
C-ISAM
Indexed Sequential Access Method

Programmer’s Manual

Version 5.0

December 1991
Part No. 000-7115

THE INFORMIX SOFTWARE AND USER MANUAL ARE PROVIDED ‘‘AS IS’’ WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE INFORMIX SOFTWARE AND USER MANUAL IS WITH YOU. SHOULD THE
INFORMIX SOFTWARE AND USER MANUAL PROVE DEFECTIVE, YOU (AND NOT
INFORMIX OR ANY AUTHORIZED REPRESENTATIVE OF INFORMIX) ASSUME THE
ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. IN NO EVENT
WILL INFORMIX BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST
PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH INFORMIX SOFTWARE OR
USER MANUAL, EVEN IF INFORMIX OR AN AUTHORIZED REPRESENTATIVE OF
INFORMIX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER PARTY. IN ADDITION, INFORMIX SHALL NOT BE LIABLE FOR
ANY CLAIM ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH INFORMIX
SOFTWARE OR USER MANUAL BASED UPON STRICT LIABILITY OR INFORMIX’S
NEGLIGENCE. SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY
GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS,
WHICH VARY FROM STATE TO STATE.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or
used in any form or by any means—graphic, electronic, or mechanical, including photocopying,
recording, taping, or information storage and retrieval systems—without permission of the
publisher.

Published by: Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

INFORMIX and C-ISAM are registered trademarks of Informix Software, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.
PostScript is a registered trademark of Adobe Systems Incorporated.
X/Open is a trademark of X/Open Company Ltd.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software Clause at
52.227-7013 (and any other applicable license provisions set forth in the Government contract).

 Copyright © 1981-1991 by Informix Software, Inc.
ii

Table of
Contents

Table of Contents

Introduction
C-ISAM and Other Informix Products Intro-4
Other Useful Documentation Intro-4
How to Use This Manual Intro-4

Typographical Conventions Intro-5
Useful On-Line Files Intro-5
Compliance with Industry Standards Intro-6
Changes in Locking Mechanisms Intro-6
Migrating C-ISAM Files Intro-6

Chapter 1 How to Use C-ISAM
Chapter Overview 1-3
What Is a C-ISAM File? 1-3

Data Records in C-ISAM Files 1-4
Programming with Variable-Length Records 1-5
Representation of Data 1-6

Comparison of C-ISAM to C Library Functions 1-8
Indexed Sequential Access Method 1-9

Keys in C-ISAM Files 1-10
Using Keys 1-10

Organization of C-ISAM Files 1-13
Building a C-ISAM File 1-13

C-ISAM Error Handling 1-17
Manipulating Records in C-ISAM Files 1-18

Identifying Records 1-18
Adding Records 1-19
Deleting Records 1-21
Updating Records 1-22
Finding Records 1-24

Opening and Closing Files 1-28
Opening a File in Exclusive Mode 1-29

Opening a Variable-Length File 1-30
Maximum Number of Open Files 1-30
Closing Fixed and Variable-Length Files 1-30

Compiling Your C-ISAM Program 1-31
C-ISAM Data File Structure 1-31
Summary 1-32

Chapter 2 Indexing
Overview 2-3
Defining an Index 2-3
Key Structures 2-6
Manipulating Indexes 2-7

Adding Indexes 2-8
Deleting Indexes 2-9
Defining Record Number Sequence 2-10
Determining Index Structures 2-11

B+ Tree Organization 2-12
Searching for a Record 2-15
Adding Keys 2-16
Removing Keys 2-21

Index File Structure 2-22
Performance Considerations 2-23

Key Size and Tree Height 2-23
Key Compression 2-24
Multiple Indexes 2-27

Summary 2-28

Chapter 3 Data Types
Overview 3-3
Defining Data Types for Keys 3-3
C-ISAM Machine-Independent Data Types 3-4

Defining Data Records 3-5
Data Types in Variable-Length Records 3-7
C-ISAM Data Type Conversion Routines 3-8

DECIMALTYPE Data Type 3-11
Using DECIMALTYPE Data Type Numbers 3-11

Summary 3-16

Chapter 4 Locking
Overview 4-3
Concurrency Control 4-3
Types of Locking 4-6

File-Level Locking 4-6
vi Table of Contents

Record-Level Locking 4-8
Increasing Concurrency 4-11
Error Handling 4-11
Summary 4-12

Chapter 5 Transaction Management Support Routines
Overview 5-3
Why Use Transaction Management? 5-3

Transaction Management Services 5-4
Implementing Transactions 5-4

Transactions with Variable-Length Records 5-6
Logging and Recovery 5-7
Data Integrity 5-8

Concurrent Execution of Transactions 5-8
Summary 5-11

Chapter 6 Additional Facilities
Overview 6-3
File Maintenance Functions 6-3
Forcing Output 6-4
Unique Identifiers 6-5
Audit Trail Facility 6-6

Using the Audit Trail 6-6
Audit Trail File Format 6-8

Clustering a File 6-9
File Maintenance with Variable-Length Records 6-9

If Data Files Are Corrupted 6-10
If Index Files Are Corrupted 6-10

Summary 6-13

Chapter 7 Sample Programs Using C-ISAM Files
Overview 7-3
Record Definitions 7-3
Error Handling in C-ISAM Programs 7-4
Building a C-ISAM File 7-5
Adding Additional Indexes 7-6
Adding Data 7-7
Random Update 7-10
Sequential Access 7-14
Chaining 7-17
Using Transactions 7-22
Summary 7-25
Table of Contents vii

Chapter 8 Call Formats and Descriptions
Overview 8-3
Functions for C-ISAM File Manipulation 8-6

ISADDINDEX 8-8
ISAUDIT 8-10
ISBEGIN 8-13
ISBUILD 8-15
ISCLEANUP 8-18
ISCLOSE 8-19
ISCLUSTER 8-20
ISCOMMIT 8-22
ISDELCURR 8-24
ISDELETE 8-25
ISDELINDEX 8-27
ISDELREC 8-29
ISERASE 8-31
ISFLUSH 8-32
ISINDEXINFO 8-33
ISLOCK 8-36
ISLOGCLOSE 8-38
ISLOGOPEN 8-39
ISOPEN 8-40
ISREAD 8-42
ISRECOVER 8-46
ISRELEASE 8-47
ISRENAME 8-48
ISREWCURR 8-50
ISREWREC 8-52
ISREWRITE 8-54
ISROLLBACK 8-56
ISSETUNIQUE 8-58
ISSTART 8-60
ISUNIQUEID 8-63
ISUNLOCK 8-64
ISWRCURR 8-65
ISWRITE 8-67

Format-Conversion and Manipulation Functions 8-69
Format-Conversion Functions 8-69
LDCHAR 8-70
LDDBL 8-71
LDDBLNULL 8-72
LDDECIMAL 8-73
LDFLOAT 8-75
viii Table of Contents

LDFLTNULL 8-76
LDINT 8-77
LDLONG 8-78
STCHAR 8-79
STDBL 8-80
STDBLNULL 8-81
STDECIMAL 8-82
STFLOAT 8-84
STFLTNULL 8-85
STINT 8-86
STLONG 8-87
DECIMALTYPE Functions 8-88
DECCVASC 8-89
DECTOASC 8-91
DECCVINT 8-93
DECTOINT 8-94
DECCVLONG 8-95
DECTOLONG 8-97
DECCVFLT 8-98
DECTOFLT 8-99
DECCVDBL 8-100
DECTODBL 8-101
DECADD, DECSUB, DECMUL, and DECDIV 8-102
DECCMP 8-104
DECCOPY 8-105
DECECVT and DECFCVT 8-106

Summary 8-108

Appendix A The bcheck Utility

Appendix B Header Files

Appendix C Error Codes

Appendix D File Formats

Appendix E System Administration

Index
Table of Contents ix

x Table of Contents

Preface

The C-ISAM Programmer’s Manual describes the C-ISAM functions and facili-
ties. The book assumes that you are familiar with the C programming lan-
guage and have used the standard C library functions related to files and
input/output operations.

Summary of Chapters
The C-ISAM Programmer’s Manual includes the following chapters:

Chapters 1, 2, and 3 explain major features that are part of every program
using C-ISAM functions.

• Chapter 1 explains how to create and manipulate C-ISAM files.

• Chapter 2 explains the organization and use of indexes.

• Chapter 3 describes the data types that may be used in C-ISAM files and
how they are handled in C-ISAM programs.

Chapters 4, 5, and 6 explain specialized facilities.

• Chapter 4 describes file and record locking and how these are
implemented.

• Chapter 5 explains how to ensure data integrity using transaction
management.

• Chapter 6 describes additional C-ISAM functions and explains the use of
audit trails.

The rest of the manual contains sample programs and reference material.

• Chapter 7 contains several complete programs that use the C-ISAM func-
tions described in earlier chapters.

• Chapter 8 serves as the reference section for each C-ISAM function. It is
organized so that the syntax and details of each function are easy to locate
and use.

• Appendix A describes the utility program for checking the integrity of
C-ISAM files.

• Appendix B contains the source code for the header files you need to
include in C-ISAM programs.

• Appendix C lists the errors that can occur during execution of C-ISAM
calls.

• Appendix D shows the physical file layouts for files that C-ISAM uses.

• Appendix E explains how to set up your operating system to use C-ISAM.

Related Reading
If you are not familiar with the C language, refer to the C programmer’s man-
ual that comes with your system, or any other book on the C language. One
such reference book is The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie, Prentice-Hall, 1978.

If you have had no prior experience with database management, you may
want to refer to an introductory text like C. J. Date’s Database: A Primer
(Addison-Wesley Publishing, 1983). If you want more technical information
on database management, consider consulting the following texts, also by
C. J. Date:

• An Introduction to Database Systems, Volume I (Addison-Wesley Publish-
ing, 1990)

• An Introduction to Database Systems, Volume II (Addison-Wesley
Publishing, 1983)
iv Preface

Introduction
Introduction

C-ISAM and Other Informix Products 4

Other Useful Documentation 4

How to Use This Manual 4
Typographical Conventions 5

Useful On-Line Files 5

Compliance with Industry Standards 6

Changes in Locking Mechanisms 6

Migrating C-ISAM Files 6

2 Introduction

C-ISAM is an Indexed Sequential Access Method defined and implemented
for the C language by Informix. An access method is a way to retrieve pieces of
information, records, from a larger set of information, a file.

An indexed sequential access method allows you to find records in a specific
order, such as finding all employees in order by employee number or in order
by name (sequential access). It also allows you to find specific pieces of infor-
mation quickly, such as information about employee 100 or employee R.
Smith, without having to look at extra records (indexed access).

The ability to find specific records quickly is important if you are interested
only in one or a few pieces of information out of a much larger set. If you are
only interested in the record belonging to R. Smith, you should be able to
access it directly without accessing other records.

When you want to produce a list of all employees, ordered in some way, such
as by name or by number, you need the ability to access the records in
sequential order.

C-ISAM is a library of C language functions that create and manipulate
indexed files. An index allows you to do the following tasks without addi-
tional programming:

• Find a specific record within a large file very quickly

• Define an order for sequential processing of the file

Each index is defined by a key. The key is the field or fields (including parts
of fields) that you use to locate records. Keys also define the order in which
you want to process the file. Employee number or employee name are exam-
ples of fields that can be indexed to allow you to find specific employees by
name or number, or to process the file in number or name sequence.

C-ISAM allows great flexibility for defining and using indexes. You can have
as many indexes as you need, without restrictions. You can create or remove
indexes at any time without affecting data records or other indexes.

You are not required to use an index to locate a record. You can access records
by relative location within the file; for example, the 100th record from the
beginning of the file.
Introduction 3

C-ISAM and Other Informix Products
C-ISAM includes several other features, such as locking and support for
transactions, to provide data integrity. The use of these facilities allows you
to ensure that information is accessible, accurate in its consistency, and cor-
rectly processed.

The locking facility allows you to write programs so that two or more pro-
grams cannot interfere with each other and cause inconsistencies in the data.

C-ISAM provides support routines for transaction management to extend
your ability to write programs that maintain the consistency and accuracy of
C-ISAM files. These routines also allow you to recover data that is lost due to
hardware failures.

C-ISAM and Other Informix Products
Applications that you develop with C-ISAM do not need to interact with any
other database-management software. However, C-ISAM is not the only
Informix product available. Informix Software produces a variety of applica-
tion development tools, CASE tools, database servers, and client/server
products.

Other Useful Documentation
You may want to refer to a number of related Informix product documents
that complement the C-ISAM Programmer’s Manual.

• You, or whoever installs C-ISAM, should refer to the UNIX Products Instal-
lation Guide for your particular release to ensure that C-ISAM is properly
set up before you begin to work with it.

• When errors occur, you can look them up, by number, and find their cause
and solution in the Informix Error Messages manual. The error messages
are also documented in Appendix C of this manual.

How to Use This Manual
This manual assumes that you are using 5.0 C-ISAM on a UNIX operating
system.
4 Introduction

Useful On-Line Files
Typographical Conventions
The C-ISAM Programmer’s Manual uses a standard set of conventions to intro-
duce new terms, illustrate screen displays, describe command syntax, and so
forth. The following typographical conventions are used throughout the
manual:

italics When new terms are introduced, they are printed in italics.

boldface Database names, table names, column names, filenames,
utilities, and other similar terms are printed in boldface.

computer Information that you enter are printed in a computer type-
face.

KEYWORD All keywords appear in uppercase letters.

Useful On-Line Files
In addition to the Informix set of manuals, the following on-line files, located
in the directory you have indicated at install-time to hold the sample pro-
grams, may supplement the information in the C-ISAM Programmer’s Manual:

Documentation describe features not covered in the manual or which
Notes have been modified since publication. The file containing

the Documentation Notes for this product is called
ISAMDOC_5.0.

Release Notes describe feature differences from earlier versions of Infor-
mix products and how these differences may affect current
products. The file containing the Release Notes for
C-ISAM and other products is called ENGREL_5.0.

Machine Notes describe any special actions required to configure and use
Informix products on your machine. The file containing the
Machine Notes for this product is called ISAM_5.0.

Please examine these files because they contain vital information about
application and performance issues.

When you install C-ISAM, several sample programs (ex1.c through ex7.c) are
also installed. These examples are documented in this manual, so you may
find it helpful to compile and run these programs at some point.
Introduction 5

Compliance with Industry Standards
Compliance with Industry Standards
C-ISAM conforms to the guidelines put forth in the X/Open Portability Guide,
Issue 3 (XPG3).

Changes in Locking Mechanisms
Version 5.0 of C-ISAM and INFORMIX-SE may use a different locking mecha-
nism from past versions on your hardware platform. For example, this is the
case if you are using Version 5.0 of these products on a Sun platform and your
previous version was 4.10.UC1 or earlier, where the SYS5LOCK locking mech-
anism (fcntl/flock)replaces CREATLOCK(.lok files). It may also be the case if
your previous version of INFORMIX-SE or C-ISAM was a shared-memory
implementation. If the locking mechanism has changed on your platform,
this fact is noted in the on-line SE_5.0 or ISAM_5.0 file.

In general, C-ISAM files created with different locking mechanisms are not
compatible. If you have C-ISAM files or INFORMIX-SE databases created with
an earlier version of the product on an affected platform, and you wish to use
them with Version 5.0, follow the migration procedures outlined in this sec-
tion after your 5.0 software is installed. Once the migration is complete, you
cannot revert to the previous locking mechanism.

Before you migrate C-ISAM files or INFORMIX-SE databases, you should
back them up. You must also set the RESETLOCK environment variable. You
do not have to set RESETLOCK to a specific value; simply specify the variable
in the exported environment as follows:

Bourne or Korn shell: RESETLOCK=
export RESETLOCK

C shell: setenv RESETLOCK

Migrating C-ISAM Files
Two methods are available for migrating C-ISAM files. The first method is to
set the RESETLOCK environment variable and then run your existing applica-
tion, making sure that all files are opened at least once. The second method is
to run the bcheck utility on any files that you want to convert for use under
Version 5.0. The bcheck opens the referenced C-ISAM file or files and auto-
matically updates them to the new locking method.
6 Introduction

Migrating C-ISAM Files
Once the migration is complete, you do not need to continue to set the RESET-
LOCK variable to work with the new files. You can safely remove any remain-
ing .lok files.
Introduction 7

Migrating C-ISAM Files
8 Introduction

Chapter
1

How to Use C-ISAM
Chapter Overview 3

What Is a C-ISAM File? 3
Data Records in C-ISAM Files 4
Programming with Variable-Length Records 5
Representation of Data 6

Comparison of C-ISAM to C Library Functions 8
Indexed Sequential Access Method 9

Indexed Access 9
Sequential Access 9
Flexibility 9

Keys in C-ISAM Files 10
Using Keys 10

Choosing a Key 11
Key Descriptions 11
Unique and Duplicate Keys 12
Primary Keys 12

Organization of C-ISAM Files 13
Building a C-ISAM File 13

Building a Variable-Length File 17

C-ISAM Error Handling 17

Manipulating Records in C-ISAM Files 18
Identifying Records 18

Using the Key Value 18
Using the Current Record 18
Using the Record Number 19
Summary of Record Identification Methods 19

Adding Records 19
Deleting Records 21
Updating Records 22

Finding Records 24
Using the isstart Function 26
Finding Records by Record Number 28

Opening and Closing Files 28
Opening a File in Exclusive Mode 29
Opening a Variable-Length File 30
Maximum Number of Open Files 30
Closing Fixed and Variable-Length Files 30

Compiling Your C-ISAM Program 31

C-ISAM Data File Structure 31

Summary 32
1-2 How to Use C-ISAM

Chapter Overview
C-ISAM is a set of functions that can be used in C language programs. This
chapter gives an overview of the basic concepts that you need to begin using
C-ISAM. It also explains how to use the most common functions to perform
the following tasks:

• Create a C-ISAM file

• Add records to the file

• Remove records from the file

• Update existing records

• Find and retrieve records

• Open and close the file

• Determine the length and number of file records

This chapter also shows you how to compile your program and introduces
details about the structure and organization of C-ISAM data files.

What Is a C-ISAM File?
A C-ISAM file is a collection of data that you would like to keep on the com-
puter. For example, you may want to keep information about all employees
on the computer. To do this, you must first decide what data to keep for each
employee. Each item that you decide to keep is called a field.

You may decide to keep an employee number, the first and last names,
address, and city for each employee. This collection of fields is called a record.
You must determine the data type and the length of each field.
1-3

What Is a C-ISAM File?
This manual uses an employee file with employee records as the primary
example to show you how to use C-ISAM. Figure 1-1 and Figure 1-2 show
the Employee record for this example.

Offset from
 Description Type Length Pointer Beginning of Record
Employee Number Long 4 p_empno 0
Last Name Char 20 p_lname 4
First Name Char 20 p_fname 24
Address Char 20 p_eaddr 44
City Char 20 p_ecity 64

Total Length in Bytes 84

Figure 1-1 Employee Record

Figure 1-2 Employee Record Illustration

The record is the collection of fields. Each field has a data type and a length.
The offset is the relationship of the field to the beginning of the record. The
Employee Number field starts at the beginning of the record, at offset 0, and
the Last Name field starts after the Employee Number, at offset 4.

Data Records in C-ISAM Files
Records in a C-ISAM file can be of either fixed or variable length. You must
reserve space for at least one record in your program. The record must hold
the contents of the fields and one more byte. The easiest way to do this is to

84 85
80706050403020100

64

44

24

4
additional byte

p_ecity

p_eaddr

p_fname

p_lname
p_empno

TOTAL LENGTH = 85 BYTES
1-4 How to Use C-ISAM

What Is a C-ISAM File?
declare a character variable of the size that your record layout indicates plus
one byte (See Figure 1-1). The following declarations are sufficient for the
employee record:

char emprec[84+1];

or

char emprec[85];

You can define the location of each field by its offset from the beginning of the
record and declare a pointer variable for each field. The pointers become the
arguments to functions that operate on fields. To set up the Employee Num-
ber and Name fields, you declare the following pointer variables:

char *p_empno = emprec+ 0;
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;

These declarations use pointer arithmetic to define the field position. The off-
set within the record is added to the address of the record in memory. The fol-
lowing declarations are equivalent:

char *p_empno = &emprec[0];
char *p_lname = &emprec[4];
char *p_fname = &emprec[24];

Use the record address, emprec, to refer to the record.

Programming with Variable-Length Records
A file can contain either variable-length or fixed-length records. Variable-
length records can have a fixed-length portion. The variable-length portion
of a record is at the end of the record, after the fixed-length portion. For com-
patibility with earlier versions of C-ISAM, a record that is not specifically
labeled fixed length or variable length defaults to fixed length. As with fixed-
length records, you must declare a C variable that holds the data in the vari-
able-length record while you manipulate it.
How to Use C-ISAM 1-5

What Is a C-ISAM File?
The fixed-length portion of a variable-length record is stored in the data file,
along with a four-byte pointer to the variable-length portion of the record.
The variable-length portion of the record is stored in the index file. For this
reason, it is important that you do not remove the index files (.idx). If you remove
the .idx files, there is no way of restoring the files and the variable-length data
contained within them, other than restoring them from a backup.

If the index portion of the .idx files becomes corrupted, run the bcheck utility
without removing the .idx files. This leaves the variable-length data intact.
Complete information for recovery in the event of a data loss is described in
the section “File Maintenance with Variable-Length Records” on page 6-10
of this manual.

The ability to use variable-length records is only available with C-ISAM; it is
not available with any Informix products that use INFORMIX-SE.

Representation of Data
C-ISAM uses data types that are equivalent to the C language data types on
your machine. C-ISAM representation of these data types, however, is
machine independent. Thus, the way C-ISAM stores the data can be different
from the internal representation of the data while your program executes.

For example, Employee Number is a long integer. The C-ISAM equivalent is
LONGTYPE. The size of a C-ISAM LONGTYPE is LONGSIZE. The other items
in the record are CHARTYPE, corresponding to the C language char data type.
(These parameters, as well as other parameters you need in programs that
use C-ISAM, are in the header file isam.h that you must include in your pro-
grams. Appendix B, ‘‘Header Files,’’ contains a listing of isam.h.)

C-ISAM provides functions to convert between the internal representation of
data on your machine and the way that C-ISAM stores the data. (See
Figure 1-3.) For example, the function stlong takes a C language long integer
and stores it into the record. The function ldlong retrieves the C-ISAM repre-
sentation of a long integer from the record and places it in a C language long
variable. You must always convert between the internal representation of
data on your machine and the machine-independent C-ISAM representation
of the data. Chapter 3, ‘‘Data Types,’’ describes the conversion functions that
you can use.
1-6 How to Use C-ISAM

What Is a C-ISAM File?
Figure 1-3 Converting the Internal Representation of Data to the C-ISAM Representation of
Data

Figure 1-4 shows how you can transfer data between a C-ISAM data file
record and the internal program variables for the record in Figure 1-1.

char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

/* Program Variables */
long empno;
char lname[21];
char fname[21];
char eaddr[21];
char ecity[21];
/* Store program variables in C-ISAM data record */
stlong (empno,p_empno);
stchar (lname,p_lname,20);
stchar (fname,p_fname,20);
stchar (eaddr,p_eaddr,20);
stchar (ecity,p_ecity,20);
/* Load program variables from C-ISAM data record */
empno = ldlong(p_empno);
ldchar (p_lname,20,lname);
ldchar (p_fname,20,fname);
ldchar (p_eaddr,20,eaddr);
ldchar (p_ecity,20,ecity);

Figure 1-4 Transferring Data Between Program Variables and a C-ISAM Data Record

C-LANGUAGE
PROGRAM VARIABLES

Machine Dependent

Load (ld) functions

Store (st) functions

C-ISAM RECORDS

Machine Independent
How to Use C-ISAM 1-7

Comparison of C-ISAM to C Library Functions
The function stlong takes the long integer empno, converts it into the C-ISAM
machine-independent representation of a long integer, and places it in the
record, starting at address p_empno. The function converts the C-ISAM long
integer starting at position p_empno in the data record, and returns its value
to the program variable empno.

The function stchar takes program variables, such as lname, removes the null
character, and places the data in the C-ISAM data record, starting in position
p_lname as shown in Figure 1-2. It pads the C-ISAM data record with trailing
spaces up to the number specified, which is 20.

The function ldchar is the reverse of stchar. The data at the starting position
in the record, p_lname for example, is transferred to a program variable
lname. The transfer stops after 20 characters. Trailing spaces are removed
and the program variable is null-terminated.

Comparison of C-ISAM to C Library Functions
You can use the data structure described in Figure 1-2 to write records to a
file created by the C standard library function creat. You can also use the
structure to retrieve those records. The standard library functions, read and
write, allow you to read and write the next arbitrary group of bytes (you
specify the number) in relation to the last group read or written. The C func-
tion lseek allows you to change the starting position for the next read or
write.

C-ISAM also allows you to perform these operations. C-ISAM functions, how-
ever, operate on the records that you define. You do not have to concern your-
self with the byte positions within the file in order to find the information that
you wish to access. This, however, is not the main advantage of using C-ISAM
files.

C-ISAM offers you the following advantages:

• You can define one or more orders for processing the records. The con-
tents of the records determine the order, not the physical ordering of
records in the file.

• You can quickly find specific records within files, even when the files are
quite large.
1-8 How to Use C-ISAM

Comparison of C-ISAM to C Library Functions
Indexed Sequential Access Method
You can store thousands, or tens of thousands, of data records in a file using
the standard library functions. If you wanted to find employee 100, or the
employee R. Smith, your program might have to search the entire file.

C-ISAM gives you a much faster way to find a record, which eliminates the
need for your program to search a data file sequentially when it looks for just
a few records. C-ISAM provides an access method that uses an index.

Indexed Access

The indexes of a C-ISAM file are similar in function to the index of this book.
You use a book index to locate a page that contains the information that you
need. The index is composed of words that identify the contents of the page.
These entries are called keywords. The C-ISAM index, however, is not
restricted to words. Its entries are simply called keys.

In the book, the keyword refers you to a page number. In the C-ISAM file, the
key points to a record that is identified by its record number. In both cases,
you use the pointer (page number in a book or record number in a file) to
locate the item of interest.

This book has only one index. With C-ISAM, however, you can have as many
indexes as you need. For example, you can define two indexes: one for the
Employee Number field, and another for the Employee Name field. This
allows you to find quickly the record for Employee Number 100 or employee
R. Smith.

Sequential Access

C-ISAM also allows sequential processing of records in the order defined by
the key. You can access all or part of the file in any of the following orders:

• By the Employee Number key

• Alphabetically by the Employee Name key

• By any other order that you define with an index

Flexibility

C-ISAM enhances the functionality of your programs through its flexibility. If
you add a section to a book, rearrange paragraphs or sections, remove a few
pages, you must re-create your index since the keywords must appear in rela-
tion to each other. In this case, the relationship of the keywords to each other
How to Use C-ISAM 1-9

Keys in C-ISAM Files
is alphabetic order. A C-ISAM index changes automatically whenever a data
record changes. If you hire or terminate an employee, or change anything in
a record, C-ISAM immediately updates all indexes.

You can create an index on any field, on several fields to be used together, or
on parts thereof, that you want to use as a key. The keys in indexes allow you
quick access to specific records and define orders for sequential processing of
a C-ISAM file. When you no longer need an index, you can delete it. Addition
and deletion of indexes have no effect on the data records or on other indexes.

Keys in C-ISAM Files
In the analogy to the book index in the section, ‘‘Indexed Access,’’ earlier in
this chapter, an entry in the index for this book is a keyword. With each key-
word there is a pointer to a page number. In the analogy, each key in a
C-ISAM file points to a data record, or simply, a record.

In the employee file, you may want to access records by employee number.
This requires an index, just as the book does. The keys are the employee num-
bers. In other words, the Employee Number index contains the employee
number for each employee in the file. (Conceptually, you should think of the
index as ordering the records by employee number. Chapter 2, ‘‘Indexing,’’
shows the actual organization of the index.)

The employee numbers in the index point to data records. The format of the
data record is shown in Figure 1-1 and Figure 1-2. The data records are not
in a particular order. The index, however, is always in a specific order. In this
case, it is in order by employee number.

Using Keys
To find a record, you supply the key value for which you are searching. The
C-ISAM function rapidly performs the search by looking through the index.
If it finds a match on the key value, it uses the pointer to read the data record.
C-ISAM then returns the data record to your program.

Your program does not need to know where the record is in the data file. It
needs only to supply the search value to a function. If you provide a search
value of 100 and use the Employee Number index, the C-ISAM function
locates the record corresponding to Employee Number 100, regardless of
where it is in the file.
1-10 How to Use C-ISAM

Keys in C-ISAM Files
Choosing a Key

You may also need to find specific records in the employee file by employee
name. Once again, this requires an index. The choice of the key, in this case,
is a little more complex since the record contains two name fields: First Name
and Last Name. You can define the key to include any one of the following
fields:

• Last Name field only

• First and Last Name fields together, in the form last/first

• Some other combination, such as the first 10 characters of the Last Name
field and the first character of the First Name field

The key that you choose determines the order of the index.

The search value that you use to find a record is different for different key
definitions. For example, if you define the key on the first ten characters of
the Last Name field and the first character of the First Name field and you are
looking for an exact match, a search value of Smith cannot find the desired
data record if you are looking for the record that belongs to R. Smith.

Key Descriptions

Each index has a description of its key. This key description defines the fields
that make up the key. For the Employee Number index, the key description
indicates that the keys consist of only one field, the Employee Number. For
the Name index, the key description is more complex. If you choose to use
the first 10 characters of the Last Name field and the first character of the First
Name field as the key, the key description specifies that the keys consist of
two fields: part of the Last Name (the first 10 characters) and part of the First
Name (the first character).

C-ISAM does not keep information about the names or uses of individual
fields. A field is simply a location in the record that is defined by its offset
from the beginning of the record. You use the offsets to identify the fields that
define the key. For the employee record, these field offsets are shown in
Figure 1-1.

You identify the key fields to C-ISAM by creating a key description structure
that contains information about the key. This includes the number of parts
that the key contains (one for Employee Number key and two for the
Employee Name key) and information about each part. The information for
each part of the key includes the offset of the field in the data record, the data
type, and the length. You can specify several other options in the key descrip-
tion structure. (Chapter 2 explains these options.)
How to Use C-ISAM 1-11

Keys in C-ISAM Files
Unique and Duplicate Keys

You may want a field in each record to uniquely identify that record from all
other records in the file. For example, the Employee Number field is unique
if you do not assign the same number to two different employees, and you
never reassign these numbers to other employees. If you wish to find or mod-
ify the record belonging to a specific employee, this unique field saves the
trouble of determining whether you have the correct record.

If you do not have a unique field, you must find the first record that matches
your key and determine whether that record is the one you want. If it is not
the correct one, you must search again to find others.

If you know that you have a unique field within your records, you can
include this fact in the key description, and C-ISAM will allow only unique
keys. For example, if you specify that the employee numbers are unique,
C-ISAM only lets you add records to the file for, or change numbers to,
employee numbers that do not already exist in the file.

There are times when you do not want to specify a key as unique. If you want
an index on Employee Name, you may want to allow for duplicate keys in
the event that two or more employees have the same name, for example, two
R. Smith. If you use this index to find and update a record, however, you
must determine that only one R. Smith exists in the file or that you are updat-
ing the correct record if there is more than one.

Primary Keys

When you create your C-ISAM file, you ordinarily specify a description of the
key in the index. The keys in this index are called primary keys. This index is
the primary index. Other non-primary indexes can be added later. Chapter 2
discusses how to add indexes.

In general, very little difference exists between a primary index and any
other. The primary index, however, cannot be deleted. Also, several functions
work only on records that have unique primary keys. These functions are
described in the section “Manipulating Records in C-ISAM Files” on page
1-18 of this chapter.

Usually you want to build your primary index on a key that you are most
likely to need throughout the life of the file, especially if it is a unique key. It
is possible to build a C-ISAM file that does not have a primary index. Chapter
2 also discusses this option.
1-12 How to Use C-ISAM

Organization of C-ISAM Files
Organization of C-ISAM Files
Each C-ISAM file contains data records and, usually, one or more indexes that
point to the data records. Even if there are two indexes for the employee file,
one on Employee Number and the other on Employee Name, there is still
only one data record for each employee. If R. Smith is Employee Number 100,
the entry in the Employee Number index for key 100 points to the same
record as the entry for employee R. Smith in the Name index.

Physically, a C-ISAM file consists of two operating system files, one to hold
the data records and another to hold the indexes. The data file has the exten-
sion .dat, for example, employee.dat. The index file has the extension .idx: for
example, employee.idx. These two operating system files are always used
together as a logically single C-ISAM file. On some platforms, an additional
file is used to keep track of locks on data records. This lock file has the exten-
sion .lok.

Building a C-ISAM File
You must use the isbuild function call to create a C-ISAM file. If the file is to
contain variable-length records is very similar to using files with fixed-length
records. With variable-length records, you have to use the global variable
isreclen in addition to isbuild when you build the file.

 The call to build the C-ISAM file employee (a fixed-length record) is as fol-
lows:

fd = isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK);

This function creates the .dat and .idx operating system files and opens them.
It returns a file descriptor, fd, which identifies the C-ISAM file in other func-
tion calls.

The first argument to the function is the C-ISAM filename. You do not specify
a filename extension.

In the example used here, each record contains an Employee Number, First
Name, Last Name, Address, and City field. The layout of the record is shown
in Figure 1-5.
How to Use C-ISAM 1-13

Organization of C-ISAM Files
Offset from
 Description Type Length Beginning of Record

Employee Number LONGTYPE LONGSIZE 0
Last Name CHARTYPE 20 4
First Name CHARTYPE 20 24
Address CHARTYPE 20 44
City CHARTYPE 20 64

Total Length in Bytes 84

Figure 1-5 Employee Record

The isbuild function does not use any information about the actual organi-
zation of the record. You should lay out the record, however, to determine the
length of the record and the location of the key within the record.

For the employee file example, you must provide isbuild with the four
parameters shown here:

employee is the name of the file that is being built, and the first param-
eter.

84 is the record size, in bytes, in this example.

&key is the third argument and the address of the structure that
describes the primary key. It is, by definition, the primary
key since it is the key that you create when you build the file.

ISINOUT+

ISEXCLLOCK specifies the mode and locking to be used.
1-14 How to Use C-ISAM

Organization of C-ISAM Files
Figure 1-6 shows the key description structure. It is defined in the header file
isam.h, which you include when you compile your program. (See Appendix
B for a complete listing of isam.h.)

struct keypart
 {

short kp_start; /* starting byte of key part */
short kp_leng; /* length in bytes */
short kp_type; /* type of key part */

 };

struct keydesc
 {

short k_flags; /* flags */
short k_nparts; /* number of parts in key */

 struct keypart
k_part[NPARTS]; /* each key part */

/* the following is for internal use only */
short k_len; /* length of whole key */
long k_rootnode; /* pointer to rootnode */

 };

Figure 1-6 Key Description Structure

You must set up a keydesc structure to define your key. At this point, con-
sider only what is necessary to define the primary index containing
employee numbers as keys. Chapter 2 describes in detail how to set up key
description structures.

The key description structure keydesc defines the number of fields that the
key contains and, for each field, gives information about its location in the
record, its data type, and the number of bytes that are part of the key. The
structure also contains information that is related to the overall key; for
example, whether or not duplicate keys are allowed.

The Employee Number index contains keys with only one part, the
Employee Number field. In this case, you initialize k_nparts equal to one.

As previously mentioned, C-ISAM files contain no information about fields
in a record. When you choose key fields, you must specify an offset that is the
distance in bytes from the beginning of the record to the beginning of the
field. This offset depends upon the lengths of the fields that precede the key
field in the record. Since the Employee Number field starts at the beginning
of the record, the offset is zero; therefore you initialize kp_start to zero.
How to Use C-ISAM 1-15

Organization of C-ISAM Files
The key length is defined by the data type that you use or the length of the
data if it is a CHARTYPE. Since the Employee Number is a C language long
data type, its data type is LONGTYPE and the length is LONGSIZE. In this case,
you set kp_type to LONGTYPE and kp_leng to LONGSIZE.

If you want C-ISAM functions to enforce uniqueness on the primary key, set
k_flags equal to ISNODUPS (no duplicates allowed).

After you create the file, it remains open and available for use. The fourth
argument to isbuild specifies the access mode and locking mode of the open
file. You can open the file for output (write only), input (read only), or both
input and output. You can also lock the file for exclusive access, which means
that only the program that opens the file can use it (until the file is closed).

Figure 1-7 shows the code that you use to create the employee file. The
access mode allows both input and output. The locking mode, which is ISEX-
CLLOCK, specifies exclusive use by the program.

#include <isam.h>
struct keydesc key;
.
.
.
key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = LONGSIZE;
key.k_part[0].kp_type = LONGTYPE;

if ((fd=isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK)) < 0)
{
printf ("isbuild error %d",iserrno);
exit (1);
}

.

.

.

Figure 1-7 Creating a C-ISAM File

The function returns a code. If this code is greater than or equal to zero, the
number is the file descriptor that you use in subsequent C-ISAM calls to
uniquely identify the file. If the return code is less than zero, it is an indication
of an error.

The file opening modes are discussed in the section “Opening and Closing
Files” on page 1-29 of this chapter. Locking is described in Chapter 4, ‘‘Lock-
ing.’’
1-16 How to Use C-ISAM

C-ISAM Error Handling
Building a Variable-Length File

Use the isbuild function to create a C-ISAM file for variable-length records.

1. Before you call isbuild, set isreclen to the minimum number of bytes in
the variable-length record. This establishes the length of the fixed-length
portion of the record. The total record length can range from 2 to 32,511
bytes; the fixed-length portion can range from 1 to 32,510 bytes.

2. Call isbuild, specifying ISVARLEN as part of the mode parameter to indi-
cate that the file will contain variable-length records. Give the reclen
parameter the maximum length of the record, including the fixed- and
variable-length parts. The smallest value you can use in ISVARLEN is 1.
The smallest variable-length record that you can use is two bytes; one
byte for the fixed-length portion, one for the variable-length portion.

For example, the following two statements build the C-ISAM file employee
with a maximum record size of 1284 bytes, a minimum record size of 84
bytes, and a variable-length portion of up to 1200 bytes.

isreclen = 84;
fd = isbuild("employee:", 1284, &key, ISINOUT + ISEXCLLOCK +

ISVARLEN);

The employee file also is read/write and is locked exclusively. See the com-
plete description of isbuild on page 8-15 of this manual.

C-ISAM Error Handling
C-ISAM functions return an integer code. If this code is greater than or equal
to zero, the function executed successfully. If the return code is negative, the
function failed.

To determine the reason for failure or to test for certain conditions, such as
the end of a file, you can examine the contents of the global variable, iserrno.
Appendix C, ‘‘Error Codes,’’ contains a description of all error conditions,
their values, and mnemonics.

Figure 1-7, on page 1-16, shows an example of the use of the iserrno variable.
You should check the return code of each C-ISAM call and take appropriate
action based upon the value in iserrno.
How to Use C-ISAM 1-17

Manipulating Records in C-ISAM Files
Manipulating Records in C-ISAM Files
You can manipulate records in a C-ISAM file in several ways. When the file is
created, you add records. Later you will need to find them again. Perhaps
you may also need to delete some of the records and update the contents of
others. C-ISAM provides several ways to perform each of these operations.

Identifying Records
Several C-ISAM functions perform the same task. The differences among
these functions are a result of the different ways that you identify records
within a C-ISAM file. For example, you can delete a record with either of three
function calls. The way you identify the record dictates the function that you
use.

Using the Key Value

You can identify a record by its key value. If you specify a unique primary
key, you can, for example, delete a record using the C-ISAM function call
isdelete.

You can use an employee number with the function isdelete to delete a
record from the employee file, since Employee Number is the unique pri-
mary key. (See the section “Building a C-ISAM File” earlier in this chapter, for
an example of how to build the employee file.)

