

.

Notice to FLEX Users

Before experimenting with the FLEX operating system, it is a good idea to follow the steps given
below to make a duplicate diskette in case you accidentally enter a command which would erase
the supplied system diskette.

1.) Power up the computer system and disk system. Be sure that all memory is good
and be sure that you have memory installed from hex 0000 - 2FFF (12K) and from
hex 7000 - 7FFF.

2.) Be sure that the small rectangular notch on the edge of the system diskette is
covered with a small piece of tape. If not, cover it with a small piece of masking tape. This
will write protect the diskette.

3.) Install the supplied system diskette in drive 0 (the left hand drive) as described
in the disk manual and close the door.
(Write protect notch toward the bottom; end away from write protect notch inser-
ted first.)

4.) Install a blank diskette in drive #1 and close the door. The write protect notch on this
diskette should not be covered.

5.) Boot up the FDOS system as described in the manual by either entering the boot by
hand or by typing D, depending on your monitor.

6.) The system should respond with FLEX and +++. If not, try to boot again as des-
cribed in the manual. If after several trys the system cannot be booted, the system
diskette should be removed and all hardware checked.

7.) When the system is booted type:

BACKUP 0,1 followed by a carriage return.

8.) The system will then take several minutes to copy the disk. When the copying
is finished, the system will respond: BACKUP COMPLETE.

9.) The supplied system diskette should now be removed and set aside. The copy
can be tested and used as desired.

Advanced Programmer's Manual

Throughout this manual you will find references to the DOS Advanced Programmer's Guide. This
manual contains detailed information on the operation of the Disk Operating System at the machine
language level. It is written for the individual who wishes to write his own utilities, interface to the DOS
thru machine language programs, or just understand how it all works. It has been written for the individual
who understands programming at the machine language level and it is not recommended for the novice.
It is not being supplied with the MF-68 kit but is sold separately for $20.00 ppd. in the continental U.S. It
should be available sometime in May, 1978.

.

Copyright © 1978 by
Technical Systems Consultants, Inc.

P.O. Box 2574
West Lafayette, Indiana 47906

All Rights Reserved

COPYRIGHT NOTICE

This entire manual and documentation is provided for personal use and enjoyment by the pur-
chaser. The entire contents have been copyrighted by Technical Systems Consultants, Inc., and re-
production by any means is prohibited. Use of this manual, or any part thereof, for any purpose
other than single end use is strictly prohibited.

PREFACE

The purpose of this User's Guide is to provide the user of the FLEX Operating System with the in-
formation required to make effective use of the available system commands and utilitites. This
manual applies to the mini-floppy version of FLEX (sometimes referenced as "miniFLEX"). Most
of the features of the larger versions of FLEX are fully operational on the mini version. The user
should keep this manual close at hand while becoming familiar with the system. It is organized to
make it convenient as a quick reference guide, as well as a thorough reference manual.

-- i --

.

TABLE OF CONTENTS

CHAPTER 1 .. Page

 I. Introduction .. 1.1
 II. System Requirements .. 1.1
 III. Getting the System Started .. 1.1
 IV. Disk Files and Their Names ... 1.2
 V. Entering Commands .. 1.3
 VI. Command Descriptions .. 1.4

CHAPTER 2

 I. Utility Command Set .. 2.1
 APPEND ... A.1.1
 ASN .. A.2.1
 BACKUP ... B.1.1
 BUILD ... B.2.1
 CAT ... C.1.1
 COPY .. C.2.1
 DELETE .. D.1.1
 EXEC ... E.1.1
 JUMP ... J.1.1
 LINK ... L.1.1
 LIST ... L.2.1
 MEMTEST1 ... M.1.1
 NEWDISK .. N.1.1
 P ... P.1.1
 RENAME ... R.1.1
 SAVE .. S.1.1
 SAVE.LOW ... S.2.1
 STARTUP ... S.3.1
 TTYSET .. T.1.1
 VERIFY .. V.1.1
 VERSION ... V.2.1

CHAPTER 3

 I. Disk Capacity ... 3.1
 II. Write Protect .. 3.1
 III. The 'RESET' Button . .. 3.1
 IV. Notes on the P Command .. 3.1
 V. Accessing Drives Not Containing a Diskette ... 3.1
 VI. System Error Numbers ... 3.2
 VII. System Memory Map . .. 3.2
 VII. FLEX Operating System Input/Output Subroutines ... 3.3
 IX. Booting the FLEX System .. 3.4
 X. Requirements for the PRINT.SYS Printer Driver ... 3.5

CHAPTER 4

 I. Command Summary .. 4.1

-- ii --

.

FLEX USER'S MANUAL

I. INTRODUCTION
The FLEX® Operating System is a very versatile and flexible operating system. It provides the user
with a powerful set of system commands to control all disk operations directly from the user's
terminal. The systems programmer will be delighted with the wide variety of disk access and file
management routines available for personal use. Overall, FLEX is one of the most powerful opera-
ting systems available today.

The FLEX Operating System is comprised of three parts, the File Management System (FMS),
the Disk Operating System (DOS), and the Utility Command Set (UCS). Part of the power of the
overall system lies in the fact that the system can be greatly expanded by simply adding additional
utility commands. The user should expect to see many more utilities available for FLEX in the
future. Some of the other important features include: fully dynamic file space allocation, the auto-
matic "removal" of defective sectors from the disk, automatic space compression and expansion on
all text files, complete user environment control using the TTYSET utility command, and uniform
disk wear due to the high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programs reside on the system
disk and are only loaded into memory when needed. This means that the set of commands can be
easily extended at any time, without the necessity of replacing the entire operating system. The
utilities provided with FLEX perform such tasks as the saving, loading, copying, renaming, deleting,
appending, and listing of disk files. There is an extensive CATalog command for examining the
disk's file directory. Several environment control commands are also provided. Overall, FLEX pro-
vides all of the necessary tools for the user's interaction with the disk.

II. SYSTEM REQUIREMENTS
The minifloppy version of FLEX requires random access memory from location 0000 through
location 2FFF hex (12K). Memory is also required from 7000 (28K) through 7FFF hex (32K),
where the actual operating system resides. The system also assumes at least 2 disk drives are connec-
ted to the controller and that they are configured as drives #0 and #1. You should consult the disk
drive instructions for this information. FLEX will work with either Motorola's MIKBUG® or South-
west Technical Products' SWTBUG® monitor ROMs. If using SWTBUG®,either the control interface
(MP-C) or an ACIA-based serial interface (MP-S) will work. If using the serial Interface (MP-S), the
'escape' character (later defined) will stop any output to the terminal, and another 'escape' charac-
ter will make it resume. This feature is not available on systems using the control interface (MP-C)
with the monitor. One other note about systems containing a control interface (MP-C). It will be
necessary to use the TTYSET utility command after system initialization to set the 'duplex' to 'half
duplex mode' in order to suppress double printing of characters on the terminal. Consult the TTY-
SET description for details.

Ill. GETTING THE SYSTEM STARTED
Each FLEX system diskette contains a binary loader for loading the operating system into RAM.
There needs to be some way of getting the loader off of the disk so it can do its work. This can be
done by either hand entering the bootstrap loader provided with the disk system, or if SWTBUG®
is installed in the system, simply type "D" to call the disk boot loader from ROM.

As a specific example, suppose the system we are using has SWTBUG® installed and we wish
to run FLEX. The first step is to power on all equipment and make sure the SWTBUG® prompt is
present ($). Next insert the system diskette into drive 0 (the boot must be performed with the disk
in drive 0) and close the door on the drive. Type "D" on the terminal. The disk motors should start,
and after about 2 seconds, the following should be displayed on the terminal:

FLEX X.X
+++

FLEX® is a reqistered trademark of Technical System Consultants, inc.
MIKBUG® is a registered trademark of Motorola, inc.
SWTBUG® is a registered trademark of Southwest Technical Products Corp.

-- 1.1 --

The name FLEX identifies the operating system and the X.X will be the version number of the
operating system. The FLEX prompt is the three plus signs (+++), and will always be present when
the system is ready to accept an operator command. The '+++' should become a familiar sight and
signifies that FLEX is ready to work for you!

IV. DISK FILES AND THEIR NAMES
All disk files are stored in the form of 'sectors' on the disk and in the minifloppy version, each sec-
tor contains 128 'bytes' of information. Each byte can contain one character of text or one byte of
binary machine information. A maximum of 612 sectors may be used on any one diskette, but the
user need not keep count, for the system does this automatically. A file will always be a least one
sector long and can have a maximum length of 612 sectors. The user should not be concerned with
the actual placement of the files on the disk since this is done by the operating system. File dele-
tion is also supported and all previously used sectors become immediately available again after a file
has been deleted.

