
MITS Programming System II MMMMMMMMM IMMMî M̂ MMMMaMih MMAMMMMMM MBMMM (Rev 3.0)

TABLE OF CONTENTS

I. Glossary

II . System Monitor
Monitor Commands
Program Monitor Calls

III. Assembler Operations

Introduction
Options

IV. Assembly Programming
Constants
Statement Structure
Statement Options
Programming Tricks
Example Program

V. Editor

VI. Debug

Appendix;
A. Absolute load tape format
B. Assembly memory map
C. Error codes
D. I/O port assignments
E. Loading the Monitor
F. Miscelaneous

Copyright® MITS, Inc. 1976

I. GLOSSARY

Parje 2

I. Glossary

Machine instruction - Binary byte(s) that execute to perform a defined
computer function.

Assembly (source) code - Symbolic labels, opcodes, and operands that are
ordered in succession to define a logical procedure which can be
assembled to produce executable machine instructions.

Opcodes - Defined symbols that assemble directly as 1 to 3 bytes of
machine instruction. The symbols are meaningful descriptors of the
machine function to be performed during program execution.

Label - A user defined symbol that corresponds to the storage address of
the following opcode. Labels are used to define points for transfer of
program execution which normally proceeds in a sequential manner.

Operands - Symbolic references to registers, labels or constants that
are used to completely define the function specified by the opcode.

Pseudo-opcodes - Mnemonics that direct the assembly of the source code.
They can allocate memory, define constants or affect control of the
assembly procedure.

Execution storage - The physical memory space where an assembled program
can execute. Absolute assembly generates machine instructions that will
only execute correctly in memory space that was defined during
assembly(defined by ORG pseudo op).

Program storage - The physical memory where program machine code is
stored during assembly. The program will not necessarily execute
correctly at this location unless assembly defined the program storage
to be the same as execution storage(no ORR psuedo op given).

Debug - The process of testing a program to remove logic errors(bugs) by
analyzing its execution(performance).

Patch - Correcting a program by changing machine instructions during
debugging.

Symbolism used in Manual

<CR> - Type a carriage return.
<LF> - Type a line feed.
<Control Z> - Type a Control Z not the individual characters.
<Escape> - Type an escape(TTY key usually has ESC on it).
<Tab> - Type a tab(Control I).

Anything enclosed in square brackets(i.e. []) is optional.
A Q following a number indicates the number is octal.

II. SYSTEM MONITOR

Page 3

II. System Monitor

The system monitor has been designed to load and execute
absolute programs, have a flexible I/O system for supporting all MITS
peripherals, allow handlers for non-standard peripherals to be added,
and has limited debugging capability.

Their are three tables within the monitor that make this
flexibility possible. The names of all programs that have been read in
is stored in the program name table(PTL), all open I/O symbolic names,
flags, and other information are contained in the I/O table, and the
hardware table which contains addresses of the device handlers.

Hardware Table

This table has room for 5 entries, 4 of which are defined for
standard MITS I/O devices. The four default device names and uses are:

TY - Console terminal
AC - Audio cassette
EB - Edit buffer read
TR - Mits high speed paper tape reader

The exact structure of this table and instructions on how to modify it
is given in Appendix D.

I/O Table

The I/O table has room for 7 symbolic device names to be open
simultanously. The five names used by PKG II programs are automatically
open, leaving room for 2 names to be set up for user programs if needed.

TTY - Monitor, Editor and Assembler command I/O device name
Open for echoing,tabbing,and ASCII mode

LST - Editor, Debug, and Assembler list on LST
Open for tabbing and ASCII mode.

FIL - file I/O for Editor and Assembler
Open for echoing and ASCII mode.

ABS - program loading and file searching
No options

ALT - used by Editor's alter command
Open for tabbing

Page 4

I/O DRIVERS
These drivers
perform all monitor
input/output
(CHECK STATUS AND
INPUT OR OUTPUT A
CHARACTER).

i'c to to to to to to to ft tV
ft -A
* TTY *
* DRIVER *
•k to

to to
to to to to lV iV iV to to

A
A
A
A
A<<<<<

« K y S ft w ilik'U", ;
&

»v ACR vV

* DRIVER *
iV ft

ft ft
ft ft ft ft ft to to to ft ft

ft ft tototototototois
to &

* EDIT *
* BUFFER
* DRIVER *

ft to
to to to to to to to to to to

to to to to to to to to to to
to
to HSR *

* DRIVER *
to to

to to
to to to to to to to to to to

HARDWARE TABLE

This table contains the hardware
driver names and pointers to the
proper device drivers.

<<
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A A A
A A A
A A A
A >>>>>>>>>A A
A A A
A A »»>»»»»>»>h
A A A
A A A * to to to to to to to to to to to to to
A A A * -A*
A A A<<<<* " T R " v'
A A to to

A A to'

A A to to
A hi' "EB"
A to to

A to to

A to to

A<<<<<<<<<<<<<<* "AC"
to to
to to
to to

< < < < < < < < < < < < < < < * " TY" *

I/O TABLE

This table contains symbolic
device names along with their
flags and hardware table pointer,
set by an OPN command. In the
table shown at left the default
flags and pointers are shown.

to to

to to to to to it to to to to to to to to

A
>>>>>>>A

to to to to to to to to to to to to to to to to
to to

<<» TTY - E,A.T *

A<<<<* ALT
to to to to to to to to to to to to to to to to

Page 5

The block diagram of the I/O table shows all pointers from the
symbolic device names going to the MTY" entry of the Hardware table.
This is because all are open to HTY" when the monitor first comes up and
can be changed at any time by giving an OPM command.

in order to support a non-standard I/O device, a driver would need to be
written and the address of it patched into the hardware table as
explained in appendix D. The device could then be used by all PKG II as
well as user programs.

Monitor Command Format

1. Execute a program

The Monitor signals that it is ready for a command by
printing 2 blanks and a question mark, A program is
executed by typing its 3 character name followed by a
carriage return. If the program has already been
loaded, it will start execution immediately. If it
hasn't, it will be searched for and loaded from
symbolic device ABS. When the program finishes loading
it will automatically start executing.
Example:
If you want to load the Editor from your TTY type:

?OPN ABS,TY<CR>
?EDT<CR>

The OPM command would only be needed if ABS was not
open to the TY„
To load the Editor from the ACR make sure the last OPN
ABS command was as follows:

?OPN ABS,AC<CR>

2. Execution time options

User programs can be passed execution options by the
monitor if enclosed in parenthesis.

?EDT(R)<CR>
When the program requested is branched to the D&E
register pair contain the address of the first
character following the monitor command. In the above
example D&E would point at the open parenthesis. The
B&C register pair contains the address of the monitor
status word, which contains the length of the command
line. In the above example the status word contains
the number 6.

Page 6

le searching

By typing a file name followed by a comma and a type
designator, the monitor will search for the file on the
device ABS is open to, and return after the file is
skipped.

S - ASCII file
A - Absolute file

The main use of this command is to search for the last
file on an audio cassette in order to write out a new
one. All files on the the cassette should be of the
same type as the file you are searching for.

?OPN ABS,AC<CR>
?AM2,A<CR>

This example would search for the absolute file "AM2H

on the ACR. After finding the file, it would be
skipped and control returned to the monitor.

Page 7

Utility Programs

The monitor includes 9 utility programs:
CLR - Deletes a program name from the PTL.
OPN - Opens a symbolic device name to a physical device.
CLS - Removes a symbolic device name from the I/O table.
DEP - Used to change contents of memory locations.
EXM - Used to print in octal the contents of memory.
JMP - Causes the machine to start executing at any location.
DMP - Dumps out memory in the checksum format.
NUL - Sets the number of nulls to output after a <CR>.
CNS - Console command

All numbers typed as parameters to these programs should be octal.

1. OPN

This program is used to assign different physical
devices to a symbolic name making programs device
independent.

?OPN ABS,TY<CR>
This command opens the symbolic name "ABS" to the
teletype. In this type of OPN the mode default would
be assumed. These are:

No echo - Don't echo input.
Absolute - All 8 bits of every read are
transmitted.
Tabs - A Control I is output.

The options are:
E - Echo all input on TTY
A - ASCII mode, high order bit of characters
masked to 0 and the line format described in
Appendix F is recognized. Even parity is
generated on output.
T - Tab control. Spaces are printed to force
cursor into a column that is an even multiple
of 8 from the left margin. The tab character
is Control I (HQ) .

The options are specified at the end of the command
seperated by commas. The order that they occur is
irrelevent. If the symbolic name is already open when
another command to open it is given, the symbolic name
is reopened according to the new command.

2. CLS

Closing a symbolic name removes the name from the I/O
table making the name unavailable until it is reopened.

?CLS ABS<CR>
In this example "ABS" is now closed meaning that no
program should be executed that reads or writes on
"ABS" . If an I/O operation is attempted the program
will abort, causing the monitor to print an error
message.

Page 8

3. CLR

This command deletes a program name from the PTL.
?CLR EDT<CR>

After giving the above command
?EDT<CR>

will cause the monitor to try to reload the EDITOR.

4. DEP

This command lets the programmer modify memory
locations directly from the monitor. The format is:

?DEP ADDRESS<CR>
All octal numbers typed after this command will be
deposited starting at the address given. Typing a
Control Z returns control to the Monitor.
Example:

?DEP 5000<CR>
25<CR>
50<CR>
175<CR>
<CONTROL Z> ?
Location 5000 would now contain an octal 25,5001 a 50
and 5002 a 175.

5. EXM

The format of the examine command is as follows:
?EXM ADDRl[,ADDR2]<CR>

The contents of memory locations are dumped out in
octal starting at the location specified by ADDRl,
through ADDR2. If ADDR2 is not given or is = ADDRl
only the location at ADDRl is printed.
Example:

?EXM 100<CR>
303

?EXM 100,101<CR>
303
153

?EXM 100,0<CR>
303 ?

Page 9

6. JMP

The format of the jump command is as follows:
?JMP ADDRESS<CR>

The jump command causes the machine to start executing
at the address given in the command. All registers are
loaded from the save area prior to jumping.
Caution: Make sure SP register will be loaded with
address of memory that can be used for a stack. For a
further explanation of the save area see section 8 of
the Program Monitor Calls.

