

Version 3.00

Martin Eberhard

Mike Douglas

16 January 2016

Revision History

Revision Date Author Notes

1.00 1 May 2014 M. Eberhard

Created from DBLe and MDBL, to
produce exactly either of these
loaders, selected by an assembly
option.

2.00 7 May 2014 M. Eberhard

General code rewrite. Automatic
detection of disk drive type.
Select disk unit via sense
switches. Improve restore. Add
‘O’ error. Verify after code
copy.

2.01 15 May 2014 M. Eberhard

Step in once before seeking track
0, in case the head is out past
track 0. Restart 6.4 Sec motor
shutoff timer on retries.

2.02 4 June 2014 M. Eberhard

Eliminate booting from other than
drive 0, because most Altair
software just loads a 2-sector
loader, and that loader loads the
rest of the code (always from
drive 0).

2.03 17 Jan 2015 M. Douglas
Add 40 mS delay prior to changing
seek direction, to meet Pertec
FD400 spec

2.04 12 Mar 2015 M. Douglas Fix 88-2SIO initializat ion value

2.05 11 Jan 2016 M. Eberhard

No IN or OUT instructions until
the code is moved into RAM, for
compatibility with some Turnkey
modules. Also fix bug when
reporting an overlay error.

3.00 16 Jan 2016 M. Douglas Make PROM position inde pendent

January 16, 2016
88 CDBL PROM vers. 3.00 1

CONTENTS
1. INTRODUCTION 3

2. INSTALLATION 4

3. MEMORY REQUIREMENTS 4

4. SENSE SWITCH SETTINGS 4

5. OPERATING PROCEDURES 5

6. ERROR INDICATIONS 5

APPENDEX A - ALTAIR DISK BOOT-TRACK FORMAT 7

APPENDIX B - SOURCE CODE LISTING 8

January 16, 2016
88 CDBL PROM vers. 3.00 3

1. INTRODUCTION

CDBL is a boot loader PROM program for booting from either the Altair
88-DCDD 8” floppy disk system or the Altair 88-MDS Minidisk system.

CDBL works exactly the same as the Altair DBL boot PROM (for the 88-
DCDD 8” disk controller) and the Altair MDBL boot P ROM (for the 88-MDS
Minidisk controller), with the following improvemen ts:

1. Automatic Disk Drive Type Detection

Before booting, CDBL determines whether the disk is an 8” disk or a
Minidisk by identifying the sector that follows sec tor 15. Sector 16
means it is an 8” disk (which has 32 sectors per tr ack), while
sector 0 means it a Minidisk (which has only 16 sec tors per track).

2. RAM Usage

Like DBL and MDBL, CDBL requires some zero wait-sta te RAM for fast
code, a buffer, and the stack. DBL uses about 400 b ytes starting at
address 026000 octal (which limits the loaded progr am to no more
than 11K bytes). MDBL uses about 400 bytes starting at 046000 octal
(which limits the loaded program to no more than 19 K bytes). CDBL
uses 512 bytes starting at address 046000 octal, wh ich limits the
loaded program to 19K bytes.

3. Position Independence

CDBL version 3.00 and later will run from any PROM socket at a 256-
byte page boundary, except page 0.

4. Memory Overlay Detection

CDBL checks to see if the disk data will overwrite CDBL’s own RAM
(at 046000 octal), and will abort with an overlay e rror if so.

5. Track 0 Overshoot Correction

CDBL steps inward once, before seeking track 0. Thi s will allow
booting even when the track 0 end-stop is maladjust ed. (On a
maladjusted drive, it is possible to seek outward p ast track 0.)

6. Restart Shutoff Timer on Retries

The Altair Minidisk controller has a timer that get s restarted
whenever a Step command is issued, or when an expli cit Timer Reset
command is issued. 6.4 seconds later, this timer sh uts off the disk
controller, unless it gets restarted first.

MDBL never explicitly restarts this timer, relying on the Step
commands to restart the timer at the beginning of e ach track.
However, each sector-read retry will add 200 mS to the load time of
the current track. This means that 32 retries on on e track will
cause the MDBL load to fail because the controller will shut off.

4 January 16, 2016
88 CDBL PROM vers. 3.00

Unlike MDBL, CDBL restarts this timer whenever it r etries a sector
read, so that it can complete booting even from a d isk that requires
many retries.

7. Correct 88-2SIO Initialization

The 88-2SIO initialization bug in the Altair DBL PR OM has been
corrected. This means that error codes will be prin ted correctly on
an 88-2SIO Terminal. (This bug does not exist in th e MDBL PROM.)

8. 88-2SIO Initialization Reset Delay

CDBL delays before resetting the 88-2SIO long enoug h that the
transmission of any character in its output buffer (e.g. the ‘B’
command from UBMON) will complete.