If you do not use a primary index with unique keys, you cannot use isdelete
to delete a record. Functions that use unique primary keys guarantee that the
record you want is the only possible match. These functions return error
codes if the index definition does not guarantee unique keys.

C-ISAM functions give you two other ways to identify records, in addition to
an exact match on the key value.

Using the Current Record

You can use functions that operate on the current record. You can set the cur-
rent record in several ways. The most common way is to read a record, since
the last record that you read becomes the current record.

If you have keys that are not guaranteed to be unique, a potential solution is
to read the first record with a matching key; this becomes the current record.
If the user verifies that this is the correct record to delete, your program can
delete it with the function call isdelcurr, which deletes the current record.
1-18 How to Use C-ISAM

Manipulating Records in C-ISAM Files
This method is useful, for example, when you have two R. Smiths in the file.
The program can read the first record, using the Name index, and display the
Address and City. This record is the current record. The program can prompt
for verification. If it is the correct record, the program deletes it with isdel-
curr. If it is not correct, the program can find another match, and the new
record becomes the current record. The program can repeat the process.

Using the Record Number

Some functions allow you to identify a record by its position, relative to the
beginning of the data file. Each record has a record number that identifies its
position in the file. The first record in the file is Record 1.

When a record is accessed for any reason, even for deletion, its record num-
ber is set in the global variable isrecnum. This variable is defined in isam.h.
You can use the record number with the function call isdelrec to delete a
record in the file.

Summary of Record Identification Methods

In summary, C-ISAM functions use one of the following three basic methods
to identify a specific record:

key value uses an index to access the record.

current record is either the last record read or, in certain cases that are dis-
cussed in the following sections, is set by another function.

record number identifies the relative position of the record from the begin-
ning of the data file. (The first data record in the file is Record
Number 1.)

Adding Records
To add records to a file, you must first fill your data record structure with the
data to be written to the file. If you add a record to the employee file, you
must fill in the employee record that is defined by the structure, emprec.
C-ISAM automatically inserts the key into each index that exists.
How to Use C-ISAM 1-19

Manipulating Records in C-ISAM Files
You can add records to the file using either iswrite or iswrcurr. The only dif-
ference between the two calls is that iswrcurr sets the current record to the
record just added, and iswrite does not. Figure 1-8 shows examples of each
call.

#include "isam.h"
.
.
.
int fd;

char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

/* Program Variables */
long empno;
char lname[21];
char fname[21];
char eaddr[21];
char ecity[21];
.
.
.
/* Store program variables in C-ISAM data record */
stchar (lname,p_lname,20);
stchar (fname,p_fname,20);
stchar (eaddr,p_eaddr,20);
stchar (ecity,p_ecity,20);

stlong(100L,p_empno); /* Employee No. 100 */

if (iswrite(fd,emprec) < 0)
1-20 How to Use C-ISAM

Manipulating Records in C-ISAM Files
{
printf ("iswrite error %d",iserrno);
.
.
}

else /* current record position not changed */
{
printf("The current record is NOT %d",isrecnum);

.

.

.
stlong(101L,p_empno); /* Employee No. 101 */

if (iswrcurr(fd,emprec) < 0)
{
printf ("iswrcurr error %d",iserrno);
.
.
}

else /* this record is the current record */
{
printf("The current record is now %d",isrecnum);

.

.

.

Figure 1-8 Adding Records to a C-ISAM File

The file descriptor, fd, is returned when you execute isbuild or when you
open an existing file. Both iswrite and iswrcurr update the Employee Num-
ber index. They also update any other indexes that exist. Both functions set
the global variable isrecnum to the record number of the data record just
added.

Deleting Records
You can use three functions to remove a record from a C-ISAM file. All of
them remove the corresponding key value for each existing index.
How to Use C-ISAM 1-21

Manipulating Records in C-ISAM Files
The isdelete function removes the record that is located by its key in the
unique primary index. Figure 1-9 shows an example that deletes an emprec
record from the file created in Figure 1-7.

char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

int fd;
int cc;
/* Set up key to delete Employee No. 101 */
stlong(101L,p_empno);

cc = isdelete(fd,emprec);

Figure 1-9 Deletion Using the Primary Key

The primary index must contain unique keys. (You set k_flags = ISNODUPS
when you build the file.) You must place the key value in the data record in
the positions defined for the primary key. The stlong function places a long
integer in the data record.

cc is an integer that receives the return code. If it is negative, you can check
iserrno to determine the reason. The file descriptor fd is the number of the
file descriptor that identifies the file.

To delete the current record from the file identified by file descriptor fd, use
the following call:

cc = isdelcurr(fd);

The current record is either the last record read, or it is set by some other func-
tion, for example, iswrcurr.

To delete the 100th record from the beginning of the file, or Record Number
100, use the following call:

cc = isdelrec(fd,100);

The first argument is the file descriptor that identifies the file. The second
argument is a long integer that is the record number.
1-22 How to Use C-ISAM

Manipulating Records in C-ISAM Files
In all cases, C-ISAM sets the record number, isrecnum, to the position that
held the deleted record.

Updating Records
You can use three functions to modify records that exist in the data file.

The isrewrite function changes the record that is located by its key in the pri-
mary index. The primary index must contain unique keys. (Figure 1-7.) The
key value must be placed in the data record in the positions defined for the
primary key. Figure 1-10 shows an example of the isrewrite function call.

.

.

.
char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;

int fd;
int cc;
.
.
.
/* You must either read the emprec record or set up

all of the items in the record */

/* Item to be changed */
stchar("San Francisco",p_ecity,20);

/* Primary key cannot change */
cc = isrewrite(fd,emprec);
.
.
.

Figure 1-10 Using the Primary Key to Update the Record

You cannot change the primary key. Any other part of the record can change,
and C-ISAM updates any other index that exists if the index key value
changes.
How to Use C-ISAM 1-23

Manipulating Records in C-ISAM Files
The isrewcurr function rewrites the current record. All key values, including
the primary key, can change and C-ISAM updates all indexes where required.
An example of the call follows:

cc = isrewcurr(fd,emprec);

The isrewrec function rewrites the record that is identified by its record num-
ber. This function also updates all indexes that change, including the primary
index. An example of a call that rewrites the 404th record from the beginning
of the file follows:

cc = isrewrec(fd,404L,emprec);

Finding Records
Several ways to find records in a C-ISAM file are available. To find a specific
record, for example, the record belonging to employee 100, you can use the
statements that appear in Figure 1-11.

.

.

.
stlong(100L,p_empno);
if (isread(fd,emprec,ISEQUAL)<0)

{
if (iserrno == ENOREC)

printf ("record not found0);
.
.
.

Figure 1-11 Using a Key to Find an Exact Match

The function isread uses an index to locate and read the record with
Employee 100 as the key. You must place the key value for the search in the
record at the position defined for the key. The third argument is the mode in
which you want to conduct the search. In this case, ISEQUAL specifies an
exact match on the Employee Number.

If isread finds the record with a matching key, it returns the record in the
same structure or variable that you used to pass the key to the function, in
this case emprec. If a record with the desired key is not found, the return code
1-24 How to Use C-ISAM

Manipulating Records in C-ISAM Files
is negative. A negative code indicates an error. You can use the global vari-
able iserrno to determine the reason for the error. If the value of iserrno is
ENOREC, a record matching the key cannot be found.

If isread finds a locked record, the current record pointer and the contents of
the global variable isrecnum remain unchanged from the last isread call. If
you want to skip locked records, you can use the ISSKIPLOCK option of
isread. (See Chapter 4 for more information about locking records. See the
description of isread in Chapter 8 for more information about reading past
locked records.)

You can specify one of several modes to search for records. Use ISEQUAL
when you want an exact match. When you successfully call isread, the record
returned is the current record.

You may retrieve records in relation to the current record by changing the
mode. ISNEXT specifies retrieval of the next record in key sequence. ISPREV
causes isread to retrieve the previous record relative to the current record, as
determined by the index. Each call to isread changes the current record to the
one just retrieved.

Two search modes, ISFIRST and ISLAST, specify an absolute position in the
index. ISFIRST reads the record for the first key in the index. ISLAST reads the
last record in the order of the index.

If you want to process the entire C-ISAM file in ascending key order, call
isread with the ISFIRST mode and make subsequent calls using the ISNEXT
mode. If you wish to process in descending key order, use the ISLAST mode
to read the last record and the ISPREV mode during subsequent calls to
retrieve the previous record.

If you want to locate a starting position in the file for processing and do not
know the exact key, you can use ISGREAT (greater than the specified key) or
ISGTEQ (greater than or equal to) for the mode parameter. Figure 1-12 shows
How to Use C-ISAM 1-25

Manipulating Records in C-ISAM Files
an example of a search where the program reads the file sequentially by
employee number from the first employee with a number greater than or
equal to 200.

/* Read entire file on or after Employee No. 200 */
stlong(200L,p_empno);
if (isread(fd,emprec,ISGTEQ) >= 0)

{
while (iserrno != EENDFILE)

{
.
.
.
cc = isread(fd,emprec,ISNEXT);
}

.

.

.

Figure 1-12 Sequential Search of Part of the employee File in Employee Number Order

The stlong function places the starting key value into the data record at the
position defined for the key. The iserrno value of EENDFILE indicates that
you attempted to go beyond the beginning or the end of the file.

When you use the ISFIRST, ISLAST, ISNEXT, ISPREV, or ISCURR (current record)
mode, you do not have to specify a key value in the data record. These modes
read from predetermined locations, either the beginning or end of file, or in
relation to the current record.

The retrieval modes are summarized as follows:

ISEQUAL specifies an exact match on the key value passed to the func-
tion.

ISGREAT specifies the next record with a key value greater than the
one passed to the function.

ISGTEQ specifies either an exact match or, if there is no exact match,
the next greater key value.

ISNEXT specifies the next record, in key sequence, from the current
one.

ISPREV specifies the record immediately preceding the current
record, in the key sequence.

ISCURR specifies the current record, usually the last record read.

ISFIRST specifies the first key in an index.
1-26 How to Use C-ISAM

Manipulating Records in C-ISAM Files
ISLAST specifies the last key in an index.

Using the isstart Function

The previous retrieval modes use the primary index to locate records because
when you open or build the file, the primary index is the current index. The
current index is the one that you are currently using to locate records. If your
C-ISAM file has other indexes, you can find and read records (with isread)
using the keys of another index after you choose the index with the isstart
function call. The isstart function also allows you to choose the starting
record in the index.

The following call illustrates the use of isstart to choose a current index and
the position in the index where retrieval of records is to start:

cc = isstart(fd,&key,len,emprec,ISGTEQ);

fd is the file descriptor that is associated with the file during its
creation or opening.

&key is the address of a keydesc key description structure, intro-
duced earlier in the section ‘‘Building a C-ISAM File’’ and
explained in detail in Chapter 2. A keydesc structure
uniquely identifies a specific index. You call isstart with a
pointer to the structure that identifies the index that you
want to use.

len allows you to treat a key as if only part of the key exists when
you set the starting key position. For example, a key contains
the combination of a 20-byte Last Name field and a 20-byte
First Name field, in last name/first name order. If you spec-
ify a length equal to 20, this instructs C-ISAM to find the
starting key using only the Last Name field, regardless of the
contents of the First Name field. A value of 0 for this argu-
ment is equivalent to specifying the length of the entire key.
Subsequent isread calls use the entire key.

emprec is used to pass the key value for the ISEQUAL, ISGREAT, and
ISGTEQ modes. You use this variable or structure exactly as
you use it with isread. The isstart function, however, does
not return a record.
How to Use C-ISAM 1-27

Manipulating Records in C-ISAM Files
The isstart function call sets the starting position in the index using the key
passed in the record, emprec in this case, and the mode. The key value must
be in the same positions as specified in the keydesc structure that defined the
index. You do not need to define the remainder of the record.

ISGTEQ is the mode used to locate the starting record in this example.
The isstart function call positions the index at the first record
that is equal to or greater than the key in emprec. To read this
record, call isread with the ISCURR (current record) mode.

The allowable modes are ISEQUAL, ISGREAT, ISGTEQ, ISFIRST, and ISLAST.
They are the same modes that you use with the isread function call.

Finding Records by Record Number

To find records using their relative position in the file, use isstart to specify
access in record number order. Figure 1-13 shows an example of code that
sets the access mode of a C-ISAM file to retrieve records by record number.

#include <isam.h>
struct keydesc pkey;
.
.
.
/* Read record number 500 */
pkey.k_nparts = 0; /* choose physical order */

isrecnum = 500L; /* set record number to first
record to be processed */

cc = isstart(fd,&pkey,0,emprec,ISEQUAL);
if (cc >= 0)

if (isread(fd,emprec,ISCURR)<0)
{
printf ("read error %d\n",iserrno);
.
.
.
}

else
.
.
.

Figure 1-13 Finding Records in a C-ISAM File
1-28 How to Use C-ISAM

Opening and Closing Files
You set this retrieval mode by calling the isstart function with a pointer to a
keydesc structure where k_nparts is set equal to zero. The number that you
place in the global variable isrecnum determines the starting position in the
file.

Opening and Closing Files
When you create a C-ISAM file using isbuild, the file remains open and avail-
able for use. When you have finished using the file, you should close it with
isclose. An example follows:

cc = isclose(fd);

where fd is the file descriptor that was returned when isbuild created the file.

If you close a C-ISAM file and want to use it again, you must open it with
isopen. The following statement opens the file that was created in Figure 1-7.

fd = isopen("employee",ISINOUT+ISMANULOCK);

employee is the name of the file that you are opening.

fd is a file descriptor that identifies the file employee. If
isopen fails, fd contains a negative value.

ISINOUT is the mode that specifies the access and the locking. In
this example, read-write access is specified.

ISMANULOCK specifies either no locking or manual locking. Use
ISMANULOCK if you are not concerned about conflicts
between programs that access the same file or records
simultaneously, or you want to perform locking under the
control of your program.

Figure 1-14 shows all of the allowable access modes.
How to Use C-ISAM 1-29

Opening and Closing Files
Mode Description

ISINPUT File is read-only
ISOUTPUT File is write-only
ISINOUT File is read or write

Figure 1-14 Access Modes for isopen and isbuild

Opening a File in Exclusive Mode
Certain functions require that the file be open in exclusive mode so that only
your program can access the file. You can do this by specifying the exclusive
lock option, ISEXCLLOCK, along with the access mode, as the following
example shows:

fd = isopen("employee",ISEXCLLOCK+ISINOUT);

See Chapter 4 for a discussion of locking options.

Opening a Variable-Length File
When you open a file that uses variable-length records, specify ISVARLEN as
part of the mode parameter. When you open a file with ISVARLEN, the global
variable isreclen is set to the maximum length of the record. If you do not
specify ISVARLEN with variable-length records, C-ISAM tries to open the file
as though it contains fixed-length records. See the complete description of
isopen on page 8-40 of this manual.
1-30 How to Use C-ISAM

Compiling Your C-ISAM Program
If you want to open a file but you do not know if it contains variable- or fixed-
length records, open it one way and if it fails, open it the other way. In
Figure 1-15, the file employee is first opened as a fixed-length record file. If
that isopen fails, the mode is reset to include ISVARLEN and isopen is called
again.

varlen = FALSE; /* Flag indicating if file is VARLEN */
mode = ISINOUT + ISMANULOCK;
fd = isopen(employee, mode); /*Try opening file as FIXLEN*/
if (fd < 0)

{
 mode += ISVARLEN;

fd = isopen(employee, mode);/* Try opening file as VARLEN */
if (fd < 0)
{
printf ("isopen failed");/* Open really did fail */

 exit(-1);
}

varlen = TRUE;
maxlen = isreclen;
}

Figure 1-15 Opening a File with Unknown Contents

Maximum Number of Open Files
You can have up to 64 C-ISAM files open at any one time. An operating sys-
tem limit on the number of open files, however, may impose a lower limit.

Closing Fixed and Variable-Length Files
You can close your C-ISAM file explicitly with a call to isclose. You can also
close them implicitly with the iscleanup function. You can call iscleanup at
the end of your program (or at any time) to close all of the files opened by the
program.

Compiling Your C-ISAM Program
C-ISAM programs must include the isam.h header file. If your program uses
the decimal data type (see Chapter 3) you must also include decimal.h. (Refer
to Appendix B for a listing of these header files.)
How to Use C-ISAM 1-31

C-ISAM Data File Structure
You compile the program using your C language compiler and the C-ISAM
library. Consult your system administrator for the location of the files neces-
sary to compile programs that use C-ISAM functions. (Appendix E, ‘‘System
Administration,’’ identifies the files that are necessary to compile your pro-
grams.)

To compile your C-ISAM program, use the following command line:

cc buildemp.c -lisam -o buildemp

If you use the lint utility, specify the C-ISAM library as follows:

lint buildemp.c -lisam

C-ISAM Data File Structure
The file containing the data records has the filename extension .dat. The data
file contains a series of fixed-length records. You define the record length
when you create the file. The records in this file contain only data. The .idx
file contains all other information about the C-ISAM file.

You can use the isindexinfo function call to display the characteristics of a
C-ISAM file and its indexes. Figure 1-16 shows the code to print out the data
record length and the number of records in the file.

include <isam.h>
struct dictinfo info;
fd = isopen ("employee",ISINPUT+ISEXCLLOCK);
isindexinfo (fd,&info,0);
printf ("record size in bytes=%d",info.di_recsize);
printf ("number of records in the file=%d",

info.di_nrecords);
isclose (fd);
exit (0);

Figure 1-16 Determining Data File Characteristics

The dictinfo structure is defined in isam.h. For further examples using this
structure and the isindexinfo function, see the section ‘‘Determining Index
Structures’’ in Chapter 2.
1-32 How to Use C-ISAM

Summary
The data record has a one-byte terminator that is transparent to your pro-
gram. Do not include this byte when you determine the length of the record.
This terminator is either a new line (octal 12) or a null (octal 0). The null char-
acter serves as a delete flag for the record. C-ISAM reuses space from deleted
records.

Summary
Each C-ISAM file consists of two operating system files, one for data and
another for indexes. This chapter discusses how to perform the following
tasks:

• Create a file with isbuild

• Add records to a file using iswrite or iswrcurr

• Remove records from a file using isdelete, isdelcurr, or isdelrec

• Update existing records using isrewrite, isrewcurr, or isrewrec

• Find records or retrieve records, or both, using isread and isstart

• Open and close files using isopen and isclose

• Compile your program containing C-ISAM functions

• Determine the record length and number of records in a C-ISAM file.
How to Use C-ISAM 1-33

Chapter
2
Indexing
Overview 3

Defining an Index 3

Key Structures 6

Manipulating Indexes 7
Adding Indexes 8
Deleting Indexes 9
Defining Record Number Sequence 10
Determining Index Structures 11

B+ Tree Organization 12
Searching for a Record 15
Adding Keys 16
Removing Keys 21

Index File Structure 22

Performance Considerations 23
Key Size and Tree Height 23
Key Compression 24

Leading Character Compression 25
Trailing Space Compression 26
Duplicate Key and Maximum Compression 26

Multiple Indexes 27

Summary 28

2-2 Indexing

Overview
Indexing allows quick access to specific records in the C-ISAM file and creates
an order for sequential processing of the file. This chapter discusses C-ISAM
indexes and covers the following topics:

• How to define an index

• How to add and delete indexes

• How indexes are implemented

• What occurs during index operations

• What you can do to improve index performance

Defining an Index
Chapter 1, ‘‘How to Use C-ISAM,’’ introduces you to C-ISAM files and keys,
and shows you how to create a C-ISAM file using isbuild. This chapter con-
tinues with examples using the employee file. Figure 2-1 and Figure 2-2
show the layout of records in this file.

When you create a file, you also define an index for access to specific records
and for sequential processing of the C-ISAM file in the key order.

You can only define indexes for the fixed-length portion of a record. If you
define indexes for the fixed-length portion of variable-length records, you
follow the same procedure as for standard fixed-length records.
Indexing 2-3

Defining an Index
Offset from
 Description Type Length Pointer Beginning of Record
Employee Number Long 4 p_empno 0
Last Name Char 20 p_lname 4
First Name Char 20 p_fname 24
Address Char 20 p_eaddr 44
City Char 20 p_ecity 64

Total Length in Bytes 84

Figure 2-1 Employee Record

Figure 2-2 Employee Record Illustration

84 85
80706050403020100

64

44

24

4
additional byte

p_ecity

p_eaddr

p_fname

p_lname
p_empno

TOTAL LENGTH = 85 BYTES
2-4 Indexing

Defining an Index
Figure 2-3 shows the code used to build this file.

#include <isam.h>
char emprec[85]; /* C-ISAM Record */

char *p_empno = emprec+ 0; /* Field Definitions */
char *p_lname = emprec+ 4;
char *p_fname = emprec+24;
char *p_eaddr = emprec+44;
char *p_ecity = emprec+64;
.
.
.
key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = 4;
key.k_part[0].kp_type = LONGTYPE;
.
.
.
if ((fd=isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK)) < 0)

{
printf ("isbuild error %d",iserrno);
exit (1);
}

.

.

.

Figure 2-3 Creating a C-ISAM File

To build the employee file with Employee Number as the primary key, you
must define the appropriate values in the keydesc and corresponding key-
part structures. (The primary key, by definition, is the key that you define
when you build the file.)

The Employee Number index is defined by a key description, which is an
occurrence of the structure keydesc. (Figure 2-4 shows this structure.) You
must use a separate occurrence of a key description structure to define each
index. The keydesc structure variables define where the key occurs in the
record.

This structure is also used to identify each index. For example, when you
want to change indexes using isstart, you must specify the keydesc structure
that defines that index. (See the section, ‘‘Using the isstart Function,’’ in
Chapter 1).

The index shown in Figure 2-3 does not allow duplicate employee numbers.
The key consists of only one field, Employee Number, so that the index has
only one part. Thus, k_flags is set equal to ISNODUPS, and k_nparts is set
equal to 1.
Indexing 2-5

Key Structures
The keypart structure is incorporated into keydesc. You must have an entry
for every part of the key that you define. The maximum number of parts that
a key can contain is specified by the parameter NPARTS. This parameter is set
in isam.h and is usually eight.

Since C-ISAM does not know about fields in a record, it cannot know what
fields, or parts thereof, make up a key. The purpose of each k_part is to define
a part of the key. All of the parts taken together define the entire key.

The Employee Number index has only one part; therefore you define only the
first element of the keypart structure, k_part[0].

The Employee Number field starts at the beginning of the record, at offset
zero. It is a long integer. You set k_part[0].kp_start to 0, since this part of the
key starts at offset zero from the beginning of the record. You set
k_part[0].kp_leng to LONGSIZE since this is the length of the data type in
bytes. You set k_part[0].kp_type to LONGTYPE since this defines the data
type. (Chapter 3, ‘‘Data Types,’’ describes the possible data types and their
definitions.)

Key Structures
When you define an index, you define the values that are placed into the key
structure. You must use this structure whenever you perform an operation on
an index. These operations include building the file, which creates the pri-
mary index; changing the index that is used to access records; and adding or
deleting indexes.
2-6 Indexing

Key Structures
The C language structures keydesc and keypart define an index to C-ISAM
functions. These structures are shown in Figure 2-4 and are defined in the
isam.h file.

struct keydesc
{
short k_flags; /* describes compression */
short k_nparts; /* number of parts in this key */
struct keypart

k_part[NPARTS]; /* each key part */
};

struct keypart
{
short kp_start; /* starting byte of key part */
short kp_leng; /* length in bytes of key part */
short kp_type; /* type of key part */
};

Figure 2-4 Key Description Structures

The variables within these structures are described as follows:

k_flags sets one or more of the following flags that may be used to
define the index:

ISNODUPS defines an index that requires unique keys.

ISDUPS defines an index that allows duplicate keys.

DCOMPRESS specifies compression of duplicates.

LCOMPRESS specifies compression of leading characters.

TCOMPRESS specifies compression of trailing characters.

COMPRESS specifies maximum compression.

The section ‘‘Key Compression’’ later in this chapter describes compression
techniques.

If you use two or more flags, add them together. For example,

key.k_flags = ISDUPS+DCOMPRESS;

specifies that the index can contain duplicate key values and that they are
compressed.

k_nparts specifies the number of parts that the key contains, which
ranges between 0 and NPARTS. The isam.h file defines
NPARTS, which is the maximum number of parts that a key
Indexing 2-7

Manipulating Indexes
can contain. (k_nparts equal to 0 defines a special case that
is explained in the section ‘‘Defining Record Number
Sequence’’ later in this chapter.) The maximum key size for
all parts is 120 bytes.

k_part is a keypart structure that defines each part of the key. Each
keypart element is composed of the following three items:

kp_start specifies the starting byte in the data record for
this part of the key.

kp_leng is the length of this part in bytes.

kp_type is one of the data types described in Chapter 3.

You can add IDESC to the data type parameter to put this part of the key in
descending order. To put the Employee Number index in Figure 2-3 into
descending order, change kp_type as follows:

key.k_part[0].kp_type = LONGTYPE+ISDESC;

Manipulating Indexes
When you create a file, at most one index exists, the primary index. You can-
not remove this index until you erase the C-ISAM file. To add the Name index
or any other index, you must use the function isaddindex. To delete a non-
primary index, you use the function isdelindex.

C-ISAM allows considerable flexibility for adding and deleting indexes. An
operation on an index has no effect on the data records nor on any other
indexes that exist. You must open the file exclusively, however, so that no
other program can access the file while you are adding or deleting an index.
Exclusive access is necessary to prevent conflicts that could arise when
another program adds, deletes, or updates records while the index is being
added or deleted.

Adding Indexes
You can add indexes at any time; the file does not have to be empty for you
to add an index. The larger the file, the longer it takes to add the index since
C-ISAM must add a key to the index file for each data record.

Figure 2-3 shows the definition of a key structure for building the primary
index. The steps to add another index are similar. You add an index by spec-
ifying another key description and using it in a call to isaddindex. Chapter 1
2-8 Indexing

Manipulating Indexes
describes a Name index consisting of the first 10 characters of the Last Name
and the first character of the First Name of the employee file. Figure 2-5
shows a keydesc structure for this index and a call to isaddindex to create the
index.

#include <isam.h>
struct keydesc nkey;
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
{

if (isaddindex(fd,&nkey) < 0)
{
printf ("isaddindex error %d",iserrno);
exit (1);
}

}
else

Figure 2-5 Adding an Index to a C-ISAM File

This index has two parts, one for each field: Last Name and First Name. It
allows duplicate keys. The first part of the index, identified by k_part[0], sets
up the Last Name field portion of the key. The second part, k_part[1], defines
the First Name field portion of the key.

The starting positions for the name fields are the offsets from the beginning
of the record, starting from position 0. (See Figure 2-1 on page 2-4.) The Last
Name begins at offset 4 in the record and the First Name begins at offset 24.
Put these offsets in the kp_start variables.

Both of the fields are data type char; therefore the kp_type for each one is
CHARTYPE. (See Chapter 3 for information on CHARTYPE.) Each part is in
ascending key order since the ISDESC parameter is not added to either
kp_type.

The lengths that you give to kp_leng are the size of that part of the key, and
not the size of the field itself. In both cases, the size of each part of the key is
less than the whole field: 10 characters of the 20-character Last Name field
and only the first character of the 20 characters of the First Name field.
Indexing 2-9

Manipulating Indexes
You must open the file for exclusive use with ISEXCLLOCK before you call the
isaddindex function.

Deleting Indexes
To delete indexes, define the key description structure for the index that you
want to delete and call the function isdelindex. You can delete any index
except the primary index.

Before you can delete an index, you must first open the file in exclusive mode
using ISEXCLLOCK. You must specify the same key description structures
that you used to create the index. Figure 2-6 shows the code to delete the
index created in Figure 2-5.

#include <isam.h>
struct keydesc nkey;
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
{

if (isdelindex(fd,&nkey) < 0)
{
printf ("isdelindex error %d",iserrno);
exit (1);
}

}
else

Figure 2-6 Deleting an Index from a C-ISAM File

Defining Record Number Sequence
You may want to find records based upon the relative location of the records
from the beginning of the file. As explained in the section ‘‘Finding Records
by Record Number’’ in Chapter 1, you do this by setting k_nparts equal to 0
in the keydesc structure and then calling isstart.

You can specify that the primary index be in record number sequence. In this
case, you use the same keydesc structure as you did for isstart: set k_nparts
equal to 0. This means that no primary key exists, and whenever you open
2-10 Indexing

Manipulating Indexes
the file, the record number defines the key order. If the file has other indexes,
you can change the index by calling isstart with the appropriate keydesc
structure.

There is no reason to call isaddindex (nor isdelindex) with a keydesc struc-
ture with k_nparts equal to 0. You can always process records using the
record number, regardless of the indexes that exist.

Determining Index Structures
You can find out which indexes exist in a C-ISAM file and determine their
structures by using the isindexinfo function call. This call has two forms.

You can obtain general information about the file by specifying a dictinfo
structure and setting the third argument, the index number, equal to 0.
C-ISAM returns the information in this structure:

struct dictinfo info;
isindexinfo (fd,&info,0);

The dictinfo structure is defined in isam.h (see Appendix B, ‘‘Header Files’’).
Figure 2-7 shows the structure.

struct dictinfo
{
short di_nkeys;
short di_recsize;
short di_idxsize;
long di_nrecords;
};

Figure 2-7 Dictionary Information Structure

The variables of this structure are as follows:

di_nkeys If the file supports variable-length records, the significant bit
is set. The remaining bits indicate the number of indexes
defined for the file.

di_recsize This field contains the maximum record size in bytes.

di_idxsize This field contains the maximum number of bytes in an
index node. (Nodes are explained in the section “B+ Tree
Organization” on page 2-13.)

di_nrecords This field contains the number of data records in the file.
Indexing 2-11

Manipulating Indexes
The isindexinfo function also sets isreclen to the minimum size of the record
in bytes.

To determine the index characteristics, you must use its index number. The
index number of the primary key is 1. The index number of other indexes can
change as you add or delete indexes. Figure 2-8 shows how to obtain the
characteristics of all the indexes in the employee file.

#include <isam.h>
struct dictinfo info;
struct keydesc kdesc;
.
.
.
/* get number of keys */
isindexinfo (fd,&info,0);

while (info.di_nkeys > 0)
{
/* get structure and decrement index number */
isindexinfo (fd,&kdesc,info.di_nkeys--);
.
.
.
}

.

.

.

Figure 2-8 Determining the Key Structure for All Keys in an Index

When the program calls isindexinfo the first time, with the third argument
equal to 0, information about the C-ISAM file is returned in a dictinfo struc-
ture (the second argument). The di_nkeys variable contains the number of
indexes that are defined. The program loops, using this variable to determine
the index number, and returns the index characteristics for each existing
index in the keydesc structure.

You should use the technique shown in Figure 2-8 to find a specific index
within a C-ISAM file because the index number may change. C-ISAM func-
tions use a key description, not an index number, to identify the index.
2-12 Indexing

B+ Tree Organization
B+ Tree Organization
C-ISAM maintains indexes so that programs can find records quickly, and so
that it can add, delete, or modify the index keys with minimum impact on the
performance of programs that use the file. Programs that use C-ISAM files
know only which indexes exist and can be used. They know nothing about
the actual organization of indexes nor how this organization is maintained
and used. You may read this section if you are interested in how the access
method is implemented. You do not need this information to use C-ISAM
functions.

C-ISAM indexes are organized in B+ trees. A B+ tree is a set of nodes that con-
tain keys and pointers that are arranged in a hierarchy. A key is a value from
the data record; for example, an employee number. The pointer points either
to another node in the tree or to a data record. At the top of the hierarchy is
the root node.

Figure 2-9 illustrates this hierarchy for the Employee Number index. The
numbers in the nodes are the Employee Number keys that are also found in
the data records. The arrows are the pointers.
Indexing 2-13

B+ Tree Organization
Figure 2-9 B+ Tree Organization

Level 2 Level 1 Level 0

Root

Pointers at Level 0
are to Data Records

21

18

5

4

70

89

143

156

180

209

292

300

378

436

476

485

24

44

55
89

55

21

Greater Than

487

490

505

378

292

180

Greater Than

485

Greater Than

89
2-14 Indexing

B+ Tree Organization
C-ISAM logically organizes the nodes into levels. Level 0 contains a pointer
to each data record. At levels higher than zero, the pointer for each key points
to a node containing keys that are less than or equal to the key at the higher
level.

At levels higher than zero, a node may have an additional pointer that is not
associated with a specific key. If it exists, it points to a node that contains keys
that are greater than the largest key in that higher level node. A node always
has at least as many pointers as it has keys.

Figure 2-9 only shows space for four keys in each node. In reality, C-ISAM
puts as many keys as possible in each node. The maximum number of keys
in different nodes may vary because C-ISAM allows keys to vary in length.

Consider the root node in Figure 2-9. It has only one key with the value 89.
There are two pointers from the root. One points to a node containing keys
with values less than or equal to 89. The other pointer is directed to a node
containing keys with values greater than the values in this node, in this case,
values greater than 89.

Levels indicate the distance, in nodes, between a node and the pointer to an
actual data record. In Figure 2-9, the root node is at Level 2. For nonzero lev-
els, pointers are directed to index nodes at a lower level.

The pointers at Level 0 point to records in the data file; they do not point to
nodes in the index file. Every key is represented at Level 0, whether or not it
is represented at a higher level.

Searching for a Record
To access a specific record in a C-ISAM file, a function starts by comparing the
search value with the keys in the root node. The search value is the key that
is passed to the function. The function follows the appropriate pointers to the
Level 0 node. At Level 0, if a key matches the search value, the key pointer
points to the data record. If no match occurs at Level 0, the data record does
not exist.

For example, take a search value equal to 44, and use Figure 2-8 to trace the
path a function takes to find the record. The function examines the root first
and then follows the less-than or equal-to pointer for key 89, since 44 is less
than 89. Next, the function examines the node on Level 1 containing keys 21,
55, and 89. The function follows the pointer for key 55, since 44 is less than 55
but greater than 21. The Level 0 node contains keys 24, 44, and 55. Since a
match occurs at Level 0, the function finds the data record by following the
pointer for key 44.
Indexing 2-15

B+ Tree Organization
Repeating the process for search value 475, the function examines the root
and follows the greater-than pointer for this node since 475 is greater than 89,
the largest key in the node. The node at Level 1 contains keys 180, 292, 378,
and 485. The function follows the less than or equal to pointer from key 485
since 475 is less than 485 but greater than 378. At Level 0 the keys are 436, 476,
and 485. Since no key matches the search value 475, a data record does not
exist.

Adding Keys
When you create the C-ISAM file, the index is empty. Figure 2-10 shows a
tree that can hold only four keys per node. The first four keys, 18, 143, 414,
and 89 are added to the root node. Each key entry points to a data record since
the root node is at Level 0.

When the next key is added, with a value of 44, the node is already full and
splits to accommodate the new key.
2-16 Indexing

B+ Tree Organization
Figure 2-10 Growth of a B+ Tree

C-ISAM splits a node by finding the middle value of the keys in the node,
including the value of the key that causes the split. C-ISAM puts approxi-
mately half the entries into a new node and keeps half the entries in the orig-
inal node. These two nodes are still in Level 0 after the split, and their keys
still point to data records. C-ISAM promotes the middle value of the keys, 89
in this case, to the next higher level.

Since no higher level node exists to receive the promoted value, C-ISAM cre-
ates a new root. The new root node is on Level 1, and the pointer for key 89
points to the original node. (The original node now contains the keys that are
less than or equal to 89.) C-ISAM forms another pointer directed towards the
new Level 0 node. This Level 0 node contains keys that are greater than the
highest key value in the next higher level node, in this case 89 in the Level 1
root.

89

44

18

143

414

18

89

89

Greater Than

Root

Level 0Level 1

Root

Addition Causes a Split

Before Adding Key with Value 44

Level 0Level 1

143

414
Indexing 2-17

B+ Tree Organization
B+ trees grow towards the root from the lowest level, Level 0. Attempting to
add a key into a full node forces a split into two nodes and promotion of the
middle key value into a node at a higher level. The promotion of a key to the
next higher level can also cause a split in the higher level node. If the full node
at this higher level is the root, it also splits. When the root splits, the tree
grows by one level and a new root node is created.

When a split occurs, approximately half of the entries remain in the original
node, and half are transferred to a new node. This process leaves half of each
node available to accommodate additional entries. This strategy is useful if
the new key values have a random distribution.

If records are added in sequential order, this splitting strategy creates half full
nodes that never receive other keys. This means that the effective number of
keys per node is approximately half the capacity, and aside from taking more
space to store all of the keys, the tree requires more levels to index the same
number of data records.
2-18 Indexing

B+ Tree Organization
Figure 2-11 shows what happens if you add the key values 415 through 426
sequentially to the tree in Figure 2-10, using the splitting algorithm for the
random case.

Figure 2-11 Wasted Space in B+ Trees

To avoid this problem, C-ISAM uses a different strategy. If the value that
causes the split is greater than the other keys in the node, it is put into a node
by itself during the split.

Level 2 Level 1 Level 0

143

414

416

417

418

419

420

425

426

18

44

89

418

415

89

Greater Than

424

421

Greater Than

Greater Than

418

415

421

422

423

424

Space Cannot Be Used
Indexing 2-19

B+ Tree Organization
Figure 2-12 shows a split caused by adding key values 415, 416, and 417 to
the tree in Figure 2-10.

Figure 2-12 Efficient Growth of B+ Trees

89

44

18

89

Greater Than

Level 0Level 1

143

414

417

415

416416
2-20 Indexing

B+ Tree Organization
Figure 2-13 shows the effect of this strategy when key values 415 through
426 are added to this tree.

Figure 2-13 Efficient Sequential Addition of Keys

Removing Keys
When you delete a record, C-ISAM removes the key from the index. If all keys
in a node are removed, the node becomes free. C-ISAM maintains a list of free
nodes (see the following section), and free nodes are reused. C-ISAM indexes
do not require reorganization.

Level 1 Level 0

143

414

417

418

419

421

422

18

44

89

415

423

425

426

Greater Than

89

416

420

424

416

420

424
Indexing 2-21

Index File Structure
Index File Structure
C-ISAM stores the index nodes and control information in operating system
files with the .idx extension. The data file stores only data records.

The index file always contains four kinds of nodes:

• A dictionary node

• Key description nodes

• Index nodes containing keys and pointers

• List nodes

There is usually a one-to-one correspondence between nodes and the unit of
transfer between the disk and memory. The unit of transfer is called a block.
In this discussion, blocks and nodes are interchangeable. Appendix D, ‘‘File
Formats,’’ documents the index file nodes.

Each index file has one dictionary block. This block contains pointers to the
index nodes, as well as other information about the C-ISAM file. Figure 2-14
shows the relationship between the nodes in the index file.

Figure 2-14 Index File Structure

Dictionary Block

Free Block List

Free Block List

Index Description Root Block

Index Block

Index Block

Index Block

Index Block

Root BlockIndex Description
2-22 Indexing

Performance Considerations
The dictionary block points to the first key description block. Each key descrip-
tion block stores information about the indexes, including the address of the
root block for each index. All other blocks for an index are addressed via its
root block. C-ISAM chains key description blocks together, and any index
root can be found by following the chain from the dictionary block.

The dictionary block also contains a pointer to the first free-list block for the
.idx file. Free-list blocks are chained together. The free list holds the block
numbers that are unused within the file.

When an index block becomes free, C-ISAM places the block number on the
free list. When a new block is needed, the free list is examined first. The block
number of an available block is removed from the list and the block itself is
reused. C-ISAM uses all free blocks before it extends the length of the file.

Performance Considerations
The choice of key size, the use of compression techniques, and the number of
indexes affect the performance of programs that use C-ISAM files. This sec-
tion examines several methods for improving performance.