All files on the disk have a name. Names such as the following are typical:
PAYROLL
INVENTORY
TEST1234
APRIL-78
WKLY-PAY

Anytime a file is created, referenced, or deleted, its name must be used. Names can be most
anything but must begin with a letter (not numbers or symbols) and be followed by at most 7 addi-
tional characters, called 'name characters'. These 'name characters' can be any combination of the
letters 'A' through 'Z' or 'a' through 'z', any digit '0' through '9', or one of the two special charac-
ters, the hyphen (-) or the underscore _ (a left arrow on some terminals).

File names must also contain an 'extension'. The file extension further defines the file and
usually indicates the type of information contained therein. Examples of extensions are: TXT for
text type files, BlN for machine readable binary encoded files, CMD for utility command files, and
BAS for BASIC source programs. Extensions may contain up to 3 'name characters' with the
first character being a letter. Most of the FLEX commands assume a default extension on the file name
and the user need not be concerned with the actual extension of the file. The user may at anytime
assign new extensions, overiding the default value, and treat the extension as just part of the file
name. Some examples of file names with their extension follow:

APPEND.CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period '.'. The period is the

name 'field separator'. It tells FLEX to treat the characters following the period as a new field in
the name specification.

A file name can be further refined. The name and extension uniquely define a file on a particu-
lar drive, but the same name may exist on several drives simultaneously. To designate a particular
drive a 'drive number' is added to the file specification. It consists of a single digit (0-3) and is sep-
arated from the name by the field separator '.'. The drive number may appear either before the
name or after it (after the extension if it is given). If the drive number is not specified, the system
will default to either the 'system' drive or the 'working' drive. These terms will be described a little
later. Some examples of file specifications with drive numbers follow:

0.BASIC
MONDAY.2
1.TEST.BIN
LIST.CMD.1

In summary, a file specification may contain up to three fields separated by the field separator.
These fields are: 'name', 'extension' and 'drive'. The rules for the file specification can be stated
quite concisely using the following notation:

-- 1.2 --

{(drive),}(name){.(extension)}
(name){.(extension)}{.(drive)}

The ‘()’ enclose a field and do not actually appear in the specification, and the '{ }' surround
optional items of the specification. The following are all syntactically correct:

0.NAME.EXT
NAME.EXT.0
NAME.EXT
0.NAME
NAME.0
NAME

Note that the only required field is the actual ‘name’ itself and the other values will usually de-
fault to predetermined values. Studying the above examples will clarify the notation used. The same
notation will occur regularly throughout the manual.

V. ENTERING COMMANDS
When FLEX is displaying '+++', the system is ready to accept a command line. A command line is
usually a name followed by certain parameters depending on the command being executed. There is
no 'RUN' command in FLEX . The first file name on a command line is always loaded into memory
and execution is attempted. If no extension is given with the file name, 'CMD' is the default. If an
extension is specified, the one entered is the one used. Some examples of commands and how they
would look on the terminal follow:

+++TTYSET
+++TTYSET.CMD
+++LOOKUP.BIN

The first two lines are identical to FLEX since the first would default to an extension of CMD.
The third line would load the binary file 'LOOKUP.BIN' into memory and, assuming the file con-
tained a transfer address, the program would be executed. A transfer address tells the program load-
er where to start the program executing after it has been loaded. If you try to load and execute a
program in the above manner and no transfer address is present, the message, 'NO LINK' will be
output to the terminal, where 'link' refers to the transfer address. Some other error messages which
can occur are 'WHAT?' if an illegal file specification has been typed as the first part of a command
line, and 'NOT THERE' if the file typed does not exist on the disk.

During the typing of a command line, the system simply accepts all characters until a 'RE-
TURN' key is typed. Any time before typing the RETURN key, the user may use one of two spe-
cial characters to correct any mistyped characters. One of these characters is the 'back space' and
allows deletion of the previously typed character. Typing two back spaces will delete the previous
two characters. The back space is initially defined to be a 'control H' but may be redefined by the
user using the TTYSET utility command. The second special character is the line 'delete' character.
Typing this character will effectively delete all of the characters which have been typed on the cur-
rent line. A new prompt will be output to the terminal, but instead of the usual '+++' prompt, to
show the action of the delete character, the prompt will be '???'. Any time the delete character is
used, the new prompt will be '???', which signifies that the last line typed did not get entered into the
computer. The delete character is initially a 'control X' but may also be redefined using TTYSET.

As mentioned earlier, the first name on a command line is always interpreted as a command.
Following the command is an optional list of names and parameters, depending on the particular
command being entered. The fields of a command line must be separated by either a space or a
comma. The general format of a command line is:

(command){,(list of names and parameters)}
A comma is shown, but a space may be used. FLEX also allows several commands to be en-

tered on one command line by use of the 'end of line' character. This character is initially a colon
(':'), but may be user defined with the TTYSET utility. By ending a command with the end of line
character, it is possible to follow it immediately with another command. FLEX will execute all
commands on the line before returning with the '+++' prompt. An error in any of the command
entries will cause the system to terminate operation of that command line and return with the
prompt. Some examples of valid command lines follow:

-- 1.3 --

+++CAT 1
+++CAT 1:ASN S=1
+++LIST LIBRARY:CAT 1:CAT 0

As many commands may be typed in one command line as desired, but the total number of
characters typed must not exceed 128. Any excess characters will be ignored by FLEX.

One last system feature to be described is the idea of 'system' and 'working' drives. As stated
earlier, if a file specification does not specifically designate a drive number, it will assume a default
value. This default value will either be the current 'system' drive assignment or the current 'working'
drive assignment. The system drive is the default for all command names, or in other words, all file
names which are typed first on a command line . Any other file name on the command line will
default to the working drive. When the system is first initialized, both the system drive and the
working drive are set to drive 0. At this time, all drive defaults will be to drive 0. It is sometimes
convenient to assign drive 1 as the working drive in which case all file references, except commands,
will automatically look on drive 1. It is then convenient to have a diskette in drive 0 with all the
system utility commands on it (the 'system drive'), and a disk with the files being worked on in
drive 1 (the 'working drive'). If the system drive is 0 and the working drive is 1, and the command
line was:

+++LIST TEXTFILE
FLEX would go to drive 0 for the command LIST and to drive 1 for the file TEXTFILE. The

actual assignment of drives is performed by the ASN utility. See its description for details.

VI. COMMAND DESCRIPTIONS
There are two types of commands in FLEX, memory resident (those which actually are part of the
operating system) and disk utility commands (those commands which reside on the disk and are
part of the UCS). There are only two resident commands, GET and MON. They will be described
here while the UCS (utility command set) is described in the following sections.

GET
The GET command is used to load a binary file into memory. It is a special purpose command and
is not often used. It has the following syntax:

GET{,(file name list)}
where (file name list) is: (file spec){,(file spec)}etc.

Again the '{ }' surround optional items. 'File spec' denotes a file name as described earlier. The
action of the GET command is to load the file or files specified in the list into memory for later
use. If no extension is provided in the file spec, BIN is assumed. In other words, BIN is the default
extension. Examples:

GET,TEST
GET,1.TEST,TEST2.O

where the first example will load the file named 'TEST.BIN' from the assigned working drive, and
the second example will load TEST.BIN from drive 1 and TEST2.BIN from drive 0.

MON
MON is used to exit FLEX and return to the hardware monitor system such as SWTBUG®. The syn-
tax for this command is simply MON followed by the 'RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should enter the program at
location 7103 hex. If using MIKBUG® or SWTBUG®, simply typing 'G' will return you to the FLEX
operating system.

-- 1.4 --

UTILITY COMMAND SET

The following pages describe all of the utility commands currently included in the UCS. You should
note that the page numbers denote the first letter of the command name, as well as the number of
the page for a particular command. For example, 'B.1.2' is the 2nd page of the description for the
1st utility name starting with the letter 'B'.

COMMON ERROR MESSAGES
Several error messages are common to many of the FLEX utility commands. These error messages
and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a particular com-
mand was not found on the disk specified. Usually the wrong drive was specified (or defaulted),
or a misspelling of the name was made.

ILLEGAL FILE NAME. This can happen if the name or extension did not start with
a letter, or the name or extension field was too long (8 and 3 respectively). This message may also mean
that the command being executed expected a file name to follow and one was not provided.

FILE EXISTS. This message will be output if you try to create a file with a name
the same as one which currently exists on the same disk. Two files with the same name are not allow-
ed to exist on the same disk.

SYNTAX ERROR . This means that the command line just typed does not follow
the rules stated for the particular command used. Refer to the individual command descriptions for
syntax rules.

GENERAL SYSTEM FEATURES
Any time one of the utility commands is sending output to the terminal, it may be temporarily hal-
ted by typing the 'escape' character (see TTYSET for the definition of this character). Once the
output is stopped, the user has two choices: typing the 'escape' character again or typing 'RE-
TURN'. If the 'escape' character is typed again, the output will resume. If the 'RETURN' is typed,
control will return to FLEX and the command will be terminated. All other characters are ignored
while output is stopped.