2. INSTALLATION

Like the DBL and MDBL PROMs, the CDBL PROM is norma lly installed at
address 177400 octal. It belongs in slot H on an 88 -PMC memory card
(which is jumpered to start at address 174000 octal), or in slot H1 on
a Turnkey Module.

However, CDBL (version 3.00 or later) will run from any PROM socket.
Note that UBMON expects it to be at address 174000 octal. Examples in
this manual assume 174000 octal - substitute the st art address of your
PROM socket if your CDBL is installed elsewhere.

3. MEMORY REQUIREMENTS

CDBL requires two 256-byte pages of zero wait-state RAM starting at
address 046000 octal. The code that is loaded from the disk gets
written to RAM, starting at address 0. For practica l purposes, this
means that the Altair must have at least 20K bytes of RAM starting at
address 0, and at least the last 4K block of this R AM must be zero
wait-state RAM. (This zero wait-state RAM may be dy namic RAM, as the
timing has sufficient margin to handle the occasion al refresh cycle.)

Because of the location of CDBL’s RAM page, the boo t file that is
loaded from the disk cannot be larger than 19K byte s in size. (This is
the same boot file size limitation as MDBL. DBL lim its boot files to
11K bytes.)

4. SENSE SWITCH SETTINGS

Loaded software, such as Altair Disk BASIC, will no rmally read the
four sense switches <A15:A12> to determine the Term inal device. See
the manual for the software that you are loading.

January 16, 2016
88 CDBL PROM vers. 3.00 5

5. OPERATING PROCEDURES

5.1 ACCESSING CDBL

If you do not have TURMON or UBMON, then use the fr ont panel to STOP
and RESET the Altair, and then EXAMINE address 1774 00 octal.

5.2 SETTING THE SENSE SWITCHES

1. Set Sense Switches <A15:A12> according to the manua l for the
program you are loading (e.g. the Altair BASIC Refe rence manual,
Appendix B). For reference, here are the standard A ltair Terminal
Device Sense Switch settings for many Altair progra ms:

Terminal Device A15 A14 A13 A12
88-2SIO Port 0
(2 stop bits)

0 0 0 0

88-2SIO Port 0
(2 stop bits)

0 0 0 1

88-SIO 0 0 1 0
4PIO 0 1 0 0
PIO 0 1 0 0

5.3 INITIATING THE BOOT

1. Insert the boot disk into the disk drive. If you ar e using a
Minidisk, check that the disk has a write-protect t ab installed.

2. Start CDBL
a. If you are using TURMON, type “J177400” on the Term inal.

b. If you are using UBMON, type “B” on the Terminal.

c. If you are starting with a front panel, press the R UN
switch.

5.4 BOOTING

CDBL will read the Altair disk boot file one sector at a time,
starting with track 0, sector 0, and write the file into RAM, starting
at address 0. Within each track, the sectors are in terleaved 2:1 - the
even sectors are loaded first, followed by the odd sectors.

Loading will continue until either an irrecoverable error is
encountered, or until the complete boot file has be en loaded into RAM.
If the file load completes, then CDBL will jump to address 0 to
execute the loaded code. If an irrecoverable error occurs, then CDBL
will report that error and hang - see the next sect ion.

Note that many programs (including later versions o f Altair Disk
Basic) load just a few sectors from disk, and then jump to that little
loader program to load the rest of the software.

6 January 16, 2016
88 CDBL PROM vers. 3.00

6. ERROR INDICATIONS

The front panel’s Interrupt Enable light remains of f while loading is
proceeding properly. If CDBL encounters an irrecove rable error, it
will turn on the Interrupt Enable light, store the ASCII error code in
memory location 0, and store the 16-bit offending a ddress in memory
locations 1 and 2. CDBL will then send the error co de to all standard
Altair Terminal devices continuously until you STOP or RESET the
Altair from the front panel.

The CDBL error codes are:

C - Checksum error-------A computed checksum and th e checksum on the
disk did not match, or a Marker Byte was not
377 octal. CDBL will retry any sector that
has either of these errors 15 times before
giving up and indicating a Checksum error.

M - Memory error---------Defective memory, read-onl y memory, or
protected memory was encountered when
attempting to write to RAM; the address of
the offending RAM location is stored in
memory locations 1 and 2.

O - Overlay error--------An attempt was made to loa d disk data beyond
the first 19K bytes of memory, which would
overlay the memory page that contains CDBL’s
stack, buffer, and disk routines.

January 16, 2016
88 CDBL PROM vers. 3.00 7

APPENDEX A - ALTAIR DISK BOOT-TRACK FORMAT

Altair disks are hard-sectored disks. 8” disks (for the 88-DCDD) have
32 sectors per track, while Minidisks (for the 88-M DS system) have 16
sectors per track. Sectors are numbered sequentiall y on each track,
starting at sector 0. Sectors each contain 128 byte s of actual data.

