
C-ISAM
Indexed Sequential
Access Method
Programmer’s Manual
Version 7.2
October 2001
Part No. 000-7897B

ii C-ISAM Programmer’
This document contains proprietary information of IBM. It is provided under a license agreement and is
protected by copyright law. The information contained in this publication does not include any product
warranties, and any statements provided in this manual should not be interpreted as such.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2001. All rights reserved.

US Government User Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Note:
Before using this information and the product it supports, read the information in the appendix
entitled “Notices.”
s Manual

Table of Contents

Table of
Contents
Introduction
About This Manual 4

Purpose of This Manual 4
Organization of This Manual 4
Types of Users 5

New Features of This Product 6
Conventions . 6

Typographical Conventions 7
Icon Conventions 8
Command-Line Conventions 9
Sample-Code Conventions 12

Additional Documentation 12
Printed Documentation 13
On-Line Documentation 14
Related Reading 15

Compliance with Industry Standards 15
Informix Welcomes Your Comments 15

Chapter 1 How to Use C-ISAM
What Is a C-ISAM File? 1-3

Data Records in C-ISAM Files. 1-5
Programming with Variable-Length Records 1-5
Representation of Data 1-6

Comparison of C-ISAM to C Library Functions 1-8
Indexed Sequential Access Method 1-9

Keys in C-ISAM Files 1-10
Using Keys 1-11

Organization of C-ISAM Files 1-14
Building a C-ISAM File 1-14

C-ISAM Error Handling 1-19

iv C-ISA
Manipulating Records in C-ISAM Files 1-20
Identifying Records 1-20
Adding Records 1-22
Deleting Records 1-24
Updating Records 1-25
Finding Records 1-27

Opening and Closing Files 1-32
Opening a File in Exclusive Mode 1-33
Opening a Variable-Length File 1-33
Maximum Number of Open Files 1-34
Closing Fixed- and Variable-Length Files 1-34

Compiling Your C-ISAM Program 1-35
Running Your C-ISAM Program 1-36

Setting the INFORMIXDIR Environment Variable 1-36
C-ISAM Data-File Structure 1-37
Summary . 1-38

Chapter 2 Indexing
Defining an Index 2-3
Key Structures 2-6
Manipulating Indexes 2-8

Adding Indexes 2-9
Deleting Indexes 2-10
Defining Record-Number Sequence 2-11
Determining Index Structures 2-12

B+ Tree Organization 2-14
Searching for a Record 2-17
Adding Keys 2-18
Removing Keys 2-22

Index-File Structure 2-23
Performance Considerations 2-24

Key Size and Tree Height 2-24
Key Compression 2-26
Multiple Indexes 2-30
Localized Indexes 2-31

Summary . 2-31
M Programmer’s Manual

Chapter 3 Data Types
Defining Data Types for Keys 3-3
C-ISAM Computer-Independent Data Types 3-5

Defining Data Records 3-7
Data Types in Variable-Length Records 3-8
C-ISAM Data Type Conversion Routines 3-9

DECIMALTYPE Data Type 3-13
Using DECIMALTYPE Data Type Numbers 3-13

Summary . 3-19

Chapter 4 Locking
Concurrency Control 4-3
Types of Locking 4-7

File-Level Locking 4-7
Record-Level Locking 4-10

Increasing Concurrency 4-12
Error Handling 4-13
Summary . 4-14

Chapter 5 Transaction Management Support Routines
Why Use Transaction Management? 5-3

Transaction-Management Services 5-4
Implementing Transactions 5-4

Transactions with Variable-Length Records 5-7
Logging and Recovery 5-7
Data Integrity . 5-9

Concurrent Execution of Transactions 5-9
Summary . 5-12

Chapter 6 Additional Facilities
File-Maintenance Functions 6-3
Forcing Output 6-4
Unique Identifiers 6-5
Audit-Trail Facility 6-6

Using the Audit Trail 6-6
Audit-Trail File Format 6-8

Clustering a File 6-10
File Maintenance with Variable-Length Records 6-11

If Data Files Are Corrupted. 6-11
If Index Files Are Corrupted 6-11

Summary . 6-14
Table of Contents v

vi C-ISA
Chapter 7 Sample Programs Using C-ISAM Files
Record Definitions 7-3
Error Handling in C-ISAM Programs 7-4
Building a C-ISAM File 7-5
Adding Additional Indexes 7-6
Adding Data . 7-8
Random Update 7-11
Sequential Access 7-16
Chaining . 7-19
Using Transactions 7-25
Summary . 7-29

Chapter 8 Call Formats and Descriptions
Functions for C-ISAM File Manipulation 8-9

isaddindex 8-10
isaudit . 8-12
isbegin . 8-14
isbuild . 8-16
iscleanup 8-19
isclose . 8-20
iscluster . 8-21
iscommit 8-23
isdelcurr . 8-25
isdelete . 8-26
isdelindex 8-28
isdelrec . 8-30
iserase . 8-31
isflush . 8-32
isglsversion. 8-33
isindexinfo 8-35
islanginfo 8-38
islock . 8-39
islogclose 8-40
islogopen 8-41
isnlsversion. 8-42
isopen . 8-44
isread . 8-46
isrecover. 8-50
isrelease . 8-51
isrename. 8-52
isrewcurr 8-53
isrewrec . 8-55
isrewrite . 8-56
isrollback 8-58
issetunique 8-60
M Programmer’s Manual

isstart . 8-61
isuniqueid 8-64
isunlock . 8-65
iswrcurr . 8-66
iswrite . 8-68

Format-Conversion and Manipulation Functions 8-70
ldchar . 8-71
lddbl . 8-72
lddblnull . 8-73
lddecimal . 8-74
ldfloat . 8-76
ldfltnull . 8-77
ldint. 8-78
ldlong . 8-79
stchar . 8-80
stdbl . 8-81
stdblnull . 8-82
stdecimal . 8-83
stfloat . 8-85
stfltnull . 8-86
stint . 8-87
stlong . 8-88

DECIMALTYPE Functions 8-89
decadd, decsub, decmul, and decdiv 8-90
deccmp . 8-92
deccopy . 8-93
deccvasc . 8-94
deccvdbl . 8-96
deccvflt . 8-97
deccvint . 8-98
deccvlong . 8-99
dececvt and decfcvt 8-100
dectoasc . 8-102
dectodbl . 8-104
dectoflt. 8-105
dectoint . 8-106
dectolong . 8-107

Summary . 8-108
Table of Contents vii

viii C-IS
Appendix A C-ISAM Utilities

Appendix B The GLS Environment

Appendix C Error Codes

Appendix D File Formats

Appendix E System Administration

Appendix F Header Files

Appendix G Notices

Index
AM Programmer’s Manual

Introduction

Introduction
About This Manual 4
Purpose of This Manual 4
Organization of This Manual 4
Types of Users 5

New Features of This Product 6

Conventions . 6
Typographical Conventions 7
Icon Conventions 8

Comment Icons 8
Compliance Icons 8

Command-Line Conventions 9
Sample-Code Conventions 12

Additional Documentation 12
Printed Documentation 13
On-Line Documentation. 14

Release Notes, Documentation Notes, Machine Notes 14
Related Reading 15

Compliance with Industry Standards 15

Informix Welcomes Your Comments 15

2 C-ISAM
 Programmer’s Manual

This chapter introduces the C-ISAM Programmer’s Manual. Read this
chapter for an overview of the information provided in this manual and for
an understanding of the conventions used throughout this manual.

C-ISAM is an Indexed Sequential Access Method that is defined and
implemented for the C language by Informix. C-ISAM is a library of
C language functions that create and manipulate indexed files. An index
allows you to do the following tasks without additional programming:

■ Find a specific record within a large file very quickly

■ Define an order for sequential processing of the file

C-ISAM allows great flexibility for defining and using indexes. You can have
as many indexes as you need, without restrictions. You can create or remove
indexes at any time without affecting data records or other indexes.

C-ISAM includes several other features, such as locking and support for trans-
actions, to provide data integrity. The use of these facilities allows you to
ensure that information is accessible, accurate in its consistency, and correctly
processed.

C-ISAM provides support routines for transaction management to extend
your ability to write programs that maintain the consistency and accuracy of
C-ISAM files. These routines also allow you to recover data that is lost due to
hardware failures.
Introduction 3

About This Manual
About This Manual
The C-ISAM Programmer’s Manual describes the C-ISAM functions and
facilities. This manual assumes that you are familiar with the
C-programming language.

Purpose of This Manual
This manual provides information about the C-ISAM library of C functions
that you can use to create and manipulate indexed files.

Organization of This Manual
This manual includes the following chapters:

■ This Introduction describes C-ISAM, explains how to use this
manual, provides an overview of the manual, and describes the
documentation conventions used.

Chapters 1, 2, and 3 explain major features that are part of every program
using C-ISAM functions.

■ Chapter 1, “How to Use C-ISAM,” explains how to create and
manipulate C-ISAM files.

■ Chapter 2, “Indexing,” explains the organization and use of the
indexes.

■ Chapter 3, “Data Types,” describes the data types that you can use in
C-ISAM files and how they are handled in C-ISAM programs.

Chapters 4, 5, and 6 explain specialized features.

■ Chapter 4, “Locking,” describes file and record locking and how
these are implemented.

■ Chapter 5, “Transaction Management Support Routines,” explains
how to ensure data integrity using transaction management.

■ Chapter 6, “Additional Facilities,” describes additional C-ISAM
functions and explains the use of audit trails.
4 C-ISAM Programmer’s Manual

Types of Users
The rest of the manual contains sample programs and reference material.

■ Chapter 7, “Sample Programs Using C-ISAM Files,” contains several
complete programs that use the C-ISAM functions described in
earlier chapters.

■ Chapter 8, “Call Formats and Descriptions,” serves as the reference
section for each C-ISAM function. It is organized so that the syntax
and details of each function are easy to locate and use.

■ Appendix A describes the utility program for checking the integrity
of C-ISAM.

■ Appendix B describes the GLS environment and explains how to set
a GLS locale to specify a collation sequence for a C-ISAM file.

■ Appendix C lists the errors that can occur during execution of
C-ISAM calls.

■ Appendix D shows the physical file layouts for files that C-ISAM
calls.

■ Appendix E explains how to set up your system to use C-ISAM.

■ Appendix F contains the source code for the header files you need to
include in C-ISAM programs.

Types of Users
This manual is written for all C-ISAM users and assumes familiarity with the
C programming language and the standard C library of functions related to
files and Input/Output operations.
Introduction 5

New Features of This Product
New Features of This Product
The Introduction to each Version 7.2 product manual contains a list of new
features for that product. A comprehensive list of all of the new features for
Version 7.2 Informix products is in the Release Notes file called SERVERS_7.2.

This section highlights the major new features implemented in Version 7.2 of
C-ISAM.

The Global Language Support (GLS) feature lets Informix Version 7.2
products handle different languages, collation sequences, and code sets.
C-ISAM uses the GLS feature to support localized collation on index files.
Localized collation involves the sorting of character data according to the
order of characters in a real language.

GLS functionality supersedes the functionality of Native Language Support
(NLS) and eliminates the need to distinguish between internationalized
versions of Informix software. ♦

Conventions
This section describes the conventions that are used in this manual. By
becoming familiar with these conventions, you will find it easier to gather
information from this and other volumes in the documentation set.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Command-line conventions

■ Sample-code conventions

GLS
6 C-ISAM Programmer’s Manual

Typographical Conventions
Typographical Conventions
This manual uses a standard set of conventions to introduce new terms,
illustrate screen displays, describe command syntax, and so forth. The
following typographical conventions are used throughout this manual.

Convention Meaning

italics Within text, new terms and emphasized words are printed in
italics. Within syntax diagrams, values that you are to specify
are printed in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, table names, column
names, menu items, command names, and other similar terms
are printed in boldface.

monospace Information that the product displays and information that you
enter are printed in a monospace typeface.

KEYWORD All keywords appear in uppercase letters.

♦ This symbol indicates the end of product- or platform-specific
information.
Introduction 7

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as described in the
following table. This information is always displayed in italics.

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Icon Description

Identifies paragraphs that contain vital instructions,
cautions, or critical information.

Identifies paragraphs that contain significant information
about the feature or operation that is being described.

Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described.

Icon Description

Identifies information that is specific to an application that
uses Global Language Support.

Identifies information that is specific to an application that
uses an NLS index.

GLS

NLS
8 C-ISAM Programmer’s Manual

Command-Line Conventions
Command-Line Conventions
C-ISAM supports command-line options. You enter these commands at the
operating-system prompt to perform certain functions with C-ISAM. Each
valid command-line option is illustrated in a diagram in Appendix A.

This section defines and illustrates the format of the commands that are
available in C-ISAM and other Informix products. These commands have
their own conventions, which might include alternative forms of a command,
required and optional parts of the command, and so forth.

Each diagram displays the sequences of required and optional elements that
are valid in a command. A diagram begins at the upper left with a command.
It ends at the upper right with a vertical line. Between these points, you can
trace any path that does not stop or back up. Each path describes a valid form
of the command. You must supply a value for words that are in italics.

You might encounter one or more of the following elements on a command-
line path.

Element Description

command This required element is usually the product name or
other short word that invokes the product or calls the
compiler or preprocessor script for a compiled Informix
product. It might appear alone or precede one or more
options. You must spell a command exactly as shown
and must use lowercase letters.

variable A word in italics represents a value that you must
supply, such as a database, file, or program name. A table
following the diagram explains the value.

-flag A flag is usually an abbreviation for a function, menu, or
option name or for a compiler or preprocessor argument.
You must enter a flag exactly as shown, including the
preceding hyphen.

.ext A filename extension, such as .sql or .cob, might follow
a variable that represents a filename. Type this extension
exactly as shown, immediately after the name of the file
and a period. The extension might be optional in certain
products.

(1 of 2)
Introduction 9

Command-Line Conventions
(.,;+*-/) Punctuation and mathematical notations are literal
symbols that you must enter exactly as shown.

' ' Single quotes are literal symbols that you must enter as
shown.

A reference in a box represents a subdiagram on the
same page (if no page is supplied) or another page.
Imagine that the subdiagram is spliced into the main
diagram at this point.

A shaded option is the default. If you do not explicitly
type the option, it will be in effect unless you choose
another option.

Syntax enclosed in a pair of arrows indicates that this is
a subdiagram.

The vertical line is a terminator and indicates that the
statement is complete.

A branch below the main line indicates an option

A loop indicates a path that you can repeat. Punctuation
along the top of the loop indicates the separator symbol
for list items, as in this example.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is part
of a larger loop. Here you can specify size no more than
three times within this statement segment.

Element Description

(2 of 2)

Privileges
 p. 5-17

Privileges

ALL

NOT

IN

variable

,

3 size

, 3
10 C-ISAM Programmer’s Manual

Command-Line Conventions
Figure 1 shows the flow of the bcheck utility command.

To construct a correct command, start at the top left with the command
bcheck. Then follow the diagram to the right, including the elements that
you want. The elements in the diagram are case sensitive.

To read the example command-line diagram

1. Type the word bcheck.

2. Choose either the lower path or the upper path.

3. When you choose the lower path, you must type -V. That brings you
to the terminator. That completes the bcheck command. Press
RETURN to execute the command.

4. When you choose the upper path, take the following steps:

a. You can choose -n or -y, but not both.

b. You can choose -q.

c. You can choose -l.

d. You can choose -s.

e. You must supply a filename.

After you choose filename, you come to the terminator. Your
command is complete.

5. Press ENTER to execute the command.

Figure 1
Elements of a Command-Line Diagram

bcheck filename

-y

-n -q

-V

-l

-i

-s
Introduction 11

Sample-Code Conventions
Sample-Code Conventions
Examples of C code occur throughout this manual. Except where noted, the
code is specific to C-ISAM. For instance, you might see the code in the
following example:

#include <isam.h>
char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;
.
.
.

Dots in the example indicate that more code would be added in a full
application, but it is not necessary to show it to describe the concept being
discussed.

Additional Documentation
The C-ISAM documentation set includes printed manuals and on-line
manuals.

This section describes the following pieces of the documentation set:

■ Printed documentation

■ On-line documentation

■ Related reading
12 C-ISAM Programmer’s Manual

Printed Documentation
Printed Documentation
The following printed manuals are included in the C-ISAM Programmer’s
Manual documentation set:

■ UNIX Products Installation Guide. This guide contains instructions for
installing Informix products on computers running the UNIX
operating system. Keep it with your Informix software documen-
tation for easy reference.

■ Informix Error Messages. When errors occur, you can look them up
by number and learn their cause and solution in the Informix Error
Messages manual. You can also look up the error messages in
Appendix C of this manual.
Introduction 13

On-Line Documentation
On-Line Documentation
C-ISAM provides on-line documentation for release notes, documentation
notes, and machine notes.

Release Notes, Documentation Notes, Machine Notes

In addition to the Informix set of manuals, the following on-line files, located
in the directory you have indicated at install time to hold the C-ISAM sample
programs, might supplement the information in this manual.

Please examine these files because they contain vital information about
application and performance issues.

On-Line File Purpose

Documentation
notes

Describes features that are not covered in the manuals or that
have been modified since publication. The file containing the
Documentation Notes for C-ISAM is called ISAMDOC_7.2.

Release notes Describes feature differences from earlier versions of Informix
products and how these differences might affect current
products. This file also contains information about any known
problems and their workarounds. The file containing the
Release Notes for Version 7.2 of Informix database server
products is called SERVERS_7.2.

Machine notes Describes any special actions that are required to configure and
use Informix products on your computer. Machine notes are
named for the product that is described. Machine notes are
named for the product described, for example, the Machine
Notes file for C-ISAM is ISAM_7.2.
14 C-ISAM Programmer’s Manual

Related Reading
Related Reading
If you have limited UNIX system experience, consult your operating system
manual or a good introductory text before you read this manual. The
following texts provide a good introduction to UNIX systems:

■ Introducing the UNIX System by H. McGilton and R. Morgan
(McGraw-Hill Book Company, 1983)

■ Learning the UNIX Operating System, by G. Todino, J. Strang, and
J. Peek (O’Reilly & Associates, 1993)

■ A Practical Guide to the UNIX System, by M. Sobell
(Benjamin/Cummings Publishing, 1989)

■ UNIX for People by P. Birns, P. Brown, and J. Muster (Prentice-Hall,
1985)

■ UNIX System V: A Practical Guide by M. Sobell (Benjamin/Cummings
Publishing, 1995)

Compliance with Industry Standards
C-ISAM is built to conform to the guidelines put forth in the X/Open Portability
Guide, Issue 3 (XPG3).The GLS feature for Informix Version 7.2 products is
based on the X/Open XPG4 specifications.

Informix Welcomes Your Comments
Please let us know what you like or dislike about our manuals. To help us
with future versions of our manuals, please tell us about any corrections or
clarifications that you would find useful. Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025
Introduction 15

Informix Welcomes Your Comments
If you prefer to send electronic mail, our address is:

doc@informix.com

Or, send a facsimile to the Informix Technical Publications Department at:

415-926-6571

Please include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

We appreciate your feedback.
16 C-ISAM Programmer’s Manual

1
Chapter
How to Use C-ISAM
What Is a C-ISAM File? 1-3
Data Records in C-ISAM Files 1-5
Programming with Variable-Length Records 1-5
Representation of Data 1-6

Comparison of C-ISAM to C Library Functions 1-8
Indexed Sequential Access Method 1-9

Indexed Access 1-9
Sequential Access. 1-9
Flexibility 1-10

Keys in C-ISAM Files 1-10
Using Keys . 1-11

Choosing a Key 1-11
Key Descriptions 1-12
Unique and Duplicate Keys 1-12
Primary Keys 1-13
Collation Sequences of Keys 1-13

Organization of C-ISAM Files 1-14
Building a C-ISAM File 1-14

Building a File With Fixed-Length Records 1-15
Building a Variable-Length File 1-19

C-ISAM Error Handling 1-19

Manipulating Records in C-ISAM Files 1-20
Identifying Records 1-20

Using the Key Value. 1-20
Using the Current Record 1-21
Using the Record Number. 1-21
Summary of Record Identification Methods 1-22

Adding Records 1-22

1-2 C-IS
Deleting Records 1-24
Updating Records 1-25
Finding Records 1-27

Using the isstart Function 1-29
Finding Records by Record Number 1-31

Opening and Closing Files 1-32
Opening a File in Exclusive Mode 1-33
Opening a Variable-Length File 1-33
Maximum Number of Open Files 1-34
Closing Fixed- and Variable-Length Files 1-34

Compiling Your C-ISAM Program. 1-35

Running Your C-ISAM Program 1-36
Setting the INFORMIXDIR Environment Variable 1-36

C-ISAM Data-File Structure 1-37

Summary . 1-38
AM Programmer’s Manual

C-ISAM is a set of functions that can be used in C language
programs. This chapter gives an overview of the basic concepts that you need
to begin using C-ISAM. It also explains how to use the most common
functions to perform the following tasks:

■ Create a C-ISAM file

■ Add records to the file

■ Remove records from the file

■ Update existing records

■ Find and retrieve records

■ Open and close the file

■ Determine the length and number of file records

This chapter also shows you how to compile and run your program and
describes the structure and organization of C-ISAM data files.

What Is a C-ISAM File?
A C-ISAM file is a collection of data that you would like to store in your
computer. For example, you might want to keep information about all
employees on the computer. To do this, you must first decide what data to
keep for each employee. Each item that you decide to store is called a field.

You might decide to keep an employee number, the first and last names,
address, and city for each employee. This collection of fields is called a record.
You must determine the data type and the length of each field.

This manual uses an employee file with employee records as the primary
example to show you how to use C-ISAM. Figure 1-1 and Figure 1-2 show the
Employee record for this example.
How to Use C-ISAM 1-3

What Is a C-ISAM File?
Figure 1-1
Employee Record

The record is the collection of fields. Each field has a data type and a length.
The offset is the relationship of the field to the beginning of the record. The
Employee Number field starts at the beginning of the record, at offset 0, and
the Last Name field starts after the Employee Number, at offset 4.

Description Type Length Pointer
Offset from beginning
of record

Employee Number Long 4 p_empno 0

Last Name Char 20 p_lname 4

First Name Char 20 p_fname 24

Address Char 20 p_eaddr 44

City Char 20 p_ecity 64

Figure 1-2
Employee Record

Illustration

84 85
80706050403020100

64

44

24

4
additional byte

p_ecity

p_eaddr

p_fname

TOTAL LENGTH = 85 BYTES
1-4 C-ISAM Programmer’s Manual

Data Records in C-ISAM Files
Data Records in C-ISAM Files
Records in a C-ISAM file can be of either fixed or variable length. You must
reserve space for at least one record in your program. The record must hold
the contents of the fields and 1 additional byte for a null character that
indicates the end of the record. The easiest way to do this is to declare a
character variable of the size that your record layout indicates plus 1 byte (see
Figure 1-1). The following declarations are sufficient for the Employee
record:

char emprec[84+1];

or

char emprec[85];

You can define the location of each field by its offset from the beginning of the
record and declare a pointer variable for each field. The pointers become the
arguments to functions that operate on fields. To set up the Employee
Number and Name fields, you declare the following pointer variables:

char *p_empno = emprec+ 0;
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;

These declarations use pointer arithmetic to define the field position. The
offset within the record is added to the address of the record in memory. The
following declarations are equivalent:

char *p_empno = &emprec[0];
char *p_lname = &emprec[4];
char *p_fname = &emprec[24];

Use the record address, emprec, to refer to the record.

Programming with Variable-Length Records
A file can contain either variable-length or fixed-length records. Variable-
length records can have a fixed-length portion. The variable-length portion
of a record is at the end of the record, after the fixed-length portion. For
compatibility with earlier versions of C-ISAM, a record that is not specifically
labeled fixed length or variable length defaults to fixed length. As with fixed-
length records, you must declare a C variable that holds the data in the
variable-length record while you manipulate it.
How to Use C-ISAM 1-5

Representation of Data
The fixed-length portion of a variable-length record is stored in the data file,
along with a 4-byte pointer to the variable-length portion of the record. The
variable-length portion of the record is stored in the index file.

Warning: It is important that you do not remove the index files (.idx) associated with
variable-length records. When you remove the .idx files, no way exists of restoring
the files and the variable-length data contained within them, other than restoring
them from a backup.

When the index portion of the .idx files becomes corrupted, run the bcheck
utility without removing the .idx files. This leaves the variable-length data
intact. Complete information for recovery in the event of a data loss is
described in “File Maintenance with Variable-Length Records” on page 6-11.

The ability to use variable-length records is only available with C-ISAM; it is
not available with any Informix products that use INFORMIX-SE.

Representation of Data
C-ISAM uses data types that are equivalent to the C language data types on
your computer. C-ISAM representation of these data types, however, is
computer-independent. Thus, the way C-ISAM stores the data can be
different from the internal representation of the data while your program
executes.

For example, Employee Number is a long integer. The C-ISAM equivalent is
LONGTYPE. The size of a C-ISAM LONGTYPE is LONGSIZE. The other items in
the record are CHARTYPE, corresponding to the C language char data type.
(These parameters, as well as other parameters that you need in programs
that use C-ISAM, are in the header file isam.h that you must include in your
programs. Appendix B contains a listing of isam.h.)

C-ISAM provides functions to convert between the internal representation of
data on your computer and the way that C-ISAM stores the data. (See
Figure 1-3 on page 1-7.) For example, the function stlong takes a C language
long integer and stores it into the record. The function ldlong retrieves the
C-ISAM representation of a long integer from the record and places it in a C
language long variable. You must always convert between the internal
representation of data on your computer and the computer-independent
C-ISAM representation of the data. Chapter 3, “Data Types,” describes the
conversion functions that you can use.
1-6 C-ISAM Programmer’s Manual

Representation of Data
Figure 1-4 shows how you can transfer data between a C-ISAM data file
record and the internal program variables for the record in Figure 1-1.

Figure 1-4
Transferring Data Between Program Variables and a C-ISAM Data Record

char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

/* Program Variables */
long empno;
char lname[21];
char fname[21];
char eaddr[21];
char ecity[21];
/* Store program variables in C-ISAM data record */
stlong (empno,p_empno);
stchar (lname,p_lname,20);
stchar (fname,p_fname,20);
stchar (eaddr,p_eaddr,20);
stchar (ecity,p_ecity,20);
/* Load program variables from C-ISAM data record */
empno = ldlong(p_empno);
ldchar (p_lname,20,lname);
ldchar (p_fname,20,fname);
ldchar (p_eaddr,20,eaddr);
ldchar (p_ecity,20,ecity);

Figure 1-3
Converting the

Internal
Representation of

Data to the C-ISAM
Representation of

Data

C-LANGUAGE
PROGRAM VARIABLES

Machine Dependent

Load (ld) functions

Store (st) functions

C-ISAM RECORDS

Machine Independent
How to Use C-ISAM 1-7

Comparison of C-ISAM to C Library Functions
The function stlong takes the long integer empno, converts it into the C-ISAM
computer-independent representation of a long integer, and places it in the
record, starting at address p_empno. The function converts the C-ISAM long
integer starting at position p_empno in the data record and returns its value
to the program variable empno.

The function stchar takes program variables, such as lname, removes the null
character and places the data in the C-ISAM data record, starting in position
p_lname as shown in Figure 1-2 on page 1-4. The function pads the C-ISAM
data record with trailing spaces up to the number specified, which is 20.

The function ldchar is the reverse of stchar. The data at the starting position
in the record, p_lname for example, is transferred to a program variable
lname. The transfer stops after 20 characters. Trailing spaces are removed
and the program variable is null-terminated.

Comparison of C-ISAM to C Library Functions
You can use the data structure described in Figure 1-2 to write records to a file
that is created by the C standard library function creat. You can also use the
structure to retrieve those records. The standard library functions, read and
write, allow you to read and write the next arbitrary group of bytes (you
specify the number) in relation to the last group read or written. The C
function lseek allows you to change the starting position for the next read or
write.

C-ISAM also allows you to perform these operations. C-ISAM functions,
however, operate on the records that you define. You do not have to concern
yourself with the byte positions within the file to find the information that
you wish to access. This, however, is not the main advantage of using C-ISAM
files.

C-ISAM offers you the following advantages:

■ You can define one or more orders for processing the records. The
contents of the records determine the order, not the physical ordering
of records in the file.

■ You can quickly find specific records within files, even when the files
are quite large.
1-8 C-ISAM Programmer’s Manual

Indexed Sequential Access Method
Indexed Sequential Access Method
You can store thousands, or tens of thousands, of data records in a file using
the standard library functions. When you wanted to find employee 100, or
the employee R. Smith, your program might have to search the entire file.

C-ISAM gives you a much faster way to find a record, which eliminates the
need for your program to search a data file sequentially when it looks for just
a few records. C-ISAM provides an access method that uses an index.

Indexed Access

The indexes of a C-ISAM file are similar in function to the index of this book.
You use a book index to locate a page that contains the information that you
need. The index is composed of words that identify the contents of the page.
These entries are called keywords. The C-ISAM index, however, is not
restricted to words. Its entries are simply called keys.

In the book, the keyword refers you to a page number. In the C-ISAM file, the
key points to a record that is identified by its record number. In both cases,
you use the pointer (page number in a book or record number in a file) to
locate the item of interest.

This book has only one index. With C-ISAM, however, you can have as many
indexes as you need. For example, you can define two indexes: one for the
Employee Number field, and another for the Employee Name field. This
allows you to find quickly the record for Employee Number 100 or employee
R. Smith.

Sequential Access

C-ISAM also allows sequential processing of records in the order defined by
the key. You can access all or part of the file in any of the following orders:

■ By the Employee Number key

■ Alphabetically by the Employee Name key

■ By any other order that you define with an index
How to Use C-ISAM 1-9

Keys in C-ISAM Files
Flexibility

C-ISAM enhances the functionality of your programs through its flexibility.
When you add a section to a book, rearrange paragraphs or sections, remove
a few pages, you must re-create your index because the keywords must
appear in relation to each other. In this case, the relationship of the keywords
to each other is alphabetic order. A C-ISAM index changes automatically
whenever a data record changes. When you hire or terminate an employee,
or change anything in a record, C-ISAM immediately updates all indexes.

You can create an index on any field, on several fields to be used together, or
on parts thereof, that you want to use as a key. The keys in indexes allow you
quick access to specific records and define orders for sequential processing of
a C-ISAM file. When you no longer need an index, you can delete it. Addition
and deletion of indexes have no effect on the data records or on other indexes.

Keys in C-ISAM Files
In the analogy to the book index in “Indexed Access” on page 1-9, an entry in
the index for this book is a keyword. With each keyword a pointer exists to a
page number. In the analogy, each key in a C-ISAM file points to a data record,
or simply, a record.

In the employee file, you might want to access records by employee number.
This task requires an index, just as the book does. The keys are the employee
numbers. In other words, the Employee Number index contains the
employee number for each employee in the file. (Conceptually, you should
think of the index as ordering the records by employee number. Chapter 2,
“Indexing,” shows the actual organization of the index.)

The employee numbers in the index point to data records. The format of the
data record is shown in Figure 1-1 and Figure 1-2. The data records are not in
a particular order. The index, however, is always in a specific order. In this
case, it is in order by employee number.
1-10 C-ISAM Programmer’s Manual

Using Keys
Using Keys
To find a record, you supply the key value for which you are searching. The
C-ISAM function rapidly performs the search by looking through the index.
When it finds a match on the key value, it uses the pointer to read the data
record. C-ISAM then returns the data record to your program.

Your program does not need to know where the record is in the data file. It
needs only to supply the search value to a function. When you provide a
search value of 100 and use the Employee Number index, the C-ISAM
function locates the record that corresponds to Employee Number 100,
regardless of where it is in the file.

Choosing a Key

You might also need to find specific records in the employee file by employee
name. Once again, this task requires an index. The choice of the key, in this
case, is a little more complex because the record contains two name fields:
First Name and Last Name. You can define the key to include any one of the
following fields:

■ Last Name field only

■ First and Last Name fields together, in the form last/first

■ Some other combination, such as the first 10 characters of the Last
Name field and the first character of the First Name field

The key that you choose determines the order of the index.

The search value that you use to find a record is different for different key
definitions. For example, if you define the key on the first 10 characters of the
Last Name field and the first character of the First Name field and you are
looking for an exact match, a search value of Smith cannot find the desired
data record if you are looking for the record that belongs to R. Smith.
How to Use C-ISAM 1-11

Using Keys
Key Descriptions

Each index has a description of its key. This key description defines the fields
that make up the key. For the Employee Number index, the key description
indicates that the keys consist of only one field, the Employee Number. For
the Name index, the key description is more complex. When you choose to
use the first 10 characters of the Last Name field and the first character of the
First Name field as the key, the key description specifies that the keys consist
of two fields: part of the Last Name (the first 10 characters) and part of the
First Name (the first character).

C-ISAM does not keep information about the names or uses of individual
fields. A field is simply a location in the record that is defined by its offset
from the beginning of the record. You use the offsets to identify the fields that
define the key. For the employee record, these field offsets are shown in
Figure 1-1 on page 1-4.

You identify the key fields to C-ISAM by creating a key-description structure
that contains information about the key. This includes the number of parts
that the key contains (one for Employee Number key and two for the
Employee Name key) and information about each part. The information for
each part of the key includes the offset of the field in the data record, the data
type, and the length. You can specify several other options in the key
description structure. (Chapter 2 explains these options.)

Unique and Duplicate Keys

You might want a field in each record to uniquely identify that record from
all other records in the file. For example, the Employee Number field is
unique if you do not assign the same number to two different employees, and
you never reassign these numbers to other employees. When you want to
find or modify the record that belongs to a specific employee, this unique
field saves the trouble of determining whether you have the correct record.

When you do not have a unique field, you must find the first record that
matches your key and determine whether that record is the one that you
want. When it is not the correct one, you must search again to find others.
1-12 C-ISAM Programmer’s Manual

Using Keys
When you know that you have a unique field within your records, you can
include this information in the key description. Then C-ISAM allows only
unique keys. For example, if you specify that the employee numbers are
unique, C-ISAM only lets you add records to the file for, or change numbers
to, employee numbers that do not already exist in the file.

Sometimes you do not want to specify a key as unique. When you want an
index on Employee Name, you might want to allow for duplicate keys in case
two or more employees have the same name, for example, two R. Smith.
When you use this index to find and update a record, however, you must
determine that only one R. Smith exists in the file or that you are updating the
correct record if more than one exists.

Primary Keys

When you create your C-ISAM file, you ordinarily specify the key and its
description in the index. The keys in this index are called primary keys. This
index is the primary index. Other nonprimary indexes can be added later.
Chapter 2 discusses how to add indexes.

In general, very little difference exists between a primary index and any
other. The primary index, however, cannot be deleted. Also, several functions
work only on records that have unique primary keys. These functions are
described in “Manipulating Records in C-ISAM Files” on page 1-20.

Usually you want to build your primary index on a key that you are most
likely to need throughout the life of the file, especially if it is a unique key.

 It is possible to build a C-ISAM file that does not have a primary index.
Chapter 2 discusses this option.

Collation Sequences of Keys

Each key has a collation sequence—the sequence in which the data is ordered.
The default locale, U.S. English with the 8859-1 code set, specifies the collation
sequence. When you do not want your index to use the default collation
sequence, you can specify a different collation sequence. Indexes built with
specific collation sequences are called localized indexes. When you are using a
character field in the key that is built on a specific collation sequence, you
need to declare the field as NCHARTYPE data type.

GLS
How to Use C-ISAM 1-13

Organization of C-ISAM Files
Once you have built an index with a specific collation sequence, you must
always use that collation sequence when you access the data. All the indexes
associated with a data file must use the same collation sequence.

For information about building and using localized indexes, see “Creating
Localized Indexes” on page B-8. ♦

Organization of C-ISAM Files
Each C-ISAM file contains data records and, usually, one or more indexes that
point to the data records. Even if two indexes exist for the employee file, one
on Employee Number and the other on Employee Name, only one data
record exists for each employee. If R. Smith is Employee Number 100, the
entry in the Employee Number index for key 100 points to the same record
as the entry for employee R. Smith in the Name index.

Physically, a C-ISAM file consists of two operating-system files, one to hold
the data records and another to hold the indexes. The data file has the
extension .dat, for example, employee.dat. The index file has the extension
.idx: for example, employee.idx. These two operating-system files are always
used together as a logically single C-ISAM file. On some platforms, an
additional file is used to keep track of locks on data records. This lock file has
the extension .lok.

Building a C-ISAM File
You can build files with either fixed-length records or variable-length
records. In either case, you use the isbuild function call to create a C-ISAM
file. The process of building a file that contains variable-length records is very
similar to the process of building files with fixed-length records. In the two
sections that follow, both processes are described in detail.
1-14 C-ISAM Programmer’s Manual

Building a C-ISAM File
Building a File With Fixed-Length Records

The call to build the C-ISAM file employee (a fixed-length record) is as shown
in the following example:

fd = isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK);

This function creates the .dat and .idx operating-system files and opens them.
It returns a file descriptor, fd, which you can use to identify the C-ISAM file in
other function calls.

The first argument of the function is the C-ISAM filename. Do not specify a
filename extension.

In the example used here, each record contains an Employee Number, First
Name, Last Name, Address, and City field. The layout of the record is shown
in Figure 1-5.

Figure 1-5
Employee Record

The isbuild function does not use any information about the actual
organization of the record. You should lay out the record, however, to
determine the length of the record and the location of the key within the
record.

Description Type Length Pointer
Offset from
Beginning of Record

Employee Number Long 4 p-empno 0

Last Name Char 20 p_lname 4

First Name Char 20 p_fname 24

Address Char 20 p_eaddr 44

City Char 20 p_ecity 64

Total length in bytes: 84
How to Use C-ISAM 1-15

Building a C-ISAM File
For the employee file example, you must provide isbuild with the following
parameters:

Figure 1-6 shows the key-description structure. It is defined in the header file
isam.h, which you include when you compile your program. See Appendix F
for a complete listing of isam.h.

employee is the name of the file that is being built, and the first
parameter.

84 is the record size (not including the additional null
terminator), in bytes, in this example.

&key is the third argument and the address of the structure that
describes the primary key. It is, by definition, the primary key
because it is the key that you create when you build the file.

ISINOUT +
ISEXCLLOCK

specifies the mode and locking to be used.

Figure 1-6
Key-Description Structure

struct keypart
 {
 short kp_start; /* starting byte of key part */
 short kp_leng; /* length in bytes */
 short kp_type; /* type of key part */
 };

struct keydesc
 {
 short k_flags; /* flags */
 short k_nparts; /* number of parts in key */
 struct keypart
 k_part[NPARTS]; /* each key part */
 /* the following is for internal use only */
 short k_len; /* length of whole key */
 long k_rootnode; /* pointer to rootnode */
 };
1-16 C-ISAM Programmer’s Manual

Building a C-ISAM File
You must declare and initialize a keydesc structure to define your key. At this
point, consider only what is necessary to define the primary index that
contains employee numbers as keys. Chapter 2 describes in detail how to set
up key-description structures.

The key-description structure keydesc defines the number of fields that the
key contains and, for each field, gives information about its location in the
record, its data type, and the number of bytes that are part of the key. The
structure also contains information that is related to the overall key; for
example, whether duplicate keys are allowed.

The Employee Number index contains keys with only one part, the
Employee Number field. In this case, you initialize k_nparts equal to one.

As previously mentioned, C-ISAM files contain no information about fields in
a record. When you choose key fields, you must specify an offset that is the
distance in bytes from the beginning of the record to the beginning of the
field. This offset depends on the lengths of the fields that precede the key field
in the record. Because the Employee Number field starts at the beginning of
the record, the offset is zero; therefore you initialize kp_start to zero.

The key length is defined by the data type that you use or the length of the
data if it is a CHARTYPE. Because the Employee Number is a C language long
data type, its data type is LONGTYPE and the length is LONGSIZE. In this case,
you set kp_type to LONGTYPE and kp_leng to LONGSIZE.

When you want C-ISAM functions to enforce uniqueness on the primary key,
set k_flags equal to ISNODUPS (no duplicates allowed).

After you create the file, it remains open and available for use. The fourth
argument to isbuild specifies the access mode and locking mode of the open
file. You can open the file for output (write only), input (read only), or both
input and output. You can also lock the file for exclusive access, which means
that only the program that opens the file can use it (until the file is closed).
How to Use C-ISAM 1-17

Building a C-ISAM File
Figure 1-7 shows the code that you use to create the employee file. The access
mode allows both input and output. The locking mode, which is
ISEXCLLOCK, specifies exclusive use by the program.

The function returns a code. When this code is greater than or equal to zero,
the number is the file descriptor that you use in subsequent C-ISAM calls to
uniquely identify the file. A return code that is less than zero indicates an
error.

The file-opening modes are discussed in “Opening and Closing Files” on
page 1-32. Locking is described in Chapter 4, “Locking.”

Figure 1-7
Creating a C-ISAM File

struct keydesc key;
.
.
.
key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = LONGSIZE;
key.k_part[0].kp_type = LONGTYPE;

if ((fd=isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK)) < 0)
{
printf ("isbuild error %d",iserrno);
exit (1);
}

.

.

1-18 C-ISAM Programmer’s Manual

C-ISAM Error Handling
Building a Variable-Length File

Use the isbuild function to create a C-ISAM file for variable-length records.

To build a file for variable-length records

1. Before you call isbuild, set isreclen to the minimum number of bytes
in the variable-length record.

This establishes the length of the fixed-length portion of the record.
The total record length can range from 2 to 32,511 bytes; the fixed-
length portion can range from 1 to 32,510 bytes.

2. Call isbuild, specifying ISVARLEN as part of the mode parameter to
indicate that the file contains variable-length records.

3. Assign the second parameter the maximum length of the record,
including the fixed- and variable-length parts. The smallest value
you can use in ISRECLEN is 1.

The smallest variable-length record that you can use is 2 bytes; 1 byte
for the fixed-length portion, one for the variable-length portion.

For example, the following two statements build the C-ISAM file employee
with a maximum record size of 1,284 bytes, a minimum record size of 84
bytes, and a variable-length portion of up to 1,200 bytes.

isreclen = 84;
fd = isbuild("employee:", 1284, &key, ISINOUT + ISEXCLLOCK + ISVARLEN);

The employee file also is read/write and is locked exclusively. See the
complete description of “isbuild” on page 8-16.

C-ISAM Error Handling
C-ISAM functions return an integer code. When this code is greater than or
equal to zero, the function executed successfully. When the return code is
negative, the function failed.

To determine the reason for failure or to test for certain conditions, such as
the end of a file, you can examine the contents of the global variable, iserrno.
Appendix C contains a description of all error conditions, their values, and
mnemonics.
How to Use C-ISAM 1-19

Manipulating Records in C-ISAM Files
Figure 1-7 shows an example of the use of the iserrno variable. Check the
return code of each C-ISAM call and take appropriate action based on the
value in iserrno.

Manipulating Records in C-ISAM Files
You can manipulate records in a C-ISAM file in several ways. When the file is
created, you add records. Later you will need to find them again. Perhaps
you might also need to delete some of the records and update the contents of
others. C-ISAM provides several ways to perform each of these operations.

Identifying Records
Several C-ISAM functions perform the same task. The differences among
these functions are a result of the different ways that you identify records
within a C-ISAM file. For example, you can delete a record with either of three
function calls. The way you identify the record dictates the function that you
use.

Using the Key Value

You can identify a record by its key value. When you specify a unique
primary key, you can, for example, delete a record using the C-ISAM function
call isdelete.

You can use an employee number with the function isdelete to delete a
record from the employee file, because Employee Number is the unique
primary key. (See “Building a C-ISAM File” on page 1-14, for an example of
how to build the employee file.)

When you do not use a primary index with unique keys, you cannot use
isdelete to delete a record. Functions that use unique primary keys guarantee
that the record you want is the only possible match. These functions return
error codes if the index definition does not guarantee unique keys.
1-20 C-ISAM Programmer’s Manual

Identifying Records
When your application uses an index with a specific collation sequence to
find a record, you must set your environment to the locale that specifies the
collation sequence of the index. If the collation sequence of the application
accessing records differs from the index-collation sequence, the function
called to locate the record (such as isread) fails. For a complete description of
Global Language Support (GLS) locales, collation order, and localized
indexes, refer to Appendix B. ♦

C-ISAM functions give you two other ways to identify records, in addition to
an exact match on the key value.

Using the Current Record

You can use functions that operate on the current record. You can set the
current record in several ways. The most common way is to read a record
because the last record that you read becomes the current record.

When you have keys that are not guaranteed to be unique, a potential
solution is to read the first record with a matching key; this becomes the
current record. If the user verifies that this is the correct record to delete, your
program can delete it with the function call isdelcurr, which deletes the
current record.

This method is useful, for example, when you have two R. Smiths in the file.
The program can read the first record, using the Name index, and display the
Address and City. This record is the current record. The program can prompt
for verification. If it is the correct record, the program deletes it with
isdelcurr. If it is not correct, the program can find another match, and the new
record becomes the current record. The program can repeat the process.

Using the Record Number

Some functions allow you to identify a record by its position, relative to the
beginning of the data file. Each record has a record number that identifies its
position in the file. The first record in the file is Record 1.

When a record is accessed for any reason, even for deletion, its record
number is set in the global variable isrecnum. This variable is defined in
isam.h. You can use the record number with the function call isdelrec to
delete a record in the file.

GLS
How to Use C-ISAM 1-21

Adding Records
Summary of Record Identification Methods

In summary, C-ISAM functions use one of the following three basic methods
to identify a specific record.

Adding Records
To add records to a file, you must first assign values to the elements of your
data-record structure with the data to be written to the file. When you add a
record to the employee file, you must fill in the employee record that is
defined by the structure, emprec. C-ISAM automatically inserts the key into
each index that is associated with your file.