Key Size and Tree Height
The traversal from one node to another typically requires one disk access.
The node size is usually a multiple of the block size of a disk drive, often a
one-to-one correspondence. Figure 2-9 shows a diagram representing a B+
tree index. The arrows point to the next node (or block) that must be accessed
to find a record. See the earlier section ‘‘B+ Tree Organization’’ for a complete
description.

In Figure 2-9, C-ISAM requires a maximum of four disk accesses to retrieve
the data record, three to traverse the index, and one to fetch the data record.
This is a maximum since both the operating system and C-ISAM buffer disk
blocks in memory, so that a disk access is not required to follow each pointer.

The maximum number of keys that can reside at Level 0 is determined by the
number of keys per node and the tree height. The number of levels deter-
mines the tree height. If n is the number of keys per node and h is the number
of levels, excluding Level 0, the maximum number of keys is equal to
(n+1)h(n). In the index shown in Figure 2-9, the maximum is (4+1)2 (4) or 100.

C-ISAM seldom achieves maximum packing of keys into nodes because addi-
tions split nodes into half-full nodes. Deletions also reduce the number of
keys in a node. (In most cases, it is also undesirable to have 100 percent pack-
Indexing 2-23

Performance Considerations
ing of nodes since, if that were possible, every record added would cause a
split.) Seventy-five percent of the maximum is a more desirable packing den-
sity.

As more records are added, the height of the tree grows. If the tree in
Figure 2-9 grows another level, the file might hold 158 records, or
[(.75)(4+1)]3 (.75)(4).

C-ISAM puts as many keys as possible into a node. More realistically, since
the keys in Figure 2-9 are short integers requiring six bytes for key and
pointer, at least 169 keys can fit into a 1,024 byte node (along with other
required information). In two levels, C-ISAM can index about
[(.75)(169+1)]2(.75)(169) or more than 2 million keys.

C-ISAM places as many keys as possible into a single node to reduce the tree
height and, consequently, to reduce the number of disk accesses required
during a function call. The smaller the key size, the greater the number of
records that can be placed into a node. Thus, more records can be accessed in
fewer disk operations.

You should consider limiting the key size of your indexes to the minimum
that allows you to access the records, without creating too much ambiguity.
For example, you can define the Name index of the employee file with the
entire Last Name and First Name fields of the key. The key size, in that case,
is 40 bytes. Alternatively, if you take only 10 characters of the Last Name field
and one character of the First Name field, the key size is 11 bytes.

The second choice introduces ambiguity wherever employees have the same
last name, or different last names that exactly match on the first 10 characters
and the same first initial. If this ambiguity is acceptable, choosing the index
with the shorter key significantly increases the number of keys that can be
placed in a node.

Key Compression
C-ISAM can compress key values held in indexes. Reducing the key size gen-
erally enhances performance. This improvement is more dramatic if the key
is more than eight characters long or if duplicate values and leading dupli-
cate characters, trailing blanks, or both, make up a large percentage of the
keys. You specify key compression by adding one or more of the following
parameters to the k_flags element of the keydesc structure:

LCOMPRESS specifies removal of leading duplicate characters from the
keys in an index.

TCOMPRESS specifies removal of trailing spaces from keys.
2-24 Indexing

Performance Considerations
DCOMPRESS specifies removal of duplicate key entries from the index.

You can use any combination of compression techniques. For example, to
specify duplicate value and trailing blank compression, set k_flags equal to
DCOMPRESS + TCOMPRESS + ISDUPS. (It does not make sense to specify
duplicate compression unless you define the index to allow duplicates.)
COMPRESS specifies that all three techniques are used.

Key compression creates some processing overhead. Generally, compression
of non-character keys or keys that are eight bytes or less does not have a pos-
itive effect on the performance of programs using C-ISAM files.

Leading Character Compression

Leading character compression reduces the key size by removing all leading
characters that are identical with the previous key in the index. The number
of bytes that are compressed out of the key is recorded at the beginning of the
key.

Figure 2-15 shows an example of this compression technique. The one-byte
overhead required to record the number of leading characters compressed is
shown as a pound sign (#). The dots (.) represent spaces. If this illustration is
representative of the entire index, the compression results in a 5.5 percent
savings.

Key Compressed with Bytes
Value LCOMPRESS Saved

Abbot............... #Abbot............... -1
Able................ #le................ 1
Acre................ #cre................ 0
Albert.............. #lbert.............. 0
Albertson........... #son........... 5
Morgan.............. #Morgan.............. -1
McBride............. #cBride............. 0
McCloud............. #Cloud............. 1
Richards............ #Richards............ -1
Richardson.......... #on.......... 7

200 bytes 189 bytes 11 bytes

Savings = 5.5 %

Figure 2-15 Leading Character Compression, k_flags=LCOMPRESS
Indexing 2-25

Performance Considerations
Trailing Space Compression

This compression technique removes trailing blanks from each key. The num-
ber of characters compressed is stored in one byte at the beginning of the key.

Figure 2-16 shows an example of this compression technique combined with
leading character compression (k_flags= TCOMPRESS + LCOMPRESS). The
one-byte overhead required to record the number of trailing spaces is shown
as a pound sign (#). This byte is in addition to the byte required in the key
entry to hold the number of leading characters that are compressed. The dots
(.) represent spaces. If this illustration is representative of the entire index,
the compression results in a 67.5 percent savings.

Compressed with
Key LCOMPRESS + Bytes
Value TCOMPRESS Saved

Abbot............... ##Abbot 13
Able................ ##le 16
Acre................ ##cre 15
Albert.............. ##lbert 13
Albertson........... ##son 15
Morgan.............. ##Morgan 12
McBride............. ##cBride 12
McCloud............. ##Cloud 13
Richards............ ##Richards 10
Richardson.......... ##on 16

200 bytes 65 bytes 135 bytes

Savings = 67.5 %

Figure 2-16 Leading Character and Trailing Blank Compression

Duplicate Key and Maximum Compression

Duplicate compression (DCOMPRESS) removes duplicate keys from the
index. A two-byte duplicate flag replaces the key.

COMPRESS is a shorthand way of specifying maximum compression using
duplicate key compression, leading character compression, and trailing
blank compression.

Figure 2-17 shows an example using COMPRESS. Two overhead bytes are
associated with each non-duplicate key: one to hold the number of leading
characters that are compressed and the other to hold the number of trailing
blanks that are compressed. This overhead is represented by two pound signs
2-26 Indexing

Performance Considerations
(##). The dots (.) represent trailing spaces. Two bytes are required for a
duplicate key value. If this illustration is representative of the entire index,
the compression results in a 75 percent savings.

Compressed with
LCOMPRESS +

Key TCOMPRESS + Bytes
Value DCOMPRESS Saved

Abbot............... ##Abbot 13
Abbot............... (duplicate) 18
Abbot............... (duplicate) 18
Able................ ##le 16
Able................ (duplicate) 18
Acre................ ##cre 15
Albert.............. ##lbert 13
Albertson........... ##son 15
Albertson........... (duplicate) 18
Morgan.............. ##Morgan 12
McBride............. ##cBride 12
McCloud............. ##Cloud 13
Richards............ ##Richards 10
Richardson.......... ##on 16
Richardson.......... (duplicate) 18

300 bytes 75 bytes 225 bytes

Savings = 75 %

Figure 2-17 Maximum Compression

Multiple Indexes
Indexing allows fast access to specific records in a C-ISAM file. Changes to an
index, however, require C-ISAM to update the index. Maintenance of the
index imposes an overhead on the use of the file.

Adding a record to the C-ISAM file illustrated in Figure 2-9 requires a maxi-
mum of five disk operations: three to read the index to determine that the
record did not exist, one write operation to update the index, and another
operation to add the record to the data file. If two indexes are involved the
number of disk operations, in the worst case, can reach nine: four for each
index and one for the data record itself.

The root level of the index and the level that the root points to are often in
memory, since the operating system buffers the most recently used index
blocks. Therefore, two less disk operations are required per update for each
index. The overhead is even less when the updates occur in key sequence.
Indexing 2-27

Summary
A linear relationship exists, however, between the time to update a record
and the number of indexes that C-ISAM must update. A file with two indexes
requires approximately twice as much time to update as the same file with
only one index, and so on.

If your program is designed for on-line operation, you can achieve better per-
formance by limiting the number of indexes that you need to update in real
time.

When you need additional indexes, consider creating the index you need
before processing, and deleting it after you are finished. For example, use this
method if you want to process the file in different orders at the end of each
day.

If you are only reading records, or rewriting records without changing any
key fields, the number of indexes has no effect on the speed of processing.

Summary
The principle features of C-ISAM indexes are as follows:

• C-ISAM indexes are organized in fast and efficient B+ trees.

• You can define indexes on one or more fields or their parts.

• You can define ascending or descending order for any part of an index,
and you may specify different orders within a key.

• C-ISAM does not impose a limit on the number of indexes allowed for a
file.

• C-ISAM allows duplicate key values.

• You may restrict an index to require unique keys.

• C-ISAM allows three compression techniques to increase the efficiency of
storing and processing an index.
2-28 Indexing

Chapter
3

Data Types
Overview 3

Defining Data Types for Keys 3

C-ISAM Machine-Independent Data Types 4
Defining Data Records 5
Data Types in Variable-Length Records 7
C-ISAM Data Type Conversion Routines 8

Character Data 8
Integer and Long Integer Data 8
Floating-Point and Double-Precision Data 10

DECIMALTYPE Data Type 11
Using DECIMALTYPE Data Type Numbers 11

DECIMALTYPE Data Type Declaration 11
Sizing DECIMALTYPE Numbers 12
Storing and Retrieving DECIMALTYPE

Numbers 13
Manipulating DECIMALTYPE Numbers 14

Summary 16

3-2 Data Types

Overview
C-ISAM data types provide machine independence for standard C language
data types. This chapter explains how to perform the following operations:

• How to define data types for keys

• How to use the machine-independent C language data types and the
functions to manipulate them

• How to use a data type that stores decimal numbers with many signifi-
cant digits and the functions to manipulate this data type

Defining Data Types for Keys
When you define a record to C-ISAM, you do not specify the data type or
length of individual fields. C-ISAM needs type information only for keys. For
example, consider the Employee record shown in Figure 3-1.

Description Type Length Offset
Employee Number LONGTYPE LONGSIZE 0
Last Name CHARTYPE 20 4
First Name CHARTYPE 20 24
Address CHARTYPE 20 44
City CHARTYPE 20 64

Total Length in Bytes 84

Figure 3-1 Employee Record

You must specify each part of the key by setting up a keydesc structure that
contains the location in the record of each part of the key, its data type, and
the length of the part. If Employee Number is the key, you must specify that
it start at the beginning of the record (offset 0) that it is a C-ISAM long integer,
LONGTYPE; and that its size is LONGSIZE, the size of a C-ISAM long integer.
Data Types 3-3

C-ISAM Machine-Independent Data Types
You identify the data type and size using the parameters that are defined in
the isam.h file. The values and their mnemonics are shown in Figure 3-2.

C Language Data Type Data Type Size Size
 Data Type Parameter Mnemonic Parameter Mnemonic
char 0 CHARTYPE — —
int 1 INTTYPE 2 INTSIZE
long 2 LONGTYPE 4 LONGSIZE
double 3 DOUBLETYPE size of (double) DOUBLESIZE
float 4 FLOATTYPE size of (float) FLOATSIZE

Figure 3-2 Data Type Parameters

Since empno is a long integer, you specify the data type as either 2 or
LONGTYPE, and you define the size as either 4 or LONGSIZE. Figure 3-3
shows empno defined as a LONGTYPE with a size LONGSIZE.

#include <isam.h>
char emprec[85];
.
.
.
key.k_flags = ISNODUPS;
key.k_nparts = 1;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = LONGSIZE;
key.k_part[0].kp_type = LONGTYPE;
.
.
.

Figure 3-3 Setting Up a LONGTYPE Key

If you use any other fields in emprec as part of a key, you specify the data
type as either 0 or CHARTYPE.

C-ISAM Machine-Independent Data Types
C-ISAM stores numbers in a format that is independent of the internal repre-
sentation of data on your computer.
3-4 Data Types

C-ISAM Machine-Independent Data Types
For example, the word length of your machine usually determines the length
of int data types. If your machine has a 16-bit word length, an int is usually
16 bits long. If your machine has a 32-bit word length, an int data type is usu-
ally 32 bits long. Using int data types can affect where the key is located in
relation to the beginning of the record.

Likewise, placing character data in relation to numeric data can affect the
position of the key within a record. Most machines require that numbers start
on a word boundary. If character data precedes numeric data, the numeric
data may be shifted to start on a word boundary. One or more fill bytes can
be present between the character data and the numeric data.

C-ISAM stores data in a manner that is independent of any specific machine
architecture. This eliminates any confusion surrounding machine-dependent
representation of data and locating the position of key fields. It also allows
programs to operate without modification on different computers.

The C-ISAM data types and their C language equivalents are shown in
Figure 3-4.

C-ISAM C Language Size
Data Type Data Type Mnemonic Size
CHARTYPE char — —
INTTYPE int INTSIZE 2
LONGTYPE long LONGSIZE 4
FLOATTYPE float FLOATSIZE sizeof(float)
DOUBLETYPE double DOUBLESIZE sizeof(double)
DECIMALTYPE — — —

Figure 3-4 C-ISAM Data Types

Note that C-ISAM integers always take two bytes, regardless of the internal
representation of an integer on your machine.

C-ISAM does not change the representation of float and double data types.
You should consider using the C-ISAM DECIMALTYPE data type, described
in the section ‘‘DECIMALTYPE Data Type’’ later in this chapter, as an alterna-
tive to FLOATTYPE and DOUBLETYPE if you want complete machine inde-
pendence.

Defining Data Records
Consider the record structure in Figure 3-5.
Data Types 3-5

C-ISAM Machine-Independent Data Types
Offset From
Beginning

 Field Description Data Type Size of Record
 Customer Number LONGTYPE LONGSIZE 0
Customer Name CHARTYPE 20 4
Customer Status INTTYPE INTSIZE 24
Transaction Amount FLOATTYPE FLOATSIZE 26
Account Balance DOUBLETYPE DOUBLESIZE 30

Record Size in Bytes 38

Figure 3-5 Customer Record in a C-ISAM File

You know the record size and the field offsets because you know the size of
each field. (See Figure 3-2 on page 3-4.) The record length does not change
from one computer to the next. The location of the fields does not change,
regardless of the word length of the machine. A C-ISAM record has the same
physical structure on a disk, regardless of the operating environment. Any
differences in the way that numbers are stored are hidden from your pro-
gram.

You do not need to declare the data types of the fields in a record, except
when they are part of the key. Drawing the record shown in Figure 3-5, how-
ever, helps you to lay out the physical storage and identify the position of
keys.

In your program, you should define a char variable to receive records from
the file and to set up records that are to be put into the file. The variable must
be one byte longer than the record size. The following variable declarations
are sufficient to reserve space for the record in Figure 3-5:

char rec[38+1];

or

char rec[39];
3-6 Data Types

C-ISAM Machine-Independent Data Types
To define the locations of fields within the record, declare a pointer to the
beginning of each field. The offset of the field from the beginning of a record
defines its position. You can use the offset and pointer arithmetic to declare
the pointer. Figure 3-6 shows the pointers for the Customer record shown in
Figure 3-5.

char rec[39];

char *p_custno = rec; /* = &rec[0] */
char *p_cname = rec+ 4; /* = &rec[4] */
char *p_cstat = rec+24; /* = &rec[24] */
char *p_tramt = rec+26; /* = &rec[26] */
char *p_acctbal= rec+30; /* = &rec[30] */

Figure 3-6 Field Definitions for the Customer Record

You must have variables to receive the fields after they have been retrieved
into rec. After the program finishes manipulating these internal variables, it
can place them into rec. C-ISAM functions that read, write, or update a
C-ISAM file use rec as the data record argument.

Your program operates on individual variables. Figure 3-7 shows a list that
is sufficient to handle the record in Figure 3-5.

long custno;
char cname[21];
int cstat;
float tramt;
double acctbal;

Figure 3-7 C Language Variables to Hold the Customer Record

You can define the variables within a structure.

Data Types in Variable-Length Records
Since you cannot place an index on the variable-length portion of a record,
you do not need to specify the data type or length of individual fields within
the variable-length portion of a record. You can use the ld and st functions as
appropriate to transfer data from a C-ISAM record to a C language variable
and back. See the following section “C-ISAM Data Type Conversion Rou-
tines” for more information about the ld and st functions.
Data Types 3-7

C-ISAM Machine-Independent Data Types
C-ISAM Data Type Conversion Routines
Use C-ISAM functions to convert between the machine-independent repre-
sentation of data and the internal representation of data that your program
requires when it executes. These functions convert the C-ISAM physical rep-
resentation of the data on a disk to the internal representation of the data that
your program requires while it executes. Also use these functions to recon-
vert the data into machine-independent format when you place the data into
a record for transfer to a disk.

Character Data

C-ISAM treats CHARTYPE data as bytes, each with a value between 0 and
255. This data is usually treated as ASCII characters.

C-ISAM stores character data in the file as non-terminated strings that are
padded with trailing blanks. If your program wants to use strings that are
null-terminated without trailing spaces, you can use the functions ldchar and
stchar to transfer data between the variable or structure that contains the
C-ISAM representation of the string and your program variable.

To transfer data from the record rec to the C language variable cname, use the
next function call:

ldchar(&rec[4],20,cname);

To replace the customer name in rec, you use the following call:

stchar(cname,&rec[4],20);

If you use the pointers in Figure 3-6, the following calls are equivalent:

ldchar(p_cname,20,cname);
stchar(cname,p_cname,20);

Integer and Long Integer Data

C-ISAM provides two functions for conversion between integers and two
functions for conversion between long integers.

ldint returns a machine-format integer from the data file record.

stint stores a machine-format integer in a data file record.
3-8 Data Types

C-ISAM Machine-Independent Data Types
ldlong returns a machine-format long integer from the data file
record.

stlong stores a machine-format long integer in a data file record.

These routines are either macros defined in isam.h or are in the C-ISAM
library. They are described fully in Chapter 8, ‘‘Call Formats and Descrip-
tions.’’

The code in Figure 3-8 demonstrates the use of data type conversion func-
tions to retrieve and store the Customer Number and Customer Status fields
of the Customer record in Figure 3-5.

.

.

.
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Get Customer Number and Status from Record */
custno = ldlong(&rec[0]);
cstatus = ldint(&rec[24]);
.
.
.
/* Store Customer Number and Status into Record */
stlong(custno,&rec[0]);
stint (cstatus,&rec[24]);
.
.
.

Figure 3-8 Conversion of Integers and Long Integers

The C-ISAM machine-independent data types INTTYPE and LONGTYPE con-
sist of two-byte and four-byte binary signed integer data, respectively.
C-ISAM integer data is always stored in the data and index files as high/low:
most significant byte first, least significant byte last. This storage technique is
independent of the form in which integers are stored in memory while the
program executes.
Data Types 3-9

C-ISAM Machine-Independent Data Types
Floating-Point and Double-Precision Data

C-ISAM provides four functions for storing and retrieving floating-point
numbers and four functions for handling double-precision numbers.

ldfloat returns a machine-format floating-point number from the
data file record.

stfloat stores a machine-format floating-point number in a data file
record.

ldfltnull returns a machine-format floating-point number from the
data file record, and checks if it is null.

stfltnull stores a machine-format floating-point number in a data file
record, and checks if it is null.

lddbl returns a machine-format double-precision number from a
data file record.

stdbl stores a machine-format double-precision number in the
data file record.

lddblnull returns a machine-format double-precision number from a
data file record, and checks if it is null.

stdblnull stores a machine-format double-precision number in the
data file record, and checks if it is null.

Figure 3-9 shows how these functions are used to retrieve the Transaction
Amount and Account Balance fields in the record shown in Figure 3-5.

.

.

.
char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Retrieve Trans. Amt. and Acct. Balance from Record */
tramt = ldfloat(&rec[26]);
acctbal = lddbl(&rec[30]);
.
.
.
/* Store Trans. Amt. and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdbl(acctbal,&rec[30]);
.
.
.

Figure 3-9 Conversion Routines for float and double Data Types
3-10 Data Types

DECIMALTYPE Data Type
Both data types can differ in length and format from machine to machine. No
difference exists between the floating-point format used by C-ISAM in each
operating environment and its counterpart in the C language, except that
C-ISAM floating-point numbers are not required to start on word boundaries.
If you want to ensure machine independence for floating-point and double-
precision numbers, you must represent them as C-ISAM DECIMALTYPE data
types.

DECIMALTYPE Data Type
The DECIMALTYPE data type is a machine-independent method for the rep-
resentation of numbers of up to 32 significant digits, with or without a deci-
mal point, and exponents in the range -128 to +126. You use the parameter
DECIMALTYPE to specify a decimal key.

C-ISAM provides routines for converting DECIMALTYPE numbers to and
from every data type allowed in the C language. There are also routines that
allow compact storage of DECIMALTYPE numbers in a C-ISAM file and con-
version from this format to the representation used by an executing program.
DECIMALTYPE and CHARTYPE indexes are equivalent within C-ISAM.

Using DECIMALTYPE Data Type Numbers
If your program uses the DECIMALTYPE data type, you must include deci-
mal.h. (Appendix B, ‘‘Header Files,’’ contains a listing of decimal.h.)

DECIMALTYPE Data Type Declaration

DECIMALTYPE data type numbers have the structure dec_t. Your program
does not need to know anything about this structure. All operations on the
structure are made through function calls.

Consider the float tramt and double acctbal in Figure 3-7, which hold the
Transaction Amount and Account Balance fields. These variables are rede-
fined as DECIMALTYPE data types in Figure 3-10.

#include <decimal.h>
.
.
.
dec_t tramt;
dec_t acctbal;

Figure 3-10 Defining DECIMALTYPE Data Type Variables
Data Types 3-11

DECIMALTYPE Data Type
Sizing DECIMALTYPE Numbers

The size of a DECIMALTYPE data type number can vary in the C-ISAM file,
depending upon the number of significant digits to the left and to the right of
the decimal point. For example, if tramt can contain a value of 9,999.99,
there are six significant digits.

In memory, you can always use numbers with up to 32 significant digits.
DECIMALTYPE data is, however, packed in the C-ISAM file. You must choose
the length of the field based upon the number of significant digits that you
want to store.

Each byte of a decimal number in the C-ISAM file can hold two digits. Each
byte is located either to the right or left of the decimal point. You cannot store
a significant digit to the left of the decimal point in the same byte as a digit to
the right of the decimal point.

For example, if you want to store numbers less than 100,000 and represent the
number to the nearest one-thousandth, you must have space for 10 signifi-
cant digits, even though the greatest precision that you want to represent is
99,999.999. (Note that the DECIMALTYPE data type with 10 digits allows you
to store a larger number with greater precision, or 999,999.9999.)

The file also requires one byte to store the sign and exponent. Therefore, the
total number of bytes required to hold a DECIMALTYPE data type number in
a C-ISAM file is equal to the sum of the following three items: the number of
significant digits before the decimal point, divided by two (and rounded up
to the nearest whole byte if necessary); the number of significant digits to the
right of the decimal point divided by two (and also rounded up if necessary);
plus one more byte.

If you decide to redefine the Transaction Amount and Account Balance fields
in Figure 3-5 as DECIMALTYPE numbers, they can hold 6 and 14 significant
digits, respectively, in the same space required for the float and double data
types. The new record is shown in Figure 3-11.

Field Description Data Type Size Offset
Customer Number LONGTYPE LONGSIZE 0
Customer Name CHARTYPE 20 4
Customer Status INTTYPE INTSIZE 24
Transaction Amount DECIMALTYPE 4 26
Account Balance DECIMALTYPE 8 30

Record Size in Bytes 38

Figure 3-11 Customer Record Using DECIMALTYPE Data Type
3-12 Data Types

DECIMALTYPE Data Type
The decimal point is implied; it is not physically present in either the dec_t
structure or the data record. You should take care not to perform arithmetic
that results in the loss of accuracy. For example, in six significant digits, you
can represent 7,777.77 or 333,333. If you add these two numbers together,
however you lose accuracy. The result is 341,110, not 341,110.77.

Storing and Retrieving DECIMALTYPE Numbers

In the data file, decimal numbers are stored in a packed format, or two deci-
mal digits per byte. Two functions are provided to convert between the
C-ISAM file representation of decimal numbers and the format used during
program execution:

stdecimal converts a decimal number into packed format and puts it in
the data record.

lddecimal takes a packed decimal number from the data record and
places it in a variable with the structure dec_t.

The code in Figure 3-12 demonstrates moving the account balance and trans-
action amount to and from the data record shown in Figure 3-11.

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
char rec[39]; /* C-ISAM Data Record */
.
.
.
/* Load Transaction Amount and Account Balance from Record */
lddecimal(&rec[26],4,&tramt);
lddecimal(&rec[30],8,&acctbal);
.
.
.
/* Store Transaction Amount and Account Balance into Record */
stdecimal(&tramt,&rec[26],4);
stdecimal(&acctbal,&rec[30],8);
.
.
.

Figure 3-12 Converting DECIMALTYPE Numbers to and from Record
Data Types 3-13

DECIMALTYPE Data Type
Format

The lddecimal function has three arguments:

1. The location where the DECIMALTYPE data starts in the data record. This
is determined by the offset in the record layout in Figure 3-11.

2. The length of the DECIMALTYPE data, not the number of significant dig-
its. (See the previous section, ‘‘Sizing DECIMALTYPE Numbers,’’ for a
discussion on how to determine the size of a DECIMALTYPE number in a
C-ISAM file.)

3. The address of the dec_t structure to receive the DECIMALTYPE number.

The arguments for stdecimal are as follows:

1. The dec_t structure containing the DECIMALTYPE data

2. The location in the record to receive the data

3. The length of the data as it is represented in the record.

Manipulating DECIMALTYPE Numbers

You must use DECIMALTYPE numbers only with the appropriate C-ISAM
functions that manipulate them. For example, you can add two
DECIMALTYPE numbers using the function decadd. Figure 3-13 shows how
to add tramt to acctbal.

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
.
.
.
decadd(&tramt,&acctbal,&acctbal);
.
.
.

Figure 3-13 Decimal Addition of acctbal plus tramt
3-14 Data Types

DECIMALTYPE Data Type
Alternatively, you can convert the numbers to another data type and then
perform the calculation. This is shown in Figure 3-14.

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
double dtramt;
double dacctbal;
.
.
.
/* convert decimal numbers to double data type */
dectodbl(&tramt,&dtramt);
dectodbl(&acctbal,&dacctbal);

dacctbal += dtramt;

/* convert double to decimal data type */
decccdbl(dacctbal,&acctbal);
.
.
.

Figure 3-14 Conversion and Addition of acctbal+=tramt;

C-ISAM provides the following C function calls for using DECIMALTYPE
numbers:

Function Call Description

stdecimal Convert unpacked to packed DECIMALTYPE

lddecimal Convert packed to unpacked DECIMALTYPE

deccvasc Convert C char type to DECIMALTYPE

dectoasc Convert DECIMALTYPE to C char type

deccvint Convert C int type to DECIMALTYPE

dectoint Convert DECIMALTYPE to C int type

deccvlong Convert C long type to DECIMALTYPE

dectolong Convert DECIMALTYPE to C long type

deccvflt Convert C float type to DECIMALTYPE

dectoflt Convert DECIMALTYPE to C float type

deccvdbl Convert C double type to DECIMALTYPE

dectodbl Convert DECIMALTYPE to C double type

decadd Add two DECIMALTYPE numbers
Data Types 3-15

Summary
decsub Subtract two DECIMALTYPE numbers

decmul Multiply two DECIMALTYPE numbers

decdiv Divide two DECIMALTYPE numbers

deccmp Compare two DECIMALTYPE numbers

deccopy Copy a DECIMALTYPE number

dececvt Decimal equivalent to UNIX ecvt(3)

decfcvt Decimal equivalent to UNIX fcvt(3)

Chapter 8 describes these calls in detail.

Summary
C-ISAM data types provide machine independence for standard C language
data types. In addition, C-ISAM provides a DECIMALTYPE data type that
allows compact, machine-independent representation of numbers.

C-ISAM provides the following data types:

• CHARTYPE is equivalent to the C language char data type.

• INTTYPE is a machine-independent integer corresponding to the C lan-
guage int data type.

• LONGTYPE is a machine-independent long integer corresponding to the
C language long integer data type.

• FLOATTYPE is a machine-dependent floating-point data type correspond-
ing to the C language float data type.

• DOUBLETYPE is a machine-dependent double-precision data type corre-
sponding to the C language double data type.

• DECIMALTYPE is a machine-independent data type, which allows you to
represent numbers of up to 32 significant digits with exponents in the
range of -128 to +126.
3-16 Data Types

Chapter
4

Locking
Overview 3

Concurrency Control 3

Types of Locking 6
File-Level Locking 6

Exclusive File Locking 6
Manual File Locking 7

Record-Level Locking 8
Automatic Record Locking 9
Manual Record Locking 9
Waiting for Locks 10

Increasing Concurrency 11

Error Handling 11

Summary 12

4-2 Locking

Overview
You can control the access to specific records or files through locking. You
should use locking when your program is in the process of updating a record
and you need to prevent other programs from updating that same record
simultaneously.

You can choose one of the following locking options for a C-ISAM file:

• Lock an entire file so that your program has exclusive use of the file

• Lock a file so that other programs can read but not update the records in
the file

• Lock a record for the interval between C-ISAM function calls

• Lock a record for an interval that is under program control

Variable-length and fixed-length record files use the same procedures for
locking and unlocking.

Concurrency Control
Two or more programs can be in a state of execution at the same time on
multi-user computer systems. This is called concurrent execution or concur-
rency. Only one program executes at any point in time, however. A program
can be interrupted after the computer executes any number of instructions.
These instructions are the machine language that a C language program cre-
ates when it is compiled. The programs execute asynchronously; that is, the
execution of a program is independent (in time) of the execution of any other
program. You cannot predict when instructions from one program will exe-
cute and when instructions from another program will execute.

Generally, concurrent execution of programs is desirable because it allows
programs to share the resources of the computer, such as the disk drives and
the central processing unit (CPU). Since the utilization of the resources is
Locking 4-3

Concurrency Control
higher, concurrent execution improves the overall cost-effectiveness of the
system. If the programs are interactive, it appears that your program is the
only one executing on the computer.

Since programs execute concurrently on multi-user systems, and the execu-
tion can be suspended at any time to allow another program to execute, con-
flicts between programs can arise if two or more programs operate on the
same data records at the same time.

Consider Programs A and B in Figure 4-1. Each operates on the same record.
Program A increases the Amount field in the record by 100. Program B
increases the Amount field in the record by 200. When both programs finish
execution, the Amount field is increased by 300. Since the programs execute
concurrently, you cannot predict when instructions for Program A will exe-
cute and when instructions for Program B will execute.

Figure 4-1 shows only one possible sequence of interleaved execution of the
instructions in which the two programs do not interfere with each other.

Amount Field
Time in Record 1 Program A Program B
0 2500
1 2500 Reads Record 1
2 2500 Adds 100 (in memory)
3 2600 Writes Record 1
4 2600 Reads Record 1
5 2600 Adds 200 (in memory)
6 2800 Writes Record 1

Figure 4-1 Concurrent Execution of Programs

Figure 4-2 shows the same two programs operating concurrently to produce
an incorrect result. Both orders of execution have the same probability of
occurring.
4-4 Locking

Concurrency Control
Amount Field
 Time in Record 1 Program A Program B

0 2500
1 2500 Reads Record 1
2 2500 Reads Record 1
3 2500 Adds 100 (in memory)
4 2500 Adds 200 (in memory)
5 2700 Writes Record 1
6 2600 Writes Record 1
7 2600 UPDATE IS LOST

Figure 4-2 Concurrent Updates Without Locking

You can prevent conflicts either by not allowing concurrency or by forcing
synchronization during the critical points of execution. These critical points
exist wherever asynchronous execution of programs can lead to errors.

Locking controls the concurrency so that conflicts do not occur. When the
entire C-ISAM file is locked, concurrent program execution cannot occur if
the programs need the same file. If records are locked when they are read and
unlocked after they are updated, programs that want the locked records must
wait until they are unlocked. This forces synchronization so that the update
operations on the record are done in a controlled manner by each program.

Figure 4-3 shows Program A locking Record 1. When Program B tries to lock
and read the record, the lock request fails, and the program logic specifies
that the program wait and try again. After Program A releases the lock, Pro-
gram B can continue execution.

Amount Field
 Time in Record 1 Program A Program B
0 2500
1 2500 Reads Record 1 and locks
2 2500 Reads Record 1 and fails
3 2500 Adds 100 (in memory)
4 2500 Retries and fails
5 2600 Writes Record 1, releases lock
6 2600 Retry succeeds, read

 and lock
7 2600 Adds 0 (in memory)
8 2800 Writes Record

 and releases lock

Figure 4-3 Concurrent Updates with Locking
Locking 4-5

Types of Locking
Types of Locking
C-ISAM offers two levels of locking: file-level locking and record-level lock-
ing. Both levels provide several ways that you can implement locking.

Locking at the file level prevents any other programs from updating, and per-
haps reading, the same C-ISAM file simultaneously. Record-level locking pre-
vents programs from updating (and reading, if ISSKIPLOCK is used) the same
record at the same time. In general, record-level locking allows greater con-
currency among programs that access the same C-ISAM files.

The section ‘‘Increasing Concurrency’’ later in this chapter discusses the
trade-offs that you should consider when you choose a locking option. Sev-
eral situations require file-level locking. The next section describes these sit-
uations.

Single-user systems do not require locking, since they do not allow concur-
rent execution of programs. Therefore, conflicts cannot occur. However, your
program can always use locking calls for compatibility with multiuser sys-
tems; the locking is ignored. A program with locking that is written for a mul-
tiuser system runs on a single-user system without modification.

You lock files that have variable-length records just as you lock fixed-length
record files.

You must specify a locking mode when you open or build a C-ISAM file. If
you do not want locking, or if you want to manually control record level lock-
ing, choose the ISMANULOCK option, as shown in the following example:

fd = isopen ("employee",ISINOUT+ISMANULOCK);

File-Level Locking
C-ISAM provides two types of file-level locking: exclusive and manual. You
must specify the file-locking method when you build or open your file.

Exclusive File Locking

If you open or build your file with exclusive locking, no other program can
access the file until you close it with the isclose function call. This is the only
way to remove an exclusive lock.
4-6 Locking

Types of Locking
Figure 4-4 gives an example of instructions to open the file in exclusive
mode.

.

.

.
fd = isopen("employee",ISEXCLLOCK+ISINOUT);

/* employee file cannot be used by another
program until it is closed */

.

.

.
isclose (fd);
.
.
.

Figure 4-4 Exclusive File Locking

To lock a file exclusively, add the ISEXCLLOCK parameter to the mode in an
isopen or isbuild function call.

You must use exclusive file locking whenever your program uses the func-
tion isaddindex, isdelindex, or iscluster to add or delete an index.

Manual File Locking

Manual file locking allows you to explicitly lock and unlock the file, using
C-ISAM function calls. Manual locking only applies to updates of the file.
Other programs can read the file while it is manually locked.
Locking 4-7

Types of Locking
The code in Figure 4-5 demonstrates manual file locking.

.

.

.
fd = isopen("employee", ISMANULOCK+ISINOUT);

/* file is unlocked
until explicitly locked with islock */

.

.

.
islock(fd); /* file is locked at this point */

/* other programs can read employee records but all
other operations on the file are prevented */

.

.

.
isunlock(fd); /* file is unlocked here */
.
.
.

Figure 4-5 Manual File Locking

Specify the parameter ISMANULOCK when you open or build the file. The file
is not locked until you make the call to islock. Other programs can read
records from the locked file. However, they cannot change the C-ISAM file,
nor can they acquire a lock on the file, until you unlock the file with isunlock.

Record-Level Locking
C-ISAM provides two types of record locking: automatic and manual. You
must specify the locking method when you open or build your file.
4-8 Locking

Types of Locking
Automatic Record Locking

When you open or build your file with ISAUTOLOCK, the record that you
read with isread remains locked until the next C-ISAM function call.
Figure 4-6 gives an example of automatic record locking.

#include <isam.h>
char emprec[85];
.
.
.
fd = isopen ("employee",ISAUTOLOCK+ISINOUT);
.
.
.
/* Set up key for Employee No. 100 */
stlong(100L,emprec);
isread (fd,emprec,ISEQUAL);
/* record identified by key in

emprec is automatically locked */
.
.
.
isrewcurr (fd,emprec);
/* the record is automatically unlocked */
.
.
.

Figure 4-6 Automatic Record Locking

You can automatically lock only one record per C-ISAM file at a time.

If you use the ISKEEPLOCK option with an isstart call, the isstart call will not
unlock any locked record. You can use isrelease to release the lock manually.

Manual Record Locking

You must specify manual record locking with the ISMANULOCK option when
you open or build the C-ISAM file. (This is the same option that you use for
manual file locking.)

You place a lock on the record when you use the ISLOCK option in an isread
function call. The record remains locked until you execute the isrelease func-
tion call. The isrelease call removes locks for all records that your program
locked in the file. Transaction logging affects the time at which locks are
released. See the section ‘‘Data Integrity’’ in Chapter 5 for more information.
Locking 4-9

Types of Locking
The operating system determines the maximum number of locked records
that you can have. With most implementations of C-ISAM, the operating sys-
tem determines the maximum number of locked records that you can have.
On versions with .lok files, the maximum is 64.

The code in Figure 4-7 demonstrates an example of manual record locking.

fd_emp = isopen ("employee",ISINOUT+ISMANULOCK);
fd_per = isopen ("perform",ISINOUT+ISMANULOCK);
isread (fd_emp,emprec,ISEQUAL+ISLOCK);
/* employee record is locked here */
isread (fd_per,perrec,ISEQUAL+ISLOCK);
/* performance record is locked here */
isrewcurr (fd_per,perrec);
/* both records are still locked */
isrelease (fd_emp);
isrelease (fd_per);
/* employee and performance records are unlocked */

Figure 4-7 Manual Record Locking

Waiting for Locks

If the version of C-ISAM that you have uses the system call fcntl(), you can
program a process to wait for a locked record. Use the ISWAIT option of
isread to cause the program to wait for the locked record to become free. Use
the ISLCKWT option with isread to cause the program to wait for the record
to become free and immediately lock the record, as well. ISLCKWAIT is equiv-
alent to ISLOCK+ISWAIT.

If your program holds onto one or more locks while it is waiting for another
record to become free, your program may become deadlocked with another
program. A deadlock occurs when two (or more) programs each wait for
locks that the other program is holding. To illustrate a deadlock, consider two
processes, A and B. Process A locks record 105; process B locks record 200.
Process A holds the lock on record 105 and tries to lock record 200; it waits
for record 200. Process B is programmed so that it will not release record 200
until it can lock record 105. Since there is no way that either process can get
the lock it needs, both processes wait forever. Deadlocks are only possible if
your process waits for locks.

Only versions of C-ISAM that use fcntl() are X/Open compatible. If a version
uses fcntl(), it is noted on the media as SYS5LOCK or fcntl locking.
4-10 Locking

Increasing Concurrency
Increasing Concurrency
Locking allows more than one program to access a C-ISAM file concurrently
without causing conflicts. For example, a conflict could arise if two programs
read the same record and each one updates the record. (See Figure 4-2 on
page 4-5.) Locking prevents this by ensuring that once the record or file is
locked, no other program can update it or, possibly, even read it.

The locking level affects the degree of concurrency that is possible for access
of a C-ISAM file. When you use file-level locking, only one program at a time
can update the file. If you update Record 100, for example, and another pro-
gram wants to update Record 200, the second program is not allowed to
access the record, even though no actual conflict exists. This is because you
locked the entire file. Concurrency is unnecessarily impaired, in this case,
since a conflict is not present.