-- 2.1 --

.

APPEND

The APPEND command is used to append or concatenate two or more files, creating a new file as
the result. Any type of file may be appended but it only makes sense to append files of the same
type in most cases. If appending binary files which have transfer addresses associated with them, the
transfer address of the last file of the list will be the effective transfer address of the resultant file.
All of the original files will be left intact.

DESCRIPTION
The general syntax for the APPEND command is as follows:

APPEND,(file spec){,(file list)},(file spec)
where (file list) can be an optional list of file specifications. It is necessary that the last file name
specified does not exist on the disk since this will be the name of the resultant file. All other files
specified must exist since they are the ones to be appended together. If only 2 file names are given,
the first file will be copied to the second file. The extension default is TXT unless a different exten-
sion is used on the FIRST FILE SPECIFIED, in which case that extension becomes the default for the
rest of the command line. Some examples will show its use:

APPEND,CHAPTER1,CHAPTER2,CHAPTER3,BOOK
APPEND,FILE1,1.FILE2.BAK,GOODFILE

The first line would create a file on the working drive called 'BOOK .TXT' which would con-
tain the files 'CHAPTER1.TXT', CHAPTER2.TXT', and 'CHAPTER3.TXT' in that order. The
second example would append 'FILE2.BAK' from drive 1 to FlLE1.TXT from the working drive
and put the result in a file called 'GOODFILE.TXT' on the working drive. The file GOODFILE de-
faults to the extension of TXT since it is the default extension. Again, after the use of the APPEND
command, all of the original files will be intact, exactly as they were before the APPEND operation.

-- A.1.1 --

ASN

The ASN command is used for assigning the 'system' drive and the 'working' drive. The system drive
is used by FLEX as the default for command names or, in general, the first name on a command
line. The working drive is used by FLEX as the default on all other file specifications within a com-
mand line. As the system is initialized, both the system and working drives are set to drive 0. An
example will show how the system defaults to these values:

APPEND,FILE1,FILE2,FILE3
If the system drive is 0 and the working drive is assigned to drive 1, then the above example

will perform the following operation: get the APPEND command from drive 0 (the system drive),
then append FILE2 from drive 1 (the working drive) to FILE1 from drive 1 and put the result in
FILE3 on drive 1. As can be seen, the system drive was the default for APPEND where the working
drive was the default for all other file specs listed.

DESCRIPTION
The general syntax for the ASN command is as follows:

ASN{,W=(drive)}{,S=(drive)}
where (drive) is a single digit drive number. If just ASN is typed followed by a 'RETURN', no values
will be changed, but the system will output a message which tells the current assignments of the sys-
tem and working drives, for example:

+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0

Some examples of using the ASN command are:
ASN,W=1
ASN,S=1,W=0

Where the first line would set the working drive to 1 and leave the system drive assigned to its pre-
vious value. The second example sets the system drive to 1 and the working drive to 0. Careful use
of drive assignments will allow the operator to avoid the use of drive numbers on file specifications
most of the time!

-- A.2.1 --

BACKUP

The BACKUP command allows for the making of copies of entire FLEX disks. These copies are
different from those produced by the COPY command in that BACKUP makes a "mirror image"
copy of the input disk, where COPY always reorganizes a disk so that a file's sectors are all group-
ed together. There are trade-offs involved when deciding whether to use the BACKUP command
or the COPY command. Reorganization will speed up file accesses which have become slow due
to the sectors of a file not being grouped together. Generally, COPY should be used if there are
only a few files on the disk, or if the disk is very slow in access times. COPY will also allow single
files to be copied as well as copying files to partially used sides. The BACKUP command, which in
most cases will run faster than the COPY routine, will only copy entire disks, and the output disk
will be entirely overwritten. Experience will help determine which command to use and when.

DESCRIPTION
The general syntax for the BACKUP command is:

BACKUP,(input drive),(output drive)
where the drives are specified with single digits. 'The input drive contains 'the disk we wish copy
the information from, and the output drive contains the disk on which we wish the data to be placed. As
an example, to BACKUP drive 0 to drive 1, the following should be typed:

+++BACKUP,0,1
There are several situations which can exist at the start of a BACKUP operation. Since the

BACKUP command copies every sector from the input drive to the output drive, not caring if there
is actually information on those sectors, it requires that the output disk have no bad sectors. The
first thing BACKUP does is to check the output disk to make sure there are no bad sectors and also
checks if the disk has been initialized (by use of the NEWDISK command). If there are bad sectors,
the backup process will be aborted and a message to that effect will be ouput to the terminal. If
the disk has not been initialized, the BACKUP routine will automatically perform the formatting
process, again checking for bad sectors. If the output disk is not perfectly "clean" (either new with-
out initialization or freshly formatted, in other words, the disk has files on it), the BACKUP com-
mand will issue the following message to the terminal:

SCRATCH DISK NOT BLANK
ARE YOU SURE?

If you still want to continue with the BACKUP procedure, type 'Y' as a response, otherwise
type 'N' and BACKUP will be aborted.

One final note will be of interest. If the input disk had DOS.SYS on it, and it had been pre-
viously linked to the boot (see LINK command), then the new disk will also have DOS.SYS and it
will be linked to the boot as well.

-- B.1.1 --

BUILD

The BUILD command is provided for those desiring to create small text files quickly (such as
STARTUP files, see STARTUP) or not wishing to use the optionally available FLEX Text Editing
System. The main purpose for BUILD is to generate short text files for use by either the EXEC command
or the STARTUP facility provided in FLEX.

DESCRIPTION
The general syntax of the BUILD command is:

BUILD,(file spec)
where (file spec) is the name of the file you wish to be created. The default extension for the spec is
TXT and the drive defaults to the working drive. The ouput file must not already exist or the error
message, 'FILE EXISTS' will be issued.

After you are in the 'BUILD' mode, the terminal will respond with the equals sign ('=') as the
prompt character This is similar to the Text Editing System's prompt for text input. To enter your
text, simply type on the terminal the desired characters, keeping in mind that once the 'RETURN'
is typed, the line is in the file and can not be changed. Any time before the 'RETURN' is typed, the
backspace character may be used as well as the line delete character. If the delete character is used,
the prompt will be '???' instead of the equals sign to show that the last line was deleted and not en-
tered into the file. It should be noted that only printable characters (not control characters) may be
entered into text files using the BUILD command.

To exit the BUILD mode, it is necessary to type a pound sign ('#') immediately following the
prompt, then type 'RETURN'. The file will be finished and control returned back to FLEX where
the three plus signs should again be output to the terminal. This exiting is similar to that of the Text
Editing System.

-- B.2.1 --

CAT

The CATalog command is used to display the FLEX disk file names in the directory on each disk.
The user may display selected files on one or multiple drives if desired.

DESCRIPTION
The general syntax of the CAT command is:

CAT{,(drive list)}{,(match list)}
where (drive list) can be one or more drive numbers separated by commas, and (match list) is a set
of name and extension characters to be matched against names in the directory. For example, if
only file names which started with the characters 'VE' were to be cataloged, then VE would be in
the match list. If only files whose extensions were 'TXT' were to be cataloged, then TXT should
appear in the match list. A few specific examples will help clarify the syntax:

+++CAT
+++CAT,1,A.T,DR
+++CAT,PR
+++CAT,0,1
+++CAT,0,1,.CMD,.SYS

The first example will catalog all file names on the working drive. The second example will
catalog only those files on drive 1 whose names begin with 'A' and whose extensions begin with 'T',
and also all files on drive 1 whose names start with 'DR'. The next example will catalog all files on
the working drive whose names start with 'PR'. The next line causes all files on both drive 0 and
drive 1 to be cataloged. Finally, the last example will catalog the files on drive 0 and 1 whose exten-
sions are CMD or SYS.

During the catalog operation, before each drive's files are displayed, a header message stating
the drive number is output to the terminal. The actual directory entries are listed in the following
form:

NAME.EXTENSION size
where size is the number of sectors that file occupies on the disk. If more than one set of matching
characters was specified on the command line, each set of names will be grouped according to the
characters they match. For example, if all .TXT and .CMD files were cataloged, the TXT types
would be listed together, followed by the CMD types.

In summary, if the CAT command is not parameterized, then all files on the assigned working
drive will be displayed. If it is parameterized by only a drive number, then all files on that drive will
be displayed. If the CAT command is parameterized by only an extension, then only files with that
extension will be displayed. If only the name is used, then only files which start with that name will
be displayed. If the CAT command is parameterized by only name and extension, then only files of
that root name and root extension (on the working drive) will be displayed. Learn to use the CAT
command and all of its features and your work with the disk will become a little easier.