You can add records to the file using either iswrite or iswrcurr. The only
difference between the two calls is that iswrcurr sets the current record to the
record just added, and iswrite does not. Figure 1-8 shows examples of each
call.

Figure 1-8
Adding Records to a C-ISAM File

#include "isam.h"
.
.
.
int fd;

char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

Method Description

Key value Uses an index to access the record.

Current record Is either the last record read or, in certain cases that are
discussed in the following sections, is set by another function.

Record number Identifies the relative position of the record from the
beginning of the data file. (The first data record in the file is
Record Number 1.)
1-22 C-ISAM Programmer’s Manual

Adding Records
/* Program Variables */
long empno;
char lname[21];
char fname[21];
char eaddr[21];
char ecity[21];
.
.
.
/* Store program variables in C-ISAM data record */
stchar (lname,p_lname,20);
stchar (fname,p_fname,20);
stchar (eaddr,p_eaddr,20);
stchar (ecity,p_ecity,20);

stlong(100L,p_empno); /* Employee No. 100 */

if (iswrite(fd,emprec) < 0)
{
printf ("iswrite error %d",iserrno);
.
.
}
else /* current record position not changed */
{
printf("The current record is NOT %d",isrecnum);
.
.
.
stlong(101L,p_empno); /* Employee No. 101 */

if (iswrcurr(fd,emprec) < 0)
{
printf ("iswrcurr error %d",iserrno);
.
.
}
else /* this record is the current record */
{
printf("The current record is now %d",isrecnum);

.

.

.

The file descriptor, fd, is returned when you execute isbuild or when you
open an existing file. Both iswrite and iswrcurr update the Employee
Number index. They also update any other indexes that exist. Both functions
set the global variable isrecnum to the record number of the data record just
added.
How to Use C-ISAM 1-23

Deleting Records
Deleting Records
You can use three functions to remove a record from a C-ISAM file: isdelete,
isdelcurr, or isdelrec. All of these functions remove the corresponding key
value for each existing index.

The isdelete function removes the record that is located by its key in the
unique primary index. Figure 1-9 shows an example that deletes an emprec
record from the file created in Figure 1-7.

Figure 1-9
Deletion Using the Primary Key

The primary index must contain unique keys. (You set k_flags = ISNODUPS
when you build the file.) You must place the key value in the data record in
the positions defined for the primary key. The stlong function places a long
integer in the data record.

The integer that receives the return code is cc. If it is negative, you can check
iserrno to determine the reason. The file descriptor fd is the number of the
file descriptor that identifies the file.

To delete the current record from the file identified by file descriptor fd, use
the following call:

cc = isdelcurr(fd);

The current record is either the last record read, or it is set by some other
function, for example, iswrcurr.

char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

int fd;
int cc;
/* Set up key to delete Employee No. 101 */
stlong(101L,p_empno);

cc = isdelete(fd,emprec);
1-24 C-ISAM Programmer’s Manual

Updating Records
To delete the 100th record from the beginning of the file, or Record Number
100, use the following call:

cc = isdelrec(fd,100);

The first argument is the file descriptor that identifies the file. The second
argument is a long integer that is the record number.

In all cases, C-ISAM sets the record number, isrecnum, to the position that
held the deleted record.

Updating Records
You can use three functions to modify records that exist in the data file:
isrewrite, isrewcurr, or isrewrec.

The isrewrite function changes the record that is located by its key in the
primary index. The primary index must contain unique keys. (Figure 1-7.)
The key value must be placed in the data record in the positions defined for
the primary key. Figure 1-10 shows an example of the isrewrite function call.
How to Use C-ISAM 1-25

Updating Records
You cannot change the primary key. Any other part of the record can change,
and C-ISAM updates any other index that exists if the index key value
changes.

The isrewcurr function rewrites the current record. All key values, including
the primary key, can change and C-ISAM updates all indexes where required,
as shown in the following example:

cc = isrewcurr(fd, emprec);

The isrewrec function rewrites the record that is identified by its record
number. This function also updates all indexes that change, including the
primary index. The following example of a call rewrites the 404th record from
the beginning of the file:

cc = isrewrec(fd,404L,emprec);

.

.
char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

int fd;
int cc;
.
.
.
/* You must either read the emprec record or set up
all of the items in the record */

/* Item to be changed */
stchar("San Francisco",p_ecity,20);

/* Primary key cannot change */
cc = isrewrite(fd,emprec);
.
.
.

Figure 1-10
Using the Primary
Key to Update the

Record
1-26 C-ISAM Programmer’s Manual

Finding Records
Finding Records
Several ways to find records in a C-ISAM file are available. To find a specific
record, for example, the record that belongs to employee 100, you can use the
statements that appear in Figure 1-11.

The function isread uses an index to locate and read the record with
Employee 100 as the key. You must place the key value for the search in the
record at the position that is defined for the key. The third argument is the
mode in which you want to conduct the search. In this case, ISEQUAL
specifies an exact match on the Employee Number.

When isread finds the record with a matching key, it returns the record in the
same structure or variable that you used to pass the key to the function, in
this case emprec. When a record with the desired key is not found, the return
code is negative. A negative code indicates an error. You can use the global
variable iserrno to determine the reason for the error. When the value of
iserrno is ENOREC, a record matching the key cannot be found.

When isread finds a locked record, the current record pointer and the
contents of the global variable isrecnum remain unchanged from the last
isread call. When you want to skip locked records, you can use the
ISSKIPLOCK option of isread. (See Chapter 4 for more information about
locking records. See the description of isread in Chapter 8 for more
information about reading past locked records.)

You can specify one of several modes to search for records. Use ISEQUAL
when you want an exact match. When you successfully call isread, the record
returned is the current record.

.

.

.
stlong(100L,p_empno);
if (isread(fd,emprec,ISEQUAL)<0)

{
if (iserrno == ENOREC)
printf ("record not found0);
.
.
.

Figure 1-11
Using a Key to Find

an Exact Match
How to Use C-ISAM 1-27

Finding Records
You can retrieve records in relation to the current record by changing the
mode. ISNEXT specifies retrieval of the next record in key sequence. ISPREV
causes isread to retrieve the previous record relative to the current record, as
determined by the index. Each call to isread changes the current record to the
one just retrieved.

Two search modes, ISFIRST and ISLAST, specify an absolute position in the
index. ISFIRST reads the record for the first key in the index. ISLAST reads the
last record in the order of the index.

When you want to process the entire C-ISAM file in ascending key order, call
isread with the ISFIRST mode and make subsequent calls using the ISNEXT
mode. When you want to process in descending key order, use the ISLAST
mode to read the last record and the ISPREV mode during subsequent calls to
retrieve the previous record.

When you want to locate a starting position in the file for processing and do
not know the exact key, you can use ISGREAT (greater than the specified key)
or ISGTEQ (greater than or equal to) for the mode parameter. Figure 1-12
shows an example of a search where the program reads the file sequentially
by employee number from the first employee with a number greater than or
equal to 200.

The stlong function places the starting-key value into the data record at the
position defined for the key. The iserrno value of EENDFILE indicates that
you attempted to go beyond the beginning or the end of the file.

/* Read entire file on or after Employee No. 200 */

stlong(200L,p_empno);
if (isread(fd,emprec,ISGTEQ) >= 0)

{
while (iserrno != EENDFILE)
{

.

.

.
cc = isread(fd,emprec,ISNEXT);

}
.
.
.

Figure 1-12
Sequential Search of

Part of the
Employee File in

Employee Number
Order
1-28 C-ISAM Programmer’s Manual

Finding Records
When you use the ISFIRST, ISLAST, ISNEXT, ISPREV, or ISCURR (current record)
mode, you do not have to specify a key value in the data record. These modes
read from predetermined locations, either the beginning or end of file, or in
relation to the current record.

The retrieval modes are summarized in the following list:

Using the isstart Function

The previous retrieval modes use the primary index to locate records because
when you open or build the file, the primary index is the current index. The
current index is the one that you are currently using to locate records. When
your C-ISAM file has other indexes, you can find and read records (with
isread) using the keys of another index after you choose the index with the
isstart function call. The isstart function also allows you to choose the
starting record in the index.

The following call illustrates the use of isstart to choose a current index and
the position in the index where retrieval of records is to start:

cc = isstart(fd,&key,len,emprec,ISGTEQ);

ISEQUAL specifies an exact match on the key value passed to the
function.

ISGREAT specifies the next record with a key value greater than the one
passed to the function.

ISGTEQ specifies either an exact match or, if no exact match exists, the
next greater key value.

ISNEXT specifies the next record, in key sequence, from the current
one.

ISPREV specifies the record immediately preceding the current record,
in the key sequence.

ISCURR specifies the current record, usually the last record read.
ISFIRST specifies the first key in an index.
ISLAST specifies the last key in an index.
How to Use C-ISAM 1-29

Finding Records
The isstart function call sets the starting position in the index using the key
passed in the record, emprec in this case, and the mode. The key value must
be in the same positions as specified in the keydesc structure that defined the
index. You do not need to define the remainder of the record.

The allowable modes are ISEQUAL, ISGREAT, ISGTEQ, ISFIRST, and ISLAST.
They are the same modes that you use with the isread function call.

fd is the file descriptor that is associated with the file during its
creation or opening.

&key is the address of a keydesc key-description structure,
introduced in “Building a C-ISAM File” on page 1-14 and
explained in detail in Chapter 2. A keydesc structure uniquely
identifies a specific index. You call isstart with a pointer to the
structure that identifies the index that you want to use.

len allows you to treat a key as if only part of the key exists when
you set the starting-key position. For example, a key contains
the combination of a 20-byte Last Name field and a 20-byte
First Name field, in last name/first name order. When you
specify a length equal to 20, this instructs C-ISAM to find the
starting key using only the Last Name field, regardless of the
contents of the First Name field. A value of 0 for this argument
is equivalent to specifying the length of the entire key.
Subsequent isread calls use the entire key.

emprec is used to pass the key value for the ISEQUAL, ISGREAT, and
ISGTEQ modes. You use this variable or structure exactly as
you use it with isread. The isstart function, however, does not
return a record.

ISGTEQ is the mode used to locate the starting record in this example.
The isstart function call positions the index at the first record
that is equal to or greater than the key in emprec. To read this
record, call isread with the ISCURR (current record) mode.
1-30 C-ISAM Programmer’s Manual

Finding Records
Finding Records by Record Number

To find records using their relative position in the file, use isstart to specify
access in record-number order. Figure 1-13 shows an example of code that
sets the access mode of a C-ISAM file to retrieve records by record number.

You set this retrieval mode by calling the isstart function with a pointer to a
keydesc structure where k_nparts is set equal to zero. The number that you
place in the global variable isrecnum determines the starting position in the
file.

#include <isam.h>
struct keydesc pkey;
.
.
.
/* Read record number 500 */
pkey.k_nparts = 0; /* choose physical order */

isrecnum = 500L; /* set record number to first */
/* record to be processed */

cc = isstart(fd,&pkey,0,emprec,ISEQUAL);
if (cc >= 0)

if (isread(fd,emprec,ISCURR)<0)
{
printf ("read error %d\n",iserrno);
.
.
.
}

else
.
.
.

Figure 1-13
Finding Records in a

C-ISAM File
How to Use C-ISAM 1-31

Opening and Closing Files
Opening and Closing Files
When you create a C-ISAM file using isbuild, the file remains open and
available for use. When you finish using the file, close it with isclose as
shown in the following example:

cc = isclose(fd);

In this example, fd is the file descriptor that was returned when isbuild
created the file.

When you close a C-ISAM file and want to use it again, you must open it with
isopen. The following statement opens the file created in Figure 1-7.

fd = isopen("employee",ISINOUT+ISMANULOCK);

Figure 1-14 shows all the allowable access modes.

Figure 1-14
Access Modes for isopen and isbuild

employee is the name of the file that you are opening.
fd is a file descriptor that identifies the file employee. When

isopen fails, fd contains a negative value.
ISINOUT is the mode that specifies the access and the locking. In this

example, read-write access is specified.
ISMANULOCK specifies either no locking or manual locking. Use

ISMANULOCK if you are not concerned about conflicts
between programs that access the same file or records
simultaneously, or if you want to perform locking under
the control of your program.

Mode Description

ISINPUT File is read-only

ISOUTPUT File is write-only

ISINOUT File is read or write
1-32 C-ISAM Programmer’s Manual

Opening a File in Exclusive Mode
Opening a File in Exclusive Mode
Certain functions require that the file be open in exclusive mode so that only
your program can access the file. You can do this by specifying the exclusive
lock option, ISEXCLLOCK, along with the access mode, as the following
example shows:

fd = isopen("employee",ISEXCLLOCK+ISINOUT);

Refer to Chapter 4 for a discussion of locking options.

Opening a Variable-Length File
When you open a file that uses variable-length records, specify ISVARLEN as
part of the mode parameter. When you open a file with ISVARLEN, the global
variable isreclen is set to the maximum length of the record. When you do
not specify ISVARLEN with variable-length records, C-ISAM tries to open the
file as though it contains fixed-length records. See the complete description
of “isopen” on page 8-44.

When you want to open a file but you do not know if it contains variable- or
fixed-length records, open it one way and if it fails, open it the other way. In
Figure 1-15, the file employee is first opened as a fixed-length record file.
When that isopen fails, the mode is reset to include ISVARLEN and isopen is
called again.
How to Use C-ISAM 1-33

Maximum Number of Open Files
Maximum Number of Open Files
You can have up to 255 C-ISAM files open at any one time. An operating-
system limit on the number of open files, however, might impose a lower
limit.

Closing Fixed- and Variable-Length Files
You can close your C-ISAM file explicitly with a call to isclose. You can also
close them implicitly with the iscleanup function. You can call iscleanup at
the end of your program (or at any time) to close all of the files opened by the
program.

varlen = FALSE; /* Flag indicating if file is VARLEN */
mode = ISINOUT + ISMANULOCK;
/* Try opening file as FIXLEN */
fd = isopen(employee, mode);
if (fd < 0)

{
mode += ISVARLEN;
/*Try opening file as VARLEN */
fd = isopen(employee, mode);

if (fd < 0)
{
printf ("isopen failed");/* Open really failed */
exit(-1);
}

varlen = TRUE;
maxlen = isreclen;
}

Figure 1-15
Opening a File with
Unknown Contents
1-34 C-ISAM Programmer’s Manual

Compiling Your C-ISAM Program
Compiling Your C-ISAM Program
C-ISAM programs must include the isam.h header file. When your program
uses the DECIMALTYPE data type (see Chapter 3), you must also include the
decimal.h header file. (Refer to Appendix F for a listing of these header files.)

You compile the program using your C language compiler and the C-ISAM
library. Consult your system administrator for the location of the files
necessary to compile programs that use C-ISAM functions. (Appendix E
identifies the files that are necessary to compile your programs.)

To compile your C-ISAM program, use a command line like the following
example. This example assumes that you have used the default directories
when you installed the C-ISAM files.

cc bld_file.c -lisam -o bld_file

When you use the lint utility, specify the C-ISAM library as shown in the
following example:

lint bld_file.c -lisam
How to Use C-ISAM 1-35

Running Your C-ISAM Program
Running Your C-ISAM Program
Before you run a C-ISAM program, set the INFORMIXDIR environment
variable to the directory where you have installed C-ISAM. If you do not set
INFORMIXDIR, your program cannot access the GLS locale files that it uses
for locale-sensitive processing. For a full description of the GLS environment,
see Appendix B. ♦

Setting the INFORMIXDIR Environment Variable
The INFORMIXDIR environment variable specifies the directory that
contains C-ISAM product files.

The installation script that you use to install C-ISAM places the product files
in either the default directory or a directory that you specify.

If you choose the default installation directory to install C-ISAM, set the
INFORMIXDIR environment variable to /usr before you run a program. The
following setenv command sets INFORMIXDIR to match the default
installation directory:

setenv INFORMIXDIR /usr

If you choose a custom installation directory to install C-ISAM, make sure that
INFORMIXDIR is set to that directory.

GLS

setenv INFORMIXDIR pathname

Element Purpose Key Considerations
pathname Specifies the pathname of the directory where

C-ISAM product files are located.
None.
1-36 C-ISAM Programmer’s Manual

C-ISAM Data-File Structure
C-ISAM Data-File Structure
The file that contains the data records has the filename extension .dat. The
data file contains a series of fixed-length records. You define the record length
when you create the file. The records in this file contain only data. The .idx
file contains all other information about the C-ISAM file.

You can use the isindexinfo function call to display the characteristics of a
C-ISAM file and its indexes. Figure 1-16 shows the code to print out the data-
record length and the number of records in the file.

The dictinfo structure is defined in isam.h. For further examples using this
structure and the isindexinfo function, see “Determining Index Structures”
on page 2-12.

The data record has a 1-byte terminator that is transparent to your program.
Do not include this byte when you determine the length of the record. This
terminator is either a new line (octal 12) or a null (octal 0). The null character
serves as a delete flag for the record. C-ISAM reuses space from deleted
records.

include <isam.h>
struct dictinfo info;
fd = isopen ("employee",ISINPUT+ISEXCLLOCK);
isindexinfo (fd,&info,0);
printf ("record size in bytes=%d",info.di_recsize);
printf ("number of records in the file=%d",

info.di_nrecords);
isclose (fd);
exit (0);

Figure 1-16
Determining Data-
File Characteristics
How to Use C-ISAM 1-37

Summary
Summary
Each C-ISAM file consists of two operating-system files, one for data and
another for indexes. This chapter explains the following tasks:

■ Create a file with isbuild.

■ Add records to a file using iswrite or iswrcurr.

■ Remove records from a file using isdelete, isdelcurr, or isdelrec.

■ Update existing records using isrewrite, isrewcurr, or isrewrec.

■ Find records or retrieve records, or both, using isread and isstart.

■ Open and close files using isopen and isclose.

■ Compile your program containing C-ISAM functions.

■ Run a C-ISAM program.

■ Determine the record length and number of records in a C-ISAM file.
1-38 C-ISAM Programmer’s Manual

2
Chapter
Indexing
Defining an Index 2-3

Key Structures . 2-6

Manipulating Indexes 2-8
Adding Indexes 2-9
Deleting Indexes 2-10
Defining Record-Number Sequence. 2-11
Determining Index Structures 2-12

B+ Tree Organization 2-14
Searching for a Record 2-17
Adding Keys 2-18
Removing Keys. 2-22

Index-File Structure 2-23

Performance Considerations 2-24
Key Size and Tree Height 2-24
Key Compression 2-26

Leading-Character Compression 2-27
Trailing-Space Compression 2-28
Duplicate-Key and Maximum Compression 2-29

Multiple Indexes 2-30
Localized Indexes 2-31

Summary . 2-31

2-2 C-IS
AM Programmer’s Manual

Indexing allows quick access to specific records in the C-ISAM file and
creates an order for sequential processing of the file. This chapter discusses
C-ISAM indexes and covers the following topics:

■ How to define an index

■ How to add and delete indexes

■ How indexes are implemented

■ What occurs during index operations

■ What you can do to improve index performance

Defining an Index
Chapter 1, “How to Use C-ISAM,” introduced you to C-ISAM files and keys,
and showed you how to create a C-ISAM file using isbuild. This chapter
continues with examples using the employee file. Figure 2-1 and Figure 2-2
show the layout of records in this file.

When you create a file, you also define an index for access to specific records
and for sequential processing of the C-ISAM file in the key order.

You can define indexes only for the fixed-length portion of a record. When
you define indexes for the fixed-length portion of variable-length records,
you follow the same procedure as for standard fixed-length records.
Indexing 2-3

Defining an Index
Figure 2-1
Employee Record

Description Type Length Pointer
Offset in
Record

Employee Number Long 4 p_empno 0

Last Name Char 20 p_lname 4

First Name Char 20 p_fname 24

Address Char 20 p_eaddr 44

City Char 20 p_ecity 64

Total length in bytes 84

Figure 2-2
Employee Record

Illustration

84 85
80706050403020100

64

44

24

4
additional byte

p_ecity

p_eaddr

p_fname

p_lname
p_empno

TOTAL LENGTH = 85 BYTES
2-4 C-ISAM Programmer’s Manual

Defining an Index
Figure 2-3 shows the code used to build this file.

To build the employee file with Employee Number as the primary key, you
must define the appropriate values in the keydesc and corresponding
keypart structures. (The primary key, by definition, is the key that you define
when you build the file.)

The Employee Number index is defined by a key description, which is an
instance of the structure keydesc. Figure 2-4 shows this structure. You must
use a separate instance of a key-description structure to define each index.
The keydesc structure variables define where the key occurs in the record.

This structure is also used to identify each index. For example, when you
want to change indexes using isstart, you must specify the keydesc structure
that defines that index. (See “Using the isstart Function” on page 1-29).

#include <isam.h>
char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;
.
.
.
struct keydesc.key;.

key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = 4;
key.k_part[0].kp_type = LONGTYPE;
.
.
.
if ((fd=isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK)) < 0)

{
printf ("isbuild error %d",iserrno);
exit (1);
}

.

.

.

Figure 2-3
Creating a C-ISAM

File
Indexing 2-5

Key Structures
The index shown in Figure 2-3 does not allow duplicate employee numbers.
The key consists of only one field, Employee Number, so that the index has
only one part. Thus, k_flags is set equal to ISNODUPS, and k_nparts is set
equal to 1.

The keypart structure is nested in keydesc. You must have an entry for every
part of the key that you define. The maximum number of parts that a key can
contain is specified by the parameter NPARTS. This parameter is set in isam.h
and is usually eight; you cannot change it, but it might be different for
different operating systems.

Because C-ISAM does not know about fields in a record, it cannot know what
fields, or parts thereof, make up a key. The purpose of each k_part is to define
a part of the key. All the parts taken together define the entire key.

The Employee Number index has only one part; therefore you define only the
first element of the keypart structure, k_part[0].

The Employee Number field starts at the beginning of the record, at offset
zero. It is a long integer. You set k_part[0].kp_start to 0, because this part of
the key starts at offset zero from the beginning of the record. You set
k_part[0].kp_leng to LONGSIZE because this is the length of the data type in
bytes. You set k_part[0].kp_type to LONGTYPE because this defines the data
type. (Chapter 3, “Data Types,” describes the possible data types and their
definitions.)

Key Structures
When you define an index, you define the values that are placed into the key
structure. You must use this structure whenever you perform an operation on
an index. These operations include building the file, which creates the
primary index; changing the index that is used to access records; and adding
or deleting indexes.

The C language structures keydesc and keypart define an index to C-ISAM
functions. These structures are shown in Figure 2-4 and defined in the isam.h
file.
2-6 C-ISAM Programmer’s Manual

Key Structures
The variables within these structures are described as shown in the following
list:

“Key Compression” on page 2-26 describes compression techniques.

When you use two or more flags, add them together, as shown in the
following example:

key.k_flags = ISDUPS+DCOMPRESS;

struct keydesc
{
short k_flags; /* describes compression */
short k_nparts; /* number of parts in this key */
struct keypart

k_part[NPARTS]; /* each key part */
};

struct keypart
{
short kp_start; /* starting byte of key part */
short kp_leng; /* length in bytes of key part */
short kp_type; /* type of key part */
};

Figure 2-4
Key-Description

Structures

k_flags sets one or more of the following flags that you can use to
define the index:
ISNODUPS defines an index that requires unique keys.
ISDUPS defines an index that allows duplicate

keys.
DCOMPRESS specifies compression of duplicates.
LCOMPRESS specifies compression of leading

characters.
TCOMPRESS specifies compression of trailing

characters.
COMPRESS specifies maximum compression.
Indexing 2-7

Manipulating Indexes
This example specifies that the index can contain duplicate key values and
that they are compressed.

You can add IDESC to the data type parameter to put this part of the key in
descending order. To put the Employee Number index in Figure 2-3 into
descending order, change kp_type as shown in the following example:

key.k_part[0].kp_type = LONGTYPE+ISDESC;

Manipulating Indexes
When you create a C-ISAM file, at most one index exists, the primary index.
You cannot remove this index until you erase the C-ISAM file. To add the
Name index or any other index, you must use the function isaddindex. To
delete a nonprimary index, you use the function isdelindex.

C-ISAM allows considerable flexibility for adding and deleting indexes. An
operation on an index has no effect on the data records nor on any other
indexes that exist. You must open the file exclusively, however, so that no
other program can access the file while you are adding or deleting an index.
Exclusive access is necessary to prevent conflicts that could arise when
another program adds, deletes, or updates records while the index is being
added or deleted.

k_nparts specifies the number of parts that the key contains, which
ranges between 0 and NPARTS. The isam.h file defines
NPARTS, which is the maximum number of parts that a key
can contain. (k_nparts equal to 0 defines a special case that is
explained in “Defining Record-Number Sequence” on
page 2-11.) The maximum key size for all parts is 120 bytes

k_part is a keypart structure that defines each part of the key. Each
keypart element is composed of the following three items:
kp_start specifies the starting byte in the data record

for this part of the key.
kp_leng is the length of this part in bytes.
kp_type is one of the data types described in

Chapter 3.
2-8 C-ISAM Programmer’s Manual

Adding Indexes
Adding Indexes
You can add indexes at any time; the file does not have to be empty for you
to add an index. The larger the file, the longer it takes to add the index
because C-ISAM must add a key to the index file for each data record.

Figure 2-3 shows the definition of a key structure for building the primary
index. The steps to add another index are similar. You add an index by
specifying another key description and using it in a call to isaddindex.
Chapter 1 describes a Name index consisting of the first 10 characters of the
Last Name and the first character of the First Name of the employee file.
Figure 2-5 shows a keydesc structure for this index and a call to isaddindex
to create the index.

This index has two parts, one for each field: Last Name and First Name. It
allows duplicate keys. The first part of the index, identified by k_part[0], sets
up the Last Name field portion of the key. The second part, k_part[1], defines
the First Name field portion of the key.

The starting positions for the name fields are the offsets from the beginning
of the record, starting from position 0. (See Figure 2-1 on page 2-4.) The Last
Name begins at offset 4 in the record and the First Name begins at offset 24.
Put these offsets in the kp_start variables.

#include <isam.h>
struct keydesc nkey;
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)

{
if (isaddindex(fd,&nkey) < 0)

{
printf ("isaddindex error %d",iserrno);
exit (1);
}

}
else

Figure 2-5
Adding an Index to a

C-ISAM File
Indexing 2-9

Deleting Indexes
Both of the fields are data type char; therefore the kp_type for each one is
CHARTYPE. (See Chapter 3 for information on CHARTYPE.) Each part is in
ascending key order because the ISDESC parameter is not added to either
kp_type.

The lengths that you assign to the nkey.k_part[0].kp_leng and
nkey.k_part[1].kp_leng attributes are the size of that part of the key, and not
the size of the field itself. In both cases, the size of each part of the key is less
than the whole field: 10 characters of the 20-character Last Name field and
only the first character of the 20 characters of the First Name field.

You must open the file for exclusive use with ISEXCLLOCK before you call the
isaddindex function. You can do this by calling the isopen function as shown
in Figure 2-5.

For information about adding an index that uses a specific collation
sequence, see “Creating Localized Indexes” on page B-8. ♦

Deleting Indexes
To delete indexes, define the key-description structure for the index that you
want to delete and call the function isdelindex. You can delete any index
except the primary index.

Before you can delete an index, you must first open the file in exclusive mode
by passing the ISEXCLLOCK parameter to isopen. You must specify the same
key-description structures that you used to create the index. Figure 2-6 shows
the code to delete the index created in Figure 2-5.

GLS
2-10 C-ISAM Programmer’s Manual

Defining Record-Number Sequence
Defining Record-Number Sequence
You might want to find records based on the relative location of the records
from the beginning of the file. As explained in “Finding Records by Record
Number” on page 1-31, you do this by setting k_nparts equal to 0 in the
keydesc structure and then calling isstart.

You can specify that the primary index be in record number sequence. In this
case, you use the same keydesc structure as you did for isstart: set k_nparts
equal to 0. This setting means that no primary key exists, and whenever you
open the file, the record number defines the key order. When the file has other
indexes, you can change the index by calling isstart with the appropriate
keydesc structure.

You have no reason to call isaddindex (nor isdelindex) with a keydesc
structure with k_nparts equal to 0. You can always process records using the
record number, regardless of the indexes that exist.

#include <isam.h>

struct keydesc nkey;
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;

if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
{
if (isdelindex(fd,&nkey) < 0)

{
printf ("isdelindex error %d",iserrno);
exit (1);
}

}
else

Figure 2-6
Deleting an Index

from a C-ISAM File
Indexing 2-11

Determining Index Structures
Determining Index Structures
You can find out which indexes exist in a C-ISAM file and determine their
structures by using the isindexinfo function call. This call has two forms.

You can obtain general information about the file by specifying a dictinfo
structure and setting the third argument, the index number, equal to 0.
C-ISAM returns the information to this structure:

struct dictinfo info;
isindexinfo (fd,&info,0);

The dictinfo structure is defined in “The isam.h Header File” on page F-1.
Figure 2-7 shows the structure.

The variables of this structure are shown in the following list:

di_nkeys If the file supports variable-length records, the significant
bit is set. The remaining bits indicate the number of
indexes defined for the file.

di_recsize This field contains the maximum record size in bytes.

di_idxsize This field contains the maximum number of bytes in an
index node. (Nodes are explained in “B+ Tree
Organization” on page 2-14.)

di_nrecords This field contains the number of data records in the file.

The isindexinfo function also sets the global variable isreclen (defined in
isam.h) to the minimum size of the record in bytes.

struct dictinfo
{
short di_nkeys;
short di_recsize;
short di_idxsize;
long di_nrecords;
};

Figure 2-7
Dictionary

Information
Structure
2-12 C-ISAM Programmer’s Manual

Determining Index Structures
To determine the index characteristics, you must use its index number. The
index number of the primary key is 1. The index number of other indexes can
change as you add or delete indexes. Figure 2-8 shows how to obtain the
characteristics of all the indexes in the employee file.

When the program calls isindexinfo for the first time, with the third
argument equal to 0, information about the C-ISAM file is returned in a
dictinfo structure (the second argument). The di_nkeys variable contains the
number of indexes that are defined. The program loops, using this variable
to determine the index number, and returns the index characteristics for each
existing index in the keydesc structure.

You should use the technique shown in Figure 2-8 to find a specific index
within a C-ISAM file because the index number might change. C-ISAM
functions use a key description, not an index number, to identify the index.

For information about using the islanginfo function to determine the locale
that is associated with a localized index, see “Determining Index-Collation
Sequence” on page B-11. ♦

#include <isam.h>
struct dictinfo info;
struct keydesc kdesc;
.
.
.
/* get number of keys */
isindexinfo (fd,&info,0);

while (info.di_nkeys > 0)
{

/* get structure and decrement index number */
isindexinfo (fd,&kdesc,info.di_nkeys--);
.
.
.
}

.

.

.

Figure 2-8
Determining the Key

Structure for All
Keys in an Index

GLS
Indexing 2-13

B+ Tree Organization
B+ Tree Organization
C-ISAM maintains indexes so that programs can find records quickly, and so
that it can add, delete, or modify the index keys with minimum impact on the
performance of programs that use the file. Programs that use C-ISAM files
know only which indexes exist and can be used. They know nothing about
the actual organization of indexes nor how this organization is maintained
and used. Read this section if you are interested in how the access method is
implemented. You do not need this information to use C-ISAM functions.

C-ISAM indexes are organized in B+ trees. A B+ tree is a set of nodes that
contain keys and pointers that are arranged in a hierarchy. A node is an
ordered group of key values having a fixed number of elements. As shown in
Figure 2-9, a node can contain space reserved for key values that have no
value assigned.

A key is a value from the data record; for example, an employee number. The
pointer points either to another node in the tree or to a data record. At the top
of the hierarchy is the root node.

Figure 2-9 illustrates this hierarchy for the Employee Number index. The
numbers in the nodes are the Employee Number keys that are also found in
the data records. The arrows are the pointers.
2-14 C-ISAM Programmer’s Manual

B+ Tree Organization
Figure 2-9
B+ Tree

Organization

Level 2 Level 1 Level 0

Root

Pointers at Level 0
are to Data Records

21

18

5

4

70

89

143

156

180

209

292

300

378

436

476

485

24

44

55
89

55

21

Greater Than

487

490

505

378

292

180

Greater Than

485

Greater Than

89
Indexing 2-15

B+ Tree Organization
C-ISAM logically organizes the nodes into levels. Level 0 contains a pointer to
each data record. At levels higher than zero, the pointer for each key points
to a node containing keys that are less than or equal to the key at the higher
level.

At levels higher than zero, a node might have an additional pointer that is not
associated with a specific key. If it exists, it points to a node that contains keys
that are greater than the largest key in that higher level node. A node always
has at least as many pointers as it has keys.

Figure 2-9 on page 2-15 only shows space for four keys in each node. In
reality, C-ISAM puts as many keys as possible in each node. The maximum
number of keys in different nodes might vary because C-ISAM allows keys to
vary in length.

Consider the root node in Figure 2-9. It has only one key with the value 89.
The root contains two pointers. One points to a node that contains keys with
values less than or equal to 89. The other pointer is directed to a node that
contains keys with values greater than the values in this node, in this case,
values greater than 89.

Levels indicate the distance, in nodes, between a node and the pointer to an
actual data record. In Figure 2-9, the root node is at Level 2. For nonzero
levels, pointers are directed to index nodes at a lower level.

The pointers at Level 0 point to records in the data file; they do not point to
nodes in the index file. Every key is represented at Level 0, whether or not it
is represented at a higher level.
2-16 C-ISAM Programmer’s Manual

Searching for a Record
Searching for a Record
To access a specific record in a C-ISAM file, a function starts by comparing the
search value with the keys in the root node. The search value is the key that
is passed to the function. The function follows the appropriate pointers to the
Level 0 node. At Level 0, if a key matches the search value, the key pointer
points to the data record. If no match occurs at Level 0, the data record does
not exist.

For example, take a search value equal to 44, and use Figure 2-9 on page 2-15
to trace the path a function takes to find the record. The function examines
the root first and then follows the less-than or equal-to pointer for key 89,
because 44 is less than 89. Next, the function examines the node on Level 1
that contains keys 21, 55, and 89. The function follows the pointer for key 55,
because 44 is less than 55 but greater than 21. The Level 0 node contains keys
24, 44, and 55. Because a match occurs at Level 0, the function finds the data
record by following the pointer for key 44.

Repeating the process for search value 475, the function examines the root
and follows the greater-than pointer for this node because 475 is greater than
89, the largest key in the node. The node at Level 1 contains keys 180, 292, 378,
and 485. The function follows the less-than-or-equal-to pointer from key 485
because 475 is less than 485 but greater than 378. At Level 0 the keys are 436,
476, and 485. Because no key matches the search value 475, a data record does
not exist.
Indexing 2-17

Adding Keys
Adding Keys
When you create the C-ISAM file, the index is empty. Figure 2-10 shows a tree
that can hold only four keys per node. The first four keys, 18, 143, 414, and 89
are added to the root node, as shown in Figure 2-10. Each key entry points to
a data record because the root node is at Level 0.

When the next key is added, with a value of 44, the node is already full and
splits to accommodate the new key.

C-ISAM splits a node by selecting the median from a list that is composed of
all of the values in the node plus the value of the key that is being added.
C-ISAM puts approximately half the entries into a new node and keeps half
the entries in the original node. These two nodes are still in Level 0 after the
split, and their keys still point to data records. C-ISAM promotes the middle
value of the keys, 89 in this case, to the next higher level.

Figure 2-10
Growth of a B+ Tree

89

44

143

414

18

89

89

Greater Than

Root

Level 0Level 1

Root

Addition Causes a Split

Level 0Level 1

143

414
2-18 C-ISAM Programmer’s Manual

Adding Keys
Because no higher level node exists to receive the promoted value, C-ISAM
creates a new root. The new root node is on Level 1, and the pointer for key
89 points to the original node. (The original node now contains the keys that
are less than or equal to 89.) C-ISAM forms another pointer directed towards
the new Level 0 node. This Level 0 node contains keys that are greater than
the highest key value in the next higher level node, in this case 89 in the Level
1 root.

B+ trees grow towards the root from the lowest level, Level 0. Attempting to
add a key into a full node forces a split into two nodes and promotion of the
middle key value into a node at a higher level. The promotion of a key to the
next higher level can also cause a split in the higher level node. When the full
node at this higher level is the root, it also splits. When the root splits, the tree
grows by one level and a new root node is created.

When a split occurs, approximately half of the entries remain in the original
node, and half are transferred to a new node. This process leaves half of each
node available to accommodate additional entries. This strategy is useful if
the new key values have a random distribution.

When records are added in sequential order, this splitting strategy creates
half-full nodes that never receive other keys. This means that the effective
number of keys per node is approximately half the capacity, and aside from
taking more space to store all of the keys, the tree requires more levels to
index the same number of data records.
Indexing 2-19

Adding Keys
Figure 2-11 shows what happens if you add the key values 415 through 426
sequentially to the tree in Figure 2-10, using the splitting algorithm for the
random case.

To avoid this problem, C-ISAM uses a different strategy. When the value that
causes the split is greater than the other keys in the node, it is put into a node
by itself during the split.

Figure 2-11
Wasted Space in B+

Trees
Level 2 Level 1 Level 0

143

414

416

417

418

419

420

425

426

18

44

89

418

415

89

Greater Than

424

421

Greater Than

Greater Than

418

415

421

422

423

424

Space Cannot Be Used
2-20 C-ISAM Programmer’s Manual

Adding Keys
Figure 2-12 shows a split caused by adding key values 415, 416, and 417 to
the tree in Figure 2-10.

Figure 2-12
Efficient Growth of

B+ Trees

89

44

18

89

Greater Than

Level 0Level 1

143

414

417

415

416416
Indexing 2-21

Removing Keys
Figure 2-13 shows the effect of this strategy when key values 415 through 426
are added to this tree.

Removing Keys
When you delete a record, C-ISAM removes the key from the index. When all
keys in a node are removed, the node becomes free. C-ISAM maintains a list
of free nodes (see the following section), and free nodes are reused. C-ISAM
indexes do not require reorganization.

Figure 2-13
Efficient Sequential

Addition of Keys

Level 1 Level 0

143

414

417

418

419

421

422

18

44

89

415

423

425

426

Greater Than

89

416

420

424

416

420

424
2-22 C-ISAM Programmer’s Manual

Index-File Structure
Index-File Structure
C-ISAM stores the index nodes and control information in operating-system
files with the .idx extension. The data file stores only data records.

The index file always contains four kinds of nodes:

■ A dictionary node

■ Key-description nodes

■ Index nodes that contain keys and pointers

■ List nodes

Usually a one-to-one correspondence exists between nodes and the unit of
transfer between the disk and memory. The unit of transfer is called a block.
In this discussion, blocks and nodes are interchangeable. Appendix D
documents the index-file nodes.

Each index file has one dictionary block. This block contains pointers to the
index nodes, as well as other information about the C-ISAM file. Figure 2-14
shows the relationship between the nodes in the index file.

Figure 2-14
Index-File Structure

Dictionary Block

Free Block List

Free Block List

Index Description Root Block

Index Block

Index Block

Index Block

Index Block

Root BlockIndex Description
Indexing 2-23

Performance Considerations
The dictionary block also contains a pointer to the first free-list block for the
.idx file. Free-list blocks are chained together. The free list holds the block
numbers that are unused within the file.

When an index block becomes free, C-ISAM places the block number on the
free list. When a new block is needed, the free list is examined first. The block
number of an available block is removed from the list and the block itself is
reused. C-ISAM uses all free blocks before it extends the length of the file.

Performance Considerations
The choice of key size, the use of compression techniques, the number of
indexes, and whether an index has an NCHARTYPE key affect the
performance of programs that use C-ISAM files. This section examines several
methods for improving performance.

Key Size and Tree Height
The traversal from one node to another typically requires one disk access.
The node size is usually a multiple of the block size of a disk drive, often a
one-to-one correspondence. Figure 2-9 on page 2-15 shows a diagram
representing a B+ tree index. The arrows point to the next node (or block) that
must be accessed to find a record. See “B+ Tree Organization” on page 2-14
for a complete description.

In Figure 2-9, C-ISAM requires a maximum of four disk accesses to retrieve
the data record, three to traverse the index, and one to fetch the data record.
This is a maximum because both the operating system and C-ISAM buffer
disk blocks in memory, so that a disk access is not required to follow each
pointer.

The maximum number of keys that can reside at Level 0 is determined by the
number of keys per node and the tree height. The number of levels
determines the tree height. When n is the number of keys per node and h is
the number of levels, excluding Level 0, the maximum number of keys is
equal to (n+1)h(n). In the index shown in Figure 2-9, the maximum is (4+1)2

(4) or 100.
2-24 C-ISAM Programmer’s Manual

Key Size and Tree Height
C-ISAM seldom achieves maximum packing of keys into nodes because
additions split nodes into half-full nodes. Deletions also reduce the number
of keys in a node. (In most cases, it is also undesirable to have 100 percent
packing of nodes because, if that were possible, every record added would
cause a split.) Seventy-five percent of the maximum is a more desirable
packing density.

As more records are added, the height of the tree grows. When the tree in
Figure 2-9 on page 2-15 grows another level, the file might hold 158 records,
or [(.75)(4+1)]3 (.75)(4).

C-ISAM puts as many keys as possible into a node. More realistically, because
the keys in Figure 2-9 are short integers requiring 6 bytes for key and pointer,
at least 169 keys can fit into a 1,024 byte node (along with other required
information). In two levels, C-ISAM can index about [(.75)(169+1)]2(.75)(169)
or more than 2 million keys.

C-ISAM places as many keys as possible into a single node to reduce the tree
height and, consequently, to reduce the number of disk accesses required
during a function call. The smaller the key size, the greater the number of
records that can be placed into a node. Thus, more records can be accessed in
fewer disk operations.

Consider limiting the key size of your indexes to the minimum that allows
you to access the records, without creating too much ambiguity. For example,
you can define the Name index of the employee file with the entire Last
Name and First Name fields of the key. The key size, in that case, is 40 bytes.
Alternatively, if you take only 10 characters of the Last Name field and one
character of the First Name field, the key size is 11 bytes.

The second choice introduces ambiguity wherever employees have the same
last name, or different last names that exactly match on the first 10 characters
and the same first initial. When this ambiguity is acceptable, choosing the
index with the shorter key significantly increases the number of keys that can
be placed in a node.
Indexing 2-25

Key Compression
Key Compression
C-ISAM can compress key values held in indexes. Reducing the key size
generally enhances performance. This improvement is more dramatic if the
key is more than eight characters long or if duplicate values and leading
duplicate characters, trailing blanks, or both, make up a large percentage of
the keys. You specify key compression by adding one or more of the
following parameters to the k_flags element of the keydesc structure:

You can use any combination of compression techniques. For example, to
specify duplicate value and trailing-blank compression, set k_flags equal to
DCOMPRESS + TCOMPRESS + ISDUPS. (It does not make sense to specify
duplicate compression unless you define the index to allow duplicates.)
COMPRESS specifies that all three techniques are used.

Key compression creates some processing overhead. Generally, compression
of noncharacter keys or keys that are 8 bytes or less does not have a positive
effect on the performance of programs using C-ISAM files.

LCOMPRESS specifies removal of leading duplicate characters from the
keys in an index.

TCOMPRESS specifies removal of trailing spaces from keys.
DCOMPRESS specifies removal of duplicate key entries from the index.
2-26 C-ISAM Programmer’s Manual

Key Compression
Leading-Character Compression

Leading-character compression reduces the key size by removing all leading
characters that are identical with the previous key in the index. The number
of bytes that are compressed out of the key is recorded at the beginning of the
key.

Figure 2-15 shows an example of this compression technique. The 1-byte
overhead required to record the number of leading characters compressed is
shown as a pound sign (#). The dots (.) represent spaces. When this
illustration is representative of the entire index, the compression results in a
5.5 percent savings.

Key Compressed with Bytes
Value LCOMPRESS Saved

Abbot............... #Abbot............... -1
Able................ #le................ 1
Acre................ #cre................ 0
Albert.............. #lbert.............. 0
Albertson........... #son........... 5
Morgan.............. #Morgan.............. -1
McBride............. #cBride............. 0
McCloud............. #Cloud............. 1
Richards............ #Richards............ -1
Richardson.......... #on.......... 7

200 bytes 189 bytes 11 bytes

Savings = 5.5 %

Figure 2-15
Leading-Character

Compression,
k_flags=LCOMPRESS
Indexing 2-27

Key Compression
Trailing-Space Compression

This compression technique removes trailing blanks from each key. The
number of characters compressed is stored in 1 byte at the beginning of the
key.

1fcFigure 2-16 shows an example of this compression technique combined
with leading-character compression (k_flags= TCOMPRESS + LCOMPRESS).
The 1-byte overhead required to record the number of trailing spaces is
shown as a pound sign (#). This byte is in addition to the byte required in
the key entry to hold the number of leading characters that are compressed.
The dots (.) represent spaces. When this illustration is representative of the
entire index, the compression results in a 67.5 percent savings.

Compressed with
Key LCOMPRESS + Bytes
Value TCOMPRESS Saved

Abbot............... ##Abbot 13
Able................ ##le 16
Acre................ ##cre 15
Albert.............. ##lbert 13
Albertson........... ##son 15
Morgan.............. ##Morgan 12
McBride............. ##cBride 12
McCloud............. ##Cloud 13
Richards............ ##Richards 10
Richardson.......... ##on 16

200 bytes 65 bytes 135 bytes

Savings = 67.5 %

Figure 2-16
Leading-Character
and Trailing-Blank

Compression
2-28 C-ISAM Programmer’s Manual

Key Compression
Duplicate-Key and Maximum Compression

Duplicate compression (DCOMPRESS) removes duplicate keys from the
index. A 2-byte duplicate flag replaces the key.

