
Please contact OpenAccess Sales
408-350-7040

www.OpenAccessSoftware.com

Application Note for OpenAccess™ SDK

Subject: ODBC, JDBC, or OLE DB Access to ISAM File Databases

Date: Revised March 11, 2003

Markets: Vertical applications

Need

Open Database Connectivity (ODBC) compliant access to
data has become a primary requirement by end users on
vendors supplying applications containing data. It is
becoming even more crucial as corporate organizations
accelerate the deployment of client/server computing.
Widely used tools such as word processors, spreadsheets
and database application development tools are ODBC
enabled and they provide means of building powerful
end-user applications quickly through ODBC access.

Many vertical applications use ISAM (Indexed Sequential
Access Management) type of files for the storage and
management of data. These application require all data
access to be performed using customized programs and
tend to exist on SCO UNIX, VAX/VMS, Alpha/
OpenVMS or Windows NT type of platforms. End users
are interested in accessing this information from the
desktop for reporting and application. More recently, the
ability to make this information available on the web
provides a new paradigm for data access and distribution.

In order to make this information easily accessible and
usable, one needs a software infrastructure that:

• supports access to information stored in proprietary

databases from standard desktop tools like Microsoft
Access, PowerBuilder, Visual Basic, Crystal Reports
and many other tools. Today this means ODBC and
JDBC compatible access.

• allows you to quickly develop client applications for
the PC environment using any of the 100s of desktop
tools

• can be developed in a very short time without
becoming a ODBC, JDBC, OLE DB or SQL expert

Once a user has the ability to use ODBC to access your
ISAM database system, the possibilities are endless.

Sample Case

For this application note, assume we have a Widget
Management System (WMS) that runs on a UNIX
platform. Users access this system from terminals
attached to the UNIX box. Currently all interactions with
the WMS is by logging into the UNIX box from terminals
and running the WMS programs. Only way to transfer
data between the WMS and a PC is by exporting a report
into a file and then transferring it to a PC. Today, users
of the WMS want to get this data directly into Microsoft
Excel and Crystal Reports. The WMS stores data using
CISAM compatible database.

We want the following features:

1. ODBC/OLE DB access - to provide read/write access

to all or some of the data files.

2. Fast data access - optimized access to the files which
may contain millions of records.

3. Optimized join processing - handle joins between
many files that may contain millions of records.

4. Flexibility in schema management - allow the use of
either the existing data dictionary feature in the
database or easily set one up using a supplied schema
manager.

5. Support for future desktop data access standards -
support JDBC, OLE DB and other technologies that
may come up in the future without changing the
server.

6. Support all my platforms - need server support for
Alpha/OpenVMS, VAX/VMS, Intel/NT, Alpha/NT,
RS-6000/AIX, Intel/SCO UNIX, HP-9000/HP-UX,

OpenAccess™ Application Note ODBC Access to ISAM Files

SPARC/Solaris, NCR-3300/AT&T UNIX and IBM
MVS. Want to implement code on one platform and
easily use on all others.

7. Ease of distribution - we want to be able to easily
distribute the server and the client components.

Proposed Solution

The OpenAccess SDK product can help you create a
client/server or local ODBC/OLE DB interface to your
database within weeks! We provide 90% of the code in
binary form. You just have to implement the functions to
read and write rows of data from the files in your
database. No need to learn ODBC, OLE DB or SQL.
Figure 1 shows the proposed architecture using the
OpenAccess SDK product. The only portion you develop
is the box labeled “Your IP”. This code is responsible for
accepting a data access request along with the
optimization information from the Database Access
Manager (DAM) and using this information to build a set
of rows.

OpenRDA
Server

Your IP

Database
Access

Manager

TCP/IP

Handles c lient /server
communications

Parse, plan and execute
query

Retrieve rows of data
based on cri teria provided
by the DAM

Windows 3.1, W indows NT, W indows 95 or other c lients

One of the supported server p latforms

Your data fi les

® ®
OpenRDA

ODBC
OpenRDA

ODBC

®

OpenRDA
ODBC

®

CISAM API

Figure 1: OpenAccess SDK based architecture

Let's walk through the sequence of steps we need to
perform in order to execute a SQL statement against the
ISAM database. The following steps describe the
operation the IP performs in the course of executing a
query:

1. Receive connection from the PC client with an user
name and password - use this information to provide
access verification to your database system. This
information can be used to restrict different class

users to certain table access. If security does not
exist, this information does not have to be used. The
IP receives this request when the client issues an
ODBC connect call.

2. Receive an execute request - the IP is called to
execute a query when the client issues an ODBC
SQLExecute call. At this time, the IP can call the
functions in the DAM to find out what table is being
accessed and what conditions are specified in the
query. For example take the query given below.
select PART,MFR,DESCRIP from PARTS
where PARTNO = ‘1FM1’ (Q1)

To execute this query, the IP will first determine the
table being accessed and the requested operation. In
this case the operation is SELECT and the table is
PARTS. Assuming the IP has been setup to use
index information, the IP first checks to see if any
condition on an indexed column is present. If so, the
IP asks the DAM to report restrictions on that column
(PART in this example). In this case the DAM will
report (=,'1FM1') as a condition on column PART.
The IP can find out if additional columns in the query
are indexed and then use this information to get
restrictions on those columns. The IP then uses all
this information to call functions to retrieve the data
from the ISAM files. In our example, we use the
function WMS_positionInFile(fileName =
'parts.dbf',indexColumn='PART',
value='1FM1') to position the file pointer to a
record where the PART=1FM1. We then call
WMS_readRecord(recBuf) to read the
record at the current position into the recBuf buffer.
For each row retrieved from the database file(s), the
IP builds a row and passes it to the DAM for further
evaluation and for placing in the result set. To build
a row, the IP breaks apart the data record in the rcBuf
buffer into individual field values and maps them to
the columns in the row.

