
An External File Interface for ISAM Files under VMS­

F.w. Hester, SAS Institute Inc., Cary, NC 

ABSTRACT 

A user-written external file interface (UFI) replaces the standard 
SAS I/O routines with another set of routines. These routines may 
allow a functionality not inherent to the SAS System. The inter­
face communicates with the SAS System through a data struc­
ture called the EXTIO communications vector. The ISAM driver 
provided by SAS Institute is an excellent example of a simple 
external file interface. 

INTRODUCTION 

The ISAM external driver allows SAS users to perform key 
access on existing indexed sequential access method (ISAM) 
files. Using the interface, you can access files by any key with 
the FILE and INFILE statements. Without the interface, the files 
are read as flat files by the primary key. However, the file must 
exist. The driver does not create an ISAM file if one does not 
exist. 
The ISAM UFI will be distributed with the Version 5 maintenance 
release and is currently available by request on a separate tape. 
This driver is not supported by SAS Institute and is distributed 
as an aid and convenience to users needing an ISAM interface 
or an example of how an external file driver is written. SAS Insti­
tute does, however, support the external file interface in Version 
5 of the SAS System. Additional information on external file inter­
faces can be found in SAS Technical Report: P-143, Writing Inter­
faces for Special External Files under the VMS'" SAS System, 
Version 5. 

ACCESSING DATA VIA ISAM FILES 

ISAM files are made up of three parts. The first is the file header, 
which is followed by the prolog. The prolog contains information 
useful to RMS, including file attributes, key descriptors, and area 
descriptors. Following the prolog is one or more index structures. 
The primary index structure contains the data records. Index 
structures also exist for each alternate key and contain second­
ary index data records that point to the data records in the pri­
mary index structure. 
For a more detailed discussion of ISAM files, see the Guide to 
VAX"" jVMS"'" File Applications. 

FILENAME SYNTAX 

A FILENAME statement is used to invoke an external file inter­
face. This syntax is 

FILENAME KINE '~ISAK pathname Ikey '; 

The string in quotes is a departure from the standard FILENAME 
syntax. This string consists of three parts: the driver name, the 
pathname, and the key. 
The driver name in the sample code is @ISAM. The @ symbol 
tells SAS that an external file driver is associated with the 
FILENAME. The name after the @ is used to determine what UFI 
to use, which in this case is the ISAM driver. 
The pathname is a VMS pathname to the data file, such as 

DUA 1: IDATA....DIRIISAKJ'ILE.DAT. 

Normal VMS defaults and logical names apply to the pathname. 

175 

The key is the number of the key to use when accessing the file. 
These keys are 0 based, and no key specification means use the 
primary key. Alternate keys can have values from 1 to 254. The 
driver finds them by looking for the # symbol. 

Example 

A sample SAS job using the ISAM interface file follows. 

I' 
The data file must exist because the interface does not provide 
access to any file creation routines. A sample FDL file is 
provided to create an empty indexed file to which to write, 
The X statement runs a DeL command to create an empty ISAM 
file in your current directory. 
'1 

X 'CREATE/FDL=TEST,FDL' ; 

FILENAME OUTDATA 'USAM TEST.DAT'; 

DATA ....NULL....; 

" Open the file for KOD (modification, append) because it 
already edsts. The driver does not allow SAS to create 
new ISAK files. 

" 
FILE OUTDATA MOD; 
INPUT 011 SSN $11. Oil) NAME $9.; 

" Write some data to it. 
'1 

PUT SSN $11. NAKE $9.; 
CARDS; 
210-11-2761 T. Noto 
)34-S5-2QS4 J. Lyn 
141-32-11323 R. Hester 
/187-115-1234 F. Wayne 
942-72-1598 A. Bell 
732-23-12511 X. Harper 

FILENAME INDATAl 'iISAM TEST.DAT 11'; 
DATA NAMES; 

TITLE 'Name list sorted by NAME (key 11)'; 

" Open the file for read by the number key {primary key 
is key 0), 

./ 

INFILE INDATA 1; 
INPUT SSN $11. NAKE $9.; 