Locking at the record level increases concurrency. Only records that are
accessed at the same time are potentially in conflict. Record-level locking
ensures that conflicts cannot happen, by preventing concurrent access to
these records only and not to the entire file.

Error Handling
Calls to C-ISAM functions return a status code. If the function fails, it returns
a negative status code. You can check the global variable iserrno to determine
the reason for failure.

Two values of iserrno are related to locking:

• EFLOCKED (value 113) indicates that the file is exclusively locked.

• ELOCKED (value 107) indicates that either the file, or record within the
file, is locked.
Locking 4-11

Summary
Figure 4-3 shows Program B waiting because the record it wants is locked.
When the record is released, Program B can continue to execute. Figure 4-8
shows how you can implement a ‘‘wait for lock’’ strategy using a sleep func-
tion, which delays program execution for one second each time you call it.

.

.

.
/* Read and lock record */

readit:
if (cc = (isread(fd,emprec,ISEQUAL+ISLOCK)) < 0)

{
if (cc == ELOCKED || cc == EFLOCKED)

{
/* Record is already locked,

wait 1 second and try again */
sleep (1);
goto readit;
}

else
.
.
.

Figure 4-8 Program That Handles Locked Records

In practice, you may want to retry the isread call only a few times, rather than
to retry forever.

Summary
C-ISAM supports both file-level and record-level locking. You can lock files
or individual records to prevent concurrent update and, in some cases, to pre-
vent concurrent reading of a file.

C-ISAM provides two types of file-level locks:

• ISEXCLLOCK prevents any other program from accessing the file.

• ISMANULOCK allows you to specify when the file is locked for update but
allows other programs to read the file.

C-ISAM also provides two types of record-level locks:

• ISAUTOLOCK locks a record from one C-ISAM call until the next one.

• ISMANULOCK allows you to lock specific records and release them under
program control.
4-12 Locking

Summary
If you do not want locking, specify ISMANULOCK when you open or build
the file.

C-ISAM requires that you open a file with an exclusive lock (ISEXCLLOCK) to
add or delete an index.
Locking 4-13

Summary
4-14 Locking

Chapter
5

Transaction
Management
Support Routines
Overview 3

Why Use Transaction Management? 3
Transaction Management Services 4

Implementing Transactions 4
Transactions with Variable-Length Records 6

Logging and Recovery 7

Data Integrity 8
Concurrent Execution of Transactions 8

Locking 9
Concurrency Issues 10

Summary 11

5-2 Transaction Management Support Routines

Overview
There are times when you want to perform multiple operations on a C-ISAM
file in such a way that either all of the operations succeed or none of them
affect the file. C-ISAM provides support routines for transaction management
to implement this strategy. A transaction is a set of operations that you want
completed entirely or not at all.

Why Use Transaction Management?
Consider the following example. Your program transfers money from one
bank account to another. You can write the program to accomplish the trans-
fer in several ways. You can retrieve the account record, deduct the amount,
and rewrite the record. Then you can retrieve the account record that receives
the money, add the amount, and rewrite the second record. If the second
account does not exist, however, you must retrieve the first record again,
reverse the entry, and rewrite the record.

A better procedure might be to retrieve both records, make the transfer, and
then rewrite both records. You may still encounter a problem if a crash or
some other abnormal event occurs after the first record is rewritten but before
the second record is rewritten. An inconsistent state results in which either
one account has too much money or the other has too little, depending upon
the order in which the records were written. In this case, you want to either
retrieve the first record written, reset the amount, and rewrite it, or you want
to continue updating the second record.

In both cases, either you want to complete the intended action on the records
or you want the program to restart from the point of failure. If the operations
involve more records or additional files, the interactions between records and
files can be more complex. A failure in the middle of processing leaves these
records in an unknown, and possibly inconsistent, state. C-ISAM provides an
easy way to undo the operations and start over from a state where you know
that the records are correct.
Transaction Management Support Routines 5-3

Implementing Transactions
Transaction Management Services
The support routines for transaction management enable you to define a set
of operations on C-ISAM files that you want to be done entirely or not at all.
This set of operations is called a transaction.

In the example of transferring money between two accounts, you define a
transaction that includes reading and rewriting both records. This kind of
transaction defines an undividable unit of work that is either completed
entirely or not at all. The transaction cannot be partially completed; thus an
inconsistent state cannot result.

Transaction management provides two additional facilities. It provides a
recovery mechanism so that, in the event of a crash, the transactions can be
recovered automatically, and you can reconstruct the C-ISAM files from a
backup copy of the files. Transaction management also automatically pro-
vides the necessary locking to ensure that two or more transactions do not
interfere with each other by updating the same record at the same time.

Implementing Transactions
To define a transaction, you must decide what operations on C-ISAM files
must be treated as an undividable unit of work. A unit of work is the opera-
tions that you want done entirely or not at all. A transaction can involve oper-
ations on more than one C-ISAM file.

In the example of transferring money between accounts, the unit of work is
the complete transfer of funds. The operations that implement the transfer
are the reading and rewriting of the C-ISAM records that the program
updates to effect the transfer.

You implement the transaction by calling the function isbegin to mark the
start of the operations on the C-ISAM files that you want to treat as the unit
of work, and by calling iscommit to mark the successful completion of those
operations. Within the transaction, you can call isrollback to cancel the trans-
action. The isrollback call reverses changes to the C-ISAM files that the pro-
gram makes within the transaction.
5-4 Transaction Management Support Routines

Implementing Transactions
Figure 5-1 illustrates the function calls that are necessary to add a record to
the employee file and a record for that employee to another file, perform.
Assume that you decide to define these two operations as a single transaction
to ensure that a record for the employee is added to both files.

.

.

.
/* Transaction begins after terminal input has been collected.

Either both employee and performance record will be added
or neither will be added. */

/* Files must be opened and closed within the transaction */

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();

break; }

cc1 = addemployee();
if (cc1 == SUCCESS)

cc2 = addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

Figure 5-1 Adding Two Records Within a Transaction

You start a transaction by calling isbegin before any other C-ISAM call. You
end the transaction by calling iscommit after adding both records. If a call to
iswrite fails, isrollback cancels the transaction. You must include the
ISTRANS parameter in the isopen call if you want isrollback to reset any
changed records to their original state. If you update a file, it is very impor-
tant that you open and close the file within the transaction.
Transaction Management Support Routines 5-5

Implementing Transactions
You can write your program so that any problem that it cannot handle causes
the transaction to roll back. Problems can include an error return from a
C-ISAM call, application logic that decides the transaction should not be com-
pleted, and so forth.

For example, the program may discover any one of the following conditions:

• An account number did not exist.

• The balance was less than zero.

• Another program is using the record.

For any of these problems, the program can roll back the transaction. After
isrollback executes successfully, the program can retry the transaction start-
ing with another call to isbegin.

During the execution of a transaction, the records your program updates are
locked. (See the section ‘‘Locking’’ later in this chapter.)

You should, therefore, define a transaction to consist of only the required
operations on the records and, where possible, only those operations that
execute without user intervention. For example, if your transaction reads and
locks a record, and then waits for someone to update it, the record remains
locked during that time. Try to minimize the amount of time spent processing
inside a transaction since transactions restrict concurrent execution of other
programs that need the same records.

You can define recoverable transactions that include the following calls:
isbuild, isaddindex, isdelindex, iscluster, isaudit, issetunique, isuniqueid,
isrename, and iserase. You cannot, however, roll back their effect.

Transactions with Variable-Length Records
You start and stop transactions with variable-length records in the same way
as with fixed-length records. Some of the transaction log formats used with
variable-length records are different than those used with fixed-length
records. All of the transaction log formats that are used in the transaction logs
are listed in “Transaction File Formats” on page -8 of this manual.

If a transaction that contains an update operation reduces the length of a vari-
able-length record, an isrollback call will restore the data of the original
record to the state it was in at the last isbegin call, but the storage location
might be different. Therefore, the backup of a file and a file that has been
rolled back to the same logical state might not have the same binary image,
even though both files contain the same user data.
5-6 Transaction Management Support Routines

Logging and Recovery
Logging and Recovery
Each transaction puts records in a log file for the purpose of restoring the
C-ISAM files if they are rolled back, and to provide a recovery mechanism.
The transaction log file is an ordinary operating system file. You should set
up procedures to maintain this file. (These procedures include scheduling
regular backups of the C-ISAM files and purging the log file after each backup
and before the transactions are applied to the C-ISAM files.)

To set up a transaction log file, you must create an empty log file. You start a
new log file after you make backup copies of the C-ISAM files that use it. You
can do this with the standard C library function creat, as follows:

creat("recovery.log",0666);

Transaction logging starts with the following call to islogopen:

islogopen("recovery.log");

The log file name that you specify in the call must be identical for every pro-
gram that accesses the same C-ISAM file. You cannot recover your C-ISAM file
if you use different log files.

Every program that is not read-only should call islogopen. If a program
writes or updates records without using the log, automatic recovery is
impossible.

You can close the log file and stop transaction logging with the islogclose
function call:

islogclose();

If a C-ISAM file becomes corrupted or is destroyed, you can recover it by
using the isrecover function. The function requires the most recent backup
copy of all the files that record their transactions in the same log file and the
log file that you started immediately after you created the backup. The isre-
cover function takes the transactions in the log file and applies them to the
backup copies of the C-ISAM files. You should ensure that no one is using the
C-ISAM files during the recovery.

Caution: You should only work with a copy of your backup file, never with the
backup file itself. If a failure occurs during the recovery process and you are updating
the only backup copy, further attempts at automatic recovery are impossible.
Transaction Management Support Routines 5-7

Data Integrity
To ensure successful recovery from a system failure, all isopen calls that are
intended to open the file in a write mode must be contained in a transaction.
The files must also be closed before the transaction is committed or rolled
back. If you want a file to be opened in read-only mode and not to be logged
in the log file, use ISINPUT as the mode on the isopen call and do not use
ISTRANS.

After you run a program that calls isrecover, the C-ISAM files contain all com-
mitted transactions recorded in the transaction log file. This recovery strategy
is called rollforward. If there are any cases where relative pathnames are used
in isopen or isbuild function calls, be sure that the recovery program is run
from the same directory as the original programs.

Data Integrity
Data integrity means you can access data knowing that the data is correct or,
at least, consistent.

A transaction defines one or more operations on C-ISAM files as a single unit
of work. Using transactions ensures data integrity because transactions make
it impossible to leave files in logically inconsistent states.

C-ISAM also achieves integrity by providing a recovery mechanism. In the
event of a crash, you can recover the transactions.

Concurrent execution of transactions could cause data integrity problems if
locking were not present. The following section examines this issue.

Concurrent Execution of Transactions
In a single-process environment, only one transaction executes at a time. The
program that executes the transaction either commits all changes to the file,
or rolls back without making any changes. After the transaction finishes, the
file either reflects the operations contained in the transaction, or the state
before the transaction started.

In a multiprocessing environment, it is necessary to prevent two or more
transactions from interfering with each other. Interference occurs, for exam-
ple, if Program A and Program B both read Record 1 and update its contents.
If Program B rewrites the record, then Program A rewrites it, the Program B
update is lost. This is shown in Figure 5-2.
5-8 Transaction Management Support Routines

Data Integrity
Amount Field
Time in Record 1 Program A Program B

0 2500
1 2500 Reads Record 1
2 2500 Reads Record 1
3 2500 Adds 100 (in memory)
4 2500 Adds 0 (in memory)
5 2700 Writes Record 1
6 2600 Writes Record 1
7 2600 UPDATE IS LOST

Figure 5-2 Concurrent Updates Without Locking

Locking the records that are accessed by a transaction prevents this
interference.

Locking

When a transaction begins, all C-ISAM function calls that modify a record
lock the record. These records remain locked until you execute iscommit or
isrollback. A call to isrelease during a transaction only releases unmodified
records. Locks on modified records are not released. Likewise, a call to isun-
lock only works if the records in the file are not modified by the transaction.

A transaction that reads a record does not lock the record unless you use the
ISLOCK option in the isread function call. You should use the ISLOCK option
if the transaction intends to update the record.

The number of record locks that can exist at any one time is operating system
dependent. On versions of C-ISAM with .lok files, the maximum is 64.

You can use the islock function call within a transaction to lock an entire file.
If you do this, the file remains locked until the end of the transaction.

You should choose an appropriate strategy for handling situations where a
C-ISAM call returns an indication that a record is locked. (See the section
‘‘Error Handling’’ in Chapter 4 for a description of how locked records are
identified.) The safest strategy is to roll back the transaction. This guarantees
that transactions will occur in a serial and, therefore, reproducible order.
Transaction Management Support Routines 5-9

Data Integrity
Concurrency Issues

Locking a record before it is used and holding all locks until the end of a
transaction ensure that two or more concurrent transactions cannot interfere
with each other. If a transaction wants a locked record, a rollback and one or
more retries allow the transaction that holds the lock to finish first. Both
transactions are then completed without any unintended interaction.

For example, Figure 5-3 shows Program A and Program B concurrently com-
peting for Record 1.

Amount Field
 Time in Record 1 Program A Program B

0 2500
1 2500 Reads and locks Record 1
2 2500 Reads Record 1, fails;

 rolls back
3 2500 Adds 100 (in memory)
4 2600 Writes Record 1
5 2600 Commits Retries
6 2600 Reads and locks Record 1
7 2600 Adds 200 (in memory)
8 2800 Writes Record 1
9 2800 Commits

Figure 5-3 Conflict Resolution with Transactions

Program A reads the record first and locks it. When Program B attempts to
read the record, it gets an error. Program B rolls back its transaction and tries
again. Meanwhile, Program A commits its transaction. This releases the lock
on Record 1, and when Program B tries again, it also succeeds.

To guarantee correct concurrent execution of programs that use transactions,
you must use the ISLOCK option with isread, even when the transaction is
read-only. It is theoretically possible for a read-only program to see the
records of a file in a temporarily inconsistent state. The read-only program
could read a record that has been changed by a transaction in progress, and
then read a record that the same transaction changes later.
5-10 Transaction Management Support Routines

Summary
Summary
A transaction specifies an undividable unit of work consisting of one or more
C-ISAM function calls, operating on one or more files. The following calls
implement transactions:

isbegin marks the beginning of a transaction.

iscommit marks the end of a transaction and authorizes all changes to
the file by a transaction since the last isbegin function call.

isrollback revokes all changes to the file by a transaction since the isbe-
gin call.

islogopen opens a transaction log file and starts recording transactions.

islogclose closes the log file and terminates the recording of changes to
the C-ISAM files.

isrecover uses the transaction log file to restore the file to its original
state from a backup copy.

You must include the ISTRANS parameter in the isopen function call if you
want the ability to roll back the files to their state before you started the trans-
action.
Transaction Management Support Routines 5-11

Summary
5-12 Transaction Management Support Routines

Chapter
6

Additional
Facilities
Overview 3

File Maintenance Functions 3

Forcing Output 4

Unique Identifiers 5

Audit Trail Facility 6
Using the Audit Trail 6
Audit Trail File Format 8

Clustering a File 9

File Maintenance with Variable-Length Records 9
If Data Files Are Corrupted 10
If Index Files Are Corrupted 10

Summary 13

6-2 Additional Facilities

Overview
C-ISAM provides several additional facilities that enable you to perform the
following tasks:

• Remove or change the names of C-ISAM files without having to specify
the operating system file names

• Force writing of buffers to the disk

• Define and use a unique field within records that do not already have one

• Create and maintain an audit trail of changes to a C-ISAM file

• Put the records of a file into a specific physical order

File Maintenance Functions
You can use the function isrename to change the name of the operating sys-
tem files that comprise a C-ISAM file.

A C-ISAM file consists of two operating system files that are logically treated
as a single unit. For example, when you create the C-ISAM file employee, two
operating system files are created: employee.dat and employee.idx. (An
employee.lok file is also created on some platforms.)

The following call renames employee.dat to personnel.dat and
employee.idx to personnel.idx. If employee.lok exists, it too is renamed.

isrename ("employee","personnel");

Any other files associated with the C-ISAM file, such as a transaction log or
an audit trail file, are not affected.
Additional Facilities 6-3

Forcing Output
The C-ISAM function iserase removes the operating system files that com-
prise the C-ISAM file. The following example removes the files personnel.dat
and personnel.idx, and personnel.lok if applicable:

iserase ("personnel");

This function also removes the audit trail file for the personnel file if one
exists. See the section ‘‘Audit Trail Facility’’ later in this chapter. It does not
remove transaction log files.

You can use the function iscleanup at the end of your program to close all
files opened by your program.

Forcing Output
Ordinarily, C-ISAM functions that write records immediately force the output
to the operating system and, thus, to the file. You can use the isflush function
call to force this output; however, an explicit call to flush output is unneces-
sary except in the following two cases:

• When the file is opened in exclusive mode with ISEXCLLOCK

• If you have a single user system that does not support locking

In these cases, the execution of a C-ISAM function does not automatically
result in output to the operating system, because conflicts in access to the
records cannot occur. Therefore, C-ISAM keeps the records in memory with-
out forcing them to the operating system. To protect against losing too many
records during a crash, you can periodically issue the following call:

isflush(fd);

fd is the file descriptor that was returned when the file was opened or built.

If you have a multi-user system, and the file is not opened in exclusive mode,
you do not have to use the isflush function.
6-4 Additional Facilities

Unique Identifiers
Unique Identifiers
C-ISAM provides functions that you can use to set and retrieve unique num-
bers associated with a C-ISAM file. Several C-ISAM functions, such as isde-
lete and isrewrite, require a unique primary index. If you want to use these
functions, in preference to equivalent functions without this primary key
restriction, you must specify a unique key field when you build your file.

If your records do not have a reasonably sized field that is guaranteed to be
unique, you can add a long integer field to them. Define this field as part of
the key in your keydesc structure. (You must also specify
k_flags=ISNODUPS.)

You can use the function isuniqueid to return a long integer that is unique.
C-ISAM maintains this number and serially increments it whenever you call
the function. The initial value is 1. An example of the function call follows:

isuniqueid(fd,&key_value);

The file descriptor for the C-ISAM file that receives the unique value is fd. The
long integer that receives the key is key_value.

You must place this number in the data record in the location specified for the
key. If, for example, the first four bytes of the data record, rec, are reserved for
the key, you could use the following function call:

char rec[39];
...
stlong(key_value,rec);

You can use the function issetunique to change the starting unique identifier.
If you want the value to start with 10,000, for example, you use the follow-
ing call:

issetunique (fd,10000L);

If the unique identifier is already higher than 10,000, the call has no effect.
The function ignores attempts to reset the unique value to less than the cur-
rent value.
Additional Facilities 6-5

Audit Trail Facility
Audit Trail Facility
An audit trail is a file that contains a record of all changes to a single C-ISAM
file. You should consider using it when you want to have a record of all
changes to a C-ISAM file, yet do not need the additional facilities provided by
transactions. For example, you can use an audit trail file to keep changes to a
critical C-ISAM file and store the audit trail file on another device, such as
another disk.

You can have one audit trail for each C-ISAM file. Even if you use the support
routines for transaction management, you can use an audit trail file. If you do
this, C-ISAM records changes in both the audit trail file and the transaction
log file.
6-6 Additional Facilities

Audit Trail Facility
Using the Audit Trail
Use the isaudit function call to set or retrieve the audit trail filename, to start
or stop recording changes in the C-ISAM file, or to test the status of the audit
trail. The code in Figure 6-1 demonstrates the use of the audit trail.

#include <isam.h>
char fname[24];
.
.
.
fd = isopen("employee",ISINOUT+ISMANULOCK);
.
.
.
/* Get audit trail filename */
isaudit(fd,fname,AUDGETNAME);
.
.
.
/* Set audit trail filename */
isaudit(fd,"employee.aud",AUDSETNAME);
.
.
.
/* Test status of audit trail and

start it if necessary */
isaudit(fd,fname,AUDINFO);
cc = strncmp(&fname[0],0,1); /* Compare with 0 */
if (cc==0) /* audit trail is off */

isaudit(fd,fname,AUDSTART); /* start */
.
.
.
/* Stop audit trail */
isaudit(fd,fname,AUDSTOP);

Figure 6-1 Using the isaudit Function Call

The isaudit function calls in Figure 6-1 perform different tasks depending
upon the third argument, the mode. The following list describes the action
that isaudit takes, based upon the mode:

AUDGETNAME retrieves the name into the string fname.

AUDSETNAME changes the audit trail name to employee.aud.

AUDINFO returns the status of the audit trail in the first character of
the fname string. If the character is equal to 0 (ASCII
null), nothing is recorded in the audit trail file. If the char-
Additional Facilities 6-7

Audit Trail Facility
acter is equal to 1, changes to the C-ISAM file are
recorded.

AUDSTART starts the audit trail running. Changes to the C-ISAM file
are appended to the audit trail file.

AUDSTOP stops recording C-ISAM file changes in the audit trail file.

You can use audit trails with variable-length record files just as with fixed-
length record files. The audit trail file format for variable-length records con-
tains an additional two-byte entry that indicates the actual length of the data
record. See Appendix D for more information about the audit trail file
format.

Audit Trail File Format
An audit trail record consists of a header and a copy of the data record. The
header is shown in Figure 6-2. It is defined in isam.h.

struct audhead
{
char au_type[2];/* audit record type aa,dd,rr,ww*/
char au_time[4];/* audit date-time*/
char au_procid[2];/* process id number*/
char au_userid[2];/* user id number*/
char au_recnum[4]; /* record number*/
 char au_reclen[2]; /* audit record length beyond header */
};

#define AUDHEADSIZE 14 /* num of bytes in audit header*/
#define VAUDHEADSIZE 16 /* VARLEN num of bytes in audit header */

Figure 6-2 Header for Audit Trail Records

The header variables are defined as follows:

au_type identifies the operation on a record in the C-ISAM file.

aa record added to the file

dd record deleted from the file

rr copy of the record before update (before image)

ww copy of the record after update (after image)

au_time is a LONGTYPE containing the time in UNIX format.

au_procid is an INTTYPE containing the process identification number.

au_userid is an INTTYPE containing the user identification code.

au_recnum is a LONGTYPE that contains the number of the record that is
added, deleted, or modified.
6-8 Additional Facilities

Clustering a File
au_reclen is a LONGTYPE that contains the actual length of the vari-
able-length-record data in bytes.

(See Chapter 3, ‘‘Data Types,’’ for a description of LONGTYPE and INTTYPE.)

The rest of the audit trail record is a copy of the affected data record. If the
operation is a rewrite, both the before and after images are present in the
audit trail file as an rr type followed by a ww type, each with the same record
number.

Clustering a File
You can use iscluster to create a physical ordering of the data records in a
C-ISAM file that corresponds to the ordering of an index on the file. This is
useful if the contents of the file do not change frequently, and you need to
process the file sequentially.

Ordinarily, the records in a C-ISAM file are in no particular order. Indexes are
used to maintain sequential order and to find specific records within the file.
To read the records in sequential order, the index is processed sequentially,
and the records are retrieved by following a pointer that corresponds to the
record number, or physical location, within the file. While the keys in an
index node are physically adjacent, there is no guarantee that the data records
are near each other in the data file.

Clustering is the ability to put records physically near each other, in a partic-
ular sequence, within a file. The iscluster function achieves this by building
a copy of the file in the order of one of the indexes on the file.

The clustering of physical records is not permanent. Records that are added
are not clustered. Over time, additions and deletions reduce the clustering of
the records. If you call iscluster, this restores a file so that records are once
again clustered.

The following function call clusters a file:

fd = iscluster(fd,&key);

The function returns a new file descriptor, fd, which must be used in subse-
quent operations on the file. The description structure that defines one of the
existing indexes is key. This index defines the physical order for the file.

The file must be opened for exclusive use. The file remains open after the call
to iscluster. All indexes are re-created using the new order of the records in
the data file.
Additional Facilities 6-9

File Maintenance with Variable-Length Records
File Maintenance with Variable-Length Records
It is important to maintain current backups for both fixed- and variable-
length data. Files that contain fixed-length data are vulnerable to data loss if
the .dat files become corrupted. Files that contain variable-length data are
vulnerable to data loss if either the .dat or the .idx files become corrupted.
With fixed-length records, you can recreate an index file simply by knowing
the key descriptions and some dictionary information. With variable-length
records, you can recreate the index portion of the .idx files with the same
information, but you cannot recreate the data that resides in the index files.

If data corruption occurs with a file that contains variable-length data, you
can use the guidelines in the next two sections to produce a clean file.

If Data Files Are Corrupted
Restore a backup of the data and index files and then use the appropriate
transaction logs or audit trails to reconstruct the .dat and .idx files.

If Index Files Are Corrupted
Do not remove the .idx files. Use the bcheck utility to clean up inaccuracies
in the index portion of the .idx files. If the index portions of the .idx files are
damaged, you can use the iscluster function to regenerate the indexes. The
iscluster function opens the file, copies the records to a new file in the order
specified by the parameters, recreates the indexes, removes the old file, and
gives the new file the old name and a new file descriptor. The iscluster func-
tion does not use the indexes in the old file, so if only the index portions of
the .idx files are damaged, running iscluster might correct the problem.

The variable-length data is not repaired by bcheck or by iscluster. If you run
iscluster and it generates errors on reading some of the records, you need to
restore the data portions of the file. You can write a program to read the
records in the old file into a new file and flag any records that are damaged.
Then you can use another program to remove these records and replace
them. If you cannot replace the damaged records, you have to restore all of
the files, both .dat and .idx, from a backup.
6-10 Additional Facilities

File Maintenance with Variable-Length Records
The following program reads the file oldfile, creates a new file newfile with
the same indexes as the old file, reads each record from the old file, and puts
each one in the new file. If a record is unreadable, the program puts a dummy
record into the new file to retain the record order. You can use another pro-
gram to delete the dummy records and take appropriate action.

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define SIZE 32511

char dumrec[] = "Dummy record placeholder" ;
struct keydesc key;
struct dictinfo info ;
int old_fd, new_fd;

/*This program sequentially reads through an "old" variable-length
* file and copies all of the records to a new file. If a record is
* unreadable, a dummy record is inserted for future analysis. Both new
* and old file names are hardcoded here but could be obtained at run
time.
*/

main()
{

int minlen, maxlen, rr, ww;
char record[SIZE];

printf("iserrno is %d\n", iserrno);
/*open old file to obtain file descriptor and
* find the maximum length
*/
old_fd = isopen ("isfile1", ISVARLEN + ISINPUT + ISEXCLLOCK);
printf("iserrno is %d\n", iserrno);
maxlen = isreclen;
printf("Opened old file with fd = %d and maxlen = %d\n",

old_fd, maxlen);

/* call isindexinfo on the primary key to obtain key description
* in key and the minimum (fixed-length) length
*/
isindexinfo(old_fd, &key, 1);
minlen = isreclen;
printf("Used isindexinfo to find minlen = %d\n", minlen);

/* build the new file with the characteristics of the old one
* including having the primary key but not the secondary keys.
*/
new_fd = isbuild("newfile",maxlen,&key, ISVARLEN + ISINOUT +

ISEXCLLOCK);
printf("Built newfile with new_fd = %d\n", new_fd);

/* add the secondary indexes to the new file */
addindex();
Additional Facilities 6-11

File Maintenance with Variable-Length Records
/*place the pointer before the first record */
isstart(old_fd, &key, 0, record, ISFIRST);

/* Read each record from the old file.
* If the read fails, write a dummy record to the new file to
* preserve the original record numbering. If the read is
* successful, write the record to the new file. If a read
* encounters the EOF or other error, or if a write encounters an
* error, then exit.
*/

rr = SUCCESS;
ww = SUCCESS;

while (rr >= SUCCESS)
 {
 rr = (isread(old_fd, record, ISNEXT + ISLOCK));
 printf("did isread and rr = %d\n", rr);
 /*isreclen has been set by isread to number of bytes in record */
 printf("iserrno = %d \n", iserrno);
 if (iserrno == EENDFILE) {printf("breaking now\n"); break;}
 if (rr < SUCCESS) ww = (iswrite (new_fd, dumrec));
 else ww = iswrite(new_fd, record);
 if (ww < SUCCESS) break;
 }

if (iserrno == EENDFILE)
 printf ("isread encountered end of file.\n");
else if (ww < SUCCESS) printf("iswrite failed\n");
iscleanup();
}

addindex()
{
int cc, numkeys;

cc = isindexinfo (old_fd, &info, 0);
if (cc != SUCCESS) {printf ("isindexinfo error %d ", iserrno); exit(1);}
numkeys = info.di_nkeys & 0x7fff;

while(numkeys > 0)
{
isindexinfo(old_fd, &key, numkeys--);

 printf("doing isindexinfo with numkeys = %d\n");
isaddindex(new_fd,&key);
}

return;
}

A description of the format of the index files is provided in the section
“Index File Formats” on page -1 of this manual.
6-12 Additional Facilities

Summary
Summary
C-ISAM provides the following additional functions:

iserase removes a C-ISAM file.

isrename changes the name of a C-ISAM file.

isflush forces output to a C-ISAM file that is opened exclusively or
is on a single user machine without locking.

isuniqueid returns a unique number that you can use in a key.

issetunique allows you to specify the starting value for the unique num-
ber.

isaudit allows you to set up and maintain a record of changes to
your file.

iscluster puts the records of a C-ISAM file into a specific physical
order, as defined by an index.
Additional Facilities 6-13

Summary
6-14 Additional Facilities

Chapter
7

Sample Programs
Using C-ISAM Files
Overview 3

Record Definitions 3

Error Handling in C-ISAM Programs 4

Building a C-ISAM File 5

Adding Additional Indexes 6

Adding Data 7

Random Update 10

Sequential Access 14

Chaining 17

Using Transactions 22

Summary 25

7-2 Sample Programs Using C-ISAM Files

Overview
This chapter introduces sample C language programs that use C-ISAM files.
These examples are based on a very simple personnel system. The purpose
of this system is to keep up-to-date information on employees and their per-
formances.

Record Definitions
The personnel system consists of two C-ISAM files, the employee file and the
perform file. The employee file holds personal information about each
employee. Each record holds the employee number, name, and address.
Figure 7-1 shows the file layout.

Field Name Position Field Type
Employee Number 0 - 3 LONGTYPE
Last Name 4 - 23 CHARTYPE
First Name 24 - 43 CHARTYPE
Address 44 - 63 CHARTYPE
City 64 - 83 CHARTYPE

Figure 7-1 Employee File Layout

The perform file holds information pertaining to each job performance
review for an employee. The file contains one record for each performance
review, job title change, or salary change. For every record in the employee
file, at least one record must exist in the perform file. The perform file can
have multiple records for the same employee. Figure 7-2 shows the layout of
the perform file.
Sample Programs Using C-ISAM Files 7-3

Error Handling in C-ISAM Programs
Field Name Position Field Type
Employee Number 0 - 3 LONGTYPE
Review Date 4 - 9 CHARTYPE
Job Rating 10 - 10 CHARTYPE
Salary after Review 11 - 18 DOUBLETYPE
Title after Review 19 - 49 CHARTYPE

Figure 7-2 Performance File Layout

You must allocate one more byte for C-ISAM records in memory. Since a
record in the employee file requires 84 bytes, and a record in the perform file
requires 50 bytes, the memory storage for these records requires 85 and 51
bytes, respectively.

Error Handling in C-ISAM Programs
Every C-ISAM function returns a status code that your program should test.

• If the return code is zero or positive, the call results in successful execu-
tion of the function.

• If the return code is negative, however, the call is not successful. Your pro-
gram can check the global variable iserrno to determine the reason for
failure. The values returned in iserrno and their descriptions are in
Appendix C, ‘‘Error Codes.’’

The sample programs that follow do not always illustrate adequate error
checking. (This omission is to shorten the length of the examples.) Programs
that are used in a production environment should have much more rigorous
error checking than what is presented in the sample programs.
7-4 Sample Programs Using C-ISAM Files

Building a C-ISAM File
Building a C-ISAM File
Figure 7-3 shows a C language program that creates both the employee and
the perform files.

#include <isam.h>

#define SUCCESS 0

struct keydesc ekey, pkey;
int cc, fdemploy, fdperform;

/* This program builds the C-ISAM file systems for the
employee and perform files */

main()
{
/* Set up Employee Key */
ekey.k_flags = ISNODUPS;
ekey.k_nparts = 1;
ekey.k_part[0].kp_start = 0;
ekey.k_part[0].kp_leng = 4;
ekey.k_part[0].kp_type = LONGTYPE;

fdemploy = cc = isbuild("employee", 84, &ekey, ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isbuild error %d for employee file\n", iserrno);
exit(1);
}

isclose(fdemploy);

/* Set up Performance Key */
pkey.k_flags = ISDUPS+DCOMPRESS;
pkey.k_nparts = 2;
pkey.k_part[0].kp_start = 0;
pkey.k_part[0].kp_leng = 4;
pkey.k_part[0].kp_type = LONGTYPE;
pkey.k_part[1].kp_start = 4;
pkey.k_part[1].kp_leng = 6;
pkey.k_part[1].kp_type = CHARTYPE;
fdperform = cc = isbuild("perform", 49, &pkey, ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isbuild error %d for performance file\n", iserrno);
exit(1);
}

isclose(fdperform);
}

Figure 7-3 Creating C-ISAM Files

The primary key for the employee file has one part, the Employee Number.
This is a long integer beginning at offset 0, the start of the record. It is four
bytes long. The index does not allow duplicate keys.
Sample Programs Using C-ISAM Files 7-5

Adding Additional Indexes
The primary key for the perform file has two parts: Employee Number and
Review Date. The first part, Employee Number, is a long integer, four bytes
long, and starts at the beginning of the record, offset 0. The second part is the
Review Date, which is a character field of six bytes. It starts immediately after
the Employee Number, at offset 4 in the record. The file allows duplicate keys
and compresses any duplicate values that are in the index.

Adding Additional Indexes
Occasionally, you need additional indexes for an application. The program in
Figure 7-4 creates an index on the Last Name field in the employee file, and
an index on the Salary field in the perform file.

While you add indexes, the file must be opened with an exclusive lock. You
can specify exclusive file locks in the mode argument of the isopen call by ini-
tializing that parameter to include ISEXCLLOCK. ISINOUT specifies that the
file is to be opened for both input and output. ISEXCLLOCK, when added to
ISINOUT, indicates that the file is to be exclusively locked for your program.
Therefore, no other program can access the file while it is open.

Both indexes allow duplicate keys. Full compression of leading duplicate
characters, trailing spaces, and duplicate values is specified for the last name
index.
7-6 Sample Programs Using C-ISAM Files

Adding Additional Indexes
You can drop these indexes at any time and add them again later. This is an
appropriate practice when file insertions, deletions, or updates are a major
activity because extra indexes slow down these operations.

#include <isam.h>

#define SUCCESS 0

struct keydesc lnkey, skey;
int fdemploy, fdperform;

/* This program adds secondary indexes for the last name
field in the employee file, and the salary field in
the performance file. */

main()
{
int cc;
fdemploy = cc = isopen("employee", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(1);
}

/* Set up Last Name Key */
lnkey.k_flags = ISDUPS + COMPRESS;
lnkey.k_nparts = 1;
lnkey.k_part[0].kp_start = 4;
lnkey.k_part[0].kp_leng = 20;
lnkey.k_part[0].kp_type = CHARTYPE;

cc = isaddindex(fdemploy, &lnkey);
if (cc != SUCCESS)

{
printf("isaddindex error %d for employee lname key\n", iserrno);
exit(1);
Sample Programs Using C-ISAM Files 7-7

Adding Data
}
isclose(fdemploy);

fdperform = cc = isopen("perform", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for performance file\n", iserrno);
exit(1);
}

/* Set up Salary Key */
skey.k_flags = ISDUPS;
skey.k_nparts = 1;
skey.k_part[0].kp_start = 11;
skey.k_part[0].kp_leng = sizeof(double);
skey.k_part[0].kp_type = DOUBLETYPE;

cc = isaddindex(fdemploy, &skey);
if (cc != SUCCESS)

{
printf("isaddindex error %d for perform sal key\n", iserrno);
exit(1);
}

isclose(fdperform);
}

Figure 7-4 Adding Additional Indexes

Adding Data
Figure 7-5 shows a program that adds records to the employee file, and adds
the first record to the perform file for each employee. Both files are open for
output.

Both files use the ISAUTOLOCK locking option. When you add an employee
record to the file, that record is locked until you either add the next record or
close the file. Likewise, when you add a performance record, it is also locked
7-8 Sample Programs Using C-ISAM Files

Adding Data
until you add another record or close the file. The program locks the records
so that another program cannot access them until this program finishes with
both records.

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[85];
char perfrec[51];
char line[82];
long empnum;

struct keydesc key;
int fdemploy, fdperform;
int finished = FALSE;

/* This program adds a new employee record to the employee
file. It also adds that employee’s first employee
performance record to the performance file. */

main()
{
int cc;

fdemploy = cc = isopen("employee", ISAUTOLOCK+ ISOUTPUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(1);
}

fdperform = cc = isopen("perform", ISAUTOLOCK + ISOUTPUT);
if (cc < SUCCESS)

{
printf("isopen error %d for performance file\n", iserrno);
exit(1);
}

getemployee();
getperform();

while(!finished)
{
addemployee();
addperform();
getemployee();
getperform();
}

isclose(fdemploy);
isclose(fdperform);
}

getperform()
{
double new_salary;

if (empnum == 0)
{

Sample Programs Using C-ISAM Files 7-9

Adding Data
finished = TRUE;
return(0);
}

stlong(empnum, perfrec);

printf("Start Date: ");
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

ststring("g", perfrec+10, 1);

printf("Starting salary: ");
fgets(line, 80, stdin);
sscanf(line, "%lf", &new_salary);
stdbl(new_salary, perfrec+11);

printf("Title : ");
fgets(line, 80, stdin);
ststring(line, perfrec+19, 30);

printf("\n");
}
addemployee()
{
int cc;

cc = iswrite(fdemploy, emprec);
if (cc != SUCCESS)

{
printf("iswrite error %d for employee\n", iserrno);
isclose(fdemploy);
exit(1);
}

}
addperform()
{
int cc;

cc = iswrite(fdperform, perfrec);

if (cc != SUCCESS)
{
printf("iswrite error %d for performance\n", iserrno);
isclose(fdperform);
exit(1);
}

}

putnc(c,n)
char *c;
int n;
{
while (n--) putchar(*(c++));
}

getemployee()
{
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)

{
finished = TRUE;
return(0);
}

7-10 Sample Programs Using C-ISAM Files

Random Update
stlong(empnum, emprec);

printf("Last name: ");
fgets(line, 80, stdin);
ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
ststring(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
ststring(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
ststring(line, emprec+64, 20);

printf("\n");
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;

for (i = 1; i <= num && *src != ’0 && src != 0; i++)
/* don’t move carriage */

*dest++ = *src++; /* returns or nulls */
while (i++ <= num) /* pad remaining characters in blanks */

*dest++ = ’ ’;
}

Figure 7-5 Adding Records to C-ISAM Files

Random Update
The program in Figure 7-6 updates the fields in an employee record or
deletes the employee record and all performance records for that employee
from the file.

The program uses manual record locking. When the program reads an
employee record, it locks the record. If additional records are needed, the pro-
gram locks them as well. When the records are no longer needed, the locks
are released.
Sample Programs Using C-ISAM Files 7-11

Random Update
The performance records are located using isstart with only the Employee
Number part of the primary key. Note that you do not have to use isstart with
each isread if you use the entire key to locate a record.

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0
#define DELETE 1
#define UPDATE 2

char emprec[85];
char perfrec[51];
char line[82];
long empnum;

struct keydesc pkey;
int fdemploy, fdperform;
int finished = FALSE;

/* This program updates the employee file.
If the delete option is requested, all
performance records are removed along
with the employee record.