There is no need to have one table to one file
mapping. The IP is effectively exposing views to the
client and each of these views can be made up of
multiple files. Exposing data from multiple files into
one table is sometimes better then requiring the end
user to always issue joins. Joins are less efficient to
process than single table queries and they complicate
the writing of queries.

3. receive a disconnect - the IP frees any resources
allocated on behalf of the client.

 - 2 -

As seen by the above steps, the OpenAccess SDK makes
it very simple for the IP to access data in an optimized

OpenAccess™ Application Note ODBC Access to ISAM Files

way. The above steps can be implemented in less than 50
lines of code.

Features Suited for ISAM
Databases

In this section we want to high light some of the features
of the OpenAccess SDK that make it ideal for accessing
large or small databases maintained in ISAM type files.

Specifically, the OpenAccess SDK provides:
• access to full details of the query
• optimized join processing
• schema management
• transaction control
• ability to support stored procedure
• ability to implement business rules

Access to Full Details of the Query

The DAM allows the IP to find out as little or as much as
it wants about a query. This helps the IP use information
contained in the query to limit the number of rows it
reads. Information about the query can be obtained on
individual columns or on the entire WHERE clause. You
can retrieve the entire WHERE clause as a set of
expressions on the referenced columns. This information
can be used to reformulate the query into your own
syntax if your database supports a query language. You
can also retrieve the full expression information to
implement powerful optimization schemes.

Optimized Join Processing

Joins are very expensive unless handled properly. The
DAM handles all joins. The IP is only responsible for
accessing data from a single table at a time. For join
processing, the IP is called to process a SELECT for each
table. The simplest way to implement a join is for the IP
to execute the query on one of the tables, execute the
query on the next table, and then perform a Cartesian
product between the two tables. A Cartesian product of
two result sets of size M and N is M*N. This is a very
large number as M and N grow and this happens very
often when a single piece of information is spread
amongst many tables. The DAM optimizes this by first
building a result set for the first table and then going
through each row in this set and passing the required
information to the next query as restrictions. This way
the off diagonal elements are not even created. The IP is
called to process SELECT on the second table as many
times are there are rows in the first result set.

Schema Management

The OpenAccess SDK allows you to provide the schema
information (data dictionary) for your database tables by
either populating the Schema Database provided as part
of the DAM or by implementing schema function in the
IP.

Transaction Management

The OpenAccess SDK allows you to perform full
transaction control by passing the start transaction and
end transaction events to the IP. It is the responsibility of
each IP and the database to maintain logs required too
implement commit and rollback. Also, we support the
SELECT … FOR UPDATE syntax to allow you to
implement row level locking of records.

Stored Procedures

OpenAccess SDK allows client applications to invoke
stored procedures within the IP. This allows the IP to
implement many functions on the server as part of the IP
code. A stored procedure is implemented as part of the IP
code or within your database system and exposed by a
name and the required arguments.

Business Rules

OpenAccess SDK allows the IP to easily implement
business logic. Since an IP is exposing a view, it has
complete control over how selects, inserts, updates and
deletes are processed on each of the tables. The IP can
take advantage of this to validate the queries and to
guarantee that business rules are enforced. You also can
easily check the validity of the input data and control the
allowed queries.

Your Development Effort

1. Define the schema for the data to be exposed (2 man

days)
2. Implement the IP code to access the tables defined in

item 1 – start with our sample (2 man days)
3. Test with ODBC applications (2 man days)
4. Optimize (3 man days)
5. Package up for distribution (2 man days)

Expected time of completion: 12 man days
Expected time for working prototype: 2 days

 - 3 -

OpenAccess™ Application Note ODBC Access to ISAM Files

Designing And Coding The IP

NOTE: The full source code for the ISAM IP discussed
here is available on our web site at the same location
where this application note is . Please contact
OpenAccess sales or support if you did not receive it.
Follow the instructions in Installing the Sample ISAM IP
in this application note once you have obtained the
required files.

Implementing an IP requires two major tasks: 1) schema
management 2) data access management. We will first
discuss how the schema needs to be setup to allow
reading/writing from ISAM files and then we will discuss
the implementation of the IP code that will process the
ISAM files to expose the data as per schema definition.

Schema Definition

One of the first things to consider in designing an IP is
how the data dictionary will be implemented.
OpenAccess requires the IP developer to define the
schema for the databases using one of two methods:
1. Populate the built-in schema database
2. Implement schema function in the IP code to handle

requests for looking up table, column, index, and
other information.

The first method is what our documentation refers to a
static schema and is suitable for applications where the
schema is not changing because the end users cannot add
or modify table definitions. The second method is suited
for databases where new tables are being created or
existing one being modified by the existing application.
For the

In either case, the schema database has to provide the
required information to map data from the records in the
files to the columns of a table defined for that file. In our
example the PARTS table is exposing data in a file
parts.dat with an index file parts.idx. The records in the
parts.dat file are divided into fields with each field being
of a certain size and containing certain type of data. The
position of each field and the type of data contained in
that field is needed as part of the schema information to
allow the IP code to map records from the file into a row
required by the SQL engine.

