
Homework Assignment 3
2017/2018

Přemysl Čech

 Goal is to implement:
◦ a class isam which uses memory blocks

◦ a forward isam_iter iterator over isam

50 97

10 25 50 60 …

2 3 7 10 25 31 38

primary file

overflow space 5

…

index

 Utilizes memory blocks
◦ blocks are obtained through block_provider namespace
◦ all methods should be self explanatory – file block_provider.hpp

◦ simulates I/O operations, block IDs start from 1 (never 0)

 Three main parts
◦ Index – block IDs can fit in the main memory

 you can implement any variant you want

 search time – in the worst case 𝒪(log𝑁)

◦ Primary file – blocks stored through the block_provider
 blocks can be read sequentially – there should be a pointer to the

following block

 all records in blocks are stored in a sorted order by the key property

◦ Overflow space – in memory
 has given size

 when it is full, reorganization is needed

 template <class TKey, class TValue> class isam
◦ TKey – simple value type, no duplicates, comparable: operator<

◦ TValue – default constructible, assume reasonable usage

◦ constructor – two parameters

 block size 𝐵

 size of the overflow space

◦ associative container – indexer: TValue& operator[](TKey key)
 for both read and write operations into a container

◦ no deletion

◦ isam_iter begin() – points to the first record of the first data block

◦ isam_iter end() – points after the last record in the last block

number of records (TKey,TValue) ≥ 1

 TValue& operator[](TKey key)
◦ find appropriate block in the primary file using the index

◦ in case the key exists in the container, returns the value

◦ in case the key does not exist in the container
 if the block is not full insert new record to the block with default value

 else insert new record to the overflow space
 if the overflow space is full, reorganize

 reorganization
◦ insert all records from the overflow space to the primary file

(allocate new blocks if necessary)

◦ rebuild (correct) the index

◦ can be naive - no specific restrictions
 implement as efficiently as possible

 isam_iter
◦ the forward iterator category is good enough (ref)

◦ main purpose – read all records sorted by the keys from the primary file in a
sequential order

◦ should expose both key and value properties (like std::pair<TKey,TValue>)

◦ beware of constant/non constant variant

◦ operators accessing one record should be fast

 an iterator can hold one block in the main memory

◦ operators moving the pointer could be „slow“ (possible block I/Os)

2 3 7 10 25 31 38 …

isam_iter

http://www.cplusplus.com/reference/iterator/

 Specifications
◦ only one primary block can be loaded in the main memory at

the time

 for both isam and isam_iter

 during reorganization max. 2 blocks can be temporarily loaded

◦ size of one block should not exceed: 𝐵 ∙ si𝑧𝑒𝑜𝑓(𝑟𝑒𝑐𝑜𝑟𝑑) + 𝐶

 𝐶 is small

◦ isam copy constructor and operator can be deleted

 isam_iter can be copied

◦ be careful of proper indexer and iterator writes

 Examples:

isam<int, double> index(1, 1);
index[1] = 1;
{ auto it = index.begin(); it->second = 2; }
cout << index[1] << endl;
//output: 2

isam<int, string*> index(1, 2);
index[5] = new string("5");
index[2] = new string("2");
index[4] = new string("4"); //any records in the overflow space?
for (auto&& it : index)
{

cout << it.first << ":" << it.second << " ";
}
//output: 2:2 4:4 5:5

 You should follow best C++ practices
◦ proper naming, no duplicate code

◦ effective parameters passing

◦ correct allocation and deletion of all variables

◦ reasonable distribution of your code into functions and classes

◦ DO NOT CHANGE THE API – public function names must remain
the same!

 Submit your final solution to the ReCodEx system
◦ submit only one file: isam.hpp

◦ write your name in a comment at the beginning of the file

◦ 4 tests
 1 – basic container and iterator tests

 2 – iterator write tests

 3 – max. block loads tests

 4 – larger scale (speed) tests