-- C.1.1 --

COPY

The COPY command is used for making copies of files on a disk. Individual files, groups of name-
similar files, or entire disks may be copied. The COPY command is a very versatile utility. The
COPY command also re-groups the sectors of a file in case they were spread all over the old disk.
This regrouping can make file access times much faster. When copying entire disks it is sometimes
more desirable to use the BACKUP command. Refer to its description for details of the tradeoffs
involved between the two methods of copying disks. It should be noted that before copying files to
a new disk, the disk must be formatted first. Refer to NEWDISK for instructions on this procedure.

DESCRIPTION
The general syntax of the COPY command has three forms:

a . COPY,(file spec),(file spec)
b . COPY,(file spec),(drive)
c . COPY,(drive),(drive){,(match list)}

where match list) is the same as that described in the CAT command and all rules apply to match-
ing names and extensions. When copying files, if the destination disk already contains a file with the
same name as the one being copied, the file name and the message: FILE EXISTS DELETE ORI-
GINAL? will be output on the terminal. Typing Y will cause the file on the destination disk to be
deleted and the file from the source disk will be copied to the destination disk. Typing N will direct
FLEX not to copy the file in question.

The first type of COPY allows copying a single file into another. The output file may be on a
different drive but if on the same drive, the file names must be different. It is always necessary to
specify the extension of the input file but the output file's extension will default to that of the input's if none
is specified. An example of this form of COPY is:

+++COPY,0.TEST.TXT,1.TEXT25
This command line would cause the file TEST.TXT on drive 0 to be copied into a file called

TEST25.TXT on drive 1. Note how the second file's extension defaulted to TXT, the extension of
the input file.

The second type of COPY allows copying a file from one drive to another drive with the file
keeping its original name. An example of this is:

+++COPY,0.LIST.CMD,1
Here the file named LIST.CMD on drive 0 would be copied to drive 1. It is again necessary to

specify the file's extension in the file specification. This form of the command is more convenient
than the previous form if the file is to retain its original name after the copying process.

The final form of COPY is the most versatile and the most powerful. It is possible to copy all
files from one drive to another, or to copy only those files which match the match list characters
given. Some examples will clarify its use:

+++COPY,0,1
+++COPY,1,0.CMD,.SYS
+++COPY,0,1,A,B,CA.T

The first example will copy all files from drive 0 to drive 1 keeping the same names in the pro-
cess. The second example will copy only those files on drive 1 whose extensions are CMD and SYS
to drive 0. No other files will be copied. The last example will copy the files from drive 0 whose
names start with 'A' or 'B' regardless of extension, and those files whose names start with the letters
'CA' and whose extensions start with 'T', to the ouput drive which is drive 1. The last form of copy
is the most versatile because it will allow putting just the command (CMD) files on a new disk, or
just the SYS files, etc., with a single command entry. During the COPY process, the name of the file
which is currently being copied will be ouput to the terminal, as well as the drive to which it is being
copied.

-- C.2.1 --

COPYNEW

The COPYNEW command is similar to the COPY command but is normally used for copying only
files from a source disk which do not exist on the destination diskette. This gives the user the
ability to update a disk with all new files which do not already exist on it.

DESCRIPTION
The general syntax of the COPYNEW command is of the form:

COPYNEW,(drive),(drive){,(match list)}
where (match list) is the same as that described in the CAT command and all rules apply to match-
ing names and extensions. When the COPYNEW command is used an attempt will be made to copy
all files from the source disk to the destination disk. If the file name does not exist on the destina-
tion disk the file will be copied. If the file name does exist on the destination disk, the message
FILE EXISTS will be displayed arid that file will not be copied. COPYNEW does not give you the
option of deleting the old file on the destination disk like COPY does.

Some examples of COPYNEW are as follows:
+++COPYNEW 0,1
+++COPYNEW 0,1,C,.BAS

The first example will copy all files from drive 0 to drive 1 which do not already exist on drive
1. The second example will copy all files from drive 0 that begin with C or that have the extension
.BAS to drive 1 provided that 0. The file does not already exist on drive 1.

-- C.3.1 --

.

DELETE

The DELETE command is used to delete a file from the disk. Its name will be removed from the directory
and its sector space will be returned to the free space on the disk.

DESCRIPTION
The general syntax of the DELETE command is:

DELETE,(file spec){,(file list)}
where (file list) can be an optional list of file specifications. It is necessary to include the extension
on each file specified. As the DELETE command is executing it will prompt you with:

DELETE "FILE NAME"?
The entire file specification will be displayed, including the drive number. If you decide the

file should be deleted, type 'Y', otherwise, any other response will cause that file to remain on the
disk. If a 'Y' was typed, the message 'ARE YOU SURE?' will be displayed on the terminal. If you
are absolutely sure you want the file deleted from the disk, type another 'Y' and it will be gone.
Any other character will leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO
WAY TO GET IT BACK! Be absolutely sure you have the right file before answering the prompt
questions with Y's. Once the file is deleted, the space it had occupied on the disk is returned back
to the list of free space for furture use by other files. Few examples follow:

+++DELETE,MATHPACK.BIN
+++DELETE,1.TEST.TXT,0.AUGUST.TXT

The first example will DELETE the file named MATHPACK.BIN from the working drive. The
second line will DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive 0.

-- D.1.1 --

.

EXEC

The EXECute command is used to process a text file as a list of commands, just as if they had been
typed from the keyboard. This is a very powerful feature of FLEX for it allows very complex pro-
dedures to be built up as a command file. When it is desirable to run this procedure, it is only
necessary to type EXEC followed by the name of the command file. Essentially all EXEC does is to
replace the FLEX keyboard entry routine with a routine which reads a line from the command file
each time the keyboard routine would have been called. The FLEX utilities have no idea that the
line of input is coming from a file instead of the terminal.

DESCRIPTION
The general syntax of the EXEC command is:

EXEC,(file spec)
where (file spec) is the name of the command file. The default extension is TXT. An example will
give some ideas on how EXEC can be used. One set of commands which might be performed quite
often is the set to make a new system diskette on drive 1 (see NEWDISK). Normally it is necessary
to use NEWDISK and then copy all .CMD and all .SYS files to the new disk. Finally the LINK must
be performed. Rather than having to type this set of commands each time it was desired to produce
a new system diskette, we could create a command file called MAKEDISK.TXT which contained
the necessary commands. The BUILD utility should be used to create this file. The creation of this
file might go as follows:

+++BUILD,MAKEDISK
 =NEWDISK,1
 =COPY,0,1,.CMD,.OV,.LOW,.SYS
 =LINK,1.DOS
 =*
+++

The first line of the example tells FLEX we wish to BUILD a file called MAKEDISK (with
the default extension of .TXT). Next, the three necessary command lines are typed in just as they
would be typed into FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS
extensions from drive 0 to drive 1. Finally the LINK will be performed. Now when we want to
create a system disk in drive 1 we only need to type the following:

+++EXEC,MAKEDISK
We are assuming here that MAKEDISK resides on the same disk which contains the system

commands. EXEC can also be used to execute the STARTUP file (see STARTUP).
There are many applications for the EXEC command. The one shown is certainly useful but

experience and imagination will lead you to other useful applications.

-- E.1.1 --

.

JUMP

The JUMP command is provided for convenience. It is used to start execution of a program already
stored in computer RAM memory.

DESCRIPTION
The general syntax of the JUMP command is:

JUMP,(hex address)
where (hex address) is a 1 to 4 digit hex number representing the address where program execution
should begin. The primary reason for using JUMP is if there is a long program already in memory
and you do not wish to toad it off of the disk again. Some time can be saved but you must be sure
the program really exists before JUMPing to it!

As an example, suppose we had a BASIC interpreter in memory and it had a 'warm start'
address of 103 hex. To start its execution from FLEX, type the following:

+++JUMP,103
The BASIC interpreter would then be executed. Again, remember that you must be absolutely

sure the program you are JUMPing to is actually present in memory.

-- J.1.1 --

.

LINK

The LINK command is used to tell the bootstrap loader where the DOS.SYS file resides on the disk.
This is necessary each time a system disk is created using NEWDISK. The NEWDISK utility should
be consulted for complete details on the use of LINK.

DESCRIPTION
The general syntax of the LINK command is:

LINK,(file spec)
where (file spec) is usually DOS. The default extension is SYS. Some examples of the use of LINK
follow:

+++LINK,DOS
+++LINK,1.DOS

The first line will LINK DOS.SYS on the working drive, while the second example will LINK
DOS.SYS on drive 1. For more advanced details of the LINK utility, consult the "Advanced Pro-
grammers Guide".

-- L.1.1 --

LIST

The LIST command is used to LIST the contents of text or BASIC files on the terminal. It is often
desirable to examine a file without having to use an editor or other such program. The LIST utility
allows examining entire files, or selected lines of the file. Line numbers may also be optionally
printed with each line.