In the schema, for each table we can use the oa_userdata
field to supply the associate file name. In our case for the
table PARTS we will set oa_userdata to parts.dat. This
information will be used by our isopen() function to open
the file. For each column definition we can use the
oa_userdata to store information about the native data

type and position within the record. For example, the
definition of column PARTNO would have: ‘oa_userdata
= 1;4’ to indicate that column PARTNO starts at position
one in the record and is of type integer.

IP Code

The code that implements the IP needs to be generic in
that it uses information stored in the schema database to
process the specified queries. This way new tables can be
handled without modifying the code.

NOTE: All functions starting with isam_ are part of the
ISAM IP and all functions and typedefs starting with
DAM or dam are part of the OpenAccess SDK libraries.

The isam_ip_execute() function for this IP would look
like the code shown in Listing 1. It is called to process
the rows for each table involved in the query execution.
First we call dam_describeTable to find out what table is
being queried and to obtain the file name that has the data
for that table.

Next we find out what all columns are referenced in the
query. For each of these columns we obtain the mapping
into the file record structure. This is done by the
isam_getColumnsInfo function. This function makes use
of DAM functions that allow you to walk through either
all columns in the table or the columns that are referenced
in the query.

Next we call isopen() to open he file associated with the
current table being accessed. What we do next depends
on if we need to do a full table scan or not. To do this we
call call dam_getOptimalIndexAndConditions to check
for any conditions on columns that are marked as
indexed. We want to pick up cases such as ‘where
PARTNO=xyz’. In this case the above function call will
return a condition list (=,xyz) and we can use this
information to jump to the location in the parts.dat file
where this matches. Depending on your database design,
we can also handle cases such as ‘where PARTNO > xyz’
by jumping to the record where index value is xyz and
then reading all rows whose key values are > xyz.

 - 4 -

Assuming the dam_getOptimalIndexAndConditions
returns a = condition, we can use isstart() function with
the key value to find the first record that matches the key.
If the index is marked unique then we are done otherwise
we have to keep reading next records until no records
matching that key are available. The logic here is to walk
through each of the index values and build rows for it.
The function isam_buildKeyInfo is called to find out
information about the columns that are part of the index.
The function isam_buildKeyRec is called to build a key
record for the selected condition list. This function uses

OpenAccess™ Application Note ODBC Access to ISAM Files

the information about the column to file record mapping
to build up a key record that can be passed to the isstart()
ISAM function. For a query of the form:

select * from PARTS where PARTNO=1 or
PARTNO=2

we would have two condition lists. First we would
process all rows with PARTNO=1 and then all records
with PARTNO=2. Once we have moved to the record
that matches the key record, we read the record using
isread() and then call isam_buildRow to convert the
record read from the file into columns of a row that can
be passed to the OpenAccess SQL engine. Next, we call
dam_isTargetRow to see if the current row matches the
full where clause. If it does then we add it to the result
set. Now if the index is not defined to be unique, then we
need to scan rest of the rows after the current row until
we find a non-matching row. This logic can be enhanced
to handle BETWEEN, >=, <= and LIKE operators on
indexed columns.

If dam_getOptimialIndexAndConditions returns no
conditions, then we have to do a full table scan. This
happens if the query contains no conditions on columns
that are part of an index. In this case we call
isstart(ISFIRST) to position to read the first record in the
file and continue building and processing the rows until
we are at the end.

We have discussed handling select here but implementing
update and delete is just a matter of adding extra code
right after when dam_isTargetRow is called. If true is
returned then you either delete or update the current
record. Insert is handled simply by getting the rows to
insert from the OpenAccess SQL engine and adding them
to your file. Again you would make use of the column to
record field mapping to build the record to write into the
file.

ISAM Interface

The sample IP explained in this application note makes
use of standard ISAM API calls as listed in table 1. In the
program listing these functions are highlighted with
shading.

Table 1:ISAM API Used in This Example

ISAM
Function

Description

isopen Open the specified file
isclose Close the specified file
isstart Position the record pointer to the specified

record. A key can be specified. By default
the first key for the file is assumed. Key
value can be specified.

isread Read the specified record.

Installing the Sample ISAM IP
Please note that the ISAM IP will not compile and link
unless you provide the required ISWRAP.H files and the
required library that implements the ISAM API.

1. Obtain source code from

http://www.odbcsdk.com/support/oa_samples.asp
2. Create a directory isam under the damip directory
3. Create a directory src under the isam directory and

uncompress the source files in it.
4. Now follow the instruction in the IP Examples

document you downloaded or received as part of the
SDK. In the instructions use ISAM for the IP type
and substitute all occurrences of {example} with
isam. The ISAM IP uses static schema.

What’s Next

This application note provides overview and details of
using the OpenAccess SDK to implement a ODBC or
OLE DB interface to your flavor of ISAM database. You
can start with our sample ISAM IP and add:

1. Support for update/delete/insert
2. Cursor based select processing
3. Stored procedures for commonly performed business

logic

 - 5 -

4. Other data types

OpenAccess™ Application Note ODBC Access to ISAM Files

 - 6 -

Listing 1: Code that implements an IP for CISAM based database
/* ISAM_DRV.C
 *
 * (c) OpenAccess Software, Inc.
 *
 * Programer(s): Dipak Patel
 *
 * Revision: $Revision: 1.5 $
 * $Date: 1997/05/01 18:45:20 $
 * $Source: U:/openrda/dam3_0/dbisamdrv/rcs/isam_drv.c,v $
 *
 * Description: Sample IP to access CISAM files. Has been tested.
 *
 */

static char rcsid[] = "$Id: isam_drv.c,v 1.5 1997/05/01 18:45:20 PRASANNA Exp $";