7. DMP

The format of the dump command is as follows:
?DMP [NAME,]ADDRl,ADDR2[,START ADDRESS]<CR>

The name field of the command should contain the 3
character name of the program followed by any comments.
The only restriction is this field should not contain a
comma. ADDRl is the address of the first location to
be dumped and ADDR2 is the address of the last to be
dumped. If a start address is not specified the
monitor will automatically be returned to when the tape
is loaded.
Example:
You want to dump a program located at 5100Q - 5352Q,
name it TST, put in a comment indicating it is the
first draft of the program and have it start executing
at location 5100Q.

?DMP TST REVISION 0,5100,5352,5100<CR>

8. NUL

The format of the NUL command is as follows:
?NUL NUMBER<CR>

This causes the number of nulls specified to be output
after every carriage return written in the ASCII mode.
It is adviseable to use this command before saving long
program files on cassette or paper tape as this insures
no characters will be missed during assembly.
Examples
Before saving a program on audio cassette give the
following command;

?NUL 4<CR>

9. CNS

The console command is used to switch between terminals
connected to your Altair. Before giving a console
command, set the sense switches to indicate the type of
I/O board to switch to(See Appendix E). If the I/O
port address is not the same as the default listed in
the terminal options chart, flip sense switch 8 up and
deposit the I/O port address at location 572Q.

Page 10

Program Monitor Calls

The following section decribes how a user v/ritten program can use
features of the Monitor to free him of the need to write I/O handlers
for each program he writes.

Before any call to the monitor is preformed the BSC register pair
must contain the address of a monitor control block. A monitor control
block is used to specify the operation to be performed, symbolic device
to use, etc. The monitor is called by executing a CALL 10. All
registers are restored before returning to the calling program, and the
monitor control block is left unchanged. The example program at the end
of the assembler programming section uses monitor I/O.

1. READ
LXI B,RDPKT ;LOAD B&C WITH ADDRESS OF THE

;MONITOR CONTROL BLOCK
CALL 10 ;CALL THE MONITOR

- DONT PUT MONITOR CONTROL BLOCK NEXT IN YOUR PROGRAM -
RDPKT: DB 20Q OPERATION CODE FOR READ

DB "SDN" SYMBOLIC DEVICE NAME
DW INBUF ADDRESS OF THE BEGINNING OF

THE INPUT BUFFER
DW 80 MAXIMUM NUMBER OF CHARACTERS

TO BE READ IN
DW STAT ADDRESS OF STATUS WORD
DW END END OF FILE RETURN ADDRESS

After the read has been completed the status word
contains the number of bytes read in.

2. WRITE
LXI B,WRPKT LOAD B&C WITH ADDRESS OF THE

MONITOR CONTROL BLOCK
CALL 10 CALL THE MONITOR

WRPKT: DB 22Q OPERATION CODE FOR WRITE
DB "SDN" SYMBOLIC DEVIE NAME
DW OUTBUF ADDRESS OF THE OUTPUT BUFFER
DW 80 NUMBER OF BYTES TO WRITE OUT
DW STAT ADDRESS OF STATUS WORD

When the monitor returns the status word contains the
number of bytes output.

3. OPEN
LXI B,OPNPKT jLOAD B&C WITH ADDRESS OF THE

MONITOR CONTROL BLOCK
CALL 10 CALL THE MONITOR

OPNPKT: DB 63Q OPERATION CODE FOR OPEN
DB "SDN" SYMBOLIC DEVICE NAMED TO BE

OPENED
DB "TY" DEVICE TO BE OPENED TO
DB XXX HARDWARE CONTROL BYTE

The hardware control byte specifies echo control and
and ASCII or absolute read mode.
Bit 1 - 1 for ASCII read modef 0 for absolute
Bit 2 - 1 for input echo, 0 for no echo
Bit 3 - 1 for tabs to be expanded, 0 for no expansion

Page 11

4. CLOSE
B,CLSPKT ;LOAD BSC WITH THE ADDRESS OF

;THE MONITOR CONTROL BLOCK
10 fCALL THE MONITOR
62Q ?OPERATION CODE FOR CLOSE
"SDN" ;SYMBOLIC NAME TO BE CLOSED

B,ERRPKT ;LOAD BSC WITH ADDRESS OF THE
;MONITOR CONTROL BLOCK

10 ,-CALL THE MONITOR
60Q ?OPERATION CODE FOR ERROR

?HANDLING ROUTINE
"X" ?ONE CHARACTER TO BE OUTPUT AS

;ERROR MESSAGE
The character specified followed by a # sign will be
echoed by the monitor instead of the next 2 characters
that would normally be echoed.

6. PASS PROGRAM NAME
LXI

CALL
PASPKT: DB

DB
DW

The 5 bytes of name and address are copied into the PTL
and the program jumped to.

7. FIND ASCII FILE
LXI

CALL
FFPKT: DB

DB
DB

This call causes the monitor to search for the named
program on the physical device the symbolic device name
is open to and return to the calling program as soon as
it is found.

8. Returning to the Monitor
When a program has finished its job and wishes to
ruturn to the Monitor, a JMP MON will be needed. All
registers are saved in the register save area and the
stack pointer it reloaded to delete anything left on
the stack. The address of the monitor is on the stack
when a program is executed by the monitor, so if your
program has left nothing on the stack, a return
instruction can be used to return to the monitor.

LXI

CALL
CLSPKTs DB

DB

5. ERROR
LXI

CALL
ERRPKT; DB

B,PASPKT jLOAD B&C WITH ADDRESS OF THE
;MONITOR CONTROL BLOCK

10 ;CALL THE MONITOR
51Q ;OPERATION CODE FOR PASS NAME

?NAME ROUTINE
"PRG" ;3 CHARACTER PROGRAM NAME
PRG ;START ADDRESS OF PROGRAM

B,FFPKT

10
65Q
"SDN"
"FIL"

LOAD B&C WITH ADDRESS OF THE
MONITOR CONTROL BLOCK
CALL THE MONITOR
OPERATION CODE FOR A FIND FILE
SYMBOLIC DEVICE TO SEARCH ON
FILE TO BE SEARCHED FOR

Page 12

The symbols MON and 10 are permenant equates within the
assembler. The actual locations are - MON-100Q,
IO-103Q

When a program returns to the monitor either by jumping
to location 100Q, examining location 100Q and pressing
RUN , or by typing a Control C all registers are stored
in the register save area. The order they are saved in
is given below.

571 FLAGS
572 A - REGISTER
573 C - REGISTER
574 B - REGISTER
575 E - REGISTER
576 D - REGISTER
577 L - REGISTER
600 H - REGISTER
601 SP - REGISTER (LOW BYTE)
602 SP - REGISTER (HIGH BYTE)
603 PC - REGISTER (LOW BYTE)
604 PC - REGISTER (HIGH BYTE)

If a program is waiting for input from the TY and a
Control C is typed, the PC stored in the save area is
the address of the instruction following the monitor
call.

Note - 30 octal bytes of stack have been allocated for
user program use. If more stack space is needed, a LXI
SP instruction will be needed in your program to set up
its own stack.

III. ASSEMBLER OPERATIONS
IV. ASSEMBLY PROGRAMMING

Page 16

III. Assembler Operation

Introduction

Typical assemblers process source code by reading the same source
code 2,3, or 4 times to produce a load tape that must then be loaded
before executing the program. An assembler that requires that type of
procedure is extremely cumbersome for users with paper tape or cassette
magnetic tape input. Off-line storage is always required for assemblies
of this type. Further, high speed storage is desireable due to the
extensive I/O required during processing.

The Mits loading assembler was designed to process source code
directly into memory for immediate execution or to produce an absolute
load tape for later execution in the space occupied by the assembler.
The source code is processed only once, thereby producing executable
code in a minimum amount of time. Significant improvement in program
development time is achieved, especially for users with program input
rates under 100 characters/second. Furthermore, the assembler is still
resident in memory with the user program, so it can be used to patch
program errors during debugging. Since the patches can be entered in
symbolic source code and labels can still be assigned to correct
execution sequences, fewer errors are introduced in the debug process,
thus, complete programs can be input and developed with input from only
an ASCII keyboard and a minimal amount of memory(the Monitor and
Assembler require approximately 5k bytes).

The loading assembler allows direct assembly of programs to any
unused memory space or indirect assembly generating a load tape for
programs that need to reside in memory being used during the assembling
process. Program modules(parts) can be developed and debugged
seperately, then assembled with all source errors corrected for off-line
loading to other program space. The modules can be linked during
assembly using the preserved symbols from previous assemblies or by
defining names for referenced locations in other modules. Source
programs are input from a Monitor-defined device called "TTY" and all
selected output is to device "LST". Input can be selected from a source
file that was created by the Editor. The files can be assembled in any
sequence selected.

Page 17

Assembler Options

The assembler was designed as a module of the Mits operating system
to be loaded by the system monitor. The assembler is loaded from the
device ABS is open to when the assembler is executed for the first time.
The following execution options are possible when ever starting the
assembler.

ASM(A,S,P)

Where:
P=Preserve symbols entered during previous assembly(s).
Used for symbolic patches and program additions

S=Symbol table listing wanted at end. All defined
names and label symbols with corresponding program
addresses and the next program address($) are output

A=Absolute tape dump wanted at end. Binary output for
Monitor loading is output to "ABS"

All output begins at the first storage address that was defined by
the first ORG(or ORR when used) and continues to the current address.
Program addresses are used for the absolute tape dump and defined symbol
listings.
Warning*** If assembly is begun without the P option the symbol table is
cleared and is not recoverable.

Assembler Psuedo Op's

FILE Psuedo Op

The file input psuedo op forces source input to be read from
symbolic device "FIL". If a file name is given as an operand, a file
with that header is searched for before processing any input. The
source file must end with a Control Z or EOA psuedo op so that control
is restored to the Monitor at the end of file. Assembly can be
continued by entering the Assembler with the P-option.
Example:

FILE TWO ?INPUT FILE "TWO" FROM CASSETTE

END Psuedo Op

All of the entry options in the group(S,A) are performed each time
an END pseudo-psuedo op is encountered. The END statement will also
produce a listing of all undefined symbol names with program storage
locations that reference the symbol. If the A-option was selected, the
first 3-letters of the operand define the program name when loaded by
the Monitor. Up to 77 characters following can be used to document the
program(Revision, Date, etc.)
Example:

END PRG ;IF THE A OPTION WAS SPECIFIED
;THE PROGRAM WOULD BE DUMPED

Page 18

;WITH NAME PRG

EOA Psuedo Op

The Assembler will return control to the Monitor when an End Of
Assembly(EOA) pseudo-psuedo op is encountered. The Monitor prints a
prompt to indicate it is in control.