DESCRIPTION
The general syntax of the LIST command is:

LIST,(file spec){,(line range)}{,N}
where the (file spec) designates the file to be LISTed (with a default extension of TXT), (line range)
is the first and last line number of the file which you wish to be displayed, and the 'N' tells LIST to
output line numbers. All lines are output if no range specification is given. A few examples will
clarify the syntax used:

+++LIST,RECEIPTS,N
+++LIST,CHAPTER1,30-200,N
+++LIST,LETTER,100

The first example will list the file named 'RECEIPTS.TXT' with line numbers. All lines will be
output unless the escape 'character' is used as described in the Utility Command Set introduction.
The second example will LIST the 30th line through the 200th line of the file named 'CHAPTER1.
TXT' on the terminal. The hyphen ('-') is required as the range number separator. Line numbers will
be output because of the 'N'. The last example shows a special feature of the range specification If
only one number is stated, it will be interpreted as the first line to be displayed. All lines following
that line will also be LISTed. The last example will LIST the lines from line 100 to the end of the
file. No line numbers will be output since the 'N' was omitted.

-- L.2.1 --

MEMTEST1

The MEMTEST1 utility can be used to verify the integrity of the computer's memory. MEMTEST1
should be run periodically on your computer to alert you of any memory failures.

DESCRIPTION
The general syntax of the MEMTEST1 utility is:

MEMTEST1
MEMTEST1 does not have any arguments or file specifications associated with it. MEMTEST1

will then prompt you for the beginning and ending memory addresses. A four digit hexadecimal
number should be entered in each case. In the case of a 32K system, the response would be as
follows:

+++MEMTEST1
ENTER THE STARTING MEMORY ADDRESS 0000
ENTER THE ENDING MEMORY ADDRESS 7FFF

If no errors are found in the memory being checked a + will be displayed on the screen. To
completely test an area of memory, MEMTEST1 must be allowed to run until 256 +'s have been
displayed on the screen. Each time a + is displayed on the screen MEMTEST has successfully cycled
through memory storing and reading a different pattern.

If an error is detected the output will be similar to the following:
 $06 20 16A0
(PATTERN #) (ERRANT BITS) (ADDRESS)

An error message such as this says that MEMTEST1 cycled thru memory five times without
error, but on the sixth try a pattern was used that detected an error. The 06 tells what pattern
number MEMTEST1 was working on when the error was detected. The 20 (hexadecimal) tells
which bit(s) were in error. 20 converted to binary is 00100000-the location of the 1 is the bit(s)
that were in error, in this case bit 5. Bit numbers start from 0 as shown.

7 6 5 4 3 2 1 0 BIT #
2016 = 0 0 1 0 0 0 0 0

The 16A0 is the address where the error was detected. This address may not store a particular

number or possibly writing into another address, such as 16B0, changed the contents of 16A0.
The IC assignments table supplied with the memory board should be used to help locate the

problem. In the above case on an MP-8M 8K memory board the bit # 5 IC in the upper 4K of
memory should be suspected.

After running MEMTEST1, FLEX may be re-entered only by re-booting the system.

-- M.1.1 --

.

NEWDISK

NEWDISK is used to format a new diskette. Diskettes as purchased will not work with FLEX until
certain system information has been put on them. The NEWDISK utility puts this information on
the diskette, as well as checking the diskette for defective sectors (bad spots on the surface of the
disk which may cause data errors).

DESCRIPTION
The general syntax of the NEWDlSK command is:

NEWDISK,(drive)
where (drive) represents a single digit drive number and specifies the drive to be formatted. After
typing the command, the system will ask if you are sure you want a NEWDISK, and if the disk to
be initialized is a scratch disk. Type 'Y' as the response to these questions if you are sure the NEW-
DISK command should continue.

The NEWDlSK process takes approximately one and one-half minutes to initialize a disk,
assuming there are no bad spots on it. Defective sectors will make NEWDISK run even slower, de-
pending on the number of bad sectors found. As bad sectors are detected, a message will be output
to the terminal such as:

BAD SECTOR AT xx yy
where "xx" is the disk track number (in hex) and 'yy' is the sector number, also in hex. NEWDISK
automatically removes bad sectors from the list of available sectors, so even if a disk has several bad
sectors on it, it is still usable. When NEWDISK finishes, FLEX will report the number of available
sectors remaining on the disk. If no defective sectors were detected, the total should be 612.

Sometimes during the NEWDISK process, a sector will be found defective in an area on the
disk which is required by the operating system. In such a case, NEWDISK will report:

FATAL ERROR-FORMATTING ABORTED
and FLEX will regain control. You should not immediately assume the disk to be useless if this
occurs, but instead, remove the disk from the drive, re-insert it, and try NEWDISK again. If after
several attempts the formatting is still aborted, you should assume the disk is unusable. You may
not BACKUP onto a diskette with bad sectors on it. See the BACKUP documentation for more
information.

CREATING SYSTEM DISKETTES
A system disk is one which the disk operating system can be loaded from. Normally the system disk
will also contain the Utility Command Set (UCS). The following procedure should be used when
preparing system disks.

 1. Initialize the diskette using NEWDISK as described above.
 2. COPY all .CMD files desired to the new disk.
 3. COPY all .SYS files to the new disk. It should be noted that steps 2 and 3 can be

done with one command; 'COPY,0,1,.CMD,.OV,.LOW,.SYS', assuming you are copying from 0
to 1 and all command files and their overlays are desired. (the .OV copies overlay files and
.LOW copies the utility 'SAVE.LOW').

 4. Last it is necessary to LINK the file DOS.SYS to the system using the LINK com-
mand.

A very convenient way to get the above process performed without having to type all of the

commands each time is to create a command file and use the EXEC command. Consult the EXEC
documentation for details.

It is not necessary to make every disk a system diskette. It is also possible to create 'working'
diskettes, disks which do not have the operating system on them, for use with text files or BASIC
files. Remember that a diskette can not be used for booting the system unless the operating system
is contained on it. To create a working disk, simply run NEWDISK on a diskette. It will now have
all of the required information to enable FLEX to make use of it. This disk, however, does not con-
tain the disk operating system and is not capable of booting the system.

-- N.1.1 --

.

P

The P command is very special and unlike any others currently in the UCS. P is the system print
routine and will allow the output of any command to be routed to the printer. This is very useful
for getting printed copies of the CATalog or when used with the LIST command will allow the
printing of FLEX text files.

DESCRIPTION
The general syntax of the P command is:

P, (command)
where (command) can be any standard utility command line. If P is used with multi-

ple commands per line (using the 'end of line' character,:), it will only have affect on the command
it immediately precedes. Some examples will clarify its use:

+++P,CAT
+++P,LIST,MONDAY:CAT,1

The first example would print a CATalog of the directory of the working drive on the printer.
The second example will print a LISTing of the text file MONDAY.TXT and then display on the
terminal a CATalog of drive 1 (this assumes the 'end of line' character is a':'). Note how the P did
not cause the 'CAT,1' to go to the printer. Consult the 'Advanced Programmer's Guide' for details
concerning adaption of the P command to various printers.

The P command tries to load a file named PRINT.SYS from the same disk which P itself was
retrieved. The PRINT.SYS file which is supplied with the system diskette contains the necessary
routines to operate a SWTPC PR 40 printer connected through a parallel interface on PORT 7 of
the computer. If you wish to use a different printer configuration, consult the 'Advanced Program-
mer's Guide' for details on writing your own printer driver routines to replace the PRINT.SYS file.
The PR 40 drivers, however, are compatible with many other parallel interfaced printers presently
on the market.

-- P.1.1 --

.

RENAME

The RENAME command is used to give an existing file a new name in the directory. It is useful
for changing the actual name as well as changing the extension type.

DESCRIPTION
The general syntax of the RENAME command is:

RENAME,(file spec 1),(file spec 2)
where (file spec 1) is the name of the file you wish to RENAME and (file spec 2) is the new name
you are assigning to it. The default extension for file spec I is TXT and the default drive is the
working drive. If no extension is given on (file spec 2), it defaults to that of (file spec I). No drive
is required on the second file name, and if one is given it is ignored. Some examples follow:

+++RENAME,TEST1.BIN,TEST2
+++RENAME,1.LETTER,REPLY
+++RENAME,0.FIND.BIN,FIND.CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next example RENAMEs
the file LETTER.TXT on drive 1 to REPLY.TXT. The last line would cause the file FIND.BIN on
drive 0 to be renamed FIND.CMD. This is useful for making binary files created by an assembler
into command files (changing the extension from BIN to CMD). If you try to give a file a name
which already exists in the directory, the message:

FILE EXISTS
will be displayed on the terminal. Keep in mind that RENAME only changes the file's name and in
no way changes the actual file's contents.