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include "isam_util.h"
#include "isam_drv.h"

static int isam_buildRow(ISAM_STMT_DA * pStmtDA, DAM_HROW hRow);
static int isam_buildKeyRec(ISAM_STMT_DA * pStmtDA, DAM_HCONDLIST hCondList, int * piKeyOp
);
static int isam_buildColumnsInfo(ISAM_STMT_DA * pStmtDA);
static int isam_buildKeyInfo(ISAM_STMT_DA * pStmtDA, DAM_HINDEX hIndex);
static int isam_isValidRec(ISAM_STMT_DA * pStmtDA, DAM_HCONDLIST hCondList);

TM_ModuleCB isam_tm_Handle;
IP_SUPPORT_ARRAY isam_support_array =
 {0,
 1, /* IP_SUPPORT_SELECT */
 0, /* IP_SUPPORT_INSERT */
 0, /* IP_SUPPORT_UPDATE */
 0, /* IP_SUPPORT_DELETE */
 0, /* IP_SUPPORT_SCHEMA - IP supports Schema Functions */
 0, /* IP_SUPPORT_PRIVILEGES - IP can validate user privileges */
 1, /* IP_SUPPORT_OP_EQUAL */
 0, /* IP_SUPPORT_OP_NOT */
 0, /* IP_SUPPORT_OP_GREATER */
 0, /* IP_SUPPORT_OP_SMALLER */
 0, /* IP_SUPPORT_OP_BETWEEN */
 0, /* IP_SUPPORT_OP_LIKE */
 0, /* IP_SUPPORT_OP_NULL */
 0, /* IP_SUPPORT_SELECT_FOR_UPDATE */
 0, /* IP_SUPPORT_START_QUERY */
 0, /* IP_SUPPORT_END_QUERY */
 0, /* IP_SUPPORT_UNION_CONDLIST */
 0, /* IP_SUPPORT_CREATE_TABLE */
 0, /* IP_SUPPORT_DROP_TABLE */
 0, /* IP_SUPPORT_CREATE_INDEX */
 0, /* IP_SUPPORT_DROP_INDEX */
 0, /* IP_SUPPORT_PROCEDURE */
 0, /* IP_SUPPORT_CREATE_VIEW */
 0, /* IP_SUPPORT_DROP_VIEW */
 0, /* IP_SUPPORT_QUERY_VIEW */
 0, /* IP_SUPPORT_CREATE_USER */
 0, /* IP_SUPPORT_DROP_USER */
 0, /* IP_SUPPORT_CREATE_ROLE */
 0, /* IP_SUPPORT_DROP_ROLE */
 0, /* IP_SUPPORT_GRANT */
 0, /* IP_SUPPORT_REVOKE */
 0 /* IP_SUPPORT_PUSHDOWN_QUERY */

OpenAccess™ Application Note ODBC Access to ISAM Files

 };

/**
Function: isam_ip_init()
Description: Initialize the Interface Provider and the data source being supported
 and return handle to the context of the driver.

Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
 DAM_NOT_AVAILABLE if Data source is not available or No Driver
**/
int isam_ip_init(TM_ModuleCB tmHandle, XM_Tree *pMemTree, IP_HENV *phenv)
{
 ISAM_ENV_DA *pEnvDA;

 /* save the trace module handle */
 isam_tm_Handle = tmHandle;

 tm_trace(isam_tm_Handle, UL_TM_F_TRACE, "isam_ip_init() has been called\n", ());

 /* allocate the environment handle */
 if(!(pEnvDA = (ISAM_ENV_DA *)xm_allocItem(pMemTree,sizeof(ISAM_ENV_DA), XM_NOFLAGS)))
 return DAM_FAILURE;

 /* save the memory tree handle */
 pEnvDA->pMemTree = pMemTree;

 /* initialize the IP data source */

 /* set the return value */
 *phenv = pEnvDA;

 return DAM_SUCCESS;
}

/**
Function: isam_ip_exit()
Description: Shutdown the Interface Provider. Close the data source.
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_exit(IP_HENV henv)
{
 ISAM_ENV_DA *pEnv = (ISAM_ENV_DA *)henv;

 tm_trace(isam_tm_Handle, UL_TM_F_TRACE, "isam_ip_exit() has been called\n", ());

 return DAM_SUCCESS;
}

/**
Function: isam_ip_getInfo()
Description: Return value for the requested information
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_getInfo(IP_HENV henv, int iInfoType,
 void *pInfoValue, int iInfoValueMax, int *piInfoValueLen)
{
 ISAM_ENV_DA *pEnv = (ISAM_ENV_DA *)henv;

 return DAM_SUCCESS;
}

/**

 - 7 -

Function: isam_ip_getSupport()

OpenAccess™ Application Note ODBC Access to ISAM Files

Description: Return value for the requested information
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_getSupport(IP_HENV henv, int iSupportType,
 int *pSupportExists)
{
 ISAM_ENV_DA *pEnv = (ISAM_ENV_DA *)henv;

 *pSupportExists = isam_support_array[iSupportType];

 return DAM_SUCCESS;
}

/**
Function: isam_ip_connect()
Description: Connect to the data source being specified using the
 authentication information
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_connect(DAM_HDBC dam_hdbc, IP_HENV henv,
 XM_Tree *pMemTree, char *sDbName, char *sUserName, char
*sPassword,
 IP_HDBC *phdbc)
{
 ISAM_ENV_DA *pEnvDA = (ISAM_ENV_DA *)henv;
 ISAM_CONN_DA *pConnDA;

 tm_trace(isam_tm_Handle, UL_TM_F_TRACE, "isam_ip_connect() has been called\n", ());