Tracks are numbered sequentially from track 0, star ting at the outside
disk diameter. 8” disks have 77 tracks, and Minidis ks have 35 tracks.
Loading begins with track 0, and continues sequenti ally through the
tracks until the required amount of data (which is specified in the
File Byte Count portion of each sector’s header) ha s been read. The
first several tracks are reserved for the boot code , and usually have
a slightly different format than the rest of the di sk.

For at least the boot portion of an Altair disk, se ctors are
interleaved with a 2:1 pattern: on each track, the even sectors
(starting with sector 0) are all loaded first, foll owed by the odd
sectors (starting with sector 1). (CDBL requires le ss than one sector
time to process a sector’s data once it has been re ad into the buffer.
So with 2:1 interleave, each track can be read with just two disk
revolutions, once the track step is complete and se ctor 0 has been
found.)

Each sector contains 137 bytes. On the boot tracks, these sectors are
formatted as follows:

Byte 0 Track Number, with MSB set (the sync bit)
Bytes 1-2 File Byte Count (16 bits)
Bytes 3-130 Sector Data (128 bytes)
Byte 131 Marker Byte, must be 377 octal
Byte 132 Sector Data Checksum (8-bit sum of all dat a bytes)
Bytes 133-136 Spare bytes (not read by CDBL)

8 January 16, 2016
88 CDBL PROM vers. 3.00

APPENDIX B - SOURCE CODE LISTING

The following pages list the source code for CDBL. This code was
assembled using Digital Research’s ASM assembler. A s such, all values
are in hexadecimal, rather than in octal as is norm al for MITS
software.

CDBL.PRN

 ;==
 ;= CDBL - Combo Disk Boot Loader ROM =
 ;= For the Altair 88-DCDD 8" disk system and =
 ;= the Altair 88-MDS Minidisk system =
 ;= By Martin Eberhard =
 ;= =
 ;= CDBL loads software (e.g. Altair Disk BASIC) from an =
 ;= Altair 88-DCDD 8" disk or an 88-MDS 5-1/4" minidisk, =
 ;= automatically detecting which kind of drive is attached. =
 ;==
 ;= NOTES =
 ;= =
 ;= Like DBL and MDBL, CDBL fits in one (256-byte) 1702A =
 ;= EPROM and execution begins at address FF00h. However, =
 ;= since version 3.00, the PROM is position independent =
 ;= and can run at most any 256 byte boundary. =
 ;= =
 ;= Because of the slow 1702A EPROM access time, and because =
 ;= some versions of MITS's 8800b Turnkey Module disable PROM =
 ;= when any IN instruction is executed, CDBL copies itself =
 ;= into RAM at 4C00h (RAMADR), and executes there. CDBL =
 ;= therefore requres 512 bytes of 0-wait state RAM, starting =
 ;= at RAMADR. =
 ;= =
 ;= Minidisks have 16 sectors/track, numbered 0 through 15. =
 ;= 8" disks have 32 sectors/track, numbered 0 through 31. =
 ;= CDBL figures out which kind of disk drive is attached, =
 ;= based on the existance of sector number 16. =
 ;= =
 ;= ALTAIR DISK SECTOR FORMAT (FOR BOOT SECTORS) =
 ;= =
 ;= BYTE(s) FUNCTION BUFFER ADDRESS =
 ;= 0 Track number+80h (sync) RAMADR+7Bh =
 ;= 1 File size low byte RAMADR+7Ch =
 ;= 2 File size High Byte RAMADR+7Dh =
 ;= 3-130 Sector data RAMADR+7Eh to RAMADR+FDh =
 ;= 131 Marker Byte (0FFh) RAMADR+FEh =
 ;= 132 Checksum RAMADR+FFh =
 ;= 133-136 Spare not read =
 ;= =
 ;= Each sector header contains a 16-bit file-size value: =
 ;= this many bytes (rounded up to an exact sector) are read =
 ;= from the disk and written to RAM, starting at address 0. =
 ;= When done (assuming no errors), CDBL then jumps to =
 ;= address 0 (DMAADR) to execute the loaded code. =
 ;= =
 ;= Sectors are interleaved 2:1. CDBL reads the even sectors =
 ;= on each track first (starting with track 0, sector 0) =
 ;= followed by the odd sectors (starting with sector 1), =
 ;= continuing through the interleaved sectors of each track =
 ;= until the specified number of bytes have been read. =
 ;= =
 ;= CDBL first reads each sector (including the actual data =
 ;= payload, as well as the 3 header and the first 2 trailer =
 ;= bytes) from disk into the RAM buffer (SECBUF). Next, CDBL =
 ;= checks to see if this sector would overwrite the RAM =
 ;= portion of CDBL, and aborts with an 'O' error if so. It =
 ;= then copies the data payload portion from the buffer to =
 ;= its final RAM location, calculating the checksum along the =
 ;= way. During the copy, each byte is read back, to verify =
 ;= correct writes. Any write-verify failure will immediately =