RUN; 
1* Print the data sorted by key of reference 11 *1 
PROC PRINT; 
RUN; 
FILENAME INDATAO 'arSAM TEST. DAT 10'; 
DATA SSN; 

TITLE 'Name list sorted by SSN (key '0)'; 
I' 

Open the file for read by the primary key. 
./ 

INFILE INDATAO; 
INPUT SSN $11. NAME .$9.; 

RUN; 
1* Print the data sorted by key of reference *0 *1 
PRoe PRINT; 
:p.UN; 

The output that this SAS job produces has the data sorted by the 
key of reference, for example, 



Name list sorted by NAKE (key '1) 

085 "N NAIIE 

942-72-1598 A. Bell 
4a7-45-123~ F. Wayne 
334-55-2454 J. Ly" 
141-32-4323 R. Hester 
210-11-2761 T. Noto 
732-23-1254 X. Harper 

Name list sorted by SSN (key to) 

OSS "N NAME 

\41-32-4323 R. Hester 
2 210-11-2761 T. ~oto 
J 334-55-2454 J. Lyo 

487-Q5-1234 F. Wayne 
732-23-12SQ x. Harper 
9l12-72-1S98 A. Bell 

THE ISAM DRIVER PACKAGE 

SAS Institute- provides the following files to aid in using and 
understanding the lSAM driver: 

The files associated with the driver are 

ISAM.C source listing of the driver and its 
parser 

ISAM.OBJ compiled code for the driver 

ISAM.UFI the loadable executable driver 

ISAM.DOC a copy of this document 

ISAM.COM command file to compile, link, and 
rename the source code for the driver. 

The files associated with the sample are 

TEST.SAS sample test job that uses the driver 

TEST.FDL sample FDL file to create an ISAM file 
for the TEST.SAS program. 

A Brief Synopsis of the ISAM.C File 

Text files are needed by RMS, and error reporting routines are 
included first. 

* inc1 ude rros; 
-hnclade stsdef; 
hnclude descrip; 

Structure declarations for the FCB, EXTIO, and MSGVEC occur 
next. 
The FCB is the local file control block that contains all the struc­
tures used by the file interface. These are dynamically allocated 
at open time and are stored in the first utility pointer in the EXTIO 
communication vector. 

struct FCB I 
struct FAB*fab; 
struct RAB*rab; 
char *buffer; 

J; 

This is the C version of the EXTIO communication vector that is 
described in P-143. 

struct EXTIO 1 
short len; 
char str{256 J; 
long file_fcb; 
long function; 
char *buffer; 
long buifsize; 

176 

long reLcode; 
char * sys-pntr; 
struct FCB * util-ptl; 
char * utiLpt2; 
char * utiLptl; 
long lrecl; 
int (*logentry) ( ); 

J; 

The EXTIO vector is important in communicating between the UFI 
and the SAS System. Familiarity with its parts will help you under­
stand the driver. 
LEN is the length of the filename. 
FILENAME contains the string specified in the FILENAME state­
ment. If the FILENAME statement trom the SAS code wraps over 
several lines, it is possible to exceed the maximum size. 
FIL~FCB is a pointer to a PL/I file control variable. Since you 
are writing in C, you do not touch this variable. You store your 
FCB among the utility pointers. The file variable is used by RMS 
to open, close, read from, and write to files. 
FUNCTION identifies which function is requested for the driver 
to perform. These are discussed in the driver code. 
BUfFADDR is a pointer to a buffer controlled by SAS. Records 
are passed in this area. 
BUFFSIZE is the size of the buffer. On a write, SAS sets the value 
to indicate the number of bytes to be written. On a read, the inter­
face sets the value to indicate how much was read (up to 32767 
bytes). 
RET_CODE is the status code passed back to SAS. A 0 implies 
normal completion, 1 implies end-at-file condition, and > 1 
implies a fatal error. 
SYS_PNTR is saved for future expansion. 

