
program is entered. The program can be checked by t yping a non-octal
character to return to UBMON, and then again typing M000000 (or
M<space>). As the contents of each address are disp layed, type a
space to display the contents of the contents of th e next address
without making any modifications. Any mistakes can be corrected by
typing a new octal value, instead of a space.

Once the loader program has been entered, position the paper tape or
cassette tape of BASIC in the load device, and set the front panel
switches according to the directions in the BASIC r eference manual.
Start the loader by typing J000000, and start the t ape device. The
terminal should print BASIC’s “MEMORY SIZE” initial ization question
after BASIC has loaded. At this point, BASIC is in control.

8 August, 2014
88 UBMON 1.03 PROM

With a Standard Loader PROM

If you have installed a DBL, MDBL or CDBL PROM, the n you can load
BASIC directly from floppy disk by typing B at UBMO N’s prompt.

If you have installed an MBL PROM, then you can loa d BASIC directly
from paper tape or cassette tape by setting the fro nt panel switches
according to the Appendix B of the BASIC Reference Manual, and
typing T at UBMON’s prompt. Wait about 5 seconds af ter typing T, and
then start the tape transport.

If you have installed an HDBL PROM, then you can lo ad BASIC directly
from hard disk, by typing L at UBMON’s prompt.

With a Nonstandard Loader Program

You can execute any non-standard loader program by typing Jxxxxxx at
UBMON’s prompt, where xxxxxx is the execution addre ss of the loader
program, in octal.

5. LOADING A FILE THAT WAS PUNCHED WITH UBMON

Like files punched with TURMON, files punched with UBMON can be loaded
using the MBL PROM, using the T command. Start the tape anywhere in
the leader portion that is punched with 40 octal (2 0h). (You can skip
ahead and start loading from the null portion of th e leader if you
have the MBLe PROM instead of the MBL PROM.) Set th e Altair front
panel switches (or Turnkey Module sense switches fo r an Altair 8800b)
correctly to load from your paper tape reader, as d escribed in
Appendix B of the Altair BASIC Reference Manual or in the MBL manual.

Note that MBL takes about 5 seconds to initialize, so do not start the
tape transport until about 5 seconds after you type T.

MBL is written to skip over a checksum loader at th e beginning of a
tape - such as an Altair Basic tape. On such a tape , the leader
character is the length (in bytes) of the checksum loader, so this
many bytes get skipped. The 40 octal (20h) leader t hat UBMON produces
will cause the first 32 bytes of the null leader to be “skipped”,
before hunting for the first Altair Binary Absolute Load record.

Note that TURMON punches 15 octal (0Dh) instead of 40 octal at the
beginning of its leader, causing 13 bytes of the nu lls to be
“skipped.” This will have no effect on file loading .

August, 2014
88 UBMON 1.03 PROM 9

APPENDIX A - ALTAIR BINARY ABSOLUTE LOAD FORMAT

The Altair Binary Absolute Load Format comprises a series of Records.
The format defines several Record types, although o nly one Record type
(the Program Load Record) is ever written by UBMON.

The Altair MBL PROM code recognizes the End-of-File Record as well,
using it to initiate execution after a successful f ile load.
Begin/Name Records are always ignored.

The following Record types are defined:

Begin/Name Record (ignored by MBL, not supported by UBMON or TURMON)

Byte # Contents Comments

1 125 Octal(ASCII U) Begin Sync Byte

2-4 Name Program Name

5-N Comments
Program version and date, etc.

NO CRs allowed.

N+1 15 Octal (ASCII CR) Terminates Begin/Name Recor d

Program Load Record

Byte # Contents Comments

1 74 Octal (ASCII <) Load Sync Byte

2 0-377 Octal Number of load bytes

3 Least-significant byte of load address

4 Most-significant byte Of load address

5-N Data bytes

N+1 Checksum byte
Sum of all bytes except the first 2
bytes, with carries discarded

End-of-file Record (not supported by UBMON or TURMO N)

Byte # Contents Comments

1 170 Octal (ASCII x) EOF Sync Byte

2 Least-significant byte of execution start address

3 Most-significant byte of execution start address

10 August, 2014
88 UBMON 1.03 PROM

APPENDIX B - UBMON ENTRY POINTS

UBMON has several software subroutines that are at the same addresses
and compatible with equivalent subroutines in the A ltair TURMON PROM.
The entry points for subroutines in UBMON are as fo llows:

Address

Name Function Octal Hex

176400 FD00 MONTOR
Cold-start entry for UBMON. Destroys all
registers and the stack.

177750 FFE8 INCH
Get, strip parity, and echo a Terminal
character. Result is in A, all registers except
the flags are preserved.