Page 1

CDBL.PRN
 ;= abort the load with an 'M' error. =
 ;= =
 ;= Any disk read error (a checksum error or an incorrect =
 ;= marker byte) will cause a retry of that sector read. After =
 ;= 16 retries on the same sector, CDBL will abort the load =
 ;= with a 'C' error. =
 ;= =
 ;= If the load aborts with any error, then CDBL will turn on =
 ;= the INTE LED on the front panel (as an indicator), write =
 ;= the error code ('C', 'M', or 'O') to RAM address 0, write =
 ;= the offending memory address to RAM addresses 1 and 2, and =
 ;= then hang forever in a loop, printing the error code to =
 ;= all known Altair Terminal output ports. =
 ;==
 ;= REVISION HISTORY =
 ;= =
 ;= 1.00 05May2014 M.Eberhard =
 ;= Combined MDBL and DBLme code, with assembly options to =
 ;= create exactly both of these boot loaders =
 ;= 2.00 08May2014 M.Eberhard =
 ;= Restructure and squeeze the code. Automatic 8"/Minidisk =
 ;= detection. Select boot disk from the sense switches. =
 ;= Improve track 0 seek by waiting for -MVHEAD before =
 ;= testing TRACK0. Detect memory overrun errors. Verify =
 ;= copy of CDBL code into RAM. =
 ;= 2.01 15May2014 M.Eberhard =
 ;= Step in once before seeking track 0. Restart 6.4 Sec =
 ;= motor shutoff timer on retries. =
 ;= 2.02 04Jun2014 M. Eberhard =
 ;= Eliminate booting from other than drive 0 because Basic =
 ;= and Burcon CP/M just load a 2-sector boot loader, and =
 ;= that boot loader loads the rest, always from drive 0. =
 ;= 2.03 17Jan2015 M. Douglas =
 ;= Force 43ms minimum delay when changing seek direction =
 ;= to meet/exceed 8" drive requirements. =
 ;= 2.04 12Mar2015 M. Douglas =
 ;= Change 2SIO init constant (ACINIT) from 21h (7E2, xmit =
 ;= interrupts on) to 11h (8N2) =
 ;= 2.05 11Jan2016 M. Eberhard =
 ;= No IN or OUT instructions until code is moved to RAM =
 ;= (for compatibility with some Turnkey Modules). This =
 ;= increased the RAM footprint from 256 to 512 bytes. Also =
 ;= fixed a bug when reporting overlay errors. =
 ;= 3.00 12Jan2016 M. Douglas =
 ;= Make the PROM position independent by making the =
 ;= routine that copies PROM to RAM position independent. =
 ;==

 ;-----------------
 ; Disk Parameters
 ;-----------------
 0080 = BPS equ 128 ;data bytes/sector
 0010 = MDSPT equ 16 ;Minidisk sectors/track
 ;this code assumes SPT for 8"
 ;disks = MDSPT * 2.

 0003 = HDRSIZ equ 3 ;header bytes before data
 0002 = TLRSIZ equ 2 ;trailer bytes read after data

 0085 = SECSIZ equ BPS+HDRSIZ+TLRSIZ ;total bytes/sector

 0010 = RETRYS equ 16 ;max retries per sector

Page 2

CDBL.PRN
 ;--
 ; Memory Parameters. To keep code short, several assumptions
 ; about these values are embedded in the code:
 ; 1) RAMADR and PROM low address byte = 0
 ; 2) The address of the last byte of SECBUF (the SECSIZ-sized
 ; sector buffer) must be XXFF.
 ; 3) The ls bit of the high byte of RAMADR must be 0
 ; 4) The value of DMAADR is assumed to be 0
 ;--
 4C00 = RAMADR equ 4C00H ;Address for code copied to RAM
 4D7B = SECBUF equ RAMADR+512-SECSIZ
 4D7B = STACK equ SECBUF ;grows down from here
 0000 = DMAADR equ 0 ;Disk load/execution address

 ;--
 ; Addresses of sector components within SECBUF
 ;--
 4D7C = SFSIZE equ SECBUF+1 ;address of file size
 4D7E = SDATA equ SECBUF+HDRSIZ ;address of sector data
 4DFE = SMARKR equ SDATA+BPS ;address of marker byte
 4DFF = SCKSUM equ SMARKR+1 ;address of checksum byte

 ;----------------
 ; 88-SIO Equates
 ;----------------
 0000 = SIOCTL EQU 00 ;Control
 0000 = SIOSTA EQU 00 ;Status
 0001 = SIODAT EQU 01 ;Rx/Tx Data

 ;---
 ; 88-2SIO's port 0, Turnkey Module, and 88-UIO
 ; Equates (all based on the Motorola 6850 ACIA)
 ;---
 0010 = ACCTRL equ 10h ;ACIA Control output port
 0010 = ACSTAT equ 10h ;ACIA Status input port
 0011 = ACDATA equ 11h ;ACIA Tx/Rx Data register