*/
main()
{
int cc;
int cmd;

fdemploy = cc = isopen("employee", ISMANULOCK + ISINOUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
fatal();
}

fdperform = cc = isopen("perform", ISMANULOCK + ISINOUT);
if (cc < SUCCESS)

{
printf("isopen error %d for performance file\n", iserrno);
fatal();
}

/* Set up key description structure for isstart */
pkey.k_flags = ISDUPS+DCOMPRESS;
pkey.k_nparts = 2;
pkey.k_part[0].kp_start = 0;
pkey.k_part[0].kp_leng = 4;
pkey.k_part[0].kp_type = LONGTYPE;
pkey.k_part[1].kp_start = 4;
pkey.k_part[1].kp_leng = 6;
pkey.k_part[1].kp_type = CHARTYPE;

cmd = getinstr();

while(!finished)
{
if (cmd == DELETE)

delrec();
7-12 Sample Programs Using C-ISAM Files

Random Update
else
{
getemployee();
updatemp();
}

cmd = getinstr();
}

isclose(fdemploy);
isclose(fdperform);
}
updatemp()
{
int cc;

cc = isrewrite(fdemploy, emprec);
if (cc != SUCCESS)

{
printf("isrewrite error %d for employee\n", iserrno);
fatal();
}

}

delrec()
{
int cc;

cc = isdelete(fdemploy,emprec);
if (cc != SUCCESS)

{
printf("isdelete error %d for performance\n", iserrno);
fatal();
}

cc = isstart(fdperform,&pkey,4,perfrec,ISEQUAL);
if (cc < SUCCESS) fatal();
cc = isread(fdperform,perfrec,ISCURR+ISLOCK);
if (cc < SUCCESS) fatal();

while (cc == SUCCESS)
{
cc = isdelcurr(fdperform);
if (cc < SUCCESS)

{
printf("isdelcurr error %d for perform\n", iserrno);
fatal();
}

cc = isstart(fdperform,&pkey,4,perfrec,ISEQUAL);
if (cc == SUCCESS)

cc = isread(fdperform,perfrec,ISCURR+ISLOCK);
}

if (iserrno != ENOREC && iserrno != EENDFILE)
{
printf("isread error %d for perform\n", iserrno);
fatal();
}

isrelease (fdemploy);
isrelease (fdperform);
}

showemployee()
{

printf("Employee number: %ld", ldlong(emprec));
Sample Programs Using C-ISAM Files 7-13

Random Update
printf("\nLast name: ");putnc(emprec+4, 20);
printf("\nFirst name: ");putnc(emprec+24, 20);
printf("\nAddress: ");putnc(emprec+44, 20);
printf("\nCity: ");putnc(emprec+64, 20);
printf("\n\n\n");
}

putnc(c,n)
char *c;
int n;
{
while (n--) putchar(*(c++));
}

getinstr()

{
int cc;
char instr[2];

tryagain:
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)

{
finished = TRUE;
return(0);
}

stlong(empnum, emprec);
stlong(empnum, perfrec);
cc = isread (fdemploy, emprec, ISEQUAL+ISLOCK);
if (cc < SUCCESS)

{
if (iserrno == ENOREC || iserrno == EENDFILE)

{
printf("Employee No. Not Found");
goto tryagain;
}

else

{
printf("isread error %d for employee file\n", iserrno);
fatal();
}

}
showemployee();
printf("Delete? (y/n): ");
fgets(line,80,stdin);
sscanf(line,"%1s",instr);
if (strcmp(instr,"y")==0)

return (DELETE);
else

{
printf("Update? (y/n): ");
fgets(line,80,stdin);
sscanf(line,"%1s",instr);
if (strcmp(instr,"y")==0)

return (UPDATE);
}

goto tryagain;
}

getemployee ()
7-14 Sample Programs Using C-ISAM Files

Sequential Access
{
int len;

printf("Last name: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
len = strlen(line);
if (len > 1)

ststring(line, emprec+64, 20);

printf("\n\n\n");
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;

for (i = 1; i <= num && *src != ’0 && src != 0; i++)
/* don’t move carriage */

*dest++ = *src++; /* returns or nulls */
while (i++ <= num) /* pad remaining characters in blanks */

*dest++ = ’ ’;
}

fatal()
{
isclose(fdemploy);
isclose(fdperform);
exit(1);
}

Figure 7-6 Random Update of C-ISAM Files

Sequential Access
The code in Figure 7-7 demonstrates how to read a file sequentially. In this
program, the employee file is read in order of the Last Name key.
Sample Programs Using C-ISAM Files 7-15

Sequential Access
The program uses isstart to change from the primary index to the Last Name
index and to position the file to the first key in the index. The program
retrieves the first record by calling isread with the mode ISCURR. The current
record is the record that isstart positions on, in this case, the record with the
first key in the index. Subsequent calls to isread use the ISNEXT mode to read
the next record in index order.

The function returns an error status in the global error variable iserrno with
a value of EENDFILE when all records are read.

#include <isam.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[85];

struct keydesc key;
int fdemploy, fdperform;
int eof = FALSE;

/* This program sequentially reads through the employee
file by employee number printing each record */

main()
{
int cc;

fdemploy = cc = isopen("employee", ISMANULOCK + ISINOUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file", iserrno);
exit(1);
}

/* Set File to Retrieve using Last Name Index */
key.k_flags = ISDUPS+COMPRESS;
key.k_nparts = 1;
key.k_part[0].kp_start = 4;
key.k_part[0].kp_leng = 20;
key.k_part[0].kp_type = CHARTYPE;
cc = isstart(fdemploy, &key, WHOLEKEY, emprec, ISFIRST);
if (cc != SUCCESS)

{
printf("isstart error %d", iserrno);
isclose(fdemploy);
exit(1);
}

getfirst();
while (!eof)

{
showemployee();
getnext();
}

isclose(fdemploy);
}

7-16 Sample Programs Using C-ISAM Files

Sequential Access
showemployee()
{
printf("Employee number: %ld", ldlong(emprec));
printf("\nLast name: ");putnc(emprec+4, 20);
printf("\nFirst name: ");putnc(emprec+24, 20);
printf("\nAddress: ");putnc(emprec+44, 20);
printf("\nCity: ");putnc(emprec+64, 20);
printf("\n\n\n");
}

putnc(c, n)
char *c;
int n;
{
while (n--) putchar(*(c++));
}

getfirst()
{
int cc;

if (cc = isread(fdemploy, emprec, ISFIRST))
{
switch(iserrno)

{
case EENDFILE : eof = TRUE;

break;
default :
{
printf("isread ISFIRST error %d \n", iserrno);
eof = TRUE;
return(1);
}

}
}

return(0);
}

getnext()
{
int cc;

if (cc = isread(fdemploy, emprec, ISNEXT))
{
switch(iserrno)

{
case EENDFILE : eof = TRUE;

break;
default :
{
printf("isread ISNEXT error %d \n", iserrno);
eof = TRUE;
return(1);
}

}
}

return(0);
}

Figure 7-7 Sequential Processing of a C-ISAM File
Sample Programs Using C-ISAM Files 7-17

Chaining
Chaining
The next program uses a chaining technique to locate the performance record
for an employee, by finding the highest value key for the employee in the
perform file. This technique finds the record directly, without reading other
performance records for the employee.

Figure 7-8 shows the logical order of records in the perform file. The primary
key is a composite of the Employee Number and the Review Date fields.

Emp. Review Job New New
 No. Date Rating Salary Title
1 790501 g 20,000 PA
1 800106 g 23,000 PA
1 800505 f 24,725 PA
2 760301 g 18,000 JP
2 760904 g 20,700 PA
2 770305 g 23,805 PA
2 770902 g 27,376 SPA
3 800420 f 18,000 JP
4 800420 f 18,000 JP

Figure 7-8 Sample Performance Data

The program in Figure 7-9 adds a new performance record to the perform
file. The program calculates the new salary as a percentage raise, based upon
the employee’s performance. To do this, the program must find the most
recent performance record.

The program finds the performance record by setting the search key to the
composite of the employee number and 999999, the highest value that can be
stored in the Review Date field. The isstart function uses this key and the
ISGTEQ mode to position the file to the record immediately after the last per-
formance record for the employee. (There should not be a review date of
999999.) The program obtains the most recent performance record by calling
isread with ISPREV mode to return the record preceding the one found by
isstart.

To obtain the most recent record for Employee 1 in Figure 7-8, you must per-
form the following steps:

1. Call isstart with the ISGTEQ mode and a key containing Employee 1 and
Review Date 999999. The isstart function positions at Employee 2,
7-18 Sample Programs Using C-ISAM Files

Chaining
Review Date 760301, since this is the next record with a key greater than
the one requested (and no key equals the one requested).

2. Call isread with the ISPREV mode, which reads the record with the key
preceding the one found by isstart.

This chaining technique finds the most recent performance record for
Employee 1.

Finding a record using the chaining technique is faster than finding the first
performance record then finding subsequent records with the ISNEXT mode
in the isread function call.

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char perfrec[51];
char operfrec[51];
char line[81];
long empnum;
double new_salary, old_salary;

struct dictinfo info;
struct keydesc key;
int fdemploy, fdperform;
int finished = FALSE;
/* This program interactively reads data from stdin and adds

performance records to the "perform" file. Depending on
the rating given the employee on job performance, the
following salary increases are placed in the salary field
of the performance file.

rating percent increase
------ ----------------
p (poor) 0.0 %
f (fair) 4.5 %
g (good) 7.5 %

*/

main()
{
int cc;

fdperform = cc = isopen("perform", ISINOUT+ISAUTOLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for performance file\n", iserrno);
exit(1);
}

/* Set up key for isstart on performance file */
key.k_flags = ISDUPS+DCOMPRESS;
key.k_nparts = 2;
key.k_part[0].kp_start = 0;
key.k_part[0].kp_leng = 4;
Sample Programs Using C-ISAM Files 7-19

Chaining
key.k_part[0].kp_type = LONGTYPE;
key.k_part[1].kp_start = 4;
key.k_part[1].kp_leng = 6;
key.k_part[1].kp_type = CHARTYPE;

isindexinfo (fdperform,&info,0); /* check that records exist */
if (info.di_nrecords==0)

{
printf ("No records to update\n");
exit (1);
}

getperformance();
while (!finished)

{
if (get_old_salary())

{
finished = TRUE;
}

else
{
addperformance();
getperformance();
}

}
isclose(fdperform);
}

addperformance()
{
int cc;

cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)

{
printf("iswrite error %d\n", iserrno);
isclose(fdperform);
exit(1);
}

}

getperformance()
{
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)

{
finished = TRUE;
return(0);
}

stlong(empnum, perfrec);

printf("Review Date: ");
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

printf("Job rating (p = poor, f = fair, g = good): ");
fgets(line, 80, stdin);
ststring(line, perfrec+10, 1);

new_salary = 0.0;
stdbl(new_salary, perfrec+11);

printf("Title After Review: ");
fgets(line, 80, stdin);
7-20 Sample Programs Using C-ISAM Files

Chaining
ststring(line, perfrec+19, 30);

printf("\n\n\n");
}

get_old_salary()
{
int mode, cc;

bytecpy(perfrec, operfrec, 4); /* get employee id no. */
bytecpy("999999", operfrec+4, 6); /* largest possible date */

cc = isstart(fdperform, &key, WHOLEKEY, operfrec, ISGTEQ);
if (cc != SUCCESS)

{
switch(iserrno)

{
case ENOREC:
case EENDFILE:

mode = ISLAST;
break;

default:
printf("isstart error %d ", iserrno);
return(1);

}
}

else
{
mode = ISPREV;
}

cc = isread(fdperform, operfrec, mode);
if (cc != SUCCESS)

{
if (iserrno == EENDFILE)

{
printf("No performance record for employee number %ld.\n",

ldlong(perfrec));
return(1);
}

else
{
printf("isread error %d in get_old_salary\n", iserrno);
return(1);
}

}
if (cmpnbytes(perfrec, operfrec, 4))

{
printf("No performance record for employee number %ld.\n",

ldlong(perfrec));
return(1);
}

else
{
printf("\nPerformance record found.\n\n");
old_salary = new_salary = lddbl(operfrec+11);
printf("Rating: ");

switch(*(perfrec+10))
{
case ’p’:

printf("poor\n");
break;

case ’f’:
printf("fair\n");
Sample Programs Using C-ISAM Files 7-21

Chaining
new_salary *= 1.045;
break;

case ’g’:
printf("good\n");
new_salary *= 1.075;
break;

}
stdbl(new_salary, perfrec+11);
printf("Old salary was %f\n", old_salary);
printf("New salary is %f\n", new_salary);
return(0);
}

}

bytecpy(src,dest,n)
register char *src;
register char *dest;
register int n;
{
while (n-- > 0)

{
*dest++ = *src++;
}

}

cmpnbytes(byte1, byte2, n)
register char *byte1, *byte2;
register int n;
{
if (n <= 0) return(0);
while (*byte1 == *byte2)

{
if (--n == 0) return(0);
++byte1;
++byte2;
}

return(((*byte1 & BYTEMASK) < (*byte2 & BYTEMASK)) ? -1 : 1);
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;
for (i = 1; i <= num && *src != ’0 && src != 0; i++)

/* don’t move carriage */
*dest++ = *src++; /* returns or nulls */

while (i++ <= num) /* pad remaining characters in blanks */
*dest++ = ’ ’;

}

Figure 7-9 Chaining to the Last Record in a List
7-22 Sample Programs Using C-ISAM Files

Using Transactions
Using Transactions
Figure 7-10 shows a sample program that has been modified to define
C-ISAM operations as transactions. (Figure 7-5 shows the non-transaction
version of this program.) The program adds a record to the employee file and
then adds a record to the perform file. These operations define a transaction
that is repeated until the user inputs a zero for the Employee Number.

The transaction operates on two C-ISAM files. If the transaction succeeds, a
record is added to each file. If the transaction fails, any change to either file is
rolled back so that neither file is modified.

The functions isopen and isclose are called within the transaction to identify
the files involved. For isrollback to reverse changes to the file, ISTRANS is
added to the mode argument in the isopen function call.

Only minimal error checking is implemented in the sample program. A pro-
duction program should check each function return code for an error value,
especially calls to iscommit and isrollback.

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define LOGNAME "recovery.log"

char emprec[85];
char perfrec[51];
char line[82];
long empnum;
int fdemploy, fdperform;

extern int errno;

/* This program adds a new employee record to the employee
file. It also adds that employee’s first employee
performance record to the performance file.

*/

main()
{
int cc;
int cc1;
int cc2;
if (access(LOGNAME, 0) == -1)/* log file exist? */

if ((cc = creat(LOGNAME, 0660)) == -1)
{
printf("Cannot create log file \"%s\", system error %d.\n"LOGNAME, errno);
iscleanup();
exit(1);
}

/* open log file */
cc = islogopen (LOGNAME);
if (cc < SUCCESS)

{
printf ("Cannot open log file, islogopen error %d\n", iserrno);
iscleanup();
Sample Programs Using C-ISAM Files 7-23

Using Transactions
exit (1);
}

while(!getemployee())
{

/* Transaction begins after terminal input has been collected.
Either both employee and performance record will be added
or neither will be added. */

/* Files must be opened and closed within the transaction */

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();

break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

}

/* Finished */
islogclose();
iscleanup();
exit (0);
}

getperform()
{
double new_salary;

printf("Start Date: ");
fgets(line, 80, stdin);
ststring(line, perfrec+4, 6);

ststring("g", perfrec+10, 1);

printf("Starting salary: ");
fgets(line, 80, stdin);
sscanf(line, "%lf", &new_salary);
stdbl(new_salary, perfrec+11);

printf("Title : ");
7-24 Sample Programs Using C-ISAM Files

Using Transactions
fgets(line, 80, stdin);
ststring(line, perfrec+19, 30);

printf("\n\n\n");
}

addemployee()
{
int cc;
cc = iswrite(fdemploy, emprec);
if (cc != SUCCESS)

{
printf("iswrite error %d for employee\n", iserrno);
}

return (cc);
}

addperform()
{
int cc;
cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)

{
printf("iswrite error %d for performance\n", iserrno);
}

return (cc);
}

getemployee()
{
printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);

if (empnum == 0)
return(1);

stlong(empnum, emprec);

printf("Last name: ");
fgets(line, 80, stdin);
ststring(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
ststring(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
ststring(line, emprec+44, 20);
Sample Programs Using C-ISAM Files 7-25

Summary
printf("City: ");
fgets(line, 80, stdin);
ststring(line, emprec+64, 20);

getperform();
printf("\n\n\n");

return (0);
}

ststring(src, dest, num)
/* move NUM sequential characters from SRC to DEST */
char *src;
char *dest;
int num;
{
int i;

for (i = 1; i <= num && *src != ’0 && src != 0; i++)
/* don’t move carriage */

*dest++ = *src++; /* returns or nulls */
while (i++ <= num) /* pad remaining characters in blanks */
*dest++ = ’ ’;

}

Figure 7-10 Adding Records Inside a Transaction

Summary
The chapter introduces seven example programs that show you how to per-
form the following tasks:

• Create C-ISAM files

• Add indexes to C-ISAM files

• Add records to files

• Retrieve, update, and delete specific records

• Sequentially process a C-ISAM file

• Find the end of a subset of records (a chain) in the C-ISAM file

• Implement transactions in an existing program
7-26 Sample Programs Using C-ISAM Files

Chapter
8

Call Formats and
Descriptions
Overview 3

Functions for C-ISAM File Manipulation 6
ISADDINDEX 8
ISAUDIT 10
ISBEGIN 13
ISBUILD 15
ISCLEANUP 18
ISCLOSE 19
ISCLUSTER 20
ISCOMMIT 22
ISDELCURR 24
ISDELETE 25
ISDELINDEX 27
ISDELREC 29
ISERASE 31
ISFLUSH 32
ISINDEXINFO 33
ISLOCK 36
ISLOGCLOSE 38
ISLOGOPEN 39
ISOPEN 40
ISREAD 42
ISRECOVER 46
ISRELEASE 47
ISRENAME 48
ISREWCURR 50
ISREWREC 52
ISREWRITE 54
ISROLLBACK 56

ISSETUNIQUE 58
ISSTART 60
ISUNIQUEID 63
ISUNLOCK 64
ISWRCURR 65
ISWRITE 67

Format-Conversion and Manipulation Functions 69
LDCHAR 70
LDDBL 71
LDDBLNULL 72
LDDECIMAL 73
LDFLOAT 75
LDFLTNULL 76
LDINT 77
LDLONG 78
STCHAR 79
STDBL 80
STDBLNULL 81
STDECIMAL 82
STFLOAT 84
STFLTNULL 85
STINT 86
STLONG 87
DECCVASC 89
DECTOASC 91
DECCVINT 93
DECTOINT 94
DECCVLONG 95
DECTOLONG 97
DECCVFLT 98
DECTOFLT 99
DECCVDBL 100
DECTODBL 101
DECADD, DECSUB, DECMUL, and DECDIV 102
DECCMP 104
DECCOPY 105
DECECVT and DECFCVT 106

Summary 108
8-2 Call Formats and Descriptions

Overview
This chapter describes all the functions that are available as part of C-ISAM.
They are divided into two major groupings:

• File manipulation functions

• Format-conversion and manipulation functions

The file manipulation functions allow you to perform the following opera-
tions:

• Create and destroy files and indexes

• Access and modify records within files

• Lock records or files

• Implement transactions

• Perform other functions associated with maintaining C-ISAM files

The following routines allow you to manipulate files and indexes:

isbuild creates a C-ISAM file.

isopen opens a C-ISAM file.

isclose closes a C-ISAM file.

iscleanup closes all of the C-ISAM files opened by the process.

iscluster puts the records of a file in the physical order defined by a
key.

isrename changes the name of a C-ISAM file.

iserase removes a C-ISAM file.

isaddindex adds an index to a file.

isdelindex removes an index from a file.

The following functions allow you to manipulate C-ISAM records:

isstart chooses an index or record for retrieval.

isread reads a record from a C-ISAM file.
Call Formats and Descriptions 8-3

Overview
iswrite writes a record to a C-ISAM file.

isrewrite updates a record in a C-ISAM file.

iswrcurr writes a record to a C-ISAM file and makes it the current
record.

isrewcurr rewrites the current record.

isrewrec rewrites the record identified by record number.

isdelete deletes a C-ISAM record.

isdelcurr deletes the current record.

isdelrec deletes the record identified by record number.

The following functions allow you to implement locking:

islock sets a lock on a C-ISAM file.

isunlock removes a lock on a C-ISAM file.

isrelease removes locks on records.

See isread later in this chapter for information about locking individual
records within a C-ISAM file.

The following functions allow you to implement transactions:

isbegin begins a transaction.

iscommit completes a transaction.

isrollback cancels a transaction.

islogopen opens a transaction log file.

islogclose closes a transaction log file.

isrecover recovers C-ISAM files.

The following additional functions are also available with C-ISAM:

isaudit maintains an audit trail.

isuniqueid determines the last unique ID for a record.

issetunique sets the starting unique ID.

isindexinfo determines the characteristics of a file and its indexes.

isflush forces output to a C-ISAM file.

The following functions convert between machine-dependent representation
of numbers and the C-ISAM counterparts:

ldchar copies a C-ISAM character string into a C language string.

stchar copies a C language string into a C-ISAM format string.
8-4 Call Formats and Descriptions

Overview
ldint converts a C-ISAM integer to a machine-dependent integer.

stint converts a machine-dependent integer to a C-ISAM integer.

ldlong converts a C-ISAM long integer to a machine-dependent
long integer.

stlong converts a machine-dependent long integer to a C-ISAM
long integer.

ldfloat converts a C-ISAM floating-point number to a machine-
dependent floating-point number.

stfloat converts a machine-dependent floating-point number to a
C-ISAM floating-point number.

ldfltnull converts a C-ISAM floating-point number to a machine-
dependent floating-point number and checks if it is null.

stfltnull converts a machine-dependent floating-point number to a
C-ISAM floating-point number and checks if it is null.

lddbl converts a C-ISAM double-precision number to a machine-
dependent double-precision number.

stdbl converts a machine-dependent double-precision number
to a C-ISAM double-precision number.

lddblnull converts a C-ISAM double-precision number to a machine-
dependent double-precision number and checks if it is null.

stdblnull converts a machine-dependent double-precision number
to a C-ISAM double-precision number and checks if it is
null.

The following routines allow you to manipulate the C-ISAM DECIMALTYPE
data type.

lddecimal loads a DECIMALTYPE number from a data record into its
internal structure.

stdecimal stores a DECIMALTYPE number in a data record.

deccvasc converts a character string into a DECIMALTYPE number.

dectoasc converts a DECIMALTYPE number into a character string.

deccvint converts a machine-dependent integer into a
DECIMALTYPE number.

dectoint converts a DECIMALTYPE number into a machine-depen-
dent integer.

deccvlong converts a machine-dependent long integer into a
DECIMALTYPE number.
Call Formats and Descriptions 8-5

Overview
dectolong converts a DECIMALTYPE number into a machine-depen-
dent long integer.

deccvflt converts a machine-dependent floating-point number into
a DECIMALTYPE number.

dectoflt converts a DECIMALTYPE number into a machine-depen-
dent floating-point number.

deccvdbl converts a machine-dependent double precision number
into a DECIMALTYPE number.

dectodbl converts a DECIMALTYPE number into a machine-depen-
dent double-precision number.

decadd adds two DECIMALTYPE numbers.

decsub subtracts two DECIMALTYPE numbers.

decmul multiplies two DECIMALTYPE numbers.

decdiv divides two DECIMALTYPE numbers.

deccmp compares two DECIMALTYPE numbers.

deccopy copies DECIMALTYPE numbers.

dececvt is the DECIMALTYPE equivalent of UNIX ecvt(3).

decfcvt is the DECIMALTYPE equivalent of UNIX fcvt(3).
8-6 Call Formats and Descriptions

Functions for C-ISAM File Manipulation
Functions for C-ISAM File Manipulation
This section describes the following functions in alphabetical order:

ISADDINDEX ISLOGOPEN

ISAUDIT ISOPEN

ISBEGIN ISREAD

ISBUILD ISRECOVER

ISCLEANUP ISRELEASE

ISCLOSE ISRENAME

ISCLUSTER ISREWCURR

ISCOMMIT ISREWREC

ISDELCURR ISREWRITE

ISDELETE ISROLLBACK

ISDELINDEX ISSETUNIQUE

ISDELREC ISSTART

ISERASE ISUNIQUEID

ISFLUSH ISUNLOCK

ISINDEXINFO ISWRCURR

ISLOCK ISWRITE

ISLOGCLOSE
Call Formats and Descriptions 8-7

ISADDINDEX
ISADDINDEX

Overview

Use isaddindex to add an index to a C-ISAM file.

Syntax

isaddindex(isfd, keydesc)
 int isfd;
 struct keydesc *keydesc;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

keydesc is a pointer to a key description structure.

Notes

1. The C-ISAM file must be opened for exclusive access (ISEXCLLOCK) and it
must be open for both input and output (ISINOUT).

2. There is no limit to the number of indexes you can add.

3. You can only define indexes on the fixed-length portion of a record. If the
character position indicated by keydesc exceeds the minimum record size
defined for the file, isaddindex fails. (See isbuild on page 15 for more
information.)

4. The maximum number of parts that you can define for an index is
NPARTS.

5. The isam.h file contains the definition of NPARTS. (Usually, NPARTS
equals 8.)

6. The maximum key size is MAXKEYSIZE. The isam.h file contains the def-
inition of MAXKEYSIZE. (Usually, it is 120 bytes.)

7. The isaddindex call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-8 Call Formats and Descriptions

ISADDINDEX
Example

#include <isam.h>
 struct keydesc nkey;
 .
 .
 .
 nkey.k_flags = ISDUPS;
 nkey.k_nparts = 2;
 nkey.k_part[0].kp_start = 4;
 nkey.k_part[0].kp_leng = 10;
 nkey.k_part[0].kp_type = CHARTYPE;
 nkey.k_part[1].kp_start = 24;
 nkey.k_part[1].kp_leng = 1;
 nkey.k_part[1].kp_type = CHARTYPE;
 .
 .
 .
 if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
 {
 if (isaddindex(fd,&nkey) < 0)
 {
 printf ("isaddindex error %d",iserrno);
 exit (1);
 }
 .
 .
 .

}

Call Formats and Descriptions 8-9

ISAUDIT
ISAUDIT

Overview

Use isaudit to perform operations that involve an audit trail file. You can start
or stop recording changes to a C-ISAM file, or set the name of an audit trail
file. You can also determine whether the audit trail is on or off.

Syntax

isaudit(isfd, filename, mode)
int isfd;
char *filename;
int mode;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

filename is a pointer to the filename or a pointer to a string to retrieve
the status of the audit trail.

mode is one of the following parameters:

AUDSTART starts recording to the audit trail.

AUDSTOP stops recording to the audit trail.

AUDSETNAME specifies the audit trail filename.

AUDGETNAME returns the audit trail filename.

AUDINFO returns the status of the audit trail.

Notes

1. When the mode equals AUDINFO, the function sets the first byte of the
filename parameter (filename[0]) to zero (ASCII null) if the audit trail is off
or to one if the audit trail is on.

2. When you set the audit trail filename, C-ISAM retains the name in the
index (.idx) file.

3. When you stop the audit trail, it is not erased. Further changes to the
C-ISAM file, however, are not recorded.

4. When you start the audit trail and the audit trail file already exists,
changes to the C-ISAM file are appended to the audit trail file.
8-10 Call Formats and Descriptions

ISAUDIT
5. You can create a new audit trail file, either by removing the old file or by
setting a new filename.

6. The audit trail filename may be any operating system filename or
pathname.

7. An audit trail record contains a header and a copy of the data record. The
header is defined in isam.h and is described in Chapter 6, ‘‘Additional
Facilities.’’

8. The isaudit call cannot be rolled back within a transaction. It can be recov-
ered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-11

ISAUDIT
Example

#include <isam.h>
char fname[24];
.
.
.
fd = isopen("employee",ISINOUT+ISMANULOCK);
.
.
.
/* Get audit trail filename */
isaudit(fd,fname,AUDGETNAME);
.
.
.
/* Set audit trail filename */
isaudit(fd,"employee.aud",AUDSETNAME);
.
.
.
/* Test status of audit trail and

start it if necessary */
isaudit(fd,fname,AUDINFO);
cc = strncmp(&fname[0],0,1); /* Compare with 0 */
if (cc==0) /* audit trail is off */

isaudit(fd,fname,AUDSTART); /* start */
.
.
.
/* Stop audit trail */
isaudit(fd,fname,AUDSTOP);
8-12 Call Formats and Descriptions

ISBEGIN
ISBEGIN

Overview

Use isbegin to define the beginning of the transaction.

Syntax

isbegin()

Notes

1. If you are using a log file, you must call isbegin before you open the file
for a read-only (ISINPUT) operation.

2. You must open a log file with islogopen with the name of the log file as
the argument before you call the first isbegin in a program.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-13

ISBEGIN
Example

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();

break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

8-14 Call Formats and Descriptions

ISBUILD
ISBUILD

Overview

Use isbuild to create a C-ISAM file.

Syntax

isbuild(filename, reclen, keydesc, mode)
 char *filename;
 int reclen;
 struct keydesc *keydesc;
 int mode;

Explanation

filename is the name of the file without an extension.

reclen is the length of the record in bytes. If the record is to have a
variable-length portion, reclen is the maximum length of the
record. reclen is a number between 1 and 32,511, inclusive.

keydesc is a pointer to a key description structure that defines the pri-
mary key.

mode is a combination of an access mode parameter, a locking
mode parameter and, optionally, a length or logging param-
eter. You add an access mode parameter to a lock mode
parameter to specify the mode. Use one of the following
access mode parameters:

ISINPUT opens the file for input.

ISOUTPUT opens the file for output.

ISINOUT opens the file for both input and output.

Use one of the following locking mode parameters:

ISEXCLLOCK specifies an exclusive file lock.

ISMANULOCK specifies manual file or record locking, or no
locking.

ISAUTOLOCK specifies automatic record locking.

You can also specify the following parameters:
Call Formats and Descriptions 8-15

ISBUILD
ISVARLEN indicates that the record contains a variable-
length portion.

ISFIXLEN indicates that the record does not contain a
variable-length portion.

ISTRANS enables isrollback to reverse changes to
C-ISAM files within a transaction.

ISNOLOG specifies that this call and subsequent calls
on this file are not logged.

Notes

1. If you do not use ISFIXLEN or ISVARLEN, the record length defaults to
fixed length.

2. If you use ISVARLEN, you must give isreclen the minimum number of
bytes in the record. If the record has a fixed-length portion, isreclen con-
tains the length of the fixed-length portion. The variable-length portion of
the record is at the end of the record.

3. The isbuild function creates two operating system files with the names
filename.dat and filename.idx. (If your version of C-ISAM does not use the
operating system call fcntl(), a third file, filename.lok, is also created.)
These files are treated together as one logical C-ISAM file.

4. The filename parameter should contain a null-terminated character string
that is at least four characters shorter than the longest legal operating sys-
tem filename.

5. The function returns an integer file descriptor that identifies the file.

6. The file is left open with the access and locking modes that are set in the
mode parameter.

7. The keydesc parameter specifies the structure of the primary index. You
can set k_nparts = 0, which means that no primary key actually exists and
sequential processing takes place in record number (physical) sequence.

8. You can add indexes later by using isaddindex.

9. If you have opened a transaction log prior to building the new file, and
you want to recover the new file in case of a system failure, you must pre-
cede the isbuild call with an isbegin call.

10. The isbuild function cannot be rolled back.

11. If you have opened a transaction log prior to building the new file and
you do not wish to recover this new file, use the ISNOLOG mode to pre-
vent logging the isbuild and subsequent C-ISAM calls on the file. In this
case, be sure that all future isopen calls for this file also specify ISNOLOG.
8-16 Call Formats and Descriptions

ISBUILD
Return Codes

-1 Error; iserrno contains the error code

>=0 File descriptor

Example

#include <isam.h>
 struct keydesc key;
 .
 .
 .
 key.k_flags = ISNODUPS;
 key.k_nparts = 1;
 key.k_part[0].kp_start = 0;
 key.k_part[0].kp_leng = LONGSIZE;
 key.k_part[0].kp_type = LONGTYPE;
 .
 .
 .
if((fd=isbuild("employee",84,&key,ISINOUT+ISEXCLLOCK))<0)
 {
 printf ("isbuild error %d",iserrno);
 exit (1);
 }
/*corresponding call for a variable-length record*/
/* first set isreclen to fixed length*/
isreclen = 84
if((fd=isbuild("v_employee", 1084, &key,

ISINOUT+ISEXCLOCK+ISVARLEN)) <0
{
 printf ("isbuild error %d",iserrno);
 exit (1);
}

Call Formats and Descriptions 8-17

ISCLEANUP
ISCLEANUP

Overview

Use iscleanup to close all of the C-ISAM files opened by your program.

Syntax

iscleanup()

Note

You should make it standard practice to call iscleanup before exiting a
C-ISAM program.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

cc = iscleanup();
8-18 Call Formats and Descriptions

ISCLOSE
ISCLOSE

Overview

Use isclose to close a C-ISAM file.

Syntax

isclose(isfd)
int isfd;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

Note

The program releases any locks it holds.

Caution: It is extremely important to close C-ISAM files after processing has fin-
ished, especially on operating systems without file-locking system calls. Failure to
close C-ISAM files using the isclose (or iscleanup) function leaves the files locked
on systems without these system calls.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

cc = isclose(fd);
Call Formats and Descriptions 8-19

ISCLUSTER
ISCLUSTER

Overview

Use iscluster to change the physical order of a C-ISAM file to key sequence.

Syntax

iscluster(isfd, keydesc)
int isfd;
struct keydesc *keydesc;

Explanation
isfd is the file descriptor of the file that you want to modify.

keydesc is a pointer to the key description structure that specifies the
new physical order for the file.

Notes

1. The C-ISAM file must be opened for exclusive access.

2. The function copies the records of the file to a new file. The records in the
new file are physically in the order defined by the key.

3. After successfully copying the file, the function removes the original file,
renames the new file to the old filename, and leaves the file open for
processing.

4. The iscluster function returns a new file descriptor that must be used
with the new file.

5. The function re-creates all indexes.

6. Any index can be used to specify the physical order of the file.

7. Addition or deletion of records changes the physical order of records in
the file, so that the effect of clustering can be lost over an extended period
of time.

8. The iscluster call cannot be rolled back within a transaction. It can be
recovered, however.

9. The C-ISAM file cannot have an audit trail at the time you use the
function.
8-20 Call Formats and Descriptions

ISCLUSTER
Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <isam.h>
struct keydesc nkey;
.
.
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
.
.
.
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
{

if ((newfd=iscluster(fd,&nkey)) < 0)
{
printf ("iscluster error %d",iserrno);
exit (1);
}

/* file is now open and in physical order
by name */
fd = newfd;

.

.

Call Formats and Descriptions 8-21

ISCOMMIT
ISCOMMIT

Overview

Use iscommit to end a transaction and release all locks.

Syntax

iscommit()

Notes

1. All changes to the C-ISAM files within the transaction occur as the various
calls are made. iscommit marks the transaction as completed in the log
file so that the changes are rolled forward when the file must be
recovered.

2. The function releases any locks held by the transaction.

3. Calling iscommit without a preceding isbegin causes an error.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-22 Call Formats and Descriptions

ISCOMMIT
Example

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();

break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

Call Formats and Descriptions 8-23

ISDELCURR
ISDELCURR

Overview

Use isdelcurr to delete the current record from the C-ISAM file.

Syntax

isdelcurr(isfd)
int isfd;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

Notes

1. The function removes the key from each existing index.

2. This call is useful when, for example, you want to delete the most recent
record read with isread.

3. The isrecnum global variable is set to the record number of the deleted
record.

4. The current record is undefined since it points to space that contained the
deleted record.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

cc = isdelcurr(fd);
8-24 Call Formats and Descriptions

ISDELETE
ISDELETE

Overview

Use isdelete to delete a record using the primary key.

Syntax

isdelete(isfd, record)
int isfd;
char *record;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

record contains a key value in the position defined for the primary
key.

Notes

1. The isdelete function uses a unique primary index to find the record that
you want to delete. You must have defined a unique primary index when
you created the file.

2. You cannot use this function with files that are created with INFOR-
MIX-4GL, INFORMIX-SQL, or an embedded language, such as
INFORMIX-ESQL/C since the C-ISAM files that constitute SQL databases
do not contain primary indexes. Use isdelcurr instead.

3. If the primary index is not unique, use isread to find the record and isdel-
curr to delete it.

4. The function removes the key of the record from each index.

5. The isdelete function does not change the current record.

6. The isdelete function sets isrecnum to the record number of the deleted
record.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-25

ISDELETE
Example

char emprec[85];
int fd;
int cc;
.
.
.
/* Set up key to delete Employee No. 101 */
stlong(101L,&emprec[0]);

cc = isdelete(fd,emprec);
8-26 Call Formats and Descriptions

ISDELINDEX
ISDELINDEX

Overview

Use isdelindex to remove an existing index.

Syntax

isdelindex(isfd, keydesc)
int isfd;
struct keydesc *keydesc;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

keydesc is a pointer to a key description structure.

Notes

1. You can use isdelindex to delete any index except the primary index.

2. You must open the C-ISAM file for exclusive access.

3. The key description structure identifies the index you want to delete.

4. The isdelindex call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-27

ISDELINDEX
Example

#include <isam.h>
struct keydesc nkey;
.
.
.
nkey.k_flags = ISDUPS;
nkey.k_nparts = 2;
nkey.k_part[0].kp_start = 4;
nkey.k_part[0].kp_leng = 10;
nkey.k_part[0].kp_type = CHARTYPE;
nkey.k_part[1].kp_start = 24;
nkey.k_part[1].kp_leng = 1;
nkey.k_part[1].kp_type = CHARTYPE;
.
.
.
if ((fd=isopen("employee",ISEXCLLOCK+ISINOUT)) >= 0)
{

if (isdelindex(fd,&nkey) < 0)
{
printf ("isdelindex error %d",iserrno);
exit (1);
}

}

8-28 Call Formats and Descriptions

ISDELREC
ISDELREC

Overview

Use isdelrec to delete a record using the record number.

Syntax

isdelrec(isfd, recnum)
int isfd;
long recnum;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

recnum is the record number of the data file record.

Notes

1. The isdelrec function uses the record number to find the record you want
to delete.

2. Use this call if you know the record number of the record. You know the
record number, for example, if you save the value of isrecnum when you
find the record.

3. The function call removes the key from each index.

4. The isdelrec function does not change the current record position.

5. The isrecnum global variable is set to the record number of the deleted
record.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-29

ISDELREC
Example

Use the following syntax to delete record 100:

cc = isdelrec(fd,100L);
8-30 Call Formats and Descriptions

ISERASE
ISERASE

Overview

Use iserase to remove the operating system files comprising the C-ISAM file.

Syntax

iserase(filename)
char *filename;

Explanation
filename is the C-ISAM file you want to delete.

Notes

1. Do not use a filename extension with the filename argument.

2. The function deletes filename.idx and filename.dat (and filename.lok and
the audit trail file, if they exist).

3. You must close the file that you want to delete before you call iserase.

4. The iserase call cannot be rolled back within a transaction. It can be recov-
ered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

iserase ("personnel");
Call Formats and Descriptions 8-31

ISFLUSH
ISFLUSH

Overview

Use isflush to immediately flush any buffered index pages to the operating
system.

Syntax

isflush(isfd)
int isfd;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

Notes

1. Ordinarily, C-ISAM flushes data to the operating system after each func-
tion call.

2. Data is not immediately written to the operating system on single-user
systems where the operating system does not provide a locking facility,
nor for C-ISAM files opened for exclusive access. Periodic calls to isflush
protect you against substantial loss of data during a system crash.