177762 FFF2 OUTCH

Print A on the Terminal. All registers except
the flags are preserved. (Note: TURMON also adds
the value in A to C for checksum calculation.
UBMON does not.)

177717 FFCF PRINT3

Convert binary value in H into octal and print
it as 3 octal digits on the Terminal, followed
by a space. Destroys all registers and flags
except D and E.

177743 FFE3 SPACE
Print a space on the Terminal. All registers
except the PSW (A and the flags) are preserved.

Note that if the UBMON PROM is installed in a Turnk ey Module that has
the Altair-style “Phantom” rework, then UBMON will become disabled
upon the first read of the Altair’s Sense Switches (Port 377 octal) by
any program, and the above routines will no longer be available.

August, 2014
88 UBMON 1.03 PROM 11

APPENDIX C - SOURCE CODE LISTING

The following pages list the source code for UBMON. This code was
assembled using Digital Research’s ASM assembler. A s such, all values
are in hexadecimal, rather than in octal as is norm al for MITS
software.

UBMON.PRN

 ;***
 ;* UBMON - UNIVERSAL BOOT/MONITOR BY MARTIN EBERHARD *
 ;* *
 ;* UBMON a 256-byte PROM monitor for use with the Altair 8800b *
 ;* Turnkey Module or the 88-PMC PROM card. UBMON is very *
 ;* similar in operation to the Altair TURMON PROM monitor, *
 ;* with the addition of 3 commands to boot from the various *
 ;* Altair boot devices, including floppy disks, tapes, and *
 ;* hard disk. UBMON provides the following functions: *
 ;* *
 ;* M xxxxxx Memory Examine and Modify: Allows you to examine *
 ;* and change the contents of memory starting at *
 ;;* address xxxxxx octal *
 ;* *
 ;* D xxxxxx yyyyyy Memory Dump: Dumps memory contents in *
 ;* Altair binary punch format from address xxxxxx *
 ;* to address yyyyyy, inclusive (octal addresses) *
 ;* *
 ;* J xxxxxx Jump To Adddress xxxxxx octal *
 ;* *
 ;* B Boot from floppy: Requires the DBL, the MDBL, or *
 ;* the CDBL PROM at address FF00h *
 ;* *
 ;* T Boot from Tape or Load Tape File: Requires the *
 ;* MBL PROM at address FE00h *
 ;* *
 ;* L Boot from Hard Disk: Requires a hard-disk PROM *
 ;* (e.g. HDBL) at address FC00h *
 ;* *
 ;* Differences compared to TURMON functionality: *
 ;* 1) UBMON's 'D' command's leader is a string of 60 bytes of *
 ;* 20h, followed by a string of 60 nulls, while TURMON *
 ;* punches a string of 60 bytes of 0Dh followed by a string *
 ;* of 60 nulls. Both of these allow MBL to load the file *
 ;* by fooling it to think it is skipping a checksum loader. *
 ;* 2) UBMON's 'D' command also follows the memory dump with a *
 ;* trailer of 60 nulls, while TURMON prints no trailer. *
 ;* *
 ;* As with TURMON, the Terminal for UBMON is a 6850-based *
 ;* serial port at address 020 octal (10h). An 88-2SIO, as well *
 ;* as the serial ports on the Turnkey Monitor and the 88-UIO, *
 ;* are all suitable. *
 ;* *
 ;* Also like TURMON, UBMON requres RAM for its stack. Several *
 ;* assembly options support various memory and PROM board *
 ;* configurations. *
 ;* *
 ;* This monitor provides subroutine compatibility with TURMON *
 ;* at the following entry points: *
 ;* *
 ;* Address Name Function *
 ;* FD00h MONTOR Cold-start entry to the monitor *
 ;* FD08h ENTER Warm start, does not init ACIA *
 ;* Result in A. All regs except F preserved. *
 ;* FDF2h XOUTCH Print A. All regs except F preserved. *
 ;* FDCFh XPRNT3 Print value in H in octal, followed by a *
 ;* space. Trashes AF,BC,HL. *
 ;* FDE3h XSPACE Print a SPACE. Trashes AF. *
 ;* FDE8h XINCH Get, strip parity & echo a character *
 ;***

