

PROCESSOR TECHNOLOGY
ENGINEERING LIBRARY

ASSMV]
Advanced 8080 Assembler
UsersManual

Describes ASSM, Release 1.8.

Processor Technology
Corporation

7100 Johnson Industrial Drive
Pleasanton, CA 94566
Telephone (415) 829-2600

Copyright (C) 1978, Processor Technology Corporation
U M First Edition, First Printing, July, 1978
Manual Part No. 72712¢
All rights reserved.

TABLE OF CONTENTS

SECTION PAGE
1 GENERAL INFORMATION . e e eesossescsesssococcosscesecs 1-1
1.1 INTRODUCTION....... et e cesec et e ecerssensennns 1-1

1.2 THE ASSEMBLER..:e¢eeees c e e s seeccccccccncnnan 1-1

1.3 PROCEDURE FOR USING ASSM. et eereeeeoocnscnse .o 1-4

2 STATEMENTS . e vt e eeeesoocncesannse ceeceecceesanes ce e 2-1
2.1 TIHTRODUCTIONM.::eeeeeeesoocscccocansscssss cs e 2-1

2.2 LINE NUMBERS . .:eeoeeesosooeesecenoeansosansss 2-1

2.3 LABEL FIELD.u..ceeoocoos ceeeccsccccsaas cecesne . 2-2

2.4 OPERATION FIELD.:tetceotoeececcaacenocnnase .o 2=-2

2.5 OPERAND FIELD.:eeesessssooooceeocncoscensnnses 2-2
2.5.1 Register NameS.u.eeeeeeeoooeenennn cee 2-3

2.5.2 Labels...... Ceccreenenene ceceteneoaas 2-3

2.5.3 ConstantS....ecee.s ceeeeessseennaas . 2-3

2.5.4 EXPresSiONS..essess . 2-4

2.5.5 High- and Low-Order Byte Extraction.. 2-5

2.6 COMMENT FIELD.:.eeeeeescaes ceesceesccncacs co o 2-5

3 PSEUDO=OPERATIONS . ¢ttt teeevesssescscccscecnncnsesse 3-1
4 ERROR MESSAGES...eeeeeen ceeccecsescscsconnnne . . 4-1
4,1 CONSCOLE ERKROR MESSAGES ..ttt eeeeensoocnenes .o 4-1

4,2 ASSEMBLY ERRORS . ¢t eeeeecccocosooccassnceceees 4-2

C ASSM

TABLE OF CONTENTS (Continued)

APPENDICES
8080 INSTRUCTIONS
ASCII CODES
ASSEMBLER LISTING
PACK AND UNPAC

ABCUT CASSETTE RECORDERS AND CASSETTE FILES

ii

C ASSM

SECTION 1

GENERAL INFORMATION

1.1 INTRODUCTION

There are three programs recorded on the cassette tape that this
manual accompanies. The first is ASSM, an assembler. The assembler
translates a symbolic 8080 assembly language program ("source code")
into the binary instructions ("object code") required by the computer
to execute the program.

ASSM is designed for use on the Sol Terminal Computer or another
computer that uses the CUTER monitor program and CUTS module. The
assembler itself occupies almost 8K of memory; additional memory is
reqguired for the symbol table, which will be described in the next
subsection, and for the user program. TwoO cassette recorders are also
required.

This manual is not intended as an assembly language tutorial. It does
not discuss the 8089 instruction set (though there is a summary of the
instruction mnemonics in Appendix 1), nor does it offer an exhaustive
explanation of what an assembler does. Two books that do describe
such material in detail are 8080A/8085 Assembly Language Programming,
by Lance A. Leventhal (Adam Osborne & Associates, Berkeley, CA., 1978)
and 8080/8085 Assembly Language Programming Manual (Intel Corporation,
Santa Clara, CA., 1977). The purpose of the following pages is to
enable you to develop programs using the ASSM assembler. The manual
does include a complete discussion of the pseudo-operations recognized
by the assembler.

The two other programs recorded on the tape are named FACK and UNPAC.
These programs convert a cassette file from either of the two
SOLOS/CUTER file formats (single-block and multiple-~block) to the
other. Appendix 4 of this manual describes the programs, and there
are some references below to their possible use in relation to ASSM.

1.2 THE ASSEMBLER

This subsection outlines the operation of ASSM; the next subsection
will describe the actual procedure for using the program.

INPUT TO THE ASSEMBLER

The assembler operates on a multiple-block source code file created in
EDIT and recorded on a cassette in tape unit 1. (Any file that you
create in EDIT will be a multiple-block file. The SOLOS/CUTER User's
Manual, Second Edition, contains information about file structures.)
If the file to be assembled is a single-block file, use the UNPAC
program described in Appendix 4 to convert the file to multiple-block
structure.

C ASSM

1-1

Because the input and processing of the source program is done block
by block, there is no absolute restriction on the length of an input
file. 1In theory, you might even use the COPY pseudo-operation (see
Section 3) to create a source program that exceeded the length of a
cassette tape! The real restriction on the length of a source program
is that it can contain only a limited number of symbolic labels (see
Section 2.3). For each 1K of memory between the 8K occupied by the
ASSM program and the beginning of SOLOS or CUTER, there can be 146
labels in the source program.

Each line of an acceptable source file consists of the characters in
that line and a carriage return (@DH). A file may or may not have
4-digit line numbers in character positions 1-4 of each line; it is
not permissible for only some of the lines to have line numbers.

OPERATION OF THE ASSEMBLER

Step numbers in parentheses following an explanation refer to the
accompanying figure.

The assembler is loaded from tape unit 1 into memory starting at
location @ (step 1). It processes the source code file in two passes;
although nothing is written to tape unit 2 until the second pass, you
will be asked to set up both an input tape, containing a source code
file, and an output tape, to contain the temporary object file, before
the first pass.

On the first pass (step 2), ASSM reads the source program from tape
unit 1 and builds a symbol table containing all of the labels defined
in the source program. (See Section 2.3.) The symbol table begins at
the memory location immediately following the assembler; each entry in
the table is 7 bytes long. Certain errors may be detected during the
first pass, causing error messages to be output to the video display.
The user may also specify that errors be sent to the current
pseudo-port. For information regarding pseudo-ports, consult the
SOLOS/CUTER User's Manual.

If the source program is recorded on more than one cassette tape, each
additional tape must read from tape unit 1 (optional step, applying
only when the source contains the COPY pseudo-operation described in
Section 3).

On the second pass (step 3), ASSM again reads the source program from
tape unit 1 (you will have been told to rewind the input tape),
generates the object code and usually writes it out as a temporary
multiple-block file on the scratch tape in unit 2. This object file
is temporary because only a single-block program file can be executed
conveniently in SOLOS/CUTER. In addition, a formatted listing of
source and object code, errors, symbol table, or any combination of
these, may be output to the current pseudo-port. Errors detected
during the second pass are always output to the video display and may
also be sent to the current pseudo-port.

C ASSM

USING ASSM

UNIT1 MONITOR UNIT 2

STEP 1: ‘V% o
LOAD ASSM >

ASSM
Program Tape

STEP2: ..
FIRST PASS &

Source File

£}

Each COPY ‘>
Pesudo-oper °"°"g_c|>PY Source
(1]

7

STEP 3:
SECOND PASS

Source File
(Rewound)

 Multi-block
ObjectFile

File

Multi-block
Object File

ASSM
0o
-99°09(conversion Routine

STEP 4: -
Convert To "{» > ——»=
Single Block =

Single Block

Multi-block o .
Object File ©oo(_Object Code Object File
l GET, then .@

NN
To Execute \1\‘\\5\ EXEC

—»- PROGRAM RUNS

TheProgram... or XEQ
Single Block
Object File Object Program

or {only if executed immediately)
EXEC P
‘ —» PROGRAM RUNS
.Objoct Program

Scratch Tape

OPTIONAL
PSEUDO-PORT

Errors

Listing and/or errors
and/or symbol table.

Listing and/or errors
and/or symboi table.

C ASSM

Again, if the source is recorded on more than one cassette tape, each
additional tape must be read from tape unit 1 (optional step, applying
only when the source contains the COPY pseudo-operation described in
Section 3).

Finally, the assembler must make one pass over the object code file
(step 4). For this purpose, you will be asked to insert the cassette
that contains the temporary file in tape unit 1, and the cassette that
will contain the final output file in tape unit 2. ASSM will load the
multiple-block object file as though it were going to execute the
program: that is, each byte is loaded at the address that was
assigned to it when the object code was generated. (Thus, memory must
be available at the same locations that the program is intended to
occupy when it runs.) The object code is then written to tape unit 2
in the single-block structure that is required if the program is to be
loaded and executed within SOLOS/CUTER.