COMPRESS is a shorthand way of specifying maximum compression using
duplicate-key compression, leading-character compression, and trailing-
blank compression.

Figure 2-17 shows an example using COMPRESS. Two overhead bytes are
associated with each nonduplicate key: one to hold the number of leading
characters that are compressed and the other to hold the number of trailing
blanks that are compressed. This overhead is represented by two pound signs
(##). The dots (.) represent trailing spaces. Two bytes are required for a
duplicate-key value. When this illustration is representative of the entire
index, the compression results in a 75 percent savings.

Compressed with
LCOMPRESS +

Key TCOMPRESS + Bytes
Value DCOMPRESS Saved

Abbot............... ##Abbot 13
Abbot............... (duplicate) 18
Abbot............... (duplicate) 18
Able................ ##le 16
Able................ (duplicate) 18
Acre................ ##cre 15
Albert.............. ##lbert 13
Albertson........... ##son 15
Albertson........... (duplicate) 18
Morgan.............. ##Morgan 12
McBride............. ##cBride 12
McCloud............. ##Cloud 13
Richards............ ##Richards 10
Richardson.......... ##on 16
Richardson.......... (duplicate) 18

300 bytes 75 bytes 225 bytes

Savings = 75 %

Figure 2-17
Maximum

Compression
Indexing 2-29

Multiple Indexes
Multiple Indexes
Indexing allows fast access to specific records in a C-ISAM file. Changes to an
index, however, require C-ISAM to update the index. Maintenance of the
index imposes an overhead on the use of the file.

Adding a record to the C-ISAM file illustrated in Figure 2-9 on page 2-15
requires a maximum of five disk operations: three to read the index to
determine that the record did not exist, one write operation to update the
index, and another operation to add the record to the data file. When two
indexes are involved the number of disk operations, in the worst case, can
reach nine: four for each index and one for the data record itself.

The root level of the index and the level that the root points to are often in
memory because the operating-system buffers the most-recently used index
blocks. Therefore, two fewer disk operations are required per update for each
index. The overhead is even less when the updates occur in key sequence.

A linear relationship exists, however, between the time to update a record
and the number of indexes that C-ISAM must update. A file with two indexes
requires approximately twice as much time to update as the same file with
only one index, and so on.

When your program is designed for on-line operation, you can achieve better
performance by limiting the number of indexes that you need to update in
real time.

When you need additional indexes, consider creating the index you need
before processing, and deleting it after you are finished. For example, use this
method if you want to process the file in different orders at the end of each
day.

When you are only reading records, or rewriting records without changing
any key fields, the number of indexes has no effect on the speed of
processing.
2-30 C-ISAM Programmer’s Manual

Localized Indexes
Localized Indexes
Access to data through a localized index is slower than through an index that
does not use NCHARTYPE fields. It is more efficient to organize your data to
separate NCHARTYPE data into different files from the bulk of the rest of the
data, so that searches on the NCHARTYPE field will not slow down data
access to the other fields.

When you do not need a localized collation sequence for a key, do not declare
it as an NCHARTYPE. When you only need to search on the character field at
certain times, do not include it as a key in the commonly used index. Instead,
build a separate index that includes the NCHARTYPE key.

For information about collation order on C-ISAM indexes, see “Collation
Order of Characters in a C-ISAM File” on page B-7. ♦

Summary
The principle features of C-ISAM indexes are shown in the following list:

■ C-ISAM indexes are organized in fast and efficient B+ trees.

■ You can define indexes on one or more fields or their parts.

■ You can define ascending or descending order for any part of an
index, and you can specify different orders within a key.

■ C-ISAM does not impose a limit on the number of indexes that are
allowed for a file.

■ C-ISAM allows duplicate key values.

■ You can restrict an index to require unique keys.

■ C-ISAM allows three compression techniques to increase the
efficiency of storing and processing an index.

GLS
Indexing 2-31

3
Chapter
Data Types
Defining Data Types for Keys 3-3

C-ISAM Computer-Independent Data Types 3-5
Defining Data Records 3-7
Data Types in Variable-Length Records 3-8
C-ISAM Data Type Conversion Routines 3-9

Character Data 3-9
Integer and Long Integer Data 3-10
Floating-Point and Double-Precision Data 3-11

DECIMALTYPE Data Type 3-13
Using DECIMALTYPE Data Type Numbers 3-13

DECIMALTYPE Data Type Declaration 3-13
Sizing DECIMALTYPE Numbers 3-14
Storing and Retrieving DECIMALTYPE Numbers 3-15
Manipulating DECIMALTYPE Numbers 3-17

Summary . 3-19

3-2 C-IS
AM Programmer’s Manual

C-ISAM data types provide computer independence for standard
C language data types. This chapter explains how to perform the following
operations:

■ How to define data types for keys

■ How to use the computer-independent C language data types and
the functions to manipulate them

■ How to use a data type that stores decimal numbers with many
significant digits and the functions to manipulate this data type

Defining Data Types for Keys
When you define a record for use with C-ISAM, you do not specify the data
type or length of individual fields. C-ISAM needs type information only for
keys. Consider the Employee record shown in Figure 3-1.

Figure 3-1
Employee Record

Description Type Length Offset

Employee Number LONGTYPE LONGSIZE 0

Last Name CHARTYPE 20 4

First Name CHARTYPE 20 24

Address CHARTYPE 20 44

City CHARTYPE 20 64

Total Length in Bytes 84
Data Types 3-3

Defining Data Types for Keys
You must specify each part of the key by setting up a keydesc structure that
contains the location in the record of each part of the key, its data type, and
the length of the part. If Employee Number is the key, you must specify that
it start at the beginning of the record (offset 0) that it is a C-ISAM long integer,
LONGTYPE; and that its size is LONGSIZE, the size of a C-ISAM long integer.

You identify the data type and size using the parameters that are defined in
the isam.h file. The values and their mnemonics are shown in Figure 3-2.

Figure 3-2
Data Type Parameters

Because empno is a long integer, you specify the data type as either 2 or
LONGTYPE, and you define the size as either 4 or LONGSIZE. Figure 3-3
shows empno defined as a LONGTYPE with a size LONGSIZE.

C Language
Data Type

Data Type
Parameter

Data Type
Mnemonic

Size Parameter
(in bytes) Size Mnemonic

char 0 CHARTYPE — —

int 1 INTTYPE 2 INTSIZE

long 2 LONGTYPE 4 LONGSIZE

double 3 DOUBLETYPE sizeof (double) DOUBLESIZE

float 4 FLOATTYPE sizeof (float) FLOATSIZE

nchar* 7 NCHARTYPE — —

*Indicates an Informix data type rather than a C data type.
3-4 C-ISAM Programmer’s Manual

C-ISAM Computer-Independent Data Types
If you use any other fields in emprec as part of a key, you specify the data
type as either 0 or CHARTYPE.

C-ISAM Computer-Independent Data Types
C-ISAM stores numbers in a format that is independent of the internal
representation of data on your computer.

For example, the word length of your computer usually determines the
length of int data types. If your computer has a 16-bit word length, an int is
usually 16 bits long. If your computer has a 32-bit word length, an int data
type is usually 32 bits long. Using int data types can affect where the key is
located in relation to the beginning of the record.

Likewise, placing character data in relation to numeric data can affect the
position of the key within a record. Most computers require that numbers
start on a word boundary. If character data precedes numeric data, the
numeric data can be shifted to start on a word boundary. One or more fill
bytes can be present between the character data and the numeric data.

C-ISAM stores data in a manner that is independent of any specific computer
architecture. This manner of storage eliminates any confusion surrounding
computer-dependent representation of data and locating the position of key
fields. It also allows programs to operate without modification on different
computers.

#include <isam.h>
char emprec[85];
.
.
.
key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = LONGSIZE;
key.k_part[0].kp_type = LONGTYPE;
.
.
.

Figure 3-3
Setting Up a

LONGTYPE Key
Data Types 3-5

C-ISAM Computer-Independent Data Types
The C-ISAM data types and their C language equivalents are shown in
Figure 3-4.

Figure 3-4
C-ISAM Data Types

C-ISAM integers always take 2 bytes, regardless of the internal representation
of an integer on your computer.

C-ISAM does not change the representation of float and double data types.
Consider using the C-ISAM DECIMALTYPE data type, described in
“DECIMALTYPE Data Type” on page 3-13, as an alternative to FLOATTYPE
and DOUBLETYPE if you want complete computer independence.

C-ISAM Data Type
C Language Data
Type Size Mnemonic Size

CHARTYPE char — —

INTTYPE int INTSIZE 2

LONGTYPE long LONGSIZE 4

FLOATTYPE float FLOATSIZE sizeof(float)

DOUBLETYPE double DOUBLESIZE sizeof(double)

DECIMALTYPE — — —

NCHARTYPE char — —
3-6 C-ISAM Programmer’s Manual

Defining Data Records
Defining Data Records
Consider the record structure in Figure 3-5.

Figure 3-5
Customer Record in a C-ISAM File

You know the record size and the field offsets because you know the size of
each field. (See Figure 3-2.) The record length does not change from one
computer to the next. The location of the fields does not change, regardless of
the word length of the computer. A C-ISAM record has the same physical
structure on a disk, regardless of the operating environment. Any differences
in the way that numbers are stored are hidden from your program.

You do not need to declare the data types of the fields in a record, except
when they are part of the key. Drawing the record shown in Figure 3-5,
however, helps you to lay out the physical storage and identify the position
of keys.

In your program, define a char variable to receive records from the file and to
set up records that are put into the file. The variable must be 1 byte longer
than the record size. The following variable declarations are sufficient to
reserve space for the record in Figure 3-5:

char rec[38+1];

or

char rec[39];

Field Description Data Type Size

Offset From
Beginning of
Record

 Customer Number LONGTYPE LONGSIZE 0

Customer Name CHARTYPE 20 4

Customer Status INTTYPE INTSIZE 24

Transaction Amount FLOATTYPE FLOATSIZE 26

Account Balance DOUBLETYPE DOUBLESIZE 30

Record size in bytes 38
Data Types 3-7

Data Types in Variable-Length Records
To define the locations of fields within the record, declare a pointer to the
beginning of each field. The offset of the field from the beginning of a record
defines its position. You can use the offset and pointer arithmetic to declare
the pointer. Figure 3-6 shows the pointers for the Customer record shown in
Figure 3-5.

You must have variables to receive the fields after they have been retrieved
into rec. After the program finishes manipulating these internal variables, it
can place them into rec. C-ISAM functions that read, write, or update a
C-ISAM file use rec as the data-record argument.

Your program operates on individual variables. Figure 3-7 shows a list that is
sufficient to handle the record in Figure 3-5.

You can define the variables within a structure.

Data Types in Variable-Length Records
Because you cannot place an index on the variable-length portion of a record,
you do not need to specify the data type or length of individual fields within
the variable-length portion of a record. You can use the ld and st functions as
appropriate to transfer data from a C-ISAM record to a C language variable
and back. See “C-ISAM Data Type Conversion Routines” on page 3-9 for
more information about the ld and st functions.

char rec[39];

char *p_custno = rec; /* = &rec[0] */
char *p_cname = rec+ 4; /* = &rec[4] */
char *p_cstat = rec+24; /* = &rec[24] */
char *p_tramt = rec+26; /* = &rec[26] */
char *p_acctbal= rec+30; /* = &rec[30] */

Figure 3-6
Field Definitions for

the Customer
Record

long custno;
char cname[21];
int cstat;
float tramt;
double acctbal;

Figure 3-7
C Language

Variables to Hold the
Customer Record
3-8 C-ISAM Programmer’s Manual

C-ISAM Data Type Conversion Routines
C-ISAM Data Type Conversion Routines
Use C-ISAM functions to convert between the computer-independent
representation of data and the internal representation of data that your
program requires when it executes. These functions convert the C-ISAM
physical representation of the data on a disk to the internal representation of
the data that your program requires while it executes. Also use these
functions to reconvert the data into computer-independent format when you
place the data into a record for transfer to a disk.

Character Data

C-ISAM treats CHARTYPE data as bytes, each with a value between 0 and 255.
This data is usually treated as ASCII characters.

C-ISAM stores character data in the file as nonterminated strings that are
padded with trailing blanks. If your program wants to use strings that are
null-terminated without trailing spaces, you can use the functions ldchar and
stchar to transfer data between the variable or structure that contains the
C-ISAM representation of the string and your program variable.

To transfer data from the record rec to the C language variable cname, use the
next function call:

ldchar(&rec[4],20,cname);

To transfer data from the C language variable cname to the record rec, use the
following call:

stchar(cname,&rec[4],20);

If you use the pointers in Figure 3-6, the following calls are equivalent:

ldchar(p_cname,20,cname);
stchar(cname,p_cname,20);
Data Types 3-9

C-ISAM Data Type Conversion Routines
Integer and Long Integer Data

C-ISAM provides two functions for conversion between integers and two
functions for conversion between long integers.

These routines are either macros defined in isam.h or are in the C-ISAM
library. They are described fully in Chapter 8, “Call Formats and
Descriptions.”

The code in Figure 3-8 demonstrates the use of data type conversion
functions to retrieve and store the Customer Number and Customer Status
fields of the Customer record in Figure 3-5.

ldint returns a computer-format integer from the data-file record
stint stores a computer-format integer in a data-file record.
ldlong returns a computer-format long integer from the data-file

record.
stlong stores a computer-format long integer in a data-file record.

.

.

.
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Get Customer Number and Status from Record */
custno = ldlong(&rec[0]);
cstatus = ldint(&rec[24]);
.
.
.
/* Store Customer Number and Status into Record */
stlong(custno,&rec[0]);
stint (cstatus,&rec[24]);
.
.
.

Figure 3-8
Conversion of

Integers and Long
Integers
3-10 C-ISAM Programmer’s Manual

C-ISAM Data Type Conversion Routines
The C-ISAM computer-independent data types INTTYPE and LONGTYPE
consist of 2-byte and 4-byte binary signed integer data, respectively. C-ISAM
integer data is always stored in the data and index files as high/low (most-
significant byte first, least-significant byte last). This storage technique is
independent of the form in which integers are stored in memory while the
program executes.

Floating-Point and Double-Precision Data

C-ISAM provides four functions for storing and retrieving floating-point
numbers and four functions for handling double-precision numbers.

ldfloat returns a computer-format floating-point number from the
data-file record.

stfloat stores a computer-format floating-point number in a data-file
record.

ldfltnull returns a computer-format floating-point number from the
data-file record and checks if it is null.

stfltnull stores a computer-format floating-point number in a data-file
record and checks if it is null.

lddbl returns a computer-format double-precision number from a
data-file record.

stdbl stores a computer-format double-precision number in the
data-file record.

lddblnull returns a computer-format double-precision number from a
data-file record, and checks if it is null.

stdblnull returns a computer-format double-precision number in the
data-file record, and checks if it is null.
Data Types 3-11

C-ISAM Data Type Conversion Routines
Figure 3-9 shows how these functions are used to retrieve the Transaction
Amount and Account Balance fields in the record shown in Figure 3-5.

Both data types can differ in length and format from computer to computer.
No difference exists between the floating-point format used by C-ISAM in
each operating environment and its counterpart in the C language, except
that C-ISAM floating-point numbers are not required to start on word
boundaries. To ensure computer independence for floating-point and
double-precision numbers, you must represent them as C-ISAM
DECIMALTYPE data types.

.

.

.
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Retrieve Trans. Amt. and Acct. Balance from Record */
tramt = ldfloat(&rec[26]);
acctbal = lddbl(&rec[30]);
.
.
.
/* Store Trans. Amt. and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdbl(acctbal,&rec[30]);
.
.
.

Figure 3-9
Conversion

Functions for float
and double Data

Type
3-12 C-ISAM Programmer’s Manual

DECIMALTYPE Data Type
DECIMALTYPE Data Type
The DECIMALTYPE data type is a computer-independent method for the
representation of numbers of up to 32 significant digits, with or without a
decimal point, and exponents in the range -130 to +124. You use the
parameter DECIMALTYPE to specify a decimal key.

C-ISAM provides routines for converting DECIMALTYPE numbers to and
from every data type allowed in the C language. Routines also exist that
allow compact storage of DECIMALTYPE numbers in a C-ISAM file and
conversion from this format to the representation used by an executing
program. DECIMALTYPE and CHARTYPE indexes are equivalent within
C-ISAM.

Using DECIMALTYPE Data Type Numbers
If your program uses the DECIMALTYPE data type, you must the include
decimal.h header file. Appendix F contains a listing of the decimal.h header
file.

DECIMALTYPE Data Type Declaration

DECIMALTYPE data type numbers have the structure dec_t. Your program
does not need to know anything about this structure. All operations on the
structure are made through function calls.

Consider the float tramt and double acctbal in Figure 3-7, which hold the
Transaction Amount and Account Balance fields. These variables are
redefined as DECIMALTYPE data types in Figure 3-10.

#include <decimal.h>
.
.
.
dec_t tramt;
dec_t acctbal;

Figure 3-10
Defining

DECIMALTYPE Data
Type Variables
Data Types 3-13

Using DECIMALTYPE Data Type Numbers
Sizing DECIMALTYPE Numbers

The size of a DECIMALTYPE data type number can vary in the C-ISAM file,
depending on the number of significant digits to the left and to the right of
the decimal point. For example, if tramt can contain a value of 9,999.99, six
significant digits exist.

In memory, you can always use numbers with up to 32 significant digits.
DECIMALTYPE data is, however, packed in the C-ISAM file. You must choose
the length of the field based on the number of significant digits that you want
to store.

Each byte of a decimal number in the C-ISAM file can hold two digits. Each
byte is located either to the right or left of the decimal point. You cannot store
a significant digit to the left of the decimal point in the same byte as a digit to
the right of the decimal point.

For example, to store numbers less than 100,000 and represent the number to
the nearest one-thousandth, you must have space for 10 significant digits,
even though the greatest precision that you want to represent is 99,999.999.
(The DECIMALTYPE data type with 10 digits allows you to store a larger
number with greater precision, or 999,999.9999.)

The file also requires 1 byte to store the sign and exponent. Therefore, the
total number of bytes required to hold a DECIMALTYPE data type number in
a C-ISAM file is equal to the sum of the following three items: the number of
significant digits before the decimal point, divided by two (and rounded up
to the nearest whole byte if necessary); the number of significant digits to the
right of the decimal point divided by two (and also rounded up if necessary);
plus 1 more byte.
3-14 C-ISAM Programmer’s Manual

Using DECIMALTYPE Data Type Numbers
If you decide to redefine the Transaction Amount and Account Balance fields
in Figure 3-5 as DECIMALTYPE numbers, they can hold 6 and 14 significant
digits, respectively, in the same space required for the float and double data
types. The new record is shown in Figure 3-11.

Figure 3-11
Customer Record Using DECIMALTYPE Data Type

The decimal point is implied; it is not physically present in either the dec_t
structure or the data record. Take care not to perform arithmetic that results
in the loss of accuracy. For example, in six significant digits, you can represent
7,777.77 or 333,333. If you add these two numbers together, however you lose
accuracy. The result is 341,110, not 341,110.77.

Storing and Retrieving DECIMALTYPE Numbers

In the data file, decimal numbers are stored in a packed format, or two
decimal digits per byte. The following two functions are provided to convert
between the C-ISAM file representation of decimal numbers and the format
used during program execution:

Field Description Data Type Size Offset

Customer Number LONGTYPE LONGSIZE 0

Customer Name CHARTYPE 20 4

Customer Status INTTYPE INTSIZE 24

Transaction Amount DECIMALTYPE 4 26

Account Balance DECIMALTYPE 8 30

Record size in bytes 38

stdecimal converts a decimal number into packed format and puts it in
the data record.

lddecimal takes a packed decimal number from the data record and
places it in a variable with the structure dec_t.
Data Types 3-15

Using DECIMALTYPE Data Type Numbers
The code in Figure 3-12 demonstrates moving the account balance and
transaction amount to and from the data record shown in Figure 3-11.

Format

The lddecimal function has the following arguments:

■ The location where the DECIMALTYPE data starts in the data record.
The location is determined by the offset in the record layout in
Figure 3-11.

■ The length of the DECIMALTYPE data, not the number of significant
digits. See “Sizing DECIMALTYPE Numbers” on page 3-14 for a
discussion on how to determine the size of a DECIMALTYPE number
in a C-ISAM file.

■ The address of the dec_t structure to receive the DECIMALTYPE
number.

The stdecimal function has the following arguments:

■ The dec_t structure that contains the DECIMALTYPE data

■ The location in the record to receive the data

■ The length of the data as it is represented in the record

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
char rec[39]; /* C-ISAM Data Record */
.
.
.
/* Load Transaction Amt. and Acct. Balance from Record */
lddecimal(&rec[26],4,&tramt);
lddecimal(&rec[30],8,&acctbal);
.
.
.
/* Store Transaction Amount and Account Balance in Record */
stdecimal(&tramt,&rec[26],4);
stdecimal(&acctbal,&rec[30],8);
.
.
.

Figure 3-12
Converting

DECIMALTYPE
Numbers to and

from Record
3-16 C-ISAM Programmer’s Manual

Using DECIMALTYPE Data Type Numbers
Manipulating DECIMALTYPE Numbers

You must use DECIMALTYPE numbers only with the appropriate C-ISAM
functions that manipulate them. For example, to add two DECIMALTYPE
numbers you can use the function decadd. Figure 3-13 shows how to add
tramt to acctbal.

Alternatively, you can convert the numbers to another data type and then
perform the calculation, as shown in Figure 3-14.

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
.
.
.
decadd(&tramt,&acctbal,&acctbal);
.
.
.

Figure 3-13
Decimal Addition of

acctbal Plus tramt

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
double dtramt;
double dacctbal;
.
.
.
/* convert decimal numbers to double data type */
dectodbl(&tramt,&dtramt);
dectodbl(&acctbal,&dacctbal);

dacctbal += dtramt;

/* convert double to decimal data type */
decccdbl(dacctbal,&acctbal);
.
.
.

Figure 3-14
Conversion and

Addition of
acctbal+=tramt
Data Types 3-17

Using DECIMALTYPE Data Type Numbers
C-ISAM provides the following C function calls for using DECIMALTYPE
numbers. Chapter 8 describes these function calls in detail.

Function Call Description

stdecimal Convert unpacked to packed DECIMALTYPE

lddecimal Convert packed to unpacked DECIMALTYPE

deccvasc Convert C char type to DECIMALTYPE

dectoasc Convert DECIMALTYPE to C char type

deccvint Convert C int type to DECIMALTYPE

dectoint Convert DECIMALTYPE to C int type

deccvlong Convert C long type to DECIMALTYPE

dectolong Convert DECIMALTYPE to C long type

deccvflt Convert C float type to DECIMALTYPE

dectoflt Convert DECIMALTYPE to C float type

deccvdbl Convert C double type to DECIMALTYPE

dectodbl Convert DECIMALTYPE to C double type

decadd Add two DECIMALTYPE numbers

decsub Subtract two DECIMALTYPE numbers

decmul Multiply two DECIMALTYPE numbers

decdiv Divide two DECIMALTYPE numbers

deccmp Compare two DECIMALTYPE numbers

deccopy Copy a DECIMALTYPE number

dececvt Decimal equivalent to UNIX ecvt(3)

decfcvt Decimal equivalent to UNIX fcvt(3)
3-18 C-ISAM Programmer’s Manual

Summary
Summary
C-ISAM data types provide computer independence for standard C language
data types. In addition, C-ISAM provides a DECIMALTYPE data type that
allows compact, computer-independent representation of numbers.

C-ISAM provides the following data types:

■ CHARTYPE and NCHARTYPE are equivalent to the C language char
data type. NCHARTYPE allows for specific collation (localized)
sequencing.

■ INTTYPE is a computer-independent integer that corresponds to the
C language int data type.

■ LONGTYPE is a computer-independent long integer that corresponds
to the C language long integer data type.

■ FLOATTYPE is a computer-dependent floating-point data type that
corresponds to the C language float data type.

■ DOUBLETYPE is a computer-dependent double-precision data type
that corresponds to the C language double data type.

■ DECIMALTYPE is a computer-independent data type, which allows
you to represent numbers of up to 32 significant digits with
exponents in the range of -130 to +124.
Data Types 3-19

4
Chapter
Locking
Concurrency Control 4-3

Types of Locking 4-7
File-Level Locking. 4-7

Exclusive File Locking 4-8
Manual File Locking. 4-9

Record-Level Locking 4-10
Automatic Record Locking 4-10
Manual Record Locking 4-11
Waiting for Locks. 4-11

Increasing Concurrency 4-12

Error Handling . 4-13

Summary . 4-14

4-2 C-IS
AM Programmer’s Manual

ou can control the access to specific records or files through locking.
You should use locking when your program is in the process of updating a
record and you need to prevent other programs from updating that same
record simultaneously.

You can choose one of the following locking options for a C-ISAM file:

■ Lock an entire file so that your program has exclusive use of the file

■ Lock a file so that other programs can read but not update the records
in the file

■ Lock a record for the interval between C-ISAM function calls

■ Lock a record for an interval that is under program control

Variable-length and fixed-length record files use the same procedures for
locking and unlocking.

Concurrency Control
Two or more programs can be in a state of executing at the same time on
multi-user computer systems. This is called concurrent execution or
concurrency. Only one program executes at any point in time, however. A
program can be interrupted after the computer executes any number of
instructions. These instructions are the machine language that a C language
program creates when it is compiled. The programs execute asynchronously;
that is, the execution of a program is independent (in time) of the execution
of any other program. You cannot predict when instructions from one
program will execute and when instructions from another program will
execute.

Y

Locking 4-3

Concurrency Control
Generally, concurrent execution of programs is desirable because it allows
programs to share the resources of the computer, such as the disk drives and
the central processing unit (CPU). Because the use of the resources is higher,
concurrent execution improves the overall cost effectiveness of the system. If
the programs are interactive, it appears that your program is the only one
executing on the computer.

Because programs execute concurrently on multi-user systems, and the
execution can be suspended at any time to allow another program to execute,
conflicts between programs can arise if two or more programs operate on the
same data records at the same time.

Consider Programs A and B in Figure 4-1. Each program operates on the
same record. Program A increases the Amount field in the record by 100.
Program B increases the Amount field in the record by 200. When both
programs finish execution, the Amount field is increased by 300. Because the
programs execute concurrently, you cannot predict when instructions for
Program A will execute and when instructions for Program B will execute.

Figure 4-1 shows one possible sequence of interleaved execution of the
instructions in which the two programs do not interfere with each other.

Figure 4-1
Concurrent Execution of Programs

Time
Amount Field in
Record 1 Program A Program B

0 2500

1 2500 Reads Record 1

2 2500 Adds 100 (in memory)

3 2600 Writes Record 1

4 2600 Reads Record 1

5 2600 Adds 200 (in memory)

6 2800 Writes Record 1
4-4 C-ISAM Programmer’s Manual

Concurrency Control
Figure 4-2 shows the same two programs operating concurrently to produce
an incorrect result. Both orders of execution have the same probability of
occurring.

Figure 4-2
Concurrent Updates Without Locking

You can prevent conflicts either by not allowing concurrency or by forcing
synchronization during the critical points of execution. These critical points
exist wherever asynchronous execution of programs can lead to errors.

Locking controls the concurrency so that conflicts do not occur. When the
entire C-ISAM file is locked, concurrent program execution cannot occur if the
programs need the same file. If records are locked when they are read and
unlocked after they are updated, programs that want the locked records must
wait until they are unlocked. This forces synchronization so that the update
operations on the record are done in a controlled manner by each program.

Time
Amount Field
in Record 1 Program A Program B

0 2500

1 2500 Reads Record 1

2 2500 Reads Record 1

3 2500 Adds 100 (in memory)

4 2500 Adds 200 (in
memory)

5 2700 Writes Record 1

6 2600 Writes Record 1

7 2600 UPDATE IS LOST
Locking 4-5

Concurrency Control
Figure 4-3 shows Program A locking Record 1. When Program B tries to lock
and read the record, the lock request fails, and the program logic specifies
that the program wait and try again. After Program A releases the lock,
Program B can continue execution.

Figure 4-3
Concurrent Updates with Locking

Time
Amount Field in
Record 1 Program A Program B

0 2500

1 2500 Reads Record 1 and locks

2 2500 Reads Record 1 and fails

3 2500 Adds 100 (in memory)

4 2500 Retries and fails

5 2600 Writes Record 1, releases
lock

6 2600 Retry succeeds, read and
lock

7 2600 Add 200 (in memory)

8 2800 Writes Record and
releases lock
4-6 C-ISAM Programmer’s Manual

Types of Locking
Types of Locking
C-ISAM offers two levels of locking: file-level locking and record-level
locking. Both levels provide several ways that you can implement locking.

Locking at the file level prevents any other programs from updating, and
perhaps reading, the same C-ISAM file simultaneously. Record-level locking
prevents programs from updating (and reading, if ISSKIPLOCK is used) the
same record at the same time. In general, record-level locking allows greater
concurrency among programs that access the same C-ISAM files.

“Increasing Concurrency” on page 4-12 discusses the trade-offs that you
should consider when you choose a locking option. Several situations require
file-level locking. The next section describes these situations.

Single-user systems do not require locking because they do not allow
concurrent execution of programs. Therefore, conflicts cannot occur.
However, your program can always use locking calls for compatibility with
multiuser systems. The locking is ignored. A program with locking that is
written for a multiuser system runs on a single-user system without
modification.

You lock files that have variable-length records just as you lock fixed-length
record files.

You must specify a locking mode when you open or build a C-ISAM file. If
you do not want locking, or if you want to manually control record-level
locking, choose the ISMANULOCK option, as shown in the following
example:

fd = isopen ("employee",ISINOUT+ISMANULOCK);

File-Level Locking
C-ISAM provides two types of file-level locking: exclusive and manual. You
must specify the file-locking method when you build or open your file.
Locking 4-7

File-Level Locking
Exclusive File Locking

If you open or build your file with exclusive locking, no other program can
access the file until you close it with the isclose function call. This is the only
way to remove an exclusive lock.

The code example in Figure 4-4 shows how to open the file in exclusive
mode.

To lock a file exclusively, add the ISEXCLLOCK parameter to the mode in an
isopen or isbuild function call.

You must use exclusive file locking whenever your program uses the
function isaddindex, isdelindex, or iscluster to add or delete an index.

.

.

.
fd = isopen("employee",ISEXCLLOCK+ISINOUT);

/* employee file cannot be used by another
program until it is closed */

.

.

.
isclose (fd);
.
.
.

Figure 4-4
Exclusive File

Locking
4-8 C-ISAM Programmer’s Manual

File-Level Locking
Manual File Locking

Manual file locking allows you to explicitly lock and unlock the file, using
C-ISAM function calls. Manual locking only applies to updates of the file.
Other programs can read the file while it is manually locked.

The code example in Figure 4-5 demonstrates manual file locking.

Specify the parameter ISMANULOCK when you open or build the file. The file
is not locked until you make the call to islock. Other programs can read
records from the locked file. However, they cannot change the C-ISAM file,
nor can they acquire a lock on the file until you unlock the file with isunlock.

.

.

.
fd = isopen("employee", ISMANULOCK+ISINOUT);

/* file is unlocked
until explicitly locked with islock */

.

.

.
islock(fd); /* file is locked at this point */

/* other programs can read employee records but all
other operations on the file are prevented */

.

.

.
isunlock(fd); /* file is unlocked here */
.
.
.

Figure 4-5
Manual File Locking
Locking 4-9

Record-Level Locking
Record-Level Locking
C-ISAM provides two types of record locking: automatic and manual. You
must specify the locking method when you open or build your file.

Automatic Record Locking

When you open or build your file with ISAUTOLOCK, the record that you
read with isread remains locked until the next C-ISAM function call. The code
example in Figure 4-6 shows automatic record locking.

You can automatically lock only one record per C-ISAM file at a time.

If you use the ISKEEPLOCK option with an isstart call, the isstart call does not
unlock any locked record. You can use isrelease to release the lock manually.

#include <isam.h>
char emprec[85];
.
.
.
fd = isopen ("employee",ISAUTOLOCK+ISINOUT);
.
.
.
/* Set up key for Employee No. 100 */
stlong(100L,emprec);
isread (fd,emprec,ISEQUAL);
/* record identified by key in

emprec is automatically locked */
.
.
.
isrewcurr (fd,emprec);
/* the record is automatically unlocked */
.
.
.

Figure 4-6
Automatic Record

Locking
4-10 C-ISAM Programmer’s Manual

Record-Level Locking
Manual Record Locking

You must specify manual record locking with the ISMANULOCK option when
you open or build the C-ISAM file. This is the same option that you use for
manual file locking.

You place a lock on the record when you use the ISLOCK option in an isread
function call. The record remains locked until you execute the isrelease
function call. The isrelease call removes locks for all records that your
program locked in the file. Transaction logging affects the time at which locks
are released. See “Data Integrity” on page 5-9 for more information.

With most implementations of C-ISAM, the operating system determines the
maximum number of locked records that you can have.

The code in Figure 4-7 demonstrates an example of manual record locking.

Waiting for Locks

If the version of C-ISAM that you have uses the system call fcntl(), you can
program a process to wait for a locked record. Use the ISWAIT option of
isread to cause the program to wait for the locked record to become free. Use
the ISLCKWT option with isread to cause the program to wait for the record
to become free and immediately lock the record, as well. ISLCKWAIT is
equivalent to ISLOCK+ISWAIT.

fd_emp = isopen ("employee",ISINOUT+ISMANULOCK);
fd_per = isopen ("perform",ISINOUT+ISMANULOCK);
isread (fd_emp,emprec,ISEQUAL+ISLOCK);
/* employee record is locked here */
isread (fd_per,perrec,ISEQUAL+ISLOCK);
/* performance record is locked here */
isrewcurr (fd_per,perrec);
/* both records are still locked */
isrelease (fd_emp);
isrelease (fd_per);
/* employee and performance records are unlocked */

Figure 4-7
Manual Record

Locking
Locking 4-11

Increasing Concurrency
If your program holds onto one or more locks while it is waiting for another
record to become free, your program might become deadlocked with another
program. A deadlock occurs when two (or more) programs each wait for
locks that the other program is holding. To illustrate a deadlock, consider two
processes, A and B. Process A locks record 105; process B locks record 200.
Process A holds the lock on record 105 and tries to lock record 200; it waits
for record 200. Process B is programmed so that it will not release record 200
until it can lock record 105. Because no way exists for either process to get the
lock it needs, both processes wait forever. Deadlocks are possible only if your
process waits for locks.

Only versions of C-ISAM that use fcntl() are X/Open-compatible. If a version
uses fcntl(), it is noted on the media as SYS5LOCK or fcntl locking.

Increasing Concurrency
Locking allows more than one program to access a C-ISAM file concurrently
without causing conflicts. For example, a conflict could arise if two programs
read the same record and each one updates the record. (See Figure 4-2 on
page 4-5.) Locking prevents a conflict by ensuring that once the record or file
is locked, no other program can update it or, possibly, even read it.

The locking level affects the degree of concurrency that is possible for access
of a C-ISAM file. When you use file-level locking, only one program at a time
can update the file. If you update Record 100, for example, and another
program wants to update Record 200, the second program is not allowed to
access the record because you locked the entire file, even though no actual
conflict exists. Concurrency is unnecessarily impaired, in this case, because a
conflict is not present.

Locking at the record level increases concurrency. Only records that are
accessed at the same time are potentially in conflict. Record-level locking
ensures that conflicts cannot happen, by preventing concurrent access to
these records only and not to the entire file.
4-12 C-ISAM Programmer’s Manual

Error Handling
Error Handling
Calls to C-ISAM functions return a status code. If the function fails, it returns
a negative status code. You can check the global variable iserrno to determine
the reason for failure.

Two values of iserrno are related to locking:

■ EFLOCKED (value 113) indicates that the file is exclusively locked.

■ ELOCKED (value 107) indicates that either the file, or record within
the file, is locked.

Figure 4-3 on page 4-6 shows Program B waiting because the record it wants
is locked. When the record is released, Program B can continue to execute.
Figure 4-8 shows how you can implement a wait for lock strategy using a sleep
function, which delays program execution for one second each time you call
the function.

In practice, you might want to retry the isread call only a few times, rather
than to retry for a long time.

.

.

.
/* Read and lock record */

readit:
if (cc = (isread(fd,emprec,ISEQUAL+ISLOCK)) < 0)

{
if (cc == ELOCKED || cc == EFLOCKED)

{
/* Record is already locked,

wait 1 second and try again */
sleep (1);
goto readit;
}

else
.
.
.

Figure 4-8
Program That

Handles Locked
Records
Locking 4-13

Summary
Summary
C-ISAM supports both file-level and record-level locking. You can lock files or
individual records to prevent concurrent update and, in some cases, to
prevent concurrent reading of a file.

C-ISAM provides two types of file-level locks:

■ ISEXCLLOCK prevents any other program from accessing the file.

■ ISMANULOCK allows you to specify when the file is locked for
update but allows other programs to read the file.

C-ISAM also provides two types of record-level locks:

■ ISAUTOLOCK locks a record from one C-ISAM call until the next one.

■ ISMANULOCK allows you to lock specific records and release them
under program control.

If you do not want locking, specify ISMANULOCK when you open or build
the file.

C-ISAM requires that you open a file with an exclusive lock (ISEXCLLOCK) to
add or delete an index.
4-14 C-ISAM Programmer’s Manual

5
Chapter
Transaction Management
Support Routines
Why Use Transaction Management? 5-3
Transaction-Management Services 5-4

Implementing Transactions 5-4
Transactions with Variable-Length Records 5-7

Logging and Recovery 5-7

Data Integrity. 5-9
Concurrent Execution of Transactions 5-9

Locking . 5-10
Concurrency Issues 5-11

Summary . 5-12

5-2 C-IS
AM Programmer’s Manual

t times, you will want to perform multiple operations on a
C-ISAM file in such a way that either all of the operations succeed or none of
them affect the file. C-ISAM provides support routines for transaction
management to implement this strategy. A transaction is a set of operations
that you want to complete entirely or not at all.

Why Use Transaction Management?
Assume your program transfers money from one bank account to another.
You can write the program to accomplish the transfer in several ways. You
can retrieve the account record, deduct the amount, and rewrite the record.
Then you can retrieve the account record that receives the money, add the
amount, and rewrite the second record. If the second account does not exist,
however, you must retrieve the first record again, reverse the entry, and
rewrite the record.

A better procedure might be to retrieve both records, make the transfer, and
then rewrite both records. You might still encounter a problem if a crash or
some other abnormal event occurs after the first record is rewritten but before
the second record is rewritten. An inconsistent state results in which either
one account has too much money or the other has too little, depending on the
order in which the records were written. In this case, you want to either
retrieve the first record written, reset the amount, and rewrite it, or you want
to continue updating the second record.

In both cases, either you want to complete the intended action on the records
or you want the program to restart from the point of failure. If the operations
involve more records or additional files, the interactions between records and
files can be more complex. A failure in the middle of processing leaves these
records in an unknown, and possibly inconsistent, state. C-ISAM provides an
easy way to undo the operations and start over from a state where you know
that the records are correct.

A

Transaction Management Support Routines 5-3

Transaction-Management Services
Transaction-Management Services
The support routines for transaction management enable you to define a set
of operations on C-ISAM files that you want done entirely or not at all. This
set of operations is called a transaction.

In the example of transferring money between two accounts, you define a
transaction that includes reading and rewriting both records. This kind of
transaction defines an undividable unit of work that is either completed
entirely or not at all. The transaction cannot be partially completed; thus an
inconsistent state cannot result.

Transaction management provides two additional facilities. It provides a
recovery mechanism so that, in the event of a crash, the transactions can be
recovered automatically, and you can reconstruct the C-ISAM files from a
backup copy of the files. Transaction management also automatically
provides the necessary locking to ensure that two or more transactions do not
interfere with each other by updating the same record at the same time.

Implementing Transactions
To define a transaction, you must decide what operations on C-ISAM files
must be treated as an indivisible unit of work. A unit of work is the
operations that you want done entirely or not at all. A transaction can involve
operations on more than one C-ISAM file.

In the example of transferring money between accounts, the unit of work is
the complete transfer of funds. The operations that implement the transfer
are the reading and rewriting of the C-ISAM records that the program updates
to effect the transfer.

You implement the transaction by calling the function isbegin to mark the
start of the operations on the C-ISAM files that you want to treat as the unit of
work, and by calling iscommit to mark the successful completion of those
operations. Within the transaction, you can call isrollback to cancel the
transaction. The isrollback call reverses changes to the C-ISAM files that the
program makes within the transaction.
5-4 C-ISAM Programmer’s Manual

Implementing Transactions
Figure 5-1 illustrates the function calls that are necessary to add a record to
the employee file and a record for that employee to another file, perform.
Assume that you decide to define these two operations as a single transaction
to ensure that a record for the employee is added to both files.

.

.

.
/* Transaction begins after terminal input has been collected.

Either both employee and performance record will be added
or neither will be added. */

/* Files must be opened and closed within the transaction */

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{
isrollback();
break;
}

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{
isclose(fdemploy);
isrollback();
break;
}

cc1 = addemployee();
if (cc1 == SUCCESS)

cc2 = addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

Figure 5-1
Adding Two

Records Within a
Transaction
Transaction Management Support Routines 5-5

Implementing Transactions
You start a transaction by calling isbegin before any other C-ISAM call. You
end the transaction by calling iscommit after adding both records. If a call to
iswrite fails, isrollback cancels the transaction. You must include the
ISTRANS parameter in the isopen call if you want isrollback to reset any
changed records to their original state. If you update a file, it is very
important that you open and close the file within the transaction.

You can write your program so that any problem that it cannot handle causes
the transaction to roll back. Problems can include an error return from a
C-ISAM call, application logic that decides the transaction should not be
completed, and so forth.

For example, the program might discover any one of the following
conditions:

■ An account number did not exist.

■ The balance was less than zero.

■ Another program is using the record.

For any of these problems, the program can roll back the transaction. After
isrollback executes successfully, the program can retry the transaction
starting with another call to isbegin.

During the execution of a transaction, the records your program updates are
locked. (See “Locking” on page 5-10.)

You should, therefore, define a transaction to consist of only the required
operations on the records and, where possible, only those operations that
execute without user intervention. For example, if your transaction reads and
locks a record, and then waits for someone to update it, the record remains
locked during that time. Try to minimize the amount of time spent processing
inside a transaction because transactions restrict concurrent execution of
other programs that need the same records.

You can define recoverable transactions that include the following calls:
isbuild, isaddindex, isdelindex, iscluster, isaudit, issetunique, isuniqueid,
isrename, and iserase. You cannot, however, roll back their effect.
5-6 C-ISAM Programmer’s Manual

Transactions with Variable-Length Records
Transactions with Variable-Length Records
You start and stop transactions with variable-length records in the same way
as with fixed-length records. Some transaction-log formats that are used with
variable-length records are different than those used with fixed-length
records. All the transaction-log formats that are used in the transaction logs
are listed in Appendix D.

If a transaction that contains an update operation reduces the length of a
variable-length record, an isrollback call will restore the data of the original
record to the state that it was in at the last isbegin call, but the storage
location might be different. Therefore, the backup of a file and a file that has
been rolled back to the same logical state might not have the same binary
image, even though both files contain the same user data.

Logging and Recovery
Each transaction puts records in a log file for the purpose of restoring the
C-ISAM files if they are rolled back, and to provide a recovery mechanism.
The transaction-log file is an ordinary operating-system file. You should set
up procedures to maintain this file. (These procedures include scheduling
regular backups of the C-ISAM files and purging the log file after each backup
and before the transactions are applied to the C-ISAM files.)

To set up a transaction-log file, you must create an empty log file. You start a
new log file after you make backup copies of the C-ISAM files that use it. You
can do this with the standard C library function creat, as shown in the
following example:

creat("recovery.log",0666);

Transaction logging starts with the following call to islogopen:

islogopen("recovery.log");

The log-file name that you specify in the call must be identical for every
program that accesses the same C-ISAM file. You cannot recover your C-ISAM
file if you use different log files.
Transaction Management Support Routines 5-7

Logging and Recovery
Every program that is not read-only should call islogopen. If a program
writes or updates records without using the log, automatic recovery is
impossible.

You can close the log file and stop transaction logging with the islogclose
function call:

islogclose();

If a C-ISAM file becomes corrupted or is destroyed, you can recover it by
using the isrecover function. The function requires the most-recent backup
copy of all the files that record their transactions in the same log file and the
log file that you started immediately after you created the backup. The
isrecover function takes the transactions in the log file and applies them to
the backup copies of the C-ISAM files. Ensure that no one is using the C-ISAM
files during the recovery.

Warning: Only work with a copy of your backup file, never with the backup file itself.
If a failure occurs during the recovery process and you are updating the only backup
copy, further attempts at automatic recovery are impossible.

To ensure successful recovery from a system failure, a transaction must
contain all isopen calls that are intended to open the file in a write mode. The
files must also be closed before the transaction is committed or rolled back. If
you want a file to open in read-only mode and not logged in the log file, use
ISINPUT as the mode on the isopen call and do not use ISTRANS.

After you run a program that calls isrecover, the C-ISAM files contain all
committed transactions recorded in the transaction-log file. This recovery
strategy is called rollforward. If any cases exist where relative pathnames are
used in isopen or isbuild function calls, be sure that the recovery program is
run from the same directory as the original programs.
5-8 C-ISAM Programmer’s Manual

Data Integrity
Data Integrity
Data integrity means that you can access data knowing that the data is correct
or, at least, consistent.

A transaction defines one or more operations on C-ISAM files as a single unit
of work. Using transactions ensures data integrity because transactions make
it impossible to leave files in logically inconsistent states.