One last note of interest. Since utility commands are just like any other file, it is possible to
rename them also. If you would prefer some of the command names to be shorter, or different all
together, simply use RENAME and assign them the names you desire.

-- R.1.1 --

.

SAVE

The SAVE command is used for saving a section of memory on the disk. Its primary use is for sav-
ing programs which have been loaded into memory from tape or by hand.

DESCRIPTION
The general syntax of the SAVE command is:

SAVE,(file spec),(begin adr),(end adr){,(transfer adr)}
where (file spec) is the name to be assigned to the file. The default extension is BIN and the default drive
is the working drive. The address fields define the beginning and ending addresses of the sec-
tion of memory to be written on the disk. The addresses should be expressed as hex numbers. The
optional (transfer address)would be included if the program is to be loaded and executed by FLEX
This address tells FLEX where execution should begin. Some examples will clarify the use of
SAVE:

+++SAVE,DATA,100,1FF
+++SAVE,1.GAME,0,1680,100

The first line would SAVE the memory locations 100 to 1FF hex on the disk in a file called
DATA.BIN. The file would be put on the working drive and no transfer address would be assigned.
The second example would cause the contents of memory locations 0 through 1680 to be SAVEd
on the disk in file GAME.BIN on drive 1. Since a transfer address of 100 was specified as a para-
meter, typing 'GAME.BIN' in response to the FLEX prompt after saving would cause the file to be
loaded back into memory and execution started at location 100

It is not possible to SAVE a file under a name which already exists on the disk. In other words,
the name you are assigning to the file being SAVEd must not already exist on the disk or the error
'FILE EXISTS' will be displayed.

Sometimes it is desirable to save noncontiguous segments of memory. To do this it would be
necessary to first SAVE each segment as a separate file and then use the APPEND command to
combine them into one file. If the final file is to have a transfer address, you should assign it to one
of the segments as it is being SAVEd. After the APPEND operation, the final file will retain that
transfer address.

-- S.1.1 --

SAVE.LOW

There is another form of the SAVE command resident in the UCS It is called SAVE.LOW and loads
in a lower section of memory than the standard SAVE command. Its use is for saving programs in
the Utility Command Space where SAVE.CMD is loaded. Those interested in creating their own
utility commands should consult the 'Advanced Programmer's Guide' for further details.

-- S.2.1 --

STARTUP

STARTUP is not a utility command but is a feature of FLEX. It is often desirable to have the oper-
ating system do some special action or actions upon initialization of the system (during the boot-
strap loading process). As an example, the user may always want to use BASIC immediately follow-
ing the boot process. STARTUP will allow for this without the necessity of calling the BASIC
interpreter each time.

DESCRIPTION
FLEX always checks the disk's directory immediately following the system initialization for a file
called STARTUP.TXT. If none is found, the three plus sign prompt is output and the system is
ready to accept user commands. If a STARTUP file is present, it is read and interpreted as a single
command line and the appropriate actions are performed. As an example, suppose we wanted FLEX to
execute BASIC each time the system was booted. First it is necssary to create the STARTUP file:

+++BUILD,STARTUP
=BASIC
=#

+++
The above procedure using the BUILD command will create the desired file. Note that the file

consisted of one line (which is all FLEX reads from the STARTUP file anyway). This line will tell
FLEX to load and execute BASIC. Now each time this disk is used to boot the operating system,
BASIC will also be loaded and run. Note that this example assumes two things. First, the disk must
contain DOS.SYS and must have been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASlC.CMD actually exists on the disk.

Another example of the use of STARTUP is to set system environment parameters such as
TTYSET parameters or the assigning of a system and working drive. If the STARTUP command
consisted of the following line:

TTYSET,DP=16,WD=60:ASN,W=1:ASN:CAT,0
each time the system was booted the following actions would occur. First, TTYSET would set the
'depth' to 16 and the 'width' to 60. Next, assuming the 'end of line' character is the ':', the ASN
command would assign the working drive to drive 1. Next ASN would display the assigned system
and working drives on the terminal. Finally, a CATalog of the files on drive 0 would be displayed.
For details of the actions of the individual commands, refer to their descriptions elsewhere in this
manual.

As it stands, it looks as if the STARTUP feature is limited to the execution of a single com-
mand line. This is true but there is a way around the restriction, the EXEC command. If a longer
list of operations is desired than will fit on one line, simply create a command file containing all of
the commands desired. Then create the STARTUP file using the single line.

EXEC,(file name)
where (file name) would be replaced by the name assigned to the command file created. A little
imagination and experience will show may uses for the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS command it is possible to
lockout access to DOS. You can correct the problem by hitting the RESET button, setting the pro-
gram counter addresses A048 and A049 to 7103 and typing G for go. The STARTUP file may then
be deleted and if desired, modified. Directing execution to 7103, the DOS warm start address, by-
passes the DOS STARTUP function.

-- S.3.1 --

.

TTYSET

The TTYSET utility command is provided so the user may control the characteristics of the ter-
minal. With this command, the action of the terminal on input and the display format on output
may be controlled.

DESCRIPTION
The general syntax of the TTYSET command is:

TTYSET{,(parameter list)}
where (parameter list) is a list of 2 letter parameter names, each followed by an equals sign ('='),
and then by the value being assigned. Each parameter should be separated by a comma or a space.
If no parameters are given, the values of all of the TTYSET parameters will be displayed on the
terminal.

The default number base for numerical values is the base most appropriate to the parameter. In
the descriptions that follow, 'hh' is used for parameters whose default base is hex; 'dd' is used for
those whose default base is decimal. Values which should be expressed in hex are displayed in the
TTYSET parameter listing preceded by a '$'. Some examples follow:

+++TTYSET
+++TTYSET,DP=16,WD=63
+++TTYSET,DX=F,BS=8,ES=3

The first example simply lists the current values of all TTYSET parameters on the terminal.
The next line sets the depth 'DP' to 16 lines and the terminal width, 'WD' to 63 columns. The last
example sets the computer duplex, 'DX' to Full, the backspace character to the value of hex 8, and
the escape character to hex 3.

The following fully describes all of the TTYSET parameters available to the user. Their initial
values are defined as well as any special characteristics they may possess.

BS=hh BackSpace character
This sets the 'backspace' character to the character having the ASCII hex value of hh. This character
is initially a 'control H' (hex 08), but may be defined to any ASCII character. The action of the
backspace character is to delete the last character typed from the terminal. If two backspace
characters are typed, the last two characters will be deleted, etc. Setting BS=0 will disable the back-
space feature.

DL=hh DeLete character
This sets the 'delete current line' character to the hex value hh. This character is initially a 'control
X' (hex 16). The action of the delete character is to 'erase' the current input line before it is accep-
ted into the computer for execution. Setting DL=0 will disable the line delete feature.

EL=hh End of Line character
This character is the one used by FLEX to separate multiple commands on one input line. It is ini-
tially set to a colon (':'), a hex value of 3A. Setting this character to 0 will disable the multiple com-
mand per line capability of FLEX. The parameter 'EL=hh' will set the end of line character to the
character having the ASCII hex value of hh. This character must be set to a printable character (con-
trol characters not allowed).

DP=dd DePth count
This parameter specifies that a page consists of dd (decimal) physical lines of output. A page may be
considered to be the number of lines between the fold if using fan folded paper on a hard copy ter-
minal, or a page may be defined to be the number of lines which can be displayed at any one time
on a CRT type terminal. Setting DP=0 will disable the paging (this is the initial value). See EJ and
PS below for more details of depth.

-- T.1.1 --

WD=dd WiDth
The WD parameter specifies the (decimal) number of characters to be displayed on a physical line at
the terminal (the number of columns). Lines of text longer than the value of width will be 'folded'
at every multiple of WD characters. For example, if WD is 50 and a line of 125 characters is to be
displayed, the first 50 characters are displayed on a physical line at the terminal, the next 50 charac-
ters are displayed on the next physical line, and the last 25 characters are displayed on the firs phy-
sical line. If WD is set to 0, the width feature will be disabled, and any number of characters will be
permitted on a physical line.

NL=dd NuLl count
This parameter sets the (decimal) number of non-printing (Null) 'pad' characters to be sent to the
terminal at the end of each line. These pad characters are used so the terminal carriage has enough
time to return to the left margin before the next printable characters are sent. The intial value is 4.
Users using CRT type terminals may want to set NL=0 since no pad characters are usually required
on this type of terminal.

TB=hh TaB character
The tab character is not used by FLEX but some of the utilities may require one (such as the Text
Editing System). This parameter will set the tab character to the character having the ASCII hex
value hh. This character should be a printable character.