 /* allocate the connection da */
 if(!(pConnDA = (ISAM_CONN_DA *)xm_allocItem(pMemTree,sizeof(ISAM_CONN_DA), XM_NOFLAGS)))
 return DAM_FAILURE;

 /* initailze the ConnDA */
 pConnDA->pMemTree = pMemTree;
 pConnDA->pEnvDA = pEnvDA;

 /* connect to the given data source */

 /* set the return value */
 *phdbc = pConnDA;

 return DAM_SUCCESS;
}

/**
Function: isam_ip_disconnect()
Description: Disconnect from the data source. Close open file handles etc.
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_disconnect(DAM_HDBC dam_hdbc, IP_HDBC hdbc)
{
 ISAM_CONN_DA *pConnDA = (ISAM_CONN_DA *)hdbc;

 tm_trace(isam_tm_Handle, UL_TM_F_TRACE, "isam_ip_disconnect() has been called\n", ());

 /* disconnect from the data source */

 /* free the connection da */
 xm_freeItem(pConnDA);

 return DAM_SUCCESS;

 - 8 -

}

OpenAccess™ Application Note ODBC Access to ISAM Files

/**
Function: isam_ip_startTransaction()
Description: Start a new transaction on the connection
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_startTransaction(DAM_HDBC dam_hdbc, IP_HDBC hdbc)
{
 ISAM_CONN_DA *pConnDA = (ISAM_CONN_DA *)hdbc;

 /* start a new transaction */

 return DAM_SUCCESS;
}

/**
Function: isam_ip_endTransaction()
Description: End the transaction on the connection. Use the iType to
 either commit or rollback
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_endTransaction(DAM_HDBC dam_hdbc, IP_HDBC hdbc, int iType)
{
 ISAM_CONN_DA *pConnDA = (ISAM_CONN_DA *)hdbc;

 /* end the transaction */
 if (iType == DAM_COMMIT) {
 }
 else if (iType == DAM_ROLLBACK) {
 }

 return DAM_SUCCESS;
}

/**
Function: isam_ip_execute()
Description: Execute the given statement
Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_ip_execute(IP_HDBC hdbc,
 DAM_HSTMT hstmt,
 int iStmtType,
 DAM_HCOL hSearchCol,
 int *piNumResRows)
{
 ISAM_CONN_DA *pConnDA = (ISAM_CONN_DA *)hdbc;
 ISAM_STMT_DA *pStmtDA;
 XM_Tree *pMemTree;
 DAM_HROW hRow;
 int rc, iBufLen;
 int iKeyOp;
 DAM_HINDEX hIndex;
 DAM_HSET_OF_CONDLIST hSetOfCondList;

 tm_trace(isam_tm_Handle, UL_TM_F_TRACE, "isam_ip_execute() has been called. There is %s
 search column\n", (hSearchCol ? "a" : "NO"));

 /* get the memory tree to be used */
 pMemTree = dam_getMemTree(hstmt);

 /* allocate a new stmt */
 if(!(pStmtDA = (ISAM_STMT_DA *)xm_allocItem(pMemTree,sizeof(ISAM_STMT_DA), XM_NOFLAGS)))

 - 9 -

 return DAM_FAILURE;

OpenAccess™ Application Note ODBC Access to ISAM Files

 /* initialize the StmtDA */
 pStmtDA->pMemTree = pMemTree;
 pStmtDA->pConnDA = pConnDA;
 pStmtDA->dam_hstmt = hstmt;
 pStmtDA->iType = iStmtType;
 pStmtDA->buf = NULL;
 pStmtDA->pKeyBuf = NULL;

 /* get the table information */
 dam_describeTable(pStmtDA->dam_hstmt, NULL, NULL, pStmtDA->sTableName,
 pStmtDA->sFileName, pStmtDA->sUserdata);

 /* initialize the result */
 *piNumResRows = 0;

 /* build column to record field mapping array and allocate buffer space*/
 isam_buildColumnsInfo(pStmtDA);

 iBufLen = atoi(pStmtDA->sUserdata);
 pStmtDA->buf = (char *)xm_allocItem(pMemTree,iBufLen,XM_NOFLAGS);

 /* open the table */
 rc = isopen(pStmtDA->sFileName , ISINPUT + ISRDONLY);
 if (rc < SUCCESS){
 tm_trace(isam_tm_Handle, UL_TM_ERRORS, "isam_open_table(): error %d on isopen",
 (*is_errno(rc)));
 return DAM_FAILURE;
 }else{
 pStmtDA->fd = rc;
 }

 /* Determine if the query contains conditions on Indexed columns */
 dam_getOptimalIndexAndConditions(pStmtDA->dam_hstmt, &hIndex, &hSetOfCondList);
 if(hIndex){
 /* A index has been selected that can be used to optimize access for this query. The
 index can be a single column or multiple column index. We need to obtain the key
 part for each column and add it to the key record structure. To do this, first
 we need to find out about each of the columns for which we are specifying the key.
 */

 DAM_HCONDLIST hCondList;

 pStmtDA->pKeyBuf = (char *)xm_allocItem(pMemTree,iBufLen,XM_NOFLAGS);
 isam_buildKeyInfo(pStmtDA, hIndex);