Memory Allocation

The user must understand the way that memory is used during the
assembly process to avoid errors and to use available memory in an
efficient way. The diagram in Appendix B illustrates the relative
storage used during assembly.

The user must estimate the symbol space needed for each assembly
before defining the first storage location. It should be apparent that
short symbols and few labels or names will increase the space available
for user program storage. A rule of thumb for estimating symbol table
space is to reserve 1 byte of symbol table space for each statement in
the program.

ORG Psuedo Op

This psuedo op is required to be the first statement of all
programs. It defines the memory your program will run in and and where
the Assembler should store it while the Assembler is running.

ORR Psuedo Op

If the address of the start of the program given by the ORG
statement does not allow enough space for the symbol table, an ORR
statement will be needed to set the address the program should be stored
at during assembly. Since the symbol table is built from the end of the
Assembler to this address, its maximum size can be set with this psuedo
op.
Example:

?ASM<CR>

ASM

ORG
ORR

5100Q
17000Q

WANT PROG TO LOAD AT 5100Q
SINCE ASSEMBLER IS AT 5100Q
A PLACE TO SAVE THE PROGRAM
DURING ASSEMBLY MUST BE SET UP

Page 19

DS PSUEDO OP

STORAGE IS ALLOCATED WITH THE DS PSUEDO OP. THE VALUES OF BYTES IN
THE SPACE ARE NOT CHANGED AND SHOULD NORMALLY BE PRESET DURING EXECUTION
PRIOR TO USE. THE OPERAND MUST BE A DEFINED SYMBOL(EQU OR SET TO A
CONSTANT) OR A CONSTANT VALUE. A LABEL SYMBOL DEFINES AN ADDRESS WHICH
SHOULD NOT GENERALLY BE USED FOR A STORAGE OPERAND. A DS PSUEDO OP IS
GENERALLY PRECEDED BY A LABEL USED TO REFERENCE THE STORAGE ALLOCATED
DURING PROGRAM EXECUTION.
EXAMPLE:
LABEL: DS 20 ;THIS RESERVES 20 BYTES OF MEMORY

DW Psuedo Op
An address word or two byte quantity is preset(assigned during

assembly) by using the DW psuedo op. The 2-byte value is stored with
the least significant byte in the first memory address and the most
significant byte in the next higher memory location. This feature is
the same as all 2-byte operands for machine opcodes(i.e. JMP, LXI,
etc). This arrangement is convenient because it allows byte references
to the least significant byte using the same label as a word reference.
Multiple operands are allowed and must be separated with a space or
comma.
Example:
LABEL: DW LOC ?THIS STORES THE 2 BYTE ADDRESS OF LOC

DB Psuedo Op
All bytes constants are defined by using the DB psuedo op Multiple

operands can be used. All operands define one byte of storage except
string or literal constants which are stored as one ASCII character per
byte. Each operand must be separated by a space or comma.
Example:

DB 0 ?STORES THE CONSTANT 0 IN 1 LOCATION
DB "THIS IS A STRING CONSTANT"

;THE ABOVE STRING WOULD BE STORED 1 CHARACTER
;TO A BYTE, SO IT WOULD TAKE 25 MEMORY
?LOCATIONS

DC Psuedo Op

The define character psuedo op is used to define literal constants
of determinable length. All characters except the last have their high
order bit masked to zero, but the last character has it set to one. The
last character can then be found by searching for a character with its
high order bit on.
Example:

DC "AB" ;STORES THE CHARACTERS IN 2 CONSECUTIVE
;MEMORY LOCATIONS WITH THE HIGH ORDER BIT OF
;THE LAST CHARACTER TURNED ON.

Page 20

EQU Psuedo Op

A symbol can be defined prior to use by assigning it a value equal
to a specified constant or another label that has already been defined.
A symbolic name(not a label) is defined by using the EQU psuedo op and a
defined operand. The EQU psuedo op cannot be used to change the value
assigned to a name. Refer to the SET psuedo op.
Example:
ONE EQU 1 ?THIS SETS THE VALUE OF ONE = TO 1

MVI A,ONE jTHIS WOULD NOW BE THE SAME
? AS MVI A,1

SET Psuedo Op

A name can be changed or reassigned by using the SET psuedo op in
the same manner as the EQU psuedo op. It can also be used to assign a
value the first time a name is defined.

BEG Psuedo Op

The operand of the BEG psuedo op in a program sets the begin
execution address, output by the Assembler during an absolute dump. If
the BEG psuedo op is not found, a start address of 100Q will be assumed,
causing a return to the Monitor after the program loads.

RUN Psuedo Op

The operand of the RUN psuedo op is returned as a program name
along with the address from the latest BEG statement to be entered into
the PTL. The address of the BEG statement is then branched to. This
psuedo op should only be used during on-line assembly(no ORR statement).

IV. Assembler Programming

Assembly programs include symbolic names,constants, opcodes and
comments in sequential statements that are converted by the Assembler to
produce executable machine instructions. Each line or program statement
of source code must follow certain rules that govern the acceptable
structure of the program. If they are not observed, assembly or
execution errors will occur. This section will define the form that is
acceptable to the Mits Loading Assembler.

Character Set

The entire 128-character ASCII character set is acceptable but all
opcodes are defined in capital letters. Any combination of characters
beginning with a non-numeric character can be used for statement labels
or symbolic names. The maximum length for these symbols is 255
characters, but to minimize symbol table length, they should be kept as
short as possible.

Page IB

Constants

Constants can be used whenever an operand is required. All
constants begin with a numeric character and can end with an alphabetic
character that defines the radix of conversion. If the last character
is numeric, the conversion defaults to decimal. Legal conversions are
as follows:

12340 OCTAL
5678Q OCTAL(8 CONVERTS AS 0)
12345D DECIMAL
0ABCD DECIMAL(A CONVERTS AS 1,ETC.)
057EFH HEXIDECIMAL

NOTE: Values are first masked leaving only the significant binary
quantities, thus alphabetic conversions are legal. Byte values are set
equal to the converted value using modulus 256 arithmetic. Similarly,
overflow of 16-bit constants(words) during conversion is ignored.

String or literal constants are defined by enclosing all characters
in " symbols. The " symbol cannot be defined in a string constant.
Example:

DB "THIS IS A MESSAGE" ?THIS IS A CONVENIENT
;WAY TO STORE A MESSAGE FOR OUTPUT
;DURING PROGRAM EXECUTION

WARNING****** Only one character should be used if a single byte operand
is required(i.e. MVI A,"ABC" will store 4 bytes).

Statement Structure

The assembly source statements may include any of the following in
the order given:

1. Symbolic label of any length terminated by a colon(:). The
symbol can include any ASCII character except delimiters(Space, TAB, or
Comma) in any combination including instruction opcodes. The following
symbols are predefined values.

$s=Next program byte address
following are only valid byte(not word)values.

B,C,D,E,H,L,M,A=0,1,2,3,4,5,6,7 respectively
SP and PSW=6

2. A name is the same as a label except that a terminating colon
is not used. A name is used in place of a label and remains undefined
until a defining pseudo opcode is encountered (i.e. Equ, SET).

Page 22

3. Opcode(s) or pseudo opcode(s) with required operands. All
opcodes that are defined in the Altair 8800 Operators Manual and All
pseudo-op's defined in section III are acceptable to the Assembler.

4. Comments are used to document the source code but are not
required by any statement. Comments begin with a semi-colon(;) which
terminates assembly of all following ASCII characters on the line.
Lines that begin with a semi-colon contain only comments.

Statement Options

All register pair instruction operands can reference either of the
two 8-bit registers in the pair.

Thus—
POP A is the same as POP PSW
LXI L is the same as LXI H
DCX C is the same as DCX B

Multiple instructions can appear on the same line of source code.
This feature can be used to minimize the number of characters on a
source tape and in some cases improves the program readability.

MOV B,H MOV C,L
RAR,RAR

The delimiters SPACE, TAB, or COMMA can be used anywhere in the
line to improve readability.

Statement Formats

it it

[LABEL:] MNEMONIC [OPERAND FIELD] [?COMMENTS]
* (THIS FORMAT IS USED FOR ALL STATEMENTS EXCEPT EQU AND SET) *
* *
NAME MNEMONIC OPERAND FIELD [?COMMENTS]
* (THIS FORMAT IS USED FOR EQU AND SET STATEMENTS) *
it it

Programming Tricks

The choice of opcode(s) to use to achieve a specific result is
generally based on the generally accepted criteria that a program should
use a minimal amount of space and should execute as rapidly as possible.
Often one consideration is sacrificed in favor of the other but certain
practices should always be avoided in favor of another which produces
the same result at less cost in time or storage. The following
practices are recommended:

Page

1. Avoid the instruction sequence
CALL Subroutine
RET

in favor of
JMP Subroutine

The JMP statement will return to the same place without need for
the RET thus saving one byte of program storage.

2. Avoid CPI 0
which requires two bytes of storage

in favor of
ORA A

which requires one byte of storage
All flag bits are affected in the same manner without changing

the contents of the A-register.

3. Avoid PUSH B,POP H
or similar register contents transfer

in favor of
MOV H,B MOV L,C

which executes in less time.

4. If a series of MVI 2-byte instructions are used followed by a
jump to the same address,less storage can be used by LXI B(DB 1)
replacing the jumps saving two bytes.

For Example:

AERR: MVI A,"A" AERR: MVI A, " A"
DB 1 JMP ERR

BERR: MVI A,"B" BERR: MVI Af"B"
DB 1 JMP ERR

etc.

ERR:

A JMP to any MVI to set the "ERR" code will load the A-reg with the
character to be output and will skip over the rest by executing the DB 1
as LXI B,XXXX where XXXX is the two-byte MVI instructions. the contents
of B&C will change. Other register pairs can be used similarly.

Page 24

Example Program

A sample program and assembly are given to illustrate the operation
of the assembler and use of the monitor calls for output.