DX=F or DX=H set DupleX
This parameter sets the computer transmission mode to either Full or Half duplex. A terminal may
also operate in either mode of duplex. Some terminals have a switch enabling the operator to deter-
mine in which mode the terminal is to operate. When a terminal operates in full duplex mode, de-
pressing a character key transmits the character to the computer, but the character is not printed at
the terminal. The terminal expects the computer to 'echo' (transmit back to the terminal) the
character it receives. This echoed character is then printed. When a terminal operates in half duplex
mode, depressing a character key transmits the character to the computer and prints the character
at the terminal -'echo' is not expected.

The computer may also operate in either full or half duplex mode. In full duplex mode, each
character received by the computer is 'echoed' (transmitted back) to the terminal. In half duplex
mode, the characters received are not echoed. (*note: Computers with a Control Interface, MP-C,
installed instead of the Serial interface, MP-S, should have the duplex set to HALF. The computer will
still echo characters and act as if it were in the full duplex mode. This is a characteristic of the hard-
ware.)

The table below describes the effect of each of the four possible terminal and computer
mode combinations:

TERMINAL COMPUTER EFFECT
 full full the terminal prints normally since the computer is

echoing all received characters
 full half no input characters are printed
 half full the terminal will either double-print or garbage-print in-

put characters.
 half half the terminal prints normally since the characters are

printed as they are typed
It is best to operate both the terminal and the computer in full duplex mode since the charac-

ter printed is a copy of what the computer actually received. This provides a double-check of the
input characters.

EJ=dd EJectcount
This parameter is used to specify the (decimal) number of 'eject lines' to be sent to the terminal
at the bottom of each page. If Pause is 'on', the 'eject sequence' is sent to the terminal after the
pause is terminated. If the value dd is zero (which it is by default), no 'eject lines' are issued. An

-- T.1.2 --

eject line is simply a blank line (line feed) sent to the terminal. This feature is especially useful for
terminals or printers with fan fold paper so as to skip over the fold (see Depth). It may also be use-
ful for certain CRT terminals to be able to erase the previous screen contents at the end of each
page.

PS=Y or PS=N PauSe control
This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause feature. If Pause is on and
depth is set to some nonzero value, the output display is automatically suspended at the end of each
page. The output may be restarted by typing the 'escape' character (see ES description). If pause is
disabled, there will be no end-of-page pausing. This feature is useful for those using high-speed CRT
terminals to suspend output long enough to read the page of text.

ES=hh EScape character
The character whose ASCII hex value is hh is defined to be the 'escape character'. Its intial value is
$1B, the ASCII ESC character. The escape character is used to stop output from being displayed,
and once it is stoped, restart it again It is also used to restart output after Pause has stopped it. As
an example, suppose you are LISTing a long text file on the terminal and you wish to tempor-
arily halt the output. Typing the 'escape character' will do this (this feature is not supported on
computers using a Control Interface (MP-C) for terminal communications). At this time (output
halted), typing another 'escape character' will resume output, while typing the RETURN key will
cause control to return to F LEX and the three plus sign prompt will be output to the terminal.
It should be noted that line output termination always happens at the end of a line.

-- T.1.3 --

.

VERIFY

The VERIFY command is used to set the File Management System's write verify mode. If VERIFY
is on, every sector which is written to the disk is read back from the disk for verification (to make
sure there are no errors in any sectors). With VERIFY off, no verification is performed.

DESCRIPTION
The general syntax of the VERIFY command is:

VERIFY{,ON}
 or
VERIFY{,OFF}

where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed without any para-
meters, the current status of VERIFY will be displayed on the terminal. Example:

+++VERIFY,ON
+++VERIFY

The first example sets the VERIFY mode to ON. The second line would display the current
status (ON or OFF) of the VERIFY mode. VERIFY causes slower write times, but it is recom-
mended that it be left on for your protection.

-- V.1.1 --

VERSION

The VERSION utility is used to display the version number of a utility command. If problems or
updates ever occur in any of the utilities, they may be replaced with updated versions. The VER-
SION command will allow you to determine which version of a particular utility you have.

DESCRIPTION
The general syntax of the VERSION command is:

VERSION,(file spec)
where (file spec) is the name of the utility you wish to check. The default extension is CMD and
the drive defaults to the working drive. As an example:

+++VERSlON,0.CAT
would display the version number of the CAT command (from drive 0) on the terminal.

-- V.2.1 --

GENERAL SYSTEM INFORMATION

1. DISK CAPACITY
Each mini diskette when used with the mini version of FLEX is capable of holding 612 sectors.
Each sector can contain a maximum of 124 characters (4 bytes in each sector are used by the sys-
tem). The total capacity of the diskette is then 75,888 characters or bytes of information. The
other limitation on a diskette is that the directory will support a maximum of 75 files. Trying to
put more files than that on a diskette will cause an error message to be issued. In most cases, this is
not a restriction since the actual disk space will be used up before the directory space. Also, the disk
becomes cumbersome to use after about 60 files have been created.

II. WRITE PROTECT
it is possible to write protect a disk (make it impossible for the system to write on a disk) by pla-
cing a piece of opaque tape over the small rectangular cutout on the edge of the diskette. Any
attempts to write files or delete files on a protected disk will cause an error message to be issued.
It is good practice to write protect disks which have important files on them.

III. THE 'RESET' BUTTON
The RESET button on the front panel of your computer should NEVER BE PRESSED DURING
A DISK OPERATION. There should never be a need to 'reset' the machine while in FLEX. If the
machine is 'reset' and the system is writing data on the disk, it is possible that the entire disk will
become damaged. Again, never press 'reset' while the disk is operating! Refer to the 'escape' cha-
racter in TTYSET for ways of stopping FLEX.

IV. NOTES ON THE P COMMAND
The P command tries to load a file named PRINT.SYS from the same disk which P itself was re-
trieved. The PRINT.SYS file which was supplied with the system diskette contains the necessary
routines to operate a SWTPC PR40 printer connected through a parallel interface on PORT 7 of the
computer. If you wish to use a different printer configuration, consult the 'Advanced Programmer's
Guide' for details on writing your own printer driver routines to replace the PRINT.SYS file.

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE
If a disk access is requested of a drive not containing a diskette, the FLEX operating system will
lock up until a diskette is placed in this drive and the door closed. The RESET button on the com-
puter may also be used to exit this type of lock-up. After pressing RESET the FLEX operating sys-
tem should be re-entered by jumping to hex location 7103.

-- 3.1 --

VI . SYSTEM ERROR NUMBERS
All expected errors will be displayed on the terminal as a plain English type error message. Less
frequent error types will be reported as an error number in the following manner:

DISK ERROR #xx
where 'xx' is a decimal error number. The table below is a list of these numbers and what error they
represent.
ERROR# MEANING
 1 ILLEGAL FMS FUNCTION CODE
 2 FILE CURRENTLY BUSY
 3 FILE EXISTS
 4 NO SUCH FILE
 5 DIRECTORY ERROR
 6 TOO MANY FILES (DIRECTORY FULL)
 7 DISK FULL
 8 END OF FILE REACHED
 9 READ ERROR (CRC)
 10 WRITE ERROR (CRC)
 11 DISK IS WRITE PROTECTED
 12 DELETE ERROR
 13 ILLEGAL FILE CONTROL BLOCK
 14 ILLEGAL DISK ADDRESS
 15 DRIVE NUMBER ERROR
 16 DRIVE NOT READY
 17 FILE ACCESS DENIED
 18 FILE STATUS ERROR
 19 DATA INDEX RANGE ERROR
 20 FMS INACTIVE
 21 ILLEGAL FILE NAME
 22 FILE CLOSE ERROR

For more details concerning the meanings of these error messages, consult the 'Advanced
Programmer's Guide'.

VII . SYSTEM MEMORY MAP
The following is a brief list of the RAM memory space required by the FLEX Operating System.
All address are in hex.
0000 - 2FFF User RAM
 *Note: Some of this space is used by CAT, COPY, APPEND, BACKUP, and

NEWDISK
3000 - 6FFF UserRAM
7000 - 75FF Disk Operating System
7100 FLEX cold start entry address
7103 FLEX warm start entry address
7600 - 773F Utility command space
7740 - 777F System FCB
7800 - 7EFF File Management System
7F00 - 7FFF Disk driver routines
A04A - A07F System stack

For a more detailed memory map, consult the 'Advanced Programmer's Guide'.

-- 3.2 --

VIII. FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES
In order for the TTYSET duplex setting function to operate properly, all user program character
input/output subroutines should be vectored thru the FLEX operating system rather than the com-
puter's monitor. Below is a list of FLEX's I/O jumps and a brief description of each. All given ad-
dresses are in hexadecimal.

710F
This subroutine is functionally equivalent to SWTBUG®'s or MlKBUG®'s character input routine
E1AC. This routine will look for one character from the control terminal (I/0 #1) and store it in the
A accumulator. Once called, the input routine will loop within itself until a character has been in-
put. Anytime input is desired, the call JSR $710F should be used.