 0003 = ACRST equ 03h ;Master reset
 0011 = ACINIT equ 11h ;/16, 8bit, No Parity, 2Stops

 ;----------------
 ; 88-PIO Equates
 ;----------------
 0004 = PIOCTL EQU 04 ;Control
 0004 = PIOSTA EQU 04 ;Status
 0005 = PIODAT EQU 05 ;Tx/Rx Data

 ;-----------------
 ; 88-4PIO equates
 ;-----------------
 0020 = P4CA0 equ 20h ;Port 0 Section A Ctrl/Status
 0021 = P4DA0 equ 21h ;Port 0 Section A Data
 0022 = P4CB0 equ 22h ;Port 0 Section B Ctrl/Status
 0023 = P4DB0 equ 23h ;Port 0 Section B Data

 002C = P4CINI equ 2Ch ;Control/status initialization

 ;--
 ; Altair 8800 Disk Controller Equates (These are the same
 ; for the 88-DCDD controller and the 88-MDS controller.)
 ;--
 0008 = DENABL equ 08H ;Drive Enable output
 0080 = DDISBL equ 80h ;disable disk controller

Page 3

CDBL.PRN

 0008 = DSTAT equ 08H ;Status input (active low)
 0001 = ENWDAT equ 01h ;-Enter Write Data
 0002 = MVHEAD equ 02h ;-Move Head OK
 0004 = HDSTAT equ 04h ;-Head Status
 0008 = DRVRDY equ 08h ;-Drive Ready
 0020 = INTSTA equ 20h ;-Interrupts Enabled
 0040 = TRACK0 equ 40h ;-Track 0 detected
 0080 = NRDA equ 80h ;-New Read Data Available

 0009 = DCTRL equ 09h ;Drive Control output
 0001 = STEPIN equ 01H ;Step-In
 0002 = STPOUT equ 02H ;Step-Out
 0004 = HDLOAD equ 04H ;8" disk: load head
 ;Minidisk: restart 6.4 S timer
 0008 = HDUNLD equ 08h ;unload head (8" only)
 0010 = IENABL equ 10h ;Enable sector interrupt
 0020 = IDSABL equ 20h ;Disable interrupts
 0080 = WENABL equ 80h ;Enable drive write circuits

 0009 = DSECTR equ 09h ;Sector Position input
 0001 = SVALID equ 01h ;Sector Valid (1st 30 uS
 ;..of sector pulse)
 003E = SECMSK equ 3Eh ;Sector mask for MDSEC

 000A = DDATA equ 0Ah ;Disk Data (input/output)

 ;----------------------------
 ; Single-byte error messages
 ;----------------------------
 0043 = CERMSG equ 'C' ;checksum/marker byte error
 004D = MERMSG equ 'M' ;memory write verify error
 004F = OERMSG equ 'O' ;Memory overlay error message

 ;==
 4C00 ORG RAMADR ;assemble at dest RAM address
 ;==

 4C00 F3 di ;turn off INTE (no error yet)

 ;--
 ; Copy the PROM content to RAM for execution. This copy routine
 ; is position independent so the boot PROM can be at most any
 ; address. The LSB of the PROM address and RAMADR must be 0.
 ;--
 4C01 110E4C lxi d,MLOOP ;DE->MLOOP in RAM

 4C04 317B4D lxi sp,STACK
 4C07 21E1E9 lxi h,0E9E1h ;H=PCHL,L=POP H
 4C0A E5 push h ;POP H, PCHL at STACK-2, STACK-1
 4C0B CD794D call STACK-2 ;addr of MLOOP in HL and stack RAM

 4C0E 3B MLOOP: dcx sp ;point SP to MLOOP address
 4C0F 3B dcx sp ; in stack memory

 4C10 7E mov a,m ;get next EPROM byte
 4C11 12 stax d ;store it in RAM

 4C12 1C inr e ;bump pointers
 4C13 2C inr l
 4C14 C0 rnz ;copy to end of 256 byte page

 4C15 C3184C jmp RAMIMG ;jump to code now in RAM

Page 4

CDBL.PRN

 ; e=l=0

 ;==
 ; RAM Code Image
 ; All of the following code gets copied into RAM at RAMADR,
 ; and run there.
 ;==
 RAMIMG:

 ;---
 ; Wait for user to insert a diskette into the drive 0, and
 ; then load that drive's head. Do this first so that the disk
 ; has plenty of time to settle. Note that a minidisk will
 ; always report that it is ready. Minidisks will hang (later
 ; on) waiting for sector 0F, until a few seconds after the
 ; user inserts a disk.
 ;
 ; On Entry:
 ; l = 0
 ;---
 4C18 AF WAITEN: xra a ;boot from disk 0
 4C19 D308 out DENABL ;enable disk 0
 4C1B DB08 in DSTAT ;Read drive status
 4C1D E608 ani DRVRDY ;Diskette in drive?
 4C1F C2184C jnz WAITEN ;no: wait for drive ready