3. Use isflush only onfiles that have been opened with ISOUTPUT or
ISINOUT.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

isflush(fd);
8-32 Call Formats and Descriptions

ISINDEXINFO
ISINDEXINFO

Overview

Use isindexinfo to determine information about the structure and indexes of
a C-ISAM file.

Syntax

isindexinfo(isfd, buffer, number)
 int isfd;
 struct keydesc *buffer; /** buffer may be a pointer to a*/

/** dictinfo structure instead. */
 int number;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

buffer is a pointer to a structure.

number is either an index number or zero.

Notes

1. To retrieve information about a specific index, you must provide the
index number as the number argument. You use a pointer to a keydesc
structure to receive the information.

2. You get general information, including the number of indexes, index
node size, and data record size, when you call isindexinfo with number
set to zero and with a buffer of structure type dictinfo.

3. Indexes have numbers, starting with 1. The primary index is always
index 1.

4. As indexes are added and deleted, the number of a particular index can
change. To ensure review of all indexes, loop over the number of indexes
indicated in dictinfo.
Call Formats and Descriptions 8-33

ISINDEXINFO
5. If the file has variable-length records, isindexinfo stores the minimum
record length (that is, the length of the fixed-length portion) in the global
variable isreclen.

In addition, if the file has variable-length records, the di_nkeys and
di_recsize variables pointed to by buffer contain information specific to
the variable-length records as follows:

di_nkeys If the file supports variable-length records, the significant bit
is set. The remaining bits indicate the number of indexes
defined for the file, as it does with fixed-length records.

di_recsize This field contains the maximum record size in bytes.

See “Determining Index Structures” on page 2-11 for more information
on the dictinfo structure.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Examples

To get general information about the C-ISAM file, call isindexinfo as follows:

#include <isam.h>
 struct dictinfo info;
 .
 .
 .
 fd = isopen ("employee",ISINPUT+ISEXCLLOCK);
 isindexinfo (fd,&info,0);
 printf ("\nRecord size in bytes=%d",info.di_recsize);
 printf ("\nNumber of records in the file=%d",
 info.di_nrecords);
 isclose (fd);
 exit (0);
8-34 Call Formats and Descriptions

ISINDEXINFO
To get information about each index, call isindexinfo as follows:

#include <isam.h>
 struct dictinfo info;
 struct keydesc kdesc;
 .
 .
 .
 /* get number of keys */
 isindexinfo (fd,&info,0);
/* Mask off significant bit to leave number of
* indexes defined for the file */

 numkeys = info.di_nkeys & 0x7fff;
 while (numkeys > 0)

 {
 /* get structure and decrement index number */
 isindexinfo (fd,&kdesc,numkeys--);
 .
 .
 .
 }
Call Formats and Descriptions 8-35

ISLOCK
ISLOCK

Overview

Use islock to lock the entire C-ISAM file.

Syntax

islock(isfd)
int isfd;

Explanation
isfd is the file descriptor of the file you want to lock that is

returned by isopen or isbuild of the file you want to lock.

Notes

1. You must open the file with the ISMANULOCK mode.

2. You can release the lock with isunlock.

3. Other programs can read records but they cannot update records.

4. Other programs cannot lock the same file until you call isunlock.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-36 Call Formats and Descriptions

ISLOCK
Example

fd = isopen("employee", ISMANULOCK+ISINOUT);

/* file is unlocked until explicitly locked with islock */
.
.
.
islock(fd); /* file is locked at this point */

/* other programs can read employee records but all
other operations on the file are prevented */

.

.

.
isunlock(fd); /* file is unlocked here */
Call Formats and Descriptions 8-37

ISLOGCLOSE
ISLOGCLOSE

Overview

Use islogclose to close the transaction log file.

Syntax

islogclose()

Note

Subsequent C-ISAM function calls do not record anything in the transaction
log file.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

islogclose();
8-38 Call Formats and Descriptions

ISLOGOPEN
ISLOGOPEN

Overview

Use islogopen to open the transaction log file. All subsequent C-ISAM calls
record appropriate information in this file unless they contain parameters
specifying not to.

Syntax

islogopen(logname) char *logname;

Explanation
logname is a pointer to the filename string.

Note

The log file must already exist.

Caution: If the log file does not exist, C-ISAM calls still work. No log file records are
saved, however, and recovery is impossible.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

islogopen("recovery.log");
Call Formats and Descriptions 8-39

ISOPEN
ISOPEN

Overview

Use isopen to open a C-ISAM file for processing.

Syntax

isopen(filename, mode)
 char *filename;
 int mode;

Explanation

filename is the name of the file.

mode is a combination of an access mode parameter and a locking
mode parameter and, optionally, a transaction- related
parameter. You add an access mode parameter to a lock
mode parameter to specify the mode. Use one of the follow-
ing access mode parameters:

ISINPUT opens the file for input (read only).

ISOUTPUT opens the file for output (write only).

ISINOUT opens the file for both input and output.

Use one of the following locking mode parameters:

ISEXCLLOCK specifies an exclusive file lock.

ISMANULOCK specifies manual file or record locking, or no
locking.

ISAUTOLOCK specifies automatic record locking.

You can also specify the following parameters:

ISVARLEN indicates that each record contains a vari-
able-length portion. If you built the file with
ISVARLEN, you must open it with
ISVARLEN.

ISFIXLEN indicates that the record does not contain a
variable-length portion.

ISTRANS enables isrollback to reverse changes to C-

ISAM files within a transaction.
8-40 Call Formats and Descriptions

ISOPEN
ISNOLOG specifies that this call and subsequent calls
on this file are not logged.

Caution! If at any time, changes are made to a C-ISAM file but not logged in the log
file, recovery is rendered impossible. Either all transactions or no transactions must
be logged for any given C-ISAM file. If you want changes to be logged, call isbegin
before you call isopen.

Notes

1. The function returns the file descriptor that you must use in subsequent
operations on the C-ISAM file.

2. When you open the file, access is by way of the primary index. If you need
another ordering, use isstart to select another index or to select record
number ordering.

3. The filename parameter must contain a null-terminated string without an
extension, which is the filename of the C-ISAM file to be processed.

4. If you use the ISVARLEN parameter with the function call, the global inte-
ger isreclen is set to the maximum record length for the file.

5. If you do not specify ISVARLEN or ISFIXLEN, ISFIXLEN is assumed. If you
attempt to open a variable-length record file without ISVARLEN, an error
is returned.

Return Codes

-1 Error; iserrno contains the error code

>=0 File descriptor

Example

fd_per = isopen("perform",ISINOUT+ISMANULOCK+ISTRANS);
fd_per = isopen("employee",ISINOUT+ISEXCLLOCK);
fd_per = isopen("v_employee",ISVARLEN+ISINOUT+ISEXCLLOCK);
Call Formats and Descriptions 8-41

ISREAD
ISREAD

Overview

Use isread to read records sequentially or randomly, as indicated by the mode
parameter.

Syntax

isread(isfd, record, mode)
int isfd;
char *record;
int mode;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

record is a pointer to a string that contains the search value and
receives the record.

mode is one of the following parameters:

ISCURR reads the current record.

ISFIRST reads the first record.

ISLAST reads the last record.

ISNEXT reads the next record.

ISPREV reads the previous record.

ISEQUAL reads the record equal to the search value.

ISGREAT reads the first record that is greater than the
search value.

ISGTEQ reads the first record that is greater than or
equal to the search value.

Optionally, you can add one or more of the following locking options to the
search mode:

ISLOCK locks the record.

ISSKIPLOCK sets the record pointer and isrecnum to the
locked record; if isread encounters a locked
record, you can use another isread with the
ISNEXT option to skip the locked record.
8-42 Call Formats and Descriptions

ISREAD
ISWAIT causes the process to wait for a locked
record to become free.

ISLCKW is the same as ISLOCK+ISWAIT.

Notes

1. Place the search value in the record in the appropriate position for the key.

2. If the search is successful, isread fills the remainder of the record with the
returned record.

3. The record becomes the current record for the file.

4. The isread function sets the global variable isrecnum to the record num-
ber of the record it reads. If the file has variable-length records, isread sets
the global variable isreclen to the number of bytes returned in the record
buffer. (The contents of the buffer beyond the value of isreclen are
undefined.)

5. You can use isread to read specific records using the record number. Call
isstart with a keydesc structure that contains k_nparts =0, so that
retrieval is in physical order. Subsequent calls to isread with mode set to
ISEQUAL cause the function to look in isrecnum and read the record
number.

6. Add ISLOCK to one of the retrieval mode parameters to lock a record. The
ISMANULOCK locking mode must be set when the file is opened. The
record remains locked until you unlock it with isrelease, iscommit, or
isrollback.

7. If you are using only part of a composite index, do not use the ISEQUAL
mode. The isread function in the ISEQUAL mode does not find exact
matches for a partial search value. You can use isstart with ISEQUAL and
isread with ISCURR to find the first occurrence of the record.

8. If you use isread with ISCURR or ISNEXT after you have added a record
with iswrite, isread returns the record that you just added.

9. If you use isread with ISCURR or ISNEXT after you have made an isstart
call, isread returns the starting record in either case.

10. If your isread call with the ISCURR, ISNEXT, or ISPREV option encounters
a locked record, the contents of isrecnum do not change from the time of
the last valid isread call. In addition, the current record is still the last
valid record as returned by the previous isread.

If you want to skip locked records, use the ISSKIPLOCK option. With
ISSKIPLOCK set, if isread encounters a locked record, isrecnum contains
the record number of the locked record and the locked record is made the
Call Formats and Descriptions 8-43

ISREAD
current record. Issuing another isread(ISNEXT) call will skip to the next
record.

11. If your isread call with the ISFIRST, ISLAST, ISEQUAL, ISGREAT, or ISGTEQ
option encounters a locked record, isrecnum is set to the record number
of the locked record.

12. You can use ISWAIT and ISLCKW only if your version of C-ISAM uses the
fcntl() call for record locking.

13. If isread encounters a locked record without ISSKIPLOCK, one of the fol-
lowing actions occurs:

• If the ISWAIT flag is used, the process waits for the lock.

• If ISWAIT is not used, the process returns value 107 (ELOCKED) in
iserrno.

14. Once an isread call returns EENDFILE, the current record position is unde-
fined. If you make another isread(ISNEXT) call, the ENOCURR code is
returned.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Examples

The following code finds the record with the key value 100 in the primary
key field:

/* put 100 into the correct position in the record */
stlong(100L,&emprec[0]);

if (isread(fd,emprec,ISEQUAL)<0)
{
if (iserrno == ENOREC) printf ("record not found");
.
.
.

8-44 Call Formats and Descriptions

ISREAD
The following code reads record 500:

pkey.k_nparts = 0; /* choose physical order */
isrecnum = 500L; /* set record number to first

record to be processed */

cc = isstart(fd,&pkey,0,emprec,ISEQUAL);
if (cc >= 0)

if (isread(fd,emprec,ISEQUAL)<0)
{
printf ("read error %d",iserrno);
.
.
.

Call Formats and Descriptions 8-45

ISRECOVER
ISRECOVER

Overview

Use isrecover along with the log file to redo all committed transactions in a
copy of the C-ISAM file.

Syntax

isrecover()

Notes

1. To use isrecover, you must have a backup copy of the C-ISAM files and a
log file that you started immediately after the backup.

2. The log file must already be open by a call to islogopen.

3. No one should use the C-ISAM files before the function finishes executing.

4. If any filenames are referenced by relative pathnames, it is important to
run the program that calls isrecover from the same directory location as
all other programs that access these files.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

isrecover();
8-46 Call Formats and Descriptions

ISRELEASE
ISRELEASE

Overview

Use isrelease to unlock records that are locked by calls to isread with the
ISLOCK option.

Syntax

isrelease(isfd)
int isfd;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

Notes

1. The isrelease function unlocks all records in the C-ISAM file that your
program locked.

2. A call to isrelease during a transaction only releases unmodified records.

3. If you have used an isstart call with the ISKEEPLOCK option, you must
use isrelease to unlock the record.

4. Locks held within a transaction are not released until iscommit or isroll-
back is called.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

isrelease(fd);
Call Formats and Descriptions 8-47

ISRENAME
ISRENAME

Overview

Use isrename to change the name of a C-ISAM file.

Syntax

isrename(oldname, newname)
char *oldname;
char *newname;

Explanation
oldname is the file you want to rename.

newname is the name of the new file.

Notes

1. Do not specify a filename extension for the C-ISAM file.

2. The isrename function renames the .dat, .idx, and .lok files.

3. The function does not change the name of audit trail or transaction log
files since their names are not logically tied to the C-ISAM filename.

4. The isrename function uses the newname parameter exclusively to deter-
mine placement in the file system of the newly named file. Be careful to
correctly specify this position by using an explicit pathname or relative
pathname. If you use a relative pathname, keep in mind the current work-
ing directory of the program.

5. The isrename call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-48 Call Formats and Descriptions

ISRENAME
Example

isrename ("employee","personnel");
Call Formats and Descriptions 8-49

ISREWCURR
ISREWCURR

Overview

Use isrewcurr to modify or update fields in the current record.

Syntax

isrewcurr(isfd, record)
int isfd;
char *record;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

record contains the complete record including updated fields.

Notes

1. If you are using isrewcurr on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

2. If you change a key field, C-ISAM updates the index entry.

3. You can change the value of the primary key field.

4. The function sets isrecnum to the record number of the current record.
The current record position does not change, that is, isrecnum contains
the record number of the record just written.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Examples

cc = isrewcurr(fd,emprec);
8-50 Call Formats and Descriptions

ISREWCURR
If you are using a variable-length record, you might use the following call. If
the minimum length of the record is 84 bytes, the maximum length is 1084
bytes, and the data being passed to the function is 923 bytes long, set isreclen
to 923 before calling isrewcurr.

isreclen = 923;
cc = isrewcurr(fd, emprec);
Call Formats and Descriptions 8-51

ISREWREC
ISREWREC

Overview

Use isrewrec to update a record identified by its record number.

Syntax

isrewrec(isfd, recnum, record)
int isfd;
long recnum;
char *record;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

recnum is the record number.

record contains the complete record including updated fields.

Notes

1. If you are using isrewrec on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

2. If you change a key field, C-ISAM updates the index entry.

3. You can change the value of the primary key field.

4. The function sets isrecnum to the record number of the record.

5. The current record position does not change.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-52 Call Formats and Descriptions

ISREWREC
Example

The following call rewrites record 404:

cc = isrewrec(fd,404L,emprec);
Call Formats and Descriptions 8-53

ISREWRITE
ISREWRITE

Overview

Use isrewrite to rewrite the nonprimary key fields of a record in a C-ISAM file.

Syntax

isrewrite(isfd, record)
int isfd;
char *record;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

record contains the complete record including the primary key and
the updated fields.

Notes

1. If you are using isrewrite on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

2. The primary key in the record identifies the record you want to rewrite.

3. The primary index must be unique.

4. You cannot change the value of the primary-key field.

5. You cannot use this function with files that are created with INFORMIX-

4GL, INFORMIX-SQL, or an embedded language such as INFORMIX-ESQL/C

because the C-ISAM files that comprise SQL databases do not contain pri-
mary indexes. Use isrewcurr or isrewrec instead.

6. If you change a key field in a nonprimary index, the function updates the
index.

7. C-ISAM does not change the current record position.
8. The function sets isrecnum to the record number of the record.
8-54 Call Formats and Descriptions

ISREWRITE
Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

stchar("San Francisco",&emprec[64],20);/* Item to be changed */
cc = isrewrite(fd,emprec); /* Primary key cannot change */
Call Formats and Descriptions 8-55

ISROLLBACK
ISROLLBACK

Overview

Use isrollback to cancel the effect of C-ISAM calls since the last call to
isbegin.

Syntax

isrollback()

Notes

1. The isrollback function returns any modified records to their original
unmodified state.

2. You must include the ISTRANS parameter as part of the mode in the
isopen call to effect the reversal of modified records.

3. You cannot roll back the following calls: isbuild, isaddindex, iscluster,
isdelindex, isaudit, issetunique, isuniqueid, isrename, or iserase.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-56 Call Formats and Descriptions

ISROLLBACK
Example

isbegin(); /* start of transaction */

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isrollback();
break; }

fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT+ISTRANS);
if (cc < SUCCESS)

{ isclose(fdemploy);
isrollback();

break; }

cc1 =addemployee();
if (cc1 == SUCCESS)

cc2 =addperform();

isclose(fdemploy);
isclose(fdperform);

if ((cc1 < SUCCESS) || (cc2 < SUCCESS)) /* transaction failed */
{
isrollback();
}

else
{
iscommit(); /* transaction okay */
printf ("new employee entered\n");
}

Call Formats and Descriptions 8-57

ISSETUNIQUE
ISSETUNIQUE

Overview

Use issetunique to set the value of the internally stored unique identifier.

Syntax

issetunique(isfd, uniqueid)
int isfd;
long uniqueid;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

uniqueid is a long integer specifying the new unique identifier.

Notes

1. A uniqueid is maintained for each C-ISAM file.

2. You can use this function if you need a unique primary key value for a
record, and no other part of the record is suitable.

3. If the value of the uniqueid is less than the current unique identifier, the
function does not change the value.

4. You can use isuniqueid to determine the greatest uniqueid.

5. The issetunique call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
8-58 Call Formats and Descriptions

ISSETUNIQUE
Example

The following call sets the unique identifier to 10,000, if the identifier is less
than 10,000:

issetunique (fd,10000L);
Call Formats and Descriptions 8-59

ISSTART
ISSTART

Overview

Use isstart to select the index and the starting point in the index for subse-
quent calls to isread.

Syntax

isstart(isfd, keydesc, length, record, mode)
int isfd;
struct keydesc *keydesc;
int length;
char *record;
int mode;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

keydesc is a pointer to a key description structure.

length specifies the part of the key that is to be considered signifi-
cant when locating the starting record.

record specifies the key search value.

mode is one of the following parameters:

ISFIRST finds the first record by positioning
the starting point just before the first
record.

ISLAST finds the last record by positioning the
starting point just before the last
record.

ISEQUAL finds the record equal to the search
value.

ISGREAT finds the first record greater than the
search value.

ISGTEQ finds the first record greater than or
equal to the search value.

ISKEEPLOCK causes isstart to keep locks held on
any record in automatic locking mode.
8-60 Call Formats and Descriptions

ISSTART
Notes

1. isstart selects the index that you want to use for subsequent calls to
isread, but does not read a record in the C-ISAM file.

2. The key description structure that defines the index you want to use is
keydesc.

3. If you choose the ISEQUAL, ISGREAT, or ISGTEQ mode, place the search key
value in the record in the appropriate position for the key. Alternatively,
you can use these modes with a record number by setting isrecnum.

4. If you want to locate a record using the entire key, set the length to either
zero or the length of the entire key.

5. If you wish to locate a record using only part of the key, place in length the
number of bytes that you want isstart to use when it compares the search
key with the index entries. Subsequent calls to isread using the ISEQUAL,
ISGREAT, or ISGTEQ use the entire key, however.

6. If the mode is ISFIRST or ISLAST, isstart ignores the contents of record and
length.

7. If the function cannot find the search value, it returns a value of -1. The
isstart call, however, still sets the index to the one defined by keydesc.

8. You can use isstart to specify retrieval by record number when you use a
key description structure with k_nparts= 0.

9. If you use isstart with k_nparts= 0 and the ISFIRST option, and then issue
an isread(ISCURR) call, C-ISAM looks for the first record (isrecnum = 1).
If the first record is no longer available, C-ISAM returns the first valid
record.

10. The function sets isrecnum to the starting record number.

11. The contents of the current record do not change.

12. Use isstart only when you want to change an index or use part of a key as
the search criterion. You do not need to use isstart before each isread call.

13. Without the ISKEEPLOCK option, an isstart call will unlock any record
locked in automatic mode.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-61

ISSTART
Examples

The following call uses the key description structure key to select the index.
C-ISAM ignores the contents of len and emprec, because the mode specifies
the first index entry.

cc = isstart(fd,&key,len,emprec,ISFIRST);

The following example shows you how to start the index in record order,
beginning with record number 500:

pkey.k_nparts = 0; /* choose physical order */
isrecnum = 500L; /* set record number to first

record to be processed */

cc = isstart(fd,&pkey,0,emprec,ISEQUAL);
8-62 Call Formats and Descriptions

ISUNIQUEID
ISUNIQUEID

Overview

Use isuniqueid to return a long integer that is guaranteed to be unique for
the C-ISAM file.

Syntax

isuniqueid(isfd, uniqueid)
int isfd;
long *uniqueid;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

uniqueid is a pointer to the long integer that receives the unique iden-
tifier.

Notes

1. The value returned by the function is serially incremented with each call.

2. This function is useful when you need a unique primary key, and the data
record does not contain any fields of reasonable size that are guaranteed
to be unique.

3. You must place uniqueid in the data record.

4. The isuniqueid call cannot be rolled back within a transaction. It can be
recovered, however.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

isuniqueid(fd,&key_value);
Call Formats and Descriptions 8-63

ISUNLOCK
ISUNLOCK

Overview

Use isunlock to remove a lock on a file.

Syntax

isunlock(isfd)
int isfd;

Explanation
isfd is the file descriptor returned by isopen or isbuild.

Note :The isunlock function removes the file lock set by islock.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

islock(fd); /* file is locked at this point */

/* other programs can read employee records but all
other operations on the file are prevented */

.

.

.
isunlock(fd); /* file is unlocked here */
8-64 Call Formats and Descriptions

ISWRCURR
ISWRCURR

Overview

Use iswrcurr to write a record and make it the current record.

Syntax

iswrcurr(isfd, record)
int isfd;
char *record;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

record is a pointer to the record you want to write.

Notes

1. If you are using iswrcurr on a variable-length record, you must first set
the global variable isreclen to the actual length of the data in the record
parameter.

2. Each index receives a key for the record.

3. The function sets isrecnum to this record.

4. The record becomes the current record.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-65

ISWRCURR
Example

stlong(101L,&emprec[0]);
.
.
.
if (iswrcurr(fd,emprec) < 0)

{
printf ("iswrcurr error %d",iserrno);
.
.
.
}

else /* this record is the current record */
{

.

.

.

8-66 Call Formats and Descriptions

ISWRITE
ISWRITE

Overview

Use iswrite to write a record to a C-ISAM file.

Syntax

iswrite(isfd, record)
int isfd;
char *record;

Explanation

isfd is the file descriptor returned by isopen or isbuild.

record is a pointer to the record you want to write.

Notes

1. If you are using iswrite on a variable-length record, you must first set the
global variable isreclen to the actual length of the data in the record
parameter.

2. Each index receives a key for the record.

3. The current record does not change.

4. The function sets isrecnum to the record number of this record.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-67

ISWRITE
Example

stlong(100L,&emprec[0]);
.
.
.
if (iswrite(fd,emprec) < 0)

{
printf ("iswrite error %d",iserrno);
.
.
.
}

else /* current record position not changed */
{
.
.
.

8-68 Call Formats and Descriptions

Format-Conversion and Manipulation Functions
Format-Conversion and Manipulation Functions
This section is divided into two parts. The first part defines the functions that
convert between machine-dependent C language data types and the C-ISAM
equivalents. The second part defines functions that you can use to manipu-
late the C-ISAM DECIMALTYPE data type.

Format-Conversion Functions
The functions that allow you to convert between machine-dependent C lan-
guage data types and the C-ISAM equivalents are defined on the following
pages. They are presented in alphabetical order.

LDCHAR STCHAR

LDDBL STDBL

LDDBLNULL STDBLNULL

LDDECIMAL STDECIMAL

LDFLOAT STFLOAT

LDFLTNULL STFLTNULL

LDINT STINT

LDLONG STLONG
Call Formats and Descriptions 8-69

LDCHAR
LDCHAR

Overview

Use ldchar to convert a character string in a C-ISAM data record to a null-
terminated string.

Syntax

ldchar(fstr,length,cstr);
char *fstr;
int length;
char *cstr;

Explanation
fstr is a pointer to the starting byte of a C-ISAM character string.

length is the length of the C-ISAM character string.

cstr is the destination string in memory.

Notes

1. C-ISAM does not terminate a character string with a null character.
Instead, it pads the string with trailing spaces.

2. The function removes trailing spaces and places a null byte after the last
non-blank character.

Example

char rec[39]; /* C-ISAM data file record */
char cname[21]; /* Null-terminated string

without trailing blanks */
.
.
.
ldchar(&rec[4],20,cname);
8-70 Call Formats and Descriptions

LDDBL
LDDBL

Overview

Use lddbl to return a machine-dependent, double-precision floating-point
number from a C-ISAM format DOUBLETYPE.

Syntax

double lddbl(p)
char *p;

Explanation
p is a pointer to the starting byte of a C-ISAM DOUBLETYPE number.

Note: A C-ISAM DOUBLETYPE has the same format as the C double, except that a
C-ISAM number may not be aligned on a word boundary.

Example

char rec[39]; /* C-ISAM Data File Record */
/* Retrieve Trans. Amt.

and Acct. Balance from Record */
tramt = ldfloat(&rec[26]);
acctbal = lddbl(&rec[30]);
Call Formats and Descriptions 8-71

LDDBLNULL
LDDBLNULL

Overview

Use lddblnull to return a machine-dependent double-precision floating-
point number from a C-ISAM format DOUBLETYPE and simultaneously test
if the value is null.

Syntax

double lddblnull(p, nullflag)
char *p;
short *nullflag;

Explanation
p is a pointer to the starting byte of a C-ISAM DOUBLETYPE

number.

nullflag is a pointer to the null code.

Notes

1. A C-ISAM DOUBLETYPE has the same format as the C double, except that
a C-ISAM number may not be aligned on a word boundary.

2. If the value of the DOUBLETYPE number is null, then lddblnull sets
*nullflag to 1, and returns a 0.

3. If the value of the DOUBLETYPE number is not null, then lddblnull sets
*nullflag to 0, and returns the value.

Example

char rec[39]; /* C-ISAM Data File Record */
/* Retrieve Trans. Amt.

and Acct. Balance from Record */
tramt = ldfltnull(&rec[26],nlflg);
acctbal = lddblnull(&rec[30],nlflg2);
8-72 Call Formats and Descriptions

LDDECIMAL
LDDECIMAL

Overview

Use lddecimal to return a DECIMALTYPE number in a dec_t structure from a
C-ISAM data record.

Syntax

lddecimal (cp,len,decp)
char *cp;
int len;
dec_t *decp;

Explanation
cp is a pointer to the position in the data record where the dec-

imal data starts.

len is the length of the decimal data in the data record.

decp is the dec_t structure that receives the decimal data.

Notes

1. DECIMALTYPE data is stored in a packed format within the C-ISAM file.

2. DECIMALTYPE data must be transferred into a dec_t structure before the
program can manipulate it.

3. The length parameter len specifies the length of the packed data and is
between 2 and 17 bytes, inclusive.

4. The packed length is the sum of the following three items: the number of
significant digits to the left of the decimal point, divided by two and
rounded up; the number of significant digits to the right of the decimal
point, divided by two and rounded up; plus one byte. (See the section
‘‘Sizing DECIMALTYPE Data’’ in Chapter 3 for more information.)

Return Codes

-1201 Underflow error

-1200 Overflow error

0 Successful
Call Formats and Descriptions 8-73

LDDECIMAL
Example

#include <decimal.h>
dec_t tramt;
dec_t acctbal;
char rec[39]; /* C-ISAM Data Record */
.
.
.
/* Load Transaction Amount and Account Balance from Record */
lddecimal(&rec[26],4,&tramt);
lddecimal(&rec[30],8,&acctbal);
8-74 Call Formats and Descriptions

LDFLOAT
LDFLOAT

Overview

Use ldfloat to return a machine-dependent floating-point number from a
C-ISAM format FLOATTYPE.

Syntax

double ldfloat(p)
char *p;

Explanation
p is a pointer to the C-ISAM format FLOATTYPE number.

Notes

1. A C-ISAM FLOATTYPE has the same format as the C float, except that a
C-ISAM number may not be aligned on a word boundary.

2. Floating-point numbers are returned as double-precision floating-point
numbers.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Retrieve Trans. Amt. and Acct. Balance from Record */
tramt = ldfloat(&rec[26]);
acctbal = lddbl(&rec[30]);
Call Formats and Descriptions 8-75

LDFLTNULL
LDFLTNULL

Overview

Use ldfltnull to return a machine-dependent floating-point number from a
C-ISAM format FLOATTYPE and simultaneously test if the value is null.

Syntax

double ldfltnull(p,nullflag)
char *p;
short *nullflag;

Explanation
p is a pointer to the starting byte of the C-ISAM format

FLOATTYPE number.

nullflag is a pointer to the null code.

Notes

1. A C-ISAM FLOATTYPE has the same format as the C float, except that a
C-ISAM number may not be aligned on a word boundary.

2. Floating point numbers are returned as double-precision floating point
numbers.

3. If the value of the FLOATTYPE is null, then ldfltnull sets *nullflag to 1, and
returns a 0.

4. If the value of the FLOATTYPE is not null, then ldfltnull sets *nullflag to 0,
and returns the value.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Retrieve Trans. Amt. and Acct. Balance from Record */
tramt = ldfltnull(&rec[26],nlflg);
acctbal = lddblnull(&rec[30],nlflg2);
8-76 Call Formats and Descriptions

LDINT
LDINT

Overview

Use ldint to return a machine-dependent integer from a C-ISAM INTTYPE.

Syntax

short ldint(p)
char *p;

Explanation
p is a pointer to a C-ISAM integer.

Note

C-ISAM stores an INTTYPE integer as a two-byte signed binary integer with
the most significant byte first.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Get Customer Number and Status from Record */
custno = ldlong(&rec[0]);
cstatus = ldint(&rec[24]);
Call Formats and Descriptions 8-77

LDLONG
LDLONG

Overview

Use ldlong to return a machine-dependent long integer from a C-ISAM for-
mat LONGTYPE.

Syntax

long ldlong(p)
char *p;

Explanation
p is a pointer to the C-ISAM LONGTYPE number.

Note

C-ISAM stores a LONGTYPE integer as a four-byte signed binary integer with
the most significant byte first.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Get Customer Number and Status from Record */
custno = ldlong(&rec[0]);
cstatus = ldint(&rec[24]);
8-78 Call Formats and Descriptions

STCHAR
STCHAR

Overview

Use stchar to store a character string in a C-ISAM data record.

Syntax

stchar(cstr,fstr,length);
char *cstr;
char *fstr;
int length;

Explanation
cstr is the character string in memory.

fstr is a pointer to the starting byte of the destination C-ISAM
character string.

length is the length of the C-ISAM character string.

Notes

1. C-ISAM does not terminate a character string with a null character;
instead it pads the string with trailing spaces.

2. The function removes the null character and pads the destination string
with trailing blanks to the length specified by length.

Example

char rec[39]; /* C-ISAM data file record */
char cname[21]; /* Null-terminated string

without trailing blanks */
.
.
.
stchar(cname,&rec[4],20);
Call Formats and Descriptions 8-79

STDBL
STDBL

Overview

Use stdbl to store a machine-dependent double-precision number in a
C-ISAM DOUBLETYPE.

Syntax

stdbl(d,p)
double d;
char *p;

Explanation
d is the double-precision number to be stored.

p is the pointer to the C-ISAM DOUBLETYPE that receives the number.

Note

A C-ISAM DOUBLETYPE has the same format as the C double, except that a
C-ISAM number may not be aligned on a word boundary.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Trans. Amt.

and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdbl(acctbal,&rec[30]);
8-80 Call Formats and Descriptions

STDBLNULL
STDBLNULL

Overview

Use stdblnull to store a machine-dependent double-precision number or a
null in a C-ISAM DOUBLETYPE.

Syntax

stdblnull(d,p,nullflag)
double d;
char *p;
short nullflag;

Explanation
d is the double-precision number to be stored.

p is the pointer to the C-ISAM DOUBLETYPE that receives the
number.

nullflag is the null code.

Notes

1. A C-ISAM DOUBLETYPE has the same format as the C double, except that
a C-ISAM number may not be aligned on a word boundary.

2. If you set nullflag to one, a C-ISAM NULL is stored. If nullflag is set to 0, the
value passed is stored.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Trans. Amt.

and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdblnull(acctbal,&rec[30],nlflag);
Call Formats and Descriptions 8-81

STDECIMAL
STDECIMAL

Overview

Use stdecimal to store a DECIMALTYPE number in a dec_t structure into a
C-ISAM record in packed format.

Syntax

stdecimal (decp,cp,len)
dec_t *decp;
char *cp;
int len;

Explanation
decp is the dec_t structure that contains the decimal data.

cp is a pointer to the position in the data record where the dec-
imal data starts.

len is the length of the decimal data in the data record.

Notes

1. DECIMALTYPE data is stored in a dec_t structure in your C-ISAM pro-
gram. It is stored in packed format, however, within the C-ISAM file.

2. The length parameter len specifies the length of the packed data and is
between 2 and 17 bytes, inclusive.

3. The packed length is the sum of the following three items: the number of
significant digits to the left of the decimal point, divided by two and
rounded up; the number of significant digits to the right of the decimal
point, divided by two and rounded up; plus one byte. (See the section
‘‘Sizing DECIMALTYPE Numbers’’ in Chapter 3 for more information.)
8-82 Call Formats and Descriptions

STDECIMAL
Examples

char rec[39]; /* C-ISAM Data Record */
.
.
.
/* Store Transaction Amount and Account Balance into Record */
stdecimal(&tramt,&rec[26],4);
stdecimal(&acctbal,&rec[30],8);
Call Formats and Descriptions 8-83

STFLOAT
STFLOAT

Overview

Use stfloat to store a machine-dependent floating-point number in a C-ISAM
FLOATTYPE number.

Syntax

stfloat(f,p)
float f;
char *p;

Explanation
f is the floating-point number to be stored in C-ISAM FLOATTYPE

format.

p is the pointer to the C-ISAM FLOATTYPE to receive the number.

Note

A C-ISAM FLOATTYPE has the same format as the C float, except that a
C-ISAM number may not be aligned on a word boundary.

Example

char rec[39]; /* C-ISAM Data File Record */
/* Store Trans. Amt. and Acct. Balance into Record */
stfloat(tramt,&rec[26]);
stdbl(acctbal,&rec[30]);
8-84 Call Formats and Descriptions

STFLTNULL
STFLTNULL

Overview

Use stfltnull to store a machine-dependent floating-point number or a null in
a C-ISAM FLOATTYPE number.

Syntax

stfltnull(f,p,nlflg)
float f;
char *p;
short nullflag;

Explanation
f is the floating-point number to be stored in C-ISAM

FLOATTYPE format.

p is the pointer to the C-ISAM FLOATTYPE that receives the
number.

nullflag is the null code.

Notes

1. A C-ISAM FLOATTYPE has the same format as the C float, except that a
C-ISAM number may not be aligned on a word boundary.

2. If nullflag = 1, a C-ISAM null is stored; if nullflag = 0, the passed value is
stored.

Example

char rec[39]; /* C-ISAM Data File Record */
/* Store Trans. Amt. and Acct. Balance into Record */
stfltnull(tramt,&rec[26],nlflg);
stdbl(acctbal,&rec[30]);
Call Formats and Descriptions 8-85

STINT
STINT

Overview

Use stint to store a machine-dependent short integer in a C-ISAM INTTYPE
number.

Syntax

stint(i,p)
short i;
char *p;

Explanation
i is the machine-dependent short integer to be stored.

p is a pointer to the C-ISAM INTTYPE number that receives the
integer.

Note

C-ISAM stores an INTTYPE integer as a two-byte signed binary integer with
the most significant byte first.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Customer Number and Status into Record */
stlong(custno,&rec[0]);
stint (cstatus,&rec[24]);
8-86 Call Formats and Descriptions

STLONG
STLONG

Overview

Use stlong to store a machine-dependent long integer in a C-ISAM format
LONGTYPE.

Syntax

stlong(l,p)
long l;
char *p;

Explanation
l is the machine-dependent long integer.

p is the pointer to the C-ISAM format LONGTYPE that receives the
number.

Note

C-ISAM stores a LONGTYPE integer as a four-byte signed binary integer with
the most significant byte first.

Example

char rec[39]; /* C-ISAM Data File Record */
.
.
.
/* Store Customer Number and Status into Record */
stlong(custno,&rec[0]);
stint (cstatus,&rec[24]);
Call Formats and Descriptions 8-87

STLONG
DECIMALTYPE Functions
Functions for manipulation of DECIMALTYPE numbers are described in the
following pages:

DECCVASC

DECTOASC

DECCVINT

DECTOINT

DECCVLONG

DECTOLONG

DECCVFLT

DECTOFLT

DECCVDBL

DECTODBL

DECADD, DECSUB, DECMUL, and DECDIV

DECCMP

DECCOPY

DECECVT and DECFCVT
8-88 Call Formats and Descriptions

DECCVASC
DECCVASC

Overview

Use deccvasc to convert a value held as printable characters in a C char type
into a DECIMALTYPE number.

Syntax

deccvasc(cp, len, np)
char *cp;
int len;
dec_t *np;

Explanation
cp points to a string that holds the value you want to convert.

len is the length of the string.

np is a pointer to a dec_t structure that receives the result of the
conversion.

Notes

1. The deccvasc function ignores leading spaces in the character string.

2. The character string can have a leading plus (+) or minus (-) sign, a deci-
mal point (.), and numbers to the right of the decimal point.

3. The character string can contain an exponent preceded by either e or E.
The exponent may be preceded by a + or - sign.

Return Codes

-1216 Bad exponent

-1213 Non-numeric characters in string

-1201 Underflow; number is too small

-1200 Overflow; number is too large

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-89

DECCVASC
Example

#include <decimal.h>

char input[80];
dec_t number;

.

.

.
/* Get input from terminal */
getline(input);

/* Convert input into decimal number */
deccvasc(input, 32, &number);
8-90 Call Formats and Descriptions

DECTOASC
DECTOASC

Overview

Use dectoasc to convert a DECIMALTYPE number to a printable ASCII string.

Syntax

dectoasc(np, cp, len, right)
dec_t *np;
char *cp;
int len;
int right;

Explanation
np is a pointer to the decimal structure whose associated deci-

mal value you want to convert to an ASCII string.

cp is a pointer to the beginning of the character buffer that
holds the ASCII string.

len is the maximum length in bytes of the string buffer.

right is an integer indicating the number of decimal places to the
right of the decimal point.

Notes

1. If right equals -1, the number of decimal places is determined by the dec-
imal value of *np.

2. If the number does not fit into a character string of length len, dectoasc
converts the number to exponential notation. If the number still does not
fit, dectoasc fills the string with asterisks. If the number is shorter than the
string, it is left-justified and padded on the right with blanks.

Return Codes

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-91

DECTOASC
Example

#include <decimal.h>

char input[80];
char output[16];
dec_t number;

.

.

.

/* Get input from terminal */
getline(input);

/* Convert input into decimal number */
deccvasc(input, 32, &number);

/* Convert number to printable string */
dectoasc(&number, output, 16, 1);

/* Print the value just entered */
printf("You just entered %s", output);
8-92 Call Formats and Descriptions

DECCVINT
DECCVINT

Overview

Use deccvint to convert a C type short into a DECIMALTYPE number.

Syntax

deccvint(integer, np)
int integer;
dec_t *np;

Explanation
integer is the integer you want to convert.

np is a pointer to a dec_t structure that receives the result of the
conversion.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t decnum;

/* Convert the integer value -999
* into a DECIMAL type number
*/
deccvint(-999, &decnum);
Call Formats and Descriptions 8-93

DECTOINT
DECTOINT

Overview

Use dectoint to convert a DECIMALTYPE number into a C int type.

Syntax

dectoint(np, ip)
dec_t *np;
int *ip;

Explanation
np is a pointer to a decimal structure whose value is converted

to an integer.

ip is a pointer to the integer.