 /* now we need to build rows for each condition list */
 hCondList = dam_getFirstCondList(hSetOfCondList);
 while(hCondList != NULL){
 isam_buildKeyRec(pStmtDA, hCondList,&iKeyOp);
 /* Now build row for this key record */
 rc = isstart(pStmtDA->fd , NULL, 0, pStmtDA->pKeyBuf, ISEQUAL);
 if(rc == 0){ /* found a matching row */
 if (!isread(pStmtDA->fd , pStmtDA->buf, ISNEXT)){
 hRow = dam_allocRow(pStmtDA->dam_hstmt);
 rc = isam_buildRow(pStmtDA, hRow);
 if(rc != DAM_SUCCESS)
 return DAM_FAILURE;
 if (dam_isTargetRow(pStmtDA->dam_hstmt,hRow) == DAM_TRUE)
 dam_addRowToTable(pStmtDA->dam_hstmt, hRow);
 else
 dam_freeRow(hRow);
 *piNumResRows++;
 }

 - 10 -

 /* Now handle the remaining rows that may still match this condition. This
will

OpenAccess™ Application Note ODBC Access to ISAM Files

 happen when the key is non-unique*/
 if(pStmtDA->iIndexType == 1){
 while (!isread(pStmtDA->fd , pStmtDA->buf, ISNEXT)){
 if(isam_isValidRec(pStmtDA, hCondList) == FALSE)
 break;
 hRow = dam_allocRow(pStmtDA->dam_hstmt);
 rc = isam_buildRow(pStmtDA, hRow);
 if(rc != DAM_SUCCESS)
 return DAM_FAILURE;
 /* check to see if the key part of the row matches the criteria */
 if (dam_isTargetRow(pStmtDA->dam_hstmt,hRow) == DAM_TRUE)
 dam_addRowToTable(pStmtDA->dam_hstmt, hRow);
 else
 dam_freeRow(hRow);
 *piNumResRows++;
 }
 }
 }
 hCondList = dam_getNextCondList(hSetOfCondList);
 }

 }else{

 /* No restrictions on indexed columns so we need to do a table scan */

 rc = isstart(pStmtDA->fd , NULL, 0, NULL, ISFIRST);
 if (rc < SUCCESS){
 tm_trace(isam_tm_Handle, UL_TM_ERRORS, "isam_ip_execute(): error %d on isstart",
 (*is_errno(rc)));
 return DAM_FAILURE;
 }

 while(!isread(pStmtDA->fd , pStmtDA->buf, ISNEXT)){

 /* Map the row into columns that are part of the query */
 hRow = dam_allocRow(pStmtDA->dam_hstmt);
 rc = isam_buildRow(pStmtDA, hRow);
 if(rc != DAM_SUCCESS)
 return DAM_FAILURE;

 if (dam_isTargetRow(pStmtDA->dam_hstmt,hRow) == DAM_TRUE)
 dam_addRowToTable(pStmtDA->dam_hstmt, hRow);
 else
 dam_freeRow(hRow);

 *piNumResRows++;
 }
 }

 /* close the table */
 rc = isclose(pStmtDA->fd);
 if (rc < SUCCESS){

tm_trace(isam_tm_Handle, UL_TM_ERRORS, "isam_ip_execute: error %d on isclose",
(*is_errno(rc)));

 return DAM_FAILURE;
 }else{
 pStmtDA->fd = -1;
 }

 /* free memory allocated for the statement */
 if(pStmtDA->buf)
 xm_freeItem(pStmtDA->buf);
 if(pStmtDA->pKeyBuf)
 xm_freeItem(pStmtDA->pKeyBuf);

 if(pStmtDA->pColInfo)

 - 11 -

 xm_freeItem(pStmtDA->pColInfo);

OpenAccess™ Application Note ODBC Access to ISAM Files

 xm_freeItem(pStmtDA);

 tm_trace(isam_tm_Handle, UL_TM_INFO, "isam_ip_execute() Query executed successfully\n",
());

 return DAM_SUCCESS;
}

/**
Function: isam_buildColumnInfo()
Description: Walk through all the columns in the query and obtain the
 information required to perform the file record to ROW
 mapping.
 extract the starting and end position from the szUserData. We assume it will
have the
 following format: recstart,recend
 recend is not used for integer and other basic types as the number of bytes
 required to store those types are fixed.

Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_buildColumnsInfo(ISAM_STMT_DA * pStmtDA)
{
 DAM_HCOL hCol;
 int hColCnt = 0, i=0;
 char szUserData[255];
 char szColName[DAM_MAX_ID_LEN+1];

 hCol = dam_getFirstCol(pStmtDA->dam_hstmt, DAM_COL_IN_USE);
 while (hCol != NULL){
 hColCnt++;
 hCol = dam_getNextCol(pStmtDA->dam_hstmt);
 }
 pStmtDA->pColInfo = (ISAM_COL_INFO *)xm_allocItem(pStmtDA->pMemTree,
 sizeof(ISAM_COL_INFO)*hColCnt,XM_NOFLAGS);

 /* now allocate space to store the additiona information */
 hCol = dam_getFirstCol(pStmtDA->dam_hstmt, DAM_COL_IN_USE);
 while (hCol != NULL){
 dam_describeColDetail(hCol, NULL, NULL,NULL,NULL, NULL, NULL, szUserData);
 dam_describeCol(hCol, NULL, szColName, &pStmtDA->pColInfo[i].iColType,NULL);
 sscanf(szUserData,"%d,%d,%d",&pStmtDA->pColInfo[i].iStart,&pStmtDA->pColInfo[i].iEnd,
&pStmtDA->pColInfo[i].iScale);
 tm_trace(isam_tm_Handle, UL_TM_MAJOR_EV, "isam_ip_execute(): Column Info: Name:%s
Start: %d End: %d", (szColName, pStmtDA->pColInfo[i].iStart,pStmtDA->pColInfo[i].iEnd));
 hCol = dam_getNextCol(pStmtDA->dam_hstmt);
 i++;
 }

 return DAM_SUCCESS;

}

/**
Function: isam_buildRow()
Description: Takes an empty HROW as in input and fills it with data from
 a record that has been read in memory. It uses the column to
 record field mapping information contained in the OA_USERDATA
 field of each column defintion.

Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure

 - 12 -

**/

OpenAccess™ Application Note ODBC Access to ISAM Files

int isam_buildRow(ISAM_STMT_DA * pStmtDA, DAM_HROW hRow)
{
 DAM_HCOL hCol;
 int rc;
 int i=0, iStart, iEnd, iScale;

 hCol = dam_getFirstCol(pStmtDA->dam_hstmt, DAM_COL_IN_USE);
 while (hCol != NULL){
 iStart = pStmtDA->pColInfo[i].iStart;
 iEnd = pStmtDA->pColInfo[i].iEnd;
 iScale = pStmtDA->pColInfo[i].iScale;
 switch (pStmtDA->pColInfo[i].iColType){
 case XO_TYPE_CHAR:
 dam_addValToRow(pStmtDA->dam_hstmt,hRow, hCol, XO_TYPE_CHAR, pStmtDA->buf +
 (iStart-1),(iEnd-iStart+1));
 break;

 case XO_TYPE_NUMERIC:
 {
 char * pBuf = pStmtDA->buf + iEnd-1;
 char sNumeric[32];
 char * pNumeric = &sNumeric[31];
 unsigned char iLsb, iMsb;

 *pNumeric-- = '\0';

 while(iStart <= iEnd){
 iLsb = *pBuf & 0x0f;

 if(iLsb <= 9){
 if (iScale==0)
 *pNumeric-- = '.';
 *pNumeric-- = iLsb + '0';
 iScale--;
 }

 iMsb = (*pBuf-- >> 4) & 0xf;

 if(iMsb <= 9){
 if (iScale==0)
 *pNumeric-- = '.';
 *pNumeric-- = iMsb + '0';
 iScale--;
 }

 iStart ++;
 }
 dam_addValToRow(pStmtDA->dam_hstmt,hRow, hCol, XO_TYPE_CHAR,pNumeric+1,
 XO_NTS);
 break;
 }

 }

 hCol = dam_getNextCol(pStmtDA->dam_hstmt);
 i++;
 }

 return DAM_SUCCESS;
}

/**
Function: isam_buildKeyInfo()
Description: Walk through all the columns referenced by the selected
 index and store the information.

 - 13 -

Return: DAM_SUCCESS on Success

OpenAccess™ Application Note ODBC Access to ISAM Files

 DAM_FAILURE on Failure
**/
int isam_buildKeyInfo(ISAM_STMT_DA * pStmtDA, DAM_HINDEX hIndex)
{
 int iIndexCnt = 0;
 char szColName[DAM_MAX_ID_LEN+1];
 char szUserData[255];
 DAM_HINDEX_COL hIndexCol;
 DAM_HCOL hCol;

 dam_describeIndex(hIndex,NULL, pStmtDA->szIndexName,NULL, &pStmtDA->iIndexType,
&pStmtDA->iIndexLen);
 pStmtDA->pIndexColInfo = (ISAM_COL_INFO *)xm_allocItem(pStmtDA->pMemTree, sizeof(
ISAM_COL_INFO)*pStmtDA->iIndexLen,XM_NOFLAGS);

 hIndexCol = dam_getFirstIndexCol(hIndex);
 while (hIndexCol != NULL){
 dam_describeIndexCol(hIndexCol, NULL, szColName, NULL); /* get info about column */
 hCol = dam_getCol(pStmtDA->dam_hstmt, szColName); /* convert col name to handle */
 dam_describeColDetail(hCol, NULL, NULL,NULL,NULL, NULL, NULL, szUserData);
 sscanf(szUserData,"%d,%d,%d",&pStmtDA->pIndexColInfo[iIndexCnt].iStart,&pStmtDA-
>pIndexColInfo[iIndexCnt].iEnd, &pStmtDA->pIndexColInfo[iIndexCnt].iScale);
 iIndexCnt ++;
 hIndexCol = dam_getNextIndexCol(hIndex);
 }

 return DAM_SUCCESS;

 }

/**
Function: isam_buildKeyRec()
Description: Reads the conditions on the selected index columns and builds a key record
 that can be used by ISAM to locate the matching data record.

Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_buildKeyRec(ISAM_STMT_DA * pStmtDA, DAM_HCONDLIST hCondList, int * piKeyOp)
{

 int iIndexCnt = 0;
 DAM_HCOND hCond;

 int iLeftOpType, iRightOpType, iLeftXoType, iRightXoType;
 int iIndexOp;

 void * pLeftData, * pRightData;
 int iKeyPart=0;

 /* A index has been selected that can be used to optimize access for this query. The
 index can be a single column or multiple column index. We need to obtain the key
 part for each column and add it to the key record structure.
 */

 /* get the parts of the key and build a key record */
 hCond = dam_getFirstCond(pStmtDA->dam_hstmt, hCondList);
 while(hCond != NULL){
 dam_describeCond(hCond, &iLeftOpType, &pLeftData, &iLeftXoType,
 &iRightOpType,&pRightData, &iRightXoType);
 switch(iLeftOpType){
 case SQL_OP_EQUAL:
 iIndexOp = SQL_OP_EQUAL;
 switch(iLeftXoType){