The sample program will dump out any section of memory in octal as
shown later in the example. This type of memory dump can be very useful
in debugging programs. In order to use this program, change the
addresses at locations FIRST and LAST to the address of the first and
last memory location you want dumped.

?ASM(A,S)

ASM

DUMP:

NEWLN:

ORG 20000Q

LHLD FIRST
XCHG
LXI H ,BUF
PUSH H
LHLD LAST
MOV A, L
SUB E
MOV A,H
SBB D
POP H
JC MON
MOV A,D
RAL
MVI A, 0
RAL
ORI 60Q
MOV M, A
INX H
MOV A,D
RAR
RAR
RAR
RAR
AN I 7
ORI 60Q
MOV M, A
INX H
MOV A,D
RAR
AN I 7
ORI 60Q
MOV M, A
INX H
MOV A,D
RAR
MOV A,E
CALL LAST3

SET LOCATION COUNTER
WILL NEED TO BE CHANGED IF ONLY 8K MACHINE
GET ADDRESS OF FIRST BYTE TO BE DUMPED
PUT ADDRESS IN D&E
GET ADDDRESS OF OUTPUT BUFFER
SAVE ADDRESS
LOAD ADDRESS OF LAST BYTE TO BE DUMPED
SUBTRACT LOW ORDER BYTES

SUBTRACT HIGH ORDER BYTE

RESTORE H&L
JUMPS OUT IF NO MORE BYTES TO BE DUMPED
START CONVERSION OF ADDRESS TO ASCII
ROTATE HIGH BIT INTO C
ZERO OUT REST OF A BUT DONT CHANGE FLAGS
ROTATE HIGH BIT INTO LOW ORDER POSITION
OR IN ASCII 0
STORE IN OUTPUT BUFFER
INCREMENT BUFFER POINTER
PICK UP HIGH ORDER BITE AG&2N
?ROTATE BITS 4,5,6 INTO LOW ORDER POSITIONS

MASK OFF ALL BITS EXCEPT LOW THREE
OR IN ASCII 0
STORE IN OUTPUT BUFFER
INCREMENT POINTER INTO OUTPUT BUFFER
PICK UP HIGH BYTE OF ADDRESS
ROTATE BITS 1,2,3 INTO LOW ORDER POSITION
MASK OFF ALL BITS EXCEPT LOW THREE
OR IN ASCII 0
STORE IN OUTPUT BUFFER
INCREMENT POINTER INTO OUTPUT BUFFER
PICK UP HIGH BYTE OF ADDRESS
SAVE LOW BIT IN THE CARRY FLAG
? PICK UP LOW BYTE OF ADDRESS
jCALL SUBROUTINE THAT CONVERTS 3 DIGITS

Page 25

NXTNUM:

CHKLN

LNDN:

BLANK
BL:

LAST3

MVI B,8 ;LOAD B WITH NO OF BYTES TO DUMP PER LINE
PUSH H ;SAVE H&L
LHLD LAST ;LOAD ADDRESS OF LAST BYTE TO DUMP
MOV A, L ;DO THE DOUBLE WORD COMPARE AGAIN
SUB E
MOV A, H
SBB D
POP H ;RESTORE THE H&L REGISTERS
JC LNDN ;JUMP TO ROUTINE TO FINISH UP IF DONE
MVI C,5 ;IF ANOTHER TO COME SEPERATE THEM BY 5 BLANKS
CALL BLANK
XRA A SET THE CARRY FLAG TO 0
LDAX D GET BYTE TO DUMP
CALL LAST3 CALL ROUTINE TO CONVERT 3 DIGITS
INX D INCREMENT POINTER TO DUMP NEXT BYTE
DCR B DECREMENT LINE BYTE COUNTER
JNZ NXTNUM CONVERT NEXT NUMBER IF IT WILL FIT ON LINE
LXI B f OUT GET ADDRESS OF MONITOR CONTROL BLOCK
CALL 10 WRITE OUT LINE
JMP NEWLN JUMP TO WRITE OUT NEXT LINE
MVI C f 8 PAD LINE WITH 8 BLANKS FOR EACH NUMBER THAT
CALL BLANK WOULD FIT
DCR B DECREMENT NUMBERS THAT COULD FIT IN LINE
JNZ LNDN LOOP UNTIL LINE FILLED WITH BLANKS
LXI B,OUT GET ADDRESS OF MONITOR CONTROL BLOCK
JMP 10 WRITE OUT LINE
MVI A, 40Q PUT A ASCII BLANK IN A
MOV M, A STORE IT IN THE OUTPUT BUFFER
INX H INCREMENT THE OUTPUT BUFFER POINTER
DCR C DECREMENT THE NUMBER OF BLANKS TO STORE
JNZ BL LOOP UNTIL ALL STORED
RET RETURN TO CALLER
PUSH PSW SAVE BYTE TO CONVERT
RAL ROTATE CARRY AND HIGH 2 BITS TO LOW ORDER
RAL POSITION
RAL
AN I 7 MASK OFF ALL BUT LOW ORDER THREE BITS
ORI 60Q OR IN A ASCII 0
MOV M,A STORE DIGIT IN OUTPUT BUFFER
INX H INCREMENT THE OUTPUT BUFFER POINTER
POP PSW POP BYTE TO CONVERT
PUSH PSW SAVE FOR LATER ALSO
RAR ROTATE BITS 3r4,5 INTO LOW ORDER POSITION RAR
RAR
AN I 7 MASK OFF ALL BUT LOW THREE BITS
ORI 60Q OR IN AN ASCII 0
MOV M,A STORE DIGIT IN OUTPUT BUFFER
INX H INCREMENT OUTPUT BUFFER POINTER
POP PSW POP BYTE TO CONVERT
AN I 7 MASK OFF ALL BUT LOW THREE BYTES
ORI 60Q OR IN ASCII 0
MOV M,A STORE DIGIT IN OUTPUT BUFFER
INX H INCREMENT OUTPUT BUFFER POINTER
RET RETURN TO CALLER

Page 26

OUT: DB 22Q ?MONITOR WRITE OPERATION CODE
DB "LST" ;SYMBOLIC DEVICE TO WRITE ON
DW BUF ;ADDRESS OF OUTPUT BUFFER
DW 72 ;WRITE OUT 72 CHARATERS
DW STAT ;ADDRESS OF STATUS WORD

STAT: DW 0
FIRST: DW 15100Q
LAST: DW 15272Q
BUF: DS 70 ?RESERVE 70 MEMORY LOCATIONS

DB 15Q ;ASCII CARRIAGE RETURN
DB 12Q ;ASCII LINE FEED
BEG DUMP ;SETS ADDRESS OF PLACE TO START

;PROGRAM
END DMP

SENSE SWITCH 15 FOR DUMP
NOTE: AT THIS POINT THE PUNCH OR OUTPUT TAPE IS READIED FOR
OUTPUT OF THE PROGRAM IN ABSOLUTE BINARY FORMAT(APPENDIX A).
OUTPUT DONE

UNDEFINED SYMBOLS

SYMBOL TABLE
DUMP 020000
FIRST 020234
NEWLN 020004
BUF 020240
LAST 020236
LAST3 020165
NXTNUM 020067
LNDN 020133
BLANK 020154
CHKLN 020116
OUT 020222
BL 020156
STAT 020232
RUN DMP
015100 104 040 002
015110 007 001 110
015120 040 005 007
015130 002 123 120
015140 123 127 040
015150 000 000 000
015160 377 377 377
015170 377 377 377
015200 000 000 000
015210 000 022 114
015220 000 073 033
015230 000 016 000
015240 120 000 040
015250 032 110 000
015260 115 101 107
015270 043 007 122

007 001 105 040 003
040 004 007 001 114
001 115 040 006 007
040 006 007 003 120
006 007 001 044 040
000 000 000 000 000
377 377 377 377 377
377 377 377 377 377
000 000 000 000 000
123 124 272 032 016
022 115 101 107 000
073 033 061 104 115
020 115 101 107 272
073 033 335 017 065
377 377 377 060 000

V. EDITOR

Paqe 24

V. Text Editor

The editor is used to create and modify source program files using the
four editing commands. These now include the alter command, used to
make corrections within a line, eliminating the need to replace all
mistyped lines. The insert, delete, and replace command are still
included and have been improved to ease the job of modifying a program.

Symbolic device names used by the Editor

Before running the editor, all symbloic device names used by it are open
to the TY, and need to be changed only if the device is not correct.
They are listed below along with mode information needed for proper
operation.

FIL - File I/O device name
A - ASCII read mode should be specified
T - Tabs should not be specified
E - Can be speified if the user wants a listing

Tabs will not be expanded
ALT - Alter command I/O

A - ASCII mode should not be scecified
T - Tabs should be specified
E - Echoing should not be specified

LST - Write and print command I/O
A - ASCII mode should be specified
T - Tabs should be specified
E - Echoing is not used during writing

Buffer Area

The first 2 K of memory following the editor is allocated as a
buffer to store the lines of text that you are editing. If the size or
location of this buffer area need to be changed, two addresses within
the editor must be changed. Starting at location 5124Q is the address
of the beginning of the buffer and the address of the end of the buffer
starts at location 5530Q.

Loading the Editor

Open symbloic device ABS to the AC or TY depending on whether your
copy of the editor is on audio cassette or paper tape. The editors file
name is EDT and is loaded by typing EDT<CR> .
Example:
To load the Editor from paper tape type:

?OPN ABS,TY<CR>
?EDT<CR>

(TURN ON PAPER TAPE READER)
START INPUT

Page 29

* (The astrisk it printed whenever the editor is ready for a
command)

If after completing an edit and returning to the monitor you want
to use the editor again, type:

7EDT<CR>
START INPUT
*
If you would like to continue editing lines left in the editors buffer
area when you last exited the editor, use the R execution option.
Example.

?EDT(R)
*
Start input is not printed in this case and the buffer is not
reinitialized. This feature is especially useful when assembling
directly from the editors buffer.

Range and Line Number Specifications

When a range is called for by an instruction, the following syntax
is required.
Line Number,[Line Number]

Line Numbers

Three types of line numbers are now recognized by the Editor. They
are as follows:
NUMBER(N) THE N'TH LINE IN THE BUFFER.
.[+ OR - NUMBER] RELATIVE ABOUT THE CURRENT LINE.
*[- NUMBER] RELATIVE ABOUT THE LAST LINE IN THE BUFFER

EXAMPLE. * p *

Prints the last line in the buffer.
*P10
Prints the tenth line in the buffer.
*P.+10
Assuming this command was executed after the P10 command, line 20 would
be printed.