 4C22 3E04 mvi a,HDLOAD ;Load 8" disk head, or enable
 4C24 D309 out DCTRL ;..minidisk for 6.4 Sec

 ;---
 ; Step in once, then step out until track 0 is detected
 ; On Exit: b=0
 ;---
 4C26 018206 lxi b,20000/12 ;20 mS delay 1st time thru
 4C29 3E01 mvi a,STEPIN ;step in once first

 4C2B D309 SKTRK0: out DCTRL ;issue step command

 ; The first time through, delay at least 20ms to force a
 ; minimum 43 ms step wait instead of 10ms. This meets
 ; the 8" spec for changing seek direction. The minidisk
 ; step time is always 50ms.

 4C2D 0B DELAY: dcx b ;(5)
 4C2E 78 mov a,b ;(5)
 4C2F B1 ora c ;(4)
 4C30 C22D4C jnz DELAY ;(10)12 uS/pass

 4C33 0C inr c ;from now on, the above loop
 ;goes 1 time.

 4C34 DB08 WSTEP: in DSTAT ;wait for step to complete
 4C36 0F rrc ;put MVHEAD bit in carry
 4C37 0F rrc ;is the servo stable?
 4C38 DA344C jc WSTEP ;no: wait for servo to settle

 4C3B E610 ani TRACK0/4 ;Are we at track 00?
 4C3D 3E02 mvi a,STPOUT ;STEP-OUT command
 4C3F C22B4C jnz SKTRK0 ;no: step out another track

 ;Exit with b=0

Page 5

CDBL.PRN
 ;--
 ; Determine if this is an 8" disk or a minidisk, and set
 ; c to the correct sectors/track for the detected disk.
 ; An 8" disk has 20h sectors, numbered 0-1Fh. A minidisk
 ; has 10h sectors, numbered 0-0Fh.
 ;--

 ; wait for the highest minidisk sector, sector number 0Fh

 4C42 DB09 CKDSK1: in DSECTR ;Read the sector position

 4C44 E63F ani SECMSK+SVALID ;Mask sector bits, and hunt
 4C46 FE1E cpi (MDSPT-1)*2 ;..for minidisk last sector
 4C48 C2424C jnz CKDSK1 ;..only while SVALID is 0

 ; wait for this sector to pass

 4C4B DB09 CKDSK2: in DSECTR ;Read the sector position
 4C4D 0F rrc ;wait for invalid sector
 4C4E D24B4C jnc CKDSK2

 ; wait for and get the next sector number

 4C51 DB09 CKDSK3: in DSECTR ;Read the sector position
 4C53 0F rrc ;put SVALID in carry
 4C54 DA514C jc CKDSK3 ;wait for sector to be valid

 ; The next sector after sector 0Fh will be 0 for a minidisk,
 ; and 10h for an 8" disk. Adding MDSPT (10h) to that value
 ; will compute c=10h (for minidisks) or c=20h (for 8" disks).

 4C57 E61F ani SECMSK/2 ;Mask sector bits
 4C59 C610 adi MDSPT ;compute SPT
 4C5B 4F mov c,a ;..and save SPT in c

 ;--
 ; Initialize the ACIA (2SIO port 0/Turnkey/UIO). Do this
 ; late in the initialization, so that e.g. the 'B' character
 ; from UBMON won't get eaten by resetting the ACIA.
 ;--
 4C5C 3E03 mvi a,ACRST ;reset first
 4C5E D310 out ACCTRL

 4C60 3E11 mvi a,ACINIT ;then initialize
 4C62 D310 out ACCTRL

 ;---------------------
 ; Initialize the 4PIO
 ;---------------------
 4C64 AF xra a
 4C65 D322 out P4CB0 ;Port 0 section B is output
 4C67 2F cma ;All output bits high
 4C68 D323 out P4DB0
 4C6A 3E2C mvi a,P4CINI ;set up handshake bits
 4C6C D322 out P4CB0

 ;--
 ; Set up to load
 ; On Entry:
 ; b = 0 (initial sector number)
 ; c = SPT (for either minidisk or 8" disk)
 ; l = 0 (part of DMA address)
 ;--

Page 6

CDBL.PRN
 4C6E 65 mov h,l ;initial DMA address=0000

 ;--
 ; Read current sector over and over, until either the
 ; checksum is right, or there have been too many retries
 ; b = current sector number
 ; c = sectors/track for this kind of disk
 ; hl = current DMA address
 ;--
 4C6F 3E10 NXTSEC: mvi a,RETRYS ;(7)Initialize sector retries

 ;--
 ; Begin Sector Read
 ; a = Remaining retries for this sector
 ; b = Current sector number
 ; c = Sectors/track for this kind of disk
 ; hl = current DMA address
 ;--
 4C71 317B4D RDSECT: lxi sp,STACK ;(10)(re)initialize the stack
 4C74 F5 push psw ;(11)Remaining retry count