UTI1.JlTl 
UTILPT2 
UTIL...l'T3 

These are utility pointers available to the interface. Because no 
static variables are allowed, dynamic memory locations can be 
stored here for use from one invocation to another. Notice that 
our interface stores its file control block pointer here. 
LOG_RECS describes the logical record size. A 0 signifies no 
record size or variable record size. This is the default record size. 
Any value greater than 0 is interpreted as the expected record 
length. This variable determines the actual number of bytes read 
or written. BUfFSIZE must be set to LOG_RECS to prevent trun­
cation of data. 
LOG ENTRY is a PL/I entry variable used to pass messages from 
the interface to the SAS log. This routine accepts a character 
string passed by descriptor. 
An interface is called with a different EXTIO vector for every file 
opened by the UFI. One UFI can be used for many FILE and 
lNFILE statements. For this reason, it is important that any file­
specific information be stored in dynamic structures and associ­
ated with the UTILPTRs . 

The MSGVEC structure is passed to SYS$PUTMSG to output a 
VMS error message when a file 1/0 error occurs. 

struct MSGVEC 
short count; 
-short flags; 
long code; 
short fao_count; 
short options; 

J; 

The Body of the Driver Routine 

The driver routine accepts the address of the EXTIO communica­
tion vector as its sale argument. Since you are receiving the 
painter from a PL/l routine into a C routine, you actually receive 
a pointer to the address. This is due to PL/I calling by reference 
and C expecting a call by value. 



The pointer is dereferenced, 

extio=*extio--p ; 

and the function requested is accessed via a switch statement 
based on the extio->function value. RMS does the work for you 
after you open the file as an ISAM file. The number of cases to 
the switch statement is limited to the following set: 

case 2: 1* OPEN FOR INPUT *1 

The name is parsed to find the key number. The parser is included 
with the driver. It looks for the # in the FILENAME string to find 
the requested key. An appropriate FAB and RAB are set up for 
RMS, and the file is opened for input. Finally, the FCB is stored 
in the EXTIO structure. 

case 3: 1* OPEN FOR OUTPUT */ 

This is not legal. We put out a message on the SAS log and signal 
an error return code. 

case /I: /* OPEN FOR APPEND */ 

This is handled the same as case 2, except the FAB and RAB 
are set up for append mode. 

case 10: 1* READ A RECORD *1 

The FCB pointer stored in the EXTIO structure is used to perform 
an RMS read. If we get an end-ot-file on the RMS get, the return 
code must be set to 1. 

case 11~/* WRITE A RECORD */ 

The FCB pointer stored in the EXTIO structure is used to perform 
an RMS write. 

case 90:/* CLOSE A FILE */ 

The FCB pointer is used to close the file with RMS, and all current 
buffers are freed. 
After the appropriate function is performed, return codes and 
messages are prepared, and the routine returns. 
The parsing routine is also in this module. Its job is to take the 
remaining string from the FILENAME statement, 

FILENAME MINE 'IHSAM pathname Ilcey '; 

and pull out any relevant information. For the ISAM driver, this 
is the FILENAME and key. 

177 

ISAM.COM 

A COMMAND file is provided to compile and link the ISAM driver. 
The contents of the command file are listed here. 

Command file for compiling, linking, and renaming 
$ ! the user-written external file interface for ISAM files 

• $ ! Show the user what we are doing 
$ SET VERIFY 
$ ! COMPILING ISAM.C FILE 
$ CC/LIS ISAH 
$ ! LINKING THE FILE AS A SHAREABLE IMAGE 
$! TO INSURE IT IS RELOCATABLE 
$ LINK/SHARE/MAl? ISAH 
$ ! RENAME TO THE APPROPRIATE FILE TYPE 
$ RENAME ISAM. EXE ISAM. UFI 
$ SET NOVERIFY 
$ EXIT 

CONCLUSION 

The driver illustrated in this paper should provide a good example 
tor writing an external driver for the SAS System, as well as a 
useful interface to existing ISAM files. Additional files are 
included to allow users to compile, link. and test the ISAM.UFI 
driver. 

SAS is a registered trademark of SAS Institute fnc., Cary. NC, 
USA. 

VAX and VMS are trademarks of Digital Equipment Corporation, 
Maynard, MA. 