Editor Commands

I [Line Number] Insert Command

The insert command causes the editor to enter the insert mode at the
line specified. After all lines to be entered have been typed, type a
Control Z to return to the command level of the editor. If no line
number is typed all lines are inserted before the first line.

Page 30

D Range Delete Command

Deletes all lines in the specified range.

R Range Replace Command

Deletes the lines in the range and enters the insert mode.

p [Range] print Command

Prints all lines within the range or all lines in the buffer if no range
is given. Line numbers are printed to the left side of the lines.

F[String][<ESCAPE>[Line Number]]

The find command searches the buffer area starting at the given line
number, printing the first line it finds the string in. If no string is
given, the string from the last find command issued is searched for. If
no line number is typed, the editor starts searching at the current line
plus 1 (ie .+1). The escape is optional when not typing a line number.

S Save File Command

Save command prints
FILENAME^
An optional 3 character file name is typed followed by a carriage
return. The editor responds by typing CHANGE SENSE SWITCH 15 as soon as
this message has finished printing turn on the device the file is to be
dumped on. Change tHe position of sense switch 15 to indicate the
device is ready. When all lines have been dumped, the editor returns to
the monitor. When a file name is given, a header block is written
containing the file name. If no file name was typed, no header block is
output.

L Load File Command

The load command prints
FILENAME=
An optional 3 character file name is typed, followed by a carriage
return. If a file name is typed, a header block containing the proper
file name is searched for and the file following it is loaded into the
buffer. If no file name is typed, all lines are loaded until an end of
file is read. This command reads files from symbolic device FIL.

W [Range] Write Command

Same as print command except line numbers are not printed.

String Search Command

Paqe 27

< ESCAPE> Backup Command

If an escape is typed to the editor a dollar siqn is echoed and and the
current line minus l(ie .-1) is typed.

< LF> Next Line Command

If a line feed is typed to the editor the current line plus l(ie.+l) is
pr inted.

E Exit Command

Causes the editor buffer read pointer to be reset to the beginning of
the buffer, and returns to the monitor.

A Line Number Alter Command

The alter command puts the Editor into xAlter mode, allowing the
programmer to change lines without replacing them. The following
command characters are recognized but not echoed, and all commands can
be prefixed by a repetition factor of up to six digits. This repetition
factor is refered to as "N" in the following description, and is assumed
to be one(l) if not given.

Alter Mode Commands

D - Deletes the next n. characters in line. A slash is output
followed by all characters deleted and a closing slash.
Example:
The current line is
BLAB: MOV A,B
*A. Give Alter Command
You type 3D and the editor responds by typing /BLA/ indicating
that BLA has been deleted from the line.

I - Inserts all characters typed after the I into the line at
the current current place in the line. All characters are
echoed and typing an <ESCAPE> will get you back to the alter
mode.

R - Deletes the next N characters in the line and enters the
insert mode.

S - Typing a S followed by any character will cause a search
for the N'th occurance of that character.

Blank - Typing a blank will cause the next N characters in the
old line to be copied into the new line and be printed out.

<CR> - Typing a carriage return will print out the rest of the
old line, inserting the characters at the same time into the
new line. The old line line will the be replaced by the new
one and control is returned to the command level of the editor.

Page 32

0 - Causes control to return to the command level of the editor
without replacing the old line. This command is used to abort
an alter during which you made a bad mistake.

Sample Edit

In the following example characters typed as alter mode commands that
would not be echoed are inclosed in parenthses.

?EDT<CR>
START INPUT
*I<CR>
THIS IS A DEMONSTRATON
OF THE EDITOR.
<CONTROL Z>
*A1<CR>
(2ST)THIS IS A DEMONSTRA(<SPACE>)T(I)I(<ESCAPE>)<CR>
*W<CR>
THIS IS A DEMONSTRATION
OF THE EDITOR.
*A2<CR>
(3< SPACE>)OF (2D)/TH/<CR>
W2<CR>
OF E EDITOR.
A.<CR>
(SE)OF (R)/E/THE(<ESCAPE>)<CR>
*W<CR>
THIS IS A DEMONSTRATION
OF THE EDITOR.
*E<CR>

VI. DEBUG

Page 34

DBG DOCUMENTATION VER 1.0

package Summary:

The DEBUG package provides the user with the following capabilities:

1) Display memory locations, registers, or flags in any of
several output I/O modes (including a symbolic
instruction mode).

2) Modify memory locations, registers, or flags using
corresponding input modes.

3) Set (or display or remove) breakpoints in the code to
be debugged.

4) Enter and execute user code either
A) at a specified location or
B) automatically in such a way as to proceed

properly from the most recently encountered
breakpoint.

The commands accepted by DBG are 1-character commands or combinations of
1-character commands and data. These commands will be described in the
remainder of this document.

Note: In the examples that follow, <CR> represents a carriage return
character, <LF> a line feed, <RUBOUT> a delete character, <TAB> a tab
(Control-I), <UPARROW> a

Numbers may be typed in either as octal (the default) or as decimal by
preceding the number with a number sign (#). Therefore #255 is equal to
377. It a single byte value is expected and a value greater than 377 is
input, only the low order eight bits (byte) of the value is used.

RUBOUT:

If in the course of entering commands or data an error is made, a rubout
character can be typed at any time to abort user input. DBG will type a
question mark (?) and begin accepting commands on a new line.

I/O Modes:
Information is usually displayed and then re-entered in accordance with
the current I/O mode. The I/O mode can be set by typing an ESCAPE or
dollar sign (echoed $) followed by a character that specifies the I/O
mode:

$0 Specifies octal mode.
$D Specifies decimal mode.
$W Specifies double byte octal mode.
$A Specifies ASCII mode.
$S Specifies symbolic instruction mode.

Page 33

$0 Mode /

In octal mode, each location is typed as an octal value between 0 and
377. The line feed or up arrow characters always advance or back up the
location counter by 1. Input is expected to be a one byte value between
0 and 377. Example:
10/ 0 55<CR>
10/ 55 #48<CR>
10/ 60

$D Mode

Decimal I/O mode is identical to $0 (octal) mode except that output is
decimal and input is always assumed to be decimal (no number sign should
precede input).

$W Mode

In double byte octal mode ($W) the location and location plus one are
interpreted as a double byte (16 bit) quantity. Assuming location 10
contains 0 and location 11 contains 1, then:
$W 10/ 400 200
10/ 200 <LF>
12/ 0

Line feed and up arrow always add or subtract two from the location
counter.

The value re-entered in $W mode (the 200 in the above example) is
interpreted as being a 16 bit (double byte) value and is stored in
memory low order byte first, high order byte second.

$A Mode

ASCII mode is used to type out or input ASCII information. When a
location is opened in ASCII mode, the ASCII representation of the byte
store in there is typed:
$0 10/ 0 101<CR>
$ A/
10/ A
When ASCII information in input, DBG expects the user to type a
delimiter, a string of ASCII characters, and then a terminating
delimiter which is the same as the initial delimiter.
Example:

Page 31

10/ A "B"

This enters the character B into location 10. The delimiters(") are not
stored in memory. Multi character strings may be entered:

10/ B "POO"

(Note: One should not try to use the special characters <CR>, LF>,
<TAB>, <ESC OR $>, <RUBOUT>, =, !, . , + , - , / as delimiters as
these characters have special meanings for DBG. Double quote and single
quote should suffice for most string entry.) Typing slash (/) after a
string has been entered will reopen the first location in the string:

10/ A "FOO"/
10/ F

Typing <LF> after a string has been entered will open the location after
the last location stored in:

10/ A "FOO"<LF>
13/ Z

The only character which may not be entered in an ASCII string is
< RU30UT>. <RUBOLJT> may be used to terminate the entry of an ASCII
string. However, any characters that had been entered prior to the
typing of the slash are still there.
10/ A "FO<RUBOUT>

10/ F <LF>
1 1 / 0

Special note: The high order bit (D7) of data entered via $A mode
always be set to zero.

$S Mode

Symbolic (instruction) mode is used to type out locations as if
were instructions, and to enter instructions into memory using
mnemonics. Example (suposing locations 7-16 octal contained 0):

$S 5/ NOP LXI H, 8192<LF>
10/ NOP MVI B,100<LF>
12/ NOP MVI M,0LF>
14/ NOP DCR B<LF>
15/ NOP JNZ 12<LF>
16/ NOP JMP 100<CR>

In this example, a short program has been entered to set the 64 decimal
bytes starting at location 8192 decimal to zero. After it tinishes, the
program returns to the monitor by jumping to location 100 octal.
Decimal numbers may be used in the address or immediate fields of an
instruction by preceding them with a number sign (#). DBG may be used
in tne fashion demonstrated above to 'improvise' programs. After they
have been written and debugged, the monitor DMP command may be used to

will

they
their

Pa \i: 12

store them on cassette or paper tape. The symbolic I/O mode is o f t e n
very useful in patching or changing instructions in existing programs ro
fix bugs temporarily before the source code is re-assembled.

<LF> in symbolic mode opens the location which is the current location
plus the number of bytes of the instruction typed out (or just entered)
- 1 .

<UPARROW> opens the current location minus the number of bytes of the
instuction typed out (or just entered). This may or may not be
meaningful, as the previous intruction may not be the same number of
bytes as the one just typed in or displayed.

The default mode (when DBG is first entered) is octal.

Slash:
A memory location can be displayed by typing its octal address followed
by a "/". This address may be octal or decimal and is independent of
the I/O mode. Thus

30/
or

#24/

Will cause the contents of octal location 30 to be displayed in the
current I/O mode. In the case of symbolic I/O mode, up to 3 bytes (e.
g. a JMP) may be displayed depending on the type of instruction found
in the first byte. Registers can also be displayed by typing a "/"
after their 1-character names. For example

L/
Will cause the contents of the 1 register to be displayed in the current
I/O mode. (The value actually displayed is not actually the L register
but a memory location used to maintain the user's L register while DBG
executes.)
The flag register (condition codes) is displayed similarly by typing
F /
Since the contents of the flag register is usually interpreted as
settings of the carry (C) zero (Z) sign (S), parity (P) and half carry
(H) flags, a special type out mode has been provided so the user can
display the flags in a meaningful fashion without having to interpret
the octal value of the flags:

F/ 106 1ZP

Page 3 3

In this example, the flag register was opened in octal mode. In order
to display which flags were set, the character ! was typed and the
debug package typed back •ZP' which meant that the zero and parity flags
were set. The exclamation character may be used to type out any
loctaion in 'CONDITION CODE1 format. This can prove useful when
examining condition codes that have been pushed on the stack by the
'PUSH PSW' instruction.