Page 1

UBMON.PRN
 ; REVISION HISTORY
 ;
 ; Ver. 1.00 12 SEP 2013 M.Eberhard
 ; Created from MITS TURMON
 ;
 ; Ver. 1.01 16 SEP 2013 M. Eberhard
 ; Hosed version. Released only for about 1 hour - hopefully
 ; no distribution.
 ;
 ; Ver. 1.02 17 SEP 2013 M. Eberhard
 ; Fixed. Improved comments. Squeeze code more, and add trailer
 ; after 'D' command. Set leader and trailer to 60 bytes
 ;
 ; Ver. 1.03 17 AUG 2014 M. Eberhard
 ; Punch 60 bytes of 20h before leader, so that file can also
 ; be loaded by MITS's MBL loader PROM. This required some
 ; further code compression.

 ;***
 ;* NOTES *
 ;* *
 ;* The assembler will not check for overlapping code. If you *
 ;* make any changes, be sure to check that your new code does *
 ;* not overlap fixed-location subroutines near the end. *
 ;* *
 ;* Forcing this code to fit into one 256-byte PROM required *
 ;* making some assumptions about the address of this code, as *
 ;* well as the addresses of the DBL, MBL, and HDBL PROMS. if *
 ;* you change the address of any of the PROM programs, then *
 ;* this program will require some changes. Fortunately, the *
 ;* addresses of these PROMs haven't changed in 38 years. *
 ;* *
 ;* Apologies for the somewhat convoluted code. Squeezing an *
 ;* additional 3 commands (on top of TURMON's 3 commands) into *
 ;* a 256-byte PROM space, while also keeping the externally- *
 ;* accessible subroutines at their historical addresses *
 ;* required some twisted code. Hopefully my comments will help *
 ;* explain how it works. Be careful if you change this code. *
 ;* -M. Eberhard *
 ;***
 ;-------------------------------------
 ;Stack address options
 ; (All but one must be commented out)
 ;-------------------------------------
 ;STACK equ 0FC00h ;UBMONt Turnkey board 1K RAM
 F800 = STACK equ 0F800h ;UBMONp Last RAM before 88-PMC
 ;STACK equ 0E000h ;UBMONb RAM before 8K Bytesaver

 ; Program Equates

 003C = LDRLEN equ 60 ;'D' cmd leader/trailer length
 002E = PROMPT equ '.' ;Command prompt
 003F = ERRMSG equ '?' ;1-byte error message

 ; Terminal port equates - same for 88-2SIO port 0, Turnkey
 ; Module, and 88-UIO (all based on the Motorola 6850 ACIA)

 0010 = ACCTRL equ 10h ;ACIA Control output port
 0010 = ACSTAT equ 10h ;ACIA Status input port
 0011 = ACTXD equ 11h ;ACIA TX Data register
 0011 = ACRXD equ 11h ;ACIA RX Data register

 0003 = ACRST equ 00000011b ;Master reset

Page 2

UBMON.PRN
 0001 = ACRDF equ 00000001b ;RX Data register full
 0002 = ACTDE equ 00000010b ;TX Data register empty
 0011 = ACINIT equ 00010001b ;/16, 8bit, No Parity, 2Stops

 ; Altair File Equate

 003C = LBSYNC equ 3CH ;Altair file Load block synch chr

 ; Fixed locations in UBMON, for TURMON compatibility
 ; MONTOR must be FD00h, because FDh is also -3.

 FD00 = MONTOR equ 0FD00h ;Execution beginning
 FDCF = XPRNT3 equ 0FDCFh ;Print h in octal on Terminal
 FDE3 = XSPACE equ 0FDE3h ;Print a space on the Terminal
 FDE8 = XINCH equ 0FDE8h ;Get Terminal chr in A
 FDF2 = XOUTCH equ 0FDF2h ;Print A on Terminal

 ; Code enrty points in external PROMs. The low address byte of
 ; these all must be 00. FBOOT must be 100h greater than TBOOT.