C-ISAM also achieves integrity by providing a recovery mechanism. In the
event of a crash, you can recover the transactions.

Concurrent execution of transactions could cause data integrity problems if
locking were not present. The following section examines this issue.

Concurrent Execution of Transactions
In a single-process environment, only one transaction executes at a time. The
program that executes the transaction either commits all changes to the file,
or rolls back without making any changes. After the transaction finishes, the
file either reflects the operations that are contained in the transaction, or the
state before the transaction started.

In a multiprocessing environment, it is necessary to prevent two or more
transactions from interfering with each other. Interference occurs, for
example, if Program A and Program B both read Record 1 and update its
contents. If Program B rewrites the record, and then Program A rewrites it,
the Program B update is lost. This is shown in Figure 5-2.

Figure 5-2
Concurrent Updates Without Locking

Time
Amount Field in
Record 1 Program A Program B

0 2500

1 2500 Reads Record 1

2 2500 Reads Record 1

(1 of 2)
Transaction Management Support Routines 5-9

Concurrent Execution of Transactions
Locking the records that are accessed by a transaction prevents this
interference.

Locking

When a transaction begins, all C-ISAM function calls that modify a record
lock the record. These records remain locked until you execute iscommit or
isrollback. A call to isrelease during a transaction only releases unmodified
records. Locks on modified records are not released. Likewise, a call to
isunlock only works if the transaction does not modify the records in the file.

A transaction that reads a record does not lock the record unless you use the
ISLOCK option in the isread function call. Use the ISLOCK option if you want
the transaction to update the record.

The number of record locks that can exist at any one time is operating-system
dependent.

You can use the islock function call within a transaction to lock an entire file.
If you do this, the file remains locked until the end of the transaction.

Choose an appropriate strategy for handling situations where a C-ISAM call
returns an indication that a record is locked. (See “Error Handling” on
page 4-13 for a description of how locked records are identified.) The safest
strategy is to roll back the transaction. This strategy guarantees that
transactions occur in a serial and, therefore, reproducible order.

3 2500 Adds 100 (in memory)

4 2500 Adds 0 (in memory)

5 2700 Writes Record 1

6 2600 Writes Record 1

7 2600 UPDATE IS LOST

Time
Amount Field in
Record 1 Program A Program B

(2 of 2)
5-10 C-ISAM Programmer’s Manual

Concurrent Execution of Transactions
Concurrency Issues

Locking a record before it is used and holding all locks until the end of a
transaction ensure that two or more concurrent transactions cannot interfere
with each other. If a transaction wants a locked record, a rollback and one or
more retries allow the transaction that holds the lock to finish first. Both
transactions are then completed without any unintended interaction.

For example, Figure 5-3 shows Program A and Program B concurrently
competing for Record 1.

Figure 5-3
Conflict Resolution with Transactions

Program A reads the record first and locks it. When Program B attempts to
read the record, it gets an error. Program B rolls back its transaction and tries
again. Meanwhile, Program A commits its transaction. This releases the lock
on Record 1; when Program B tries again, it also succeeds.

Time
Amount Field
in Record 1 Program A Program B

0 2500

1 2500 Reads and locks Record 1

2 2500 Reads Record 1 fails;
rolls back

3 2500 Adds 100 (in memory)

4 2600 Writes Record 1

5 2600 Commits Retries

6 2600 Reads and locks Record
1

7 2600 Adds 200 (in memory)

8 2800 Writes Record 1

9 2800 Commits
Transaction Management Support Routines 5-11

Summary
To guarantee correct concurrent execution of programs that use transactions,
you must use the ISLOCK option with isread, even when the transaction is
read-only. It is theoretically possible for a read-only program to see the
records of a file in a temporarily inconsistent state. The read-only program
could read a record that has been changed by a transaction in progress, and
then read a record that the same transaction changes later.

Summary
A transaction specifies an indivisible unit of work that consists of one or more
C-ISAM function calls, operating on one or more files. The following
functions implement transactions.

You must include the ISTRANS parameter in the isopen function call if you
want the ability to roll back the files to their state before you started the
transaction.

Function Description

isbegin Marks the beginning of a transaction

iscommit Marks the end of a transaction and authorizes all changes
to the file by a transaction since the last isbegin function
call

isrollback Revokes all changes to the file by a transaction since the
isbegin call

islogopen Opens a transaction-log file and starts recording
transactions

islogclose Closes the log file and terminates the recording of changes
to the C-ISAM files

isrecover Uses the transaction-log file to restore the file to its original
state from a backup copy
5-12 C-ISAM Programmer’s Manual

6
Chapter
Additional Facilities
File-Maintenance Functions 6-3

Forcing Output . 6-4

Unique Identifiers 6-5

Audit-Trail Facility 6-6
Using the Audit Trail 6-6
Audit-Trail File Format 6-8

Clustering a File . 6-10

File Maintenance with Variable-Length Records 6-11
If Data Files Are Corrupted 6-11
If Index Files Are Corrupted 6-11

Summary . 6-14

6-2 C-IS
AM Programmer’s Manual

C-ISAM provides several additional facilities that enable you to
perform the following tasks:

■ Remove or change the names of C-ISAM files without having to
specify the operating-system filenames

■ Force writing of buffers to the disk

■ Define and use a unique field within records that do not already have
one

■ Create and maintain an audit trail of changes to a C-ISAM file

■ Put the records of a file into a specific physical order

File-Maintenance Functions
You can use the function isrename to change the name of the operating-
system files that constitute a C-ISAM file.

A C-ISAM file consists of two operating-system files that are logically treated
as a single unit. For example, when you create the C-ISAM file employee, two
operating-system files are created: employee.dat and employee.idx.

The following call renames employee.dat to personnel.dat and
employee.idx to personnel.idx:

isrename ("employee","personnel");

Any other files that are associated with the C-ISAM file, such as a transaction
log or an audit-trail file, are not affected.

The C-ISAM function iserase removes the operating-system files that
constitute the C-ISAM file. The following example removes the files
personnel.dat and personnel.idx:

iserase ("personnel");
Additional Facilities 6-3

Forcing Output
This function also removes the audit-trail file for the personnel file if one
exists. See “Audit-Trail Facility” on page 6-6. It does not remove transaction-
log files.

You can use the function iscleanup at the end of your program to close all
files that your program opened.

Forcing Output
Ordinarily, C-ISAM functions that write records immediately force the output
to the operating system and, thus, to the file. You can use the isflush function
call to force this output; however, an explicit call to flush output is
unnecessary except in the following two cases:

■ When the file is opened in exclusive mode with ISEXCLLOCK

■ If you have a single-user system that does not support locking

In these cases, the execution of a C-ISAM function does not automatically
result in output to the operating system because conflicts in access to the
records cannot occur. Therefore, C-ISAM keeps the records in memory
without forcing them to the operating system. To protect against losing too
many records during a crash, you can periodically issue the following call:

isflush(fd);

The file descriptor, fd, was returned when the file was opened or built.

If you have a multiuser system, and the file is not opened in exclusive mode,
you do not have to use the isflush function.
6-4 C-ISAM Programmer’s Manual

Unique Identifiers
Unique Identifiers
C-ISAM provides functions that you can use to set and retrieve unique
numbers that are associated with a C-ISAM file. Several C-ISAM functions,
such as isdelete and isrewrite, require a unique primary index. If you want
to use these functions, in preference to equivalent functions without this
primary-key restriction, you must specify a unique key field when you build
your file.

If your records do not have a reasonably sized field that is guaranteed as
unique, you can add a long integer field to the records to serve as a unique
key. Define this field as part of the key in your keydesc structure. (You must
also specify k_flags=ISNODUPS.)

You can use the function isuniqueid to return a long integer that is unique.
C-ISAM maintains this number and serially increments it whenever you call
the function. The initial value is 1. The function call is shown in the following
example:

isuniqueid(fd,&key_value);

The file descriptor for the C-ISAM file that receives the unique value is fd. The
long integer that receives the key is key_value.

You must place this number in the data record in the location that is specified
for the key. If, for example, the first 4 bytes of the data record, rec, are reserved
for the key, you could use the following function call:

char rec[39];

stlong(key_value,rec);

You can use the function issetunique to change the starting unique identifier.
To start the value with 10,000, for example, you use the following call:

issetunique (fd,10000L);

If the unique identifier is already higher than 10,000, the call has no effect.
The function ignores attempts to reset the unique value to less than the
current value.
Additional Facilities 6-5

Audit-Trail Facility
Audit-Trail Facility
An audit trail is a file that contains a record of all changes to a single C-ISAM
file. Consider using it when you want to have a record of all changes to a
C-ISAM file, yet do not need the additional facilities that transactions provide.
For example, you can use an audit-trail file to keep changes to a critical
C-ISAM file and store the audit-trail file on another device, such as another
disk.

You can have one audit trail for each C-ISAM file. Even if you use the support
functions for transaction management, you can use an audit-trail file. If you
use both support functions and audit-trail files, C-ISAM records changes in
both the audit-trail file and the transaction-log file.

Using the Audit Trail
Use the isaudit function call to set or retrieve the audit-trail filename, to start
or stop recording changes in the C-ISAM file, or to test the status of the audit
trail. The code in Figure 6-1 demonstrates the use of the audit trail.
6-6 C-ISAM Programmer’s Manual

Using the Audit Trail
#include <isam.h>
char fname[24];
.
.
.
fd = isopen("employee",ISINOUT+ISMANULOCK);
.
.
.
/* Get audit trail filename */
isaudit(fd,fname,AUDGETNAME);
.
.
.
/* Set audit trail filename */
isaudit(fd,"employee.aud",AUDSETNAME);
.
.
.
/* Test status of audit trail and

start it if necessary */
isaudit(fd,fname,AUDINFO);
cc = strncmp(&fname[0],0,1); /* Compare with 0 */
if (cc==0) /* audit trail is off */

isaudit(fd,fname,AUDSTART); /* start */
.
.
.

/* Stop audit trail */
isaudit(fd,fname,AUDSTOP);

Figure 6-1
Using the isaudit

Function Call
Additional Facilities 6-7

Audit-Trail File Format
The isaudit function calls in Figure 6-1 perform different tasks depending on
the third argument, the mode. The following list describes the action that
isaudit takes, based on the mode:

You can use audit trails with variable-length record files just as with
fixed-length record files. The audit-trail file format for variable-length
records contains an additional 2-byte entry that indicates the actual length of
the data record. See Appendix D for more information about the audit-trail
file format.

Audit-Trail File Format
An audit-trail record consists of a header and a copy of the data record. The
header is shown in Figure 6-2. It is defined in isam.h.

AUDGETNAME retrieves the name into the string fname.
AUDSETNAME changes the audit-trail name to employee.aud.
AUDINFO returns the status of the audit trail in the first character of

the fname string. If the character is equal to 0 (ASCII null),
nothing is recorded in the audit-trail file. If the character is
equal to 1, changes to the C-ISAM file are recorded.

AUDSTART starts the audit trail. Changes to the C-ISAM file are
appended to the audit-trail file.

AUDSTOP stops recording C-ISAM file changes in the audit-trail file.

struct audhead
{
char au_type[2];/* audit record type aa,dd,rr,ww*/
char au_time[4];/* audit date-time/
char au_procid[2];/* process id number*/
char au_userid[2];/* user id number*/
char au_recnum[4]; /* record number*/
char au_reclen[2]; /* audit record length beyond header */
};

#define AUDHEADSIZE 14/* num of bytes in audit header*/
#define VAUDHEADSIZE 16 /* VARLEN num of bytes in audit header */

Figure 6-2
Header for
Audit-Trail

Records
6-8 C-ISAM Programmer’s Manual

Audit-Trail File Format
The header variables are defined as shown in the following list:

(See Chapter 3, “Data Types,” for a description of LONGTYPE and INTTYPE.)

The rest of the audit-trail record is a copy of the affected data record. If the
operation is a rewrite, both the before- and after-images are present in the
audit-trail file as an rr type followed by a ww type, each with the same record
number.

au_type identifies the operation on a record in the C-ISAM file.

aa record added to the file

dd record deleted from the file

rr copy of the record before update (before image)

ww copy of the record after update (after image)
au_time is a LONGTYPE variable that contains the time in UNIX format.
au_procid is an INTTYPE variable that contains the process identification

number.
au_userid is an INTTYPE variable that contains the user identification

code.
au_recnum is a LONGTYPE variable that contains the number of the record

that is added, deleted, or modified.
au_reclen is a LONGTYPE variable that contains the actual length of the

variable-length-record data in bytes.
Additional Facilities 6-9

Clustering a File
Clustering a File
You can use iscluster to create a physical ordering of the data records in a
C-ISAM file that corresponds to the ordering of an index on the file. This
feature is useful if the contents of the file do not change frequently, and you
need to process the file sequentially.

Ordinarily, the records in a C-ISAM file are in no particular order. Indexes are
used to maintain sequential order and to find specific records within the file.
To read the records in sequential order, the index is processed sequentially,
and the records are retrieved by following a pointer that corresponds to the
record number, or physical location, within the file. Although the keys in an
index node are physically adjacent, no guarantee exists that the data records
are near each other in the data file.

Clustering is the ability to put records physically near each other, in a
particular sequence, within a file. The iscluster function achieves clustering
by building a copy of the file in the order of one of the indexes on the file.

The clustering of physical records is not permanent. Records that are added
are not clustered. Over time, additions and deletions reduce the clustering of
the records. A call to iscluster restores a file so that records are once again
clustered.

The following function call clusters a file:

fd = iscluster(fd,&key);

The function returns a new file descriptor, fd, which must be used in
subsequent operations on the file. The description structure that defines one
of the existing indexes is key. This index defines the physical order for the file.

The file must be opened for exclusive use. The file remains open after the call
to iscluster. All indexes are re-created using the new order of the records in
the data file.
6-10 C-ISAM Programmer’s Manual

File Maintenance with Variable-Length Records
File Maintenance with Variable-Length Records
It is important to maintain current backups for both fixed- and variable-
length data. Files that contain fixed-length data are vulnerable to data loss if
the .dat files become corrupted. Files that contain variable-length data are
vulnerable to data loss if either the .dat or the .idx files become corrupted.
With fixed-length records, you can re-create an index file simply by knowing
the key descriptions and some dictionary information. With variable-length
records, you can re-create the index portion of the .idx files with the same
information, but you cannot re-create the data that resides in the index files.

If data corruption occurs with a file that contains variable-length data, you
can use the guidelines in the next two sections to produce a clean file.

If Data Files Are Corrupted
Restore a backup of the data and index files and then use the appropriate
transaction logs or audit trails to reconstruct the .dat and .idx files.

If Index Files Are Corrupted
Do not remove the .idx files. Use the bcheck utility to clean up inaccuracies
in the index portion of the .idx files. If the index portions of the .idx files are
damaged, you can use the iscluster function to regenerate the indexes. The
iscluster function opens the file, copies the records to a new file in the order
that the parameters specify, re-creates the indexes, removes the old file, and
gives the new file the old name and a new file descriptor. The iscluster
function does not use the indexes in the old file, so if only the index portions
of the .idx files are damaged, running iscluster might correct the problem.

The bcheck utility or the iscluster function do not repair the variable-length
data. If you run iscluster and it generates errors on reading some of the
records, you need to restore the data portions of the file. You can write a
program to read the records in the old file into a new file and flag any records
that are damaged. Then you can use another program to remove these
records and replace them. If you cannot replace the damaged records, you
must restore all the files, both .dat and .idx, from a backup.
Additional Facilities 6-11

If Index Files Are Corrupted
Figure 6-3 reads the file oldfile, creates a new file newfile with the same
indexes as the old file, reads each record from the old file, and puts each one
in the new file. If a record is unreadable, the program puts a dummy record
into the new file to retain the record order. You can use another program to
delete the dummy records and take appropriate action.

Figure 6-3
Program to Create newfile from oldfile

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define SIZE 32511

char dumrec[] = "Dummy record placeholder" ;
struct keydesc key;
struct dictinfo info ;
int old_fd, new_fd;

/*This program sequentially reads through an "old" variable-
* length file and copies all of the records to a new file.
* If a record is unreadable, a dummy record is inserted for
* future analysis. Both new and old file names are hardcoded
* here but could be obtained at run time.
*/

main()
{

int minlen, maxlen, rr, ww;
char record[SIZE];

printf("iserrno is %d\n", iserrno);

/* open old file to obtain file descriptor and
* find the maximum length
*/

old_fd = isopen ("isfile1", ISVARLEN + ISINPUT + ISEXCLLOCK);
printf("iserrno is %d\n", iserrno);
maxlen = isreclen;
printf("Opened old file with fd = %d and maxlen = %d\n",

old_fd, maxlen);

/*call isindexinfo on the primary key to obtain key
* description in key and the minimum (fixed-length) length
*/

isindexinfo(old_fd, &key, 1);
minlen = isreclen;
6-12 C-ISAM Programmer’s Manual

If Index Files Are Corrupted
printf("Used isindexinfo to find minlen = %d\n", minlen);

/*build the new file with the characteristics of the old one
* including having the primary key but not the secondary keys.
*/
new_fd = isbuild("newfile",maxlen,&key, ISVARLEN + ISINOUT +

ISEXCLLOCK);
printf("Built newfile with new_fd = %d\n", new_fd);

/*add the secondary indexes to the new file */

addindex();

/*place the pointer before the first record */
isstart(old_fd, &key, 0, record, ISFIRST);

/*Read each record from the old file.
* If the read fails, write a dummy record to the new file to
* preserve the original record numbering. If the read is
* successful, write the record to the new file. If a read
* encounters the EOF or other error, or if a write encounters
* an error, then exit.
*/

rr = SUCCESS;
ww = SUCCESS;

while (rr >= SUCCESS)
 {
 rr = (isread(old_fd, record, ISNEXT + ISLOCK));
 printf("did isread and rr = %d\n", rr);
 /*isreclen has been set by isread to number of bytes in
record */
 printf("iserrno = %d \n", iserrno);

if (iserrno == EENDFILE) {printf("breaking now\n");
break;}
 if (rr < SUCCESS) ww = (iswrite (new_fd, dumrec));
 else ww = iswrite(new_fd, record);
 if (ww < SUCCESS) break;
 }

if (iserrno == EENDFILE)
 printf ("isread encountered end of file.\n");
else if (ww < SUCCESS) printf("iswrite failed\n");
iscleanup();
}

addindex()
{
int cc, numkeys;
Additional Facilities 6-13

Summary
cc = isindexinfo (old_fd, &info, 0);
if (cc != SUCCESS) {printf ("isindexinfo error %d ", iserrno);
exit(1);}
numkeys = info.di_nkeys & 0x7fff;

while(numkeys > 0)
{
isindexinfo(old_fd, &key, numkeys--);
printf("doing isindexinfo with numkeys = %d\n");
isaddindex(new_fd,&key);
}

return;
}

Appendix D describes the format of the index files.

Summary
C-ISAM provides the following additional functions.

Function Description

isrename Changes the name of a C-ISAM file

iserase Removes a C-ISAM file

isflush Forces output to a C-ISAM file that is opened exclusively or
is on a single computer without locking

isuniqueid Returns a unique number that you can use in a key

issetunique Allows you to specify the starting value for the unique
number

isaudit Allows you to set up and maintain a record of changes to
your file

iscluster Puts the records of a C-ISAM file into a specific physical
order, as defined by an index
6-14 C-ISAM Programmer’s Manual

7
Chapter
Sample Programs Using C-ISAM
Files
Record Definitions 7-3

Error Handling in C-ISAM Programs 7-4

Building a C-ISAM File 7-5

Adding Additional Indexes 7-6

Adding Data . 7-8

Random Update . 7-11

Sequential Access 7-16

Chaining . 7-19

Using Transactions 7-25

Summary . 7-29

7-2 C-IS
AM Programmer’s Manual

This chapter introduces sample C language programs that use C-ISAM
files. These examples are based on a very simple personnel system. The
purpose of this system is to keep up-to-date information on employees and
their performances.

Record Definitions
The personnel system consists of two C-ISAM files, the employee file and the
perform file. The employee file holds personal information about each
employee. Each record holds the employee number, name, and address.
Figure 7-1 shows the file layout.

Figure 7-1
Employee File Layout

The perform file holds information that pertains to each job-performance
review for an employee. The file contains one record for each performance
review, job-title change, or salary change. For every record in the employee
file, at least one record must exist in the perform file. The perform file can
have multiple records for the same employee. Figure 7-2 shows the layout of
the perform file.

Field Name Position Field Type

Employee Number 0 - 3 LONGTYPE

Last Name 4 - 23 CHARTYPE

First Name 24 - 43 CHARTYPE

Address 44 - 63 CHARTYPE

City 64 - 83 CHARTYPE
Sample Programs Using C-ISAM Files 7-3

Error Handling in C-ISAM Programs
Figure 7-2
Performance File Layout

You must allocate 1 more byte for C-ISAM records in memory. Because a
record in the employee file requires 84 bytes, and a record in the perform file
requires 50 bytes, the memory storage for these records requires 85 and 51
bytes, respectively.

Error Handling in C-ISAM Programs
Every C-ISAM function returns one of the following status codes that your
program should test:

■ If the return code is zero or positive, the call results in successful
execution of the function.

■ If the return code is negative, however, the call is not successful. Your
program can check the global variable iserrno to determine the
reason for failure. Appendix C lists and describes the values that are
returned in iserrno.

The sample programs that follow do not always illustrate adequate error
checking. (This omission is designed to shorten the length of the examples.)
Programs that are used in a production environment should have much more
rigorous error checking than what is presented in the sample programs.

Field Name Position Field Type

Employee Number 0 - 3 LONGTYPE

Review Date 4 - 9 CHARTYPE

Job Rating 10 - 10 CHARTYPE

Salary after Review 11 - 18 DOUBLETYPE

Title after Review 19 - 49 CHARTYPE
7-4 C-ISAM Programmer’s Manual

Building a C-ISAM File
Building a C-ISAM File
Figure 7-3 shows a C language program that creates both the employee and
the perform files.

Figure 7-3
Creating C-ISAM Files with bld_file.c

#include <isam.h>

#define SUCCESS 0

struct keydesc ekey, pkey;
int cc, fdemploy, fdperform;

/* This program builds the C-ISAM file systems for the
employee and perform files */

main()
{
/* Set up Employee Key */
ekey.k_flags = ISNODUPS;
ekey.k_nparts = 1;
ekey.k_part[0].kp_start = 0;
ekey.k_part[0].kp_leng = 4;
ekey.k_part[0].kp_type = LONGTYPE;

fdemploy = cc = isbuild("employee", 84, &ekey,
ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isbuild error %d for employee file\n", iserrno);
exit(1);
}

isclose(fdemploy);

/* Set up Performance Key */
pkey.k_flags = ISDUPS+DCOMPRESS;
pkey.k_nparts = 2;
pkey.k_part[0].kp_start = 0;
pkey.k_part[0].kp_leng = 4;
pkey.k_part[0].kp_type = LONGTYPE;
pkey.k_part[1].kp_start = 4;
pkey.k_part[1].kp_leng = 6;
pkey.k_part[1].kp_type = CHARTYPE;
fdperform = cc = isbuild("perform", 49, &pkey,

ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{

Sample Programs Using C-ISAM Files 7-5

Adding Additional Indexes
printf("isbuild error %d for performance file\n",
iserrno);

exit(1);
}

isclose(fdperform);
}

The primary key for the employee file has one part, the Employee Number.
This primary key is a long integer beginning at offset 0, the start of the record.
It is 4 bytes long. The index does not allow duplicate keys.

The primary key for the perform file has two parts: Employee Number and
Review Date. The first part, Employee Number, is a long integer, 4 bytes long,
and starts at the beginning of the record, offset 0. The second part is the
Review Date, which is a character field of 6 bytes. It starts immediately after
the Employee Number, at offset 4 in the record. The file allows duplicate keys
and compresses any duplicate values that are in the index.

Adding Additional Indexes
Occasionally, you need additional indexes for an application. The program in
Figure 7-4 creates an index on the Last Name field in the employee file, and
an index on the Salary field in the perform file.

When you add indexes, the file must be opened with an exclusive lock. You
can specify exclusive file locks in the mode argument of the isopen call by
initializing that parameter to include ISEXCLLOCK. ISINOUT specifies that the
file is to be opened for both input and output. ISEXCLLOCK, when added to
ISINOUT, indicates that the file is to be exclusively locked for your program.
Therefore, no other program can access the file while it is open.

Both indexes allow duplicate keys. Full compression of leading duplicate
characters, trailing spaces, and duplicate values is specified for the last name
index.

You can drop these indexes at any time and add them again later. This
practice is appropriate when file insertions, deletions, or updates are a major
activity because extra indexes slow down these operations.

A modified version of this program, which adds a localized index, is
described in “An Example of Adding a Localized Index” on page B-9. ♦

GLS
7-6 C-ISAM Programmer’s Manual

Adding Additional Indexes
Figure 7-4
Adding Additional Indexes with add_indx.c

#include <isam.h>

#define SUCCESS 0

struct keydesc lnkey, skey;
int fdemploy, fdperform;

/* This program adds secondary indexes for the last name
field in the employee file, and the salary field in
the performance file. */

main()
{
int cc;
fdemploy = cc = isopen("employee", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(1);

}

/* Set up Last Name Key */
lnkey.k_flags = ISDUPS + COMPRESS;
lnkey.k_nparts = 1;
lnkey.k_part[0].kp_start = 4;
lnkey.k_part[0].kp_leng = 20;
lnkey.k_part[0].kp_type = CHARTYPE;

cc = isaddindex(fdemploy, &lnkey);
if (cc != SUCCESS)

{

printf("isaddindex error %d for employee lname key\n", iserr
no);

exit(1);
}

isclose(fdemploy);

fdperform = cc = isopen("perform", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{

printf("isopen error %d for performance file\n", iserrno);
exit(1);
}

/* Set up Salary Key */
skey.k_flags = ISDUPS;
skey.k_nparts = 1;
skey.k_part[0].kp_start = 11;
skey.k_part[0].kp_leng = sizeof(double);
skey.k_part[0].kp_type = DOUBLETYPE;
Sample Programs Using C-ISAM Files 7-7

Adding Data
cc = isaddindex(fdemploy, &skey);
if (cc != SUCCESS)

{

printf("isaddindex error %d for perform sal key\n", iserrno)
;

exit(1);
}

isclose(fdperform);
}

Adding Data
Figure 7-5 shows a program that adds records to the employee file and adds
the first record to the perform file for each employee. Both files are open for
output.

Both files use the ISAUTOLOCK locking option. When you add an employee
record to the file, that record is locked until you either add the next record or
close the file. Likewise, when you add a performance record, it is also locked
until you add another record or close the file. The program locks the records
so that another program cannot access them until this program finishes with
both records.

Figure 7-5
Adding Records to C-ISAM Files with add_rcrd.c

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[85];
char perfrec[51];
char line[82];
long empnum;

struct keydesc key;
int fdemploy, fdperform;
int finished = FALSE;

/* This program adds a new employee record to the employee
file. It also adds that employee’s first employee
performance record to the performance file. */
7-8 C-ISAM Programmer’s Manual

Adding Data
main()
{
int cc;

fdemploy = cc = isopen("employee", ISAUTOLOCK+ ISOUTPUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(1);
}

fdperform = cc = isopen("perform", ISAUTOLOCK + ISOUTPUT);
if (cc < SUCCESS)

{

printf("isopen error %d for performance file\n", iserrno);
exit(1);
}

getemployee();
getperform();

while(!finished)
{
addemployee();
addperform();
getemployee();
getperform();
}

isclose(fdemploy);
isclose(fdperform);
}

getperform()
{
double new_salary;

if (empnum == 0)
{
finished = TRUE;
return(0);
}

stlong(empnum, perfrec);

printf("Start Date: ");
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

ststring("g", perfrec+10, 1);

printf("Starting salary: ");
fgets(line, 80, stdin);
sscanf(line, "%lf", &new_salary);
stdbl(new_salary, perfrec+11);
Sample Programs Using C-ISAM Files 7-9

Adding Data
printf("Title : ");
fgets(line, 80, stdin);
ststring(line, perfrec+19, 30);

printf("\n");
}
addemployee()
{
int cc;

cc = iswrite(fdemploy, emprec);
if (cc != SUCCESS)

{
printf("iswrite error %d for employee\n", iserrno);
isclose(fdemploy);
exit(1);
}

}
addperform()
{
int cc;

cc = iswrite(fdperform, perfrec);

if (cc != SUCCESS)
{
printf("iswrite error %d for performance\n", iserrno);
isclose(fdperform);
exit(1);
}

}

putnc(c,n)
char *c;
int n;
{
while (n--) putchar(*(c++));
}

getemployee()
{
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)

{
finished = TRUE;
return(0);
}

stlong(empnum, emprec);

printf("Last name: ");
fgets(line, 80, stdin);
7-10 C-ISAM Programmer’s Manual

Random Update
ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
ststring(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
ststring(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
ststring(line, emprec+64, 20);

printf("\n");
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;

for (i = 1; i <= num && *src != ’0 && src != 0; i++)
/* don’t move carriage */

*dest++ = *src++; /* returns or nulls */
while (i++ <= num)
/* pad remaining characters in blanks */

*dest++ = ’ ’;
}

Random Update
The program in Figure 7-6 updates the fields in an employee record or deletes
the employee record and all performance records for that employee from the
file.

The program uses manual record locking. When the program reads an
employee record, it locks the record. If additional records are needed, the
program locks them as well. When the records are no longer needed, the
locks are released.

The performance records are located using isstart with only the Employee
Number part of the primary key. You do not have to use isstart with each
isread if you use the entire key to locate a record.
Sample Programs Using C-ISAM Files 7-11

Random Update
Figure 7-6
Random Update of C-ISAM Files with upd_file.c

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0
#define DELETE 1
#define UPDATE 2

char emprec[85];
char perfrec[51];
char line[82];
long empnum;

struct keydesc pkey;
int fdemploy, fdperform;
int finished = FALSE;

/* This program updates the employee file.
If the delete option is requested, all
performance records are removed along
with the employee record.

*/
main()
{
int cc;
int cmd;

fdemploy = cc = isopen("employee", ISMANULOCK + ISINOUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
fatal();
}

fdperform = cc = isopen("perform", ISMANULOCK + ISINOUT);
if (cc < SUCCESS)

{

printf("isopen error %d for performance file\n", iserrno);
fatal();
}

/* Set up key description structure for isstart */
pkey.k_flags = ISDUPS+DCOMPRESS;
pkey.k_nparts = 2;
pkey.k_part[0].kp_start = 0;
pkey.k_part[0].kp_leng = 4;
pkey.k_part[0].kp_type = LONGTYPE;
pkey.k_part[1].kp_start = 4;
pkey.k_part[1].kp_leng = 6;
pkey.k_part[1].kp_type = CHARTYPE;
7-12 C-ISAM Programmer’s Manual

Random Update
cmd = getinstr();

while(!finished)
{
if (cmd == DELETE)

delrec();
else

{
getemployee();
updatemp();
}

cmd = getinstr();
}

isclose(fdemploy);
isclose(fdperform);
}
updatemp()
{
int cc;

cc = isrewrite(fdemploy, emprec);
if (cc != SUCCESS)

{
printf("isrewrite error %d for employee\n", iserrno);
fatal();
}

}

delrec()
{
int cc;

cc = isdelete(fdemploy,emprec);
if (cc != SUCCESS)

{
printf("isdelete error %d for performance\n", iserrno);
fatal();
}

cc = isstart(fdperform,&pkey,4,perfrec,ISEQUAL);
if (cc < SUCCESS) fatal();
cc = isread(fdperform,perfrec,ISCURR+ISLOCK);
if (cc < SUCCESS) fatal();

while (cc == SUCCESS)
{
cc = isdelcurr(fdperform);
if (cc < SUCCESS)

{
printf("isdelcurr error %d for perform\n", iserrno);
fatal();
}

Sample Programs Using C-ISAM Files 7-13

Random Update
cc = isstart(fdperform,&pkey,4,perfrec,ISEQUAL);
if (cc == SUCCESS)

cc = isread(fdperform,perfrec,ISCURR+ISLOCK);
}

if (iserrno != ENOREC && iserrno != EENDFILE)
{
printf("isread error %d for perform\n", iserrno);
fatal();
}

isrelease (fdemploy);
isrelease (fdperform);
}

showemployee()
{

printf("Employee number: %ld", ldlong(emprec));
printf("\nLast name: ");putnc(emprec+4, 20);
printf("\nFirst name: ");putnc(emprec+24, 20);
printf("\nAddress: ");putnc(emprec+44, 20);
printf("\nCity: ");putnc(emprec+64, 20);
printf("\n\n\n");
}

putnc(c,n)
char *c;
int n;
{
while (n--) putchar(*(c++));
}

getinstr()

{
int cc;
char instr[2];

tryagain:
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)

{
finished = TRUE;
return(0);
}

stlong(empnum, emprec);
stlong(empnum, perfrec);
cc = isread (fdemploy, emprec, ISEQUAL+ISLOCK);
if (cc < SUCCESS)

{
if (iserrno == ENOREC || iserrno == EENDFILE)
7-14 C-ISAM Programmer’s Manual

Random Update
{
printf("Employee No. Not Found");
goto tryagain;
}

else

{

printf("isread error %d for employee file\n", iserrno);
fatal();
}

}
showemployee();
printf("Delete? (y/n): ");
fgets(line,80,stdin);
sscanf(line,"%1s",instr);
if (strcmp(instr,"y")==0)

return (DELETE);
else

{
printf("Update? (y/n): ");
fgets(line,80,stdin);
sscanf(line,"%1s",instr);
if (strcmp(instr,"y")==0)

return (UPDATE);
}

goto tryagain;
}

getemployee ()
{
int len;

printf("Last name: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
len = strlen(line);
Sample Programs Using C-ISAM Files 7-15

Sequential Access
if (len > 1)
ststring(line, emprec+64, 20);

printf("\n\n\n");
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;

for (i = 1; i <= num && *src != ’0 && src != 0; i++)
/* don’t move carriage returns*/

*dest++ = *src++; /*or nulls; pad remaining */
while (i++ <= num) /*characters in blanks */

*dest++ = ’ ’;
}

fatal()
{
isclose(fdemploy);
isclose(fdperform);
exit(1);
}

Sequential Access
The code in Figure 7-7 demonstrates how to read a file sequentially. In this
program, the employee file is read in order of the Last Name key.

The program uses isstart to change from the primary index to the Last Name
index and to position the file to the first key in the index. The program
retrieves the first record by calling isread with the mode ISCURR. The current
record is the record that isstart positions on, in this case, the record with the
first key in the index. Subsequent calls to isread use the ISNEXT mode to read
the next record in index order.

The function returns an error status in the global error variable iserrno with
a value of EENDFILE when all records are read.
7-16 C-ISAM Programmer’s Manual

Sequential Access
Figure 7-7
Sequential Processing of a C-ISAM File with sqntl_rd.c

#include <isam.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[85];

struct keydesc key;
int fdemploy, fdperform;
int eof = FALSE;

/* This program sequentially reads through the employee
file by employee number printing each record */

main()
{
int cc;

fdemploy = cc = isopen("employee", ISMANULOCK + ISINOUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file", iserrno);
exit(1);
}

/* Set File to Retrieve using Last Name Index */
key.k_flags = ISDUPS+COMPRESS;
key.k_nparts = 1;
key.k_part[0].kp_start = 4;
key.k_part[0].kp_leng = 20;
key.k_part[0].kp_type = CHARTYPE;
cc = isstart(fdemploy, &key, WHOLEKEY, emprec, ISFIRST);
if (cc != SUCCESS)

{
printf("isstart error %d", iserrno);
isclose(fdemploy);
exit(1);
}

getfirst();
while (!eof)

{
showemployee();
getnext();
}

isclose(fdemploy);
}

showemployee()
{

Sample Programs Using C-ISAM Files 7-17

Sequential Access
printf("Employee number: %ld", ldlong(emprec));
printf("\nLast name: ");putnc(emprec+4, 20);
printf("\nFirst name: ");putnc(emprec+24, 20);
printf("\nAddress: ");putnc(emprec+44, 20);
printf("\nCity: ");putnc(emprec+64, 20);
printf("\n\n\n");
}

putnc(c, n)
char *c;
int n;
{
while (n--) putchar(*(c++));
}

getfirst()
{
int cc;

if (cc = isread(fdemploy, emprec, ISFIRST))
{
switch(iserrno)

{
case EENDFILE : eof = TRUE;

break;
default :

{
printf("isread ISFIRST error %d \n", iserrno);
eof = TRUE;
return(1);
}

}
}

return(0);
}

getnext()
{
int cc;

if (cc = isread(fdemploy, emprec, ISNEXT))
{
switch(iserrno)

{
case EENDFILE : eof = TRUE;

break;
default :

{
printf("isread ISNEXT error %d \n", iserrno);
eof = TRUE;
7-18 C-ISAM Programmer’s Manual

Chaining
return(1);
}

}
}

return(0);
}

Chaining
The next program uses a chaining technique to locate the performance record
for an employee, by finding the highest value key for the employee in the
perform file. This technique finds the record directly, without reading other
performance records for the employee.

Figure 7-8 shows the logical order of records in the perform file. The primary
key is a composite of the Employee Number and the Review Date fields.

Figure 7-8
Sample Performance Data

Emp. No. Review Date Job Rating New Salary New Title

1 790501 g 20,000 PA

1 800106 g 23,000 PA

1 800505 f 24,725 PA

2 760301 g 18,000 JP

2 760904 g 20,700 PA

2 770305 g 23,805 PA

2 770902 g 27,376 SPA

3 800420 f 18,000 JP

4 800420 f 18,000 JP
Sample Programs Using C-ISAM Files 7-19

Chaining
The program in Figure 7-9 adds a new performance record to the perform
file. The program calculates the new salary as a percentage raise, based on the
employee’s performance. To do this, the program must find the most-recent
performance record.

The program finds the performance record by setting the search key to the
composite of the employee number and 999999, the highest value that can be
stored in the Review Date field. The isstart function uses this key and the
ISGTEQ mode to position the file to the record immediately after the last
performance record for the employee. (There should not be a review date of
999999.) The program obtains the most-recent performance record by calling
isread with ISPREV mode to return the record preceding the one that isstart
found.

To obtain the most-recent record for Employee 1 in Figure 7-8

1. Call isstart with the ISGTEQ mode and a key that contains
Employee 1 and Review Date 999999.

The isstart function positions at Employee 2, Review Date 760301,
because this is the next record with a key greater than the one
requested (and no key equals the one requested).

2. Call isread with the ISPREV mode, which reads the record with the
key preceding the one that isstart found.

This chaining technique finds the most-recent performance record for
Employee 1.

Finding a record using the chaining technique is faster than finding the first
performance record and then finding subsequent records with the ISNEXT
mode in the isread function call.

Figure 7-9
Chaining to the Last Record in a List with chaining.c

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char perfrec[51];
char operfrec[51];
char line[81];
long empnum;
7-20 C-ISAM Programmer’s Manual

Chaining
double new_salary, old_salary;

struct dictinfo info;
struct keydesc key;
int fdemploy, fdperform;
int finished = FALSE;
/* This program interactively reads data from stdin and adds

performance records to the "perform" file. Depending on
the rating given the employee on job performance, the

following salary increases are placed in the salary field
of the performance file.

rating percent increase
------ ----------------
p (poor) 0.0 %
f (fair) 4.5 %
g (good) 7.5 %

*/

main()
{
int cc;

fdperform = cc = isopen("perform", ISINOUT+ISAUTOLOCK);
if (cc < SUCCESS)

{

printf("isopen error %d for performance file\n", iserrno);
exit(1);
}

/* Set up key for isstart on performance file */
key.k_flags = ISDUPS+DCOMPRESS;
key.k_nparts = 2;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = 4;
key.k_part[0].kp_type = LONGTYPE;
key.k_part[1].kp_start = 4;
key.k_part[1].kp_leng = 6;
key.k_part[1].kp_type = CHARTYPE;

isindexinfo (fdperform,&info,0); /* check that records exist
*/

if (info.di_nrecords==0)
{
printf ("No records to update\n");
exit (1);
}

getperformance();
while (!finished)

{
if (get_old_salary())

{

Sample Programs Using C-ISAM Files 7-21

Chaining
finished = TRUE;
}

else
{
addperformance();
getperformance();
}

}
isclose(fdperform);
}

addperformance()
{
int cc;

cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)

{
printf("iswrite error %d\n", iserrno);
isclose(fdperform);
exit(1);
}

}

getperformance()
{
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)

{
finished = TRUE;
return(0);
}

stlong(empnum, perfrec);

printf("Review Date: ");
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

printf("Job rating (p = poor, f = fair, g = good): ");
fgets(line, 80, stdin);
ststring(line, perfrec+10, 1);

new_salary = 0.0;
stdbl(new_salary, perfrec+11);

printf("Title After Review: ");
fgets(line, 80, stdin);
ststring(line, perfrec+19, 30);

printf("\n\n\n");
}

7-22 C-ISAM Programmer’s Manual

Chaining
get_old_salary()
{
int mode, cc;

bytecpy(perfrec, operfrec, 4); /* get employee id no. */
bytecpy("999999", operfrec+4, 6); /* largest possible date *
/

cc = isstart(fdperform, &key, WHOLEKEY, operfrec, ISGTEQ);
if (cc != SUCCESS)

{
switch(iserrno)

{
case ENOREC:
case EENDFILE:

mode = ISLAST;
break;

default:
printf("isstart error %d ", iserrno);
return(1);

}
}

else
{
mode = ISPREV;
}

cc = isread(fdperform, operfrec, mode);
if (cc != SUCCESS)

{
if (iserrno == EENDFILE)

{

printf("No performance record for employee number %ld.\n",
ldlong(perfrec));

return(1);
}

else
{

printf("isread error %d in get_old_salary\n", iserrno);
return(1);
}

}
if (cmpnbytes(perfrec, operfrec, 4))

{

printf("No performance record for employee number %ld.\n",
ldlong(perfrec));

return(1);
}

else
{

printf("\nPerformance record found.\n\n");
Sample Programs Using C-ISAM Files 7-23

Chaining
old_salary = new_salary = lddbl(operfrec+11);
printf("Rating: ");

switch(*(perfrec+10))
{
case ’p’:

printf("poor\n");
break;

case ’f’:
printf("fair\n");
new_salary *= 1.045;
break;

case ’g’:
printf("good\n");
new_salary *= 1.075;
break;

}
stdbl(new_salary, perfrec+11);
printf("Old salary was %f\n", old_salary);
printf("New salary is %f\n", new_salary);
return(0);

}
}

bytecpy(src,dest,n)
register char *src;
register char *dest;
register int n;
{
while (n-- > 0)

{
*dest++ = *src++;
}

}

cmpnbytes(byte1, byte2, n)
register char *byte1, *byte2;
register int n;
{
if (n <= 0) return(0);
while (*byte1 == *byte2)

{
if (--n == 0) return(0);
++byte1;
++byte2;
}

return(((*byte1 & BYTEMASK) < (*byte2 & BYTEMASK)) ? -
1 : 1);
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
7-24 C-ISAM Programmer’s Manual

Using Transactions
int num;
{
int i;
for (i = 1; i <= num && *src != ’0 && src != 0; i++)

/* don’t move carriage */
*dest++ = *src++; /* returns or nulls */

while (i++ <= num)
/* pad remaining characters in blanks */

*dest++ = ’ ’;
}

Using Transactions
Figure 7-10 shows a sample program that has been modified to define
C-ISAM operations as transactions. (Figure 7-5 on page 7-8 shows the non-
transaction version of this program.) The program adds a record to the
employee file and then adds a record to the perform file. These operations
define a transaction that is repeated until the user inputs a zero for the
Employee Number.

The transaction operates on two C-ISAM files. If the transaction succeeds, a
record is added to each file. If the transaction fails, any change to either file is
rolled back so that neither file is modified.

The functions isopen and isclose are called within the transaction to identify
the files that are involved. For isrollback to reverse changes to the file,
ISTRANS is added to the mode argument in the isopen function call.

Only minimal error checking is implemented in the sample program. A
production program should check each function return code for an error
value, especially calls to iscommit and isrollback.

Figure 7-10
Adding Records Inside a Transaction with transctn.c

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define LOGNAME "recovery.log"

char emprec[85];
char perfrec[51];
char line[82];
long empnum;
int fdemploy, fdperform;
Sample Programs Using C-ISAM Files 7-25

Using Transactions
extern int errno;

/* This program adds a new employee record to the employee
file. It also adds that employee’s first employee
performance record to the performance file.