‘OUTPUT FROM THE ASSEMBLER

If the assembly runs to completion and no errors are detected, the
resulting object code file is a file that you can execute using the
SOLOS/CUTER XEQ command (if the source code contained an XEQ
pseudo-operation - see Section 3). To load the file without executing
it, or to execute a file that does not contain an XEQ
pseudo-operation, use the SOLOS/CUTER GET and EXEC commands. It is
also possible to execute the program from memory, because it is loaded
at the appropriate address during the last stage of assembly; give a
SOLOS/CUTER EXEC command that specifies the starting address for the
program.

1.3 PROCEDURE FOR USING ASSM

While still in SOLOS/CUTER, decide whether you want to send output to
another pseudo-port in addition to the screen. If you do, use the
SOLOS/CUTER SET command (see your manual) before loading ASSM.

To load ASSM from cassette into memory, place the cassette containing
the program in tape unit 1, and put the recorder in PLAY mode. (If
you are not familiar with the operation of cassette recorders, you
might want to look at Appendix 5, entitled "About Cassette Recorders
and Cassette Files." 1If you are not sure how to connect your recorder
to the computer, look at Section 7 of your Sol Manual.)

If you want to load ASSM and execute it immediately, type the
SOLOS/CUTER command XEQ ASSM and then press RETURN; if you want to
load but not execute the program, type GET ASSM and press RETURN.

Once the program is loaded with the GET command, it can be executed
with the command EXEC ©. The loading process can be aborted with MODE
SELECT or by pressing the CTRL and @ keys simultaneously.

After the assembler begins to execute, it will display the following
series of instructions and questions. At any time during this
interactive portion of ASSM, the ESCape key will cause the program to
start over again with the first instruction.

C ASSM

‘D»

CASSM 1.0 Cassette Assembler
Copyright (C) 1978, Processor Technology Corporation

Enter source file name:

The name entered at this point must be the one to five character file
name of the multiple-block source program file. If you plan to use

the COPY pseudo-operation to assemble several files, give the name of
the first file to be assembled. The DELete key can be used to delete

an erroneous character at any time before the carriage return is
entered.

Enter object file name (optional):

If the assembler is to generate and write an object code file, the one
to five character file name that will be written to the file header
must be specified at this point. If no file name is entered before
the carriage return terminates the response, the assembler will not
generate an object file. The DELete key can be used to delete an
erroneous character at any point before the carriage return is
entered.

Does source file have line numbers? (Y/N)

As will be seen in Section 2, the column in which a statement begins
is significant to the assembler. For this reason it is necessary to
specify whether or not each line of the source file begins with a line
number. Type Y for yes and N for.no. A carriage return is not
required to terminate this response.

Should errors, listing, and/or symbol table
be output to the current pseudo-port? (E/L/S):

Specify one or more of these options by typing the appropriate
letter(s). To select more than one option, type the two or three
letters consecutively without an intervening blank, e.g., EL for
errors and listing. (Consult your SOLOS/CUTER User's Manual for
information concerning pseudo-ports.) If no options are specified,
lines that contain errors will still appear on the video display, but
no output will go to the current pseudo-port (unless the pseudo-port
coincides with the display). Enter a carriage return to terminate the
response.

Should printed output be Paginated and/or have
new line numbers added? (P/N):

If the response to the last question determined that no output will be
sent to the current pseudo-port, this question is not asked. If the P
option is selected, output to the current pseudo-port will be
paginated. The name of the source program file will be printed on
the top left-hand corner of each page, and a page number will be
printed on the top right-hand corner. A page length of 66 lines will
be assumed. If the TITL pseudo-operation occurs in the source program,
the title provided in the instruction will be centered at the top of
each page. If the N option is selected, new line numbers will be
assigned to the source code. To select both options, type PN. Enter
a carriage return to terminate the response.

1-5 C ASSM

For what width should printed output be formatted;
no formatting, 72, 86, 1322 (8/1/2/3):

If formatting is reguested, additional spaces will be inserted between
fields in the output to fit the width of the paper or output device.

for no additional spacing

for 72- column paper or output device
for 80- column paper or output device
for 132- column paper or output device

W H=

Enter a carriage return to terminate the response.

Set up tapes. (Hit return when ready)

Place the tape containing the source program file in tape unit 1,
position the tape a little before the file, and put the recorder in
PLAY mode. Place a scratch tape in tape unit 2 and put the recorder
in RECORD mode. Remember that the scratch tape will receive the
temporary multiple-block object file on the second pass. When a

carriage return is entered to terminate this response, ASSM will begin
the first pass.

A MODE SELECT or CTRL-@ can be used to abort the assembly at any time
after this point. If assembly is aborted by this means, ASSM will
have to be reloaded from cassette in order to be executed again.

If a COPY pseudo-operation is encountered, ASSM will request that the
appropriate cassette be put in tape unit 1 (see Section 3).

At the end of the first pass, ASSM reports:

Done with pass 1, all input tapes need to be rewound.
Rewind tape unit 1. (Hit return when rewound)

Power is applied to tape unit 1 so that the tape(s) containing the
source file(s) can be rewound. When this step has been completed,
place the original source tape in tape unit 1, and put the recorder in
PLAY mode. When the carriage return is entered, ASSM will begin the
second pass. If the source program contains a COPY pseudo-operation,
ASSM will request that the appropriate cassette be inserted in tape
unit 1. Any output that is being sent to the current pseudo-port will
be sent during the second pass. 1If an object file is being generated,
ASSM will give this instruction after the second pass:

Place scratch tape in tape unit one, and final output tape
in tape unit two. (Hit return when done)

Place the tape containing the temporary multiple-block object file in
tape unit 1, and the tape to receive the final single-block object
file in tape unit 2. When the carriage return is entered, ASSM will

make the final pass on the object file. When this pass is complete,
control will return to SOLOS/CUTER.

C ASSM

SECTION 2

STATEMENTS

2.1 INTRODUCTION

An assembly language program (source code) is a series of statements
specifying the sequence of machine operations to be performed by the
program.

Each statement resides on a single line and may contain up to four
fields as well as an optional line number. These fields, label,
operation, operand and comment, are scanned from left to right by the
assembler, and are separated by spaces.

2.2 LINE NUMBERS

Line numbers in the range 0066-9999 may appear in columns 1-4. Line
numbers need not be ordered and have no meaning to the assembler, but
they may make it easier to locate lines in the source code file when
it is being edited. The tape and memory space required for normal
text files will be increased by five bytes per line if line numbers
are used; this may become significant for large files.

If line numbers are not used, the label field starts in column 1 and
the operation field may not start before column 2. If line numbers

are used, they must be followed by at least one space, so the label

field starts in column 6 and the operand field may not start before

column 7.

Once the starting column for the label has been established, the same
format must be followed throughout the file: either all of the lines
or none of the lines can have line numbers. Any other file(s)
assembled along with the main file (using the COPY pseudo-operation)
must conform to the format of the main file.

Example of source statements with line numbers:

column

1234567

¢@P0 LABEL ORA A Label field must start at column 6.

@96l JINZ NEXT Operation field starts at column 7 (minimum).
gpB2 LOOP MOV A,B Operation field starts one space after label.

Example of source statements without line numbers:

column
1234567
LABEL ORA A
JNZ NEXT
LOOP MOV A,B

Label field must start at column 1.
Operation field starts at column 2 (minimum).
Operation field starts one space after label.

C ASSM

2.3 LABEL FIELD

The label field must start in column 1 of the line (column 6 if line
numbers are used). A label gives the line a symbolic name that can be
referenced by any statement in the program. Labels must start with an
alphabetic character (A-Z,a-z), and may consist of any number of
characters, though the assembler will ignore all characters beyond the
fifth; e.g., the labels BRIDGE, BRIDG and BRIDGET cannot be
distinguished by the assembler. A duplicate label error will occur if
any two labels in a program begin with the same five letters.

A label may be separated from the operation field by a colon (:)
instead of, or in addition to, a blank.

The labels A, B, C, D, E, H, L, M, PSW and SP are pre-defined by the
assembler to serve as symbolic names for the 8080 registers (see
Section 2.5.1). They must not appear in the label field.

An asterisk (*) or semi-colon (;) in place of a label in column 1
(column 6 if line numbers are used) will designate the entire line as
a comment line; see Section 2.6.

2.4 OPERATION FIELD

The operation field contains either 808# instruction mnemonics or
assembler pseudo-operation mnemonics. Appendix 1 summarizes the
standard instruction mnemonics recognized by the assembler. More
information on the 8688 machine instructions can be found in the two
books mentioned in Section 1.1, above. Assembler pseudo-operations
are directives that control various aspects of the assembly process,
such as storage allocation, conditional assembly, file inclusion, and
listing control. The pseudo-operations are descrited in Section 3.

An operation mnemonic may not start before column 2 (column 7 if line
numbers are used) and must be separated from a label by at least one
space (or a colon).