There is no corresponding method to enter condition codes symbolically.
The user must re-enter any change he wishes to make in the current I/O
mode (octal is suggested). See the table below under the F register for
the bit positions of the different flags.

The stack pointer may be displayed by typing:

S/
This will display the lower 8 bits of the stack pointer in the current
I/O mode. To display the high 8 bits, type linefeed. Typing TAB
(Control I) after opening the low eight bits of a register or location
will open the location pointed to by the register pair or double byte
memory pointer. i.e. to look at the byte pointed to by the H and L
registers, type:

L/ 4 <TAB>
5004/ <The contents of this location>

In this example, H would have contained 12 octal. A TAB is also useful
when the I/O mode is symbolic and a 3-byte instruction has just been
displayed. The current location pointer will be set to the address part
of the displayed instruction, and the contents at that new address will
be displayed. This feature permits simplified program tracing when
jumps and calls are encountered. If the last value displayed was not a
three byte instruction displayed in symbolic mode, then TAB will open
and display the location pointed to by the double byte (low byte first,
high order byte second) which reside in memory starting at the current
location (as in the previous example).

70/ JMP 5090 <TAB>
5000/ SHLD 4750

The user program registers are stored inside DBG when a breakpoint is
encountered during the execution of a user program. The order of the
registers in memory is as follows:

Page 4

REGISTER
NAME

F (CONDITION CODES)
BIT MEANING (IF = 1)

0 CARRY
2 EVEN PARITY (NUMBER OF ONES IN RESULT WAS EVEN)
4 HALF CARRY FOR BCD OPERATIONS
6 ZERO
7 SIGN (ONE MEANS MSB OF RESULT WAS 1)

A
C
8
E
D
L
H
S (STACK LOW EIGHT BITS)

(STACK HIGH EIGHT BITS)

Thus, once a particular register is opened, linefeeds, and/or uparrows
may be used to display the register above or below the one currently
opened.

DOT:

The address of the most recently displayed location is saved in a
"CURRENT LOCATION POINTER*'. The location at that address can be
redisplayed at any time (even after changing I/O modes) by typing

./
or simply

/
The dot (which can be optionally omitted) can be thought of as a symbol
for the address of the current display location. This pointer can be
offset in either direction using a + or - and a number. Thus:

. + 5/
displays the contents 5 locations after the current one, and

-33/
displays the contents of the location 33 octal locations before the
current one. (As before, typing of the is optional.)

Page 35

Multiple subtractions and additions may be performed to calculate
addresses or other sixteen bit (two byte) values:

100+20-30/
70/ 25

The equal sign (=)

The equal sign may be used to type out the current value of calculation:

100+20-30=70 -#8=60

Semicolon:

In general, whereas a slash can be typed at any time to display the
current location in accordance with the current I/O mode, a semicolon
can be typed at any time to display the current location in octal
independent of current I/O mode. The I/O mode is not changed by a
semicolon, but if location modifying information immediately follows the
octal display, the input information will be accepted in octal. Thus if
the current I/O mode were symbolic the octal equivalent of a symbolic
instruction at location 100 could be examined easily with a semicolon as
follows:

100/ MOV A,C; 171

Line Feed and Up-Arrow:

A line feed (usually typed after some location has been displayed)
causes the current location pointer to be advanced to the next location,
and that location will be displayed. This permits rapid display of
successive memory locations. If the current I/O mode is symbolic the
current location pointer advances by the number of bytes in the
instruction just displayed. Thus a rapid symbolic display of program
segments is possible.

The up-arrow command acts similarly to a line feed except that it
decrements rather than increments the location pointer.

Location Modification:

Immediately after a location has been displayed it is subject to
modification. (Susceptability to accidental modification at this point
can be removed by typing a carriage return.) Input for modifying the
location must conform to the current I/O mode. (Exception: After a
semicolon as described above.) A failure to conform to the current I/O
mode, or entry of uninter- uninterpretable data will result in rejection
of the input data. (A question mark will be typed by DBG.) In general,
spaces are always ignored on input and can be typed or omitted with no
effect in any I/O mode.

Page 36

The following special characters:

<CR>, <LF>, /, ;, <TAB>, + , <ESCAPE>, !, = , <UPARROW>

Will always cause termination of data input strings as they have special
meaning to DBG.

A "/" can be used as a terminator to get an automatic feedback of the
typed input data. In the following example, the I/O mode is symbolic.

./JMP 204 LXIB, 12 3/
200/ LXI B,123

Three bytes starting at location 200 are set by the above commands. The
second line was typed entirely by DBG in response to the "/" terminator.
This sequence checks both the correctness of the entered data (which at
first looks questionable) and the previously uncertain value for the
current location pointer.

If input is purposely terminated by a line feed, up-arrow, slash, or
tab, the input will be processed and the appropriate new location will
be displayed. Thus, for example, the following sequence demonstrates
clearing of a small block of memory locations that previously all
contained 377's:
30/ 377 0<LF>
31/ 377 0<LF>
32/ 377 0<LF>
33/ 377 0<LF>
In the above sequence DBG typed all but the initial "30/" and the
repeated "0 <LF>"'S.

Breakpoints:

Breakpoints are set using the X command. For example:

3 0X

causes the first unused breakpoint to be set at location 30. Similarly,

. X

or just

X

will cause a breakpoint to be set at the current location pointer.

There is capacity for setting 8 different breakpoints numbered
internally 0 thru 7. When an X command is executed the first free
breakpoint is allocated to the breakpoint being set. If there are no
free breakpoints, a question mark is printed, and one of the existing
breakpoints must be deleted before a new one can be set. When any
breakpoint is encountered the address of that breakpoint is always
displayed for the user by DBG:

Page 37

5 BREAK @1000

means that breakpoint number five was encountered at octal location
1000 .

It is permissable to change the instruction at any breakpoint at anytime
while running DBG.

2 BREAK @1000
1003/ XRA A ORA A<CR>

If an RST instruction is executed which is the same RST used by DBG but
was not inserted by DBG as a breakpoint, DBG will type out the
breakpoint number as 10:

10 BREAK @205

It is possible to proceed from such breakpoints, but this kind of
conflict between user RST's and DBG RST's usually indictates that a user
RST service routine is not being executed and DBG is intercepting the
RST. under these circumstances, the breakpoint RST should be changed so
it does not conflict with user RST's.

Changing the RST used by DBG.

It may become necessary to change the RST used by the debug package to
another RST. to accomplish this you can use DBG itselt to make a
modification which will allow you to set the breakpoint RST to any of
the eight possible RST's. Start looking for the first MVI instruction
in DBG by entering symbolic typeout mode and line feeding until you find
it.
$S CR> ;OPEN SYMBOLIC MODE
12722/ SHLD 4205 <LF> ;0R WHATEVER
ETC.
13000/ MVI A,377 ,'DISPLAY RST SETUP INSTRUCTION

MVI A,317 <CR> ?CHANGE IT TO RST 1.
13000G ;RESTART DEBUG PACKAGE

It is important to note that when DBG is started, it always initializes
the appropriate RST location (0,10,20,30,40,50,60,70 octal) to a JMP
instruction to the breakpoint handling code inside DBG. Thus, when DBG
is started initially, it will always clobber (store into) locations
60,61 and 62 octal with a JMP instruction.

Page 38

Checking Breakpoints:

The 0 command causes all program set breakpoints to be displayed.

Example (assuming DBG has just been started):
10X
20X
377X
Q
0010
1 0 2 0
20377
Each breakpoint is typed out by its number, an at (@) sign, and then the
address wnere the breakpoint is set. Any breakpoints that are not
mentioned by a 'Q1 command are not in use.

Removing Breakpoints:

Typing Y (carriage return) will remove all breakpoints. Typing Y
followed by <DIGIT> will remove breakpoint DIGIT>:
Y5
Y

Execution:

The 'G' or go command permits entry of user code at an arbitrary
location, the address should be followed by a G. Thus:

30G

will cause execution to begin at
situations the current location
address. Thus

.G

octal location 30. As in other
pointer can be used in place of an

or simply

G

will cause execution to begin at the user address indicated by the
current location pointer.

If a user program loops endlessly (a typical symptom is that no response
is made to input) the debug package can be re-entered by stoping the
program (either with Control-C if monitor interrupts are being used or
by manually stoping the machine) and restarting DBG from the monitor or
at its starting location.

Page 39

proceeding from a Breakpoints

If it is desired to proceed from the last encountered breakpoint, the
single character command "P" can be used. Restrictions: This command
cannot be used if no break point has yet been encountered during
execution or user code. If this is tried, a question mark will be
typed.

Multiple Proceeds:

An number before a P has a different meaning than before a G. Such a
number indicates the number of times a P command should be executed (the
number of times that any encountered breakpoint should be ignored)
before control is returned to DBG. Thus the command

30P

will cause execution to proceed in the user program until breakpoints
have Deen encountered 30 (octal) times. This feature is especially
useful in proceeding from a loop that contains a breakpoint.

Typing out a Sequence of Locations:

The "T" command is used to type out a sequence of locations in the
current I/O mode. The format of the command is:
X, YT

where X is the beginning address and y is the ending address. For
instance:

10 0 , 50 0T

would type out the first 256 bytes of the monitor in the current I/O
mode.

DBG System Documentation

The debug package resides directly above the monitor. whenever the
debug package is entered, it saves the user registers in memory inside
the debug package. It then replaces any breakpoints that may have been
set with the original instruction contained in the location where the
breakpoint was set. The RST location is then initialized to point to
the DBG breakpoint service routine.