 FC00 = HBOOT equ 0FC00h ;HDBL boot ROM
 FE00 = TBOOT equ 0FE00h ;MBL multi-tape boot ROM
 FF00 = FBOOT equ 0FF00h ;DBL or MDBL floppy boot ROM

 ; ASCII characters

 000D = CR equ 0Dh
 000A = LF equ 0Ah

 ;*****************
 ;* Start of Code *
 ;*****************
 FD00 ORG MONTOR

 ;--------------------------
 ; Initialize Terminal ACIA
 ;--------------------------
 FD00 3E03 mvi a,ACRST
 FD02 D310 out ACCTRL
 FD04 3E11 mvi a,ACINIT
 FD06 D310 out ACCTRL

 ;===Main Loop===
 ;Get Command a command and dispatch.
 ; This portion of the code is particulary
 ; convoluted, to keep it short. Here we assume:
 ; high(MAIN)=FDh
 ; high(TBOOT)=FEh
 ; low(HBOOT)=low(TBOOT)=low(FBOOT)=0
 ; high(FBOOT)=high(TBOOT)+1
 ; low(EXTCMD)<=FDh
 ;===
 FD08 3100F8 MAIN: lxi sp,STACK ;create stack
 FD0B 0108FD lxi b,MAIN ;create return address
 FD0E C5 push b ;..also set b=high(EXTCMD)

 ; Print prompt on a new line

 FD0F CDA1FD call PCRLF ;d=0ah, e=0dh
 FD12 3E2E mvi a,PROMPT
 FD14 CDF4FD call PRINTA

 FD17 2100FC lxi h,HBOOT ;Entry address for HDBL PROM

Page 3

UBMON.PRN
 ;also l=0 for GETADR

 ; Get user input and dispatch command
 ; On Entry:
 ; b = high(EXTCMD) = FDh = -3
 ; d = 0Ah (10)
 ; e = 0Dh (13)
 ; hl = HBOOT = FC00h
 ; l = 0

 FD1A CDE8FD call GETCHR ;Get user command

 FD1D D64A sui 'J' ;Jump command?
 FD1F CA81FD jz DOJCMD

 FD22 80 add b ;(b=FDh=-3) 'M' command?
 ;c<FDh, and l=0 here
 FD23 CCACFD cz GETADR ;M: get hl=addr from user, set Z
 FD26 CA86FD jz DOMCMD ;M: do M command

 ; The next 3 commands all go through EXTCMD. Code is
 ; shorter if we use conditional returns, rather than
 ; conditional jumps.
 ; On Entry:
 ; a = user input - 'J' - 3 = user input - 'M'
 ; b = high(EXTCMD)
 ; d = 0Ah (10)
 ; hl = HBOOT = FC00h
 ; l = 0

 FD29 0E7F mvi c,EXTCMD AND 0FFh ;bc=EXTCMD
 FD2B C5 push b ;prepare for conditional returns

 FD2C 3C inr a ;'L' command?
 ;hl=HBOOT here
 FD2D C8 rz ;L: jump to EXTCMD

 ; a = user input - 'J' - 3 + 1 = user input - 'L'
 ; d = 10
 ; l = 0

 FD2E 26FF mvi h,FBOOT/256 ;entry address for DBL/MDBL PROM
 FD30 82 add d ;d=10 = -('B'-'L')
 ;Boot from floppy cmd?

 FD31 C8 rz ;B: jump to EXTCMD

 ; a = user input - 'J' - 3 + 1 + 10 = user input - 'B'
 ; hl = FBOOT = FF00
 ; l = 0

 FD32 25 dcr h ;hl=TBOOT: address for MBL PROM
 FD33 FE12 cpi ('T'-'B') ;boot from tape cmd?
 FD35 C8 rz ;T: jump to EXTCMD

 FD36 C1 pop b ;done with EXTCMD commands

 ; a = user input - 'J' - 3 + 1 + 10 = user input - 'B'
 ; hl = TBOOT = FE00h
 ; h = FEh = -2
 ; l = 0

 FD37 84 add h ;'D' Dump memory cmd?

Page 4

UBMON.PRN
 FD38 C0 rnz ;anything else is invalid

 ;===Command Routine===============================
 ; Process D (dump memory) Command
 ; Punch specified address range as
 ; an Altair-style data file
 ; on entry:
 ; c=low(EXTCMD) < 0FEh
 ; l=0
 ;===

 ; Get the start & end addresses from the user

 FD39 5D mov e,l ;e=0 too, for 2nd GETADR
 FD3A CDACFD call GETADR ;Get start addr, print space
 FD3D EB xchg ;de=start address
 FD3E CDACFD call GETADR ;Get hl=end address
 ;returns with a=20h

 FD41 23 inx h ;hl = one past end address

 ; Punch a pre-leader so that MITS's MBL can load this file
 ; a=20h here.