*/

main()
{
int cc;
int cc1;
int cc2;
if (access(LOGNAME, 0) == -1)/* log file exist? */

if ((cc = creat(LOGNAME, 0660)) == -1)
{
printf("Cannot create log file \"%s\", system error

%d.\n"LOGNAME, errno);
iscleanup();
exit(1);
}

/* open log file */
cc = islogopen (LOGNAME);
if (cc < SUCCESS)

{

printf ("Cannot open log file, islogopen error %d\n", iserrn
o);

scleanup();
exit (1);
}

while(!getemployee())
{

/*Transaction begins after terminal input has been collected

Either both employee and performance record will be added

or neither will be added. */

/* Files must be opened and closed within the transaction */

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTR
ANS);

if (cc < SUCCESS)
{ isrollback();

break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTR
7-26 C-ISAM Programmer’s Manual

Using Transactions
ANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();
break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS))
/*transaction failed */

{
srollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

}

/* Finished */
islogclose();
iscleanup();
exit (0);
}

getperform()
{
double new_salary;

printf("Start Date: ");
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

ststring("g", perfrec+10, 1);

printf("Starting salary: ");
fgets(line, 80, stdin);
sscanf(line, "%lf", &new_salary);
stdbl(new_salary, perfrec+11);

printf("Title : ");
fgets(line, 80, stdin);
ststring(line, perfrec+19, 30);

printf("\n\n\n");
}

addemployee()
Sample Programs Using C-ISAM Files 7-27

Using Transactions
{
int cc;
cc = iswrite(fdemploy, emprec);
if (cc != SUCCESS)

{
printf("iswrite error %d for employee\n", iserrno);
}

return (cc);
}

addperform()
{
int cc;
cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)

{
printf("iswrite error %d for performance\n", iserrno);
}

return (cc);
}

getemployee()
{
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);

if (empnum == 0)
return(1);

stlong(empnum, emprec);

printf("Last name: ");
fgets(line, 80, stdin);
ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
ststring(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
ststring(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
ststring(line, emprec+64, 20);

getperform();
printf("\n\n\n");

return (0);
}

7-28 C-ISAM Programmer’s Manual

Summary
ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;

for (i = 1; i <= num && *src != ’0 && src != 0; i++)
/* don’t move carriage returns */

*dest++ = *src++; /* or nulls
pad remaining */

while (i++ <= num) /* characters in blanks */
*dest++ = ’ ’;

}

Summary
The chapter introduces seven example programs that show you how to
perform the following tasks:

■ Create C-ISAM files

■ Add indexes to C-ISAM files

■ Add records to files

■ Retrieve, update, and delete specific records

■ Sequentially process a C-ISAM file

■ Find the end of a subset of records (a chain) in the C-ISAM file

■ Implement transactions in an existing program
Sample Programs Using C-ISAM Files 7-29

8
Chapter
Call Formats and Descriptions
Functions for C-ISAM File Manipulation 8-9
isaddindex . 8-10
isaudit . 8-12
isbegin . 8-14
isbuild . 8-16
iscleanup . 8-19
isclose . 8-20
iscluster . 8-21
iscommit . 8-23
isdelcurr . 8-25
isdelete . 8-26
isdelindex . 8-28
isdelrec . 8-30
iserase . 8-31
isflush . 8-32
isglsversion . 8-33
isindexinfo . 8-35
islanginfo . 8-38
islock . 8-39
islogclose . 8-40
islogopen . 8-41
isnlsversion . 8-42
isopen . 8-44
isread . 8-46
isrecover . 8-50
isrelease . 8-51
isrename . 8-52
isrewcurr . 8-53
isrewrec . 8-55
isrewrite . 8-56
isrollback . 8-58

8-2 C-IS
issetunique . 8-60
isstart . 8-61
isuniqueid . 8-64
isunlock . 8-65
iswrcurr . 8-66
iswrite . 8-68

Format-Conversion and Manipulation Functions 8-70
ldchar . 8-71
lddbl . 8-72
lddblnull . 8-73
lddecimal . 8-74
ldfloat . 8-76
ldfltnull . 8-77
ldint . 8-78
ldlong . 8-79
stchar . 8-80
stdbl. 8-81
stdblnull . 8-82
stdecimal . 8-83
stfloat . 8-85
stfltnull. 8-86
stint . 8-87
stlong . 8-88

DECIMALTYPE Functions 8-89
decadd, decsub, decmul, and decdiv 8-90
deccmp. 8-92
deccopy . 8-93
deccvasc . 8-94
deccvdbl . 8-96
deccvflt . 8-97
deccvint . 8-98
deccvlong . 8-99
dececvt and decfcvt 8-100
dectoasc . 8-102
dectodbl . 8-104
dectoflt . 8-105
dectoint . 8-106
dectolong . 8-107

Summary . 8-108
AM Programmer’s Manual

This chapter describes all the functions that are available as part of
C-ISAM. These functions are divided into two major groupings:

■ File-manipulation functions

■ Format-conversion and manipulation functions

The file-manipulation functions allow you to perform the following
operations:

■ Create and destroy files and indexes

■ Access and modify records within files

■ Lock records or files

■ Implement transactions

■ Determine GLS-related information about a file

■ Perform other functions that are associated with maintaining C-ISAM
files

The following functions allow you to manipulate files and indexes.

Function Description

isbuild Creates a C-ISAM file

isopen Opens a C-ISAM file

isclose Closes a C-ISAM file

iscleanup Closes all of the C-ISAM files opened by the process

iscluster Puts the records of a file in the physical order defined by a key

isrename Changes the name of a C-ISAM file

(1 of 2)
Call Formats and Descriptions 8-3

The following functions allow you to manipulate C-ISAM records.

The following functions allow you to implement locking.

iserase Removes a C-ISAM file

isaddindex Adds an index to a file

isdelindex Removes an index from a file

Function Description

(2 of 2)

Function Description

isstart Chooses an index or record for retrieval

isread Reads a record from a C-ISAM file

iswrite Writes a record to a C-ISAM file

isrewrite Updates a record in a C-ISAM file

iswrcurr Writes a record to a C-ISAM file and makes it the current record

isrewcurr Rewrites the current record

isrewrec Rewrites the record identified by record number

isdelete Deletes a C-ISAM record

isdelcurr Deletes the current record

isdelrec Deletes the record identified by record number

Function Description

islock Sets a lock on a C-ISAM file

isunlock Removes a lock on a C-ISAM file

isrelease Removes locks on records
8-4 C-ISAM Programmer’s Manual

See isread later in this chapter for information about locking individual
records within a C-ISAM file.

The following functions allow you to implement transactions.

The following functions allow you to determine GLS-related and (for
backward compatibility) NLS-related information.

The following additional functions are also available with C-ISAM.

Function Description

isbegin Begins a transaction

iscommit Completes a transaction

isrollback Cancels a transaction

islogopen Opens a transaction-log file

islogclose Closes a transaction-log file

isrecover Recovers C-ISAM files

GLS

NLS

Function Description

isglsversion Determines if a localized collation has been associated with a file

islanginfo Returns the collation string associated with a localized index file

isnlsversion Determines if a localized collation has been associated with a file

♦

Function Description

isaudit Maintains an audit trail

isuniqueid Determines the last unique ID for a record

(1 of 2)
Call Formats and Descriptions 8-5

The following functions convert between computer-dependent
representation of numbers and the C-ISAM counterparts.

issetunique Sets the starting unique ID

isindexinfo Determines the characteristics of a file and its indexes

isflush Forces output to a C-ISAM file

Function Description

(2 of 2)

Function Description

ldchar Copies a C-ISAM character string into a C language string

stchar Copies a C language string into a C-ISAM format string

ldint Converts a C-ISAM integer to a computer-dependent integer

stint Converts a computer-dependent integer to a C-ISAM integer

ldlong Converts a C-ISAM long integer to a computer-dependent long
integer

stlong Converts a computer-dependent long integer to a C-ISAM long
integer

ldfloat Converts a C-ISAM floating-point number to a computer-
dependent floating-point number

stfloat Converts a computer-dependent floating-point number to a
C-ISAM floating-point number

ldfltnull Converts a C-ISAM floating-point number to a computer-
dependent floating-point number and checks if it is null

stfltnull Converts a computer-dependent floating-point number to a
C-ISAM floating-point number and checks if it is null

lddbl Converts a C-ISAM double-precision number to a computer-
dependent double-precision number

(1 of 2)
8-6 C-ISAM Programmer’s Manual

The following functions allow you to manipulate the C-ISAM DECIMALTYPE
data type. They are listed here in logical order; the reference pages for these
functions are in alphabetical order according to function name.

stdbl Converts a computer-dependent double-precision number to a
C-ISAM double-precision number

lddblnull Converts a C-ISAM double-precision number to a computer-
dependent double-precision number and checks if it is null

stdblnull Converts a computer-dependent double-precision number to a
C-ISAM double-precision number and checks if it is null

Function Description

(2 of 2)

Function Description

lddecimal Loads a DECIMALTYPE number from a data record into its internal
structure

stdecimal Stores a DECIMALTYPE number in a data record

deccvasc Converts a character string into a DECIMALTYPE number

dectoasc Converts a DECIMALTYPE number into a character string

deccvint Converts a computer-dependent integer into a DECIMALTYPE
number

dectoint Converts a DECIMALTYPE number into a computer-dependent
integer

deccvlong Converts a computer-dependent long integer into a DECIMALTYPE
number

dectolong Converts a DECIMALTYPE number into a computer-dependent long
integer

deccvflt Converts a computer-dependent floating-point number into a
DECIMALTYPE number

dectoflt Converts a DECIMALTYPE number into a computer-dependent
floating-point number

(1 of 2)
Call Formats and Descriptions 8-7

deccvdbl Converts a computer-dependent double-precision number into a
DECIMALTYPE number

dectodbl Converts a DECIMALTYPE number into a computer-dependent
double-precision number

decadd Adds two DECIMALTYPE numbers

decsub Subtracts two DECIMALTYPE numbers

decmul Multiplies two DECIMALTYPE numbers

decdiv Divides two DECIMALTYPE numbers

deccmp Compares two DECIMALTYPE numbers

deccopy Copies DECIMALTYPE numbers

dececvt Converts a DECIMALTYPE value to an ASCII string

decfcvt Converts a DECIMALTYPE value to an ASCII string

Function Description

(2 of 2)
8-8 C-ISAM Programmer’s Manual

Functions for C-ISAM File Manipulation
Functions for C-ISAM File Manipulation
This section describes the following functions in alphabetical order.

isaddindex islogclose

isaudit islogopen

isbegin isnlsversion

isbuild isopen

iscleanup isread

isclose isrecover

iscluster isrelease

iscommit isrename

isdelcurr isrewcurr

isdelete isrewrec

isdelindex isrewrite

isdelrec isrollback

iserase issetunique

isflush isstart

isglsversion isuniqueid

isindexinfo isunlock

islanginfo iswrcurr
Call Formats and Descriptions 8-9

isaddindex
isaddindex
Use isaddindex to add an index to a C-ISAM file.

Syntax
int isaddindex(isfd, keydesc)

int isfd;
struct keydesc *keydesc;

Usage
The C-ISAM file must be opened for exclusive access (ISEXCLLOCK), and it
must be open for both input and output (ISINOUT).

C-ISAM does not limit the number of indexes that you can add. However, you
can define indexes only on the fixed-length portion of a record. If the
character position indicated by keydesc exceeds the minimum record size
defined for the file, isaddindex fails. See isbuild on page 8-16 for more
information on the keydesc parameter.

The maximum number of parts that you can define for an index is NPARTS.
The isam.h file contains the definition of NPARTS, which is usually NPARTS
equals 8. The isam.h file also contains the definition of MAXKEYSIZE (the
maximum key size). MAXKEYSIZE is usually 120 bytes.

The isaddindex call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

isfd is the file descriptor returned by isopen or isbuild.
keydesc is a pointer to a key-description structure.

-1 Error; iserrno contains the error code
0 Successful
8-10 C-ISAM Programmer’s Manual

isaddindex
Example
#include <isam.h>

struct keydesc nkey;
.
.
.
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng= 10;
nkey.k_part[0].kp_type= CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng= 1;
nkey.k_part[1].kp_type= CHARTYPE;
.
.
.
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
{
if (isaddindex(fd,&nkey) < 0)
{
printf ("isaddindex error %d",iserrno);
exit (1);
}
.
.
.
}

Call Formats and Descriptions 8-11

isaudit
isaudit
Use isaudit to perform operations that involve an audit-trail file. You can
start or stop recording changes to a C-ISAM file, or you can set the name of an
audit-trail file. You can also determine whether the audit trail is on or off.

Syntax
int isaudit(isfd, filename, mode)

int isfd;
char *filename;
int mode;

Usage
When the mode equals AUDINFO, the function sets the first byte of the
filename parameter (filename[0]) as follows:

■ If the audit trail is off, the first byte is set to 0 (ASCII null).

■ If the audit trail is on, the first byte is set to 1.

When you stop the audit trail, it is not erased. Further changes to the C-ISAM
file, however, are not recorded. When you start the audit trail and the
audit-trail file already exists, changes to the C-ISAM file are appended to the
audit-trail file.

C-ISAM retains the name in the index (.idx) file when you set the audit-trail
filename. You can create a new audit-trail file, either by removing the old file
or by setting a new filename. The audit-trail filename can be any operating-
system filename or pathname.

isfd is the file descriptor returned by isopen or isbuild.
filename is a pointer to the filename or a pointer to a string to retrieve

the status of the audit trail.
mode is one of the following parameters:

AUDSTOP stops recording to the audit trail.
AUDSETNAME specifies the audit-trail filename.
AUDGETNAME returns the audit-trail filename.
AUDINFO returns the status of the audit trail.
8-12 C-ISAM Programmer’s Manual

isaudit
An audit-trail record contains a header and a copy of the data record. The
header is defined in isam.h and is described in Chapter 6, “Additional
Facilities.”

The isaudit call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

Example
#include <isam.h>
char fname[24];
.
.
.
fd = isopen("employee",ISINOUT+ISMANULOCK);
.
.
.
/* Get audit trail filename */
isaudit(fd,fname,AUDGETNAME);
.
.
.
/* Set audit trail filename */
isaudit(fd,"employee.aud",AUDSETNAME);
.
.
.
/* Test status of audit trail and start it if necessary */
isaudit(fd,fname,AUDINFO);
cc = strncmp(&fname[0],0,1); /* Compare with 0 */
if (cc==0) /* audit trail is off */

isaudit(fd,fname,AUDSTART); /* start */
.
.
.
/* Stop audit trail */
isaudit(fd,fname,AUDSTOP)

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-13

isbegin
isbegin
Use isbegin to define the beginning of the transaction.

Syntax
int isbegin()

Usage
If you are using a log file, you must call isbegin before you open the file for
a read-only (ISINPUT) operation.

You must open a log file with islogopen with the name of the log file as the
argument before you call the first isbegin in a program.

Return Codes

-1 Error; iserrno contains the error code
0 Successful
8-14 C-ISAM Programmer’s Manual

isbegin
Example
isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();
break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

Call Formats and Descriptions 8-15

isbuild
isbuild
Use isbuild to create a C-ISAM file.

Syntax
int isbuild(filename, reclen, keydesc, mode)

char *filename;
int reclen;
struct keydesc *keydesc;
int mode;

filename is the name of the file without an extension.
reclen is the length of the record in bytes. If the record is to have a

variable-length portion, reclen is the maximum length of the
record. reclen is a number between 1 and 32,511, inclusive.

keydesc is a pointer to a key-description structure that defines the
primary key.

mode is a combination of an access-mode parameter, a locking-mode
parameter and, optionally, a length or logging parameter. You
add an access-mode parameter to a lock-mode parameter to
specify the mode. Use one of the following access-mode
parameters:
ISINPUT opens the file for input
ISOUTPUT opens the file for output.
ISINOUT opens the file for both input and output.
Use one of the following locking-mode parameters:
ISEXCLLOCK specifies an exclusive file lock.
ISMANULOCK specifies manual file or record locking, or

no locking.
ISAUTOLOCK specifies automatic record locking.
You can also specify the following parameters:
ISVARLEN indicates that the record contains a

variable-length portion.
8-16 C-ISAM Programmer’s Manual

isbuild
Usage
If you do not use ISFIXLEN or ISVARLEN, the record length defaults to fixed
length. If you use ISVARLEN, you must give isreclen the minimum number
of bytes in the record. If the record has a fixed-length portion, isreclen
contains the length of the fixed-length portion. The variable-length portion of
the record is at the end of the record.

The isbuild function creates two operating-system files with the names
filename.dat and filename.idx. These files are treated together as one logical
C-ISAM file. The filename parameter should contain a null-terminated
character string that is at least four characters shorter than the longest legal
operating-system filename and no longer than 10 characters. The function
returns an integer file descriptor that identifies the file.

The file is left open with the access and locking modes that are set in the mode
parameter.

The keydesc parameter specifies the structure of the primary index. You can
set k_nparts = 0, which means that no primary key actually exists and
sequential processing takes place in record number (physical) sequence.

You can add indexes later by using isaddindex.

If you open a transaction log prior to building the new file, and you want to
recover the new file in case of a system failure, you must precede the isbuild
call with an isbegin call.

If you open a transaction log prior to building the new file, and you do not
wish to recover this new file, use the ISNOLOG mode to prevent logging of
subsequent C-ISAM calls on the file. If you use ISNOLOG, the isbuild call will
still be logged. If you use ISNOLOG, be sure that all future isopen calls for this
file also specify ISNOLOG.

If you use the ISTRANS parameter, you must have already called islogopen.

ISFIXLEN indicates that the record does not contain
a variable-length portion.

ISTRANS enables isrollback to reverse changes to
C-ISAM files within a transaction.

ISNOLOG specifies that this call and subsequent
calls on this file are not logged.
Call Formats and Descriptions 8-17

isbuild
The isbuild function cannot be rolled back.

Return Codes

Example
#include <isam.h>

struct keydesc key;
.
.
.
key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng= LONGSIZE;
key.k_part[0].kp_type= LONGTYPE;
.
.
.

if((fd=isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK))<0)
{
printf ("isbuild error %d",iserrno);
exit (1);
}

/*corresponding call for a variable-length record*/
/* first set isreclen to fixed length*/
isreclen = 84
if((fd=isbuild("v_employee", 1084, &key,

ISINOUT+ISEXCLOCK+ISVARLEN)) <0
{

printf ("isbuild error %d",iserrno);
exit (1);

}

-1 Error; iserrno contains the error code
>=0 File descriptor
8-18 C-ISAM Programmer’s Manual

iscleanup
iscleanup
Use iscleanup to close all of the C-ISAM files that your program opened.

Syntax
int iscleanup()

Usage
Make it standard practice to call iscleanup before you exit a C-ISAM program.

Return Codes

Example
cc = iscleanup();

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-19

isclose
isclose
Use isclose to close a C-ISAM file.

Syntax
int isclose(isfd)

int isfd;

Usage
Outside the scope of a transaction, a call to isclose releases any locks that
your program holds on the table. Within a transaction, the locks are held until
the transaction is committed by an iscommit or rolled back by isrollback.

Warning: It is extremely important to close C-ISAM files after processing has
finished, especially on operating systems without file-locking system calls. Failure to
close C-ISAM files using the isclose (or iscleanup) function leaves the files locked
on systems without these system calls.

Return Codes

Example
cc = isclose(fd);

isfd is the file descriptor returned by isopen or isbuild.

-1 Error; iserrno contains the error code
0 Successful
8-20 C-ISAM Programmer’s Manual

iscluster
iscluster
Use iscluster to change the physical order of a C-ISAM file to key sequence.

Syntax
int iscluster(isfd, keydesc)

int isfd;
struct keydesc *keydesc;

Usage
The C-ISAM file must be opened for exclusive access; the file cannot have an
audit trail at the time that you use the function.

The function copies the records of the file to a new file and returns a new file
descriptor that must be used with the new file. The records in the new file are
physically in the order that the key defines. After successfully copying the
file, the function removes the original file, renames the new file to the old
filename, and leaves the file open for processing.

The iscluster function re-creates all indexes. You can use any index to specify
the physical order of the file. Addition or deletion of records changes the
physical order of records in the file, so that the effect of clustering can be lost
over an extended period of time.

The iscluster call cannot be rolled back within a transaction but can be
recovered.

Return Codes

isfd is the file descriptor of the file that you want to modify.
keydesc is a pointer to the key-description structure that specifies the

new physical order for the file.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-21

iscluster
Example
#include <isam.h>
struct keydesc nkey;
.
.
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
.
.
.
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)

{
if ((newfd=iscluster(fd,&nkey)) < 0)

{
printf ("iscluster error %d",iserrno);
exit (1);
}
/* file is now open and in physical order
by name */

fd = newfd;
.

8-22 C-ISAM Programmer’s Manual

iscommit
iscommit
Use iscommit to end a transaction and release all locks.

Syntax
int iscommit()

Usage
All changes to the C-ISAM files within the transaction occur as calls are made.
The iscommit function marks the transaction as completed in the log file so
that the changes are rolled forward when the file must be recovered. The
function releases any locks that the transaction holds.

Calling iscommit without a prior call to isbegin causes an error.

Return Codes

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-23

iscommit
Example
isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();
break; }

cc1 =addemployee();
if (cc1 == SUCCESS) cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

8-24 C-ISAM Programmer’s Manual

isdelcurr
isdelcurr
Use isdelcurr to delete the current record from the C-ISAM file.

Syntax
int isdelcurr(isfd)

int isfd;

Usage
The isdelcurr function removes the key from each existing index. The
function is useful when, for example, you want to delete the most-recent
record read with isread.

The isrecnum global variable is set to the record number of the deleted
record.

The current record is undefined because it points to space that contained the
deleted record.

Return Codes

Example
cc = isdelcurr(fd);

isfd is the file descriptor returned by isopen or isbuild.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-25

isdelete
isdelete
Use isdelete to delete a record using the primary key.

Syntax
int isdelete(isfd, record)

int isfd;
char *record;

Usage
The isdelete function uses a unique primary index to find the record that you
want to delete. You must have defined a unique primary index when you
created the file. If the primary index is not unique, use isread to find the
record and isdelcurr to delete it.

You cannot use this function with files that are created with INFORMIX-4GL,
INFORMIX-SQL, or an SQL API, such as INFORMIX-ESQL/C, because the
C-ISAM files that constitute SQL databases do not contain primary indexes.
Use isdelcurr instead.

The function removes the key of the record from each index.

The isdelete function does not change the current record.

The isdelete function sets isrecnum to the record number of the deleted
record.

Return Codes

isfd is the file descriptor returned by isopen or isbuild.
record contains a key value in the position defined for the primary

key.

-1 Error; iserrno contains the error code
0 Successful
8-26 C-ISAM Programmer’s Manual

isdelete
Example
char emprec[85];
int fd;
int cc;
.
.
.
/* Set up key to delete Employee No. 101 */
stlong(101L,&emprec[0]);

cc = isdelete(fd,emprec);
Call Formats and Descriptions 8-27

isdelindex
isdelindex
Use isdelindex to remove an existing index.

Syntax
int isdelindex(isfd, keydesc)

int isfd;
struct keydesc *keydesc;

Usage
You must open the C-ISAM file for exclusive access.

You can use isdelindex to delete any index except the primary index. The
key-description structure identifies the index that you want to delete.

The isdelindex call cannot be rolled back within a transaction but can be
recovered.

Return Codes

isfd is the file descriptor returned by isopen or isbuild.
keydesc is a pointer to a key-description structure.

-1 Error; iserrno contains the error code
0 Successful
8-28 C-ISAM Programmer’s Manual

isdelindex
Example
#include <isam.h>
struct keydesc nkey;
.
.
.
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
.
.
.
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)

{
if (isdelindex(fd,&nkey) < 0)

{
printf ("isdelindex error %d",iserrno);
exit (1);
}

}

Call Formats and Descriptions 8-29

isdelrec
isdelrec
Use isdelrec to delete a record using the record number.

Syntax
int isdelrec(isfd, recnum)

int isfd;
long recnum;

Usage
The isdelrec function uses the record number to find the record that you want
to delete. Use this function if you know the record number of the record. You
know the record number, for example, if you save the value of isrecnum
when you find the record. The isdelrec function does not change the current
record position.

The isdelrec function removes the key from each index.

The isrecnum global variable is set to the record number of the deleted
record.

Return Codes

Example
Use the following syntax to delete record 100:

cc = isdelrec(fd,100L);

isfd is the file descriptor returned by isopen or isbuild.
recnum is the record number of the data-file record.

-1 Error; iserrno contains the error code
0 Successful
8-30 C-ISAM Programmer’s Manual

iserase
iserase
Use iserase to remove the operating-system files that constitute the C-ISAM
file.

Syntax
int iserase(filename)

char *filename;

Usage
Do not use a filename extension with the filename argument. The function
deletes filename.idx and filename.dat (and the audit-trail file, if it exists).

You must close the file that you want to delete before you call iserase.

The iserase function cannot be rolled back within a transaction but can be
recovered.

Return Codes

Example
iserase ("personnel");

filename is the C-ISAM file that you want to delete.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-31

isflush
isflush
Use isflush to immediately flush any buffered index pages to the operating
system.

Syntax
int isflush(isfd)

int isfd;

Usage
Ordinarily, C-ISAM flushes data to the operating system after each function
call. Data is not immediately written to the operating system on single-user
systems where the operating system does not provide a locking facility, nor
for C-ISAM files that are opened for exclusive access. Periodic calls to isflush
protect you against substantial loss of data during a system crash.

Use isflush only on files that have been opened with ISOUTPUT or ISINOUT.

Return Codes

Example
isflush(fd);

isfd is the file descriptor returned by isopen or isbuild.

-1 Error; iserrno contains the error code
0 Successful
8-32 C-ISAM Programmer’s Manual

isglsversion
isglsversion
Use isglsversion to determine whether a localized collation sequence is
associated with a C-ISAM file.

In C-ISAM, Version 7.2, the isglsversion function replaces the isnlsversion
function.

Syntax
int isglsversion(name)

name *char;

Usage
When isglsversion is true, you can use islanginfo to determine the name of
the collation sequence. For more information, see “Determining Index-
Collation Sequence” on page B-11.

Return Codes

GLS

name is the specification of an existing C-ISAM file.

-1 Error; iserrno contains the error code.
0 No localized collation sequence is associated with the file.
1 A localized collation sequence is associated with the file.
Call Formats and Descriptions 8-33

isglsversion
Example
#include <isam.h>
#define SUCCESS 0

int cc;

main()
{
/* determine if file was built with localized collation*/
cc = isglsversion("employee");

if (cc < SUCCESS)
{
printf("isglsversion error %d for employee file\n",

iserrno);
exit(1);
}

if (cc == 1)
{
printf("\nemployee file HAS LOCALIZED indexes \n");
/*use islanginfo to get the value of lang used for index */
printf("The LANG of the index is %s\n",

islanginfo("employee"));
exit(1);
}

if (cc == 0) printf("\nemployee file DOES NOT HAVE LOCALIZED
indexes \n");

}

♦

8-34 C-ISAM Programmer’s Manual

isindexinfo
isindexinfo
Use isindexinfo to determine information about the structure and indexes of
a C-ISAM file.

Syntax
int isindexinfo(isfd, buffer, number)

int isfd;
struct keydesc *buffer;
/** buffer might be a pointer to a*/
/** dictinfo structure instead. */
int number;

Usage
To retrieve information about a specific index, you must provide the index
number as the number argument. You use a pointer to a keydesc structure to
receive the information.

To get general information, including the number of indexes, index-node
size, and data-record size, you call isindexinfo with number set to 0 and with
a buffer of structure type dictinfo.

Indexes are associated with numbers, starting with 1. The primary index is
always index 1. As indexes are added and deleted, the number of a particular
index can change. To ensure review of all indexes, loop over the number of
indexes indicated in dictinfo.

isfd is the file descriptor returned by isopen or isbuild.
buffer is a pointer to a structure.
number is either an index number or zero.
Call Formats and Descriptions 8-35

isindexinfo
When the file has variable-length records, isindexinfo stores the minimum
record length (that is, the length of the fixed-length portion) in the global
variable isreclen. In addition, when the file has variable-length records, the
di_nkeys and di_recsize variables pointed to by buffer contain information
that is specific to the variable-length records as shown in the following list:

■ di_nkeys

When the file supports variable-length records, the significant bit is
set. The remaining bits indicate the number of indexes that are
defined for the file.

■ di_recsize

This field contains the maximum record size in bytes.

See “Determining Index Structures” on page 2-12 for more information on
the dictinfo structure.

Return Codes

Examples
To get general information about the C-ISAM file, call isindexinfo as shown
in the following example:

#include <isam.h>
struct dictinfo info;
.
.
.
fd = isopen ("employee",ISINPUT+ISEXCLLOCK);
isindexinfo (fd,&info,0);
printf ("\nRecord size in bytes=%d",info.di_recsize);
printf ("\nNumber of records in the file=%d",

info.di_nrecords);
isclose (fd);
exit (0);

-1 Error; iserrno contains the error code
0 Successful
8-36 C-ISAM Programmer’s Manual

isindexinfo
To get information about each index, call isindexinfo as shown in the
following example:

#include <isam.h>
struct dictinfo info;
struct keydesckdesc;
.
.
.
/* get number of keys */
isindexinfo (fd,&info,0);

/* Mask off significant bit to leave number of
* indexes defined for the file */

numkeys = info.di_nkeys & 0x7fff;
 while (numkeys > 0)
{
/* get structure and decrement index number */
isindexinfo (fd,&kdesc,numkeys--);
.
.
.
}

Call Formats and Descriptions 8-37

islanginfo
islanginfo
Use islanginfo to determine what, if any, localized collation sequence was
associated with a C-ISAM index file.

Syntax
char * islanginfo(name)

char * name ;

Usage
If a localized collation is associated with the file, the collation specification
string is returned. If not, null is returned. For more information about using
collation sequences, see “Determining Index-Collation Sequence” on
page B-11.

Use islanginfo after calling isglsversion; isglsversion determines if a
localized collation sequence is associated with an index file.

Example
#include <isam.h>

/* determine if file was built with localized collation*/
cc = isglsversion("employee");
if (cc < SUCCESS)

{
printf("isglsversion error %d for employee file\n",

iserrno);
exit(1);
}

if (cc == 1)
{
printf("\nemployee file HAS LOCALIZED indexes \n");
/* use islanginfo to get the value of lang used for index */
printf("The LANG of the index is %s\n", islanginfo("employee"));
exit(1);

 }
if (cc == 0) printf("\nemployee file DOES NOT HAVE LOCALIZED indexes \n");

}

♦

GLS

name is the name of an existing C-ISAM file.
8-38 C-ISAM Programmer’s Manual

islock
islock
Use islock to lock the entire C-ISAM file.

Syntax
int islock(isfd)

int isfd;

Usage
You must open the file with the ISMANULOCK mode.

Other programs can read records but they cannot update records.

You can release the lock with isunlock. Other programs cannot lock the same
file until you call isunlock.

Return Codes

Example
fd = isopen("employee", ISMANULOCK+ISINOUT);

/* file is unlocked until explicitly locked with islock */
.
.
.
islock(fd); /* file is locked at this point */

/* other programs can read employee records but all
other operations on the file are prevented */
.
.
.
isunlock(fd); /* file is unlocked here */

isfd is the file descriptor of the file you want to lock that is returned
by isopen or isbuild.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-39

islogclose
islogclose
Use islogclose to close the transaction-log file.

Syntax
int islogclose()

Usage
Subsequent C-ISAM function calls do not record anything in the transaction-
log file.

Return Codes

Example
islogclose();

-1 Error; iserrno contains the error code
0 Successful
8-40 C-ISAM Programmer’s Manual

islogopen
islogopen
Use islogopen to open the transaction-log file. All subsequent C-ISAM calls
record appropriate information in this file unless they contain parameters
specifying not to.

Syntax
int islogopen(logname) char *logname;

Usage
The log file must already exist to use islogopen.

Warning: If the log file does not exist, C-ISAM function calls still work, but no log-file
records are saved and recovery is impossible.

Once you call islogopen, you can use ISTRANS mode in an isbuild or isopen
function call.

Return Codes

Example
islogopen("recovery.log");

logname is a pointer to the filename string.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-41

isnlsversion
isnlsversion
The isnlsversion function determines whether a localized collation sequence
is associated with a C-ISAM file. This function is retained in C-ISAM,
Version 7.2, for backward compatibility with existing Version 6.0 and 7.1
C-ISAM programs.

Use the isglsversion function for programs that you write with C-ISAM,
Version 7.2.

Syntax
int isnlsversion(name)

name *char;

Usage
When isnlsversion is true, you can use islanginfo to determine the name of
the collation sequence. For more information, see “Determining Index-
Collation Sequence” on page B-11.

Return Codes

NLS

name is the specification of an existing C-ISAM file.

-1 Error; iserrno contains the error code.
0 No localized collation sequence is associated with the file.
1 A localized collation sequence is associated with the file.
8-42 C-ISAM Programmer’s Manual

isnlsversion
Example
#include <isam.h>
#define SUCCESS 0

int cc;

main()
{
/* determine if file was built with localized collation*/
cc = isnlsversion("employee");

if (cc < SUCCESS)
{
printf("isnlsversion error %d for employee file\n",

iserrno);
exit(1);
}

if (cc == 1)
{
printf("\nemployee file HAS localized indexes \n");
/*use islanginfo to get the value of lang used for index */
printf("The LANG of the index is %s\n",

islanginfo("employee"));
exit(1);
}

if (cc == 0) printf("\nemployee file DOES NOT HAVE localized
indexes \n");

}

♦

Call Formats and Descriptions 8-43

isopen
isopen
Use isopen to open a C-ISAM file for processing.

Syntax
int isopen(filename, mode)

char *filename;
int mode;

filename is the name of the file.
mode is a combination of an access-mode parameter and a

locking-mode parameter and, optionally, a transaction-related
parameter. You add an access-mode parameter to a lock-mode
parameter to specify the mode. Use one of the following
access-mode parameters:
ISINPUT opens the file for input (read only).
ISOUTPUT opens the file for output (write only)
ISINOUT opens the file for both input and output.
Use one of the following locking-mode parameters:
ISEXCLLOCK specifies an exclusive file lock.
ISMANULOCK specifies manual file or record locking, or

no locking.
ISAUTOLOCK specifies automatic record locking.
You can also specify the following parameters:
ISVARLEN indicates that each record contains a

variable-length portion. If you built the file
with ISVARLEN, you must open it with
ISVARLEN.

ISFIXLEN indicates that the record does not contain a
variable-length portion.

ISTRANS enables isrollback to reverse changes to
C-ISAM files within a transaction.

ISNOLOG specifies that this call and subsequent calls
on this file are not logged.
8-44 C-ISAM Programmer’s Manual

isopen
Warning: If at any time, changes are made to a C-ISAM file but not logged in the log
file, recovery is rendered impossible. Either all transactions or no transactions must
be logged for any given C-ISAM file. If you want changes to be logged, call isbegin
before you call isopen.

Usage
The isopen function returns the file descriptor that you must use in
subsequent operations on the C-ISAM file. When you open the file, access is
by way of the primary index. If you need another ordering, use isstart to
select another index or to select record number ordering.

The filename parameter must contain a null-terminated string without an
extension, which is the filename of the C-ISAM file to be processed.

When you use the ISVARLEN parameter with the function call, the global
integer isreclen is set to the maximum record length for the file. If you do not
specify ISVARLEN or ISFIXLEN, ISFIXLEN is assumed. If you attempt to open
a variable-length record file without ISVARLEN, an error is returned.

If you use the ISTRANS parameter, you must have already called islogopen.

Return Codes

Example
fd_per = isopen("perform",ISINOUT+ISMANULOCK+ISTRANS);
fd_per = isopen("employee",ISINOUT+ISEXCLLOCK);
fd_per = isopen("v_employee",ISVARLEN+ISINOUT+ISEXCLLOCK);

-1 Error; iserrno contains the error code
>=0 File descriptor
Call Formats and Descriptions 8-45

isread
isread
Use isread to read records sequentially or randomly, as indicated by the mode
parameter.

Syntax
int isread(isfd, record, mode)

int isfd;
char *record;
int mode;

isfd is the file descriptor returned by isopen or isbuild.
record is a pointer to a string that contains the search value and receives

the record.
mode is one of the following parameters:

ISCURR reads the current record.
ISFIRST reads the first record.
ISLAST reads the last record.
ISNEXT reads the next record.
ISPREV reads the previous record.
ISEQUAL reads the record equal to the search value.
ISGREAT reads the first record that is greater than the search

value.
ISGTEQ reads the first record that is greater than or equal to the

search value. Optionally, you can add one or more of
the following locking options to the search mode:
ISLOCK locks the record.
ISSKIPLOCK sets the record pointer and isrecnum to

the locked record; if isread encounters a
locked record, you can use another
isread with the ISNEXT option to skip
the locked record.

ISWAIT causes the process to wait for a locked
record to become free.

ISLCKW is the same as ISLOCK+ISWAIT.
8-46 C-ISAM Programmer’s Manual

isread
Usage
Place the search value in the record in the appropriate position for the key. If
the search is successful, isread fills the remainder of the record with the
returned record. The record becomes the current record for the file.

The isread function sets the global variable isrecnum to the record number
of the record it reads. If the file has variable-length records, isread sets the
global variable isreclen to the number of bytes that are returned in the record
buffer. The contents of the buffer beyond the value of isreclen are undefined.

You can use isread to read specific records using the record number. Call
isstart with a keydesc structure that contains k_nparts =0, so that retrieval is
in physical order. Subsequent calls to isread with mode set to ISEQUAL cause
the function to look in isrecnum and read the record number.

Add ISLOCK to one of the retrieval-mode parameters to lock a record. The
ISMANULOCK locking-mode must be set when the file is opened. The record
remains locked until you unlock it with isrelease, iscommit, isrollback, or
isclose when you call isclose outside of a transaction.

A Dirty Read occurs when you use isread without ISLOCK, and the isread
gets a record that is locked by another process, which you can read. However,
if you use isread with ISLOCK and the isread encounters a record that
another process has locked, then ELOCKED is returned (unless you set
ISWAIT).

When you are using only part of a composite index, do not use the ISEQUAL
mode. The isread function in the ISEQUAL mode does not find exact matches
for a partial search value. You can use isstart with ISEQUAL and isread with
ISCURR to find the first occurrence of the record.

When you use isread with ISCURR or ISNEXT after you add a record with
iswrite, isread returns the record that you just added. If you use isread with
ISCURR or ISNEXT after you make an isstart call, isread returns the starting
record in either case.

When your isread call with the ISCURR, ISNEXT, or ISPREV option encounters
a locked record, the contents of isrecnum do not change from the time of the
last valid isread call. In addition, the current record is still the last valid
record as returned by the previous isread.
Call Formats and Descriptions 8-47

isread
To skip locked records, use the ISSKIPLOCK option. With ISSKIPLOCK set, if
isread encounters a locked record, isrecnum contains the record number of
the locked record and the locked record is made the current record. Issue
another isread (ISNEXT) call to skip to the next record.

When your isread call with the ISFIRST, ISLAST, ISEQUAL, ISGREAT, or ISGTEQ
option encounters a locked record, isrecnum is set to the record number of
the locked record.

You can use ISWAIT and ISLCKW only if your version of C-ISAM uses the
fcntl() call for record locking.

When isread encounters a locked record without ISSKIPLOCK, one of the
following actions occurs:

■ If the ISWAIT flag is used, the process waits for the lock.

■ If ISWAIT is not used, the process returns value 107 (ELOCKED) in
iserrno.

■ Once an isread call returns EENDFILE, the current record position is
undefined. If you make another isread(ISNEXT) call, the ENOCURR
code is returned.

■ If you use isread(ISEQUAL) and no records match the record that you
are looking for, ENOREC is returned. The entries of the file are
searched sequentially, starting with the record that is indicated by
the value in isrecnum until the end of the file is reached.

Return Codes

-1 Error; iserrno contains the error code
0 Successful
8-48 C-ISAM Programmer’s Manual

isread
Examples
The following code finds the record with the key value 100 in the primary
key field:

/* put 100 into the correct position in the record */
stlong(100L,&emprec[0]);

if (isread(fd,emprec,ISEQUAL)<0)
{
if (iserrno == ENOREC) printf ("record not found");
.
.
.

The following code reads record 500:

pkey.k_nparts = 0; /* choose physical order */
isrecnum = 500L; /* set record number to first

record to be processed */

cc = isstart(fd,&pkey,0,emprec,ISEQUAL);
if (cc >= 0)

if (isread(fd,emprec,ISEQUAL)<0)
{
printf ("read error %d",iserrno);
.
.
.

Call Formats and Descriptions 8-49

isrecover
isrecover
Use isrecover along with the log file to redo all committed transactions in a
copy of the C-ISAM file.

Syntax
int isrecover()

Usage
To use isrecover, you must have a backup copy of the C-ISAM files and a log
file that you started immediately after the backup. The log file must already
be open by a call to islogopen.

No one should use the C-ISAM files before the function finishes executing.

Important: If any filenames are referenced by relative pathnames, it is important to
run the program that calls isrecover from the same directory location as all other
programs that access these files.

Return Codes

Example
isrecover();

-1 Error; iserrno contains the error code
0 Successful
8-50 C-ISAM Programmer’s Manual

isrelease
isrelease
Use isrelease to unlock records that are locked by calls to isread with the
ISLOCK option.

Syntax
int isrelease(isfd)

int isfd;

Usage
The isrelease function unlocks all records that your program locked in the
C-ISAM file. A call to isrelease during a transaction only releases unmodified
records.

If you used an isstart call with the ISKEEPLOCK option, you must use
isrelease to unlock the record.

Locks held within a transaction are not released until iscommit or isrollback
is called.

Return Codes

Example
isrelease(fd);

isfd is the file descriptor returned by isopen or isbuild.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-51

isrename
isrename
Use isrename to change the name of a C-ISAM file.

Syntax
int isrename(oldname, newname)

char *oldname;
char *newname;

Usage
Do not specify a filename extension for the C-ISAM file.

The isrename function renames the .dat and .idx files but does not change the
name of audit-trail files or transaction-log files because their names are not
logically tied to the C-ISAM filename.

The isrename function uses the newname parameter exclusively to determine
placement in the file system of the newly named file. Be careful to correctly
specify this position by using an explicit pathname or relative pathname.
When you use a relative pathname, keep in mind the current working
directory of the program.

The isrename function cannot be rolled back within a transaction but can be
recovered.

Return Codes

Example
isrename ("employee","personnel");

oldname is the file that you want to rename.
newname is the name of the new file.

-1 Error; iserrno contains the error code
0 Successful
8-52 C-ISAM Programmer’s Manual

isrewcurr
isrewcurr
Use isrewcurr to modify or update fields in the current record.

Syntax
int isrewcurr(isfd, record)

int isfd;
char *record;

Usage
When you are using isrewcurr on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

When you change a key field, C-ISAM updates the index entry. You can
change the value of the primary-key field.

The function sets isrecnum to the record number of the current record. The
current record position does not change; that is, isrecnum contains the record
number of the record just written.

Return Codes

isfd is the file descriptor returned by isopen or isbuild.
record contains the complete record including updated fields.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-53

isrewcurr
Examples
cc = isrewcurr(fd,emprec);

When you are using a variable-length record, you might use the following
call. If the minimum length of the record is 84 bytes, the maximum length is
1,084 bytes, and the data being passed to the function is 923 bytes long, set
isreclen to 923 before calling isrewcurr.

isreclen = 923;
cc = isrewcurr(fd, emprec);
8-54 C-ISAM Programmer’s Manual

isrewrec
isrewrec
Use isrewrec to update a record that is identified by its record number.

Syntax
int isrewrec(isfd, recnum, record)

int isfd;
long recnum;
char *record;

Usage
When you are using isrewrec on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

If you change a key field, C-ISAM updates the index entry. You can change the
value of the primary-key field.

The function sets isrecnum to the record number of the record. The current
record position does not change.

Return Codes

Example
The following call rewrites record 404:

cc = isrewrec(fd,404L,emprec);

isfd is the file descriptor returned by isopen or isbuild.
recnum is the record number.
record contains the complete record including updated fields.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-55

isrewrite
isrewrite
Use isrewrite to rewrite the nonprimary key fields of a record in a C-ISAM
file.

Syntax
int isrewrite(isfd, record)

int isfd;
char *record;

Usage
If you are using isrewrite on a variable-length record, you must first set the
global variable isreclen to the actual length of the data in the record
parameter.

The primary key in the record identifies the record that you want to rewrite.

The primary index must be unique.

You cannot change the value of the primary-key field. When you change a
key field in a nonprimary index, the function updates the index.

You cannot use this function with files that are created with INFORMIX-4GL,
INFORMIX-SQL, or an SQL API such as INFORMIX-ESQL/C, because the
C-ISAM files that constitute SQL databases do not contain primary indexes.
Use isrewcurr or isrewrec instead.

C-ISAM does not change the current record position.

The function sets isrecnum to the record number of the record.

isfd is the file descriptor returned by isopen or isbuild.
record contains the complete record including the primary key and the

updated fields.
8-56 C-ISAM Programmer’s Manual

isrewrite
Return Codes

Example
stchar("San Francisco",&emprec[64],20); /* Item to be changed */
cc = isrewrite(fd,emprec); /* Primary key cannot change */

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-57

isrollback
isrollback
Use isrollback to cancel the effect of C-ISAM calls since the last call to isbegin.

Syntax
int isrollback()

Usage
The isrollback function returns any modified records to their original
unmodified state.

You must include the ISTRANS parameter as part of the mode in the isopen
function to effect the reversal of modified records.

You cannot roll back the following functions:

Return Codes

isrename iserase
isaudit isrename
isbuild issetunique
iscluster isuniqueid
isdelindex

-1 Error; iserrno contains the error code
0 Successful
8-58 C-ISAM Programmer’s Manual

isrollback
Example
isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();
break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

Call Formats and Descriptions 8-59

issetunique
issetunique
Use issetunique to set the value of the internally stored unique identifier.

Syntax
int issetunique(isfd, uniqueid)

int isfd;
long uniqueid;

Usage
A uniqueid is maintained for each C-ISAM file. You can use issetunique when
you need a unique primary key value for a record, and no other part of the
record is suitable.

When the value of the uniqueid is less than the current unique identifier, the
function does not change the value. You can use isuniqueid to determine the
greatest uniqueid.

The issetunique call cannot be rolled back within a transaction but can be
recovered.

Return Codes

Example
The following call sets the unique identifier to 10,000, if the identifier is less
than 10,000:

issetunique (fd,10000L);

isfd is the file descriptor returned by isopen or isbuild.
uniqueid is a long integer that specifies the new unique identifier.

-1 Error; iserrno contains the error code
0 Successful
8-60 C-ISAM Programmer’s Manual

isstart
isstart
Use isstart to select the index and the starting point in the index for
subsequent calls to isread.