When a 'G1 or ' p' command is typed, DBG replaces all instructions which
have breakpoints set at their locations with the DBG breakpoint RST, and
saves the original instruction in a table inside DBG so the original
instruction may be restored if DBG is restarted or a breakpoint is
encountered. Then all the original user registers are restored. If
this is a 'P' command, a complicated sequence of operations are
performed to correctly execute the instruction located at the breakpoint
address. This is especially difficult for CALL'S,and RST's, as the
instructions are actually executed inside the debug package, and not at
the breakpoint location. After simulation of the breakpointed
instruction is finished, DBG jumps to the instruction after the one

Page 0

breakpointed. (or in the case of true conditional JMP's, CALL 'S or
RST's to the proper location). When a breakpoint RST is executed, DBG
saves all the users registers and restores breakpointed instructions.

The debug package program name is DBG and is loaded by typing:
?dbgCR>

(RUN THE TAPE)
DEBUG

Debug starts at 5100Q and ends at 11577Q, allowing AM2 to be in memory
at the same time.

APPENDIX

APPENDIX

ABSOLUTE LOAD TAPE

BEGIN/NAME RECORD

BYTE 1 125 OCTAL

BYTES 2-4 NAME

BYTES 5-N COMMENTS

BYTE N+l 15 OCTAL

PROGRAM LOAD RECORD

BYTE 1 74 OCTAL

BYTE 2 0-377 OCTAL

BYTE 3 L.S. BYTE

BYTE 4 M.S. BYTE
DATA BYTES

BYTE N+5 *

* THE CHECKSUM IS GENERATED
EXCEPT THE FIRST TWO.

Page 41

A

FORMAT

BEGIN SYNC

PROGRAM NAME

END STATEMENT DOCUMENTATION
(I.E.PROGRAM REVISION AND DATE)

TERMINTATES THE PROGRAM NAME
RECORD

LOAD SYNC BYTE

NO. OF LOAD BYTES(N)

LOAD ADDRESS
•I (i

CHECKSUM BYTE

ADDING W/O CARRY ALL BYTES

END-OF-FILE RECORD

BYTE 1 170 OCTAL PAPER/AUDIO CASSETTE EOF

BYTE 2-3 BEGIN EXECUTION ADDRESS

Page 2

APPENDIX B

ASSEMBLY M

MEMORY BLOCKS

USER SPACE

SYMBOL TABLE
(CHAR. LENGTH
+3 BYTES/SYMBOL)

TEMPORARY
ASSEMBLER
VARIABLES

ASSEMBLER
PROGRAM
STORAGE
(VERSION 1)

MONITOR
TABLES &
HANDLERS

RESTART
TRAPS

RECOMENDED MEMORY LAYOUT WITH

MEMORY BLOCKS

EDITOR BUFFER
AREA

USER AREA

SYMBOL TABLE

ASSEMBLER
(VERSION 2)

EDITOR.

MONITOR

EMORY MAP

BOUNDARIES

TOPOF MEMORY

FIRST WORD OF PROGRAM STORAGE
(SET BY ORG OR ORR IF GIVEN)

SYMBOL TABLE BUILDS UP FROM HERE

FIRST WORD OF VARIABLE STORAGE

FIRST WORD OF ASSEMBLER
(5100Q)

BOTTOM OF MEMORY

EDITOR AND ASSEMBLER

BOUNDARIES

TOP'OF MEMORY

FIRST WORD OF BUFFER

FIRST WORD OF ASSEMBLER
(115 2 0 Q)

DEFAULT START OF EDIT BUFFER

EDITOR STARTS AT 510 0Q

BOTTOM OF MEMORY

Page 4 3

Appendix C

Assembler Errors

Error codes are the first two characters on the line following
occurance of an error. The characters replace the characters that are
normally echoed on a TTY or Compter terminal.

B# No origin specified

D# Double defined symbol

I# Illegal operand
Undefined byte symbol
String not allowed
Name value must be defined
ORR or ORG must be defined value

N# No name defined

0# Memory overflow
Program space not large enough

Q# Symbol table overflow
Program storage should begin at higher memory address

S# Symbol undefined

Monitor Errors

All monitor error messages are output inplace of the 2 spaces in
the monitor prompt.
Example:

?0PN FIL,EV,A
H*?

A* Attempt to store over monitor
No program can load before 5100Q.

C* Typing a Control C caused a return to the monitor.

D* Name already in PTL Use the CLR utility to remove the program name from the PTL.
F* I/O table full

Use the CLS utility program to close an unused symbolic name
freeing space in the table to open the name you need.

H* Hardware device undefined
An attempt was made to open a symbolic name to a nonexistant

Paqe 4 4

hardware device.

L* Load error.
A checksum error occured while loading a program.

M* Memory malfunction
Memory not working or nonexistant.
After storing into memory the stored byte did not compare
exactly with the value stored.^ This is checked when the
monitor loads a program.

N* I/O device name not open
Before trying to read from a symbolic device, that device
should be opened. See open command under monitor utility
programs.

P* Program table(PTL) full
Use the CLR utility to clear the name of a program that is'nt
needed any longer.

S* Syntax error in command line

U* Program name not in ptl

V* Illegal operation
An illegal operation code was given in a monitor control block.

Page 45

Appendix D.

If you need to set up any special purpose I/O handlers, the
following addresses may be useful.

Console input interrupt routine - 4414Q
Console input non-interrupt routine - 3436Q
Console output routine - 3422Q
Console tab counter - 4614Q
ACR input routine - 4521Q
ACR output routine - 4532Q
ACR tab counter - 4617Q
Edit buffer read routine - 3374Q

The structure of the monitor table that would need to be modified
is as follows

DB
DW
DW
DW

"DN" ;TWO CHARACTER DEVICE NAME
DEVIN ;ADDRESS OF DEVICE INPUT ROUTINE
DEVOUT ;ADDRESS OF DEVICE OUTPUT ROUTINE
DEVTAB ;ADDRESS OF DEVICE TAB COUNTER

;THIS IS ONE BYTE OF STORAGE USED
;TO STORE INFORMATION ON THE CURSOR POSITION

Their is room in the table for an entry to be added at location 220Q.

Example:

Suppose you want to have input from the ACR echoed on your terminal
and to refer to it in an OPN command as the "AT". The following added
at location 220Q would accomplish this.

DB "AT"

TABL:

DW
DW
DW
DS

3527Q
3575Q
TABL
1

THIS FORCES INPUT FROM THE ACR
THIS CAUSES OUTPUT TO BE SENT TO THE CONSOLE
THIS ALLOWS THE TABS TO WORK CORRECTLY

If you want to use monitor I/O with a device not supported by Mits,
this can be accomplished by writing your own handler and putting it in
high memory. Input routines should return a character in the A register
while output routines should output the character in the A register.
The routine should check the status of the device, loop until ready, and
perform any character conversions if needed(ie. BOUDOT to ASCII or
ASCII to BOUDOT).

Example:

You have a high speed paper tape reader connected to I/O port 12
and 13. Its motion is controled by the output to port 13. A 1 turns
the reader on and a 0 turns it off.

Put the following routine in unused memory(probably in the highest
locations in your machine).
HSRD: MVI A,1 ;SET A = TO 1

OUT 13Q ;TURN ON READER
IN 12Q
RAR ;ROTATE STATUS BIT INTO THE CARRY FLAG

JC
XRA
OUT
IN
RET

AT LOCATION
DB
DW
DW
DW

Page 46

TRMIN ;WAIT FOR INPUT READY BIT TO GO LOW
A
13Q ;SHUT READER OFF
13Q ;INPUT THE CHAR FROM TERMINAL

220Q PUT THE FOLLOWING:
"PT" ?DEVICE NAME
HSRD ;ADDRESS OF READER INPUT ROUTINE

;SINCE NO OUTPUT ROUTINE TAB COUNTER NOT NEEDED
To open ABS to the high speed reader in order to read in absolute

program tapes, use the following open command.
?OPN ABS,PT

Page 4 7

Appendix E.

When the Altair is first turned on, there is random garbage in its
memory. The monitor is supplied on a paper tape or audio CASSETTE.
Somehow the information on the paper tape or cassette must be transfered
into the computer. programs that perform this type of information
transfer are called Loaders.

Since initially there is nothing of use in memory, you must toggle
in, using the switches on the front panel, a 20 instruction Bootstrap
Loader. This loader will then load the MONITOR. SO, to Load the
MONITOR, follow these steps:

1) Turn the Altair ON.

2) Raise the STOP switch and RESET switch simultaneously.

3) Turn your terminal (usually a Teletype) to LINE.

Because the instructions must be toggled in via the switches on the
front panel, it is rather inconvenient to specify the positions of each
switch as up or down. Therefore, the switches are arranged in groups of
3 as indicated by the broken lines below switches 0-15. To specify the
positions of each switch we use the numbers 0-7 as shown below:

Switches

Leftmost Middle Rightmost Number

Down Down Down 0
Down Down Up 1
Down Up Down 2
Down Up Up 3
Up Down Down 4
Up Down Up 5
Up Up Down 6
Up Up Up 7
So, to put the octal number 315 in switches 0-7, the switches would have
the following positions:

7
UP

Switches
6 / 5 4 3 / 2
UP / DOWN DOWN UP / UP

1
DOWN

0
UP

Note that switches 8-15 were not
switches labeled DATA on the front
switches.

used. Switches 0-7 correspond to the
panel. A memory address uses all 16

Page 48

The Bootstrap Loader is

The following Bootstrap
and using a REV 1 Serial I/O

Address/Data

000 041
001 256
00 2 017
003 061
004 022
005 000
006 333
007 000
010 017
011 330
012 333
013 001
014 275
015 310
016 055
017 167
020 300
021 351
022 003
023 000

The following 21 byte Bootstrap Loader is for users loading from paper
tape and using a REV 0 Serial I/O board on which the update changing the
flag bits has not been made. If the update has been made, use the above
Bootstrap loader.

000 041
001 256
002 017
003 061
004 023
005 000
006 333
007 000
010 346
011 040
012 310
013 333
014 001
015 275
016 310
017 055
020 167
021 300
022 351
023 003
024 000

the following program:

Loader is for users loading from paper tape
board.

Page 49

The following Bootstrap Loader is for users with the MONITOR supplied on
an Audio Cassette.