 - 14 -

OpenAccess™ Application Note ODBC Access to ISAM Files

 case XO_TYPE_CHAR:
 {
 char * pKeyBuf = pStmtDA->pKeyBuf + pStmtDA-
>pIndexColInfo[iKeyPart].iStart - 1;
 int iLen = pStmtDA->pIndexColInfo[iKeyPart].iEnd - pStmtDA-
>pIndexColInfo[iKeyPart].iStart + 1;
 memset(pKeyBuf, ' ', iLen); /* pad it */
 memcpy(pKeyBuf, pLeftData, iLen);
 }
 break;
 }
 break;
 }
 hCond = dam_getNextCond(pStmtDA->dam_hstmt, hCondList);
 iKeyPart ++;
 }

 *piKeyOp = iIndexOp;

 return DAM_SUCCESS;
}

/**
Function: isam_isValidRec()
Description: Compare the record read from the file with the condition
 in the query to make sure it is part of the valid selection.
 This is to know when to stop reading records once the record
 matching the given index has been located. This code would not
 be needed if the uderlying ISAM database supported moving to
 next row with a matching key.

Return: DAM_SUCCESS on Success
 DAM_FAILURE on Failure
**/
int isam_isValidRec(ISAM_STMT_DA * pStmtDA, DAM_HCONDLIST hCondList)
{

 int iIndexCnt = 0;
 DAM_HCOND hCond;

 int iLeftOpType, iRightOpType, iLeftXoType, iRightXoType;
 int iIndexOp;

 void * pLeftData, * pRightData;
 int iMatch = TRUE;
 int iKeyPart=0;

 /* get the parts of the key and validate against current record*/
 hCond = dam_getFirstCond(pStmtDA->dam_hstmt, hCondList);
 while(hCond != NULL && iMatch){
 dam_describeCond(hCond, &iLeftOpType, &pLeftData, &iLeftXoType,
 &iRightOpType,&pRightData, &iRightXoType);
 switch(iLeftOpType){
 case SQL_OP_EQUAL:
 iIndexOp = SQL_OP_EQUAL;
 switch(iLeftXoType){

 case XO_TYPE_CHAR:
 {
 char * pBuf = pStmtDA->buf + pStmtDA->pIndexColInfo[iKeyPart].iStart
- 1;
 int iLen = pStmtDA->pIndexColInfo[iKeyPart].iEnd - pStmtDA-
>pIndexColInfo[iKeyPart].iStart + 1;
 if (!dam_evaluateColCond(pStmtDA->dam_hstmt, hCond, iLeftXoType,
pBuf, iLen))

 - 15 -

 iMatch = FALSE;

OpenAccess™ Application Note ODBC Access to ISAM Files

 }
 break;
 }
 break;
 }
 hCond = dam_getNextCond(pStmtDA->dam_hstmt, hCondList);
 iKeyPart ++;
 }

 return iMatch;
}

/* ISAM_UTIL.H
 *
 * (c) OpenAccess Software, Inc.
 *
 * Programer(s): Dipak Patel
 *
 * Revision: $Revision: 1.1 $
 * $Date: 1996/06/24 17:01:38 $
 * $Source: U:/openrda/dam3_0/dbisamdrv/rcs/isam_util.h,v $
 *
 *
 * Description: This header file contains IP specific definitons
 *
 */

#ifndef __ISAMUTIL_H
#define __ISAMUTIL_H

#include "ipdef.h"
#include "iswrap.h"

/* Environment Descriptor Area */
typedef struct isam_env_struct {void *pMemTree;/* Memory Tree for the global context
*/
 } ISAM_ENV_DA;

/* Connection Descriptor Area */
typedef struct isam_connection_struct {
 XM_Tree *pMemTree;
 ISAM_ENV_DA *pEnvDA; /* handle to EnvDA */
 } ISAM_CONN_DA;

typedef struct isam_col_info_struct{
 int iStart;
 int iEnd;
 int iScale;
 int iColType;
} ISAM_COL_INFO;

/* Statement Descriptor Area */
typedef struct isam_statement_struct {
 ISAM_CONN_DA *pConnDA; /* handle to connection descriptor area */
 XM_Tree *pMemTree;
 DAM_HSTMT dam_hstmt; /* DAM handle to the statement */
 int iType; /* Type of the query */
 char sTableName[DAM_MAX_ID_LEN+1]; /* Name of the table being queried
*/

 - 16 -

 char sFileName[255];

OpenAccess™ Application Note ODBC Access to ISAM Files

 - 17 -

 char sUserdata[255];
 int fd;
 char * buf;
 char * pKeyBuf;
 ISAM_COL_INFO * pColInfo;
 ISAM_COL_INFO * pIndexColInfo;
 char szIndexName[DAM_MAX_ID_LEN+1];
 int iIndexLen, iIndexType;

 } ISAM_STMT_DA;

extern TM_ModuleCB isam_tm_Handle; /* declared in isam_drv.c */

#endif /* __ISAMUTIL_H */

©2005 OpenAccess Software, Inc. (ATI) All Rights Reserved. OpenRDA is a registered trademark and OpenAccess is a trademark of
OpenAccess Software, Inc. All other marks are of their respective owners. Although OpenAccess Software believes the information
contained in this document to be accurate, OpenAccess Software cannot accept responsibility for omissions or errors contained within this
document.

	Application Note for OpenAccess(SDK
	Date: Revised March 11, 2003

	Need
	Sample Case
	Proposed Solution
	Features Suited for ISAM Databases
	Your Development Effort
	Designing And Coding The IP
	Schema Definition
	IP Code
	ISAM Interface
	Installing the Sample ISAM IP
	What’s Next