 ;---
 ; Sector Read: Step 1. Hunt for sector specified in b. Data
 ; will become avaiable 250 uS after -SVALID
 ; goes low. -SVALID is low for 30 uS.
 ;---
 4C75 DB09 FNDSEC: in DSECTR ;(10)Read the sector position

 4C77 E63F ani SECMSK+SVALID ;(7)yes: Mask sector bits
 ;..along with -SVALID bit
 4C79 0F rrc ;(4)sector bits to bits <4:0>
 4C7A B8 cmp b ;(4)Found the desired sector
 ;..with -SVALID low?
 4C7B C2754C jnz FNDSEC ;(10)no: wait for it

 ;--
 ; Test for DMA address that would overwrite this RAM code
 ; or the next page (which contains the sector buffer stack)
 ; Do this here, while we have some time.
 ;--
 4C7E 117B4D lxi d,SECBUF ;(10)Sector buffer address

 4C81 7C mov a,h ;(5)high byte of DMA address
 4C82 AA xra d ;(4)high byte of RAM code addr
 4C83 E6FE ani 0FEh ;(7)ignore lsb
 4C85 3E4F mvi a,OERMSG ;(7)overlay error message
 4C87 CAE14C jz RPTERR ;(10)report overlay error

 ;--
 ; Set up for the upcoming data move
 ; Do this here, while we have some time.
 ;--
 4C8A E5 push h ;(11)Current DMA address
 4C8B C5 push b ;(11)Current sector & SPT
 4C8C 018000 lxi b,BPS ;(10)b= init checksum,
 ;c= byte count for MOVLUP

 ;---
 ; Sector Read: Step 2. Read sector data into SECBUF at de.
 ; SECBUF is positioned in memory such that e
 ; overflows at the end of the buffer. Read data
 ; becomes available 250 uS after -SVALID becomes
 ; true (0).This loop must be << 32 uS per pass.

Page 7

CDBL.PRN
 ;---
 4C8F DB08 DATLUP: in DSTAT ;(10)Read the drive status
 4C91 07 rlc ;(4)New Read Data Available?
 4C92 DA8F4C jc DATLUP ;(10)no: wait for data

 4C95 DB0A in DDATA ;(10)Read data byte
 4C97 12 stax d ;(7)Store it in sector buffer
 4C98 1C inr e ;(5)Move to next buffer address
 ;..and test for end
 4C99 C28F4C jnz DATLUP ;(10)Loop if more data

 ;--
 ; Sector Read: Step 3. Move sector data from SECBUF into
 ; memory at hl. Compute checksum as we go.
 ;
 ; 8327 cycles for this section
 ;--
 4C9C 1E7E mvi e,SDATA and 0FFh ;(7)de= address of sector data
 ;..within the sector buffer

 4C9E 1A MOVLUP: ldax d ;(7)Get sector buffer byte
 4C9F 77 mov m,a ;(7)Store it at the destination
 4CA0 BE cmp m ;(7)Did it store correctly?
 4CA1 C2DF4C jnz MEMERR ;(10)no: abort w/ memory error

 4CA4 80 add b ;(4)update checksum
 4CA5 47 mov b,a ;(5)Save the updated checksum

 4CA6 13 inx d ;(5)Bump sector buffer pointer
 4CA7 23 inx h ;(5)Bump DMA pointer
 4CA8 0D dcr c ;(5)More data bytes to copy?
 4CA9 C29E4C jnz MOVLUP ;(10)yes: loop

 ;--
 ; Sector Read: Step 4. Check Marker byte and compare computed
 ; checksum against sector's checksum. Retry/abort
 ; if wrong Marker byte or checksum mismatch.
 ;
 ; a=computed checksum
 ; 98 cycles for for this section
 ;--
 4CAC EB xchg ;(4)hl=1st trailer byte address
 ;de=DMA address
 4CAD 4E mov c,m ;(7)get marker, should be FFh
 4CAE 0C inr c ;(5)c should be 0 now

 4CAF 23 inx h ;(5)(hl)=checksum byte
 4CB0 AE xra m ;(7)compare to computed cksum
 4CB1 B1 ora c ;(4)..and test marker=ff

 4CB2 C1 pop b ;(10)Current sector & SPT
 4CB3 C2D24C jnz BADSEC ;(10)NZ: checksum error

 ; Compare next DMA address to the file byte count that came
 ; from the sector header. Done of DMA address is greater.