2.5 OPERAND FIELD

Most machine instructions and pseudo-operations require one or two
operands, either register names, labels, constants, or arithmetic
expressions involving labels and constants.

The operands must be separated from the operator by at least one
space. If two operands are required, they must be separated by a
comma. NoO spaces may occur within the operand field, since the first
space following the operands delimits the comment field.

C ASSM

Qo

9o

2.5.1 Register Names

Many 8080 machine instructions require one or two registers or a
register pair to be designated in the operand field. The symbolic
names for the general-purpose registers are A, B, C, D, E, H and L.

SP stands for the stack pointer, while M refers to the memory location
whose address is in the HL register pair. The register pairs BC, DE,
and HL are designated by the symbolic names B, D, and H, respectively.
The A register and condition flags, when operated upon as a register
pair, are given the symbolic name PSW.

The values assigned to the register names A, B, C, D, E, H, L, M, PSW
and sp are 7, 0, 1, 2, 3, 4, 5, 6, 6 and 6, respectively. These
constants, or any label or expression whose value lies in the range @
to 7, may be used in place of the pre-defined symbolic register names
where a register name is required; such a substitution of a value for
the pre-defined register name is not recommended, however.

2.5.2 Labels

Any label that is defined elsewhere in the program may be used as an
operand. If a label is used where an 8-bit quantity is required
(e.g., MVI C,LABEL), its value must lie in the range -256 to 255, or
it will be flagged as a value error. ’

If a label is used as a register name, its value must lie in the range
¢ to 7, or be ¥, 2, 4, or 6 if it designates a register pair.
Otherwise, it will be flagged as a register error.

During each pass over the source code, the assembler maintains an
instruction location counter that keeps track of the next location at.
which an instruction may be stored; this is analogous to the program
counter used by the processor during program execution to keep track
of the location of the next instruction to be fetched.

The special label § (dollar sign) stands for the current value of the
assembler's instruction location counter. When $ appears within the
operand field of a machine instruction, its value is the address of
the first byte of the next instruction.

Example:

FIRST EQU §
TABLE DB ENTRY

The label FIRST is set to the address
of the first entry in a table and LAST

* points to the location immediately after
* the end of the table. TABLN is then
* the length of the table and will remain
LAST ECU $ correct, even if later additions or

TABLN EQU LAST-FIRST deletions are made in the table.

2.5.3 Constants

Decimal, hexadecimal, octal, binary and ASCII constants may be used as
operands.

C ASSM

The base for numeric constants is indicated by a single letter
immediately following the number, as follows:

decimal
hexadecimal
octal

octal
binary

o OoOm g
o unu

If the letter is omitted, the number is assumed to be decimal. O is
usually preferred for octal constants, since O is so easily confused
with 6 (zero). Numeric constants must begin with a numeric character
(8-9) so that they can be distinguished from labels; a hexadecimal
constant beginning with A-F must be preceded by a zero.

ASCII constants are one or two characters surrounded by single quotes
('). A single guote within an ASCII constant is represented by two
single quotes in a row with no intervening spaces. For example, the
ASCII value of a single guote mark (') is represented by the
expression '''', where the two outer quote marks are the delimiters of
the ASCII string, and the two inner guote marks represent the string
itself, i.e., the single quote character. A single character ASCII
constant has the numerical value of the corresponding ASCII code.
(Appendix 2 contains a list of ASCII codes.) A double character ASCII
constant has the 16-bit value whose high-order byte is the ASCII code
of the first character and whose low-order byte is the ASCII code of
the second character.

If a constant is used where an 8-bit gquantity is required (e.g., MVI
C,10H), its numeric value must lie in the range -256 to 255 or it will
be flagged as a value error.

If a constant is used as a register name, its numeric value must lie

in the range # to 7, or be 8, 2, 4, or 6 if it designates a register
pair. Otherwise, it will be flagged as a register error.

Examples:

MVI A,128 Move 128 decimal to register A.

MVI C,16D Move 1@ decimal to register C.

LXI H,2FH Move 2F hexadecimal to register pair HL.
MVI B,303Q Move 303 octal to register B.

MVI A,'Y' Move the ASCII value for Y to register A.
MVI A,101B Move 1#£1 binary to register A.

JMP @FFH Jump to address FF hexadecimal.

2.5.4 Expressions

Operands may be arithmetic expressions constructed from labels,
constants, and the following operators:

C ASSM

¢

addition or unary plus
subtraction or unary minus
multiplication

division (remainder discarded)

N o+ |+

Values are treated as 16-bit unsigned 2's complement numbers. Positive
or negative overflow is allowed during expression evaluation, e.q.,
32767+1=7FFFH+1=80080H=-32768 and -32768-1=8000H-1=7FFFH=32767.
Expressions are evaluated from left to right; there is no operator
precedence.

1f an expression is used where an 8-bit quantity is required (e.q.,
MVI C,TEMP+10H), it must evaluate to a value in the range -256 to 255,
or it will be flagged as a value error.

An expression used as a register name must evaluate to a value in the
range 6 to 7, or to 6, 2, 4, or 6 if it designates a register pair.
Otherwise, it will be flagged as a register error.

Examples:

MVI A,255D/10H-5
LDA POTTS/256*0OFFSET
LXI SP,30*2+STACK

2.5.5 High- and Low-Order Byte Extraction

If an operand is preceded by the symbol <, the high-order byte of the
evaluated expression will be used as the value of the operand. If an
operand is preceded by the symbol >, the low-order byte will be used.

Note that the symbols < and > are not operators that may be applied to
labels or constants within an expression. If more than one < or >
appears within an expression, the rightmost will be used to determine
whether to use the high- or low-order byte of the evaluated expression
as the value of the operand. That is, the rightmost < or > is treated
as if it preceded the entire expression, and the others will be
totally ignored.

Examples:

MVI A,>TEST Loads register A with the least
significant 8 bits of the value of the
label TEST.

Loads register B with the most significant
byte of the 16-bit value CC@OH, i.e., CCH.
Loads register C with the value 12H.

Loads register C with the value 34H.

MVI B,<@CC@OH

MVI C,<1234H

MVI C,>1234H
2.6 COMMENT FIELD
The comment field must be separated from the operand field (or
operation field for instructions or pseudo-operations that require .no

operand) by at least one space. Comments are not processed by the
assembler, but are solely for the benefit of the programmer. Goed

C ASSM

comments are essential if a program is to be understood very long
after it is written or is to be maintained by someone other than its
author.

An entire line will be treated as a comment if it starts with an
asterisk (*) or semicolon (;) in column 1 (column 6 if line numbers
are used).

Examples:

LOOP IN STAT INPUT DEVICE STATUS
ANTI 1 TEST STATUS BIT
JZ LOOFP WAIT FOR DATA

*DATA IS NOW AVAILABLE

If listing file formatting is requested in answer to the question,
"For what width should printed output be formatted...?" the comment
field must be preceded by at least two spaces. Furthermore,
instructions and pseudo-operations requiring no operand must be
followed by a dummy operand (a period is recommended).

Examples:

MVI A,16 COMMENT
RZ . COMMENT

C ASSM

SECTION 3

PSEUDO-OPERATIONS

Pseudo-operations appear in a source program as instructions to the
assembler and do not always generate object code. This section
describes the pseudo-operations recognized by ASSM.

In the following pseudo-operation formats, <expression> stands for a
constant, label, or arithmetic expression constructed from constants
and labels. Optional elements are enclosed in square brackets [].

Equate <label> EQU <expression>

This pseudo-operation sets a label name to the 16-bit value that is
represented in the operand field. That value holds for the entire
assembly and may not be changed by another EQU.

Any label that appears in the operand field of an EQU statement must
be defined in a statement earlier in the program.

Examples:

BELL EQU 7 The value of the label BELL is set to 7.
BELL2 EQU BELL*2 Label BELL2 is set to 7%*2,.

Set Origin [<label>] ORG <expression>

This pseudo-operation sets the assembler's instruction location
counter to the 1l6-bit value specified in the operand field . 1In other
words, the object code generated by the statements that follow must be
loaded beginning at the specified address in order to execute
properly. The label, if present, is given the specified 16-bit

value.

Any label that appears in the operand field of an ORG statement must
be defined in a statement earlier in the program.

If no origin is specified at the beginning of the source code, the
assembler will set the origin to 18@H. If no ORG pseudo-operation is
used anywhere in the source program, successive bytes of object code
will be stored at successive memory locations.

During the pass that converts the multiple-block object code file into
a single-block file of the kind that SOLOS/CUTER can load, the object
code is actually loaded at the origin given in the program, or at the
default origin. The routine that performs the conversion runs in the
SOLOS/CUTER stack area: that is, in the 1K of memory beginning at
address C800H for SOLOS, or at 8@@H above the first address assigned
to CUTER. Thus, the program to be assembled must NOT be given an
origin in the SOLGCS/CUTER stack area.