Return Codes

-1200 DECIMALTYPE number greater than 32,767

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t mydecimal;
int myinteger;

/* Convert the value in
* mydecimal into an integer
* and place the results in
* the variable myinteger.
*/
dectoint(&mydecimal, &myinteger);
8-94 Call Formats and Descriptions

DECCVLONG
DECCVLONG

Overview

Use deccvlong to convert a C type long value into a DECIMALTYPE number.

Syntax

deccvlong(lng, np)
long lng;
dec_t *np;

Explanation
lng is a pointer to a long integer.

np is a pointer to a dec_t structure that receives the result of the
conversion.

Return Codes

-1200 DECIMALTYPE number greater than 2,147,483,647

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-95

DECCVLONG
Example

#include <decimal.h>

dec_t mydecimal;
long mylong;

/* Set the decimal structure
* mydecimal to 37.
*/
deccvlong(37L, &mydecimal);

mylong = 123456L;
/* Convert the variable mylong into
* a DECIMAL type number held in
* mydecimal.
*/
deccvlong(mylong, &mydecimal);
8-96 Call Formats and Descriptions

DECTOLONG
DECTOLONG

Overview

Use dectolong to convert a DECIMALTYPE into a C type long.

Syntax

dectolong(np, lngp)
dec_t *np;
long *lngp;

Explanation
np is a pointer to a decimal structure.

lngp is a pointer to a long where the result of the conversion will
be placed.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t mydecimal;
long mylong;

/* Convert the DECIMALTYPE value
* held in the decimal structure
* mydecimal to a long pointed to
* by mylong.
*/
dectolong(&mydecimal, &mylong);
Call Formats and Descriptions 8-97

DECCVFLT
DECCVFLT

Overview

Use deccvflt to convert a C type float into a DECIMALTYPE number.

Syntax

deccvflt(flt, np)
float flt;
dec_t *np;

Explanation
flt is a floating-point number.

np is a pointer to a dec_t structure that receives the result of the
conversion.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* Set the decimal structure
* myfloat to 3.14159.
*/
deccvflt(3.14159, &mydecimal);

myfloat = 123456.78;

/* Convert the variable myfloat into
* a DECIMALTYPE number held in
* mydecimal.
*/
deccvflt(myfloat, &mydecimal);
8-98 Call Formats and Descriptions

DECTOFLT
DECTOFLT

Overview

Use dectoflt to convert a DECIMALTYPE number into a C type float.

Syntax

dectoflt(np, fltp)
dec_t *np;
float *fltp;

Explanation
np is a pointer to a decimal structure.

fltp is a pointer to a floating-point number to receive the result of
the conversion.

Note: The resulting floating-point number has eight significant digits.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t mydecimal;
float myfloat;

/* Convert the DECIMALTYPE value
* held in the decimal structure
* mydecimal to a floating-point number pointed to
* by myfloat.
*/
dectoflt(&mydecimal, &myfloat);
Call Formats and Descriptions 8-99

DECCVDBL
DECCVDBL

Overview

Use deccvdbl to convert a C type double into a DECIMALTYPE number.

Syntax

deccvdbl(dbl, np)
double dbl;
dec_t *np;

Explanation
dbl is a double-precision floating-point number.

np is a pointer to a dec_t structure that receives the result of the
conversion.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* Set the decimal structure
* mydecimal to 3.14159.
*/
deccvdbl(3.14159, &mydecimal);

mydouble = 123456.78;

/* Convert the variable mydouble into
* a DECIMALTYPE number held in
* mydecimal.
*/
deccvdbl(mydouble, &mydecimal);
8-100 Call Formats and Descriptions

DECTODBL
DECTODBL

Overview

Use dectodbl to convert a DECIMALTYPE number into a C type double.

Syntax

dectodbl(np, dblp)
dec_t *np;
double *dblp;

Explanation
np is a pointer to a decimal structure.

dblp is a pointer to a double-precision floating-point number that
receives the result of the conversion.

Note

The resulting double-precision number receives a total of 16 significant
digits.

Return Codes

-1 Error; iserrno contains the error code

0 Successful

Example

#include <decimal.h>

dec_t mydecimal;
double mydouble;

/* Convert the DECIMALTYPE value
* held in the decimal structure
* mydecimal to a double pointed to
* by mydouble.
*/
dectodbl(&mydecimal, &mydouble);
Call Formats and Descriptions 8-101

DECADD, DECSUB, DECMUL, and DECDIV
DECADD, DECSUB, DECMUL, and DECDIV

Overview

The decimal arithmetic routines take pointers to three decimal structures as
parameters. The first two decimal structures hold the operands of the arith-
metic function. The third decimal structure holds the result.

Syntax

decadd(n1, n2, result)/* result = n1 + n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

decsub(n1, n2, result)/* result = n1 - n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

decmul(n1, n2, result)/* result = n1 * n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

decdiv(n1, n2, result)/* result = n1 / n2 */
dec_t *n1;
dec_t *n2;
dec_t *result;

Explanation
n1 is a pointer to the decimal structure of the first operand.

n2 is a pointer to the decimal structure of the second operand.

result is a pointer to the decimal structure of the result of the
operation.

Note

The result pointer can be the same pointer as either n1 or n2.
8-102 Call Formats and Descriptions

DECADD, DECSUB, DECMUL, and DECDIV
Return Codes

-1202 Attempt to divide by zero

-1201 Underflow; result is too small

-1200 Overflow; result is too large

-1 Error; iserrno contains the error code

0 Successful
Call Formats and Descriptions 8-103

DECCMP
DECCMP

Overview

Use deccmp to compare two DECIMALTYPE numbers.

Syntax

int deccmp(n1, n2)
dec_t *n1;
dec_t *n2;

Explanation
n1 is a pointer to the decimal structure of the first number.

n2 is a pointer to the decimal structure of the second number.

Return Codes

-1 n1 is less than n2

0 The arguments are equal

1 n1 is greater than n2
8-104 Call Formats and Descriptions

DECCOPY
DECCOPY

Overview

Use deccopy to copy one dec_t structure to another.

Syntax

deccopy(n1, n2)
dec_t *n1;
dec_t *n2;

Explanation
n1 is a pointer to the source dec_t structure.

n2 is a pointer to the destination dec_t structure.
Call Formats and Descriptions 8-105

DECECVT and DECFCVT
DECECVT and DECFCVT

Overview

These functions convert a DECIMALTYPE value to an ASCII string.

Syntax

char *dececvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

char *decfcvt(np, ndigit, decpt, sign)
dec_t *np;
int ndigit;
int *decpt;
int *sign;

Explanation
np is a pointer to a dec_t structure that contains the number that

you want to convert.

ndigit is, for dececvt, the length of the ASCII string; for decfcvt, it is
the number of digits to the right of the decimal point.

decpt points to an integer that is the position of the decimal point
relative to the beginning of the string. A negative value for
*decpt means to the left of the returned digits.

sign is a pointer to the sign of the result. If the sign of the result is
negative, *sign is nonzero; otherwise, the value is 0.

Notes

1. The dececvt function converts the decimal value pointed to by np into a
null-terminated string of ndigit ASCII digits and returns a pointer to the
string.

2. The low-order digit of the DECIMALTYPE number is rounded.

3. The decfcvt function is identical to dececvt, except that ndigit specifies the
number of digits to the right of the decimal point instead of the total num-
ber of digits.
8-106 Call Formats and Descriptions

DECECVT and DECFCVT
Examples

In the following example, let np point to 12345.67 and suppress all argu-
ments except ndigit:

dececvt(4) = "1235" *decpt = 5
dececvt(10) = "1234567000" *decpt = 5

decfcvt(1) = "123457" *decpt = 5
decfcvt(3) = "12345670" *decpt = 5

In this example, let np point to .001234:

dececvt(4) = "1234" *decpt = -2
dececvt(10) = "1234000000" *decpt = -2

decfcvt(1) = "" *decpt = -2
decfcvt(3) = "1" *decpt = -2
Call Formats and Descriptions 8-107

Summary
Summary
This chapter describes all the functions that are available as part of C-ISAM.

• File manipulation functions

• Format-conversion and manipulation functions

The file manipulation functions allow you to perform the following
operations:

• Create and remove files and indexes

• Access and modify records from within files

• Lock records or files

• Implement transactions

• Perform other functions associated with maintaining C-ISAM files

The format-conversion functions allow you to convert between machine-
dependent representation of numbers and the C-ISAM counterparts. The
format-manipulation routines allow you to manipulate the C-ISAM
DECIMALTYPE data type.

The chapter includes explanations, syntax, return codes, and examples for
each function.
8-108 Call Formats and Descriptions

Appendix
A

The bcheck Utility
The bcheck program is a C-ISAM utility program that
checks and repairs C-ISAM index files. It is distributed with
C-ISAM. You should run it whenever a system crash occurs
or whenever you suspect the integrity of a C-ISAM index.

The bcheck program compares an index file (.idx) to a data
file (.dat) to see if the two are consistent. If they are not,
bcheck asks you if you want to delete and rebuild the cor-
rupted indexes.

You can use the bcheck utility with fixed-length or vari-
able-length record files. The syntax for using bcheck with
variable-length records, as shown here, is the same as using
it with fixed-length records. Only the -i option has special
functionality for variable-length records.

The bcheck utility does not repair the variable-length data
portion of the index files.

bcheck - [i | l | y | n | q | s] filename

-i Check index file only

-l List entries in B+ trees

-n Answer no to all questions

-y Answer yes to all questions

-q Suppress printing of the program banner

-s Resize the index file node size. This option
resets the NODESIZE parameter from the
existing value to the value set in the code.
This option does not change any of the char-
acteristics of the index keys themselves.

Unless you use the -n or -y option, bcheck is interactive, waiting for you to
respond to each error it finds.

Use the -y option with caution. Do not run bcheck using the -y option if you
are checking the files for the first time.

Checking Indexes
If you use the -i option with fixed-length records, the index information con-
tained in the index files is checked for consistency with the data files.

If you use the -i option with variable-length records, the entire contents of the
index file are checked for free space as well as for consistency. This includes
the variable-length data that is stored in the index file. The bcheck utility uses
this information if it is necessary to rebuild the index file.

Resizing Nodes and Indexes
The bcheck -s option does not affect the variable-length records that reside in
the index files. If you need to resize the keys within an index, use iscluster
with a new keydesc structure.

Messages Received with Variable-Length Records
If you use bcheck with variable-length records, you will receive the
following two messages with relevant values along with the rest of the stan-
dard bcheck messages:

64 index pages are used for variable-length record storage.
15761 bytes are free in those pages, an average of 246 bytes per page.

Recovering Resources from Irretrievable Files
If you are using variable-length records and the files become severely
corrupted, bcheck can repair the damaged index portion of the files, but it
cannot repair damaged data records. Since the variable-length data is stored
in the index files, you might not be able to retrieve the data.

To repair index files that contain corrupted variable-length data, you have to
delete corrupted records with your own C-ISAM program. See “File Mainte-
nance with Variable-Length Records” on page 6-10 for more information
about retrieving data from corrupted .idx files.
A-2 The bcheck Utility

Examples of Using bcheck
In the following example, bcheck checks all indexes for custome100 and
finds no errors. For each index, bcheck prints a group of up to eight numbers.
These numbers indicate the position of the key in each record.

bcheck -n custome100

BCHECK C-ISAM B-tree Checker version 5.00.UC1
Copyright (C) 1981-1991 Informix Software, Inc.
Software Serial Number INF#R000000

C-ISAM File: custome100

Checking dictionary and file sizes.
Index file node size = 1024
Current C_ISAM index file node size = 1024
Checking data file records.
Checking indexes and key descriptions.
Index 1 = unique key

0 index node(s) used -- 1 index b-tree level(s) used
Index 2 = unique key (0,4,2)

1 index node(s) used -- 1 index b-tree level(s) used
Index 3 = duplicates (111,5,0)

1 index node(s) used -- 1 index b-tree level(s) used
Checking data record and index node free lists.
4 index node(s) used, 0 free -- 18 data record(s) used, 4 free
The bcheck Utility A-3

Here is a sample run in which bcheck finds errors. The -n option is selected
so that each question that bcheck asks is automatically answered “no.”

BCHECK C-ISAM B-tree Checker version 5.00.UC1
Copyright (C) 1981-1991 Informix Software, Inc.
Software Serial Number INF#R000000

C-ISAM File: custome100

Checking dictionary and file sizes.
Index file node size = 1024
Current C_ISAM index file node size = 1024
Checking data file records.
Checking indexes and key descriptions.
Index 1 = unique key

0 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? no

Index 2 = unique key (0,4,2)
1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? no

Index 3 = duplicates (111,5,0)
1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? no

Checking data record and index node free lists.

ERROR: 3 missing data record(s)
Fix data record free list ? no

4 index node(s) used, 0 free -- 18 data record(s) used, 4 free
A-4 The bcheck Utility

Since bcheck finds errors, you must delete and rebuild the corrupted
indexes. The -y option is used to answer “yes” to all questions asked by
bcheck:

BCHECK C-ISAM B-tree Checker version 5.00.UC1
Copyright (C) 1981-1991 Informix Software, Inc.
Software Serial Number INF#R000000

C-ISAM File: custome100

Checking dictionary and file sizes.
Checking data file records.
Checking indexes and key descriptions.
Index 1 = unique key

1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? yes

Remake index ? yes
Index 2 = unique key (0,4,2)

1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? yes

Remake index ? yes

Index 3 = duplicates (111,5,0)
1 index node(s) used -- 1 index b-tree level(s) used

ERROR: 3 bad data record(s)
Delete index ? yes

Remake index ? yes

Checking data record and index node free lists.

ERROR: 3 missing data record(s)
Fix data record free list ? yes

Recreate data record free list
Recreate index 3
Recreate index 2
Recreate index 1

4 index node(s) used, 0 free -- 18 data record(s) used, 4 free
The bcheck Utility A-5

A-6 The bcheck Utility

Appendix
B
Header Files

isam.h
Figure B-1 shows the contents of the isam.h header file.

#ifndef ISAM_INCL /* avoid multiple include problems */
#define ISAM_INCL

#define CHARTYPE 0
#define DECIMALTYPE 0
#define CHARSIZE 1

#define INTTYPE 1
#define INTSIZE 2

#define LONGTYPE 2
#define LONGSIZE 4

#define DOUBLETYPE 3
#ifndef NOFLOAT
#define DOUBLESIZE (sizeof(double))
#endif /* NOFLOAT */

#ifndef NOFLOAT
#define FLOATTYPE 4
#define FLOATSIZE (sizeof(float))
#endif /* NOFLOAT */

#define USERCOLL(x) ((x))

#define COLLATE1 0x10
#define COLLATE2 0x20
#define COLLATE3 0x30
#define COLLATE4 0x40
#define COLLATE5 0x50
#define COLLATE6 0x60
#define COLLATE7 0x70

#define MAXTYPE 5
#define ISDESC 0x80 /* add to make descending type */
#define TYPEMASK 0x7F /* type mask */

#define BYTEMASK 0xFF /* mask for one byte */
#define BYTESHFT 8 /* shift for one byte */

#ifndef ldint
#define ldint(p) ((short)(((p)[0]<<BYTESHFT)+((p)[1]&BYTEMASK)))
#define stint(i,p) ((p)[0]=(i)>>BYTESHFT,(p)[1]=(i))
#endif

#ifndef ldlong
long ldlong();
#endif

#ifndef NOFLOAT
#ifndef ldfloat
double ldfloat();
#endif
#ifndef lddbl
double lddbl();
#endif
double ldfltnull();
double lddblnull();
#endif

#define ISFIRST 0 /* position to first record */
#define ISLAST 1 /* position to last record */
#define ISNEXT 2 /* position to next record */
#define ISPREV 3 /* position to previous record */
#define ISCURR 4 /* position to current record */
#define ISEQUAL 5 /* position to equal value */
#define ISGREAT 6 /* position to greater value */
#define ISGTEQ 7 /* position to >= value */

/* isread lock modes */
#define ISLOCK 0x100 /* record lock */
#define ISSKIPLOCK 0x200 /* skip record even if locked */
#define ISWAIT 0x400 /* wait for record lock */
#define ISLCKW 0x500 /* ISLOCK + ISWAIT */

/* isstart lock modes */
#define ISKEEPLOCK 0x800 /* keep rec lock in autolk mode */

/* isopen, isbuild lock modes */
#define ISAUTOLOCK 0x200 /* automatic record lock */
#define ISMANULOCK 0x400 /* manual record lock */
#define ISEXCLLOCK 0x800 /* exclusive isam file lock */

/* isopen, isbuild file types */
#define ISINPUT 0 /* open for input only */
#define ISOUTPUT 1 /* open for output only */
#define ISINOUT 2 /* open for input and output */
#define ISTRANS 4 /* open for transaction proc */
#define ISNOLOG 8 /* no loggin for this file */
#define ISVARLEN 0x10 /* variable length records */
#define ISFIXLEN 0x0 /* (non-flag) fixed length records only */

/* audit trail mode parameters */
#define AUDSETNAME 0 /* set new audit trail name */
#define AUDGETNAME 1 /* get audit trail name */
#define AUDSTART 2 /* start audit trail */
#define AUDSTOP 3 /* stop audit trail */
#define AUDINFO 4 /* audit trail running ? */

/*
 * Define MAXKEYSIZE 240 and NPARTS 16 for AF251
 */
#define MAXKEYSIZE 120 /* max number of bytes in key */
#define NPARTS 8 /* max number of key parts */
B-2 Header Files

struct keypart
 {
 short kp_start; /* starting byte of key part */
 short kp_leng; /* length in bytes */
 short kp_type; /* type of key part */
 };

struct keydesc
 {
 short k_flags; /* flags */
 short k_nparts; /* number of parts in key */
 struct keypart
 k_part[NPARTS]; /* each key part */
 /* the following is for internal use only */
 short k_len; /* length of whole key */
 long k_rootnode; /* pointer to rootnode */
 };
#define k_start k_part[0].kp_start
#define k_leng k_part[0].kp_leng
#define k_type k_part[0].kp_type

#define ISNODUPS 000 /* no duplicates allowed */
#define ISDUPS 001 /* duplicates allowed */
#define DCOMPRESS 002 /* duplicate compression */
#define LCOMPRESS 004 /* leading compression */
#define TCOMPRESS 010 /* trailing compression */
#define COMPRESS 016 /* all compression */
#define ISCLUSTER 020 /* index is a cluster one */

struct dictinfo
 {
 short di_nkeys; /* number of keys defined (msb set for VARLEN)*/
 short di_recsize; /* (maximum) data record size */
 short di_idxsize; /* index record size */
 long di_nrecords; /* number of records in file */
 };

#define EDUPL 100 /* duplicate record */
#define ENOTOPEN 101 /* file not open */
#define EBADARG 102 /* illegal argument */
#define EBADKEY 103 /* illegal key desc */
#define ETOOMANY 104 /* too many files open */
#define EBADFILE 105 /* bad isam file format */
#define ENOTEXCL 106 /* non-exclusive access */
#define ELOCKED 107 /* record locked */
#define EKEXISTS 108 /* key already exists */
#define EPRIMKEY 109 /* is primary key */
#define EENDFILE 110 /* end/begin of file */
#define ENOREC 111 /* no record found */
#define ENOCURR 112 /* no current record */
#define EFLOCKED 113 /* file locked */
#define EFNAME 114 /* file name too long */
#define ENOLOK 115 /* can't create lock file */
#define EBADMEM 116 /* can't alloc memory */
#define EBADCOLL 117 /* bad custom collating */
#define ELOGREAD 118 /* cannot read log rec */
#define EBADLOG 119 /* bad log record */
#define ELOGOPEN 120 /* cannot open log file */
#define ELOGWRIT 121 /* cannot write log rec */
#define ENOTRANS 122 /* no transaction */
#define ENOSHMEM 123 /* no shared memory */
#define ENOBEGIN 124 /* no begin work yet */
#define ENONFS 125 /* can't use nfs */
#define EBADROWID 126 /* reserved for future use */
Header Files B-3

#define ENOPRIM 127 /* no primary key */
#define ENOLOG 128 /* no logging */
#define EUSER 129 /* reserved for future use */
#define ENODBS 130 /* reserved for future use */
#define ENOFREE 131 /* no free disk space */
#define EROWSIZE 132 /* row size too big */
#define EAUDIT 133 /* audit trail exists */
#define ENOLOCKS 134 /* no more locks */
#define ENOPARTN 135 /* reserved for future use */
#define ENOEXTN 136 /* reserved for future use */
#define EOVCHUNK 137 /* reserved for future use */
#define EOVDBS 138 /* reserved for future use */
#define EOVLOG 139 /* reserved for future use */
#define EGBLSECT 140 /* global section disallowing access - VMS */
#define EOVPARTN 141 /* reserved for future use */
#define EOVPPAGE 142 /* reserved for future use */
#define EDEADLOK 143 /* reserved for future use */
#define EKLOCKED 144 /* reserved for future use */
#define ENOMIRROR 145 /* reserved for future use */
#define EDISKMODE 146 /* reserved for future use */
#define EARCHIVE 147 /* reserved for future use */
#define ENEMPTY 148 /* reserved for future use */
#define EDEADDEM 149 /* reserved for future use */
#define EDEMO 150 /* demo limits have been exceeded */
#define EBADVCLEN 151 /* reserved for future use */
#define EBADRMSG 152 /* reserved for future use */
#define ENOMANU 153 /* must be in ISMANULOCK mode */
#define EDEADTIME 154 /* reserved for future use */
#define EPMCHKBAD 155 /* reserved for future use */
#define EB_BUSY 160 /* reserved for future use */
#define EB_NOOPEN 161 /* reserved for future use */
#define EB_NOBS 162 /* reserved for future use */
#define EB_PAGE 163 /* reserved for future use */
#define EB_STAMP 164 /* reserved for future use */
#define EB_NOCOL 165 /* reserved for future use */
#define EB_FULL 166 /* reserved for future use */
#define EB_PSIZE 167 /* reserved for future use */
#define EB_ARCH 168 /* reserved for future use */
#define EB_CHKNLOG 169 /* reserved for future use */
#define EB_IUBS 170 /* reserved for future use */
#define EBADFORMAT 171 /* locking or NODESIZE change */

/* Dismountable media blobs errors */
#define EB_SFULL 180 /* reserved for future use */
#define EB_NOSUBSYS 181 /* reserved for future use */
#define EB_DUPBS 182 /* reserved for future use */
/* Shared Memory errors */
#define ES_PROCDEFS 21584 /* can't open config file */
#define ES_IILLVAL 21586 /* illegal config file value */
#define ES_ICONFIG 21595 /* bad config parameter */
#define ES_ILLUSRS 21596 /* illegal number of users */
#define ES_ILLLCKS 21597 /* illegal number of locks */
#define ES_ILLFILE 21598 /* illegal number of files */
#define ES_ILLBUFF 21599 /* illegal number of buffs */
#define ES_SHMGET 25501 /* shmget error */
#define ES_SHMCTL 25502 /* shmctl error */
#define ES_SEMGET 25503 /* semget error */
#define ES_SEMCTL 25504 /* semctl error */

/*
 * For system call errors
 * iserrno = errno (system error code 1-99)
 * iserrio = IO_call + IO_file
 * IO_call = what system call
 * IO_file = which file caused error
B-4 Header Files

 */

#define IO_OPEN 0x10 /* open() */
#define IO_CREA 0x20 /* creat() */
#define IO_SEEK 0x30 /* lseek() */
#define IO_READ 0x40 /* read() */
#define IO_WRIT 0x50 /* write() */
#define IO_LOCK 0x60 /* locking() */
#define IO_IOCTL 0x70 /* ioctl() */

#define IO_IDX 0x01 /* index file */
#define IO_DAT 0x02 /* data file */
#define IO_AUD 0x03 /* audit file */
#define IO_LOK 0x04 /* lock file */
#define IO_SEM 0x05 /* semaphore file */

/*
 * NOSHARE was needed as an attribute for global variables on VMS systems
 * It has been left here to make sure that it is defined for the
 * plethera of scattered references.
 */
#define NOSHARE

extern int iserrno; /* isam error return code */
extern int iserrio; /* system call error code */
extern long isrecnum; /* record number of last call */
extern int isreclen; /* actual record length, or */
 /* minimum (isbuild, isindexinfo) */
 /* or maximum (isopen) */
extern char isstat1; /* cobol status characters */
extern char isstat2;
extern char isstat3;
extern char isstat4;
extern char *isversnumber; /* C-ISAM version number */
extern char *iscopyright; /* RDS copyright */
extern char *isserial; /* C-ISAM software serial number */
extern int issingleuser; /* set for single user access */
extern int is_nerr; /* highest C-ISAM error code */
extern char *is_errlist[]; /* C-ISAM error messages */
/* error message usage:
 * if (iserrno >= 100 && iserrno < is_nerr)
 * printf("ISAM error %d: %s\n", iserrno, is_errlist[iserrno-100]);
 */

struct audhead
 {
 char au_type[2]; /* audit record type aa,dd,rr,ww*/
 char au_time[4]; /* audit date-time */
 char au_procid[2]; /* process id number */
 char au_userid[2]; /* user id number */
 char au_recnum[4]; /* record number */
 char au_reclen[2]; /* audit record length beyond header */
 };
#define AUDHEADSIZE 14 /* num of bytes in audit header */
#define VAUDHEADSIZE 16 /* VARLEN num of bytes in audit header */

#endif /* ISAM_INCL */

Figure B-1 Contents of isam.h File
Header Files B-5

decimal.h
You must include the file decimal.h in every program that uses the
DECIMALTYPE data type. The header file defines the internal structure of
DECIMALTRYPE numbers. Your program accesses the internally stored
DECIMALTYPE numbers only through the functions that are provided for this
purpose. It should never access the internal structures directly. The explana-
tion of this structure is provided here for reference only.

Memory Storage Structure
DECIMALTYPE numbers consist of an exponent and a mantissa (or fractional
part) in base 100. In normalized form, the first digit of the mantissa must be
greater than zero.

When used within a program, DECIMALTYPE numbers are stored in a C
structure of the type shown in Figure B-2.

#ifndef DECSIZE
#define DECSIZE 16
#define DECUNKNOWN -2

struct decimal
{
short dec_exp;/* exponent base 100 */
short dec_pos;/* sign: 1=pos, 0=neg, -1=null*/
short dec_ndgts;/* number of significant digits*/
char dec_dgts[DECSIZE];/* actual digits base 100*/
};

typedef struct decimal dec_t;

Figure B-2 Structure of a decimal or dec_t Data Type

The dec_t structure has four parts.

dec_exp holds the exponent of the normalized DECIMALTYPE num-
ber. This exponent represents a power of 100.

dec_pos holds the sign of the DECIMALTYPE number (1 when the
number is zero or greater, and 0 when less than zero).

dec_ndgts contains the number of base 100 significant digits of the
DECIMALTYPE number.

dec_dgts is a character array that holds the significant digits of the
normalized DECIMALTYPE number (dec_dgts[0]!=0). Each
character in the array is a one-byte binary number in base
100. The number of significant digits in dec_dgts is con-
tained in dec_ndgts.
B-6 Header Files

All operations on DECIMALTYPE numbers take place through the routines
provided in C-ISAM that are described in Chapter 3, “Data Types.” Any other
operations, modifications, or use of dec_t structures can produce unpredict-
able results.

File Storage Structure
When DECIMALTYPE numbers are stored in files, they are compressed or
packed, as shown here:

First byte:
top 1 bit is the sign of the number

on = the number is positive

off = the number is negative

low 7 bits are the exponent in excess of 64

Remaining bytes:

base 100 digits (in 100 complement format for negative numbers)

The length in bytes of the packed DECIMALTYPE number is 1 plus the num-
ber of base 100 digits. It can vary from 2 to 17 bytes. This format permits sorts
of DECIMALTYPE numbers using a simple unsigned byte-by-byte compari-
Header Files B-7

son. Zero is represented as 80,00,00,... (in hexadecimal). Figure B-3 shows the
contents of the header file decimal.h that you must include in every program
that uses the DECIMALTYPE data type.

#ifndef _DECIMAL_H
#define _DECIMAL_H

/*
 * Unpacked Format (format for program usage)
 *
 * Signed exponent "dec_exp" ranging from -64 to +63
 * Separate sign of mantissa "dec_pos"
 * Base 100 digits (range 0 - 99) with decimal point
 * immediately to the left of first digit.
 */

#define DECSIZE 16
#define DECUNKNOWN -2

struct decimal
 {
 short dec_exp; /* exponent base 100 */
 short dec_pos; /* sign: 1=pos, 0=neg, -1=null */
 short dec_ndgts; /* number of significant digits */
 char dec_dgts[DECSIZE]; /* actual digits base 100 */
 };
typedef struct decimal dec_t;

/*
 * A decimal null will be represented internally by setting dec_pos
 * equal to DECPOSNULL
 */

#define DECPOSNULL (-1)

/*
 * DECLEN calculates minumum number of bytes
 * necessary to hold a decimal(m,n)
 * where m = total # significant digits and
 * n = significant digits to right of decimal
 */

#define DECLEN(m,n) (((m)+((n)&1)+3)/2)
#define DECLENGTH(len) DECLEN(PRECTOT(len),PRECDEC(len))

/*
 * DECPREC calculates a default precision given
 * number of bytes used to store number
 */

#define DECPREC(size) (((size-1)<<9)+2)

/* macros to look at and make encoded decimal precision
B-8 Header Files

 *
 * PRECTOT(x) return total precision (digits total)
 * PRECDEC(x) return decimal precision (digits to right)
 * PRECMAKE(x,y) make precision from total and decimal
 */

#define PRECTOT(x) (((x)>>8) & 0xff)
#define PRECDEC(x) ((x) & 0xff)
#define PRECMAKE(x,y) (((x)<<8) + (y))

/*
 * Packed Format (format in records in files)
 *
 * First byte =
 * top 1 bit = sign 0=neg, 1=pos
 * low 7 bits = Exponent in excess 64 format
 * Rest of bytes = base 100 digits in 100 complement format
 * Notes -- This format sorts numerically with just a
 * simple byte by byte unsigned comparison.
 * Zero is represented as 80,00,00,... (hex).
 * Negative numbers have the exponent complemented
 * and the base 100 digits in 100's complement
 */

#endif /* _DECIMAL_H */

Figure B-3 Contents of decimal.h File
Header Files B-9

B-10 Header Files

Appendix
C

Error Codes
Four bytes, isstat1, isstat2, isstat3, and isstat4, return status
information after C-ISAM calls. These bytes are primarily
used by COBOL programs that use C-ISAM files. isstat1
holds general status information, such as the success or
failure of a C-ISAM call; isstat2 contains more specific infor-
mation that has meaning based on the status code in
isstat1.

The following figure lists the values of isstat1:

Description

Successful Completion

End of File

Invalid Key

System Error

User Defined Errors

isstat1
Value

0

1

2

3

9

The following figure shows the values of isstat2 in conjunction with isstat1:

Indication

No further information is available.

Duplicate key found.

After a READ, this indicates that the key value for the
current key is equal to the value of that same key in the next
record.

After a WRITE or REWRITE, this indicates that the record
just written created a duplicate key value for at least one
alternate record key for which duplicates are allowed.

The COBOL program has changed the primary key value
between the successful execution of a READ statement and
the execution of the next REWRITE statement.

An attempt has been made to write or rewrite a record that
would create a duplicate key in an indexed file.

No record with the specified key can be found.

An attempt has been made to write beyond the externally
defined boundaries of an indexed file.

The value of status key two is defined by the user.

isstat2

0

2

1

2

3

4

isstat1

0 - 9

0

2

9

C-2 Error Codes

The following figure explains the combinations of isstat3 and isstat4:

Indication

Successful completion; no further information is available.

Successful completion; duplicate key found.

After a READ, this indicates that the key value for the
current key is equal to the value of that same key in the next
record. After a WRITE or REWRITE, this indicates that the
record just written created a duplicate key value for at least
one alternative record key for which duplicates are allowed.

Beginning or end of file was reached without successful
completion

An attempt was made to WRITE or REWRITE a record that
would create a duplicate key for a key that does not allow
duplicate values.

No record with the specified key can be found.

The filename specified in the isopen() function does not
exist.

The mode parameter specified in the isopen() function is not
allowed for the file.

There is a conflict between the fixed file attributes and the
mode parameter specified in the isopen() function.

An attempt was made to close a file that was not open.

This call requires a current record. Either there is no current
record, or the current record has been deleted.

An attempt was made to WRITE or REWRITE a record that
is larger or smaller than is allowed for the file.

isstat4

0

2

0

2

3

5

7

9

2

3

4

isstat3

0

0

1

2

2

3

3

3

4

4

4

Error Codes C-3

Indication

A READ with ISNEXT was attempted and there is no valid
next record, either because no current record is defined or
because the previous READ encountered an end condition.

A READ or isstart() was attempted on a file not opened with
mode ISINPUT or ISINOUT.

A WRITE or iswrcurr() was attempted on a file not opened
with mode ISOUTPUT or ISINOUT.

A DELETE, REWRITE, isdelrec(), isdelcurr(), isrewrec(),
or isrewcurr() was attempted on a file not opened with mode
ISINOUT.

Implementor-defined errors; the value of isstat4 is defined
by the implementor.

isstat4

6

7

8

9

isstat3

4

4

4

4

9

C-4 Error Codes

The following figure shows the relationships between the isstat variables and
the ISAM error codes. For other errors that do not support isstat3 and isstat4,
isstat3 equals isstat1 and isstat4 equals isstat2.

Description

Anattemptwasmade toadda
duplicate value to an index
via iswrite, isrewrite,
isrewcurr, or isaddindex.

An attempt was made to
perform some operation on a
C-ISAM file that was not
previously opened using the
isopen call.

One of the arguments of the
C-ISAM call is not within the
range of acceptable values
for that argument.

One or more of the elements
that make up the key
description is outside of the
range of acceptable values
for that element.

The maximum number of
files that can be open at one
time would be exceeded if
this request were processed.

The format of the C-ISAM
file has been corrupted.

To add or delete an index, the
file must have been opened
with exclusive access.

isstat4

2

2
7
8
9
0

7
9
4

0

0

0

isstat3

2

4
4
4
4
4

3
3
4
9

9

9

9

9

isstat2

2

0

0

0

0

0

isstat1

2

9

9

9

9

9

9

Number

100

101

102

103

104

105

106

Name

EDUPL

ENOTOPEN

EBADARG

EBADKEY

ETOOMANY

EBADFILE

ENOTEXCL
Error Codes C-5

Description

The record or file requested
by this call cannot be
accessed because another
user has locked it.

An attempt was made to add
an index that has been
defined previously.

An attempt was made to
delete the primary key value.
The primary key may not be
deleted by the isdelindex
call.

The beginning or end of file
was reached.

Norecordcouldbe found that
containedtherequestedvalue
in the specified position.

This call must operate on the
current record. The current
record is not defined.

Another user has locked the
file exclusively.

The filename is too long.

The lock file cannot be
created.

Adequate memory cannot be
allocated.

Bad custom collating.

Cannot read log file record.

isstat4

0
6

3

3
6

0

isstat3

9

9

9

1
4

2

4
4

9

9

9

isstat2

0

3

1

0

0

0

isstat1

9

9

9

1

2

2

9

9

9

9

9

9

Number

107

108

109

110

111

112

113

114

115

116

117

118

Name

ELOCKED

EKEXISTS

EPRIMKEY

EENDFILE

ENOREC

ENOCURR

EFLOCKED

EFNAME

ENOLOK

EBADMEM

EBADCOLL

ELOGREAD
C-6 Error Codes

Description

Record format of transaction
log file cannot be recognized.

Cannot open transaction log
file.

Cannot write to transaction
log file.

Not in transaction.

Beginning of transaction not
found.

Cannot use Network File
Server.

Bad record number.

No primary key.

No logging.

Too many users.

No free disk space.

Record too long.

Audit trail exists.

No more locks.

Demo limits have been
exceeded.

Must be in ISMANULOCK
mode

Incompatible file format

isstat4isstat3isstat2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

isstat1

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

Number

119

120

121

122

124

125

126

127

128

129

131

132

133

134

150

153

171

Name

EBADLOG

ELOGOPEN

ELOGWRIT

ENOTRANS

ENOBEGIN

ENONFS

EBADROWID

ENOPRIM

ENOLOG

EUSER

ENOFREE

EROWSIZE

EAUDIT

ENOLOCKS

EDEMO

ENOMANU

EBADFORMAT
Error Codes C-7

C-8 Error Codes

D
Appendix
File Formats
C-ISAM uses the following four kinds of file formats:

■ Index file formats

■ Data file formats

■ Audit trail file formats

■ Transaction file formats

The following sections present the formats of these nodes. The relation-
ships between the nodes are discussed in Chapter 2, “Indexing.” This sec-
tion describes all the file formats. You can use this section as a complete
reference.

Index File Formats
C-ISAM index files (.idx) contain the following nodes:

■ Dictionary node

■ Key description node

■ Remainder storage node

■ B+ tree node

■ Free-list node

■ Audit trail node

The dictionary node has two fields to support variable-length records. The
remainder storage node is used exclusively for variable-length records.
The next sections describe these and other nodes in their entirety.

D-2 C-ISAM Programm

Dictionary Node
Dictionary Node

Byte
Offset

Number
of Bytes Item Value

0 2 validation FE53

2 1 number of reserved bytes at start of index node 2

3 1 number of reserved bytes at end of index node 2

4 1 number of reserved bytes per key entry. Includes
record number.

4

5 1 reserved 4

6 2 index file node length - 1. (511 or
1023)

8 2 number of keys

10 2 reserved

12 1 file version number

13 2 data record length in bytes

15 4 index node number of first key description

19 6 reserved

25 4 index node number of free data record list

29 4 index node number of free index node list

33 4 record number of last record in data file

37 4 index node number of last node in index file

41 4 transaction number

45 4 unique id

49 4 pointer to audit trail information

53 2 maximum data record length

55 4 free group 0 hash pointer

 (1 of 2)
er’s Manual

Key Description Node
Key Description Node

59 4 free group 1 hash pointer

63 4 free group 2 hash pointer

67 4 free group 3 hash pointer

71 4 free group 4 hash pointer

Byte Offset
Number
of Bytes Item Value

0 2 Number of bytes used in this
node

2 4 Index node for continuation of
key descriptions

6 2 length of description

T
he

se
 s

ix
 it

em
s

re
pe

at
 fo

r
ea

ch
 k

ey8 4 Index node number of root

12 1 Compression flags

T
hese three item

s repeat
 for each part of the key

13 2 Length of key part 1 (top bit =
duplicates)

15 2 Position in data record

17 1 Data type parameter

n-2 1 Flag FF

n-1 1 End of key description node 7E

Byte
Offset

Number
of Bytes Item Value

 (2 of 2)
File Formats D-3

D-4 C-ISAM Programm

Remainder Storage Node
Remainder Storage Node

Byte Offset
Number of
Bytes Item Value

0 2 Reserved

2 2 Constant number 7E26

4 4 Forward pointer in hashed remainder storage
page free list

8 4 Backward pointer in hashed remainder storage
page free list

12 2 Free space available in this remainder storage
page

4

14 2 Offset to free space in this remainder storage page

16 4 Remainder pointer to next remainder space, if any.