 FD42 47 mov b,a ;punch 20h as the pre-leader
 FD43 CD75FD call LEADER ;returns b=0

 ; Punch null leader

 FD46 AF xra a ;Punch null leader
 FD47 CD75FD call LEADER ;returns with b=0

 ; Loop to punch all the requested data
 ; (b=0 here, both on initial entry and upon looping)

 ; Compute b=data byte count of the next block, max=255

 FD4A 05 NXTBLK: dcr b ;b=FFh=255

 FD4B 7D mov a,l ;compute least sig byte
 FD4C 93 sub e
 FD4D 4F mov c,a ;save least sig byte
 FD4E 7C mov a,h ;compute most sig byte
 FD4F 9A sbb d ;>255 bytes remaining?
 FD50 C254FD jnz BLKSIZ ;y: then do 255 bytes
 FD53 41 mov b,c ;n: byte count = lsb
 BLKSIZ:

 ; Punch the the block header info:
 ; sync chr, byte count, & 2-byte load address
 ; b = block size
 ; de = starting memory address for block data
 ; hl = last address of file + 1

 FD54 D5 push d ;save load address

 FD55 1E3C mvi e,LBSYNC ;Punch load-block sync chr
 FD57 50 mov d,b ;and block byte count
 FD58 CDA4FD call PRNTDE

 FD5B D1 pop d ;restore load address
 FD5C CDA4FD call PRNTDE ;Punch de=load address
 ;ends with a=d

Page 5

UBMON.PRN
 FD5F 83 add e ;a=checksum of the address

 ; Punch b bytes of block data, computing checksum as we go
 ; a = checksum so far
 ; b = block size
 ; de = starting memory address for block data
 ; hl = last address of file + 1

 FD60 4F BDATLP: mov c,a ;temp save checksum
 FD61 1A ldax d ;get memory data
 FD62 CDF4FD call PRINTA ;...and punch it

 FD65 81 add c ;update checksum

 FD66 13 inx d ;Next address
 FD67 05 dcr b ;Loop 'til done with block data
 FD68 C260FD jnz BDATLP ;ends with b=0

 ; a = block checksum
 ; b = 0

 FD6B CDF4FD call PRINTA ;Punch the block checksum

 ; Continue until all the data has been punched
 ; b = 0
 ; de = next address to punch
 ; hl = last address of file + 1
 ; Test for de<hl, meaning there are more bytes to punch

 FD6E 7B mov a,e ;compute de-hl
 FD6F 95 sub l
 FD70 7A mov a,d
 FD71 9C sbb h ;set carry if hl>de
 ;ends with hl=de so a=0

 FD72 DA4AFD jc NXTBLK ;Y: Do another block

 ; Fall into LEADER (with a=0) to punch the trailer

 ;---Subroutine---------------------
 ; Punch a leader
 ; On Entry:
 ; a = leader character
 ; On exit:
 ; b=0
 ; all other registers preserved
 ;----------------------------------
 FD75 063C LEADER: mvi b,LDRLEN ;leader length

 FD77 CDF4FD LEADLP: call PRINTA
 FD7A 05 dcr b
 FD7B C277FD jnz LEADLP ;ends with b=0

 FD7E C9 ret

 ;===Command Routine==================================
 ; Process External Command (B,L,T), only if the PROM
 ; for that command appears to exist
 ; Note: this assumes ROM - i.e. writing does
 ; not effect contents.
 ; On entry:
 ; hl=start address of external command
 ; On branch to external command:

Page 6

UBMON.PRN
 ; Top of Stack = MAIN (for potential return)
 ;==
 FD7F 34 EXTCMD: inr m ;Does location = FF?
 FD80 C8 rz ;Y:ignore command

 ; Fall into DOJCMD, with Z cleared

 ;===Command Routine==================================
 ; Process J (jump) Command
 ; On Entry:
 ; C=low(EXTCMD) << 0FFh
 ; l=0
 ; Z flag set
 ;==
 FD81 CCACFD DOJCMD: cz GETADR ;Get jump address if J
 FD84 E9 pchl ;and go there