C ASSM

Examples:
ORG 64 Determines that the object code generated by
subsequent statements must be loaded in locations

beginning at 64 (40H).

Determines that the object code generated by
subsequent statements must be loaded in locations
beginning at 100H.

START ORG 100H

Set Execution Address XEQ <expression>

This pseudo-operation specifies the entry point address for the
program, i.e., the address at which it is to begin execution. If a
program contains no XEQ pseudo-operation, the object code file will
contain no start address; if its name is typed in a SOLOS/CUTER XEQ
command, it will be loaded but not executed, and an error message will
be displayed. (It is, however, possible to execute such a file using
the SOLOS/CUTER GET and EXEC commands, or to call it from another

program.) If more than one XEQ appears in a program, the last will be
used.

An example of the difference between ORG and XEQ is that a program
whose first 1060 bytes are occupied by data will have an ORG address
190 bytes lower in memory than its XEQ address.

Example:
XEQ 1¢0H

The entry point address for the assembled program
is set to 100H.

Define Storage [<label>] DS <expression>

[<label>] RES <expression>

Either of these pseudo-operations reserves the specified number of
successive memory locations starting at the current address within the

program. The contents of these locations are not defined and are not
initialized at load time.

Any label that appears in the operand field of a DS or RES statement
must be defined in a statement earlier in the program.

Examples:

SPEED DS 1 Reserve one byte.
DS 400 Reserve 400 bytes.
RES 177¢ Reserve 177 (octal) bytes.

C ASSHM

Define Byte [<label>] DB <expression>[,<expression>,...]
This pseudo-operation sets a memory location to an 8-bit value. If
the operand field contains multiple expressions separated by commas,
the expressions will define successive bytes of memory beginning at
the current address. Each expression must evaluate to a number that
can be represented in 8 bits.

Examples:

DB 1 One byte is defined.
LB OFFH,303¢Q,100D,11018011B,3*BELL,-10 Multiple bytes are defined.
TABLE DB 'A','B','C','D',0 Multiple bytes are defined.

Lefine Word [<label>] DW <expression>

This pseudo-operation sets two memory locations to a 16-bit quantity.
The least significant (low-order) byte of the value is stored at the
current address and the most significant byte (high-order) is stored
at the current address + 1.

Examples:

SAVE DW 1234H 1234H is stored in memory, 34H in the low-order
byte and 12H in the high-order byte.
The ASCII value for the letters 'O' and 'K' is

stored with the 'K' at the lower memory address.

YES DW 'OK'

Lefine Double Byte [<label>] DDB <expression>

This pseudo-operation is almost the same as DW, except that the two
bytes are stored in the opposite order: high-order byte first,
followed by the low-order byte.

Example:
FIRST DDB 1234H

1234H is stored in memory, 12H in the low-order
byte and 34H in the high-order byte.

Define ASCII String [<label>] ASC #<ASCII string>#

[<label>] ASCZ #<ASCII string>#

The ASC pseudo-operation puts a string of characters into successive
memory locations starting at the current location. The special symbols
in the format are "delimiters;" they define the beginning and end of
the ASCII character string. The assembler uses the first non-blank
character found as the delimiter. The string immediately follows this
delimiter, and ends at the next occurrence of the same delimiter, or
at a carriage return.

C ASSM

The ASCZ pseudo-operation is the same except that it appends a NUL
(6BH) to the end of the stored string.

Examples:

WORDS ASC "THIS IS AN ASCII STRING"
ASCZ "THIS IS ANOTHER STRING"

Set ASCII List Flag ASCF 0
ASCF 1

If the operand field contains a @, the listing of the assembled bytes
of an ASCII string will be suppressed after the first line (four
bytes). Likewise, only the first four assembled bytes of a DB
pseudo-operation with multiple arguments will be listed. If a program
contains many long strings, its listing will be easier to read if the
ASCF pseudo-operation is used.

If the operand field contains a 1, the assembled form of subsequent
ASCII strings and DB pseudo-operations with multiple arguments will be
listed in full. This is the default condition.

See Appendix 3 for an example of the listing format.

Conditional Assembly IF <expression>

source code
ENDF

The value of the expression in the operand field governs whether or

not subsequent code up to the matching ENDF will be assembled. If the.

expression evaluates to a @ (false), the code will not be assembled.

If the expression evaluates to a non-zero value (true), the code will
be assembled. Blocks of code delimited by IF and ENDF ("conditional

code") may be nested within another block of conditional code.

Any label that appears in the operand field of an IF...ENDF
pseudo-operation must be defined in a statement earlier in the
program.

YES EQU 1 Sets the value of the label 'YES' to 1.
NO EQU @ Sets the value of the label 'NO' to 4.
*
IF YES The expression here is true (1), so the
MVI A,'Y' code on this line will be assembled.
IF NO The expression here is false (0), so the code
MVI A,'N' on this line will not be assembled.
ENDF This terminates the NO conditional.
ENDF This terminates the YES conditional.

C ASSM

List Conditional Code IFLS

This pseudo-operation enables listing of conditional source code even
though no object code is being generated because of a false IF
condition. The assembler will not list such conditional source code
if this pseudo-operation is not used.

Copy File COPY <Kfile name>[/<unit>]

This pseudo-operation copies source code from a tape file into a
program being assembled. The code from the copied file will be
assembled starting at the current address.

The resulting object code will be exactly like what would be generated
if the copied source code were appended to the original file, but the
COPY pseudo-operation does not actually alter any source file.

If the COPY pseudo-operation is used, it must be the last instruction
in the source file in which it appears. When the assembler encounters
the COPY during each pass on the source file, it will ask you to

"Insert <name specified in operand field> into tape
unit 1. (Hit return when done)"

The original source tape should be removed from tape unit 1, and the
tape containing the requested file should be inserted. Put the
recorder in PLAY mode.

A copied file may in turn copy another. Note that one file must not
copy another which in turn copies the original file--the assembly will
generate duplicate label errors and assemble the same code over and
over until the object code file overflows the tape on which it is

being written.

All files that are accessed by the COPY pseudo-operation must be of
the same format as the main source file, i.e., either having or not
having line numbers.

Listing Control NLST
LST

The NLST pseudo-operation suppresses output of the listing to the
current pseudo-port. If object code is being generated, it will still
be output to the object code file; lines containing errors will still
be output to the video display (and to the current pseudo-port, if the
E option was selected). The LST pseudo-operation re-enables output of
the listing to the current pseudo-port.

C ASSM

Listing Title TITL <first line>"<second line>

If the P option is specified in answer to the guestion, "Should
printed output be Paginated ...," the one- or two-line title specified
by this pseudo-operation will be centered at the top of each page of
the listing.

Page Eject PAGE

If the P option is specified in answer to the question, "Should
printed output be Paginated ...," this pseudo-operation causes a skip
to the top of the next page of the listing.

End of Source File END

This pseudo-operation terminates each pass of the assembly. Only one
END statement should be in the file or files to be assembled, and it
should be the last statement encountered by the assembler. Since an
end-of-file on the source code input file will also terminate each
pass, the END statement is unnecessary in most cases.

C ASSM

'Y

SECTION 4

ERROR MESSAGES

4.1 CONSOLE ERROR MESSAGES

A number ¢f console messages may be generated in response to errors in
reading or assembly of a source file. Any of the following errors
will cause assembly to be aborted and control to return to
SOLOS/CUTER.

Read Error- Bad tape file

This message usually indicates that a tape has been recorded
incorrectly, or that MODE SELECT or CTRL-@ has been entered during the
reading of a tape file.

Too many characters in name of COPY statement: <name>

The name displayed after the colon appears in the operand field of a
COPY statement in the source program and has more than five characters
in it. A file name that has more than five characters is not valid
within SOLOS/CUTER.

Error- CUGPY statement cannot be other than at EOF.

A source file contains a COPY statement that is not the last statement
of the file.

Error- Symbol table overflow.

The source program contains more labels than will fit in the amount of
memory available. Remember that the symbol table requires seven bytes
per symbol and begins immediately after the code for ASSM.

The other message that you might encounter is CHECKSUM TEST FAILED.
This error would occur during an attempt to load ASSM, PACK, or UNPAC.
The Appendix entitled "About Cassette Recorders and Cassette Files"
explains what the message means and why it is important.

