
^ M I T S , Inc. 1977

Reprinted July, 1977

2450 Alamo S.E. /Aibuquerque. New Mexico 87106

BASIC Reference Manual

Addenda, April, 1977

1. Page 33, sub-paragraph b:

LINE INPUT ["<prompt string>",].; <string variable name>

CHANGE TO:

LINE INPUT ["<prompt string>";] <string variable>

2. Page 40, Paragraph S-3b, line 9:

The of the <integer expression> is the starting address of . . .

CHANGE TO:

The <integer expression> is the starting address of . . .

3. Page 41. Insert the following paragraphs between Paragraphs 3 and 4.

ADDITION:

The string returned by a call to USR with a string argument is that
string the user's routine sets up in the descriptor. Modifying [D,E] does
not affect the returned string. Therefore, the statement:

C$=USR(A$)

results in A$ also being set to the string assigned to C$. To avoid
modifying A$ in this statement, we would use:

C$=USR(A$+" ")

so that the user's routine modifies the descriptor of a string temporary
instead of the descriptor for A$.

A string returned by a user's routine should be completely within
the bounds of the storage area used by the original string. Increasing
a string's length in a user routine is guaranteed to cause problems.

4. Page 49, last paragraph, line 7:

. . . leading $ signs, nor can negative numbers be output unless the sign
is forced to be trailing.

CHANGE TO:

. . . leading $ signs.

BASIC Reference Manual Addenda, April, 1977
Page 2

5. Page 59, last line:

520 CLOSE #1

CHANGE TO:

520 CLOSE 1

6. Page 70, CLEAR [<expression>] explanation:

Same as CLEAR but sets string space to the value . . .

CHANGE TO:

Same as CLEAR but sets string space (see 4-1) to the value . . .

7. Page 70, CLOAD <string expression> explanation, second line:

. . . character of STRING expression> to be . . .

CHANGE TO:

. . . character of <STRING expression> to be . . .

8. Page 71:

CSAVE*<array name> 8K (cassette), Disk

CHANGE TO:

CSAVB*<array name> 8K (cassette), Extended, Disk

9. Page 75. Insert the following after LET and before LPRINT.

ADDITION:

LINE INPUT LINE INPUT "prompt string"; string variable name

Extended, Disk

LINE INPUT prints the prompt string on the terminal and assigns all
input from the end of the prompt string to the carriage return to
the named string variable. No other prompt is printed if the prompt
string is omitted. LINE INPUT may not be edited by Control/A.

10. Page 76, POKE explanation, second line:

. . . If I is negative, address is 65535+1, . . .

CHANGE TO:

. . . If I is negative, address is 65536+1, . . .

BASIC Reference Manual Addenda, April, 1977
Page 3

11. Page 80, 0CT$:

OCT$ OCT$(X) 8K, Extended, Disk

CHANGE TO:

OCT$ OCT$(X) Extended, Disk

12. Page 81:

SPACE$ SPACE$(I) 8K, Extended, Disk

CHANGE TO:

SPACE$ SPACE$(I) Extended, Disk

13. Page 91, line 4:

. . . question (see Appendix E),

CHANGE TO:

. . . question (see Appendix H).

14. Page 95, first paragraph, line 3:

. . . For instructions on loading Disk BASIC, see Appendix E.

CHANGE TO:

. . . For instructions on loading Disk BASIC, see Appendix H.

15. Page 103, line 11:

C (in extended) retains CONSOLE function.

CHANGE TO:

C (in Extended and Disk) retains CONSOLE and all other functions.

16. Page 112, Paragraph 4, Line 3:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 decimal.

CHANGE TO:

USRLOC for 4K and 8K Altair BASIC version 4.0 is 111 octal.

17. Page 114, third paragraph, line 2.:

. . . by the first character of the STRING expressions

CHANGE TO:

BASIC Reference Manual Addenda, April, 1977
Page 4

. . . by the first character of the <string expressions Note that the
program named A is saved by CSAVE"A".

18. Page 119, last sentence before the NOTE:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by 16 and adding the position of the slot in the
sector (0-8) plus 1.

CHANGE TO:

File numbers are calculated by multiplying the sector number of the direc-
tory track the file is in by 8 and adding the position of the slot in the
sector (0-7) plus 1.

19. Page 122, Step 1, line 3:

. . . location 2=116 octal . . .

CHANGE TO:

. . . location 2=077 octal . . .

20. Page 126, line 6:

COP0,1 FROM 0 TO 1? YCARRIAGE retum> DONE

CHANGE TO:

*COP0,1
FROM 0 TO 1? Y<carriage retum>
DONE *

21. Page 126, lines 13 through 15:

. . . Example: *DAT0 (DAT is equivalent) TRACK? 0SECTOR? 0 000 000 000
000 000 000 000 000 000 000 000 000 000 etc.
CHANGE TO:

*DAT0
TRACK? 0
SECTOR? 0
000 000 000 000 000 000 000 000 000 000 000 000 000 etc.

22. Page 131, line 1 of program:

ORG 7Q1

CHANGE TO:

ORG 71^

BASIC Reference Manual Addenda, April, 1977
Page 5

23. Page 135, Step 7, line 2:

. . . the board type is IOCHNL, . . .

CHANGE TO:

. . . the board address is IOCHNL, . . .

24. Index, line 12:

ADDITION:

NULL 72

U

PREFACE
The Altair BASIC language is a high-level programming

language specifically designed for interactive computing
systems. Its simple English-like instructions are easily
understood and quickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
powerful language with provisions for editing and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALTAIR 8800 series
microcomputer to execute them. Altair BASIC includes many
useful diagnostic and editing features in all versions. The
extended versions provide additional features including
comprehensive file input/output procedures in the disk
version.