 ;===Command Routine==================================
 ; Process M (Memory examine and edit) Command
 ; On Entry at (DOMCMD):
 ; hl = start address from GETADR
 ;==
 FD85 23 MMODLP: inx h ;loop for next address

 FD86 CDA1FD DOMCMD: call PCRLF ;on a new line

 FD89 E5 push h ;save memory address

 ; Print address (in hl) and data (at memory address hl)

 FD8A CDC8FD call PADRDA ;sets l=0 too

 ; Get user data, carry clear if space (means don't change data)

 FD8D CDADFD call GETDAT ;l=user data, carry means none
 FD90 7D mov a,l ;a=8-bit user data

 ; Prepare to use conditional returns, recover memory address

 FD91 2185FD lxi h,MMODLP ;addr for conditional returns
 FD94 E3 xthl ;..recover hl=memory address
 FD95 D0 rnc ;no carry means user typed space

 ; Modify memory, and test it

 FD96 77 mov m,a ;write new data
 FD97 BE cmp m ;Verify write
 FD98 C8 rz ;Next address if okay

 ; Fall into BADINP to report memory-write failure

 ;---Subroutine Abort----------------------------
 ; Bad input from user or memory write failure.
 ; Print error message and start over. There is
 ; junk on the stack, which MAIN will repair.
 ;---
 FD99 3E3F BADINP: mvi a,ERRMSG ;Error message
 FD9B CDF4FD call PRINTA
 FD9E C308FD jmp MAIN

 ;---Subroutine--------------------
 ; Print Carriage Return/Line Feed
 ; On Exit:

Page 7

UBMON.PRN
 ; d=0Ah
 ; e=0Dh
 ; trashes a
 ;---------------------------------
 FDA1 110D0A PCRLF: lxi d,LF*256+CR ;load de with CR LF

 ; Fall into PRNTDE

 ;---Subroutine---------------
 ; Print E then D
 ; On Exit:
 ; a=d
 ;----------------------------
 FDA4 7B PRNTDE: mov a,e
 FDA5 CDF4FD call PRINTA
 FDA8 7A mov a,d
 FDA9 C3F4FD jmp PRINTA

 ;---Subroutine--
 ; Get 3 or 6 octal digits from user, and then print a space.
 ;
 ; Entry at GETADR gets a 6-digit address
 ; Entry at GETDAT gets a 3-digit data value
 ; A space typed at any time terminates the get
 ; with all upper digits defaulting to 0.
 ; On Entry:
 ; c<FEH so that entry at GETADR will not bump B
 ; l=0
 ; On Exit:
 ; a = 20h (space character)
 ; l = 8-bit binary value of input
 ; hl = 16-bit binary value of input
 ; b trashed.
 ; c incremented only for entry at GETADR.
 ; Z flag set
 ; Carry flag cleared if user typed a space
 ;---
 FDAC 06 GETADR: db 06 ;Entry here: '0606 mvi b,06'
 ; '03 inx b' (increments c)

 FDAD 06 GETDAT: db 06 ;Entry here: '0603 mvi b,03'
 FDAE 03 db 03

 FDAF 65 mov h,l ;hl=0 init value for <6 digits

 FDB0 CDE8FD GETNXT: call GETCHR ;get a digit, Z set if space
 FDB3 C8 rz ;return with carry clear if

space

 FDB4 D630 sui '0' ;subtract ASCII offset
 FDB6 FE08 cpi 8 ;valid octal digit?
 FDB8 D299FD jnc BADINP ;N: error

 FDBB 29 dad h ;shift new value into hl
 FDBC 29 dad h
 FDBD 29 dad h
 FDBE B5 ora l ;install new digit
 FDBF 6F mov l,a

 FDC0 05 dcr b ;more digits to get?
 FDC1 C2B0FD jnz GETNXT ;Y: go get it.