C ASSM

‘dxopy ASojouydaj 10ss3201J O

(sbej4 ou 10aye XOa ¥ XNI :uondaoxa)

‘pajoaye AHHYD 1daoxa sbel4 je =

9 13SMSd
9 13S dS
9 135 W
S i3S 1 [1 91 mMma
v 13S H] 8a 8@
€ 13S 3 9ia Sa
2 13S a
L 13S o] 91a NO3
0 35 98 an3
L 138 Vv Ipy SHO
S13S NOILONYLSNI
AdvanNvis oan3asd
vV dWO 489
W dWO 39
1 dND a8
. H dWD 08
3 4dNO g8
a dwWO vg
O dWDO 68
SHOL1v4d3d0 8 dWo 88
v vdO (/8
g v W vdHO 98
__UW(e ¥ 1 vdHO sg
AS3L H VHO v8
3 vdO €8
Aueug { 801100 a vdo 28
gaLiotL 97 vdHO 18
oz 9 vdO 08
L
ejo
:OOmn vV wvdXx dv
) W vdX 3v
jewaq SOl 7 vdx Qv
asol H wvdx OQV
3 vdX 8v
XoH HVI a vdx wv
HA80 O vdX 6V
8 vdX 8v
NOILINI43Q
ANVLSNOD
U ()
oH » Q
© Ko [«
+ T O O
(]} e CeH B
Q T OO0+
o LULOLD
~ U ©C-H U3 VU
—~ O LY E
—H PP wm P o
3 nH-HU®V®
O+ g 0O
U P -H PeH o
— W
(VS 0P o
O SO ooQo
L 0.C < +
PP HP
~3 - 3 ~ -
n O .o Q- M
- PoUOPLO=R2
O OO L oW .
- Q-+ O (o O}
[k3 U O0.Q w
O~ OV QT A ©
[=} Qo H
OO+ T O~ W
[olNoRR NN S| 3-4 O
=P 30D u 3T
2 T oOvH O (@)
O W T 2TUOVLWO
— O T —oad
— QH N QAD N
oo P — O = O
He~ 00D ()] V]
VOQZ24H O U
v CP [RN RN O RN}
CE UM ~ o
P 3T« a0 ~C 0
— — O O -4+ O
44 O N9 T PO [
O O =Dy MO
oA 0Q Na
U QN0 U @ o
o+ U~ T n
(o]} QT N O ~0
VS EOHT O
n nNUYUL 0L OO0-H
~ jolio) 0 oY OHW
©) -~ O n O o,
[0 4 © e (@ ~ 0 U m
a4 FERNUENE oo 3 0
= C O XN OO O MM
O & 0C M © P
> | SRR RN FIFE RN e n o
W] o | (O T () I o
as} + OWH o OpH-H 4
= o =T O (@] O
53] O U3 0N 49O
n E4LPOONAQO0PT
n [ORES TN () V)] 0,4 >y o
< P OO0 N0 Q@
© ~ Q2,0 (]
+ + W [O3Re)}
0noovocoTuHAULLa
— U SO oA
© OO~ O ~p oY
o~ % 00T FEaN)}
. - 30O oW =
< H NOLUOWP CH ©—

e

ssalppe ¥q 91 = ipy

An illegal label or constant appears in

ARGUMENT ERROR

A

vV VNV (VY
W VNV 9V
7 VNV SV
H VNV v
3 VNV ¢V
a VNV 2v
O VNV IV
g9 VNV oV
v 84S 46
W 8d8Ss 36
1 98S Q6
H 88S 06
3 89S d6
a 88s vé6
O 88S 66
g 88S 86
v 8ns (6
W 8ns 96
78NS S6
H 9NsS v6
3 9ns €6
a ans ¢
O 8ns 16
g 8ns 06
v Ooav 48
W Oav 38
7 0av as
H Oav 08
3 Oav g8
a oav vs
O Oav 68
g Oav 88
v aav (8
W aav 98
71 Qav ss
H aav 8
3 aav ¢8
a aav c8
O aav 18
9 aav o8
+HOLVINWNIOV

a number
a label

3STOP,

This might be 1)
an improper representation of a string,

the operand field.

2)

2L,

e.g. 4

with a letter in it,

e.g.,

that starts with a number,

or 3)

I|IAIII

in the operand field of a

4

€.g.

statement containing the ASCII

pseudo-operation.

V'V AOW 42
WY AOW 3L
TvY AOW Q¢

H'Y AOW O¢
3V AOWN dL
av AOW V¢
OV AOW 6L
Vv AOWN 8.
VW AOW L
TW AOW G2
HW AOW tZL
IN AON €L
anw AOW 2.
OW AOW 1L
anN AOW 0L
vl AON 419
W1 AON 39
17 AOW Q9

H1 AOW 09
37 AOWN 99

a7 AOW V9
07 AOW 69
g7 AOW 89
V'H AON 49
WH AOW 99
TH AOWN S9
HH AOW $9
3I'H AOWN €9
aH AOW 29
O'H AOW 19
g'H AOW 09
V'3 AOW S
W3 AOW 3S
173 AOW QASs

H'3 AOW 0§
33 AOW 89S

a’3 AOW VS
0'3 AOW 6S
'3 AOW 8S
(3u0d) IAON

<

IS

-

K3

n

i)

W~

(1]

iy

n

yB)

-

The source code contains multiple labels
whose first five characters are identical
The symbol in the label field contains

illegal characters

DUPLICATE LABEL
ERROR

LABEL

D
L

e.g.,

14

a number.

| XIAN3ddV

pajdsje AHHYD Ajuo =
‘Amuenb ejep iq 94 e 0}
sajenieaa jey) uoissasdxa onawyueesibol Jo ‘Juejsuco = g1Qg

v‘a AOW /S
W'a AOW 95
1a AOW SS
H'd AOW #S
3'a AOW €S
a'a AOW 2§
2a AOW 1§
9'a AOW 0§
V'O AOW dv
WO AOW 3t
170 AOW Qv
H'O AOW Ov
30 AON 8t
a0 AOW vt
2’0 AOW 6t
80 AOW 8p
v'a AOW L¢P
W8 AOW oY
78 AOW Gt
H'8 AOW v
38 AOWN ¢t
ag AOW 2v
0'a AOW I
g8'a AOW OF
IAOW

13 84

1a €4

1TH 9L
dON 00
T0HLNOD
Hvd 41

vd Lt

oHY 40
oW L0
+31v10Hd

An EQU instruction does not have a symbol

in the label field.

MISSING LABEL

M

8080 instruction mnemonic or an

The symbol in the operation field is not
assembler pseudo-operation mnemonic.

ERROR
a valid

OPCODE

0

84 NI 8d
8 LNO €4
1NdLNO/LNdNI
+OWND d€
+0ls L¢E
VWO 42
Yva L
OHOX 83
SIvi103dS
THdS 64
IHLX €3
«MSd dOd |4
H d0d 13
a d40d d
g d0d 10
MSd HSNd 64
H HSNd S3

L

a HSNd <A 9la
g HSNd SO
SdO MOV1S
L 1sY 34
9 1SH 44
S 1SH 43
v 1SH <43
€ 1SH 44
¢ 1SH .4
Ll 1Sd 40
0 1s"H /O
idvis3y

An expression used as a register designator

does not have a legal value.

REGISTER ERROR

R

A statement is not in the format required

by the assembler.

ERROR

SYNTAX

S

sajenjeAs Jey) uoissaidxa onawyie1eabol io ‘juelsuod -

pY VIS 2€
py QIHS 22
a Xvis 2t
g8 XvV1S 20
ipy val ve
v QH1 Ve
a Xval vi
g9 Xval vo
3401S/AvO1
dS ava e6e
H Qava 62
a ava 6l
g ava 60
iaav 318noa
'dS 1 ie
'H X1 ¢
‘a X1 ot
‘g IX1 10
31vIG3INNI
avol
ANY 84
dd 04
3d4 83
Odd 03
od 8d
ONY 04
Zd 80
ZNd 00
134 60
ERTEL]
[
— o
() o
Q (o e)
Y oL~ m©
O~ O)
o T o
) jogon
naocwaago
e e
(Vo)
T o8 QT
~ - O O 3
[} ()
L I I ol /)]
“w o E T
O m
T N0 M
0o H
© © O
— - O M
v+ O no
QO 3
oOcwow ~
L 0w
WL PEE
<o —
L 0
T O ~
o L wn
— s~ Q Q
VIR
T OOV O ~
O e -HQ
n-r-H 3 M
3 > 0
~ o
-~ O O T ~
(OO} v D
Qo0 U
© '~~~ -]
— Y44 QY
v+ OGS
LT T ®

UNDEFINED SYMBCL

U

pajdaye (4's'2'D) sbeid je -
‘Ayuenb ejep jiq g ue 0}

dS Xx0a 8¢
H X0a g2
a xoa g
g xd0a €0
v H0Q Q¢
W HO0Q &t
7 "OaQ az
H H0a 62
3 u¥0a at
a v8da st
D HOa Ao
g HOQ SO
««LNIW3HI3a
IdD 34

iHO 94

gx 33

INV 93

804 1@s 13a
NS 9d

fo L2 o)

iav 990
+3LVIGIAWI
VY

(WO DO+
d0 b4

340 03
0dd ¢3
6<A 20 0a
OND va

Z0 20

ZND D
ﬁ4zo an
Rink o]

The value of the operand lies outside the

allowed range.