710F automatically sets the 8th bit to 0 and does not check for parity. When using the sub-
routine the processor's registers are affected as follows:
 ACC A loaded with the character input from the terminal
 ACC B not affected
 IXR not affected

7112
This subroutine is used to output one character from the computer to the control port (1/0 #1).

To use 7112 the character to be output should be placed in the A accumulator in its ASCII
form. To output the letter A on the control terminal, the following program could be used:
 LDA A #$41
 JSR $7112

The processor's registers are affected as follows:
 ACC A changed internally
 ACC B not affected
 IXR not affected

This routine is functionally equivalent to E1D1 in SWTBUG® and MIKBUG® monitors.

7118
7118 is the entry point of the subroutine used to output a string of text on the control terminal.
When address 7118 is called, a carriage return and line feed will automatically be generated and data
output will begin at the location pointed to by the index register. Output will continue until a 04 is
seen. The same rules for using the ESCAPE and RETURN keys for stopping output apply as des-
cribed earlier.

The accumulator and register status after using 7118 are as follows:
 ACC A Changed during the operation
 ACC B UNCHANGED
 IXR Contains the memory location of the last character read from the string

(usually the 04 unless stopped by the ESC key)
NOTE: The ability of using backspace and line delete characters is a function of your user

program and not of the FLEX I/O routines described above. Correct operation of the TTYSET
utility to set the desired duplex mode assumes that the monitor's "initialization" sequence is never
invoked. (If a user program is ever entered by using the G or J function of the monitor, the duplex
mode of the FLEX I/O routines may not be correct.) Any user program which is entered directly
from FLEX will run correctly.

For additional information consult the 'Advanced Programmer's Manual'.

-- 3.3 --

IX. BOOTING THE FLEX SYSTEM

Below is a short bootstrap program which will load the FLEX operating system from the system
diskette. This boot is not necessary for user's having a SWTBUG® monitor-SWTBUG® already con-
tains this boot.

To bring up the FLEX operating system, enter the bootstrap program below instruction by in-
struction using the memory examine and change function of your monitor. As shown, the bootstrap
loads from hex address 0 to 0149. After entering the bootstrap, set the computer's program
counter A048 and A049 to 0 After a system diskette is installed in drive 0, a G may be entered
to execute the bootstrap.

If the system will not boot properly, re-position the system diskette in the drive and re-execute
the bootstrap. The diskette to be booted must be initialized and must also contain the disk opera-
ting system software.

0100 B6 8018 START LDA A COMREG TURN MOTOR ON
0103 4F CLR A
0104 B7 8014 STA A DRVREG
0107 CE 0000 LDX #0
010A 08 OVR INX
010B 09 DEX
010C 09 DEX
010D 26 FB BNE OVR
010F C6 0F LDA B #$0F RESTORE
0111 F7 8018 STA A COMREG
0114 8D 31 BSR RETURN
0116 F6 8018 LOOP1 LDA B COMREG LOOP UNTIL THRU
0119 C5 01 BIT B #1
011B 26 F9 BNE LOOP1
011D 7F 801A CLR SECREG
0120 8D 25 BSR RETURN
0122 C6 9C LDA B #$9C READ WITH LOAD
0124 F7 8018 STA B COMREG
0127 8D 1E BSR RETURN
0129 CE 2400 LDX #$2400
012C C5 02 LOOP2 BIT B #2 DRQ?
012E 27 06 BEQ LOOP3
0130 B6 801B LDA A DATREG
0133 A7 00 STA A 0,X
0135 08 INX
0136 F6 8018 LOOP3 LDA B COMREG
0139 C5 01 BIT B #1 BUSY?
013B 26 EF BNE LOOP2
013D F6 8018 LDA B COMREG
0140 C4 0C AND B #$0C CHECK FOR CRC AND LDATA
0142 26 BC BNE START RE-DO IF ERRORS
0144 7E 2400 JMP $2400
0147 20 00 RETURN BRA RTN
0149 39 RTN RTS

-- 3.4 --

X. Requirements for the PRINT.SYS Printer Driver

FLEX, as supplied, includes a printer driver routine that will work with most parallel type printers,
such as the SWTPC PR-40. If desired the printer driver may be changed to accommodate other
types of printers. Included is the source listing for the supplied driver. Custom drivers must adhere
to the following rules for correct operation:

 1.) The driver must be in a file called PRINT.SYS

 2.) Hex location 0010 must contain the starting address of the port initialization routine.

 3.) Hex location 0012 and location 710D must contain the address of the character output

routine.

 4.) When the printer character output routine is called by FLEX, the character to be output

will be in the A accumulator. The output routine must not destroy the index register or
the B accumulator.

 5.) Both the initialization and output routine may reside anywhere in memory, but must not

conflict with any utilities or programs which will use P.

 6.) Both the initialization and the output routine must end with a return from subroutine

RTS.

 1 NAM PRINT
 2 OPT PAG
 3 *GENERATES PRINT.SYS FILE FOR P UTILITY
 4 *VERSION 1

 6 0001 VERSION EQU 1 SET UP VERSION NUMBER
 7 801C PORT EQU $801C SET UP FOR PORT 7

 9 0010 ORG $0010
10 0010 A0 4A FDB INIT SET UP INITIALIZATION ADDRESS
11 0012 A0 16 FDB OUTCHR SET UP OUTPUT ADDRESS

13 710D ORG $701D
14 710D A0 16 FDB OUTCHR

16 *THIS ROUTINE OUTPUTS THE CONTENTS
17 *OF THE A ACCUMULATOR TO A PARALLEL PRINTER
18 *ASSUMES AN MP-L OR MP-LA INTERFACE ON PORT 7
19 A016 ORG $A016
20 A016 20 01 OUTCHR BRA OUT
21 A018 01 FCB VERSION SET VERSION BYTE
22 A019 FF A0 35 OUT STX SAVEX SAVE IXR AND ACC B
23 A01C 37 PSH B
24 A01D CE 80 1C LDX #PORT PORT #7
25 A020 A7 00 STA A 0,X GIVE DATA TO PIA
26 A022 C6 36 LDA B #$36 GENERATE READY STROBE
27 A024 E7 01 STA B 1,X
28 A026 C6 3E LDA B #$3E
29 A028 E7 01 STA B 1,X
30 A02A 6D 01 LOOP TST 1,X WAIT FOR ACCEPTED PULSE
31 A02C 2A FC BPL LOOP
32 A02E E6 00 LDA B 0,X
33 A030 FE A0 35 LDX SAVEX RECOVER IXR AND ACC B
34 A033 33 PUL B
35 A034 39 RTS
36 A035 SAVEX RMB 2 TEMPORARY STORAGE

CONTINUED

-- 3.5 --

CONTINUED FROM FRONT

38 A04A ORG $A04A
39 A04A CE 80 1C INIT LDX #PORT
40 A04D C6 FF LDA B #$FF ALL OUTPUTS
41 A04F E7 00 STA B 0,X
42 A051 C6 3F LDA B #$3E SET UP READY STROBE
43 A053 E7 01 STA B 1,X
44 A055 39 RTS
45 END

 NO ERROR(S) DETECTED

-- 3.6 --

COMMAND SUMMARY

APPEND,(file spec){,(file list)},(file spec) MON
 Default extension: .TXT Description page: 1.4
 Description page: A.1.1
 NEWDISK,(drive)
ASN{,W=(drive)}{,S=(drive)} Description page: N.1.1
 Description page: A.2.1
 P,(command)
BACKUP,(input drive),(output drive) Description page: P.1.1
 Description page: B.1.1
 RENAME,(file spec 1),(file spec 2)
BUILD,(file spec) Default extension: .TXT
 Default extension: .TXT Description page: R.1.1
 Description page: B.2.1
 SAVE,(file spec),(begin adr),(end adr){,(transfer adr)}
CAT{,(drive list)}{,(match list)} Default extension: .BlN
 Description page: C.1.1 Description page: S.1.1

COPY,(file spec),(file spec) SAVE.LOW
COPY,(file Description page: S.2.1
COPY,(drive),(drive){,(match list)}
 Description page: C.2.1 STARTUP
 Description page: S.3.1
DELETE,(file spec){,(file list)}
 Description page: D.1.1 TTYSET{,(parameter list)}
 Description page: T.1.1
EXEC,(file spec)
 Default extension: .TXT VERIFY{,ON}
 Description page: E.1.1 VERIFY{,OFF}
 Description page: V.1.1
GET,(file spec){,(file list)}
 Description page: 1.4 VERSION,(file spec)
 Default extension: .CMD
JUMP,(hex address) Description page: V.2.1
 Description page: J.1.1

LINK,(file spec)
 Default extension: .SYS
 Description page: L.1.1

LIST,(file spec){,(line range)}{,N}
 Default extension: .TXT
 Description page: L.2.1

MEMTEST1
 Description page: M.1.1

-- 4.1 --

NOTES:

