
Homework Assignment 3
2017/2018

Přemysl Čech

 Goal is to implement:
◦ a class isam which uses memory blocks

◦ a forward isam_iter iterator over isam

50 97

10 25 50 60 …

2 3 7 10 25 31 38

primary file

overflow space 5

…

index

 Utilizes memory blocks
◦ blocks are obtained through block_provider namespace
◦ all methods should be self explanatory – file block_provider.hpp

◦ simulates I/O operations, block IDs start from 1 (never 0)

 Three main parts
◦ Index – block IDs can fit in the main memory

 you can implement any variant you want

 search time – in the worst case 𝒪(log𝑁)

◦ Primary file – blocks stored through the block_provider
 blocks can be read sequentially – there should be a pointer to the

following block

 all records in blocks are stored in a sorted order by the key property

◦ Overflow space – in memory
 has given size

 when it is full, reorganization is needed

 template <class TKey, class TValue> class isam
◦ TKey – simple value type, no duplicates, comparable: operator<

◦ TValue – default constructible, assume reasonable usage

◦ constructor – two parameters

 block size 𝐵

 size of the overflow space

◦ associative container – indexer: TValue& operator[](TKey key)
 for both read and write operations into a container

◦ no deletion

◦ isam_iter begin() – points to the first record of the first data block

◦ isam_iter end() – points after the last record in the last block

number of records (TKey,TValue) ≥ 1

 TValue& operator[](TKey key)
◦ find appropriate block in the primary file using the index

◦ in case the key exists in the container, returns the value

◦ in case the key does not exist in the container
 if the block is not full insert new record to the block with default value

 else insert new record to the overflow space
 if the overflow space is full, reorganize

 reorganization
◦ insert all records from the overflow space to the primary file

(allocate new blocks if necessary)

◦ rebuild (correct) the index

◦ can be naive - no specific restrictions
 implement as efficiently as possible

 isam_iter
◦ the forward iterator category is good enough (ref)

◦ main purpose – read all records sorted by the keys from the primary file in a
sequential order

◦ should expose both key and value properties (like std::pair<TKey,TValue>)

◦ beware of constant/non constant variant

◦ operators accessing one record should be fast

 an iterator can hold one block in the main memory

◦ operators moving the pointer could be „slow“ (possible block I/Os)

2 3 7 10 25 31 38 …

isam_iter

http://www.cplusplus.com/reference/iterator/

 Specifications
◦ only one primary block can be loaded in the main memory at

the time

 for both isam and isam_iter

 during reorganization max. 2 blocks can be temporarily loaded

◦ size of one block should not exceed: 𝐵 ∙ si𝑧𝑒𝑜𝑓(𝑟𝑒𝑐𝑜𝑟𝑑) + 𝐶

 𝐶 is small

◦ isam copy constructor and operator can be deleted

 isam_iter can be copied

◦ be careful of proper indexer and iterator writes

 Examples:

isam<int, double> index(1, 1);
index[1] = 1;
{ auto it = index.begin(); it->second = 2; }
cout << index[1] << endl;
//output: 2

isam<int, string*> index(1, 2);
index[5] = new string("5");
index[2] = new string("2");
index[4] = new string("4"); //any records in the overflow space?
for (auto&& it : index)
{

cout << it.first << ":" << it.second << " ";
}
//output: 2:2 4:4 5:5

 You should follow best C++ practices
◦ proper naming, no duplicate code

◦ effective parameters passing

◦ correct allocation and deletion of all variables

◦ reasonable distribution of your code into functions and classes

◦ DO NOT CHANGE THE API – public function names must remain
the same!

 Submit your final solution to the ReCodEx system
◦ submit only one file: isam.hpp

◦ write your name in a comment at the beginning of the file

◦ 4 tests
 1 – basic container and iterator tests

 2 – iterator write tests

 3 – max. block loads tests

 4 – larger scale (speed) tests