20 1 Flags

21 1 Number of slots allocated

22 1 Hash group for free list use

23 varies Data storage space

varies Free space

4 Slot table, lowest entry

4 Slot table entry

....

n-6 4 Slot table, highest entry

n-2 1 Type 7C

n-1 1 Reserved
er’s Manual

B+ Tree Node
B+ Tree Node

Byte Offset
Number
of Bytes Item Value

0 2 Number of bytes used in this node

2 1 Count of leading bytes, if compressed

R
ep

ea
ts

 fo
r

ea
ch

 k
ey

 e
nt

ry

3 1 Count of trailing blanks, if compressed

4 k Key (may be compressed)

4+k 2 For duplicate key, if compressed

6+k 4 Pointer to data record (top bit may be
duplicates flag)

n-2 1 Index tree number

n-1 1 Level in tree 0 = leaf
node
File Formats D-5

D-6 C-ISAM Programm

Free-list Node
Free-list Node

Audit Trail Node

Byte Offset
Number
of Bytes Item Value

0 2 Number of bytes used in this node (n)

2 4 Count of leading bytes, if compressed

6 n-8 Count of trailing blanks, if compressed

n-2 1 Indicates data or index file FF = data file
FE = index file

n-1 1 End of list node flag 7F

Byte Offset
Number
of Bytes Item Value

0 2 Number of bytes used in this node (n)

2 2 Flags 0 = audit trail is on
1 = audit trail is
off

4 64 Audit trail pathname

. . .

n-1 1 End of list node flag 7D
er’s Manual

Data File Format
Data File Format
Data files (.dat) contain only fixed-length data records, a flag at the end of
each record, and if the data has a variable-length portion, two additional
fields describing the length and placement of the variable-length portion.

If the flag is equal to zero (ASCII null), the record is deleted. Figure D-1 shows
the data file format.

Figure D-1
Data file (.dat) format

 Audit Trail File Format
The audit trail file contains records consisting of a fixed-length header and an
image of a data record. If the audit trail is associated with a file that contains
variable-length records, it contains a two-byte entry that indicates the actual
length of the data record. (This entry is not used in audit trails for fixed-
length record files.) The following figure shows the format for audit trail files
for variable-length records.

Byte Offset
Number
of Bytes Item

0 r Record with length r

r 1 Delete flag

r+1 2 The length of the valid data in the remainder portion; can
be less than space allocated.

r+3 4 The first byte is the slot number (where first part of remain-
der is stored); the last 3 bytes are the remainder node num-
ber.
File Formats D-7

D-8 C-ISAM Programm

Transaction File Formats
Figure D-2
Audit Trail Records

If the operation is a rewrite, both the before and after images will be recorded
in the audit trail file. The before image is listed first as an rr type, and it is fol-
lowed by the after image as a ww type. Both have the same record number.

Transaction File Formats
Transaction file records contain a fixed-length header and other information,
which depends upon the transaction type. Figure D-3 shows the format of the
header.

Byte Offset
Number
of Bytes Item Value

0 2 audit trail record type aa = record added
dd = record deleted
rr = record before update
ww =record after update

2 4 time

6 2 process identification num-
ber

8 2 user identification

10 4 data file record number

14 2 actual length of variable-
length data in bytes

16 r image of data record

r+16
er’s Manual

Transaction File Formats
Figure D-3
Transaction Record Header Format

The transaction log file format header is the same for variable-length records
as for fixed-length records. The following example lists all the transaction
types:

/* record header definition */

#define LG_LEN 0/* current record length */
#define LG_TYPE LG_LEN+INTSIZE/* log record type */
#define LG_XID LG_TYPE+2/* transaction id */
#define LG_USER LG_XID+INTSIZE/* user name */
#define LG_TIME LG_USER+2/* transaction time */
#define LG_PREV LG_TIME+LONGSIZE/* previous log record */
#define LG_PREVLEN LG_PREV+LONGSIZE/* previous log length */

/* BEGIN, COMMIT, and ROLLBACK WORK record definition */
#define LG_TXSIZE LG_PREVLEN+INTSIZE+INTSIZE
/* record size */

/* build file record definition */
#define LG_FMODE LG_PREVLEN+INTSIZE/* build mode */
#define LG_RECLEN LG_FMODE+INTSIZE
/* minimum record length */
#define LG_MAXLEN LG_RECLEN+INTSIZE/* max rec length or
zero */
#define LG_KFLAGS LG_MAXLEN+INTSIZE/* key flag */
#define LG_NPARTS LG_KFLAGS+INTSIZE/* number of key parts */
#define LG_KLEN LG_NPARTS+INTSIZE/* total key length */

/* erase file record definition */

Byte Offset
Number
of Bytes Item

0 2 Length of the log record

2 2 Transaction type

4 2 Transaction identification

6 2 User identification

8 L Transaction time, L is the size of a long int. Measured as the
number of seconds since midnight, 1970-01-01.

8 + L 8 Reserved

16 + L
File Formats D-9

D-10 C-ISAM Programm

Transaction File Formats
#define LG_FNAME LG_PREVLEN+INTSIZE/* directory path name */

/* rename file record definition */
#define LG_OLEN LG_PREVLEN+INTSIZE/* length of old filename
*/
#define LG_NLEN LG_OLEN+INTSIZE/* length of new filename */
#define LG_ONAME LG_NLEN+INTSIZE/* old filename */

/* open and close file record definition */
#define LG_ISFD LG_PREVLEN+INTSIZE/* isfd of file */
#define LG_VARLEN LG_ISFD+INTSIZE/* VARLEN flag of file */
#define LG_FPATH LG_VARLEN+INTSIZE/* directory path name */

/* create and drop index */
#define LG_IFLAGS LG_ISFD+INTSIZE/* key flags */
#define LG_INPARTS LG_IFLAGS+INTSIZE
/* number of key parts */
#define LG_IKLEN LG_INPARTS+INTSIZE/* total key length */

/* set unique id */
#define LG_UNIQID LG_ISFD+INTSIZE/* new unique id */

/* before or after image record definition */
#define LG_RECNO LG_ISFD+INTSIZE/* record number */
#define LG_IMGLEN LG_RECNO+LONGSIZE/* record image length */
#define LG_RECORD LG_IMGLEN+INTSIZE/* record data */

/* update image (before and after together) */
#define LG_BEFLEN LG_RECNO+LONGSIZE
/* length of before image*/
#define LG_AFTLEN LG_BEFLEN+INTSIZE/* length of after image*/
#define LG_BUPDATE LG_AFTLEN+INTSIZE
/* before image for update*/
/* (followed by the afterimage) */

/* savepoint record */
#define LG_SAVEPT LG_PREVLEN+INTSIZE/* savepoint number */
#define LG_SSIZE LG_SAVEPT+INTSIZE/* record size */

/* log memo record */
#define LG_LOCATION LG_PREVLEN+INTSIZE
#define LG_ISERRNO LG_LOCATION+LONGSIZE
#define LG_ERRNO LG_ISERRNO+INTSIZE
#define LG_ISERRIO LG_ERRNO+INTSIZE
#define LG_ISSTAT1 LG_ISERRIO+INTSIZE
#define LG_ISSTAT2 LG_ISSTAT1+1
#define LG_ISSTAT3 LG_ISSTAT2+1
#define LG_ISSTAT4 LG_ISSTAT3+1
er’s Manual

Transaction File Formats
#define LG_TEXT LG_ISSTAT4+1

#define LG_PAGESIZE 4096/* default log buff size */

/* log record types */
#define LG_ERROR 0/* log read or write error */
#define LG_BEGWORK 1/* BEGIN WORK */
#define LG_COMWORK 2/* COMMIT WORK */
#define LG_ROLWORK 3/* ROLLBACK WORK */
#define LG_DELETE 4/* deleted record */
#define LG_INSERT 5/* newly inserted record */
#define LG_UPDATE 6/* updated record */
#define LG_VERSION 7/* version */
#define LG_SVPOINT 8/* savepoint */
#define LG_FOPEN 9/* open file */
#define LG_FCLOSE 10/* close file */
#define LG_CKPOINT 11/* checkpoint */
#define LG_BUILD 12/* build new file */
#define LG_ERASE 13/* erase old file */
#define LG_RFORWARD 14/* ROLLFORWARD */
#define LG_CINDEX 15/* create index */
#define LG_DINDEX 16/* drop index */
#define LG_EOF 17/* end of log file */
#define LG_RENAME 18/* rename file */
#define LG_SETUNIQID 19/* set unique id */
#define LG_UNIQUEID 20/* get unique id */
#define LG_RBSVPT 21/* rollback to savepoint */
#define LG_CLUSIDX 22 /* create cluster index */
#define LG_MEMO 23 /* log file memo record */

#define TRUE1
#define FALSE 0

#define NOPNFL 16

struct txlist
 {
 int tx_xid; /* transaction id */
 struct xrloc *tx_nextrec; /* next log rec in transaction */
 struct txlist *tx_next; /* next transaction */
 };

struct xrloc
 {
 int xr_logtype; /* log record type */
 int xr_size; /* log record size */
 long xr_loc; /* location in log file */
 struct xrloc *xr_next; /* next log rec in transaction */
 };
File Formats D-11

D-12 C-ISAM Programm

Transaction File Formats
er’s Manual

Appendix
E

System
Administration

Overview
This appendix discusses installation issues and system
administration facilities that are available with C-ISAM.
You should use this appendix in conjunction with the
installation instructions that come with C-ISAM.

Installation
The following sections identify the files that are included
with your C-ISAM system and explain how to set the ISAM-
BUFS parameter for buffered input and output.

Files
Your installation media for the C-ISAM system contains
several program files that are installed by the commands in
installisam. (Refer to the installation instructions that
come with the product for exact instructions on how to run
these commands.)

The files that you need for programs that use C-ISAM files
are as follows:

isam.h must be included in each program.

decimal.h must be included in all programs that ref-
erence the Decimal data type. (See Chapter
3, ‘‘Data Types.’’)

libisam.a is used whenever you compile a program that uses C-ISAM
files. (See Chapter 1, ‘‘How to Use C-ISAM,’’ for compilation
instructions.)

bcheck can be used to check the integrity of a C-ISAM file. (See
Appendix A, ‘‘The bcheck Utility.’’)

Several sample programs also come with C-ISAM. You can compile and exe-
cute them to demonstrate that the files are correctly installed.

Buffers
C-ISAM uses buffering by the operating system to reduce the number of disk
I/O operations required during execution of function calls. In addition to
operating system buffers, C-ISAM maintains its own buffer pool to reduce the
number of times that it calls the operating system to perform I/O. These
internal buffers, therefore, further reduce overhead during C-ISAM calls. The
parameter ISAMBUFS allows you to specify the number of internal buffers
that are available to C-ISAM.

As a rule of thumb, you should allocate four buffers for every index that is in
use at any one time. You must allocate a minimum of four buffers (total). The
default ISAMBUFS value is 16.

If you are using the Bourne or Korn shell, enter the following commands:

ISAMBUFS=xx
export ISAMBUFS

If you are using the C shell, enter the following command:

setenv ISAMBUFS xx

In all cases, xx is the number of buffers you want to use, for example 4, 16, or
some other number.

Locking System
Depending on the operating environment, C-ISAM implements locking in
one of two ways. On most UNIX platforms, C-ISAM uses a kernal locking call
to optimize the locking of files and records. Where the operating system does
E-2 System Administration

not have a reliable and efficient locking-system call, C-ISAM creates and
manipulates a system of files to track record locks in the absence of a locking
call.

Transaction Logging and Recovery
You can use the transaction log file to write a program that recovers C-ISAM
files. The program opens the log file and issues the isrecover call, as follows:

islogopen(logfile);
isrecover();
islogclose();

Ordinarily, your program would include error checking in addition to the
islogopen, isrecover, and islogclose function calls.

Before you execute this program, you must restore the C-ISAM files that you
want to recover from their backup media.

All programs that access recoverable C-ISAM files must have the same log
file; otherwise, transaction recovery will not succeed. If you discover that a
program made unlogged changes to a C-ISAM file or that different log files
are being used concurrently, take the following actions:

1. Stop all programs that are using the C-ISAM file.

2. Make a backup copy of the C-ISAM file.

3. Restart all programs using the same new log file.

If you discover after recovery becomes necessary that unlogged changes
were made to a C-ISAM file or that different log files are being used concur-
rently, you cannot guarantee integrity by using isrecover.
System Administration E-3

E-4 System Administration

Index
Index
A

Access method
definition of Intro-3
implementation 2-13
indexed sequential 1-9

Access modes 1-16, 1-29, 8-15
Add a record

example 7-7
explanation 1-19
 see also Write a record

Add an index
example 2-8, 7-6
explanation 2-8
isaddindex 2-8, 8-8

Additional facilities
audit trail 6-6
file maintenance 6-3
force output 6-4
summary 6-13

Audit trail
command modes 6-7
creating a new trail 8-11
example using isaudit 6-6
explanation 6-6
file format 6-8
isaudit 8-10
use of 6-6
with variable-length records 6-7

B
bcheck

description and use of A-1
use 6-10
use in migrating files Intro-6

2 Index
use with variable-length record files
1-6

Begin a transaction, isbegin 5-4, 8-13
Block

definition of 2-22
see also Index

Buffers, ISAMBUFS parameter E-2
Build a file

example 1-16, 7-5
explanation 1-13
isbuild 8-15
locking mode 4-6
record size 1-14

B+ tree
adding to 2-16
delete from 2-21
growth of 2-17, 2-18
levels 2-15
maximum keys per node 2-15
nodes 2-13
organization 2-12
pointers 2-13
root 2-13
searching 2-15
sequential addition to 2-18
split 2-17

C
C library functions

comparison to C-ISAM functions 1-8
lseek 1-8
read 1-8
write 1-8

Call formats and descriptions 8-3
Cancel a transaction, isrollback 5-4, 8-56
Change a filename

audit trail 8-10
isrename 8-48

Choosing an index
see Selecting an in dex

Close a file
audit trail 8-10
data file 1-28, 8-19
isclose 1-28, 8-19
islogclose 5-7, 8-38
transaction log file 5-7, 8-38

Closing files
iscleanup 6-4, 8-18

Cluster index 6-9, 8-20
Commit a transaction, iscommit 5-4, 8-22
Compilation

header files 1-31
using lint 1-31
 see also System administration

Compression of keys
see Key

Concurrency control
degree of concurrency 4-11
in transactions 5-8, 5-10
locking 4-3

Conventions
typographical Intro-5

Conversion functions
 see Format-conversion functions

Create a file
 see Build a file

Current index
 see Index

Current record
definition of 1-19
set by isread 1-26, 8-43
set by iswrcurr 1-20, 8-65
set by iswrite 8-67

D
Data file

characteristics 1-31, 8-33
cluster 6-9, 8-20
organization 1-31
space utilization 1-32

Data integrity
bcheck A-1
see also Transaction

Data record
adding 1-19
address of 1-5
customer record 3-6
declaration of 1-5
deleting 1-21
employee record 1-4, 1-13, 2-3, 3-3, 7-3
identifying a 1-18
in a C-ISAM file 1-4, 3-5
performance record 7-3
record layout 1-5, 3-6
reservation of space for 1-4, 3-6
summary of identification methods

1-19

transfer to and from program 1-7
updating 1-22

Data representation
character data 3-8
comparison of C-ISAM to C language

3-5
DECIMALTYPE data 3-11
double-precision data 3-11
floating-point data 3-11
format-conversion 3-8
integer data 3-9
long integer data 3-9
machine independence 3-4
overview 1-6

Data type
conversion functions 3-8
DECIMALTYPE 3-11
defined for keys 3-3
in variable-length record 3-7
introduction to data types 1-6
parameters 3-4
summary 3-16
see also DECIMALTYPE data type

Deadlock, definition 4-10
decadd, syntax and use of 8-102
deccmp, syntax and use of 8-104
deccopy, syntax and use of 8-105
deccvint, syntax and use of 8-93
deccvlong, syntax and use of 8-95
decdiv, syntax and use of 8-102
dececvt, syntax and use of 8-106
decfcvt, syntax and use of 8-106
DECIMALTYPE data type

accuracy 3-13
dec_t 3-11
defining Decimal data 3-11
sizing DECIMALTYPE numbers 3-12
see also DECIMALTYPE functions

DECIMALTYPE functions
decadd 8-102
deccmp 8-104
deccopy 8-105
deccvint 8-93
deccvlong 8-95
decdiv 8-102
dececvt 8-106
decfcvt 8-106
decmul 8-102
decsub 8-102

dectoasc 8-91
dectodbl 8-101
dectoflt 8-99
dectoint 8-94
dectolong 8-97
decvasc 8-89
decvdbl 8-100
decvflt 8-98
lddecimal 3-13, 8-73
overview 3-14
stdecimal 3-13, 8-82

decmul, syntax and use of 8-102
decsub, syntax and use of 8-102
dectoasc, syntax and use of 8-91
dectodbl, syntax and use of 8-101
dectoflt, syntax and use of 8-99
dectoint, syntax and use of 8-94
dectolong, syntax and use of 8-97
decvasc, syntax and use of 8-89
decvdbl, syntax and use of 8-100
decvflt, syntax and use of 8-98
dec_t

see DECIMALTYPE data type 3-11
Delete a file

 see Erase a file
Delete a record

current record 1-22, 8-24
example 1-21, 7-10
isdelcurr 1-22, 8-24
isdelete 1-21, 8-25
isdelrec 1-22, 8-29
using the primary key 1-21, 8-25
using the record number 1-22, 8-29

Delete an index
explanation 2-9
isdelindex 2-9, 8-27

dictinfo
definition of 2-11
 see also Index

Dictionary block
see Index

Dictionary format D-1
di_nkeys variable 8-34
di_recsize variable 8-34
Documentation notes Intro-5
Documentation, other useful Intro-4
Duplicate key

compression 2-26
Index 3

4 Index
purpose 1-12
see also Key

E
End a transaction

iscommit 5-4, 8-22
isrollback 5-4, 8-56

Erase a file
audit trail 8-31
data file 6-4
iserase 6-4, 8-31
.lok lock file 8-31

Error handling
C-ISAM error codes C-1
end of file 1-26
example 4-12
in example programs 7-4
locked records 4-11
overview 1-17
record not found 1-24
return codes 1-17
use of iserrno 1-17
values for iserrno C-1

Error messages Intro-4
Example programs

build a file 7-5
chaining 7-17
random update 7-10
record definitions in 7-3
sequential processing 7-14
to add indexes 7-6
to add records 7-7
using transactions 7-22

F
fcntl() locking Intro-6, 4-10, 8-44
Field

conversion between program and
data record 1-6

declaration using pointer 1-5, 3-7
definition of 1-3
key 1-11
offset 1-4, 3-7

File
definition of 1-3
maintenance 6-9
see also Operating system files

File descriptor
returned by isbuild 1-13

returned by isopen 1-29
use of 1-13

File-level locking
explanation 4-6
see also Locking
see also Locking modes

Find a record
explanation 1-24
key value 1-10
see also Read a record
see also Selecting an index

Flush buffers, isflush 6-4, 8-32
Format

dictionary D-1
Format-conversion functions

character data 3-8
double-precision data 3-10
explanation 3-8
floating-point data 3-10
integer data 3-8
introduction to 1-6
ldchar 3-8, 8-70
lddbl 3-10, 8-71
lddblnull 3-10, 8-72
lddecimal 3-13, 8-73
ldfloat 3-10, 8-75
ldfltnull 3-10, 8-76
ldint 3-8, 8-77
ldlong 3-9, 8-78
long integer data 3-8
stchar 3-8, 8-79
stdbl 3-10, 8-80
stdblnull 3-10, 8-81
stdecimal 3-13, 8-82
stfloat 3-10, 8-84
stfltnull 3-10, 8-85
stint 3-8, 8-86
stlong 3-9, 8-87
see alsoDECIMALTYPE functions

Free-list block
see Index

Function list
format-conversion functions 8-4
functions to implement locking 8-4
functions to implement transactions

8-4
functions to manipulate

DECIMALTYPE data 3-15, 8-5
functions to manipulate files 8-3
functions to manipulate indexes 8-3
functions to manipulate records 8-3

functions, additional 8-4
Function return codes

see Error handling

H
How to use C-ISAM 1-3

I
Identifying records

by key value 1-18
by record number 1-19
current record 1-18
summary of methods 1-19

Index
add an index 2-8
characteristics 2-11, 8-33
cluster 6-9, 8-20
current 1-26
DECIMALTYPE data in 3-11
defining a key for 1-15, 2-3
definition in C-ISAM 2-4
dictionary node 2-22
explanation 2-9
file organization 2-22
file organization and variable-length

records 1-6
free-list node 2-23
identify an index 2-5, 2-12
implementation 2-13
isaddindex 2-8, 8-8
isdelindex 2-9, 8-27
key description node 2-23
maximum number of parts 8-8
organization 2-12
performance 2-23
physical order 2-10
primary 1-12, 2-10
record number order 2-10

Indexed access, overview 1-9
Indexed sequential access method

flexibility 1-9
overview 1-9

Informix products
application development tools Intro-4

isaddindex
example 7-6
explanation 2-8
syntax and use of 8-8

ISAMBUFS E-2
isaudit

command modes 6-7
explanation 6-6
syntax and use of 8-10

ISAUTOLOCK lock mode 8-15, 8-40
isbegin

explanation 5-4
syntax and use of 8-13
 see also Transaction

isbuild
example 1-16, 7-5
syntax and use of 8-15

iscleanup 1-30, 6-4
syntax and use of 8-18

isclose
caution 8-19
syntax and use of 8-19

iscluster
explanation 6-9
regenerating indexes 6-10
syntax and use of 8-20

iscommit
explanation 5-4
syntax and use of 8-22
 see also Transaction

ISCURR locator mode 1-26, 1-27
isdelcurr

example 7-10
explanation 1-22
syntax and use of 8-24

isdelete
example 7-10
explanation 1-21
syntax and use of 8-25

isdelindex
explanation 2-9
syntax and use of 8-27

isdelrec
explanation 1-22
syntax and use of 8-29

ISEQUAL locator mode 1-26, 1-27
iserase

explanation 6-4
syntax and use of 8-31

iserrno
description of 1-17
end of file 1-26
locked records 4-11
Index 5

6 Index
record not found 1-24
use of 1-17
values of C-1

ISEXCLLOCK 1-16
ISEXCLLOCK lock mode 8-15, 8-40
ISFIRST locator mode 1-26, 1-27
ISFIXLEN mode 8-16, 8-40
isflush

explanation 6-4
syntax and use of 8-32

ISGREAT locator mode 1-26, 1-27
ISGTEQ locator mode 1-26, 1-27
isindexinfo

example 1-31, 2-12
syntax and use of 8-33

ISINOUT access mode 8-15, 8-32, 8-40
ISINPUT access mode 8-15, 8-40
ISKEEPLOCK 4-9
ISLAST locator mode 1-26, 1-27
ISLCKW 8-43
islock

explanation 4-8
see also isunlock
syntax and use of 8-36

islogclose
explanation 5-7
syntax and use of 8-38
see also Transaction

islogopen
caution 8-39
explanation 5-7
syntax and use of 8-39
see also Transaction

ISMANULOCK lock mode 8-15, 8-36,
8-40

ISNEXT locator mode 1-26
ISNOLOG mode 8-16
isopen

explanation 1-28
ISTRANS option 5-5
syntax and use of 8-40
see also Access Modes
see also Locking
 see also Transaction

ISOUTPUT access mode 8-15, 8-32, 8-40
ISPREV locator mode 1-26
isread

example 1-24, 7-10, 7-14
explanation 1-24
syntax and use of 8-42
 see also Locking

isreclen
with variable-length files 1-13

isreclen global variable
opening a file 1-30
set by isindexinfo 8-34

isrecnum
explanation 1-19
finding records by record number

1-28
set by isdelcurr 8-24
set by isdelete 8-25
set by isdelrec 8-29
see also Record number

isrecover
explanation 5-7
syntax and use of 8-46
 see also System Administration
 see also Transaction

isrelease
explanation 4-9
syntax and use of 8-47
 see also Locking

isrename
explanation 6-3
syntax and use of 8-48

isrewcurr
explanation 1-23
syntax and use of 8-50

isrewrec
explanation 1-24
syntax and use of 8-52

isrewrite
example 7-10
explanation 1-23
syntax and use 8-54

isrollback
 see Transaction
explanation 5-4
syntax and use of 8-56
with ISTRANS mode 8-16

issetunique
explanation 6-5

syntax and use of 8-58
 see also isuniqueid

ISSKIPLOCK 1-25
isstart

example 7-10, 7-14, 7-17
explanation 1-26
syntax and use of 8-60

ISTRANS mode 8-16, 8-40
isuniqueid

explanation 6-5
syntax and use of 8-63
 see also issetunique

isunlock
explanation 4-8
syntax and use of 8-64
 see also islock

ISVARLEN mode 1-30, 8-16, 8-40
ISWAIT 8-43
iswrcurr

example 1-20
syntax and use of 8-65

iswrite
example 1-20, 7-7
syntax and use 8-67

K
Kernel locking 4-10
Key

choice of 1-11
compression 2-6, 2-24
data type definition 3-3
defining a key 1-14
definition in C-ISAM 1-11, 2-3
definition of Intro-3, 1-9
descending order 2-7
duplicate 1-12, 2-6
flags 2-5, 2-6
key description structure 1-11, 1-15,

2-5
maximum size 2-7, 8-8
number of parts 2-5, 2-7
overview of usage 1-10
packing density 2-23
primary 1-12, 1-23, 2-10
unique 1-12, 2-5, 2-6
value 1-18

Key description block
see Index

Key description structure
defining a key 2-5
definition of 2-6
overview 1-15
see also Key

keydesc
defining a key 2-5
defining a primary key 1-15
definition of 2-6
see also Key

keypart
defining a key 2-5
definition of 2-7
 see also Key

Keys in C-ISAM Files 1-10
Keyword

definition of 1-9
see also Key

k_flags variable 2-6
k_nparts variable 1-28, 8-16

L
ldchar

explanation 3-8
syntax and use of 8-70

lddbl
explanation 3-10
syntax and use of 8-71

lddblnull
explanation 3-10
syntax and use of 8-72

lddecimal
explanation 3-13
syntax and use of 8-73

ldfloat
explanation 3-10
syntax and use of 8-75

ldfltnull
explanation 3-10
syntax and use of 8-76

ldint
explanation 3-8
syntax and use of 8-77

ldlong
explanation 3-9
syntax and use of 8-78

Leading character compression
explanation 2-25
Index 7

8 Index
see also Key
Level

see B+ tree
libisam.a library E-2
Locking

automatic locking with isread 4-9
by transactions 5-9
compatibily between versions Intro-6
concurrency control 4-3
degree of concurrency 4-11
during add or delete of an index 4-7
file-level 4-6, 8-36
implementation E-2
islock 4-8, 8-36
ISLOCK option in isread 4-9, 8-42
isrelease 4-9, 8-47
ISSKIPLOCK option in isread 8-42
isunlock 4-8, 8-64
manual 4-7, 4-8
overview 4-3
record-level 4-8, 8-42, 8-43
single user systems 4-6
specifying no locking 4-6
summary 4-12
types of 4-6
unlock file 8-64
unlock records 8-47
use of 4-6
see also Locking modes

Locking modes
automatic record locking 4-9
exclusive file locking 1-29, 2-9, 2-10,

4-6
ISAUTOLOCK 4-9
ISEXCLLOCK 1-29, 2-9, 2-10, 4-6
ISMANULOCK 1-29, 4-6, 4-7, 4-9
ISWAIT 4-10
manual file locking 4-7
manual record locking 4-9
no locking 1-29, 4-6
summary 4-12
waiting for locks 4-10

M
Machine notes Intro-5
Manipulating records in C-ISAM files

1-18
MAXKEYSIZE

explanation of 8-8

N
Node

 see B+ tree
NPARTS 2-5, 8-8

O
Offset, defining a field 1-4, 3-7
On-line files Intro-5
Open a file

access modes 1-29
audit trail 6-7, 8-10
data file 1-28, 8-40
file descriptor 1-29
islogopen 5-7, 8-39
isopen 1-28, 8-40
ISTRANS option 5-5
locking mode 1-29, 4-6
maximum number of open files 1-30
of variable-length records 1-30
transaction log file 5-7, 8-39
with isbuild 1-16

Operating system files
.dat 1-13
.idx 1-13

Organization of C-ISAM files
data file 1-32
index file 2-22
overview 1-13

P
Performance

key compression 2-25
key size 2-23, 2-24
multiple indexes 2-27
tree height 2-23

Physical order index 2-10
Pointer

definition of 1-9
see also B+ tree

Pointer arithmetic, to define a field 1-5
Primary index

see Index
Primary key

see Key
Programs

see Example programs

R
Read a record

automatic locking 4-9
by record number 1-28, 8-43
example 1-24, 7-17
explanation 1-24
isread 1-24, 8-42
locking option 4-9, 8-42, 8-43
retrieval modes, see Search modes
search modes 1-25, 8-42
summary of search modes 1-26
see also isread

Record
definition of 1-3
length 1-4
variable-length 1-4
see also Data record

Record number
definition of 1-19
example of retrieval by 1-28
isrecnum 1-19
retrieval by 1-28, 2-10
see also Data record

Record-level locking
explanation 4-8
see also Locking
see also Locking modes

Recover transactions, isrecover 8-46
Recovery

caution 5-7
explanation 5-7
rollforward 5-8
transaction 8-46
see also System administration
see also Transaction

Release notes Intro-5
Release record locks

 see isrelease
Remove a file

 see Erase a file
Remove an index

see isdelindex
Rename a file, isrename 6-3, 8-48
Reorganization

data file 1-32
index 2-21

Representation of data
see Data representation

RESETLOCK environment variable
description of Intro-6

Retrieval by record number
using isread 1-28, 8-43
using isstart 1-28, 8-61

Return codes
see Error handling

Rewrite a record
by record number 1-24, 8-52
current record 1-23, 8-50
example 1-23, 7-10
identified by primary key 1-23, 8-54
isrewcurr 1-23, 8-50
isrewrec 1-24, 8-52
isrewrite 1-23, 8-54

Roll back a transaction, isrollback 5-4,
8-56

Rollforward recovery
see Recovery

Root
 see B+ tree

S
Selecting an index

example 7-14
explanation 1-26
isstart 1-26, 8-60
retrieval by record number 1-28
starting position within 1-27, 8-60,

8-61
Sequential access

example 1-25, 7-14
overview 1-9
see also isread
see also isstart

Skipping locked records 1-25
stchar

explanation 3-8
syntax and use of 8-79

stdbl
explanation 3-10
syntax and use of 8-80

stdblnull
explanation 3-10
syntax and use of 8-81

stdecimal
explanation 3-13
syntax and use of 8-82
Index 9

10 Index
stfloat
explanation 3-10
syntax and use of 8-84

stfltnull
explanation 3-10
syntax and use of 8-85

stint
explanation 3-8
syntax and use of 8-86

stlong
explanation 3-9
syntax and use of 8-87

System administration
files E-1
installation E-1
ISAMBUFS parameter E-2
locking E-2
transaction logging and recovery E-3

T
Trailing space compression

explanation 2-26
see also Key

Trailing spaces 1-8
Transaction

begin 5-4, 8-13
cancel 5-4, 5-6, 8-56
caution during recovery 5-7
close log file 5-7, 8-38
commit 5-4, 8-22
concurrency control 5-10
concurrent execution of 5-8
create log file 5-7
data integrity 5-8
definition of 5-3
example 5-5, 7-22
implementing 5-4
isaddindex in 8-8
isaudit in 8-11
isbegin 5-4, 8-13
isbuild 8-16
iscommit 5-4, 8-22
islogclose 5-7, 8-38
islogopen 5-7, 8-39
isrecover 5-7, 8-46, E-3
isrollback 5-4, 8-56
ISTRANS option in isopen 5-5
locking 5-9
logging 5-7, E-3
management services 5-4

open log file 5-7, 8-39
purpose of 5-3
recoverable, rollback disallowed 5-6
recovery 5-7, 8-46, E-3
rollforward recovery 5-8
summary 5-11
unit of work 5-4
with variable-length records 5-6
see also Recovery

Transaction management support
routines 5-3

Transfer of data, between program and
C-ISAM record 1-7

Typographical conventions Intro-5

U
Unique identifier

explanation 6-5
issetunique 6-5, 8-58
isuniqueid 6-5, 8-63

Unique key
purpose 1-12
see also Key

Unlock file
 see Locking

Unlock records
see Locking

Update a record
example 7-10
explanation 1-22
see also Rewrite a record

V
Variable-length records

building a file 1-13
data corruption 6-9
in transactions 5-6
programming with 1-5
with audit trails 6-7

W
Waiting for locks 8-43, 8-44
What is a C-ISAM file? 1-3
Why use transaction management? 5-3
Write a record

current record 1-20
example 7-7

iswrcurr 1-20, 8-65
iswrite 1-20, 8-67

X
X/Open compatibility 4-10
Index 11

12 Index

	Informix Online Documentation
	Table of Contents
	Preface
	Introduction
	C-ISAM and Other Informix Products
	Other Useful Documentation
	How to Use This Manual
	Typographical Conventions

	Useful On-Line Files
	Compliance with Industry Standards
	Changes in Locking Mechanisms
	Migrating C-ISAM Files

	How to Use C-ISAM
	Chapter Overview
	What Is a C-ISAM File?
	Data Records in C-ISAM Files
	Programming with Variable-Length Records
	Representation of Data

	Comparison of C-ISAM to C Library Functions
	Indexed Sequential Access Method
	Indexed Access
	Sequential Access
	Flexibility

	Keys in C-ISAM Files
	Using Keys
	Choosing a Key
	Key Descriptions
	Unique and Duplicate Keys
	Primary Keys

	Organization of C-ISAM Files
	Building a C-ISAM File
	Building a Variable-Length File

	C-ISAM Error Handling
	Manipulating Records in C-ISAM Files
	Identifying Records
	Using the Key Value
	Using the Current Record
	Using the Record Number
	Summary of Record Identification Methods

	Adding Records
	Deleting Records
	Updating Records
	Finding Records
	Using the isstart Function
	Finding Records by Record Number

	Opening and Closing Files
	Opening a File in Exclusive Mode
	Opening a Variable-Length File
	Maximum Number of Open Files
	Closing Fixed and Variable-Length Files

	Compiling Your C-ISAM Program
	C-ISAM Data File Structure
	Summary

	Indexing
	Overview
	Defining an Index
	Key Structures
	Manipulating Indexes
	Adding Indexes
	Deleting Indexes
	Defining Record Number Sequence
	Determining Index Structures

	B+ Tree Organization
	Searching for a Record
	Adding Keys
	Removing Keys

	Index File Structure
	Performance Considerations
	Key Size and Tree Height
	Key Compression
	Leading Character Compression
	Trailing Space Compression
	Duplicate Key and Maximum Compression

	Multiple Indexes

	Summary

	Data Types
	Overview
	Defining Data Types for Keys
	C-ISAM Machine-Independent Data Types
	Defining Data Records
	Data Types in Variable-Length Records
	C-ISAM Data Type Conversion Routines
	Character Data
	Integer and Long Integer Data
	Floating-Point and Double-Precision Data

	DECIMALTYPE Data Type
	Using DECIMALTYPE Data Type Numbers
	DECIMALTYPE Data Type Declaration
	Sizing DECIMALTYPE Numbers
	Storing and Retrieving DECIMALTYPE Numbers
	Manipulating DECIMALTYPE Numbers

	Summary

	Locking
	Overview ��
	Concurrency Control
	Types of Locking
	File-Level Locking
	Exclusive File Locking
	Manual File Locking

	Record-Level Locking
	Automatic Record Locking
	Manual Record Locking
	Waiting for Locks

	Increasing Concurrency
	Error Handling
	Summary

	Transaction Management Support�Routines
	Overview �
	Why Use Transaction Management?
	Transaction Management Services

	Implementing Transactions
	Transactions with Variable-Length Records

	Logging and Recovery
	Data Integrity
	Concurrent Execution of Transactions
	Locking
	Concurrency Issues

	Summary

	Additional Facilities
	Overview
	File Maintenance Functions
	Forcing Output
	Unique Identifiers
	Audit Trail Facility
	Using the Audit Trail
	Audit Trail File Format

	Clustering a File
	File Maintenance with Variable-Length Records
	If Data Files Are Corrupted
	If Index Files Are Corrupted

	Summary

	Sample Programs Using C-ISAM�Files
	Overview
	Record Definitions
	Error Handling in C-ISAM Programs
	Building a C-ISAM File
	Adding Additional Indexes
	Adding Data
	Random Update
	Sequential Access
	Chaining
	Using Transactions
	Summary

	Call Formats and Descriptions
	Overview �
	Functions for C-ISAM File Manipulation
	ISADDINDEX
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISAUDIT
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISBEGIN
	Overview
	Syntax
	Notes
	Return Codes
	Example

	ISBUILD
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISCLEANUP
	Overview
	Syntax
	Note
	Return Codes
	Example

	ISCLOSE
	Overview
	Syntax
	Explanation
	Note
	Return Codes
	Example

	ISCLUSTER
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISCOMMIT
	Overview
	Syntax
	Notes
	Return Codes
	Example

	ISDELCURR
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISDELETE
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISDELINDEX
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISDELREC
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISERASE
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISFLUSH
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISINDEXINFO
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Examples

	ISLOCK
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISLOGCLOSE
	Overview
	Syntax
	Note
	Return Codes
	Example

	ISLOGOPEN
	Overview
	Syntax
	Explanation
	Note
	Return Codes
	Example

	ISOPEN
	ISREAD
	ISRECOVER
	Overview
	Syntax
	Notes
	Return Codes
	Example

	ISRELEASE
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISRENAME
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISREWCURR
	Overview
	Syntax
	Explanation
	Notes

	ISREWREC
	Overview
	Explanation
	Notes
	Return Codes

	ISREWRITE
	Explanation
	Return Codes

	ISROLLBACK
	Overview
	Syntax
	Notes
	Return Codes
	Example

	ISSETUNIQUE
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISSTART
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Examples

	ISUNIQUEID
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	ISUNLOCK
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	ISWRCURR
	ISWRITE
	Syntax

	Format-Conversion and Manipulation Functions
	Format-Conversion Functions
	LDCHAR
	Overview
	Syntax
	Explanation
	Notes
	Example

	LDDBL
	Overview
	Syntax
	Explanation
	Example

	LDDBLNULL
	Overview
	Syntax
	Explanation
	Notes
	Example

	LDDECIMAL
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	LDFLOAT
	Overview
	Syntax
	Explanation
	Notes
	Example

	LDFLTNULL
	Overview
	Syntax
	Explanation
	Notes
	Example

	LDINT
	Overview
	Syntax
	Explanation
	Note
	Example

	LDLONG
	Overview
	Syntax
	Explanation
	Note
	Example

	STCHAR
	Overview
	Syntax
	Explanation
	Notes
	Example

	STDBL
	Overview
	Syntax
	Explanation
	Note
	Example

	STDBLNULL
	Overview
	Syntax
	Explanation
	Notes
	Example

	STDECIMAL
	Overview
	Syntax
	Explanation
	Notes
	Examples

	STFLOAT
	Overview
	Syntax
	Explanation
	Note
	Example

	STFLTNULL
	Overview
	Syntax
	Explanation
	Notes
	Example

	STINT
	Overview
	Syntax
	Explanation
	Note
	Example

	STLONG
	Overview
	Syntax
	Explanation
	Note
	Example

	DECIMALTYPE Functions
	DECCVASC
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	DECTOASC
	Overview
	Syntax
	Explanation
	Notes
	Return Codes
	Example

	DECCVINT
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECTOINT
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECCVLONG
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECTOLONG
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECCVFLT
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECTOFLT
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECCVDBL
	Overview
	Syntax
	Explanation
	Return Codes
	Example

	DECTODBL
	Overview
	Syntax
	Explanation
	Note
	Return Codes
	Example

	DECADD, DECSUB, DECMUL, and DECDIV
	Overview
	Syntax
	Explanation
	Note
	Return Codes

	DECCMP
	Overview
	Syntax
	Explanation
	Return Codes

	DECCOPY
	Overview
	Syntax
	Explanation

	DECECVT and DECFCVT
	Overview
	Syntax
	Explanation
	Notes
	Examples

	Summary

	The bcheck Utility
	Header Files
	Error Codes
	File Formats
	System Administration
	Index