VALUE EKROR

\%

8d

8a

dS XNl €€
H XNI €2
a XN ¢l
8 XN €0
vV HNI Of
W HNI pE
T "N D2
H HNI vc
3 HYNI Ot
a dNi vl
D HNI 00
8 HNI 0
- LNIWIHONI
Y OIAW 3E
‘W IAW SE
T AW 32
‘H INW 92
3 IAW 3
‘a IAW 91
D AW 30
‘4 AW 90
31VvIGINNIL
IAON

IHOd 63

Nl vd

df 24

3dr v3

Y Odr 23
or va

ONI" 2a

Zr vo

NI 20

dWr €0
dWnNr

@ 9

C ASSM

APPENDIX 2

@
T .
T e]
ki ~ 2 s B Bz g BE.
Toox 8. E a 2 R 25z 2 SE52
- & I} =l « 2
£ fF ESIFECET g ~si2 =% iF4:
e EEEAEEEE$OES S8 2EEgEE LA 2T S
EEso e iEYE e EEEE sSSPz il
S S S E S ISR g2zl EAREdED
~ —] /M Z -]
= ST e X O MSNGINZRZ < - o
Z _ P3EEcZCEuEstesenRE88EI5E3ER20828
® S
G £ O}MUANKOEHHMAZZOAMORUBDDEXMNN=—¢ |g
[} — — o — o p— — — o p— — — g et
m & EEEEEEETEETEETEETEEEEETEEEEEEEREEEES = #uRra- —~%x+ ~1 -NOc-cqNOINOLOO - =V I AN
N
'
B Hu mmm%M%%mmwmwwwwwwnmwmwmwwwmmwmmmmmmﬂmrb%ﬂwwM%%W%ﬂ%ﬂﬂ%%%%ﬂ%%%%xmww
=
D L inenersoSCNCIReCElSRASIRSNRRS RN IRSERSSTUSISSSRSRANRIRIERRETEE
g &
L I 222828855 SZ 2558588888882 88233233833 28552888 3838888888E565558858¢%
w
> = FOFOIFOFO Qo < o =+
d % szczszszsisseioccsSiscEIEiSIIEEeCSISiSISBIiSsEISSIEIESEEEIEBBISE
T o
5 _ L L _
[~9
mln(........................."“"""""
° ® © © & o © ® © © © 6 0 & 0 O
m“ ® 6 © 0 0 6 ¢ O ceoc0s0e " “ ® ®© © 0 0 ¢ . ® © o o .. [] .- .-- .. .- .- .o .- ..
@ e . R, ce e e o o o
%3 [BN] ° " " [N J e " “ [BN] e “ " [BN] ¢ " " [N J bl " " [N) [N] [BN) [N) [BN] [BN]
m [] [] [] [] [] [] [] [] [] [] [] [] [] [J [] [] [] [] [] [] [] [J [] [] [J [] [] [] [] [|“ []
I XIAN3ddV
‘Ajuenb ejep 1q g € 0} ‘Aljuenb ejep 1Iq 8 ue 0}
ssaippe 1q 91 = ipy sajen|eaa jey) uoissaidxa onawyIe/ed160| 10 ‘JUBISU0d = 91(sajen|eas jeyl uoissaidxa onawye/|edlbol 10 JueISuod = 8Qg
Z Vs mnoand 4L S 1sy 43 0 1ISH D v 88s 46 VN AOW 4L VD AOW 4t wa e
A 65 300W 1V Q¢ 80 X 33 83 QY 9D W 88s 36 1H 9z WD AOW 3¥ BA'H IAW 92
X 85 0s3 gl --- a3 8 HSNd SO 1 88S a6 TW AOW SL 10 AOW av H H0Q S
M LS vl Y 3dD D03 Y ZND D H 885 06 HW AOW L HD AOW O H &Nl b2
A 9 440X €} OHOX 83 PV dIWF €D 3 g8s 86 IW AOW €L 30 AOW 8F H XNI €2
n ss 3dvL 2t Y 3dr va Py ZNF 20 a 88s ve aW AOW 2L a0 AOW V& Y QIHS 22
1L s NO-X L1 THOd 63 8 dod 1D D gas 66 OW AOW 1L 2D AOW 6v 9IaH ix1 12
S €5 HO Q0 Sdd 83 ZNH 0D g 88S 86 8N AOW 0L 80 AOW 8% -
H o 2S WHO4 00 v 1SH . vV dWO 48 v 8ns 6 vl AOW 49 v'8 AOW b Hvd o
(=) — 4s O S A 80 80 INV 93 W dwd 38 W 8ns 9 W1 AOW 39 WE AOWN 9v 803 AN 3i
L3S d 0S 41 vo H HSNd S3 1 dwo ae 1 8ns s6 11 AOW Q9 8 AOW S 3 W¥oa at
[as o 4 gvlL 60 iy 0dD ¥3 H dwo 08 H 8ns 6 H1 AOW 05 K8 AOW b ER
oS N3 138 20 HLX €3 3 dwO 88 3 ans €6 37 AOW 89 38 AOW €£¥ a x0a 8
|8 W av TN 00 Py Odr 23 a dWD va a 8ns 26 a1 AOW V3 ag AOW 2v a xval vi
¢ de 1 o H dOod '3 D dWD 68 5 8ns 16 21 AOW 69 28 AOW I a ava 6l
< 3 % ar Bunuid-UoN Odd 03 g dwo sg g ans 06 g7 AOW 89 '8 AOW OF o8y
- ae rowp € iSH 4a vV VHO (8 v 0av 48 VH AOW L9 OWD HE e 2
o€ I 6y 318VL 1DSV-X3H 8a 185 3Q W VHO 98 W oav 38 WH AOW 92 8av IAW 3£ 800 AN 91
ae H 8p -~ aa 7 vHO S8 1 oav a8 TH AON S9 v HDQ Q¢ a 4oQ St
veE 5 I ipy 20 2a H vHO 8 H oav o8 HH AOW 9 v BNl Of a N b
42 4 o 8a NI 80 3 vHO €8 3 oav o8 IH AOW €0 dS Xda 8t a xNI g
32 3 s 1Py or va a vdO 28 a oav v8 aH AOW 29 JPY val ve a Xvis 2
az a v .-~ 6Q D vdO 18 2 cav 68 OH AOW 15 4ds ava e 91aa X1 ki
a2 2 & oH 8Q g8 vHO o8 § Dav 88 8H ACW 09 - oBg T
+ o8 8 v L 1SH 44 z 1sH Za vV vHX 4V v aav 8 v'3 AOW =5 1S L OHH 40
Ve Voo 80 14D 34 8a INS 9a W vex 3v W aav 98 W3 AOW 3¢ BIW AW 9 800 AW 30
(62 --- a4 a HSNd sa 7 vHX av 7 aav <8 13 AOW QS W HOQ St D Woa Qo
) 82 6 6 Py WO 04 Jpy OND ¥d H vHX OV H aav 8 H3 AOW 0S W BN pE o5 HNi 00
L2 g8 8¢ 13 84 8a LNO €a 3 wvex av 3 aav 8 33 AOW 86 dS XNl €€ 8 xd0a 80
92 L e 1Py WP vd upy ONF 2a a vHX wv g aav 28 a3 AOW VS JPY VIS 2E 8 xval vo
% &2 9 9 IHdS 64 a dod ia O wHX 6V 5 aav 8 23 AOW 65 91Q'dS IX1 i€ g8 ava 60
$ vz s <t We 84 ONH 0Q 8 vdx 8v g8 aav o8 83 AOW 85 .- og -~ 80
€2 v v 9 1Sy /4 L 1SH 40 vV VYNV IV V'V AOW 4L v'‘a AOW S VWO 42 O L0
R £ €€ 80 WO 94 8a 1oV 3D W VNV 9V WYV AOW 3¢ Wa AOW 95 807 IAW 32 808 IAW 90
iz z oz MSd HSNd S4 upy TIvD ad 1 VNV SV 1V AOW Q’ 10 AOW SS 1 woa az 8 HOQ SO
soeds 0z L1e iy do v4 pv Z0 00 H VNV bV HY AOW O HQ AOW S 1 ©Nl 02 8 HN 0
® ov 0 o¢ a4 --- 80 3 WNV eV IV AOW 8. 30 AOW €S H X0a 82 8 XN €0
sial08I8YD Bunud Py dr 24 Zr vo a YNV 2V av AOW V. Qg AOW 2S5 Y QIH1 v2 g XViS 20
MSd dOd 14 134 6D D VNV LV OV AOW 6L 2’0 AOW 1S H ava 62 91d'8 IX1 10
378V 119SV-X3H dd o z4 8D 8 VNV OV gV AOW 8¢ 8a AOW 0S - 82 dON 00