Page 8

UBMON.PRN
 FDC4 37 stc ;carry set: complete input
 FDC5 C3E3FD jmp PSPACE ;follow with a space
 ;preserve psw

 ;---Subroutine--
 ; Print address in hl, a space, and then the data at (hl)
 ; On Exit:
 ; a=20h (space)
 ; b=0
 ; c=memory data
 ; h=memory data
 ; l=0
 ;---
 FDC8 4E PADRDA: mov c,m ;remember memory data

 ; Print address in hl as 6 octal digits

 FDC9 0606 mvi b,6 ;6 digits in PR6OCT
 FDCB AF xra a ;initial value for PR6OCT
 FDCC CDD4FD call PR6OCT ;Print HL in octal
 ;returns with h=c

 ; Fall into PR3OCT to Print data in h=c as 3 octal digits

 ;**Fixed-Location Externally Accessable Subroutine**************
 ;
 ; Print octal digits followed by a space
 ;
 ; Entry at PR3OCT will print 3 octal digits from h.
 ; The first digit is from the 2-bit value in the bits 7:6 of c.
 ; Entry at PR6OCT will print 6 octal digits from hl.
 ; the first digit is from the 1-bit value in the bit 7 of h.
 ; Subsequent digits are 3-bit values in decending order from hl.
 ;
 ; On Entry at PR3OCT:
 ; h = value to print
 ;
 ; On Entry at PR6OCT:
 ; b = 6 (digit count)
 ; a = 0
 ; hl = value to print
 ;
 ; On Exit:
 ; a=20h (space)
 ; b=0
 ; h=c
 ; l=0
 ;***
 FDCF org XPRNT3

 ; Entry for 8-bit value: 1st digit shifts only twice

 FDCF AF PR3OCT: xra a ;initial value
 FDD0 0603 mvi b,3 ;3 digits

 FDD2 29 OCTLUP: dad h ;2nd and 3rd shifts
 FDD3 17 ral

 ; Entry for 16-bit value: 1st digit shifts only once

 FDD4 29 PR6OCT: dad h
 FDD5 17 ral

Page 9

UBMON.PRN
 FDD6 C630 adi '0' ;Convert to ASCII

 FDD8 CDF4FD call PRINTA ;Print digit
 FDDB AF xra a ;start new digit

 FDDC 29 dad h ;1st shift for next digit
 FDDD 17 ral

 FDDE 05 dcr b ;More digits?
 FDDF C2D2FD jnz OCTLUP ;N: the next digit is 3 bits

 FDE2 61 mov h,c ;get memory data
 ;(this is doen here to use
 ;..a memory location.)
 ; Fall into PSPACE

 ;**Fixed-Location Externally Accessable Subroutine**************
 ;
 ; Print a space
 ;
 ; On Exit:
 ; a = space = 20h
 ; all other registers preserved
 ;***
 FDE3 org XSPACE

 FDE3 3E20 PSPACE: mvi a,' '
 FDE5 C3F4FD jmp PRINTA

 ;**Fixed-Location Externally Accessable Subroutine**************
 ;
 ; Get & echo a character from the Terminal
 ;
 ; On Exit:
 ; a = received character, with parity stripped
 ; Z is set if the character is a space
 ;***
 FDE8 org XINCH

 FDE8 DB10 GETCHR: in ACSTAT ;Wait for chr available
 FDEA 0F rrc ;test bit 0=S2DS1
 FDEB D2E8FD jnc GETCHR

 FDEE DB11 in ACRXD ;Get the chr
 FDF0 E67F ani 7Fh ;strip parity

 ; Fall through to XOUTCH to echo

 ;**Fixed-Location Externally Accessable Subroutine**************
 ;
 ; Print A on the Terminal
 ;
 ; (The cpi below is here to make to do the routine the right
 ; length, doing a test that we need for GETCHR anyway.)
 ; On Exit:
 ; Z set if printed chr is a space
 ; All other registers preserved
 ;***
 FDF2 org XOUTCH

 FDF2 FE20 cpi ' ' ;is it a space?

 ; Fall into PRINTA to print

Page 10

UBMON.PRN

 ;---Subroutine---------------
 ; Print A on the Terminal
 ; All registers preserved
 ;----------------------------
 FDF4 F5 PRINTA: push psw ;temp save chr

 FDF5 DB10 PAWAIT: in ACSTAT ;Wait for ACIA TX to be ready
 FDF7 E602 ani ACTDE
 FDF9 CAF5FD jz PAWAIT

 FDFC F1 pop psw ;recover chr, flags
 FDFD D311 out ACTXD ;send chr

 FDFF C9 ret ;with chr in a

 FE00 END

Page 11

	Universal Boot Loader.pdf
	UBMON.PRN.pdf