000 041
001 256
002 017
003 061
004 022
005 000
006 333
007 006
010 017
011 330
012 333
013 007
014 275
015 310
016 055
017 167
020 300
021 351
022 003
023 000

88-PIO BOOTSTRAP

000 041
001 256
002 017
003 061
004 023
005 000
006 333
007 000
010 346
011 040
012 310
013 333
014 001
015 275
016 310
017 055
020 167
021 300
022 351
023 003
024 000

2 SIO BOOTSTRAP
000 076
001 003
002 323
003 020
004 076

Page 50

005 021
006 323
007 020
010 041
011 256
012 017
013 061
014 032
015 000
016 333
017 020
020 017
021 320
022 333
023 021
024 275
025 310
026 055
027 167
030 300
031 351
032 013
033 000

)OTSTRAP

000 257
001 323
002 020
003 323
004 021
005 076
006 004
007 323
010 020
011 041
012 256
013 017
014 061
015 034
016 000
017 333
020 020
021 346
022 100
023 310
024 333
025 021
026 275
027 310
030 055
031 167
032 300
033 351
034 014

(=2 STOP BITS
025=1 STOP BIT)

035 000

MITS HIGH SPEED READER BOOT

000 257
001 323
002 020
003 323
004 021
005 323
006 022
007 057
010 323
011 023
012 076
013 014
014 323
015 020
016 076
017 004
020 323
021 022
022 076
023 016
024 323
025 023
026 041
027 256
030 017
031 061
032 051
033 000
034 333
035 020
036 346
037 100
040 310
041 333
042 021
0 43 275
044 310
045 055
046 167
047 300
050 351
051 031
052 000

Sq, to load the.Bootstr

4) Put switches 0-

5) Raise EXAMINE.

ap Loader:

15 in the Down position.

Page 51

6) Put 041 (the data for address 000) in switches 0-7.

Page 52

7) Raise DEPOSIT.

8) Put the data tor the next address in switches 0-7
(For address 001 this is 17b)

9) Depress DEPOSIT NEXT.

10) Repeat steps 8-9 until the entire Loader is toggled in.

Next check that tne Bootstrap Loader is in correctly:

11) Put switches 0-15 in the Down position.

12) Raise EXAMINE.

13) Check that lights D0-D7 correspond with the data that should be
in address 000. A light 'on* means the switch was up; A light
'off' means the switch was Down. So for address 000, lights
D1-D4 and D6-D7 should be off, and lights D0 and D5 should be
on.

If the correct value is there, go to step 16.
If the value is wrong, go to the next step, 14.

14) Put the correct value in switches 0-7.

15) Raise DEPOSIT.

16) Depress EXAMINE NEXT.

17) If you have not checked the entire Bootstrap Loader, Repeat
steps 13-16 until you have.

18) If you found a mistake, go back to step 11 and check the
Bootstrap Loader again.

19) Put the tape of the MONITOR into the tape reader. Be sure the
TAPE is positioned at the beginning of the leader. The leader
is the section of tape at the beginning with 6 out of the 8
holes punched.
If you are loading from Audio Cassette, put the cassette in the
recorder. Be sure the tape is fully rewound.

20) Put switches 0-15 in the Down position.

2 1) Raise EXAMINE.

Page 5 3

22) There are six different Bootstrap Loaders, one for each of the
six types of I/O boards listed in the load option chart. Be
sure that you use the correct one for your particular board.

LOAD OPTIONS

OCTAL
LOAD DEVICE
MASKS

SWITCHES UP

OCTAL

CHANNELS

STATUS BITS

ACTIVE

SIOA, B, C (NOT REV 0)
1/200

ACR
1 ,200

SIOA,B,C (REV 0)
40/2

88-PIO
2 / 1

4PIO
100/100

2SI0
1 / 2

NONE

A15(AND

TERMINAL OPTS.)

A14

A13

A12

ALL (AND A10

UP=1 STOP BIT
DOWN=2 STOP BITS

0,1

6,7

0 , 1

0,1

20 ,21

20,21

LOW

LOW

HIGH

H I G H

HIGH

HIGH

23) If the load device is an ACR, the terminal options (see second
chart) can be set on the switches (along with al5) before the
loadein is done. If A15 is set, the checksum loader will ignore
all of the other switches and the monitor will ignore A15.

24) If the load device and the terminal device are not the same, and
the load device is not an ACR, then only the load options should
be set before the loading. When the load completes ,the MONITOR
will start-up and try to send a message to the load device.
Press STOP, EXAMINE loaction 5121, set the terminal option
switches, and then depress RUN.

Page 5 4

TERMINAL OPTIONS

TERMINAL DEVICE SWITCHES UP OCTAL CHANNEL DEFAULT

SIOA, B, C (NOT REV 0) NONE 0,1

SIOA,B,C (REV 0) A14 0,1

(A9 WILL BE IGNORED FOR THIS BOARD)

88-PIO AI3 0,1

4PIO A12 20,21 (INPUT) 22,23 (OUTPUT)
2SIO All 20,21 (A10 UP=1ST0P BIT

DOWN=2STOP BITS)

Iif sense switch A9 is raised, interrupt I/O will not be enabled. See
Appendix F for discription of this feature.

The default channels listed above may be changed as desired by raising
A8 and storing the lowest channel number (INPUT FLAG CHANNEL) in
location 7777 (OCTAL).

Note: The "INPUT FLAG CHANNEL", may also be refered to as the "CONTROL
CHANNEL" in other Altair documentation.

The above information is useful only when the load device and the
terminal device are not the same. During the load procedure A8 will be
ignored; therefore,the board from which the monitor is loaded must be
strapped for the channels listed in the load option chart.

25) When loading paper tape from a device connected to a SIO A,B,C
or a 88-PIO board, start the tape reading and then depress run.
If the device is connected to a 2SIO or 4PIO depress RUN and
then start the tape reader. If you are loading from cassette,
turn the cassette recorder to play. Wait 15 seconds and then
depress RUN.

26) The new Checksum Loader will display 7647 on the address lights
when running properly. When an error occurs (checksum "C"-bad
data, memory "n^'-data won't store properly, overlay "0"-attempt
to load over top of the checksum loader) the address lights will
then display 7637. The ASCII error code is stored in the
accumulator (A) and is being output on channels 1, 21, and 23.

page 55

When the tape finishes reading, the MONITOR should start up and
print the normal prompt - ? . If you are loading from
cassette, STOP the player imediately so other files can be
loaded.

Page 56

Appendix p.

Audio Cassette users

The following table shows the order and length of files on the
cassette of package II.

Program Time from Start of Tape
Name (in seconds)

MONITOR 13 - 125
ASM 120 - 230
EDT 240 - 310
AM2 320 - 415
DBG 430 - 510

When you are about to record a new file on a cassette, position the
cassette after the last file. When using either the editor or assembler
to dump out a file, start the recorder a few seconds before flipping
sense switch 15. A gap of this type should be inserted between all
files on a casette.

ASCII Line Input

The following describes the action taken for various special
characters.

<CR> - Ends a line. The monitor returns to the calling program
when typed. It is not counted in the line length returned. A
line feed is also written out if input is being echoed.
<LF> - ends a line. Only a line feed is echoed. See above.
<ESCAPE> - Ends a line. $ is echoed. See above.
Octal 0 - Ignored
CControl A> - rubs out complete line typed.
<RUBOUT> - Backspaces one character for each one typed.
<Control> z - End of file, branches to address given in control
block.

Interrupt I/O

Package II now supports input interrupts from the terminial device.
One I/O card in the Altair can be wired for input interrupts directly to
the bus interrupt line(PINT), or to the lowest priority on the vectored
interrupt card. If the terminal is set for interrupts, typing a
<Control C> will stop execution of a program and return to the monitor.
All registers are saved in the register save area as described in the
monitor section of this manual.

Page 57

Assembler Versions

Two copies of the assembler are supplied in
loads starting at location 5100Q and the symbol
Version 2 loads at location 11520Q and the
17006Q.

Package II.
table starts

symbol table

Version 1
at 123660.
starts at

Running version 1 gives you maximum memory for program space but
does not allow the editor to be resident at the same time. Version 2
lets you load Debug or the editor between the monitor and the assembler
allowing you to assemble directly from the editors buffer using the edit
buffer read feature. If this setup is to be used the editor must be
patched to move the buffer area. The buffer area is assumed to be
immediately after the editor, and if not changed, would destroy the
assembler. See Appendix B for recommended memory layout.

Absolute File Names

Version 1
Version 2

ASM
AM2

SOFTWARE AGREEMENT

This software is copywrited and the property of MITS, Inc.,

6328 Linn Avenue, N.E., Albuquerque, New Mexico, and has

been supplied by MITS to you". This software is furnished

subject to the following restrictions: it shall not be

reproduced or copied without express written permission of

MITS, Inc.

To do any of the above without approval by MITS, Inc. will

make you liable and open for MITS, Inc. to take legal

action against you.
I

This agreement shall be considered accepted and binding upon

your receipt of this and any software.

L oa D/a/G :
0> o»> A^-w toys. 5 o V P L P X to "local* ? Tj

] , Key feoohfre-jo Pa-jc^ /Ves^t

2' . St art Q.PU all - Zevtf /b>7 e kcj
cU^-eJ /o V e ^ ^ (esc) i^k>ck /J

/ J r S'h^h^j tUssJTfr
(p^s* sl^i h-U^ id, f) c^S /sr uj f ^ ^

y, X fre* <Tj; do "A/«//
C e - ^ z ^ U ^ & y (jT char tythi J^Y c ^ ^

o:r : /J
MITS/6328 Linn, N.E.. Albuquerque, N.M. 87108, 505/265-7553 or 262̂ 1951

H [JUDDSS

Sue P.
BOOTST^P

March, 1976

Dear Software Customer:

Enclosed please find a copy of our new Package II.
Package II is the Assembler, Text Editor, System Mon-
itor, and Debug Package for the ALTAIR 8800. Package
II replaces Package I and Debug Software. We have taken
the liberty of substituting this new software package
for your order.

As Package II has a marketable value of $75.00, please
be advised that if a copy of Package II is requested by
yourself that a higher price will be imposed. That price
would be the difference in price between the present soft-
ware package price you have received and the Package II
price of $75.00 plus the standard $15.00 copying charge.

If you have questions, please contact our Customer Ser-
vice Department.

Sincerely,

Pam Hoi1oman
Director pf Marketing

PH:gb

PII

2 4 5 0 Alamo S E Albuquerque, NM 8 7 1 0 6 5 0 5 - 2 4 3 - 7 8 2 1