 4CB6 2A7C4D lhld SFSIZE ;(16)hl gets file size
 4CB9 EB xchg ;(4)put DMA address back in hl
 ;..and file size into de

 4CBA 7D mov a,l ;(4)16-bit subtraction
 4CBB 93 sub e ;(4)
 4CBC 7C mov a,h ;(4)..throw away the result

Page 8

CDBL.PRN
 4CBD 9A sbb d ;(4)..but keep carry (borrow)

 4CBE D2E34C jnc LDDONE ;(10)done loading if hl >= de
 ;carry will be clear at LDDONE

 ;--
 ; Next Sector: The sectors are interleaved by two. Read all
 ; the even sectors first, then the odd sectors.
 ; Note that NXTSEC will repair the stack.
 ;
 ; 44 cycles for the next even or next odd sector
 ;--
 4CC1 116F4C lxi d,NXTSEC ;(10)for compact jumps
 4CC4 D5 push d ;(10)

 4CC5 04 inr b ;(5)sector = sector + 2
 4CC6 04 inr b ;(5)

 4CC7 78 mov a,b ;(5)even or odd sectors done?
 4CC8 B9 cmp c ;(4)c=SPT
 4CC9 D8 rc ;(5/11)no: go read next sector
 ;..at NXTSEC

 ; Total sector-to-sector = 28+8327+98+44=8497 cycles=4248.5 uS
 ; one 8" sector time = 5208 uS, so with 2:1 interleave, we will
 ; make the next sector, no problem.

 4CCA 0601 mvi b,01H ;1st odd sector number
 4CCC C8 rz ;Z: must read odd sectors now
 ;..at NXTSEC

 ;--
 ; Next Track: Step in, and read again.
 ; Don't wait for the head to be ready (-MVHEAD),
 ; since we just read the entire previous track.
 ; Don't need to wait for this step-in to complete
 ; either, because we will definitely blow a
 ; revolution going from the track's last sector to
 ; sector 0. (One revolution takes 167 mS, and one
 ; step takes a a maximum of 40 uS.)
 ; Note that NXTRAC will repair the stack.
 ;--
 4CCD 78 mov a,b ;STEPIN happens to be 01h
 4CCE D309 out DCTRL

 4CD0 05 dcr b ;start with b=0 for sector 0
 4CD1 C9 ret ;go to NXTSEC

 ;***Error Routine**
 ; Checksum error: attempt retry if not too many retries
 ; already. Otherwise, abort, reporting the error
 ; On Entry:
 ; Top of stack = adress for first byte of the failing sector
 ; Next on stack = retry count
 ;**
 4CD2 3E04 BADSEC: mvi a,HDLOAD ;Restart Minidisk 6.4 uS timer
 4CD4 D309 out DCTRL

 4CD6 E1 pop h ;Restore DMA address
 4CD7 F1 pop psw ;Get retry count
 4CD8 3D dcr a ;Any more retries left?
 4CD9 C2714C jnz RDSECT ;yes: try reading it again

Page 9

CDBL.PRN
 ;--
 ; Irrecoverable error in one sector: too many retries.
 ; These errors may be either incorrect marker bytes,
 ; wrong checksums, or a combination of both.
 ; On Entry:
 ; hl=RAM adress for first byte of the failing sector
 ;--
 4CDC 3E43 mvi a,CERMSG ;Checksum error message
 4CDE 11 db 11H ;'lxi d' opcode to skip
 ;..MEMERR and go to RPTERR

 ;***Error Routine**********************
 ; Memory error: memory readback failed
 ; On Entry:
 ; hl = offending RAM address
 ;**************************************
 4CDF 3E4D MEMERR: mvi a,MERMSG ;Memory Error message

 ; Fall into RPTERR

 ;***CDBL Termination***
 ; Entry at RPTERR:
 ; Report an error: turn the disk controller off, turn the
 ; INTE light on, record the error in RAM at 0000h-0002h, and
 ; then loop forever writing the error code (in register a)
 ; to all known Terminal ports.
 ; On Entry:
 ; a = error code
 ; hl = offending RAM address
 ;
 ; Entry at LDDONE:
 ; Normal exit: Disable the disk controller and go execute
 ; the loaded code at DMAADR.
 ; On Entry:
 ; Carry bit is cleared
 ;**
 4CE1 47 RPTERR: mov b,a ;error code
 4CE2 37 stc ;remember we had an error

 4CE3 3E80 LDDONE: mvi a,DDISBL ;Disable the disk controller
 4CE5 D308 out DENABL

 4CE7 D20000 jnc DMAADR ;normal exit: go execute the
 ;..loaded program

 4CEA FB ei ;Signal error on the INTE LED

 4CEB 220100 shld 1 ;Store the bad address
 4CEE 78 mov a,b ;recover the error code
 4CEF 320000 sta 0 ;Store the error code

 4CF2 D301 ERHANG: out SIODAT ;SIO
 4CF4 D311 out ACDATA ;2SIO port 0/Turnkey/UIO
 4CF6 D305 out PIODAT ;PIO
 4CF8 D323 out P4DB0 ;4PIO
 4CFA C3F24C jmp ERHANG ;Keep printing error code

 4CFD end
QQQ

Page 10

	CDBL.pdf
	CDBL.PRN - Notepad.pdf