ASSM

A2-1

APPENDIX 2

APPENDIX 2
TABLE OF ASCIl CODES (Cont’d) (Zero Parity)

Paper tape Upper Octal Octal Decimal Hex Character APPENDIX 3
123 .4567P
B SloMwoaw e w0 e o & ASSEMBLER LISTING
| o . 0410 102 66 42 B
| oo . ° 0414 103 67 43 o &
| .. e 0420 104 68 44 D & F . g
|o o. o 0424 105 69 45 E & §V 59 & 2
| eo. o 0430 106 0 46 F & & F o &F & F
|eoe. o 0434 107 £0 W'Y B! S FE & 5 &L
| o o 0440 110 2 48 H R g 5 F & 8 COMMENT
o . ®] 0444 111 73 49 I
e .o o | 0450 112 74 4A J 0000 *
oo .o o | 0154 113 75 1B K 0001 *SEARCH TABLE FOR MATCH TO STRING
oo o | 0460 114 T AC L 0002 *EACH TABLE ENTRY IS FOLLOWED BY A TWO-BYTE DISPATCH ADDRESS.
. ot | et 15 o D " 0003 *TABLE MUST HAVE AT LEAST ONE ENTRY AND IS TERMINATED BY A
0004 #ZERO BYTE.
| ee.¢ o | 0470 116 78 4E N 0005 *ON ENTRY: HL POINTS TO STRING
| e00 .0 o 0474 117 79 4F o 0006 * DE POINTS TO TABLE
| . o 0500 120 80 50 P 0007 * C IS NUMBER OF CHARACTERS IN TABLE ENTRIES
0008 *ON KETURN: ZERO FLAG SET IF NO MATCH, ELSE DE POINTS TO
'. : : gg‘l)g g; g; g; g 0009 * DISPATCH ADDRESS
0010 *
ee . e o | 0514 123 83 53 S 0100 ES 0011 TSRCH PUSH H SAVE STRING ADDRESS
e. e o | 0520 124 84 54 T 0101 41 0012 MOV B,C INITIALIZE CHARACTER COUNT
o o o o | 0524 125 a5 55 U 8185 éé 8813 TS1 xéﬁgx g COMPARE CHARACTERS
eo. o o 0530 126 8 56 v 0104 €2 11 01 0015 INZ TS3
| e0e. o @ 0534 127 87 57 W 0107 23 0016 INX H CHARACTERS MATCH, GO ON TO NEXT
| .00 o 0540 130 88 58 X 0108 13 0017 INX D
| .oe @ 0544 131 89 59 Y 0109 05 0818 DCR B
' H z 0104 C2 02 01 0019 JNZ TSH
o: :: : gggg igg 3(1) 53 { shift K 010D F6 01 0020 ORI 1 MATCHING ENTRY FOUND
: 010F E1 0021 TS2 POP H
e.00 o | 0560 134 92 5C \ shift L 0110 C9 0022 RET
o e.00 o 0564 135 93 5D] shift M 0111 BT 0023 TS3 ORA A TEST FOR END OF TABLE
0o .00 o 0570 136 94 5E A shift N 0112 CA OF 01 0024 Jz 182
| 00 .00 o 0574 137 95 SF _ shift O *) \0 ORs oo TSk T D SKIP TO NEXT ENTRY
| . :: 3232 ij(l) gg‘ 2(1) ; 0117 c2 15 01 0027 JINZ TSY
0114 13 0026 INX D
] (X} 0610 142 98 62 b 011B 13 0029 INX D
ee . oo 0614 143 99 63 c 011C E1 0030 pOP H
N oo | 0620 144 100 64 a 011D €3 00 01 88%; , JMP TSRCH
o o, oo 0624 145 101 65 e 2 % ; ra Q.
el ee 0630 11t 02 e c 8833 'LXAMPLE OF TSRCH USE:
| ese. oo 0634 147 103 67 g 0035 *(ASSUME HL POINTS TO A FOUR-CHARACTER COMMAND STRING)
.o oo 0640 150 104 68 h 0120 11 35 01 0036 LXI D,CTABL DE POINTS TO COMMAND TABLE
o .o oo 0644 151 105 69 i 0123 OE 04 0037 MVI C,4 TABLE ENTRIES ARE FOUR CHARACTERS LONG
o .o oo | 0650 152 106 6A J 8123 52 gg 8(1) u 88§§ SQLL Eiig: COMMAND NOT IN TABLE
|ee .o o0 | 0654 1?3 107 22 llc 0125 EB 0040 XCHG . SET UP STACK FOR RETURN TO MAIN ROUTINE
| eo.0 oo 0660 154 108 012C 11 00 00 U ooui LXI D,COMMAND
| o.0 oo 0664 155 109 6D m 012F D5 0042 PUSH D :
o0 . 0 oo 0670 156 110 6E n 0130 7E 0043 MOV AM DISPATCH TO APPROPRIATE COMMAND ROUTINE
oo o oo 0674 157 111 6F o) 0131 23 004l INX H
. eee 0700 160 112 70 P 0132 66 0045 MOV H,M
o . eoeo 0704 161 13 T q e Soar oy, Wt
e . eeoo 0710 162 114 72 r 00Uy *
oo ., ooo 0714 163 115 73 s 0049 *COMMAND TABLE
o, eoo 0720 164 116 74 t 0050 *
e o. ooe 0724 165 117 75 a 0135 43 4F 4D 31 0051 CTABL ASC "COM1' FIRST ENTRY
es. see | 0TH 166 18 6 v 0135 43 4 4> 32 00as ASC eCOMZ' 'SRCOND ENTRY.
j 1]
eee. eee | 0T34 167 19 7 w 013F 00 00 U 0054 DW SUB2 ADDRESS OF SUB2
| L0000 0740 170 120 73 x 0141 00 0055 DB 0 END OF TABLE MARK
(] .0000 0744 171 121 7 y
| o .ecee 0750 172 122 A z
| o0 .oeee 0754 173 123 7B {
e.0000 0760 174 124 7C [
o o o000 0764 175 125 D } Alt Mode ‘ ‘
YT Y 0770 176 126 7E - Prefix m’ g
XY YY Y} 0774 177 127 F DEL Rubout
APPENDIX 2 ASSM

A2-2 A3-1 C ASSM

APPENDIX 3

ASSEMBLER LISTING (Cont'd)

SYMBOL TABLE LISTING

Label Addr. Label Addr. Label Addr. Label Addr.

CTABL 0135 TS1 0102 TS2 010F 33 (RN
TSH 0115 TSRCH 0100

CROSS REFERENCE LISTING

(Printed in place of Symbol Table Listing if X option is specified.)

TLabel Addr. References

CTABL 0135 0092
TS1 0102 0131
132 010F 0192
83 0111 0239
TS4 0115 0307
TSKCH 0100 0367 0374

A3-2

C ASSM

o

@

Qo

9

APPENDIX 4

PACK AND UNPAC

In Section 5.2.7 of the SOLOS/CUTER User's Manual, there is a
discussion of the two types of files generated and utilized by
SOLOS/CUTER. It is important to remember that any given item of
software may be able to handle only one of these file structures, and
that a program that handles multiple-block files may require that the
blocks be of a particular size or in a particular range of sizes. The
PACK and UNPAC programs recorded on the same cassette as the software
you have purchased convert files of either type into the opposite
type; PACK converts a multiple-block file to single-block format, and
UNPAC converts a single-block file to multiple-block format.

The following chart is a summary of the file requirements of cassette
software. SB stands for single-block, and MB stands for
multiple-block. If MB is followed by a slash and a number, that
number indicates the block size reguired or generated by the program.

ITEM INPUT FILE OUTPUT FILE
khkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkhkkhkhkhkhkkhkkkkkkkhkkkkkkk
ALS-8*%* SB SB
ASSM MB/ less than No text output
or equal to file
1924
Ext. BASIC MB/ 256 MB/ 256
EDIT MB/ 256 to 1024 MB/ 256 to 1024

SOFTWARE #1 SB SB

* yses SOLOS/CUTER SAVE and GET commands
AAkKAAAAAAARAkhkhkAhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkkhkhkkkkkkkkkkhhkhkkkkkk

If you want to use the output file from one of these programs as the
input file for another, and if the file does not have the structure
required by the second program, you will need to use PACK or UNPAC to
create a file of the correct structure. (Actually, the original file
will not be altered; each of these programs reads a file from tape
unit 1 and RECORDS A DIFFERENTLY FORMATTED VERSION of the same file on
tape unit 2.)

PACK and UNPAC can be used to convert a multiple-block file having one
block size into a multiple-block file with another block size. First
PACK the file, and then UNPAC it, specifying the block size that you
want. (If you have the EDIT program, you will probably find it more
convenient to use the n; command than to execute PACK, then UNPAC, for
this purpose.)

C ASSM

A4-1

PACK and UNPAC have only one error message:
Read error - Bad tape file.

This message is displayed during the reading of a file from unit 1; it !!’
usually indicates that the file was recorded incorrectly, or that a

MODE SELect or CTRL-@ was entered from the keyboard while the tape was

being read.

PACK

PACK reads a multiple-block text file from tape unit 1 and writes it
out as a single-block file on tape unit 2. When you execute PACK,
either by typing XEQ PACK<KCR> or the sequence GET PACK<CR> followed by
EX B<KCR>, the screen will display:

Multi- to single- block converter
Enter name of multi-block file:

Type the name of the multiple-block file that you want to PACK. PACK
will also give this name to the single-block file that it creates. A
file name should contain one to five characters, no blanks or slashes;
when you have typed the whole name, hit the carriage return key. If
you make a typing error BEFORE YOU HIT THE RETURN KEY, use DELete to
erase the last character typed. If you hit the return and then
discover a typing error in the file name, you can use the ESCape key
to restart the series of questions.

Should output file be in ALS-8 format? (Y/N):

If the file is intended for use in the ALS-8 system, answer Y;
otherwise, answer N. In ALS-8 format each line of a file begins with
a count of the number of bytes in that line. Note that the input file
for PACK will never be in ALS-8 format, because ALS-8 format is not
used for multiple-block files.

Set up tapes. (Hit return when ready)

Insert the tape containing the multiple-block file in tape unit 1, and
put the recorder in PLAY mode. Insert the tape that will contain the
single-block file in tape unit 2, and put that recorder in RECORD
mode. When you hit the return key, the program will begin reading
from tape unit 1 and writing to tape unit 2.

At any time before you hit this final carriage return, you can restart
the question-answer section of PACK by hitting the ESCape key. Once
you have given the carriage return, however, the only way to interrupt
the activity of the program is to use MODE SELECT or CTRL-@ to abort
it and return to SOLOS/CUTER. If you abort the program and want to
execute it again, you will have to reload it from cassette.

C ASSM
A4-2

UNPAC

UNPAC reads a single-block text file from tape unit 1 and writes it
out as a multiple-block file on tape unit 2. When you execute UNPAC
by typing either XEQ UNPACKCR> or the sequence GET UNPACKCR> followed
by EX @, the screen will display:

Single- to multi- block converter
Enter name of single-block file:

Enter the name of the file that you want to UNPAC. The same name will
be given to the multiple-block output file. The file name
specifications are the same as those for PACK, and the DELete and
ESCape keys serve the same purpose as in PACK (see above).

Is input file in ALS-8 format? (Y/N):

If the input file is in ALS-8 format, answer Y; otherwise, answer N.
The output file will not be in ALS-8 format. (The ALS-8 byte counts
will be stripped from the input file before it is written out to the
output file.)

Enter desired block size for output file:

Enter the block size (in number of bytes per block) as a decimal
number, and then type a carriage return.

Set up tapes. (Hit return when ready)

See the explanation under PACK, above. The ESCape and MODE keys
function as they do with PACK; like PACK, UNPAC must be reloaded from
cassette in order to be executed after MODE SELECT or Control-@ has
been used.

C ASSM
A4-3

AFPENDIX 5

ABOUT CASSETTE RECORDERS AND CASSETTE FILES

Successful and reliable results with cassette recorders and
cassette files reguire a good deal of care. You need to use
consistent and careful methods, and you need to know what to
expect, when you try to read a manufacturer's tape, or your own.
The following methods are recommended:

1) Use only a recorder recommended for digital usage. For use
with the Processor Technology Sol or CUTS, the Panasonic
RC-413AS or Realistic CTR-21 is recommended.

2) Keep the recorder at least a foot away from eguipment containing
power transformers or other eguipment which might generate
magnetic fields, picked up by the recorder as hum.

3) Keep the tape heads cleaned and demagnetized in accordance
with the manufacturer's instructions.

4) Use high guality brand-name tape, preferably low noise, high
output tape. Poor tape can give poor results, and rapidly wear
down a recorder's tape heads.

5) Bulk erase tapes before reusing. It can be hard to find the
file you want in a jumble of old file pieces. Bulk erasing also
Gecreases the noise level of the tape.

6) Keep cassettes in their protective plastic covers, in a cool
place, when not in use. Cassettes are vulnerable tc dirt, high
temperature, liguids, and physical abuse.

7) Experimentally determine the most reliable settings for
volume and tone controls, and use these settings only.

8) On some cassette recorders, the microphone can be live while
recording through the AUX input. Deactivate the mike in accordance
with the manufacturer's instructions. 1In some cases this can be
done by inserting a dummy plug into the microrhone jack.

9) If you record more than one file on a side, SAVE an empty
file, named "ENL" for example, after the last file of interest.
Once you reaa its name, you will know not to search beyond it
for files you are seeking. One way to avoid having to search
for rfiles is to record conly one file per cassette, at the
beginning of the tape, if you can afford the extra cassettes.

C ASSM

25-1

14) Lo not record on the first or last minute of tape on a side.

The tape at the endas gets the most physical abuse. Do not be

impatient when trying to read the first file on a tape. You, or

the manufacturer of a pre-recorded program, may have recorded a

lot of empty tape at the beginning. Q"

11) Record a file mcre than once, before it leaves memory. This

redundancy can protect you from bad tape, eguipment malfunction,
and accidental erasure.

12) Most cassette recorders have a feature that allows you to
protect a cassette from accidental erasure. On the edge of the
cassette opposite the exposed tape are two small cavities covered
by plastic tabs, cne at each end of the cassette. If one of the
tabs 1is broken out, then one side of the cassette is "write
protected." An interlock in the recorder will not allow you to
press the record button. A piece of tape over the cavity will
remove this protection.

13) Use the tape counter to keep track of the position of files
on the cassette. Always rewind the cassette and set the counter
to zero when first putting a cassette into the recorder. Time
the first 30 seconds and note the reading of the counter. Always
begin recording after this count on all cassettes. Record the
beginning anc ending count cf each file for later reference.
Before recording a new file after other files, advance a few
counts beyond the end of the last file to insure that it will

not be written over.

14) The SOLCS/CUTER command CATalog can be used to generate a

list of all files on a cassette. In SCLOS/CUTER, type CAT <CR>, é]'
rewind to the beginning of the tape, and press PLAY on the

recorder. As tne header of each file is read, information will

be displayeda on the screen. If you have recorded the empty file

called END, as suggested, you will know when to search no further.

If you write down the the catalog information alcng with the

tape counter readings and a brief description of the file, you

will be able to locate any file guickly.

15) Before beginning work after any modification to the system,
test by SAVEing and GETting a short test program. This could
prevent the loss of much work.

In aadition to using the above procedures methodically, you need
toc know the various ways in which programs may be recorded on
tapes you have purchased:

1) If you cannct read a file consistently, and suspect the tape
itself, do not desrair. The same file may have been recorded
elsewhere on the tape. Processocr Technology often records a
second version, later on the same side of the tape. When you
first get a tape, CATalog it with SOLOS or CUTER so you will
know exactly what it contains. Write down the tape counter
readings at the same time.

C ASSM
A5-2

2) An empty file named END is sometimes placed at the end of the
recorded portion of a tape. When SOLOS CATalogs a file, the
file header information is displayed as socn as the beginning
part of the file passes the tape head, but nothing is displayed
when the end of the program passes by. If another filename such
as END is displayed, you know you have just passed the end of
the previous file.

3) Some of the programs supplied by Processor Technology contain
a checksum test within their code, in addition to the checksum
test which SOLOS performs. When a program containing this test
is first executed after loading, the checksum test reads all of
the program in memory, and calculates a checksum number which is
compared with a correct value. If the numbers match, the program
in memory is correct. Nothing is displayed when the numbers
match, but if they do not match, the message CHECKSUM TEST FAILED,
or a similar message, 1is displayea. The message may be followed
by two numbers, representing the correct and incorrect checksum
numbers.

Even though the checksum test was failed, it may be possible to

enter the program anyway by typing the carriage return key. The

bad data may not even be apparent, if it is in a portion of the
program you do not use. It is best, however, to try to find and
correct the problem causing the error so the checksum test is

passed. The error can be caused by the cassette interface circuitry,
bad memory locations, bad tape, a faulty recording, improper
alignment or settings on the cassette recorder, or other

eguipment problems.

C ASSM
A5-3

o

o

D

O

Processor Technology Corporation 7100 Johnson Indusitial Way, Pleéasanton, CA 94566 Manual Number 727121