Syntax
int isstart(isfd, keydesc, length, record, mode)

int isfd;
struct keydesc *keydesc;
int length;
char *record;
int mode;

isfd is the file descriptor returned by isopen or isbuild.
keydesc is a pointer to a key-description structure.
length specifies the part of the key that is to be considered significant

when locating the starting record.
record specifies the key search value.
mode is one of the following parameters:

ISFIRST finds the first record by positioning the
starting point just before the first record.

ISLAST finds the last record by positioning the
starting point just before the last record.

ISEQUAL finds the record equal to the search value.
ISGREAT finds the first record greater than the search

value.
ISGTEQ finds the first record greater than or equal

to the search value.
ISKEEPLOCK causes isstart to keep locks held on any

record in automatic locking-mode.
Call Formats and Descriptions 8-61

isstart
Usage
The isstart function selects the index that you want to use for subsequent
calls to isread but does not read a record in the C-ISAM file.

The key-description structure that defines the index that you want to use is
keydesc.

If you choose the ISEQUAL, ISGREAT, or ISGTEQ mode, place the search key
value in the record in the appropriate position for the key. Alternatively, you
can use these modes with a record number by setting isrecnum.

To locate a record using the entire key, set the length to either 0 or the length
of the entire key.

To locate a record using only part of the key, set the length to the number of
bytes that you want isstart to use when it compares the search key with the
index entries. Subsequent calls to isread using the ISEQUAL, ISGREAT, or
ISGTEQ use the entire key, however.

If the mode is ISFIRST or ISLAST, isstart ignores the contents of record and
length.

If the function cannot find the search value, it returns a value of -1. The
isstart call, however, still sets the index to the one defined by keydesc.

You can use isstart to specify retrieval by record number when you use a
key-description structure with k_nparts= 0. If you use isstart with
k_nparts= 0 and the ISFIRST option, and then issue an isread(ISCURR) call,
C-ISAM looks for the first record (isrecnum = 1). If the first record is no longer
available, C-ISAM returns the first valid record.

The function sets isrecnum to the starting record number. The contents of the
current record do not change.

Use isstart only when you want to change an index or use part of a key as the
search criterion. You do not need to use isstart before each isread call.

Without the ISKEEPLOCK option, an isstart call will unlock any record locked
in automatic mode.
8-62 C-ISAM Programmer’s Manual

isstart
Return Codes

Examples
The following call uses the key-description structure key to select the index.
C-ISAM ignores the contents of len and emprec because the mode specifies
the first index entry.

cc = isstart(fd,&key,len,emprec,ISFIRST);

The following example shows you how to start the index in record order,
beginning with record number 500:

pkey.k_nparts = 0; /* choose physical order */
isrecnum = 500L; /* set record number to first

record to be processed */

cc = isstart(fd,&pkey,0,emprec,ISEQUAL);

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-63

isuniqueid
isuniqueid
Use isuniqueid to return a long integer that is guaranteed to be unique for
the C-ISAM file.

Syntax
int isuniqueid(isfd, uniqueid)

int isfd;
long *uniqueid;

Usage
The value returned by isuniqueid is serially incremented with each call.

This function is useful when you need a unique primary key, and the data
record does not contain any fields of reasonable size that are guaranteed to
be unique.

You must place uniqueid in the data record.

The isuniqueid call cannot be rolled back within a transaction but can be
recovered.

Return Codes

Example
isuniqueid(fd,&key_value);

isfd is the file descriptor returned by isopen or isbuild.
uniqueid is a pointer to the long integer that receives the unique

identifier.

-1 Error; iserrno contains the error code
0 Successful
8-64 C-ISAM Programmer’s Manual

isunlock
isunlock
Use isunlock to remove a lock on a file.

Syntax
int isunlock(isfd)

int isfd;

Important: The isunlock function removes the file lock set by islock.

Return Codes

Example
islock(fd); /* file is locked at this point */

/* other programs can read employee records but all
other operations on the file are prevented */

.

.

.
isunlock(fd); /* file is unlocked here */

isfd is the file descriptor returned by isopen or isbuild.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-65

iswrcurr
iswrcurr
Use iswrcurr to write a record and make it the current record.

Syntax
int iswrcurr(isfd, record)

int isfd;
char *record;

Usage
When you are using iswrcurr on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

Each index receives a key for the record. The function sets isrecnum to this
record, which becomes the current record.

Return Codes

isfd is the file descriptor returned by isopen or isbuild.
record is a pointer to the record that you want to write.

-1 Error; iserrno contains the error code
0 Successful
8-66 C-ISAM Programmer’s Manual

iswrcurr
Example
stlong(101L,&emprec[0]);
.
.
.
if (iswrcurr(fd,emprec) < 0)

{
printf ("iswrcurr error %d",iserrno);
.
.

.
}

else /* this record is the current record */
{

.

.

.

Call Formats and Descriptions 8-67

iswrite
iswrite
Use iswrite to write a record to a C-ISAM file.

Syntax
int iswrite(isfd, record)

int isfd;
char *record;

isfd is the file descriptor returned by isopen or isbuild.

record is a pointer to the record that you want to write.

Usage
If you are using iswrite on a variable-length record, you must first set the
global variable isreclen to the actual length of the data in the record
parameter.

Each index receives a key for the record. The current record does not change.

The function sets isrecnum to the record number of this record.

Return Codes

-1 Error; iserrno contains the error code
0 Successful
8-68 C-ISAM Programmer’s Manual

iswrite
Example
stlong(100L,&emprec[0]);
.
.
.
if (iswrite(fd,emprec) < 0)

{
printf ("iswrite error %d",iserrno);

.

.
}

else /* current record position not changed */
{
.
.
.

Call Formats and Descriptions 8-69

Format-Conversion and Manipulation Functions
Format-Conversion and Manipulation Functions
This section is divided into two parts. The first part defines the functions that
convert between computer-dependent C language data types and the C-ISAM
equivalents. The second part defines functions that you can use to
manipulate the C-ISAM DECIMALTYPE data type.

Format-Conversion Functions
The functions in the following table allow you to convert between computer-
dependent C language data types and the C-ISAM equivalents. They are
defined on the following pages in alphabetical order.

ldchar stchar

lddbl stdbl

lddblnull stdblnull

lddecimal stdecimal

ldfloat stfloat

ldfltnull stfltnull

ldint stint

ldlong stlong
8-70 C-ISAM Programmer’s Manual

ldchar
ldchar
Use ldchar to convert a character string in a C-ISAM data record to a
null-terminated string.

Syntax
void ldchar(fstr,length,cstr);

char *fstr;
int length;
char *cstr;

Usage
C-ISAM does not terminate a character string with a null character. Instead, it
pads the string with trailing spaces. The ldchar function removes trailing
spaces and places a null byte after the last nonblank character.

Example
char rec[39]; /* C-ISAM data file record */
char cname[21]; /* Null-terminated string

without trailing blanks */
.
.
.
ldchar(&rec[4],20,cname);

fstr is a pointer to the starting byte of a C-ISAM character string.
length is the length of the C-ISAM character string.
cstr is the destination string in memory.
Call Formats and Descriptions 8-71

lddbl
lddbl
Use lddbl to return a computer-dependent, double-precision floating-point
number from a C-ISAM DOUBLETYPE format.

Syntax
double double lddbl(p)

char *p;

Important: A C-ISAM DOUBLETYPE number has the same format as a C double
number, except that a C-ISAM number might not be aligned on a word boundary.

Example
char rec[39]; /* C-ISAM Data File Record */

/* Retrieve Trans. Amt.
and Acct. Balance from Record*/

tramt = ldfloat(&rec[26]);
acctbal = lddbl(&rec[30]);

p is a pointer to the starting byte of a C-ISAM DOUBLETYPE
number.
8-72 C-ISAM Programmer’s Manual

lddblnull
lddblnull
Use lddblnull to return a computer-dependent double-precision
floating-point number from a C-ISAM DOUBLETYPE format and
simultaneously test if the value is null.

Syntax
double lddblnull(p, nullflag)

char *p;
short *nullflag;

Usage
A C-ISAM DOUBLETYPE number has the same format as a C double number,
except that a C-ISAM number might not be aligned on a word boundary.

When the value of the DOUBLETYPE number is null, lddblnull sets *nullflag
to 1 and returns a 0.

When the value of the DOUBLETYPE number is not null, lddblnull sets
*nullflag to 0 and returns the value.

Example
char rec[39]; /* C-ISAM Data File Record */

/* Retrieve Trans. Amt.
and Acct. Balance from Record */

tramt = ldfltnull(&rec[26],nlflg);
acctbal = lddblnull(&rec[30],nlflg2);

p is a pointer to the starting byte of a C-ISAM DOUBLETYPE
number.

nullflag is a pointer to the null code.
Call Formats and Descriptions 8-73

lddecimal
lddecimal
Use lddecimal to return a DECIMALTYPE number in a dec_t structure from a
C-ISAM data record.

Syntax
int lddecimal (cp,len,decp)

char *cp;
int len;
dec_t *decp;

Usage
DECIMALTYPE data is stored in a packed format within the C-ISAM file.
DECIMALTYPE data must be transferred into a dec_t structure before the
program can manipulate it.

The length parameter len specifies the length of the packed data and is
between 2 and 17 bytes, inclusive. The packed length is the sum of the
following three items:

1. The number of significant digits to the left of the decimal point,
divided by 2 and rounded up

2. The number of significant digits to the right of the decimal point,
divided by 2 and rounded up

3. Plus 1 byte

See “Sizing DECIMALTYPE Numbers” on page 3-14 for more information.

cp is a pointer to the position in the data record where the decimal
data starts.

len is the length of the decimal data in the data record.
decp is the dec_t structure that receives the decimal data.
8-74 C-ISAM Programmer’s Manual

lddecimal
Return Codes

Example
#include <decimal.h>
dec_t tramt;
dec_t acctbal;
char rec[39]; /* C-ISAM Data Record */
.
.
.
/*Load Transaction Amount and Account Balance from Record */
lddecimal(&rec[26],4,&tramt);
lddecimal(&rec[30],8,&acctbal);

-1201 Underflow error
-1200 Overflow error
0 Successful
Call Formats and Descriptions 8-75

ldfloat
ldfloat
Use ldfloat to return a computer-dependent floating-point number from a
C-ISAM FLOATTYPE format.

Syntax
double ldfloat(p)

char *p;

Usage
A C-ISAM FLOATTYPE number has the same format as a C float number,
except that a C-ISAM number might not be aligned on a word boundary.

Floating-point numbers are returned as double-precision floating-point
numbers.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Retrieve Trans. Amt. and Acct. Balance from Record */
tramt = ldfloat(&rec[26]);
acctbal = lddbl(&rec[30]);

p is a pointer to the C-ISAM FLOATTYPE format number.
8-76 C-ISAM Programmer’s Manual

ldfltnull
ldfltnull
Use ldfltnull to return a computer-dependent floating-point number from a
C-ISAM FLOATTYPE format and simultaneously test if the value is null.

Syntax
double ldfltnull(p,nullflag)

char *p;
short *nullflag;

Usage
A C-ISAM FLOATTYPE number has the same format as a C float number,
except that a C-ISAM number might not be aligned on a word boundary.
Floating-point numbers are returned as double-precision floating point
numbers.

When the value of the FLOATTYPE is null, the ldfltnull sets *nullflag to 1, and
returns a 0.

When the value of the FLOATTYPE is not null, the ldfltnull sets *nullflag to 0,
and returns the value.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Retrieve Trans. Amt. and Acct. Balance from Record */
tramt = ldfltnull(&rec[26],nlflg);
acctbal = lddblnull(&rec[30],nlflg2);

p is a pointer to the starting byte of the C-ISAM FLOATTYPE
format number.

nullflag is a pointer to the null code.
Call Formats and Descriptions 8-77

ldint
ldint
Use ldint to return a computer-dependent integer from a C-ISAM INTTYPE
format.

Syntax
short ldint(p)

char *p;

Usage
C-ISAM stores an INTTYPE integer as a 2-byte signed binary integer with the
most-significant byte first.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Get Customer Number and Status from Record */
custno = ldlong(&rec[0]);
cstatus = ldint(&rec[24]);

p is a pointer to a C-ISAM integer.
8-78 C-ISAM Programmer’s Manual

ldlong
ldlong
Use ldlong to return a computer-dependent long integer from a C-ISAM
LONGTYPE format.

Syntax
long ldlong(p)

char *p;

Usage
C-ISAM stores a LONGTYPE integer as a 4-byte signed binary integer with the
most-significant byte first.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Get Customer Number and Status from Record */
custno = ldlong(&rec[0]);
cstatus = ldint(&rec[24]);

p is a pointer to the C-ISAM LONGTYPE number.
Call Formats and Descriptions 8-79

stchar
stchar
Use stchar to store a character string in a C-ISAM data record.

Syntax
void stchar(cstr,fstr,length);

char *cstr;
char *fstr;
int length;

Usage
C-ISAM does not terminate a character string with a null character; instead it
pads the string with trailing spaces. The stchar function removes the null
character and pads the destination string with trailing blanks to the length
specified by length.

Example
char rec[39]; /* C-ISAM data file record */
char cname[21]; /* Null-terminated string

without trailing blanks */
.
.
.
stchar(cname,&rec[4],20);

cstr is the character string in memory.
fstr is a pointer to the starting byte of the destination C-ISAM

character string.
length is the length of the C-ISAM character string.
8-80 C-ISAM Programmer’s Manual

stdbl
stdbl
Use stdbl to store a computer-dependent double-precision number in a
C-ISAM DOUBLETYPE format.

Syntax
void stdbl(d,p)

double d;
char *p;

Usage
A C-ISAM DOUBLETYPE number has the same format as a C double number,
except that a C-ISAM number might not be aligned on a word boundary.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Trans. Amt.

and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdbl(acctbal,&rec[30]);

d is the double-precision number to be stored.
p is the pointer to the C-ISAM DOUBLETYPE format that receives

the number.
Call Formats and Descriptions 8-81

stdblnull
stdblnull
Use stdblnull to store a computer-dependent double-precision number or a
null in a C-ISAM DOUBLETYPE format.

Syntax
void stdblnull(d,p,nullflag)

double d;
char *p;
short nullflag;

Usage
A C-ISAM DOUBLETYPE number has the same format as a C double number,
except that a C-ISAM number might not be aligned on a word boundary.

When you set nullflag to 1, a C-ISAM null is stored. When nullflag is set to 0,
the value passed is stored.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Trans. Amt.

and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdblnull(acctbal,&rec[30],nlflag);

d is the double-precision number to be stored.
p is the pointer to the C-ISAM DOUBLETYPE format that receives

the number.
nullflag is the null code.
8-82 C-ISAM Programmer’s Manual

stdecimal
stdecimal
Use stdecimal to store a DECIMALTYPE number in a dec_t structure into a
C-ISAM record in packed format.

Syntax
void stdecimal (decp,cp,len)

dec_t *decp;
char *cp;
int len;

Usage
DECIMALTYPE data is stored in a dec_t structure in your C-ISAM program. It
is stored in packed format, however, within the C-ISAM file.

The length parameter len specifies the length of the packed data and is
between 2 and 17 bytes, inclusive. The packed length is the sum of the
following three items:

1. The number of significant digits to the left of the decimal point,
divided by 2 and rounded up

2. The number of significant digits to the right of the decimal point,
divided by 2 and rounded up

3. Plus 1 byte

For more information, see “Sizing DECIMALTYPE Numbers” on page 3-14.

decp is the dec_t structure that contains the decimal data.
cp is a pointer to the position in the data record where the decimal

data starts.
len is the length of the decimal data in the data record.
Call Formats and Descriptions 8-83

stdecimal
Example
char rec[39]; /* C-ISAM Data Record */
.
.
.
/* Store Transaction Amount and Account Balance

into Record */
stdecimal(&tramt,&rec[26],4);
stdecimal(&acctbal,&rec[30],8);
8-84 C-ISAM Programmer’s Manual

stfloat
stfloat
Use stfloat to store a computer-dependent floating-point number in a C-ISAM
FLOATTYPE number.

Syntax
void stfloat(f,p)

float f;
char *p;

Usage
A C-ISAM FLOATTYPE number has the same format as a C float number,
except that a C-ISAM number might not be aligned on a word boundary.

Example
char rec[39]; /* C-ISAM Data File Record */
/* Store Trans. Amt. and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdbl(acctbal,&rec[30]);

f is the floating-point number to be stored in C-ISAM FLOATTYPE
format.

p is the pointer to the C-ISAM FLOATTYPE format to receive the
number.
Call Formats and Descriptions 8-85

stfltnull
stfltnull
Use stfltnull to store a computer-dependent floating-point number or a null
in a C-ISAM FLOATTYPE number.

Syntax
void stfltnull(f,p,nullflag)

float f;
char *p;
short nullflag;

Usage
A C-ISAM FLOATTYPE number has the same format as a C float number,
except that a C-ISAM number might not be aligned on a word boundary.

When nullflag is set to 1, a C-ISAM null is stored; if nullflag is set to 0, the
passed value is stored.

Example
char rec[39]; /* C-ISAM Data File Record */
/* Store Trans. Amt. and Acct. Balance into Record */
stfltnull(tramt,&rec[26],nlflg);
stdbl(acctbal,&rec[30]);

f is the floating-point number to be stored in C-ISAM FLOATTYPE
format.

p is the pointer to the C-ISAM FLOATTYPE format that receives the
number.

nullflag is the null code.
8-86 C-ISAM Programmer’s Manual

stint
stint
Use stint to store a computer-dependent short integer in a C-ISAM INTTYPE
number.

Syntax
void stint(i,p)

short i;
char *p;

Usage
C-ISAM stores an INTTYPE integer as a 2-byte signed binary integer with the
most-significant byte first.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Customer Number and Status into Record */
stlong(custno,&rec[0]);
stint (cstatus,&rec[24]);

i is the computer-dependent short integer to be stored.
p is a pointer to the C-ISAM INTTYPE number that receives the

integer.
Call Formats and Descriptions 8-87

stlong
stlong
Use stlong to store a computer-dependent long integer in a C-ISAM
LONGTYPE format.

Syntax
void stlong(l,p)

long l;
char *p;

Usage
C-ISAM stores a LONGTYPE integer as a 4-byte signed binary integer with the
most-significant byte first.

Example
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Customer Number and Status into Record */
stlong(custno,&rec[0]);
stint (cstatus,&rec[24]);

l is the computer-dependent long integer.
p is the pointer to the C-ISAM LONGTYPE format that receives the

number.
8-88 C-ISAM Programmer’s Manual

DECIMALTYPE Functions
DECIMALTYPE Functions
Functions for manipulation of DECIMALTYPE numbers are described in the
following pages.

deccvasc

dectoasc

deccvint

dectoint

deccvlong

dectolong

deccvflt

dectoflt

deccvdbl

dectodbl

decadd, decsub, decmul, and decdiv

deccmp

deccopy

dececvt and decfcvt
Call Formats and Descriptions 8-89

decadd, decsub, decmul, and decdiv
decadd, decsub, decmul, and decdiv
The decimal arithmetic routines take pointers to three decimal structures as
parameters. The first two decimal structures hold the operands of the
arithmetic function. The third decimal structure holds the result.

Syntax
int decadd(n1, n2, result)/* result = n1 + n2 */

dec_t *n1;
dec_t *n2;
dec_t *result;

int decsub(n1, n2, result)/* result = n1 - n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

int decmul(n1, n2, result)/* result = n1 * n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

int decdiv(n1, n2, result)/* result = n1 / n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

Usage
The result pointer can be the same pointer as either n1 or n2.

n1 is a pointer to the decimal structure of the first operand.
n2 is a pointer to the decimal structure of the second operand.
result is a pointer to the decimal structure of the result of the

operation.
8-90 C-ISAM Programmer’s Manual

decadd, decsub, decmul, and decdiv
Return Codes

-1202 Attempt to divide by zero
-1201 Underflow; result is too small
-1200 Overflow; result is too large
-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-91

deccmp
deccmp
Use deccmp to compare two DECIMALTYPE numbers.

Syntax
int deccmp(n1, n2)

dec_t *n1;
dec_t *n2;

Return Codes

n1 is a pointer to the decimal structure of the first number.
n2 is a pointer to the decimal structure of the second number.

-1 n1 is less than n2
0 The arguments are equal
1 n1 is greater than n2
8-92 C-ISAM Programmer’s Manual

deccopy
deccopy
Use deccopy to copy one dec_t structure to another.

Syntax
void deccopy(n1, n2)

dec_t *n1;
dec_t *n2;

n1 is a pointer to the source dec_t structure.
n2 is a pointer to the destination dec_t structure.
Call Formats and Descriptions 8-93

deccvasc
deccvasc
Use deccvasc to convert a value held as printable characters in a C char type
into a DECIMALTYPE number.

Syntax
int deccvasc(cp, len, np)

char *cp;
int len;
dec_t *np;

Usage
The deccvasc function ignores leading spaces in the character string. The
character string can have a leading plus (+) or minus (-) sign, a decimal point
(.), and numbers to the right of the decimal point. The character string can
contain an exponent preceded by either e or E. The exponent can be preceded
by a + or - sign.

Return Codes

cp points to a string that holds the value that you want to convert.
len is the length of the string.
np is a pointer to a dec_t structure that receives the result of the

conversion.

-1216 Bad exponent
-1213 Non-numeric characters in string
-1201 Underflow; number is too small
-1200 Overflow; number is too large
-1 Error; iserrno contains the error code
0 Successful
8-94 C-ISAM Programmer’s Manual

deccvasc
Example
#include <decimal.h>

char input[80];
dec_t number;

.
 .
 .

/* Get input from terminal */
getline(input);

/* Convert input into decimal number */
deccvasc(input, 32, &number);
Call Formats and Descriptions 8-95

deccvdbl
deccvdbl
Use deccvdbl to convert a C type double into a DECIMALTYPE number.

Syntax
int deccvdbl(dbl, np)

double dbl;
dec_t *np;

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* Set the decimal structure
* mydecimal to 3.14159.
*/
deccvdbl(3.14159, &mydecimal);

mydouble = 123456.78;

/* Convert the variable mydouble into
* a DECIMALTYPE number held in
* mydecimal.
*/
deccvdbl(mydouble, &mydecimal);

dbl is a double-precision floating-point number.
np is a pointer to a dec_t structure that receives the result of the

conversion.

-1 Error; iserrno contains the error code
0 Successful
8-96 C-ISAM Programmer’s Manual

deccvflt
deccvflt
Use deccvflt to convert a C type float into a DECIMALTYPE number.

Syntax
int deccvflt(flt, np)

float flt;
dec_t *np;

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* Set the decimal structure
* myfloat to 3.14159.
*/
deccvflt(3.14159, &mydecimal);

myfloat = 123456.78;

/* Convert the variable myfloat into
* a DECIMALTYPE number held in
* mydecimal.
*/
deccvflt(myfloat, &mydecimal);

flt is a floating-point number.
np is a pointer to a dec_t structure that receives the result of the

conversion.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-97

deccvint
deccvint
Use deccvint to convert a C type short into a DECIMALTYPE number.

Syntax
int deccvint(integer, np)

int integer;
dec_t *np;

Return Codes

Example
#include <decimal.h>

dec_t decnum;

/* Convert the integer value -999
* into a DECIMAL type number
*/
deccvint(-999, &decnum);

integer is the integer that you want to convert.
np is a pointer to a dec_t structure that receives the result of the

conversion.

-1 Error; iserrno contains the error code
0 Successful
8-98 C-ISAM Programmer’s Manual

deccvlong
deccvlong
Use deccvlong to convert a C type long value into a DECIMALTYPE number.

Syntax
int deccvlong(lng, np)

long lng;
dec_t *np;

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
long mylong;

/* Set the decimal structure
* mydecimal to 37.
*/
deccvlong(37L, &mydecimal);

mylong = 123456L;
/* Convert the variable mylong into
* a DECIMAL type number held in
* mydecimal.
*/
deccvlong(mylong, &mydecimal);

lng is a pointer to a long integer.
np is a pointer to a dec_t structure that receives the result of the

conversion.

-1200 DECIMALTYPE number greater than 2,147,483,647
-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-99

dececvt and decfcvt
dececvt and decfcvt
These functions convert a DECIMALTYPE value to an ASCII string. The
dececvt function is the DECIMALTYPE equivalent of UNIX ecvt(3), and
decfcvt is the DECIMALTYPE equivalent of UNIX fcvt(3).

Syntax
char *dececvt(np, ndigit, decpt, sign)

dec_t *np;
int ndigit;
int *decpt;
int *sign;

char *decfcvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

Usage
The dececvt function converts the decimal value pointed to by np into a null-
terminated string of ndigit ASCII digits and returns a pointer to the string.

The low-order digit of the DECIMALTYPE number is rounded.

The decfcvt function is identical to dececvt, except that ndigit specifies the
number of digits to the right of the decimal point instead of the total number
of digits.

np is a pointer to a dec_t structure that contains the number that
you want to convert.

ndigit is, for dececvt, the length of the ASCII string; for decfcvt, it is the
number of digits to the right of the decimal point.

decpt points to an integer that is the position of the decimal point
relative to the beginning of the string. A negative value for
*decpt means to the left of the returned digits.

sign is a pointer to the sign of the result. If the sign of the result is
negative, *sign is nonzero; otherwise, the value is 0.
8-100 C-ISAM Programmer’s Manual

dececvt and decfcvt
Examples
In the following example, let np point to 12345.67 and suppress all
arguments except ndigit:

dececvt(4) = "1235" *decpt = 5
dececvt(10) = "1234567000" *decpt = 5

decfcvt(1) = "123457" *decpt = 5
decfcvt(3) = "12345670" *decpt = 5

In this example, let np point to .001234:

dececvt(4) = "1234" *decpt = -2
dececvt(10) = "1234000000" *decpt = -2

decfcvt(1) = "" *decpt = -2
decfcvt(3) = "1" *decpt = -2
Call Formats and Descriptions 8-101

dectoasc
dectoasc
Use dectoasc to convert a DECIMALTYPE number to a printable ASCII string.

Syntax
int dectoasc(np, cp, len, right)

dec_t *np;
char *cp;
int len;
int right;

Usage
If right equals -1, the number of decimal places is determined by the decimal
value of *np.

If the number does not fit into a character string of length len, dectoasc
converts the number to exponential notation. If the number still does not fit,
dectoasc fills the string with asterisks. If the number is shorter than the string,
it is left justified and padded on the right with blanks.

The string returned by dectoasc is not null terminated.

Return Codes

np is a pointer to the decimal structure whose associated decimal
value you want to convert to an ASCII string

cp is a pointer to the beginning of the character buffer that holds
the ASCII string.

len is the maximum length in bytes of the string buffer.
right is an integer that indicates the number of decimal places to the

right of the decimal point.

-1 Error; iserrno contains the error code
0 Successful
8-102 C-ISAM Programmer’s Manual

dectoasc
Example
#include <decimal.h>

char input[80];
char output[17];
dec_t number;

.

.

.

/* Get input from terminal */
getline(input);

/* Convert input into decimal number */
deccvasc(input, 32, &number);

/* Convert number to printable string */
dectoasc(&number, output, 16, 1);

 /* Null terminate the output string */
 output[16] = '\0';

/* Print the value just entered */
printf("You just entered %s", output);
Call Formats and Descriptions 8-103

dectodbl
dectodbl
Use dectodbl to convert a DECIMALTYPE number into a C type double.

Syntax
int dectodbl(np, dblp)

dec_t *np;
double *dblp;

Usage
The resulting double-precision number receives a total of 16 significant
digits.

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* Convert the DECIMALTYPE value
* held in the decimal structure
* mydecimal to a double pointed to
* by mydouble.
*/
dectodbl(&mydecimal, &mydouble);

np is a pointer to a decimal structure.
dblp is a pointer to a double-precision floating-point number that

receives the result of the conversion.

-1 Error; iserrno contains the error code
0 Successful
8-104 C-ISAM Programmer’s Manual

dectoflt
dectoflt
Use dectoflt to convert a DECIMALTYPE number into a C type float.

Syntax
int dectoflt(np, fltp)

dec_t *np;
float *fltp;

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* Convert the DECIMALTYPE value
* held in the decimal structure
* mydecimal to a floating-point number pointed to
* by myfloat.
*/
dectoflt(&mydecimal, &myfloat);

np is a pointer to a decimal structure.
fltp is a pointer to a floating-point number to receive the result of

the conversion. The resulting floating-point number has eight
significant digits.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-105

dectoint
dectoint
Use dectoint to convert a DECIMALTYPE number into a C int type.

Syntax
int dectoint(np, ip)

dec_t *np;
int *ip;

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
int myinteger;

/* Convert the value in
* mydecimal into an integer
* and place the results in
* the variable myinteger.
*/

dectoint(&mydecimal, &myinteger);

np is a pointer to a decimal structure whose value is converted to
an integer.

ip is a pointer to the integer.

-1200 DECIMALTYPE number greater than 32,767
-1 Error; iserrno contains the error code
0 Successful
8-106 C-ISAM Programmer’s Manual

dectolong
dectolong
Use dectolong to convert a DECIMALTYPE into a C type long.

Syntax
int dectolong(np, lngp)

dec_t *np;
long *lngp;

Return Codes

Example
#include <decimal.h>

dec_t mydecimal;
long mylong;

/* Convert the DECIMALTYPE value
* held in the decimal structure
* mydecimal to a long pointed to
* by mylong.
*/

dectolong(&mydecimal, &mylong);

np is a pointer to a decimal structure.
lngp is a pointer to a long integer where the result of the conversion

will be placed.

-1 Error; iserrno contains the error code
0 Successful
Call Formats and Descriptions 8-107

Summary
Summary
This chapter describes all the functions that are available as part of C-ISAM,
including:

■ file-manipulation functions.

■ format-conversion and format-manipulation functions.

The file-manipulation functions allow you to perform the following
operations:

■ Create and remove files and indexes

■ Access and modify records from within files

■ Lock records or files

■ Implement transactions

■ Perform other functions that are associated with maintaining C-ISAM
files

The format-conversion functions allow you to convert between
computer-dependent representation of numbers and their C-ISAM
counterparts. The format-manipulation routines allow you to manipulate the
C-ISAM DECIMALTYPE data type.

The chapter includes explanations, syntax, return codes, and examples for
each function.
8-108 C-ISAM Programmer’s Manual

A
Appendix
C-ISAM Utilities
The bcheck Utility
The bcheck program is a C-ISAM utility program that checks and
repairs C-ISAM index files. It is distributed with C-ISAM. You
should run it whenever a system crash occurs or whenever you
suspect the integrity of a C-ISAM index.

The bcheck program compares an index file (.idx) to a data file
(.dat) to see if the two are consistent. If they are not, bcheck asks
you if you want to delete and rebuild the corrupted indexes.

You can use the bcheck utility with fixed-length or
variable-length record files. The syntax for using bcheck with
variable-length records, as shown here, is the same as using it
with fixed-length records. Only the -i option has special
functionality for variable-length records.

The bcheck Utility
The bcheck utility does not repair the variable-length data portion of the
index files.

bcheck filename

-y

-n -q

-V

-l -s
-i

Element Purpose Key Considerations
-i Checks index file only. References: For information about checking indexes,

see “Checking Indexes with the -i Option” on
page A-3.

-l Lists entries in B+ trees. None.
-n Responds negatively to all

prompts.
Additional information: When you know in advance
that all your responses to bcheck prompts are
negative, specify the -n option.
References: For information about not specifying the
-n option, see “Choosing Not to Specify the -n or -y
Option” on page A-3.

-q Suppresses printing of the
program banner.

None.

-s Converts an index file from its
existing node size to the current
computer hardware node size.

References: For information about resizing the keys
within an index, see “Resizing Nodes and Indexes
with the -s Option” on page A-4.

-V Displays software version
information.

None.

-y Responds affirmatively to all
prompts.

Restrictions: Do not use the -y option with bcheck
when you are checking the files for the first time.

References: For information about not specifying the
-y option, see “Choosing Not to Specify the -n or -y
Option” on page A-3.

filename Specifies the name of the index
file that you want checked
without the .idx extension.

None.
A-2 C-ISAM Programmer’s Manual

Choosing Not to Specify the -n or -y Option
Unless you use the -n or -y option, bcheck is interactive, waiting for you to
respond to each error that it finds.

For information about using bcheck to check indexes built on a specific
collation sequence, see “Checking Localized Indexes with the bcheck Utility”
on page B-12. ♦

Warning: Use the -y option with caution. Do not run bcheck using the -y option if
you are checking the files for the first time.

Choosing Not to Specify the -n or -y Option
When you do not know your responses to bcheck prompts in advance, you
can choose to not specify the -n or -y option. However, when you do not
specify the -y or -n options, responding to prompts can take a long time.

When you do not specify the -n or -y option, bcheck executes and prompts
you interactively. The prompts from bcheck request confirmation that you
want to re-create the index when bcheck finds bad entries. To repair indexes,
bcheck reads all data from the .dat file and re-creates the index in the .idx file.

Checking Indexes with the -i Option
If you use the -i option with fixed-length records, bcheck checks the index
information in the index files for consistency with the data files.

If you use the -i option with variable-length records, bcheck checks the entire
contents of the index file for free space as well as for consistency. The bcheck
utility also checks the variable-length data that is stored in the index file. The
bcheck utility uses this information if it is necessary to rebuild the index file.

GLS
C-ISAM Utilities A-3

Resizing Nodes and Indexes with the -s Option
Resizing Nodes and Indexes with the -s Option
The -s option resets the NODESIZE parameter from the existing value to the
current machine node size. Use this option after you move a table to a
computer with a different node size. If you are running an application, an
error message that indicates a wrong node size alerts you to node-size
problems.

The -s option does not change any of the characteristics of the index keys
themselves or the variable-length records that reside in the index files. If you
need to resize the keys within an index, use iscluster with a new keydesc
structure.

Messages Received with Variable-Length Records
If you use bcheck with variable-length records, you receive the following
two messages with relevant values in addition to the rest of the standard
bcheck messages:

64 index pages are used for variable-length record storage.
15761 bytes are free in those pages, an average of 246 bytes per page.

Recovering Resources from Irretrievable Files
If you are using variable-length records and the files become severely
corrupted, bcheck can repair the damaged index portion of the files, but it
cannot repair damaged data records. Because the variable-length data is
stored in the index files, you might not be able to retrieve the data.

To repair index files that contain corrupted variable-length data, you must
delete corrupted records with your own C-ISAM program. See “File
Maintenance with Variable-Length Records” on page 6-11 for more
information about retrieving data from corrupted .idx files.
A-4 C-ISAM Programmer’s Manual

Examples Using bcheck
Examples Using bcheck
In the following example, bcheck checks all indexes for custome100 and
finds no errors. For each index, bcheck prints a group of up to eight numbers.
These numbers indicate the position of the key in each record.

bcheck -n custome100

BCHECK C-ISAM B-tree Checker version 7.2
Copyright (C) 1981-1996 Informix Software, Inc.
Software Serial Number INF#R000000

C-ISAM File: custome100

Checking dictionary and file sizes.
Index file node size = 1024
Current C_ISAM index file node size = 1024
Checking data file records.
Checking indexes and key descriptions.
Index 1 = unique key

0 index node(s) used -- 1 index b-tree level(s) used
Index 2 = unique key (0,4,2)

1 index node(s) used -- 1 index b-tree level(s) used
Index 3 = duplicates (111,5,0)

1 index node(s) used -- 1 index b-tree level(s) used
Checking data record and index node free lists.
4 index node(s) used, 0 free --
18 data record(s) used, 4 free

The following example shows a sample run where bcheck finds errors. The
-n option is selected so that each question that bcheck asks is automatically
answered no.

BCHECK C-ISAM B-tree Checker version 7.2
Copyright (C) 1981-1996 Informix Software, Inc.
Software Serial Number INF#R000000

C-ISAM File: custome100

Checking dictionary and file sizes.
Index file node size = 1024
Current C_ISAM index file node size = 1024
Checking data file records.
Checking indexes and key descriptions.
Index 1 = unique key

0 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? no
C-ISAM Utilities A-5

Examples Using bcheck
Index 2 = unique key (0,4,2)
1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? no

Index 3 = duplicates (111,5,0)
1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? no

Checking data record and index node free lists.

ERROR: 3 missing data record(s)
Fix data record free list ? no

4 index node(s) used, 0 free --
18 data record(s) used, 4 free

Because bcheck finds errors, you must delete and rebuild the corrupted
indexes. The -y option is used to answer yes to all questions that bcheck
asks, as shown in the following example:

BCHECK C-ISAM B-tree Checker version 7.2
Copyright (C) 1981-1996 Informix Software, Inc.
Software Serial Number INF#R000000

C-ISAM File: custome100

Checking dictionary and file sizes.
Checking data file records.
Checking indexes and key descriptions.
Index 1 = unique key

1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? yes

Remake index ? yes
Index 2 = unique key (0,4,2)

1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? yes

Remake index ? yes

Index 3 = duplicates (111,5,0)
1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? yes
A-6 C-ISAM Programmer’s Manual

Examples Using bcheck
Remake index ? yes

Checking data record and index node free lists.

ERROR: 3 missing data record(s)
Fix data record free list ? yes

Recreate data record free list
Recreate index 3
Recreate index 2
Recreate index 1

4 index node(s) used, 0 free --
18 data record(s) used, 4 free
C-ISAM Utilities A-7

B
Appendix
The GLS Environment
This appendix provides information about the Global Language
Support (GLS) environment. The GLS locales and files are
described in the following topics:

■ GLS locales

■ Locale names

■ Locale files

■ Code-set files

■ The Informix registry file

This appendix also includes the following topics, which describe
how to use C-ISAM in the GLS environment:

■ How to specify a locale

■ How to set the CLIENT_LOCALE environment variable

■ Collation orders for C-ISAM files

■ How to add a localized index

■ How to determine an index-collation sequence

■ How to use the bcheck utility to check localized indexes

■ The glfiles utility

■ How to generate a list of GLS locales and code-set files

GLS Locales
GLS Locales
With the GLS feature, C-ISAM can support different languages, code sets, and
collation sequences. All culture-specific information is combined in a single
environment, which is called a GLS locale. A locale provides the information
that C-ISAM uses for sorting (collation) and comparing data in a file. To use a
specific collation sequence on a C-ISAM file, you must set a GLS locale in your
runtime environment.

Locale Names
The locale name identifies the particular GLS locale file that your C-ISAM
program uses at runtime. The locale represents the basic language and
cultural conventions that are relevant to the processing of data for a given
language and territory. You use a locale name to set the CLIENT_LOCALE
environment variable when you want to specify a collation sequence on a
C-ISAM file. A GLS locale name has the following form.

@modifier

language territory code_set_ .

Locale
Name
B-2 C-ISAM Programmer’s Manual

Locale Names
The default locale, U.S. English with the 8859-1 code set, has the following
name:

en_us.8859-1

where en indicates the English language, us indicates the United States
territory, and 8859-1 indicates the name of the ISO8859-1 code set. An example
of a locale name for a French-Canadian locale follows:

fr_ca.ISO8859-1

The following example specifies this same locale with a custom collation
sequence for dictionary sorting:

fr_ca.ISO8859-1@dict

Element Purpose Key Considerations
code_set Specifies the name of the computer code set

that the locale uses.
None.

language Specifies the two-character name that
represents the language for a specific locale.

None.

modifier Specifies an optional locale modifier that has
a maximum of four alphanumeric characters.

Additional information: This
specification modifies the default
cultural-convention settings that are
implied in the language_territory
setting. For example, you might set
@modifier to specify a locale that
contains dictionary or telephone-
book sorting order.

territory Specifies a two-character name that
represents the cultural conventions. For
example, territory might specify the Swiss
version of the French, German, or Italian
language.

None.
The GLS Environment B-3

Locale Files
Locale Files
The locale file defines a GLS locale. It describes the basic language and cultural
conventions that are relevant to the processing of data for a given language
and territory. By default, C-ISAM uses the locale file that en_us.8859-1
specifies for locale-sensitive processing. When you build an index with a
specific collation sequence, you set the CLIENT_LOCALE environment
variable to a locale name that identifies the locale file that a C-ISAM program
uses at runtime.

Each locale file has the following two forms:

■ A source locale file is an ASCII file that contains the six locale
categories. This file has the .lc file extension and serves as
documentation for the corresponding object file.

■ An object locale file is used by Informix products at runtime to obtain
locale information quickly. Object locale files have the .lco file
extension.

GLS locale files reside in subdirectories of the $INFORMIXDIR/gls/lcX
directory, where $INFORMIXDIR is the directory in which your Informix
product is installed and X is the version number for the locale object format.
These subdirectories have names of the format lg_tr, where lg is the two-
character language name, and tr is the two-character territory name. The
object and source versions of locale files available for a particular language
and territory reside in these locale subdirectories.

Code-Set Files
A given language has a character set of one or more natural-language
alphabets together with additional symbols for digits, punctuation, and
diacritical marks. Each character set has at least one code set, which maps its
characters to unique bit patterns. ASCII, ISO 8859-1, and EBCDIC are examples
of code sets for the English language.

The number of unique characters in the language determines the amount of
storage that each code-set character requires. Because a single byte can store
values in the range 0 to 255, it can uniquely identify 256 characters. Most
Western languages have fewer than 256 characters and therefore have code
sets made up of single-byte characters. When an application handles data in
such code sets, it can assume that one character is always stored in 1 byte.
B-4 C-ISAM Programmer’s Manual

The Informix registry File
A C-ISAM code-set file (also called a charmap file) defines a code set for use by
locale files. A GLS locale includes the appropriate code-set file for the code set
that it supports.

Each code-set file has the following two forms:

■ The source code-set file is a text file that describes the characters of a
character set. This file has a .cm extension and serves as
documentation for the corresponding object file.

■ The object code-set file is used to create locale object files. Object code-
set conversion files have a .cmo file extension.

C-ISAM includes only the source version of code-set files (.cm). Use these files
as on-line documentation for the locales that use them.

C-ISAM only uses the object code-set conversion files (.cmo) to compile locale
files (.lc). The object code-set conversion files are not needed at runtime.

GLS code-set files reside in the $INFORMIXDIR/gls/cmZ directory, where
$INFORMIXDIR is the directory in which C-ISAM is installed and Z is the
version number for the code-set object format.

The Informix registry File
The Informix Code-Set Name Mapping File, which is called registry, is a text
file that associates code-set names and synonyms with their code-set
numbers. C-ISAM uses the registry file to map a locale specification to a
filename. For example, when you set CLIENT_LOCALE = en_us.8859-1, the
registry file converts this value to en_us/0333.lco, which is the actual
filename of the locale.

Refer to the comments at the top of the registry file for information about the
file format and search algorithm that Informix products use to convert code-
set names to code-set numbers.

The registry file is located in the $INFORMIXDIR/gls/cmZ directory, where
$INFORMIXDIR is the directory in which C-ISAM is installed and Z is the
version number for the code-set object format.
The GLS Environment B-5

C-ISAM in the GLS Environment
C-ISAM in the GLS Environment
The previous section describes the GLS environment. This section shows you
how to specify GLS locales with C-ISAM, how to create an index with a
specific collation sequence, and how to use the bcheck utility to check an
index built on a specific collation sequence.

Specifying a Locale
By default, C-ISAM uses the locale en_us.8859-1. However, when you want to
use a customized version of U.S. English, or British English, or another
language, you must set the locale that specifies the collation sequence that
you want to use. You can use the glfiles utility to generate a list of the locales
that C-ISAM supports. The glfiles utility is described on page B-12.

Important: You must always set the INFORMIXDIR environment variable before
you run a C-ISAM program. C-ISAM uses INFORMIXDIR to locate the locale that it
uses for locale-sensitive processing.

To specify a nondefault locale

1. Set the INFORMIXDIR environment variable to the path where
C-ISAM is installed. (See “Setting the INFORMIXDIR Environment
Variable” on page 1-36.)

2. Determine the locale name for the locale that you want C-ISAM to
use.

For information about determining the locale that is associated with
an existing index, see “Determining Index-Collation Sequence” on
page B-11. To generate a list of the GLS locales that C-ISAM supports,
see “Generating a List of GLS Locales” on page B-14.

3. Set the CLIENT_LOCALE environment variable to the locale name
that specifies the locale that you want to use.

Important: Set the INFORMIXDIR and CLIENT_LOCALE environment variables
before you run a C-ISAM program that uses an index with a specific collation
sequence.
B-6 C-ISAM Programmer’s Manual

Collation Order of Characters in a C-ISAM File
Setting the CLIENT_LOCALE Environment Variable

The CLIENT_LOCALE environment variable specifies the locale that C-ISAM
uses to determine the collation sequence of an index.

For example, to specify a German locale with a custom collation sequence for
phone-book sorting, you might set CLIENT_LOCALE as follows:

setenv CLIENT_LOCALE de_de.ISO8859-1@phon

When you do not explicitly set CLIENT_LOCALE, C-ISAM uses the default
locale, en_us.8859-1.

Collation Order of Characters in a C-ISAM File
C-ISAM uses a GLS locale to control the behavior of collation and string
comparisons. Collation involves the sorting of character data that C-ISAM
stores. A GLS locale contains a COLLATION category, which lists all
characters, in the order in which they sort. C-ISAM, Version 7.2, supports the
following two methods of sorting character data:

■ Code-set order refers to the intrinsic order of characters within a code
set.

The order of the character codes in the code-set file determines the
sort order. For example, in the ASCII code set, A=65 and B=66. A
always sorts before B because 65 is less than 66.

■ Localized order refers to an order of the characters that relates to a real
language.

The order of the characters in the COLLATION category of the locale
file determines the sort order. For example, even though the
character À might have a code-set code of 133, the locale file would
list this character after A and before B (A=65, À=133, B=66).

CLIENT_LOCALE
Locale
Name
p. B-2
The GLS Environment B-7

Creating Localized Indexes
The collation order that a C-ISAM file uses depends on the data type of the
key that the index uses. The following table summarizes these collation
orders.

The difference in collation order is the only distinction between the
CHARTYPE and NCHARTYPE data types. An index that uses a specific
collation sequence is referred to as a localized index. A localized index is
always built on an NCHARTYPE character field.

 Index files created with earlier versions of C-ISAM (before Version 7.2), use
the same collation orders as C-ISAM, Version 7.2, as follows:

■ Code-set order for indexes that designate character fields as
CHARTYPE

■ Localized order for indexes that designate character fields as
NCHARTYPE.

Tip: In the C-ISAM Programmer’s Manual, Version 6.0 and 7.1, indexes built on an
NCHARTYPE character field are referred to as NLS indexes. ♦

Creating Localized Indexes
Localized indexes are indexes that use a specific collation sequence, usually
something other than U.S.English. When you create an index on an
NCHARTYPE character field, the index keys are stored in localized collation
order as opposed to code-set order.

You can build a localized index into a file using the isbuild function or you
can add a localized index later using the isaddindex function, just as with a
nonlocalized index.

Data Types Collation Order

CHARTYPE Code-set order

NCHARTYPE Localized order

NLS
B-8 C-ISAM Programmer’s Manual

Creating Localized Indexes
To create a localized index

1. Set the CLIENT_LOCALE environment variable to the locale that
specifies the collation sequence on which the index is built.

2. Designate the key that the index is built on as NCHARTYPE.

3. Call the isbuild or isaddindex function.

Important: All the indexes associated with a file must use the same collation
sequence.

An Example of Adding a Localized Index

To create an additional localized index on a file that uses a French locale with
a specific collation sequence for phone-book sorting, you might set the locale
environment variable as follows:

setenv CLIENT_LOCALE fr_fr.8859-1@phon

Figure B-1 shows the definition of a key structure for building an additional
localized index on the employé file, a French version of the employee file
described in Chapter 1. To create the localized index, you must set the
nlnkey.k_part[0].kp_type member of the keydesc structure to
NCHARTYPE for this index (nlnkey), and call isaddindex to create the index.
This code is a variation of the code in the add_indx.c demonstration
program.
The GLS Environment B-9

Creating Localized Indexes
Important: If you set CLIENT_LOCALE to an invalid locale or collation sequence,
C-ISAM uses default settings and might build the index with the wrong locale.

#include <isam.h>
.
.
struct keydesc nlnkey;
int fdemploy;

/*This program adds a secondary index for the last name field
* in the employé file, with a localized collation sequence.*/

main()
{
int cc;

fdemploy = cc = isopen("employé", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for employé file\n", iserrno);
exit(1);
}

/* Set up Last Name Key */
nlnkey.k_flags = ISDUPS + COMPRESS;
nlnkey.k_nparts = 1;
nlnkey.k_part[0].kp_start = 4;
nlnkey.k_part[0].kp_leng = 20;
nlnkey.k_part[0].kp_type = NCHARTYPE;

cc = isaddindex(fdemploy, &nlnkey);
if (cc != SUCCESS)

{
printf("isaddindex error %d for employé lname

key\n",iserrno);
exit(1);
}

isclose(fdemploy);
}

Figure B-1
Adding a Localized
Index to a C-ISAM

File
B-10 C-ISAM Programmer’s Manual

Determining Index-Collation Sequence
Determining Index-Collation Sequence
You can use the islanginfo function to determine what locale is associated
with a localized index. For a description of this function, see “islanginfo” on
page 8-38.

The program shown in Figure B-2 calls the isglsversion function to check the
employee file and determine if any of the indexes are localized indexes. If
isglsversion is true, the program calls the islanginfo function to identify the
locale that C-ISAM uses to build the index. To run a C-ISAM program that
modifies records that are associated with the localized index, set the
CLIENT_LOCALE environment variable to the locale that specifies the
collation sequence of the index.

#include <isam.h>
#define SUCCESS 0

int cc;

main()
{
printf("\nThis program determines if the employee\n");
printf("file has localized indexes associated with it. \n\n");

/* determine if file was built with a specific collation
sequence*/

cc = isglsversion("employee");
if (cc < SUCCESS)

{
printf("isglsversion error %d for employee file\n",

iserrno);
exit(1);
}

if (cc == 1)
{
printf("\nemployee file HAS LOCALIZED indexes \n");
/* use islanginfo to get the value of lang for index */
printf("The LANG of the index is %s\n",

islanginfo("employee"));
exit(1);
}

if (cc == 0)
printf("\nemployee file DOES NOT HAVE LOCALIZED indexes

\n");

/* isclose(fdemploy); */
}

Figure B-2
Determining

Whether a Key
Includes

NCHARTYPE and
Identifying Its

Locale
The GLS Environment B-11

Checking Localized Indexes with the bcheck Utility
 For backward compatibility with C-ISAM, Version 6.x and 7.x programs, C-ISAM
Version 7.2 continues to support the isnlsversion function. However, you can use
the isglsversion function to check whether a file has a localized index associated with
it (either GLS or NLS). ♦

Checking Localized Indexes with the bcheck Utility
You can use the bcheck utility on files that use localized indexes. The bcheck
utility verifies that your locale is the same as that of the index file.

To run the bcheck utility on a localized index

1. Set the INFORMIXDIR environment variable to the directory where
C-ISAM is installed.

2. Set the CLIENT_LOCALE environment variable to the locale that
specifies the collation sequence that you want to use with the index.

3. Construct a bcheck command with the utility options that you want.

When using bcheck to check files that use localized indexes, the
CLIENT_LOCALE environment variable must be set to the locale that was
used to build the index. For information on using the islanginfo function to
identify the locale associated with an index, see “Determining Index-
Collation Sequence” on page B-11. ♦

If you use bcheck on localized indexes without first setting INFORMIXDIR
and CLIENT_LOCALE, bcheck will not run and displays an error message.

The glfiles Utility
You can use the glfiles utility to find out what GLS-related files are available
with C-ISAM, Version 7.2. To comply with DOS 8.3 naming conventions,
C-ISAM uses condensed filenames to store GLS locales. These filenames,
therefore, do not match the locale names that you use to set CLIENT_LOCALE.
Use the glfiles utility to generate a more readable list of the following GLS-
related files:

■ The GLS locales that are available on your system

■ The Informix code-set files that are available on your system

NLS

NLS
B-12 C-ISAM Programmer’s Manual

The glfiles Utility
Before you run glfiles, take the following steps:

1. Set the INFORMIXDIR environment variable to the directory in
which you have installed C-ISAM.

If you do not set INFORMIXDIR, glfiles checks the /usr/informix
directory for the GLS files.

2. Change directories to the directory where you want the glfiles
output files to reside.

The utility creates the GLS file listings in the current directory.

If you specify no options, the command is interpreted as glfiles -lc and glfiles
creates a file that lists the names of the locales that are available on your
system.

glfiles

-cm

-lc

Element Purpose Key Considerations
-lc Creates a file that lists the

names of the locales that are
available on your system.

References: For information about the file that the
glfiles utility creates when you use the -lc option, see
“Generating a List of GLS Locales” on page B-14.

-cm Creates a file that lists the
names of the code sets that
are available on your system.

References: For information about the file that the
glfiles utility creates when you use the -cm option, see
“Generating a List of Code-Set Files” on page B-16.
The GLS Environment B-13

Generating a List of GLS Locales
Generating a List of GLS Locales
When you run glfiles with the -lc option, the utility creates a file that lists the
available GLS locales. For each lcX subdirectory in $INFORMIXDIR/gls,
glfiles creates a file in the current directory called lcX.txt, where X is the
version number of the locale object file format. The lcX.txt file lists the locales
in alphabetical order, sorted on the name of the GLS object locale file.

Figure B-3 shows a sample file, lc9.txt, with the format for GLS locales.

Figure B-3
Sample Format for

GLS Locales

Filename: lc9/cs_cs/0354.lco
Language: unknown
Territory: unknown
Modifier: unknown
Code Set: 852
Locale Name: cs_cs.852
.
.
.
Filename: lc9/en_us/0333.lco
Language: English
Territory: United States
Modifier:
Code Set: 8859-1
Locale Name: en_us.8859-1

Filename: lc8/ja_jp/e006.lco
Language: Japanese
Territory: Japan
Code Set: sjis
Locale Name: ja_jp.sjis
B-14 C-ISAM Programmer’s Manual

Generating a List of GLS Locales
The lcX.txt file also contains GLS locales that are compatible with many
operating-system locales. Figure B-4 shows the sample format in lc9.txt for
these locales. C-ISAM provides these compatible locales for backward
compatibility with existing C-ISAM files that use localized indexes. These
compatible locales match the locale names that were used to specify the
collation sequence on a localized index. ♦

Examine the lcX.txt file(s) to determine the GLS locales supported by the
$INFORMIXDIR/gls/lcX directory on your system.

NLS

Figure B-4
Sample Format for

GLS Locales
Compatible with

Operating-System
Locales

Filename: lc9/os/C
Locale Name: C

Filename: lc9/os/POSIX
Locale Name: POSIX

Filename: lc9/os/de
Locale Name: de

Filename: lc9/os/en_US
Locale Name: en_US

Filename: lc9/os/fr
Locale Name: fr
.
.
.

The GLS Environment B-15

Generating a List of Code-Set Files
Generating a List of Code-Set Files
When you run glfiles with the -cm option, the utility creates a file
that lists the available code-set files. For each cmZ subdirectory in
$INFORMIXDIR/gls, glfiles creates a file in the current directory
called cmZ.txt, where Z is the version number of the code-set object
file format. The cmZ.txt file lists the code sets in alphabetical order,
sorted on the name of the GLS object code-set file.

Important: C-ISAM contains only the source versions of code-set files.

Figure B-5 shows a sample file, cm3.txt, with the format for code sets.

Examine the cmZ.txt file to determine the code sets supported by the
$INFORMIXDIR/gls/cmZ directory on your system.

Figure B-5
Sample Format for

C-ISAM
Code-Set Files

Filename: cm3/0333.cm
Code Set: 8859-1

Filename: cm3/0352.cm
Code Set: 850

.

.

.

B-16 C-ISAM Programmer’s Manual

C
Appendix
Error Codes
This appendix lists error codes and status information returned
by C-ISAM calls.

Status Information Bytes
Four bytes, isstat1, isstat2, isstat3, and isstat4, return status
information after C-ISAM calls. These bytes are used primarily by
COBOL programs that use C-ISAM files. isstat1 holds general
status information, such as the success or failure of a C-ISAM call;
isstat2 contains more specific information that has meaning
based on the status code in isstat1. Figure C-1 lists the values of
isstat1.

Figure C-1
isstat1 Values

isstat1 Value Description

0 Successful completion

1 End of file

2 Invalid key

3 System error

9 User-defined errors

Status Information Bytes
Figure C-2 shows the values of isstat2 based on the isstat1 status code.

Figure C-2
isstat2 Values Based on isstat1 Value

isstat1
Value

isstat2
Value Indication

0 - 9 0 No further information is available.

0 2 Duplicate key found.

After a read, this value indicates that the key value for the
current key is equal to the value of that same key in the next
record.

After a write or rewrite, this value indicates that the record
just written created a duplicate key value for at least one
alternate record key for which duplicates are allowed.

2 1 The COBOL program has changed the primary key value
between the successful execution of a READ statement and
the execution of the next REWRITE statement.

2 An attempt has been made to write or rewrite a record that
would create a duplicate key in an indexed file.

3 No record with the specified key can be found.

4 An attempt has been made to write beyond the externally
defined boundaries of an indexed file.

9 The value of isstat2 is defined by the user.
C-2 C-ISAM Programmer’s Manual

Status Information Bytes
Figure C-3 explains the combinations of isstat3 and isstat4 values.

Figure C-3
Combinations of isstat3 and isstat4 Values

isstat3
Value

isstat4
Value Indication

0 0 Successful completion; no further information is available.

0 2 Successful completion; duplicate key found.

After a read, this value indicates that the key value for the
current key is equal to the value of that same key in the next
record. After a write or rewrite, this value indicates that the
record just written created a duplicate key value for at least
one alternative record key for which duplicates are
allowed.

1 0 Beginning or end of file was reached without successful
completion.

2 2 An attempt was made to write or rewrite a record that
would create a duplicate key for a key that does not allow
duplicate values.

2 3 No record with the specified key can be found.

3 5 The filename specified in the isopen() function does not
exist.

3 7 The mode parameter specified in the isopen() function is
not allowed for the file.

3 9 There is a conflict between the fixed file attributes and the
mode parameter specified in the isopen() function.

4 2 An attempt was made to close a file that was not open.

4 3 This call requires a current record. Either there is no current
record, or the current record has been deleted.

4 4 An attempt was made to write or rewrite a record that is
larger or smaller than is allowed for the file.

4 6 A read with ISNEXT was attempted and there is no valid
next record, either because no current record is defined or
because the previous read encountered an end condition.

(1 of 2)
Error Codes C-3

Status Information Bytes
4 7 A read or isstart() was attempted on a file not opened with
mode ISINPUT or ISINOUT.

4 8 A write or iswrcurr() was attempted on a file not opened
with mode ISOUTPUT or ISINOUT.

4 9 A delete, rewrite, isdelrec(), isdelcurr(), isrewrec(), or
isrewcurr() was attempted on a file not opened with mode
ISINOUT.

9 Implementor-defined errors; the value of isstat4 is defined
by the implementor.

isstat3
Value

isstat4
Value Indication

(2 of 2)
C-4 C-ISAM Programmer’s Manual

Status Codes and ISAM Errors
Status Codes and ISAM Errors
Figure C-4 shows the relationships between the isstat variables and the ISAM
error codes. For other errors that do not support isstat3 and isstat4, isstat3
equals isstat1 and isstat4 equals isstat2.

Figure C-4
ISAM Errors and isstat Values

Name Number Description
isstat1
Value

isstat2
Value

isstat3
Value

isstat4
Value

EDUPL 100 An attempt was made to add a duplicate
value to an index with iswrite, isrewrite,
isrewcurr, or isaddindex.

2 2 2 2

ENOTOPEN 101 An attempt was made to perform some
operation on a C-ISAM file that was not
previously opened using the isopen call.

9 0 4
4
4
4
4

2
7
8
9
0

EBADARG 102 One of the arguments of the C-ISAM call is
not within the range of acceptable values
for that argument.

9 0 3
3
4
9

7
9
4

EBADKEY 103 One or more of the elements that make up
the key description is outside of the range
of acceptable values for that element.

9 0 9 0

ETOOMANY 104 The maximum number of files that can be
open at one time would be exceeded if this
request were processed.

9 0 9 0

EBADFILE 105 The format of the C-ISAM file has been
corrupted.

9 0 9 0

ENOTEXCL 106 To add or delete an index, the file must have
been opened with exclusive access.

9 9

ELOCKED 107 The record or file requested by this call
cannot be accessed because another user
has locked it.

9 9

(1 of 3)
Error Codes C-5

Status Codes and ISAM Errors
EKEXISTS 108 An attempt was made to add an index that
has been defined previously.

9 9

EPRIMKEY 109 An attempt was made to delete the primary
key value. The primary key cannot be
deleted by the isdelindex call.

9 9

EENDFILE 110 The beginning or end of file was reached. 1 0 1
4

0
6

ENOREC 111 No record could be found that contained
the requested value in the specified
position.

2 3 2 3

ENOCURR 112 This call must operate on the current
record. The current record is not defined.

2 1 4
4

3
6

EFLOCKED 113 Another user has locked the file exclusively. 9 9

EFNAME 114 The filename is too long. 9 9 0

ENOLOK 115 The lock file cannot be created. 9 0

EBADMEM 116 Adequate memory cannot be allocated. 9 9

EBADCOLL 117 Bad custom collating. 9 0

ELOGREAD 118 Cannot read log file record. 9 0

EBADLOG 119 Record format of transaction-log file cannot
be recognized.

9 0

ELOGOPEN 120 Cannot open transaction-log file. 9 0

ELOGWRIT 121 Cannot write to transaction-log file. 9 0

ENOTRANS 122 Not in transaction. 9 0

ENOBEGIN 124 Beginning of transaction not found. 9 0

ENONFS 125 Cannot use Network File Server. 9 0

EBADROWID 126 Bad record number. 9 0

ENOPRIM 127 No primary key. 9 0

Name Number Description
isstat1
Value

isstat2
Value

isstat3
Value

isstat4
Value

(2 of 3)
C-6 C-ISAM Programmer’s Manual

Status Codes and ISAM Errors
ENOLOG 128 No logging. 9 0

EUSER 129 Too many users. 9 0

ENOFREE 131 No free disk space. 9 0

EROWSIZE 132 Record too long. 9 0

EAUDIT 133 Audit trail exists. 9 0

ENOLOCKS 134 No more locks. 9 0

EDEMO 150 Demo limits have been exceeded. 9 0

ENOMANU 153 Must be in ISMANULOCK mode 9 0

EBADFORMAT 171 Incompatible file format 9 0

Name Number Description
isstat1
Value

isstat2
Value

isstat3
Value

isstat4
Value

(3 of 3)
Error Codes C-7

D
Appendix
File Formats
C-ISAM uses the following four kinds of file formats:

■ Index-file formats

■ Data-file formats

■ Audit-trail file formats

■ Transaction-file formats

The following sections present the formats that C-ISAM index
files contain. The relationships between the nodes are discussed
in Chapter 2, “Indexing.” This section describes all the file
formats. You can use this section as a complete reference.

Index-File Formats
C-ISAM index files (.idx) contain the following nodes:

■ Dictionary node

■ Key-description node

■ Remainder-storage node

■ B+ tree node

■ Free-list node

■ Audit trail node

The dictionary node has two fields to support variable-length
records. The remainder-storage node is used exclusively for
variable-length records. The following sections describe these
and other nodes.

Dictionary Node
Dictionary Node

Byte
Offset

Number
of Bytes Item Value

0 2 Validation FE53

2 1 Number of reserved bytes at start of index node 2

3 1 Number of reserved bytes at end of index node 2

4 1 Number of reserved bytes per key entry. Includes
record number.

4

5 1 Reserved 4

6 2 Index file node length - 1. (511 or
1023)

8 2 Number of keys

10 2 Reserved

12 1 File-version number

13 2 Data-record length in bytes

15 4 Index-node number of first key description

19 1 Localized index flag, true or false

20 5 Reserved

25 4 Index-node number of free data-record list

29 4 Index-node number of free index-node list

33 4 Record number of next record in data file

37 4 Index-node number of next node in index file

41 4 Transaction number

45 4 Unique id

49 4 Pointer to audit-trail information

53 2 Locking method

(1 of 2)
D-2 C-ISAM Programmer’s Manual

Dictionary Node
55 4 Free group 0 hash pointer

59 4 Free group 1 hash pointer

63 4 Free group 2 hash pointer

67 4 Free group 3 hash pointer

71 4 Free group 4 hash pointer

75 36 Collation sequence used if file has localized index

Byte
Offset

Number
of Bytes Item Value

(2 of 2)
File Formats D-3

Key-Description Node
Key-Description Node

Byte
Offset

Number
of
Bytes Item Value

0 2 Number of bytes used in
this node

2 4 Index node for
continuation of key
descriptions

6 2 Length of description

8 4 Index node number of
root

12 1 Compression flags

13 2 Length of key part 1 (top
bit = duplicates)

15 2 Position in data record

17 1 Data type parameter

n-2 1 Flag FF

n-1 1 End of key-description
node

7E

Repeats
for each
key

Repeats
foreach
part of
the key
D-4 C-ISAM Programmer’s Manual

Remainder-Storage Node
Remainder-Storage Node

Byte Offset
Number of
Bytes Item Value

0 2 Reserved

2 2 Constant number 7E26

4 4 Forward pointer in hashed remainder-storage-
page free list

8 4 Backward pointer in hashed remainder-storage-
page free list

12 2 Free space available in this remainder-storage
page

4

14 2 Offset to free space in this remainder-storage page

16 4 Remainder pointer to next remainder space, if any

20 1 Flags

21 1 Number of slots allocated

22 1 Hash group for free-list use

23 varies Data-storage space

varies Free space

4 Slot table, lowest entry

4 Slot table entry

....

n-6 4 Slot table, highest entry

n-2 1 Type 7C

n-1 1 Reserved
File Formats D-5

B+ Tree Node
B+ Tree Node

Free-List Node

Byte
Offset

Number
of
Bytes Item Value

0 2 Number of bytes used in this node

2 1 Count of leading bytes (if compressed)

3 1 Count of trailing blanks (if compressed)

4 k Key (might be compressed)

4+k 2 For duplicate key (if compressed)

6+k 4 Pointer to data record (top bit might
duplicate flag)

N-2 1 Index tree number

N-1 1 Level in tree 0 = leaf
node

Repeats
for each
key
entry

Byte Offset
Number
of Bytes Item Value

0 2 Number of bytes used in this node (n)

2 4 Count of leading bytes, if compressed

6 n-8 Count of trailing blanks, if compressed

n-2 1 Indicates data or index file FF = data file
FE = index file

n-1 1 End of list node flag 7F
D-6 C-ISAM Programmer’s Manual

Audit-Trail Node
Audit-Trail Node

Data-File Format
Data files (.dat) contain only fixed-length data records, a flag at the end of
each record, and if the data has a variable-length portion, two additional
fields that describe the length and placement of the variable-length portion.

If the flag is equal to 0 (ASCII null), the record is deleted. Figure D-1 shows
the data-file format.

Figure D-1
Data File (.dat) Format

Byte Offset
Number
of Bytes Item Value

0 2 Number of bytes used in this node (n)

2 2 Flags 0 = audit trail is on
1 = audit trail is
off

4 64 Audit-trail pathname

. . .

n-1 1 End of list-node flag 7D

Byte Offset
Number
of Bytes Item

0 r Record with length r

r 1 Delete flag

r+1 2 The length of the valid data in the remainder portion; can
be less than space allocated.

r+3 4 The first byte is the slot number (where first part of
remainder is stored); the last 3 bytes are the remainder
node number.
File Formats D-7

Audit-Trail File Format
 Audit-Trail File Format
The audit-trail file contains records that consist of a fixed-length header and
an image of a data record. If the audit trail is associated with a file that
contains variable-length records, it contains a 2-byte entry that indicates the
actual length of the data record. (This entry is not used in audit trails for
fixed-length record files.) Figure D-2 shows the format for audit-trail files for
variable-length records.

Figure D-2
Audit-Trail Records

If the operation is a rewrite, both the before-images and after-images are
recorded in the audit-trail file. The before-image is listed first as an rr type,
and it is followed by the after-image as a ww type. Both have the same record
number.

Byte Offset
Number
of Bytes Item Value

0 2 Audit-trail record type aa = record added
dd = record deleted
rr = record before update
ww =record after update

2 4 Time

6 2 Process-identification
number

8 2 User identification

10 4 Data-file-record number

14 2 Actual length of variable-
length data in bytes

16 r Image of data record

r+16
D-8 C-ISAM Programmer’s Manual

Transaction-File Formats
Transaction-File Formats
Transaction-file records contain a fixed-length header and other information,
which depends on the transaction type. Figure D-3 shows the format of the
header.

Figure D-3
Transaction-Record Header Format

The transaction-log-file format header is the same for variable-length records
as for fixed-length records. The following example lists all the transaction
types:

/* record header definition */

#define LG_LEN0/* current record length */
#define LG_TYPELG_LEN+INTSIZE/* log record type */
#define LG_XIDLG_TYPE+2/* transaction id */
#define LG_USERLG_XID+INTSIZE/* user name */
#define LG_TIMELG_USER+2/* transaction time */
#define LG_PREVLG_TIME+LONGSIZE/* previous log record */
#define LG_PREVLENLG_PREV+LONGSIZE/* previous log length */

/* BEGIN, COMMIT, and ROLLBACK WORK record definition */
#define LG_TXSIZELG_PREVLEN+INTSIZE+INTSIZE
/* record size */

/* build file record definition */
#define LG_FMODELG_PREVLEN+INTSIZE/* build mode */

Byte Offset
Number
of Bytes Item

0 2 Length of the log record

2 2 Transaction type

4 2 Transaction identification

6 2 User identification

8 L Transaction time, L is the size of a long int; measured as the
number of seconds since midnight, 1/1/70

8 + L 8 Reserved

16 + L
File Formats D-9

Transaction-File Formats
#define LG_RECLENLG_FMODE+INTSIZE/* minimum record length */
#define LG_MAXLENLG_RECLEN+INTSIZE/* max rec length or
zero */
#define LG_KFLAGSLG_MAXLEN+INTSIZE/* key flag */
#define LG_NPARTSLG_KFLAGS+INTSIZE/* number of key parts */
#define LG_KLENLG_NPARTS+INTSIZE/* total key length */

/* erase file record definition */
#define LG_FNAMELG_PREVLEN+INTSIZE/* directory path name */

/* rename file record definition */
#define LG_OLENLG_PREVLEN+INTSIZE/* length of old filename */
#define LG_NLENLG_OLEN+INTSIZE/* length of new filename */
#define LG_ONAMELG_NLEN+INTSIZE/* old filename */

/* open and close file record definition */
#define LG_ISFDLG_PREVLEN+INTSIZE/* isfd of file */
#define LG_VARLENLG_ISFD+INTSIZE/* VARLEN flag of file */
#define LG_FPATHLG_VARLEN+INTSIZE/* directory path name */

/* create and drop index */
#define LG_IFLAGSLG_ISFD+INTSIZE/* key flags */
#define LG_INPARTSLG_IFLAGS+INTSIZE/* number of key parts */
#define LG_IKLENLG_INPARTS+INTSIZE/* total key length */

/* set unique id */
#define LG_UNIQIDLG_ISFD+INTSIZE/* new unique id */

/* before or after image record definition */
#define LG_RECNOLG_ISFD+INTSIZE/* record number */
#define LG_IMGLENLG_RECNO+LONGSIZE/* record image length */
#define LG_RECORDLG_IMGLEN+INTSIZE/* record data */

/* update image (before and after together) */
#define LG_BEFLENLG_RECNO+LONGSIZE/* length of before image*/
#define LG_AFTLENLG_BEFLEN+INTSIZE/* length of after image*/
#define LG_BUPDATELG_AFTLEN+INTSIZE
/* before image for update*/
/* (followed by the afterimage) */

/* savepoint record */
#define LG_SAVEPTLG_PREVLEN+INTSIZE/* savepoint number */
#define LG_SSIZELG_SAVEPT+INTSIZE/* record size */

/* log memo record */
#defineLG_LOCATIONLG_PREVLEN+INTSIZE
#define LG_ISERRNO LG_LOCATION+LONGSIZE
#define LG_ERRNO LG_ISERRNO+INTSIZE
D-10 C-ISAM Programmer’s Manual

Transaction-File Formats
#define LG_ISERRIO LG_ERRNO+INTSIZE
#define LG_ISSTAT1 LG_ISERRIO+INTSIZE
#define LG_ISSTAT2 LG_ISSTAT1+1
#define LG_ISSTAT3 LG_ISSTAT2+1
#define LG_ISSTAT4 LG_ISSTAT3+1
#define LG_TEXT LG_ISSTAT4+1

#define LG_PAGESIZE 4096/* default log buff size */

/* log record types */
#define LG_ERROR0/* log read or write error */
#define LG_BEGWORK1/* BEGIN WORK */
#define LG_COMWORK2/* COMMIT WORK */
#define LG_ROLWORK3/* ROLLBACK WORK */
#define LG_DELETE4/* deleted record */
#define LG_INSERT5/* newly inserted record */
#define LG_UPDATE6/* updated record */
#define LG_VERSION7/* version */
#define LG_SVPOINT8/* savepoint */
#define LG_FOPEN9/* open file */
#define LG_FCLOSE10/* close file */
#define LG_CKPOINT11/* checkpoint */
#define LG_BUILD12/* build new file */
#define LG_ERASE13/* erase old file */
#define LG_RFORWARD14/* ROLLFORWARD */
#define LG_CINDEX15/* create index */
#define LG_DINDEX16/* drop index */
#define LG_EOF17/* end of log file */
#define LG_RENAME18/* rename file */
#define LG_SETUNIQID19/* set unique id */
#define LG_UNIQUEID20/* get unique id */
#define LG_RBSVPT21/* rollback to savepoint */
#define LG_CLUSIDX 22 /* create cluster index */
#define LG_MEMO 23 /* log file memo record */

#define TRUE1
#define FALSE0

#define NOPNFL 16

/* “smart” recovery flags */
#define R_NOTRANS 0x01 /*recover records outside
of transx */
#define R_FERRORS 0x02 /* file errors */
^L
/*
 * recovery opens
 * iropens is used with is logging
* during recovery, it keeps a list of all files open by all

processes
 */
File Formats D-11

Transaction-File Formats
struct iropen
 {
 short iro_risfd; /* recovery open isfd */
 short iro_cnt; /* recovery - # of txs using */
 short iro_flag; /* flags - see below */
 char *iro_path; /* dir path for file */
 struct iropen *iro_next; /* next in list */
 };

/* define for iro_flag
 */
#define IRO_CURRTX 001 /* is file open for curr tx */
#define IRO_VARLEN 002 /* file has var len records */

struct txlist
 {
 int tx_xid; /* transaction id */
 int tx_flag; /* transaction flags */
 struct xrloc *tx_nextrec; /* next log rec in transaction */
 struct txlist *tx_next; /* next transaction */
 struct txo *tx_opens; /* open list */
 };

/* values for tx_flag */

#define TX_BEGWORK 0x1 /* begin work found for transx */

struct xrloc
 {
 int xr_logtype; /* log record type */
 int xr_size; /* log record size */
 long xr_loc; /* location in log file */
 struct xrloc *xr_next; /* next log rec in transaction */
 };

struct txo
 {
 int txo_ofd; /* original transactions fd */
 struct iropen *txo_ro; /* pointer into openefile */
 struct txo *txo_next;
 };
D-12 C-ISAM Programmer’s Manual

E
Appendix
System Administration
This appendix discusses the following topics:

■ Installation issues

■ Removing GLS files to save disk space

■ Migrating C-ISAM files

■ System administration facilities

Use this appendix with the installation instructions that come
with C-ISAM.

Installation
The following sections identify the files that are included with
your C-ISAM system and explain how to set the ISAMBUFS
parameter for buffered input and output.

Files
Your installation media for the C-ISAM system contains several
program files that the commands in installisam installs. (Refer
to the installation instructions that come with the product for
exact instructions on how to run these commands.)

Buffers
The files that you need for programs that use C-ISAM files are described in the
following table:

Several sample programs also come with C-ISAM. You can compile and
execute them to demonstrate that the files are correctly installed.

Buffers
C-ISAM uses operating-system buffers to reduce the number of disk I/O
operations that are required during the execution of function calls. In
addition to operating-system buffers, C-ISAM maintains its own buffer pool
to reduce the number of times that it calls the operating system to perform
I/O. These C-ISAM buffers, therefore, further reduce overhead during C-ISAM
calls. The parameter ISAMBUFS allows you to specify the number of internal
buffers that are available to C-ISAM.

The size of each buffer is 1 kilobyte. The default ISAMBUFS value is 16.
Typically, you should allocate four buffers for every index that is in use at any
one time. You must allocate a minimum of four buffers (total). The total
number of buffers that you can allocate is the number equal to the maximum
small integer on your system.

If you are using the Bourne or Korn shell, enter the following commands:

ISAMBUFS=xx
export ISAMBUFS

File Description

isam.h Must be included in each program.

decimal.h Must be included in all programs that reference the Decimal data
type. (See Chapter 3, “Data Types.”)

libisam.a Is used whenever you compile a program that uses C-ISAM files.
(See “Compiling Your C-ISAM Program” on page 1-35 for
compilation instructions.)

.lco (locale
object files)

Are used for locale-sensitive processing at runtime.
E-2 C-ISAM Programmer’s Manual

Saving Disk Space
If you are using the C shell, enter the following command:

setenv ISAMBUFS xx

In all cases, xx is the number of buffers that you want to use (for example 4,
16, or some other number).

Saving Disk Space
C-ISAM automatically installs GLS locale and code-set files that allow you to
build indexes for different collation sequences. The locale and code-set files
represent the particular languages and territories and define different
collation sequences that you can use. The sections that follow describe the
GLS files that you might remove to increase your available disk space.

Removing Locale Files
To save disk space, you might want to keep only the locale files that you
intend to use. You can safely remove the following GLS files from your
C-ISAM product:

■ Locale source files (.lc)

■ Locale object files (.lco)

These files can be removed from the subdirectories of
$INFORMIXDIR/gls/lcX for the locales that you do not intend to use.

Warning: Do not remove the object locale file for the U.S. ASCII English locale,
$INFORMIXDIR/gls/lcX/en_us/0333.lco. In addition, do not remove the Informix
Code-Set Name Mapping file, registry. C-ISAM uses these files for the language
processing of all locales.

Because C-ISAM does not access source versions of locale files, you can safely
remove them. However, these files do provide useful on-line documentation
for the supported locales. If you have enough disk space, Informix
recommends that you keep these source files for the GLS locales that are
supported.

For more information about the GLS locale files, see “Locale Files” on
page B-4.

GLS
System Administration E-3

Removing Code-Set Files
Removing Code-Set Files
C-ISAM Version 7.2 includes only the source version of code-set files (.cm).
C-ISAM provides these files as on-line documentation for the locales that use
them. Because C-ISAM does not access source code-set files, you can safely
remove them. However, if you have enough disk space, Informix
recommends that you keep these source files for the GLS locales that are
supported.

For more information on code-set files, see “Code-Set Files” on page B-4. ♦

Migrating C-ISAM Files
When you migrate C-ISAM applications, be aware of changes in the way you
specify locale information.

Migrating Version 6.0 and 7.1 Applications
C-ISAM, Version 7.2, files are compatible with Version 6.0, or 7.1 applications.
However, to manipulate files that use localized indexes, you must link your
application with C-ISAM, Version 7.2, libraries and set the locale environment
before you run the application.

To migrate a 6.0 or 7.1 application that uses a localized index

1. Link the application with C-ISAM, Version 7.2, libraries. For example,
if you installed C-ISAM using the default directories, you might use
the following command line:

cc filename.c -lisam

2. Set the INFORMIXDIR environment variable to the directory where
C-ISAM is installed.

3. Set the CLIENT_LOCALE environment variable to the locale that
specifies the collation sequence.

GLS
E-4 C-ISAM Programmer’s Manual

Migrating Version 6.0 and 7.1 Files with Localized Indexes
When you set INFORMIXDIR and CLIENT_LOCALE, C-ISAM can locate and
use the locale that it needs for locale-sensitive processing. A Version 6.0 or 7.1
application can still call the setlocale function. The setlocale function might
affect operating-system functions such as isalpha, but it does not affect the
behavior of C-ISAM, Version 7.2, processing. ♦

Migrating Version 6.0 and 7.1 Files with Localized Indexes
C-ISAM, Version 6.0 or 7.1, files are compatible with C-ISAM, Version 7.2,
applications.

To run a 7.2 application that uses a localized Index

1. Set the INFORMIXDIR environment variable to the directory where
C-ISAM is installed.

2. If necessary, use the islanginfo function to determine the name of the
locale that is associated with the localized index.

3. Set the CLIENT_LOCALE environment variable to the value that
LC_COLLATE specified when the localized index was built.

Version 7.2 applications do not require a call to the setlocale()
function to specify a custom collation order. C-ISAM uses the value of
CLIENT_LOCALE to determine the locale that specifies the collation
order. ♦

Transaction Logging and Recovery
You can use the transaction-log file to write a program that recovers C-ISAM
files. Your program must open the log file and issue the isrecover call, as
follows:

islogopen(logfile);
isrecover();
islogclose();

Ordinarily, your program would include error checking in addition to the
islogopen, isrecover, and islogclose function calls.

Before you execute this program, you must restore the C-ISAM files that you
want to recover from backup media.

GLS
System Administration E-5

Determining Version and Serial Number
All programs that access recoverable C-ISAM files must have the same log file;
otherwise, transaction recovery does not succeed. If you discover that a
program made unlogged changes to a C-ISAM file or that different log files
are being used concurrently, take the following actions:

1. Stop all programs that are using the C-ISAM file.

2. Make a backup copy of the C-ISAM file.

3. Use the same new log file to restart all programs.

If you discover after recovery becomes necessary that unlogged changes
were made to a C-ISAM file or that different log files are being used
concurrently, C-ISAM cannot guarantee integrity.

Determining Version and Serial Number
You can determine the version and serial number of your C-ISAM product
from two global variables defined in isam.h. The variable isversnumber
contains the version number and isserial contains the serial number. When
you open a file, or attempt to open a file, these variables are set.

You can compile and run the following lines to determine the version and
serial numbers. You must link in libisam.a, as with any C-ISAM program.

#include <isam.h>
#include <stdio.h>
main()
{

isopen ("fake", ISINPUT);/* attempts to open file*/
printf("\nVersion number = %s,\nSerial number = %s\n",

isversnumber, isserial);
}

E-6 C-ISAM Programmer’s Manual

F
Appendix
Header Files
This appendix lists the contents of the isam.h and decimal.h
header files.

The isam.h Header File
You must include the file isam.h in every C-ISAM program.
Figure F-1 shows the contents of the isam.h.

Figure F-1
Contents of isam.h File

#ifndef ISAM_INCL/ * avoid multiple include problems */
#define ISAM_INCL

#ifdef __STDC__
#include “../incl/decimal.h”
#endif

#define CHARTYPE 0
#define DECIMALTYPE0
#define CHARSIZE 1

#define INTTYPE 1
#define INTSIZE 2

#define LONGTYPE 2
#define LONGSIZE 4

#define DOUBLETYPE 3
#ifndef NOFLOAT
#define DOUBLESIZE (sizeof(double))
#endif /* NOFLOAT */

#ifndef NOFLOAT
#define FLOATTYPE 4
#define FLOATSIZE (sizeof(float))
#endif /* NOFLOAT */

The isam.h Header File
#define USERCOLL(x)((x))

#define COLLATE1 0x10
#define COLLATE2 0x20
#define COLLATE3 0x30
#define COLLATE4 0x40
#define COLLATE5 0x50
#define COLLATE6 0x60
#define COLLATE7 0x70

#define NCHARTYPE 7/* CHARacter TYPE with localized collation */

#define MAXTYPE5
#define ISDESC 0x80 /* add to make descending type*/
#define TYPEMASK0x7F /* type mask*/

#define BYTEMASK 0xFF/* mask for one byte*/
#define BYTESHFT 8/* shift for one byte*/

#ifndef ldint
#define ldint(p) ((short)(((p)[0]<<BYTESHFT)+((p)[1]&BYTEMASK)))
#define stint(i,p) ((p)[0]=(i)>>BYTESHFT,(p)[1]=(i))
#endif

#ifndef ldlong
long ldlong();
#endif

#ifndef NOFLOAT
#ifndefldfloat
doubleldfloat();
#endif
#ifndeflddbl
doublelddbl();
#endif
double ldfltnull();
double lddblnull();
#endif

#define ISFIRST0 /* position to first record*/
#define ISLAST 1 /* position to last record*/
#define ISNEXT 2 /* position to next record*/
#define ISPREV 3 /* position to previous record*/
#define ISCURR 4 /* position to current record*/
#define ISEQUAL5 /* position to equal value*/
#define ISGREAT6 /* position to greater value*/
#define ISGTEQ 7 /* position to >= value*/

/* isread lock modes */
#define ISLOCK 0x100 /* record lock*/
#define ISSKIPLOCK 0x200 /* skip record even if locked*/
#define ISWAIT 0x400 /* wait for record lock*/
#define ISLCKW 0x500 /* ISLOCK + ISWAIT */

/* isstart lock modes */
#define ISKEEPLOCK 0x800 /* keep rec lock in autolk mode*/

/* isopen, isbuild lock modes */
#define ISAUTOLOCK 0x200 /* automatic record lock*/
#define ISMANULOCK 0x400 /* manual record lock*/
F-2 C-ISAM Programmer’s Manual

The isam.h Header File
#define ISEXCLLOCK 0x800 /* exclusive isam file lock*/

/* isopen, isbuild file types */
#define ISINPUT 0 /* open for input only*/
#define ISOUTPUT 1 /* open for output only*/
#define ISINOUT 2 /* open for input and output*/
#define ISTRANS 4 /* open for transaction proc*/
#define ISNOLOG 8 /* no loggin for this file*/
#define ISVARLEN 0x10 /* variable length records*/
#define ISFIXLEN 0x0 /* (non-flag) fixed length records only*/

/* audit trail mode parameters */
#define AUDSETNAME 0 /* set new audit trail name*/
#define AUDGETNAME 1 /* get audit trail name*/
#define AUDSTART 2 /* start audit trail */
#define AUDSTOP 3 /* stop audit trail */
#define AUDINFO 4 /* audit trail running ?*/

/*
 * Define MAXKEYSIZE 240 and NPARTS 16 for AF251
 */
#define MAXKEYSIZE 120 /* max number of bytes in key*/
#define NPARTS 8 /* max number of key parts*/

struct keypart
 {
 short kp_start; /* starting byte of key part*/
 short kp_leng; /* length in bytes*/
 short kp_type; /* type of key part*/
 };

struct keydesc
 {
 short k_flags; /* flags*/
 short k_nparts; /* number of parts in key*/
 struct keypart

k_part[NPARTS]; /* each key part*/
/* the following is for internal use only*/

 short k_len; /* length of whole key*/
 long k_rootnode; /* pointer to rootnode*/
 };
#define k_start k_part[0].kp_start
#define k_leng k_part[0].kp_leng
#define k_type k_part[0].kp_type

#define ISNODUPS 000 /* no duplicates allowed*/
#define ISDUPS 001 /* duplicates allowed*/
#define DCOMPRESS 002 /* duplicate compression*/
#define LCOMPRESS 004 /* leading compression*/
#define TCOMPRESS 010 /* trailing compression*/
#define COMPRESS 016 /* all compression*/
#define ISCLUSTER 020 /* index is a cluster one */

struct dictinfo
 {
 short di_nkeys; /* number of keys defined (msb set for VARLEN)*/
 short di_recsize; /* (maximum) data record size*/
 short di_idxsize; /* index record size*/
 long di_nrecords; /* number of records in file*/
 };
Header Files F-3

The isam.h Header File
#define EDUPL 100 /* duplicate record*/
#define ENOTOPEN 101 /* file not open*/
#define EBADARG 102 /* illegal argument*/
#define EBADKEY 103 /* illegal key desc*/
#define ETOOMANY 104 /* too many files open*/
#define EBADFILE 105 /* bad isam file format*/
#define ENOTEXCL 106 /* non-exclusive access*/
#define ELOCKED 107 /* record locked*/
#define EKEXISTS 108 /* key already exists*/
#define EPRIMKEY 109 /* is primary key*/
#define EENDFILE 110 /* end/begin of file*/
#define ENOREC 111 /* no record found*/
#define ENOCURR 112 /* no current record*/
#define EFLOCKED 113 /* file locked*/
#define EFNAME 114 /* file name too long*/
#define ENOLOK 115 /* can’t create lock file */
#define EBADMEM 116 /* can’t alloc memory*/
#define EBADCOLL 117 /* bad custom collating*/
#define ELOGREAD 118 /* cannot read log rec */
#define EBADLOG 119 /* bad log record*/
#define ELOGOPEN 120 /* cannot open log file*/
#define ELOGWRIT 121 /* cannot write log rec */
#define ENOTRANS 122 /* no transaction*/
#define ENOSHMEM 123 /* no shared memory*/
#define ENOBEGIN 124 /* no begin work yet*/
#define ENONFS 125 /* can’t use nfs */
#define EBADROWID 126 /* reserved for future use */
#define ENOPRIM 127 /* no primary key*/
#define ENOLOG 128 /* no logging*/
#define EUSER 129 /* reserved for future use */
#define ENODBS 130 /* reserved for future use */
#define ENOFREE 131 /* no free disk space*/
#define EROWSIZE 132 /* row size too big*/
#define EAUDIT 133 /* audit trail exists */
#define ENOLOCKS 134 /* no more locks*/
#define ENOPARTN 135 /* reserved for future use */
#define ENOEXTN 136 /* reserved for future use */
#define EOVCHUNK 137 /* reserved for future use */
#define EOVDBS 138 /* reserved for future use */
#define EOVLOG 139 /* reserved for future use */
#define EGBLSECT 140 /* global section disallowing access - VMS */
#define EOVPARTN 141 /* reserved for future use */
#define EOVPPAGE 142 /* reserved for future use */
#define EDEADLOK 143 /* reserved for future use */
#define EKLOCKED 144 /* reserved for future use */
#define ENOMIRROR 145 /* reserved for future use */
#define EDISKMODE 146 /* reserved for future use */
#define EARCHIVE 147 /* reserved for future use */
#define ENEMPTY 148 /* reserved for future use */
#define EDEADDEM 149 /* reserved for future use */
#define EDEMO 150 /* demo limits have been exceeded */
#define EBADVCLEN 151 /* reserved for future use */
#define EBADRMSG 152 /* reserved for future use */
#define ENOMANU 153 /* must be in ISMANULOCK mode */
F-4 C-ISAM Programmer’s Manual

The isam.h Header File
#define EDEADTIME 154 /* lock timeout expired */
#define EPMCHKBAD 155 /* primary and mirror chunk bad */
#define EBADSHMEM 156 /* can’t attach to shared memory*/
#define EINTERUPT 157 /* interrupted isam call */
#define ENOSMI 158 /* operation disallowed on SMI pseudo table */
#define ECOL_SPEC 159 /* Invalid collation specifier */
#define ENLS_LANG ECOL_SPEC/* for compatibility with earlier versions */
#define EB_BUSY 160 /* reserved for future use */
#define EB_NOOPEN 161 /* reserved for future use */
#define EB_NOBS 162 /* reserved for future use */
#define EB_PAGE 163 /* reserved for future use */
#define EB_STAMP 164 /* reserved for future use */
#define EB_NOCOL 165 /* reserved for future use */
#define EB_FULL 166 /* reserved for future use */
#define EB_PSIZE 167 /* reserved for future use */
#define EB_ARCH 168 /* reserved for future use */
#define EB_CHKNLOG 169 /* reserved for future use */
#define EB_IUBS 170 /* reserved for future use */
#define EBADFORMAT 171 /* locking or NODESIZE change */

/* Dismountable media blobs errors */
#define EB_SFULL 180 /* reserved for future use */
#define EB_NOSUBSYS 181 /* reserved for future use */
#define EB_DUPBS 182 /* reserved for future use */
/* Shared Memory errors */
#define ES_PROCDEFS21584 /* can’t open config file */
#define ES_IILLVAL 21586 /* illegal config file value */
#define ES_ICONFIG 21595 /* bad config parameter */
#define ES_ILLUSRS 21596 /* illegal number of users */
#define ES_ILLLCKS 21597 /* illegal number of locks */
#define ES_ILLFILE 21598 /* illegal number of files */
#define ES_ILLBUFF 21599 /* illegal number of buffs */
#define ES_SHMGET 25501 /* shmget error */
#define ES_SHMCTL 25502 /* shmctl error */
#define ES_SEMGET 25503 /* semget error */
#define ES_SEMCTL 25504 /* semctl error */

/*
 * For system call errors
 * iserrno = errno (system error code 1-99)
 * iserrio = IO_call + IO_file
 * IO_call = what system call
 * IO_file = which file caused error
 */

#define IO_OPEN 0x10 /* open()*/
#define IO_CREA 0x20 /* creat()*/
#define IO_SEEK 0x30 /* lseek()*/
#define IO_READ 0x40 /* read()*/
#define IO_WRIT 0x50 /* write()*/
#define IO_LOCK 0x60 /* locking()*/
#define IO_IOCTL 0x70 /* ioctl()*/

#define IO_IDX 0x01 /* index file*/
#define IO_DAT 0x02 /* data file*/
#define IO_AUD 0x03 /* audit file*/
#define IO_LOK 0x04 /* lock file*/
#define IO_SEM 0x05 /* semaphore file */

/*
 * NOSHARE was needed as an attribute for global variables on VMS systems
Header Files F-5

The isam.h Header File
 * It has been left here to make sure that it is defined for the
 * plethera of scattered references.
 */
#define NOSHARE

extern int iserrno; /* isam error return code*/
extern int iserrio; /* system call error code*/
extern long isrecnum; /* record number of last call*/
extern int isreclen; /* actual record length, or*/

/* minimum (isbuild, isindexinfo) */
/* or maximum (isopen)*/

extern char isstat1; /* cobol status characters*/
extern char isstat2;
extern char isstat3;
extern char isstat4;
extern char *isversnumber; /* C-ISAM version number*/
extern char *iscopyright; /* RDS copyright*/
extern char *isserial; /* C-ISAM software serial number */
extern int issingleuser; /* set for single user access*/
extern int is_nerr; /* highest C-ISAM error code*/
extern char *is_errlist[]; /* C-ISAM error messages*/
extern char *islanginfo(); /* locale used for collation */
/* error message usage:
 * if (iserrno >= 100 && iserrno < is_nerr)
 * printf(“ISAM error %d: %s\n”, iserrno, is_errlist[iserrno-100]);
 */

struct audhead
 {
 char au_type[2]; /* audit record type aa,dd,rr,ww*/
 char au_time[4]; /* audit date-time*/
 char au_procid[2]; /* process id number*/
 char au_userid[2]; /* user id number*/
 char au_recnum[4]; /* record number*/
 char au_reclen[2]; /* audit record length beyond header */
 };
#define AUDHEADSIZE 14/* num of bytes in audit header*/
#define VAUDHEADSIZE 16/* VARLEN num of bytes in audit header*/

#ifdef __STDC__
/*
** prototypes for file manipulation functions
*/
int isaddindex(int isfd, struct keydesc *keydesc);
int isaudit(int isfd, char *filename, int mode);
int isbegin();
int isbuild(char *filename, int reclen, struct keydesc *keydesc, int mode);
int iscleanup();
int isclose(int isfd);
int iscluster(int isfd, struct keydesc *keydesc);
int iscommit();
F-6 C-ISAM Programmer’s Manual

The isam.h Header File
int isdelcurr(int isfd);
int isdelete(int isfd, char *record);
int isdelindex(int isfd, struct keydesc *keydesc);
int isdelrec(int isfd, long recnum);
int iserase(char *filename);
int isflush(int isfd);
int isglsversion(char *filename)
int isindexinfo(int isfd, struct keydesc *buffer, int number);
void islangchk(); /*used by Informix-SE only */
char *islanginfo(char *filename);
int islock(int isfd);
int islogclose();
int islogopen(char *logname);
int isnlsversion(char *filename);
void isnolangchk(); /* used by Informix-SE only */
int isopen(char *filename, int mode);
int isread(int isfd, char *record, int mode);
int isrecover();
int isrelease(int isfd);
int isrename(char *oldname, char *newname);
int isrewcurr(int isfd, char *record);
int isrewrec(int isfd, long recnum, char *record);
int isrewrite(int isfd, char *record);
int isrollback();
int issetunique(int isfd, long uniqueid);
int isstart(int isfd, struct keydesc *keydesc,

 int length, char *record, int mode);
int isuniqueid(int isfd, long *uniqueid);
int isunlock(int isfd);
int iswrcurr(int isfd, char *record);
int iswrite(int isfd, char *record);
/*
** prototypes for format-conversion and manipulation fuctions
*/
void ldchar(char *source, int length, char *destination);
double lddbl(char *location);
double lddblnull(char *location, short *nullflag);
int lddecimal(char *location, int length, dec_t *destination);
double ldfloat(char *location);
double ldfltnull(char *location, short *nullflag);
/* short ldint(char *location); */
long ldlong(char *location);
void stchar(char *source, char *destination, int length);
void stdbl(double source, char *destination);
void stdblnull(double source, char *destination, short nullflag);
void stdecimal(dec_t *source, char *destination, int length);
void stfloat(float source, char *destination);
void stfltnull(float source, char *destination, short nullflag);
/* void stint(short source, char *destination); */
void stlong(long source, char *destination);
/*
** DECIMALTYPE Functions
*/
int deccvasc(char *source, int length, dec_t *destination);
int dectoasc(dec_t *source, char *destination, int length, int right);
int deccvint(int source, dec_t *destination);
int dectoint(dec_t *source, int *destination);
int deccvlong(long source, dec_t *destination);
int dectolong(dec_t *source, long *destination);
int deccvflt(float source, dec_t *destination);
int dectoflt(dec_t *source, float *destination);
Header Files F-7

The decimal.h Header File
int deccvdbl(double source, dec_t *destination);
int dectodbl(dec_t *source, double *destination);
int decadd(dec_t *n1, dec_t *n2, dec_t *result);
int decsub(dec_t *n1, dec_t *n2, dec_t *result);
int decmul(dec_t *n1, dec_t *n2, dec_t *result);
int decdiv(dec_t *n1, dec_t *n2, dec_t *result);
int deccmp(dec_t *n1, dec_t *n2);
void deccopy(dec_t *source, dec_t *destination);
char *dececvt(dec_t *source, int ndigit, int *decpt, int *sign);
char *decfcvt(dec_t *source, int ndigit, int *decpt, int *sign);
#endif /*__STDC__*/

#endif /* ISAM_INCL */

The decimal.h Header File
You must include the file decimal.h in every program that uses the
DECIMALTYPE data type. The header file defines the internal structure of
DECIMALTYPE numbers. Your program accesses the internally stored
DECIMALTYPE numbers only through the functions that are provided for this
purpose. It should never access the internal structures directly. The
explanation of this structure is provided here for reference only.

Memory-Storage Structure
DECIMALTYPE numbers consist of an exponent and a mantissa (or fractional
part) in base 100. In normalized form, the first digit of the mantissa must be
greater than zero.
F-8 C-ISAM Programmer’s Manual

Memory-Storage Structure
When used within a program, DECIMALTYPE numbers are stored in a C
structure of the type shown in Figure F-2.

The dec_t structure has the following four parts:

All operations on DECIMALTYPE numbers take place through the C-ISAM
functions that are described in Chapter 3, “Data Types.” Any other
operations, modifications, or use of dec_t structures can produce
unpredictable results.

#ifndef DECSIZE
#define DECSIZE 16
#define DECUNKNOWN -2

struct decimal
{
short dec_exp;/* exponent base 100 */
short dec_pos;/* sign: 1=pos, 0=neg, -1=null*/
short dec_ndgts;/* number of significant digits*/
char dec_dgts[DECSIZE];/* actual digits base 100*/
};
typedef struct decimal dec_t;

Figure F-2
Structure of a

decimal or dec_t
Data Type

dec_exp holds the exponent of the normalized DECIMALTYPE number.
This exponent represents a power of 100.

dec_pos holds the sign of the DECIMALTYPE number (1 when the
number is zero or greater, and 0 when less than zero)

dec_ndgts contains the number of base 100 significant digits of the
DECIMALTYPE number.

dec_dgts is a character array that holds the significant digits of the
normalized DECIMALTYPE number (dec_dgts[0]!=0). Each
character in the array is a one-byte binary number in base 100.
The number of significant digits in dec_dgts is contained in
dec_ndgts.
Header Files F-9

File-Storage Structure
File-Storage Structure
When DECIMALTYPE numbers are stored in files, they are compressed or
packed, as shown here.

First Byte

The top 1 bit is the sign of the number.

The low 7 bits are the exponent in excess of 64.

Remaining Bytes

The remaining bytes are the base 100 digits (in 100 complement format for
negative numbers).

The length in bytes of the packed DECIMALTYPE number is 1 plus the
number of base 100 digits. The length can vary from 2 to 17 bytes. This format
permits sorts of DECIMALTYPE numbers using a simple unsigned byte-by-
byte comparison. Zero is represented as 80,00,00,... (in hexadecimal).
Figure F-3 shows the contents of the header file decimal.h that you must
include in every program that uses the DECIMALTYPE data type.

Figure F-3
Contents of decimal.h File

#ifndef _DECIMAL_H
#define _DECIMAL_H

/*
 * Unpacked Format (format for program usage)
 *
 * Signed exponent "dec_exp" ranging from -64 to +63
 * Separate sign of mantissa "dec_pos"
 * Base 100 digits (range 0 - 99) with decimal point
 * immediately to the left of first digit.
 */

#define DECSIZE 16
#define DECUNKNOWN -2

struct decimal
 {
 short dec_exp; /* exponent base 100 */
 short dec_pos; /* sign: 1=pos, 0=neg, -1=null */

on = the number is positive
off = the number is negative
F-10 C-ISAM Programmer’s Manual

File-Storage Structure
 short dec_ndgts; /* number of significant digits */
 char dec_dgts[DECSIZE]; /* actual digits base 100 */
 };
typedef struct decimal dec_t;

/*
 * A decimal null will be represented internally by setting dec_pos
 * equal to DECPOSNULL
 */

#define DECPOSNULL (-1)

/*
 * DECLEN calculates minumum number of bytes
 * necessary to hold a decimal(m,n)
 * where m = total # significant digits and
 * n = significant digits to right of decimal
 */

#define DECLEN(m,n) (((m)+((n)&1)+3)/2)
#define DECLENGTH(len) DECLEN(PRECTOT(len),PRECDEC(len))

/*
 * DECPREC calculates a default precision given
 * number of bytes used to store number
 */

#define DECPREC(size) (((size-1)<<9)+2)

/* macros to look at and make encoded decimal precision
 *
 * PRECTOT(x) return total precision (digits total)
 * PRECDEC(x) return decimal precision (digits to right)
 * PRECMAKE(x,y) make precision from total and decimal
 */

#define PRECTOT(x) (((x)>>8) & 0xff)
#define PRECDEC(x) ((x) & 0xff)
#define PRECMAKE(x,y) (((x)<<8) + (y))

/*
 * Packed Format (format in records in files)
 *
 * First byte =
 * top 1 bit = sign 0=neg, 1=pos
 * low 7 bits = Exponent in excess 64 format
 * Rest of bytes = base 100 digits in 100 complement format
 * Notes -- This format sorts numerically with just a
 * simple byte by byte unsigned comparison.
 * Zero is represented as 80,00,00,... (hex).
 * Negative numbers have the exponent complemented
 * and the base 100 digits in 100's complement
 */

#endif /* _DECIMAL_H */
Header Files F-11

G
Appendix
Notices
IBM may not offer the products, services, or features discussed
in this document in all countries. Consult your local IBM repre-
sentative for information on the products and services currently
available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering
subject matter described in this document. The furnishing of this
document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your
country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not
apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
J74/G4
555 Bailey Ave
P.O. Box 49023
San Jose, CA 95161-9023
U.S.A.

Such information may be available, subject to appropriate terms and condi-
tions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equiv-
alent agreement between us.
G-2 C-ISAM Programmer’s Manual

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environ-
ments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measure-
ments will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to
change or withdrawal without notice, and represent goals and objectives
only.

All IBM prices shown are IBM’s suggested retail prices, are current and are
subject to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms.
You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application
programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for
the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.
Notices G-3

Trademarks
Each copy or any portion of these sample programs or any derivative work,
must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs. © Copyright IBM Corp. (enter the
year or years). All rights reserved.

If you are viewing this information softcopy, the photographs and color illus-
trations may not appear.

Trademarks
AIX; DB2; DB2 Universal Database; Distributed Relational Database
Architecture; NUMA-Q; OS/2, OS/390, and OS/400; IBM Informix ;
C-ISAM ; Foundation.2000TM; IBM Informix 4GL; IBM Informix

DataBlade Module; Client SDKTM; CloudscapeTM; CloudsyncTM;
IBM Informix Connect; IBM Informix Driver for JDBC; Dynamic
ConnectTM; IBM Informix Dynamic Scalable ArchitectureTM (DSA);
IBM Informix Dynamic ServerTM; IBM Informix Enterprise Gateway
Manager (Enterprise Gateway Manager); IBM Informix Extended Parallel
ServerTM; i.Financial ServicesTM; J/FoundationTM; MaxConnectTM; Object
TranslatorTM; Red Brick Decision ServerTM; IBM Informix SE;
IBM Informix SQL; InformiXMLTM; RedBack ; SystemBuilderTM; U2TM;
UniData ; UniVerse ; wintegrate are trademarks or registered trademarks
of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Windows, Windows NT, and Excel are either registered trademarks or trade-
marks of Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company Limited.

Other company, product, and service names used in this publication may be
trademarks or service marks of others.
G-4 C-ISAM Programmer’s Manual

Index

Index
A
Access method

implementation 2-14
indexed sequential 1-9

Access modes
example of 1-17
list of 1-32
used in isbuild() function 8-16

Adding a localized index B-9
Adding a record

example 7-8
explanation 1-22
See also Writing a record.

Adding an index
example 2-9, 7-6
explanation 2-9
using isaddindex() function 2-9,

8-10
Additional facilities

audit trail 6-6
file maintenance 6-3
force output 6-4
summary 6-14

Audit trail
command modes 6-8
creating a new trail 8-12
example using isaudit() function

6-6
explanation 6-6
file format 6-8, D-8
using 6-6
using isaudit() function 8-12
with variable-length records 6-8

B
bcheck utility

checking localized indexes B-12
description and use of A-1
using 6-11
using with variable-length record

files 1-6
Beginning a transaction, with

isbegin() function
implementing 5-4
syntax and description 8-14

Block
definition of 2-23
See also Index.

Buffers
ISAMBUFS parameter E-2
size E-2

Building a file
example 1-18, 7-5
explanation 1-14
locking mode 4-7
record size 1-15
using isbuild() function 8-16

B+ tree
adding to 2-18
definition of 2-14
deleting from 2-22
growth of 2-18, 2-19
levels 2-16
maximum keys per node 2-16
nodes 2-14
organization 2-14
pointers 2-14

root 2-14
searching 2-17
sequential addition to 2-19
split 2-18

C
C library functions

comparison to C-ISAM functions
1-8

using lseek() 1-8
using read() 1-8
using write() 1-8

Call formats and descriptions 8-3
Cancelling a transaction, using

isrollback() function 5-4, 8-58
Changing a filename

audit trail 8-12
using isrename() function 8-52

Character set B-4
CHARTYPE data type

collation order with B-8
description of 3-9

Choosing an index. See Selecting an
index.

C-ISAM
compiling programs 1-35
running programs 1-36

CLIENT_LOCALE environment
variable

description of B-7
example B-7
syntax B-7

Closing a file
audit trail 8-12
data file 1-32, 8-20
transaction log file 5-8, 8-40
using iscleanup() function 8-19
using isclose() function 1-32, 8-20
using islogclose() function 5-8,

8-40
Closing files

using iscleanup() function 6-4
Cluster index 6-10, 8-21
.cm file extension B-5, E-4
.cmo file extension B-5

Code set
description of B-4
in locale name B-3
name mapping B-5

Code-set file B-7
description of B-4
listing B-16
location of B-5
object B-5
removing E-4
source B-5

Code-set order B-7
Collation sequence

default 1-13
defined 1-13
multiple 1-14
multiple indexes B-9
with bcheck utility B-12

Collation, definition of B-7
Committing a transaction, using

iscommit() function 5-4, 8-23
Compilation

header files 1-35
using lint utility 1-35
See also System administration.

Compliance, industry standards
Intro-15

Compression of keys. See Key.
Concurrency control

degree of concurrency 4-12
in transactions 5-9, 5-11
locking 4-3

Conventions
command-line Intro-9
icon Intro-8
sample code Intro-12
typographical Intro-7

Conversion functions. See Format-
conversion functions.

Creating a file. See Building a file.
Current index. See Index.
Current record

definition of 1-22
set by isread() function 1-29, 8-47
set by iswrcurr() function 1-22,

8-66
set by iswrite() function 8-68

cvY.txt file B-16

D
Data file

characteristics 1-37, 8-35, 8-38,
8-42

cluster 6-10, 8-21
organization 1-37
space utilization 1-37

Data integrity
restoring with bcheck utility A-1
See also Transaction.

Data record
adding 1-22
address of 1-5
customer record 3-7
declaration of 1-5
deleting 1-24
employee record 1-3, 1-15, 2-3, 3-3,

7-3
identifying a 1-20
in a C-ISAM file 1-5, 3-7
performance record 7-3
record layout 1-5, 3-7
reservation of space for 1-5, 3-7
summary of identification

methods 1-22
transferring to and from program

1-7
updating 1-25

Data representation
character data 3-9
comparison of C-ISAM to C

language 3-6
DECIMALTYPE data 3-13
double-precision data 3-12
floating-point data 3-12
format-conversion 3-9
integer data 3-11
long integer data 3-11
machine independence 3-5
overview 1-6

Data type
collation order B-8
conversion functions 3-9
DECIMALTYPE 3-13
defining for keys 3-3
in variable-length record 3-8
introduction to data types 1-6
parameters 3-4
2 C-ISAM Programmer’s Manual

summary 3-19
See also DECIMALTYPE data

type.
Deadlock, definition 4-12
decadd() function, syntax and use

of 8-90
deccmp() function, syntax and use

of 8-92
deccopy() function, syntax and use

of 8-93
deccvint() function, syntax and use

of 8-98
deccvlong() function, syntax and

use of 8-99
decdiv() function, syntax and use of

8-90
dececvt() function, syntax and use

of 8-100
decfcvt() function, syntax and use of

8-100
DECIMALTYPE data type

accuracy 3-15
dec_t structure 3-13
defining Decimal data 3-13
sizing DECIMALTYPE numbers

3-14
See also DECIMALTYPE

functions.
DECIMALTYPE functions

decadd() 8-90
deccmp() 8-92
deccopy() 8-93
deccvint() 8-98
deccvlong() 8-99
decdiv() 8-90
dececvt() 8-100
decfcvt() 8-100
decmul() 8-90
decsub() 8-90
dectoasc() 8-102
dectodbl() 8-104
dectoflt() 8-105
dectoint() 8-106
dectolong() 8-107
decvasc() 8-94
decvdbl() 8-96
decvflt() 8-97
lddecimal() 3-15, 8-74
overview 3-17

stdecimal() 3-15, 8-83
decmul() function, syntax and use

of 8-90
decsub() function, syntax and use of

8-90
dectoasc() function, syntax and use

of 8-102
dectodbl() function, syntax and use

of 8-104
dectoflt() function, syntax and use

of 8-105
dectoint() function, syntax and use

of 8-106
dectolong() function, syntax and

use of 8-107
decvasc() function, syntax and use

of 8-94
decvdbl() function, syntax and use

of 8-96
decvflt() function, syntax and use of

8-97
dec_t structure. See

DECIMALTYPE data type.
Default locale B-3
Deleting a file. See Erasing a file.
Deleting a record

current record 1-24, 8-25
example 1-24, 7-11
using isdelcurr() function 1-24,

8-25
using isdelete() function 1-24, 8-26
using isdelrec() function 1-25, 8-30
using primary key 1-24, 8-26
using record number 1-25, 8-30

Deleting an index
explanation 2-10
using isdelindex() function 2-10,

8-28
dictinfo structure

definition of 2-12
using to get file information 2-12
See also Index.

Dictionary block. See Index.
Dictionary format D-1
Dirty-read, using isread() function

8-47
Disk space, saving E-3
di_nkeys variable 8-36
di_recsize variable 8-36

Documentation
on-line files Intro-14
printed Intro-13
related Intro-15

Documentation notes Intro-14
Duplicate key

compression 2-29
purpose 1-13
See also Key.

E
ELOCKED, with isread() function

calls 8-47
Ending a transaction

using iscommit() function 5-4,
8-23

using isrollback() function 5-4,
8-58

Environment variable
CLIENT_LOCALE B-7
INFORMIXDIR 1-36

Erasing a file
audit trail 8-31
data file 6-3
using iserase() function 6-3, 8-31
.lok lock file 8-31

Error handling
C-ISAM error codes C-1
end of file 1-28
example 4-13
in example programs 7-4
locked records 4-13
overview 1-19
record not found 1-27
return codes 1-19
using iserrno global variable 1-19
values for iserrno global variable

C-1
Example programs

adding indexes 7-6
adding records 7-8
building a file 7-5
chaining 7-19
random update 7-11
record definitions in 7-3
sequential processing 7-16
using transactions 7-25
Index 3

F
fcntl() locking

using ISWAIT and ISLCKW 8-48
X/Open compatibility 4-11

Field
conversion between program and

data record 1-6
declaration using pointer 1-5, 3-8
definition of 1-3
key 1-12
offset 1-4, 3-8

File
charmap B-5
code-set B-4, B-16
cvY.txt B-16
definition of 1-3
lcX.txt B-14
locale B-4
maintenance 6-11
maximum number of open files

1-34
object locale B-4
registry E-3
removing code-set files E-4
removing unused locale E-3
source locale B-4
See also Operating system files.

File descriptor
returned by isbuild() function 1-15
returned by isopen() function 1-32
using 1-15

File extension
.cm B-5, E-4
.cmo B-5
.lc B-4
.lco B-4

File-level locking
explanation 4-7
See also Locking.
See also Locking modes.

Finding a record
explanation 1-27
key value 1-11
See also Reading a record.
See also Selecting an index.

Flush buffer, using isflush()
function

forcing with 6-4

syntax and description 8-32
Format

audit trail D-8
dictionary D-1

Format-conversion functions
character data 3-9
double-precision data 3-11
explanation 3-9
floating-point data 3-11
integer data 3-10
introduction to 1-6
ldchar() 3-9, 8-71
lddblnull() 3-11, 8-73
lddbl() 3-11, 8-72
lddecimal() 3-15, 8-74
ldfloat() 3-11, 8-76
ldfltnull() 3-11, 8-77
ldint() 3-10, 8-78
ldlong() 3-10, 8-79
long integer data 3-10
stchar() 3-9, 8-80
stdblnull() 3-11, 8-82
stdbl() 3-11, 8-81
stdecimal() 3-15, 8-83
stfloat() 3-11, 8-85
stfltnull() 3-11, 8-86
stint() 3-10, 8-87
stlong() 3-10, 8-88
See also DECIMALTYPE

functions.
Free-list block. See Index.
Function list

format-conversion functions 8-6
functions to determine NLS

information 8-5
functions to implement locking

8-4
functions to implement

transactions 8-5
functions to manipulate

DECIMALTYPE data 3-18, 8-7
functions to manipulate files 8-3
functions to manipulate indexes

8-3
functions to manipulate records

8-4
functions, additional 8-5

Function return codes. See Error
handling.

G
glfiles utility

-cm option B-13
description of B-12
-lc option B-13
sample output B-14, B-15, B-16

Global Language Support (GLS)
applications 1-21
C-ISAM locale file access 1-36
description of Intro-6
determining collation sequence of

index B-11
example

adding a localized index B-10
checking index B-10
identifying locale B-11

locale B-2
locale name B-2
migrating applications E-4
performance issues 2-31
performance of indexed access

2-31
removing

code-set files E-4
locale files E-3

specifying a locale B-6
supported locales B-6
with bcheck utility B-12

GLS. See Global Language Support.

H
How to use C-ISAM 1-3

I
Identifying records

by key value 1-20
by record number 1-21
current record 1-21
summary of methods 1-22

Index
adding a localized index B-9
adding an index 2-9
characteristics 2-12, 8-35, 8-38,

8-42
cluster 6-10, 8-21
4 C-ISAM Programmer’s Manual

creating a localized index B-8
current 1-29
DECIMALTYPE data in 3-13
defining a key for 1-16, 2-3
definition in C-ISAM 2-5
determining collation sequence

B-11
dictionary node 2-23
explanation 2-10
file organization 2-23
file organization and variable-

length records 1-6
free-list node 2-24
identifying an index 2-5, 2-13
implementation 2-14
key-description nodes 2-23
localized, definition of B-8
maximum number of parts 8-10
organization 2-14
performance 2-24
performance issues 2-31
physical order 2-11
primary 1-13, 2-11
record number order 2-11
using isaddindex() function 2-9,

8-10
using isdelindex() function 2-10,

8-28
Indexed access, overview 1-9
Indexed sequential access method

flexibility 1-10
overview 1-9

INFORMIXDIR environment
variable 1-36

location of code-set files B-5, B-16
location of locale files B-4
location of registry file B-5
syntax 1-36
with glfiles B-13

isaddindex() function
example 7-6
explanation 2-9
syntax and use of 8-10

ISAMBUFS E-2
isaudit() function

command modes 6-8
explanation 6-6
syntax and use of 8-12

ISAUTOLOCK lock mode 8-16, 8-44
isbegin() function

explanation 5-4
syntax and use of 8-14
See also Transaction.

isbuild() function
example 1-18, 7-5
syntax and use of 8-16
used after islogopen() function

8-41
iscleanup() function

closing files implicitly 1-34
syntax and use of 8-19
using at end of program 6-4

isclose() function
caution 8-20
syntax and use of 8-20

iscluster() function
explanation 6-10
regenerating indexes 6-11
syntax and use of 8-21

iscommit() function
explanation 5-4
syntax and use of 8-23
See also Transaction.

ISCURR locator mode 1-29, 1-30
isdelcurr() function

example 7-11
explanation 1-24
syntax and use of 8-25

isdelete() function
example 7-11
explanation 1-24
syntax and use of 8-26

isdelindex() function
explanation 2-10
syntax and use of 8-28

isdelrec() function
explanation 1-25
syntax and use of 8-30

ISEQUAL locator mode 1-29, 1-30
iserase() function

explanation 6-3
syntax and use of 8-31

iserrno global variable
description of 1-19
end of file 1-28
locked records 4-13

record not found 1-27
using 1-19
values of C-1

ISEXCLLOCK lock mode 1-18, 8-16,
8-44

ISFIRST locator mode 1-29, 1-30
ISFIXLEN mode 8-17, 8-44
isflush() function

explanation 6-4
syntax and use of 8-32

isglsversion() function
checking for a localized index

B-11
syntax and use of 8-33

ISGREAT locator mode 1-29, 1-30
ISGTEQ locator mode 1-29, 1-30
isindexinfo() function

example 1-37, 2-13
general use 2-12
syntax and use of 8-35

ISINOUT access mode 8-16, 8-32,
8-44

ISINPUT access mode 8-16, 8-44
ISKEEPLOCK 4-10
islanginfo() function

determining collation sequence
B-11

syntax and use of 8-38
ISLAST locator mode 1-29, 1-30
ISLCKW 8-46
islock() function

explanation 4-9
syntax and use of 8-39
See also isunlock() function.

islogclose() function
explanation 5-8
syntax and use of 8-40
See also Transaction.

islogopen() function
caution 8-41
explanation 5-7
required for transaction 8-17, 8-45
syntax and use of 8-41
See also Transaction.

ISMANULOCK lock mode 8-16,
8-39, 8-44

ISNEXT locator mode 1-29
isnlsversion() function

syntax and use of 8-42
Index 5

ISNOLOG mode 8-17
isopen() function

explanation 1-32
ISTRANS option 5-6
syntax and use of 8-44
used after islogopen() function

8-41
See also Access modes.
See also Locking.
See also Transaction.

ISOUTPUT access mode 8-16, 8-32,
8-44

ISPREV locator mode 1-29
isread() function

example 1-27, 7-11, 7-16
explanation 1-27
syntax and use of 8-46
See also Locking.

isreclen global variable
opening a file 1-33
set by isindexinfo() function 2-12,

8-36
with variable-length files 1-19

isrecnum global variable
explanation 1-21
finding records by record number

1-31
set by isdelcurr() function 8-25
set by isdelete() function 8-26
set by isdelrec() function 8-30
See also Record number.

isrecover() function
explanation 5-8
syntax and use of 8-50
See also System administration.
See also Transaction.

isrelease() function
explanation 4-11
syntax and use of 8-51

isrename() function
explanation 6-3
syntax and use of 8-52

isrewcurr() function
explanation 1-26
syntax and use of 8-53

isrewrec() function
explanation 1-26
syntax and use of 8-55

isrewrite() function
example 7-11
explanation 1-25
syntax and use 8-56

isrollback() function
explanation 5-4
syntax and use of 8-58
with ISTRANS mode 8-17
See also Transaction.

isserial global variable E-6
issetunique() function

explanation 6-5
syntax and use of 8-60
See also isuniqueid() function.

ISSKIPLOCK 1-27
isstart() function

example 7-11, 7-16, 7-19
explanation 1-29
syntax and use of 8-61

ISTRANS mode 8-17, 8-44, 8-45
isuniqueid() function

explanation 6-5
syntax and use of 8-64
See also issetunique() function.

isunlock() function
explanation 4-9
syntax and use of 8-65
See also islock() function.

ISVARLEN mode 1-33, 8-16, 8-44
isversnumber global variable E-6
ISWAIT 8-46
iswrcurr() function

example 1-22
syntax and use of 8-66

iswrite() function
example 1-22, 7-8
syntax and use 8-68

K
Kernel locking 4-11, 4-12
Key

choice of 1-11
compression 2-7, 2-26
data type definition 3-3
defining a key 1-16
definition in C-ISAM 1-12, 2-3
definition of 1-9

descending order 2-8
duplicate 1-13, 2-7
flags 2-6, 2-7
key-description structure 1-12,

1-16, 2-5
maximum size 2-8, 8-10
number of parts 2-6, 2-8
overview of usage 1-11
packing density 2-25
primary 1-13, 1-26, 2-11
unique 1-12, 2-6, 2-7
value 1-20

keydesc structure
defining a key 2-5
defining a primary key 1-16
definition of 2-7
See also Key.

Key-description block. See Index.
Key-description structure

defining a key 2-5
definition of 2-6
overview 1-16
See also Key.

keypart structure
defining a key 2-5
definition of 2-8
See also Key.

Keys in C-ISAM Files 1-10
Keyword

definition of 1-9
See also Key.

k_flags variable 2-7
k_nparts variable 1-31, 8-17

L
Language, in locale name B-3, B-4
.lc file extension B-4
.lco file extension B-4
lcX.txt file B-14
ldchar() function

explanation 3-9
syntax and use of 8-71

lddblnull() function
explanation 3-11
syntax and use of 8-73
6 C-ISAM Programmer’s Manual

lddbl() function
explanation 3-11
syntax and use of 8-72

lddecimal() function
explanation 3-15
syntax and use of 8-74

ldfloat() function
explanation 3-11
syntax and use of 8-76

ldfltnull() function
explanation 3-11
syntax and use of 8-77

ldint() function
explanation 3-10
syntax and use of 8-78

ldlong() function
explanation 3-10
syntax and use of 8-79

Leading-character compression
explanation 2-27
See also Key.

Level. See B+ tree.
libisam.a library E-2
Locale

default B-3
definition of B-2
identifying B-2
specifying B-6

Locale file
description of B-4
location of B-4
object B-4, E-3
removing unused E-3
required E-3
source B-4, E-3

Locale name
code set in B-3
description of B-2
language in B-3
language name B-4
modifier in B-3
territory in B-3
territory name B-4

Localized index
adding, example of B-9
creating B-8
definition of B-8

Localized order, definition of B-7

Locking
automatic locking with isread

4-10
by transactions 5-10
concurrency control 4-3
degree of concurrency 4-12
duration of locking 8-47
during add or delete of an index

4-8
file-level 4-7, 8-39
ISLOCK option in isread 4-11,

8-46
islock() function 4-9
ISSKIPLOCK option in isread 8-46
manual 4-9, 4-10
overview 4-3
record-level 4-10, 8-46, 8-47
single user systems 4-7
specifying no locking 4-7
summary 4-14
types of 4-7
unlocking file 8-65
unlocking records 8-51
using 4-7
using islock() function 8-39
using isrelease() function 4-11,

8-51
using isunlock() function 4-9, 8-65
See also Locking modes.

Locking modes
automatic record locking 4-10
exclusive file locking 1-33, 2-10,

4-8
ISAUTOLOCK 4-10
ISEXCLLOCK 1-33, 2-10, 4-8
ISMANULOCK 1-32, 4-7, 4-9, 4-11
ISWAIT 4-11
manual file locking 4-9
manual record locking 4-11
no locking 1-32, 4-7
summary 4-14
waiting for locks 4-11
See also Locking.

M
Machine notes Intro-14
Manipulating records in C-ISAM

files 1-20
MAXKEYSIZE, explanation of 8-10
Message, bcheck error B-12
Migrating applications E-4
Modifier, in locale name B-3

N
Native Language Support (NLS)

checking for localized indexes
B-12

checking index with bcheck utility
B-12

collation order B-8
indexes, compatible locales B-15

NCHARTYPE data type
collation order B-8
in an example program B-9

NLS. See Native Language Support.
Node

definition of 2-14
See also B+ tree.

Non-default locale, specifying B-6
NPARTS 2-6, 8-10

O
Offset, defining a field 1-4, 3-8
Opening a file

access modes 1-32
audit trail 6-8, 8-12
data file 1-32, 8-44
file descriptor 1-32
ISTRANS option 5-6
locking mode 1-32, 4-7
of variable-length records 1-33
specifying isbuild() function

arguments 1-17
transaction log file 5-7, 8-41
using islogopen() function 5-7,

8-41
using isopen() function 1-32, 8-44
Index 7

Operating system files
.dat 1-14
.idx 1-14

Organization of C-ISAM files
data file 1-37
index file 2-23
overview 1-14

P
Performance

key compression 2-26
key size 2-24, 2-25
multiple indexes 2-30
tree height 2-24

Physical order index 2-11
Pointer

definition of 1-9
See also B+ tree.

Pointer arithmetic, to define a field
1-5

Primary index. See Index.
Primary key. See Key.
Program files E-2
Programs

compiling 1-35
running 1-36
See also Example programs.

R
Reading a record

automatic locking 4-10
by record number 1-31, 8-47
example 1-27, 7-19
explanation 1-27
locking option 4-11, 8-46, 8-47
retrieval modes. See Search

modes.
search modes 1-27, 8-46
summary of search modes 1-29
using isread() function 1-27, 8-46
See also isread() function.

Record
definition of 1-3
length 1-5
variable-length 1-5
See also Data record.

Record number
definition of 1-22
example of retrieval by 1-31
retrieval by 1-31, 2-11
setting with isrecnum global

variable 1-21
See also Data Record.

Record-level locking
explanation 4-10
See also Locking modes.
See also Locking.

Recover transactions, using
isrecover() function 8-50

Recovery
caution 5-8
explanation 5-8
rollforward 5-8
transaction 8-50
See also System administration.
See also Transaction.

Release notes Intro-14
Release record locks. See isrelease()

function.
Removing a file. See Erasing a file.
Removing an index. See isdelindex()

function.
Renaming a file, using isrename()

function 6-3, 8-52
Reorganization

data file 1-37
index 2-22

Representation of data. See Data
representation.

Retrieval by record number
using isread() function 1-31, 8-47
using isstart() function 1-31, 8-62

Return codes. See Error handling.
Rewriting a record

by record number 1-26, 8-55
current record 1-26, 8-53
example 1-25, 7-11
identified by primary key 1-25,

8-56
using isrewcurr() function 1-26,

8-53
using isrewrec() function 1-26,

8-55

using isrewrite() function 1-25,
8-56

See also Updating a record.
Rollforward recovery. See

Recovery.
Rolling back a transaction, using

isrollback() function 5-4, 8-58

S
Selecting an index

example 7-16
explanation 1-29
retrieval by record number 1-31
starting position within 1-30, 8-61,

8-62
using isstart() function 1-29, 8-61

Sequential access
example 1-28, 7-16
overview 1-9
See also isread() function.
See also isstart() function.

Serial number, determining E-6
Skipping locked records 1-27
Sorting

by code-set order B-7
by localized order B-7

stchar() function
explanation 3-9
syntax and use of 8-80

stdblnull() function
explanation 3-11
syntax and use of 8-82

stdbl() function
explanation 3-11
syntax and use of 8-81

stdecimal() function
explanation 3-15
syntax and use of 8-83

stfloat() function
explanation 3-11
syntax and use of 8-85

stfltnull() function
explanation 3-11
syntax and use of 8-86

stint() function
explanation 3-10
syntax and use of 8-87
8 C-ISAM Programmer’s Manual

stlong() function
explanation 3-10
syntax and use of 8-88

System administration
files E-1
installation E-1
ISAMBUFS parameter E-2
transaction logging and recovery

E-5

T
Territory B-4
Territory, in locale name B-3
Trailing spaces 1-8
Trailing-space compression

explanation 2-28
See also Key.

Transaction
beginning 5-4, 8-14
cancelling 5-4, 5-6, 8-58
caution during recovery 5-8
closing log file 5-8, 8-40
committing 5-4, 8-23
concurrency control 5-11
concurrent execution of 5-9
creating log file 5-7
data integrity 5-9
definition of 5-3
ending 8-23
example 5-5, 7-25
implementing 5-4
ISTRANS option in isopen 5-6
locking 5-10
logging 5-7, E-5
management services 5-4
opening log file 5-7, 8-41
purpose of 5-3
recoverable, rollback disallowed

5-6
recovery 5-7, 8-50, E-5
rollforward recovery 5-8
summary 5-12
unit of work 5-4
using isaddindex() function in

8-10
using isaudit() function in 8-13
using isbegin() function 5-4, 8-14

using isbuild() function 8-18
using iscommit() function 5-4,

8-23
using islogclose() function 5-8,

8-40
using islogopen() function 5-7,

8-41
using isrecover() function 5-8,

8-50, E-5
using isrollback() function 5-4,

8-58
with variable-length records 5-7
See also Recovery.

Transferring data, between
program and C-ISAM record 1-7

U
Unique identifier

changing with issetunique()
function 6-5

explanation 6-5
returning with isuniqueid()

function 6-5, 8-64
setting with issetunique()

function 8-60
Unique key

purpose 1-12
See also Key.

Unlocking file. See Locking.
Unlocking records. See Locking.
Updating a record

example 7-11
explanation 1-25
See also Rewriting a record.

Utility
bcheck A-1
glfiles B-12

V
Variable-length records

building a file 1-19
data corruption 6-11
in transactions 5-7
programming with 1-5
with audit trails 6-8

Version number,determining E-6

W
Waiting for locks 8-46, 8-48
What is a C-ISAM file? 1-3
Why use transaction management?

5-3
Writing a record

current record 1-22
example 7-8
using iswrcurr() function 1-22,

8-66
using iswrite() function 1-22, 8-68

X
X/Open compatibility 4-12
Index 9

	Informix Online Documentation
	Table of Contents
	Introduction
	About This Manual
	Purpose of This Manual
	Organization of This Manual
	Types of Users

	New Features of This Product
	Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Compliance Icons

	Command-Line Conventions
	Sample-Code Conventions

	Additional Documentation
	Printed Documentation
	On-Line Documentation
	Release Notes, Documentation Notes, Machine Notes

	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	How to Use C-ISAM
	What Is a C-ISAM File?
	Data Records in C-ISAM Files
	Programming with Variable-Length Records
	Representation of Data

	Comparison of C-ISAM to C Library Functions
	Indexed Sequential Access Method
	Indexed Access
	Sequential Access
	Flexibility

	Keys in C-ISAM Files
	Using Keys
	Choosing a Key
	Key Descriptions
	Unique and Duplicate Keys
	Primary Keys
	Collation Sequences of Keys

	Organization of C-ISAM Files
	Building a C-ISAM File
	Building a File With Fixed-Length Records
	Building a Variable-Length File

	C-ISAM Error Handling
	Manipulating Records in C-ISAM Files
	Identifying Records
	Using the Key Value
	Using the Current Record
	Using the Record Number
	Summary of Record Identification Methods

	Adding Records
	Deleting Records
	Updating Records
	Finding Records
	Using the isstart Function
	Finding Records by Record Number

	Opening and Closing Files
	Opening a File in Exclusive Mode
	Opening a Variable-Length File
	Maximum Number of Open Files
	Closing Fixed- and Variable-Length Files

	Compiling Your C-ISAM Program
	Running Your C-ISAM Program
	Setting the INFORMIXDIR Environment Variable

	C-ISAM Data-File Structure
	Summary

	Indexing
	Defining an Index
	Key Structures
	Manipulating Indexes
	Adding Indexes
	Deleting Indexes
	Defining Record-Number Sequence
	Determining Index Structures

	B+ Tree Organization
	Searching for a Record
	Adding Keys
	Removing Keys

	Index-File Structure
	Performance Considerations
	Key Size and Tree Height
	Key Compression
	Leading-Character Compression
	Trailing-Space Compression
	Duplicate-Key and Maximum Compression

	Multiple Indexes
	Localized Indexes

	Summary

	Data Types
	Defining Data Types for Keys
	C-ISAM Computer-Independent Data Types
	Defining Data Records
	Data Types in Variable-Length Records
	C-ISAM Data Type Conversion Routines
	Character Data
	Integer and Long Integer Data
	Floating-Point and Double-Precision Data

	DECIMALTYPE Data Type
	Using DECIMALTYPE Data Type Numbers
	DECIMALTYPE Data Type Declaration
	Sizing DECIMALTYPE Numbers
	Storing and Retrieving DECIMALTYPE Numbers
	Manipulating DECIMALTYPE Numbers

	Summary

	Locking
	Concurrency Control
	Types of Locking
	File-Level Locking
	Exclusive File Locking
	Manual File Locking

	Record-Level Locking
	Automatic Record Locking
	Manual Record Locking
	Waiting for Locks

	Increasing Concurrency
	Error Handling
	Summary

	Transaction Management Support�Routines
	Why Use Transaction Management?
	Transaction-Management Services

	Implementing Transactions
	Transactions with Variable-Length Records

	Logging and Recovery
	Data Integrity
	Concurrent Execution of Transactions
	Locking
	Concurrency Issues

	Summary

	Additional �Facilities
	File-Maintenance Functions
	Forcing Output
	Unique Identifiers
	Audit-Trail Facility
	Using the Audit Trail
	Audit-Trail File Format

	Clustering a File
	File Maintenance with Variable-Length Records
	If Data Files Are Corrupted
	If Index Files Are Corrupted

	Summary

	Sample Programs Using C-ISAM Files
	Record Definitions
	Error Handling in C-ISAM Programs
	Building a C-ISAM File
	Adding Additional Indexes
	Adding Data
	Random Update
	Sequential Access
	Chaining
	Using Transactions
	Summary

	Call Formats and Descriptions
	Functions for C-ISAM File Manipulation
	isaddindex
	isaudit
	isbegin
	isbuild
	iscleanup
	isclose
	iscluster
	iscommit
	isdelcurr
	isdelete
	isdelindex
	isdelrec
	iserase
	isflush
	isglsversion
	isindexinfo
	islanginfo
	islock
	islogclose
	islogopen
	isnlsversion
	isopen
	isread
	isrecover
	isrelease
	isrename
	isrewcurr
	isrewrec
	isrewrite
	isrollback
	issetunique
	isstart
	isuniqueid
	isunlock
	iswrcurr
	iswrite

	Format-Conversion and Manipulation Functions
	ldchar
	lddbl
	lddblnull
	lddecimal
	ldfloat
	ldfltnull
	ldint
	ldlong
	stchar
	stdbl
	stdblnull
	stdecimal
	stfloat
	stfltnull
	stint
	stlong

	DECIMALTYPE Functions
	decadd, decsub, decmul, and decdiv
	deccmp
	deccopy
	deccvasc
	deccvdbl
	deccvflt
	deccvint
	deccvlong
	dececvt and decfcvt
	dectoasc
	dectodbl
	dectoflt
	dectoint
	dectolong

	Summary

	C-ISAM Utilities
	The GLS Environment
	Error Codes
	File Formats
	System Administration
	Header Files
	Notices
	Index