This manual will explain the features of the BASIC
language and the special provisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC interpreters, release 4.0.
For quick reference, a table of Altair BASIC instructions,
diagnostics and functions are provided in Section 6. A
complete index is at the end of the manual. In addition to
this reference manual, the programmer should have a good
BASIC text book on hand. A list of some suggested texts is
given in Appendix J.

axiuary, 1977 Page 2

CONTENTS

1. Some Introductory Remarks.
1-1 Introduction to this manual

a. conventions
b. definitions

1-2 Modes of Operation
1-3 Formats

a. lines-AUTO and RENUM
b. REMarks
c. error messages

1-4 Editing - elementary provisions
a. single characters
b. lines
c. whole programs

2. Expressions and Statements
2-1 Expressions

a. constants
b. variables

1) names
2) typing

c. arrays - the DIM statement
d. operators and order of precedence
e. logical operations
f. the LET statement

2-2 Branching and Loops
a. branching

1) GOTO
2) IF...THEN...[ELSE]
3) ON...GOTO

b. loops - FOR,NEXT
c. subroutines - GOSUB,RETURN statements
d. memory limitations

2-3 Input/Output, Data Handling
a. INPUT
b. PRINT
c. DATA, READ, RESTORE

1) DATA
2) READ
3) RESTORE

d. CSAVE, CLOAD
e. miscellaneous

1) WAIT
2) PEEK,POKE
3) OUT, INP

3. Functions

January, 1977 Page 3

3-1 Intrinsic Functions
3-2 User-defined Functions - the DEF statement
4. Strings
4-1 String data
4-2 String operations

a. comparisons
b. LET statements
c. input/output

1) INPUT, PRINT
2) DATA,READ

4-3 String Functions
5. Extended Features
5-1 Extended Statements
5-2 Extended Operators
5-3 Extended Functions
5-4 EDIT Command
5-5 PRINT USING Statement
5-6 Disk Operations
6. Tables and Directories
6-1 Commands
6-2 Statements
6-3 Intrinsic Functions
6-4 Special Characters
6-5 Error Messages
6-6 Reserved Words
6-7 Index
Appendices
A. ASCII Character Codes
3. Loading Altair BASIC
C. Speed and Space Hints
D. Mathematical Functions
E. Altair BASIC and Machine Language
F. Using the ACR Interface
G. Converting BASIC Programs Not Written for the Altair Computer
H. Disk Information
I. The PIP Utility Program
J. BASIC Texts
K. Using Altair BASIC on the

Intellec* 8/Mod 80 and MDS Systems
L. Patching Altair BASIC'S I/O Routines
M. Using Disk Altair BASIC: An Example
Index

C

January, 1977 Page 4

SOME INTRODUCTORY REMARKS
1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicity, some
conventions will be followed in discussing the features of
the Altair BASIC language.
1. Words printed in capital letters must be written exactly
as shown. These are mostly names of instructions and
commands.
2. Items enclosed in angle brackets (<>) must be supplied
as explained in the text. Items in square brackets ([]) are
optional. Items in both kinds of brackets, [<W>], for
example, are to be supplied if the optional feature is used.
Items followed by dots (...) may be repeated or deleted as
necessary.
3. Shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key
and typing the indicated letter.
4. All indicated punctuation must be supplied.

b. Definitions. Some terms which will become
important are as follows:

Alphanumeric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the
terminal which causes the carriage, print head or cursor to
move to the beginning of the next line and to the command
that the carriage return key issues which terminates a BASIC
line.

Command Level: After Altair BASIC prints OK, it is at
the command level. This means it is ready to accept
commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and
Statements. Commands are instructions normally used only in
direct mode (see Modes of Operation, section 1-2). Some
commands, such as CONT,may only be used in direct mode since
they have no meaning as program statements. Some commands,
such as DELETE, are not normally used as program statements
because they cause a return to command level. But most
commands will find occasional use as program statements.
Statements are instructions that are normally used in
indirect mode. Some statements, such as DEF, may only be
used in indirect mode.

1977 Page 5

Edit: The process of deleting, adding and substituting
lines in a program and that of preparing data for output
according to a predetermined format will both be referred to
as "editing." The particular meaning in use will be clear
from the context.

Integer Expression: An expression whose value is
truncated to an integer. The components of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for
use as statements and commands. These are called reserved
words and they may not be used in variable or function
names.

Special Characters: some characters appear differently
on different terminals. Some of the most important of these
are the following:

(caret) appears on some terminals as ^ (up-arrow)
^ (tilde) does not appear on some terminals and prints

as a blank
(underline) appears on some terminals as^—-(back-arrow).

String Literal: A string of characters enclosed by
quotation marks (") which is to be input or output exactly
as it appears. The quotation marks are not part of the
string literal, nor may a string literal contain quotation
marks. (""HI, THERE""is not legal.)

Type: While the actual device used to enter
information into the computer differs from system to system,
this manual will use the word "type" to refer to the process
of entry. The user types, the computer prints. Type also
refers to the classifications of numbers and strings.
1-2 Modes of Operation.

Altair BASIC provides for operation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computer.
Results of arithmetic and logical operations are displayed
and stored for later use, but the instructions themselves
are lost after execution. This mode is useful for debugging
and for using Altair BASIC in a "calculator" mode for quick
computations which do not justify the design and coding of
complete programs.

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN

January, 1977 Page 6

In the indirect mode, the computer executes
instructions from a program stored in memory. Program lines
are entered into memory if they are preceded by a line
number. Execution of the program is initiated by the RUN
commands.

1-3 Formats.

a. Lines. The line is the fundamental unit of an
Altair BASIC program. The format for an Altair BASIC line
is as follows:

nnnnn <BASIC statements :<BASIC statement^..]
Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and
indicates the order in which the statements in the line will
be executed in the program. It also provides for branching
linkages and for editing. Line numbers must be in the range
0 to 65529. A good programming practice is to use an
increment of 5 or 10 between successive line numbers to
allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the
AUTO and RENUM commands. The AUTO command provides for
automatic insertion of line numbers when entering program
lines. The format of the AUTO command is as follows:

AUTO[<initial line>[,[<increment>]]
Example;

AUTO 100,10
100 INPUT X,Y
110 PRINT SQR(X*2+Y*2)
120 "C
OK

AUTO will number every input line until Control/C is typed.
If the Cinitial line> is omitted, it is assumed to be 10 and
an increment of 10 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment
is specified, the increment last used in an AUTO statement
is assumed.

If AUTO generates a line number that already exists in
the program currently in memory, it prints the number
followed by an asterisk. This is to warn the user that any
input will replace the existing line.

2) The RENUM command allows program lines to be "spread
out" so that a new line or lines may be inserted between
existing lines. The format of the RENUM command is as
follows:

RENUM [<NN>[<MM>[,<II>]]]
where NN is the new number of the first line to be
resequenced. If omitted, NN is assumed to be 10. Lines
less than MM will not be renumbered. If MM is omitted, the
whole program will be resequenced. II is the increment
between the lines to be resequenced. If II is omitted, it
is assumed to be 10. Examples:

RENUM Renumbers the whole program to start at line
10 with an increment of 10 between the new line numbers.

RENUM 100,,100 Renumbers the whole program to start
at line 100 with an increment of 100.

RENUM 6000,5000,1000 Renumbers the lines from 5000
up so they start at 6000 with an increment of 1000.

NOTE
RENUM cannot be used to change the order of program
lines (for example, RENUM 15,30 when the program has
three lines numbered 10, 20 and 30) nor to create
line numbers greater than 65529. An ILLEGAL
FUNCTION CALL error will result.

All line numbers appearing after a GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new line numbers.
If a line number appears after one of the statements above
but does not exist in the program, the message "UNDEFINED
LINE XXXXX IN YYYYY" will be printed. This line reference
(XXXXX) will not be changed by RENUM, but line number YYYYY
may be changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is required. This is particularly useful
in the use of the EDIT command. See section 5-4.

4) Following the line number, one or more BASIC
statements are written. The first word of a statement
identifies the operations to be performed. The list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the

January, 1977 Page 8

data which is to be operated upon by the statement. In some ,
important instructions, the operation to be performed ^
depends upon conditions or options specified in the list.

Each type of statement will be considered in detail in
sections 2, 3 and 4.

More than one statement can be written on one line if
they are separated by colons (:). Any number of statements
can be joined this way provided that the line is no more
than 72 characters long in the 4K and 8K versions, or 255
characters in the Extended and Disk versions. In the
Extended and Disk versions, lines may be broken with the
LINE FEED key. Example:

100 IF X<Y+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it is input
as one BASIC line.

b. REMarks. In many cases, a program can be more
easily understood if it contains remarks and explanations as
well as the statements of the program proper. In Altair
BASIC, the REM statement allows such comments to be included ^
without affecting execution of the program. The format of H
the REM statement is as follows:

REM <remarks>
A REM statement is not executed by BASIC, but branching
statements may link into it. REM statements are terminated
by the carriage return or the end of the line but not by a
colon. Example:

100 REM DO THIS LOOP:FOR I=1TO10 -the FOR statement
will not be executed

101 FOR 1=1 TO 10: REM DO THIS LOOP -this FOR statement will
be executed.

In Extended and Disk versions, remarks may be added to the
end of a program line separated from the rest of the line by
a single quotation mark ('). Everything after the single
quote will be ignored.

c. Errors. When the BASIC interpreter detects an
error that will cause the program to be terminated, it
prints an error message. The error message formats in
Altair BASIC are as follows:

Direct statement ?XX ERROR

1977 Page 9

Indirect statement ?XX ERROR IN nnnnn
XX is the error code or message (see section 6-5 for a list
of error codes and messages) and nnnnn is the line number
where the error occurred. Each statement has its own
particular possible errors in addition to the general errors
in syntax. These errors will be discussed in the
description of the individual statements.

1-4 Editing - elementary provisions.
Editing features are provided in Altair BASIC so that

mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which
will be discussed in section 5.

a. Correcting single ̂ characters. If an incorrect
character is detected in a line as it is being typed, it can
be corrected immediately with the backarrow (underline on
some terminals) or ,except in 4K, the RUBOUT key. Each
stroke of the key deletes the immediately preceding
character. If there is no preceding character, a carriage
return is issued and a new line is begun. Once the unwanted
characters are removed, they can be replaced simply by
typing the rest of the line as desired.

When RUBOUT is typed, a backslash (\) is printed and
then the character to be deleted. Each successive RUBOUT
prints the next character to be deleted. Typing a new
character prints another backslash and the new character.
All characters between the backslashes are deleted.
Example:

100 X=\=X\Y=10 Typing two RUBOUTS deleted the '='
and 'X' which were subsequently
replaced by Y= .

b. correcting lines. A line being typed may be
deleted by typing an at-sign (@) instead of typing a
carriage return. A carriage return is printed automatically
after the line is deleted. Except in 4K, typing Control/U
has the same effect.

In the Extended and Disk versions, typing Control/A
instead of the carriage return will allow all the features
of the EDIT command (except the A command) to be used on the

January, 1977 Page 10

line currently being typed. See section 5-4.
c. correcting whole programs. The NEW command causes

the entire current program and all variables to be deleted.
NEW is generally used to clear memory space preparatory to
entering a new program.

2. STATEMENTS AND EXPRESSIONS.

2-1. Expressions.
The simplest BASIC expressions are single constants,

variables and function calls.
a. Constants. Altair BASIC accepts integers or

floating point real numbers as constants. All but the 4K
version of Altair BASIC accept string constants as well.
See section 4-1. Some examples of acceptable numeric
constants follow:

123
3.141
0.0436
1.25E+05

Data input from the terminal or numeric constants in a
program may have any number of digits up to the length of a
line (see section l-3a). In 4K and 8K Altair BASIC,
however, only the first 7 digits of a number are significant
and the seventh digit is rounded up. Therefore, the command

PRINT 1.234567890123
produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
precision format allows 17 significant digits with the 17th
digit rounded up.

The format of a printed number is determined by the
following rules:
1. If the number is negative, a minus sign (-) is printed

to the left of the number. If the number is positive, a
space is printed.

1977 Page 11

2. If the absolute value of the number is an integer in
the range 0 to 999999, it is printed as an integer.

3. If the absolute value of the number is greater than or
equal to .01 and less than or equal to 999999, it is
printed in fixed point notation with no exponent.

4. In Extended and Disk versions, fixed point values up to
9999999999999999 are possible.

5. If the number does not fall into categories 2, 3 or 4,
scientific notation is used.

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX.XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the
exponent (they need not be the same, of course), X for the
digits of the mantissa and T for the digits of the exponent.
E and D may be read "...times ten to the power...."
Non-significant zeros are suppressed in the mantissa, but
two digits are always printed in the exponent. The sign
convention in rule 1 is followed for the mantissa. The
exponent must be in the range -38 to +38. The largest
number that may be represented in Altair BASIC is
1.70141E38, the smallest positive number is 2.9387E-38. The
following are examples of numbers as input and as output by
Altair BASIC:

Number Altair BASIC Output

The Extended and Disk versions of Altair BASIC allow
numbers to be represented in integer, single precision or
double precision form. The type of a number constant is
determined according to the following rules:

+1
-1
6523
1E20
-12.34567E-10
1.234567E-7
1000000
.1
.01
.000123
-25.460

1
-1
6523
1E20

-1.23456E-09
1.23457E-07
1E+06
.1
.01
1.23E-04

-25.46

January, 1977 Page 12

1. A constant with more than 7 digits or a 'D' instead of
'E' in the exponent is double precision.

2. A constant outside the range -32768 to 32767 with 7 or
fewer digits and a decimal point or with an 'E' exponent
is single precision.

3. A constant in the range -32768 to 32767 and no decimal
point is integer.

4. A constant followed by an exclamation point (!) is
single precision; a constant followed by a pound sign
(#) is double precision.

Two additional types of constants are allowed in
Extended and Disk versions of Altair BASIC. Hexadecimal
(base sixteen) constants may be explicitly designated by the
symbol &H preceding the number. The constant may not
contain any characters other than the digits 0 - 9 or
letters A - F, or a SYNTAX ERROR will occur. Octal
constants may be designated either by &0 or just the & sign.

In all formats, a space is printed after the number.
In all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. If not, it
issues a carriage return and prints the whole number on the
next line.

b. Variables
1) A variable represents symbolically any number which

is assigned to it. The value of a variable may be assigned
explicitly by the programmer or may be assigned as the
result of calculations in a program. Before a variable is
assigned a value, its value is assumed to be zero. In 4K ,
a variable name consists of one or two characters. The
first character is any letter. The second character must be
a numeral. In other versions of Altair BASIC, the variable
name may be any length, but any alphanumeric characters
after the first two are ignored. The first character must
be a letter. No reserved words may appear as variable names
or within variable names. The following are examples of
legal and illegal Altair BASIC variables:

Legal Illegal
In 4K and 8K Altair BASIC:

A %A (first character must
be alphabetic.)

Z1 Z1A (variable name is too
long for 4K)

Other versions:

January, 1977 Page 13

TP TO (variable names cannot
be reserved words)

PSTG$
COUNT RGOTO (variable names can-

not contain reserved
words.)

In all but 4K Altair BASIC, a variable may also
represent a string. Use of this feature is discussed in
section 4.

2) Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (0 to 255 characters) $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, exponent between

-38 and +38) !
Double Precision (up to 16 digits, exponent between

-38 and +38) #
Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double precision
numbers may be handled correctly,If no type is explicitly
declared, type is determined by the first letter of the
variable name according to the type table. The table of
types may be modified with the following statements.

DEFINT r
DEFSTR r
DEFSNG r
DEFDBL r

Integer
String
Single Precision
Double Precision

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT 1-N
20 DEFDBL D

Variable names beginning with the let-
ters 1-N are to be of integer type.
Variable names beginning with D are to
be of double precision type.

C
If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

January, 1977 Page 14

3) Integer variables should be used wherever possible
since they take the least amount of space in memory and
integer arithmetic is much faster than single precision
arithmetic.

Care must be exercised when single precision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be printed, a
double precision variable set to a single precision value
may not print the same as the single precision variable.

10 A=1.01 single precision value
20 B#=A*10:C#=CDBL(A)*10# convert to double precision
30 PRINTA?B#;C#;CDBL(A) in various ways
RUN
1.01 10.10000038146973 10.09999990463257 1.009999990463257

OK
In order to assure that double precision numbers will print
the same as single precision, the VAL and STR$ functions
should be used. For example:

10A=1.01
20 B#=VAL(STR$(A)):C#=B#*10#
30 PRINT A?B#?C#
RUN
1.01 1.01 10.1

OK
c. Array Variables. It is often advantageous to refer

to several variables by the same name. In matrix
calculations, for example, the computer handles each element
of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripted variables, or
arrays. The form of an array variable is as follows:

W(<subscript> [,<subscript>...])
where W is a variable name and the subscripts are integer
expressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only one
dimension in 4K, but in all other versions of Altair BASIC
it may have as many dimensions as will fit on a single line.
The smallest subscript is zero. Examples:

A(5) The sixth element of array A. The first
element is A(0).

ARRAY(I,2*J) The address of this element in a two-
dimensional array is determined by
evaluating the expressions in parenthe-
ses at the time of the reference to the

January, 1977 Page 15

, array and truncating to integers. If
1=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to zero. The form of the DIM
statement is as follows:

DIM W(<subscript>[,<subscript>...])
where W is a legal variable name. Subscript is an integer
expression which specifies the largest possible subscript
for that dimension. Each DIM statement may apply to more
than one array variable. Some examples follow:

113 DIM A(3), D$(2,2,2)
114 DIM R2%(4), B(10)
115 DIM Q1(N), Z#(2+I) Arrays may be dimensioned dy-

namically during program
execution. At the time the
DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an array
variable is found in a program, BASIC assumes the variable
to have a maximum subscript of 10 (11 elements) for each
dimension in the reference. A BS or SUBSCRIPT OUT OF RANGE
error message will be issued if an attempt is made to
reference an array element which is outside the space
allocated in its associated DIM statement. This can occur
when the wrong number of dimensions is used in an array
element reference. For example:

30 LET A(1,2,3)=X when A has been dimensioned by
10 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM
statement for an array is found after that array has been
dimensioned. This often occurs when a DIM statement appears
after an array has been given its default dimension of 10.

d. Operators and Precedence. Altair BASIC provides a
full range of arithmetic and (except in 4K) logical
operators. The order of execution of operations in an
expression is always according to their precedence as shown
in the table below. The order can be specified explicitly
by the use of parentheses in the normal algebraic fashion.

Table of Precedence
C

January, 1977 Page 16

Operators are shown here in decreasing order of precedence.
Operators listed in the same entry in the table have the
same precedence and are executed in order from left to right
in an expression.
1. Expressions enclosed in parentheses ()
2. * exponentiation (not in 4K). Any number to the zero

power is 1. Zero to a negative power causes a /0 or
DIVISION BY ZERO error.

3. - negation, the unary minus operator
4. *,/ multiplication and division
5. \ integer division (available in Extended and Disk

versions, see section 5-2)
6. MOD (available in Extended and Disk versions. See

section 5-2)
7. +,- addition and subtraction
8. relational operators

= equal
<> not equal
< less than
> greater than

less than or equal to
>=,=> greater than or equal to

(the logical operators below are not available in 4K)

9. NOT logical, bitwise negation
10. AND logical, bitwise disjunction
11. OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR
13. EQV logical, bitwise equivalence
14. IMP logical, bitwise implication
In 4K Altair BASIC, relational operators may be used only
once in an IF statement. In all other versions, relational

1977 Page 17

operators may be used in any expressions. Relational
expressions have the value either of True (-1) or False (0).

e. Logical Operations., Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments into sixteen bit, signed, two's complement
integers in the range -32768 to 32767. After the operations
are performed, the result is returned in the same form and
range. If the arguments are not in this range, an FC or
ILLEGAL FUNCTION CALL error message will be printed and
execution will be terminated. Truth tables for the logical
operators appear below. The operations are performed
bitwise, that is, corresponding bits of each argument are
examined and the result computed one bit at a time. In
binary operations, bit 7 is the most significant bit of a
byte and bit 0 is the least significant.

X Y X AND
1 1 1
1 0 0
0 1 0
0 0 0
X Y X OR
1 1 1
1 0 1
0 1 1
0 0 0
X NOT X
1 0
0 1
X Y X XOR
1 1 0
1 0 1
0 1 1
0 0 0
X Y X EQV
1 1 1
1 0 0
0 1 0
0 0 1
X Y X IMP
1 1 1
1 0 0
0 1 1
0 0 1

OR

NOT

XOR

EQV

IMP

X A N D Y
1
0
0
0

X O R Y
1
1
1
0

NOT X
0
1

Y X X O R Y
1 0
0 1
1 1
0 0

X E Q V Y
1
0
0
1

X I M P Y
1
0
1
1

January, 1977 Page 18

Some examples will serve to show how the logical operations
work:

63 AND 16=16 63=binary 111111 and 16=binary 10000,
so 63 AND 16=16

15 AND 14=14 15= binary 1111 and 14=binary 1110,
so 15 AND 14=binary 1110=14.

-1 AND 8=8 -l=binary 1111111111111111 and 8=binary
1000, so -1 AND 8=8.

4 OR 2=6 4=binary 100 and 2=binary 10 so
4 OR 2=binary 110=6.

10 OR 10=10 binary 1010 OR'd with itself is 1010=
10.

-1 OR -2=-l -l=binary 1111111111111111 and -2=
1111111111111110, so -1 OR -2=-l.

NOT 0=-l the bit complement of sixteen zeros
is sixteen ones, which is the two's
complement representation of -1.

NOT X=-(X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined pattern of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical operations will be considered in the
discussion of the IF statement.

f. The LET statement. The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>
where W is a variable name and the expression is any valid
Altair BASIC arithmetic or, except in 4K, logical or string
expression. Examples:

1000 LET V=X
110 LET 1=1+1 the '=' sign heremeans 'is replaced

by '
The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5*(X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message is printed when BASIC
detects incorrect form, illegal characters in a line,
incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the result of a calculation is

January, 1977 Page 19

too large to be represented by Altair BASIC'S number
formats. All numbers must be within the range 1E-38 to
1.70141E38 or -1E-38 to -1.70141E38. An attempt to divide
by zero results in the /0 or DIVISION BY ZERO error message.

For a discussion of strings, string variables and
string operations, see section 4.

2-2. Branching, Loops and Subroutines.
a. Branching. In addition to the sequential execution

of program lines, BASIC provides for changing the order of
execution. This provision is called branching and is the
basis of programmed decision making and loops. The
statements in Altair BASIC which provide for branching are
the GOTO, IF...THEN and ON.,. .GOTO statements.

1) GOTO is an unconditional branch. Its form is as
follows:

GOTO<mmmmm>
After the GOTO statement is executed, execution continues at
line number mmmmm.

/ 2) IF...THEN is a conditional branch. Its form is as
follows:

IF<expression>THEN<mmmmm>
where the expression is a valid arithmetic, relational or,
except in 4K, logical expression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues
at line mmmmm. Otherwise, execution resumes at the next
line after the IF...THEN statement.

An alternate form of the IF...THEN statement is as
follows:

IF<expression>THEN<stat.ement>
where the statement is any Altair BASIC statement.
Examples:

10 IF A=10 THEN 40 If the expression A=10 is
true, BASIC branches to line 40. Otherwise,
execution proceeds at the next line.

15 IF A<B+C OR X THEN 100 The expression after IF is
evaluated and if the value of the expression is
non-zero, the statement branches to line 100.

C

January, 1977 Page 20

Otherwise, execution continues on the next line.
20 IF X THEN 25 If X is not zero, the statement

branches to line 25.
30 IF X=Y THEN PRINT X If the expression X=Y is true

(its value is non-zero), the PRINT statement is
executed. Otherwise, the PRINT statement is not
executed. - In either case, execution continues with
the line after the IF...THEN statement.

35 IF X=Y+3 GOTO 39 Equivalent to the corresponding
IF...THEN statement, except that GOTO must be.
followed by a line number and not by another
statement.

Extended and Disk versions of Altair BASIC provide an
expanded IF...THEN statement of the form

IF<expression>THEN<YY>ELSE<ZZ>
where YY and ZZ are valid line numbers or Altair BASIC
statements. Examples:

IF X>Y THEN PRINT "GREATER" ELSE PRINT "NOT GREATER"
If the expression X>Y is true, the statement after THEN is
executed; otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "ERROR"
If the expression X=2*Y is true, BASIC branches to line 5?.
otherwise, the PRINT statement is executed. Extended and
Disk Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is limited only by the length of the
line. Thus, for example:
IF X>Y THEN PRINT "GREATER" ELSE IF Y>X

THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"
and

IF X=Y THEN IF Y>Z THEN PRINT "X>Z" ELSE PRINT "Y<=Z"
ELSE PRINT "XOY"

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with
the closest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "AOC"
will not print "AOC" when AOB.

January, 1977 Page 21

3) ON...GOTO (not in 4K) provides for another type of
conditional branch. Its form is as follows:

ON<expression>GOTO<list of line numbers>
After the value of the expression is truncated to an
integer, say I, the statement causes BASIC to branch to the
line whose number is 1th in the list. The statement may be
followed by as many line numbers as will fit on one line.
If 1=0 or is greater than the number of lines in the list,
execution will continue at the next line after the ON...GOTO
statement. I must not be less than zero or greater than
255, or an FC or ILLEGAL FUNCTION CALL error will result.

b. Loops. It is often desirable to perform the same
calculations on different data or repetitively on the same
data. For this purpose, Altair BASIC provides the FOR and
NEXT statements. The form of the FOR statement is as
follows:

FOR<variable>=<X>TO<Y>[STEP <Z>]
where X,Y and Z are expressions. When the FOR statement is
encountered for the first time, the expressions are
evaluated. The variable is set to the value of X which is
called the initial value. BASIC then executes the
statements which follow the FOR statement in the usual
manner. When a NEXT statement is encountered, the step Z is
added to the variable which is then tested against the final
value Y. If Z, the step, is positive and the variable is
less than or equal to the final value, or if the step is
negative and the variable is greater than or equal to the
final value, then BASIC branches back to the statement
immediately following the FOR statement. Otherwise,
execution proceeds with the statement following the NEXT.
If the step is not specified, it is assumed to be 1.
Examples:

10 FOR 1=2 TO 11 The loop is executed 10 times with
the variable I taking on each in-
tegral value from 2 to 11.

20 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

30 FOR V=10*N TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval-
uated only once, before loop-
ing begins.

40 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR...NEXT loops may be nested. That is, BASIC will execute
C

anuary,^ 1977 Page 22

a FOR...NEXT loop within the context of another loop. An
example of two nested loops follows:

100 FOR 1=1 TO 10
120 FOR J=1 TO I
130 PRINT A(I,J)
140 NEXT J
150 NEXT I

Line 130 will print 1 element of A for 1=1, 2 for 1=2 and so
on. If loops are nested, they must have different loop
variable names. The NEXT statement for the inside loop
variable (J in the example) must appear before that for the
outside variable (I). Any number of levels of nesting is
allowed up to the limit of available memory.

The NEXT statement is of the form:
NEXT[<variable>[,<variable>...]]

where each variable is the loop variable of a FOR loop for
which the NEXT statement is the end point. In the 4K
version, the only form allowed is NEXT with one variable.
In all other versions, NEXT without a variable will match
the most recent FOR statement. In the case of nested loops
which have the same end point, a single NEXT statement may
be used for all of them, except in 4K. The first variable
in the list must be that of the most recent loop, the second
of the next most recent, and so on. If BASIC encounters a
NEXT statement before its corresponding FOR statement has
been executed, an NF or NEXT WITHOUT FOR error message is
issued and execution is terminated.

c. Subroutines. If the same operation or series of
operations are to be performed in several places in a
program, storage space requirements and programming time
will be minimized by the use of subroutines. A subroutine
is a series of statements which are executed in the normal
fashion upon being branched to by a GOSUB statement.
Execution of the subroutine is terminated by the RETURN
statement which branches back to the statement after the
most recent GOSUB. The format of the GOSUB statement is as
follows:

GOSUB<line number>
where the line number is that of the first line of the
subroutine. A subroutine may be called from more than one
place in a program, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

1977 Page 23

Except in the 4K version, subroutines may be branched
to conditionally by use of the ON...GOSUB statement, whose
form is as follows:

ON <expression> GOSUB Clist of line numbers>
The execution is the same as ON...GOTO except that the line
numbers are those of the first lines of subroutines.
Execution continues at the next statement after the
ON...GOSUB upon return from one of the subroutines.

d. OUT OF MEMORY errors. While nesting in loops,
subroutines and branching is not limited by BASIC, memory
size limitations restrict the size and complexity of
programs. The OM or OUT OF MEMORY error message is issued
when a program requires more memory than is available. See
Appendix C for an explanation of the amount of memory
required to run programs.
2-3. Input/Output

a. INPUT. The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<list of variables>
The effect of the INPUT statement is to cause the values
typed on the terminal to be assigned to the variables in the
list. When an INPUT statement is executed, a question mark
(?) is printed on the terminal signalling a request for
information. The operator types the required numbers or
strings (or, in 4K, expressions) separated by commas and
types a carriage return. If the data entered is invalid
(strings were entered when numbers were requested, etc.)
BASIC prints 'REDO FROM START?' and waits for the correct
data to be entered. If more data was requested by the INPUT
statement than was typed, ?? is printed on the terminal and
execution awaits the needed data. If more data was typed
than was requested, the warning 'EXTRA IGNORED' is printed
and execution proceeds. After all the requested data is
input, execution continues normally at the statement
following the INPUT. Except in 4K, an optional prompt
string may be added to an INPUT statement.

INPUT["<prompt string>"y]<variable list>
Execution of the statement causes the prompt string to be
printed before the question mark. Then all operations
proceed as above. The prompt string must be enclosed in
double quotation marks (") and must be separated from the

anuary, 1977 Page 24

variable list by a semicolon (;). Example:
100 INPUT "WHAT'S THE VALUE"?X,Y causes the following

output:
WHAT'S THE VALUE?

The requested values of X and Y are typed after the ?
Except in 4K, a carriage return in response to an INPUT
statement will cause execution to continue with the values
of the variables in the variable list unchanged. In 4K, a
SN error results.

b. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT
which prints a carriage return,
line. The more usual PRINT
form:

PRINT<list of expressions>

The effect is to skip a
statement has the following

which causes the values of the expressions in the list to be
printed. String literals may be printed if they are
enclosed in double quotation marks (").

The position of printing is determined by the
punctuation used to separate the entries in the list.
Altair BASIC divides the printing line into zones of 14
spaces each. A comma causes printing of the value of the
next expression to begin at the beginning of the next 14
column zone. A semicolon (;) causes the next printing to
begin immediately after the last value printed. If a comma
or semicolon terminates the list of expressions, the next
PRINT statement begins printing on the same line according
to the conditions above. Otherwise, a carriage return is
printed.

c. DATA, READ, RESTORE
1) the DATA statement. Numerical or string data needed

in a program may be written into the program statements
themselves, input from peripheral devices or read from DATA
statements. The format of the DATA statement is as follows:

DATA<list>
where the entries in the list are numerical or string
constants separated by commas. In 4K, expressions may also

1977 Page 25

appear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement. Examples:

10 DATA 1,2,-1E3,.04
20 DATA " LOO", HITS Leading and trailing spaces in

string values are suppressed unless the string is
enclosed by double quotation marks.

2) The READ statement. The data stored by DATA
statements is accessed by READ statements which have the
following form:

READClist of variables>
where the entries in the list are variable names separated
by commas. The effect of the READ statement is to assign
the values in the DATA lists to the corresponding variables
in the READ statement list. This is done one by one from
left to right until the READ list is exhausted. If there
are more names in the READ list than values in the DATA
lists, an OD or OUT OF DATA error message is issued. If
there are more values stored in DATA statements than are
read by a READ statement, the next READ statement to be
executed will begin with the next unread DATA list entry. A
single READ statement may access more than one DATA
statement, and more than one READ statement may access the
data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. In 4K Altair BASIC, such an
error message will refer to the READ statement which
attempted to access the incorrect data. In other versions,
the line number in the error message will refer to the
actual line of the DATA statement in which the error
occurred.

3) RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ
statement will be the first entry of the first DATA list in
the program. This allows re-READing the data.

d. CSAVEing and CLOADing Arrays (8K cassette, Extended
and Disk versions only). Numeric arrays may be saved on
cassette or loaded from cassette using CSAVE* and CLOAD* The
formats of the statements are:

CSAVE*<array name>
and

1977 Page 26

CLOAD*<array name>
The array is written out in binary with four octal 210
header bytes to indicate the start of data. These bytes are
searched for when CLOADing the array. The number of bytes
written is four plus:

8*<number of elements> for a double precision array
4*<number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying
most quickly, the next leftmost second, etc:

DIM A(10)
CSAVE+A

writes out A(0),A(1),...A(10)
DIM A(10,10)

CSAVE*A
writes out A(0,0), A(1,0)...A(10,0),A(10,1)...A(10,10)
Using this fact, it is possible to write out an array as a
two dimensional array and read it back in as a single
dimensional array, etc.

NOTE
Writing out a double precision array and reading it
back in as a single precision or integer array is
not recommended. Useless values will undoubtedly be
returned.

e. Miscellaneous Input/Output
1) WAIT (not in 4K). The status of input ports can be

monitored by the WAIT command which has the following
format:

WAIT<I,J>[,<K>]
where I is the number of the port being monitored and J and
K are integer expressions. The port status is exclusive ORd
with K and the result is ANDed with J. Execution is

January, 1977 Page 27

suspended until a non-zero value results. J picks the bits
of port I to be tested and execution is suspended until
those bits differ from the corresponding bits of K.
Execution resumes at the next statement after the WAIT. If
K is omitted, it is assumed to be zero. I, J and K must be
in the range 0 to 255. Examples:

WAIT 20,6 Execution stops until either bit 1 or bit
2 of port 20 are equal to 1. (Bit 0 is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 10,255,7 Execution stops until any of the most significant
5 bits of port 10 are one or any of the least
significant 3 bits are zero. Execution
resumes at the next statement.

2) POKE, PEEK (not in 4K). Data may be entered into
memory in binary form with the POKE statement whose format
is as follows:

POKE<I,J>
where I and J are integer expressions. POKE stores the byte
J into the location specified by the value of I. In 8K, I
must be less than 32768. In Extended and Disk versions, I
may be in the range 0 to 65536. J must be in the range 0 to
255. In 8K, data may be POKEd into memory above location
32768 by making I a negative number. In that case, I is
computed by subtracting 65536 from the desired address. To
POKE data into location 45000, for example, I is
45000-65536=-20536. Care must be taken not to POKE data
into the storage area occupied by Altair BASIC or the system
may be POKEd to death, and BASIC will have to be loaded
again.

The complementary function to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK(<I>)
where I is an integer expression specifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between 0
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines.

3)OUT, INP (not in 4K). The format of the OUT
statement is as follows:

January, 1977 Page 28

OUT <I,J>
where I and J are integer expressions. OUT sends the byte
signified by J to output port I. I and J must be in the
range 0 to 255.

The INP function is called as follows:
INP(<I>)

INP reads a byte from port I where I is an integer
expression in the range 0 to 255. Example:

20 IF INP(J)=16 THEN PRINT "ON"

3. FUNCTIONS

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function
call is as follows:

<name>(<argument>[,<argument>...])
where the name is that of a previously defined function and
the arguments are one or more expressions, separated by
commas. Only one argument is allowed in 4K and 8K.
Function calls may be components of expressions, so
statements like

10 LET T=(F*SIN(T-))/P and
20 C=SQR(A'2+B'2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions
Altair BASIC provides several frequently used functions
which may be called from any program without further
definition. A procedure is provided, however, whereby
unneeded functions may be deleted to save memory space. See
Appendix B. For a list of intrinsic functions, see section
6-3.

3-2. User-Defined Functions (not in 4K).

1977 Page 29

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DEF statement. The form of the
DEF statement is as follows:

DEF<function name>(<variable list>)=<expression>
where the function name must be FN followed by a legal
variable name and the entries in the variable list are
'dummy' variable names. The dummy variables represent the
argument variables or values in the function call. In 8K
Altair BASIC, only one argument is allowed for a
user-defined function, but in the Extended and Disk
versions, any number of arguments is allowed. Any
expression may appear on the right side of the equation, but
it must be limited to one line. User-defined functions may
be of any type in Extended and Disk versions, but
user-defined string functions are not allowed in 8K if a
type is specified for the function, the value of the
expression is forced to that type before it is returned to
the calling statement. Examples:

10 DEF FNAVE(V,W)=(V+W)/2
11 DEF FNC0N$(V$,WS)=RIGHT$(V$+W$,5) Returns the right

most 5 characters of the concat-
enation of V$ and W$.

12 DEF FNRAD(DEG)=3.14159/180*DEG When called with the
measure of an angle in degrees,
returns the radian equivalent.

A function may be redefined by executing another DEF
statement with the same name. A DEF statement must be
executed before the function it defines may be called.

b. USR. The USR function allows calls to assembly
language subroutines. See appendix E.
3-3. Errors.

An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:
1. a negative array subscript. LET A(-1)=0, for example.
2. an array subscript that is too large (>32767)
3. negative or zero argument for LOG

1977 Page 30

4. Negative argument for SQR
5. A*B with A negative and B not an integer
6. a call to USR with no address patched for the machine

language subroutine.
7. improper arguments to MID$, LEFT$,RIGHT$, INP, OUT,

WAIT, PEEK, POKE, TAB, SPC, INSTR, STRING$, SPACE$ or
ON...GOTO.

b. An attempt to call a user-defined function which
has not previously appeared in a DEF statement will cause a
UF or UNDEFINED USER FUNCTION error.

c. A TM or TYPE MISMATCH error will occur if a
function which expects a string argument is given a numeric
value or vice-versa.

4. STRINGS
In all Altair BASIC versions except 4K, expressions may

either have numeric value or may be strings of characters.
Altair BASIC provides a complete complement of statements
and functions for manipulating string data. Many of the
statements have already been discussed so only their
particular application to strings will be treated in this
section.

4-1. String Data.
A string is a list of alphanumeric characters which may

be from 0 to 255 characters in length. Strings may be
stated explicitly as constants or referred to symbolically
by variables. String constants are delimited by quotation
marks at the beginning and end. A string variable name ends
with a dollar sign ($). Examples:

A$="ABCD" Sets the variable A$ to the four character
string "ABCD"

B9$="14A/56" Sets the variable B9$ to the six character
string "14A/56"

FOOFOO$="E$" Sets the variable FOOFOO$ to the two charac-
ter string "E$"

Strings input to an INPUT statement need not be surrounded

1977 Page 31

by quotation marks.
String arrays may be dimensioned exactly as any other

kind of array by use of the DIM statement. Each element of
a string array is a string which may be up to 255 characters
long. The total number of string characters in use at any
point in the execution of a program must not exceed the
total allocation of string space or an OS or OUT OF STRING
SPACE error will result. String space is allocated by the
CLEAR command which is explained in section 6-2.
4-2. String operations.

a. Comparison Operators. The comparison operators for
strings are the same as those for numbers:

=* equal
<> not equal
< less than
> greater than

less than or equal to
->,>= greater than or equal to

Comparison is made character by character on the basis of
ASCII codes until a difference is found. If, while
comparison is proceeding, the end of one string is reached,
the shorter string is considered to be smaller. ASCII codes
may be found in Appendix B. Examples:

A<Z ASCII A is 065, Z is 090
1<A ASCII 1 is 049
" A">"A" Leading and trailing blanks are significant

in string literals.
b. String Expressions. String expressions are

composed of string literals, string variables and string
function calls connected by the + or concatenation operator.
The effect of the catenation operator is to add the string
on the right side of the operator to the end of the string
on the left. If the result of concatenation is a string
more than 255 characters long, an LS or STRING TOO LONG
error message will be issued and execution will be
terminated.

c. Input/Output. The same statements used for input
and output of normal numeric data may be used for string
data, as well.

January, 1977 Page 32

1) INPUT/ PRINT. The INPUT and PRINT statements read
and write strings on the terminal. Strings need not be
enclosed in quotation marks, but if they are not, leading
blanks will be ignored and the string will be terminated
when the first comma or colon is encountered. Examples:

10 INPUT ZOO$,FOO$ Reads two strings
20 INPUT X$ Reads one string and assigns

it to the variable X$.
30 PRINT X$,"HI, THERE" Prints two strings, including

all spaces and punctuation
in the second.

2) DATA, READ. DATA and READ statements for string
data, are the same as for numeric data. For format
conventions, see the explanation of INPUT and PRINT above.
4-3. String Functions.

The format for intrinsic string function calls is the
same as that for numeric functions. For the list of string
functions, see section 6-3. Special user-defined string
functions are allowed in Extended and Disk versions and may
be defined by the use of the DEF statement (see section
3-2). String function names must end with a dollar sign.

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this
section. Some modifications to existing 4K and 8K features,
such as the IF...THEN...ELSE statement and number typing
facilities, have been discussed in conjunction with the
other versions. Check the index for references to those
features.
5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from
a program and allows their space in memory to be used for
other purposes. The format of the ERASE statement is as
follows:

1977 Page 33

ERASE<array variable list>
where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arrays and
not array elements. If a name appears in the list which is
not used in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost. Example:

10 DIM A(5,5) etc.

60 ERASE A
70 DIM A(100)

b. LINE INPUT. It is often desirable to input a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT provides this facility. The
format of the LINE INPUT statement is as follows:

LINE INPUT ["<prompt string>",];<string variable name>
The prompt string is a string literal that is printed on the
terminal before input is accepted. A question mark is not
printed unless it is contained in the prompt string. All
input from the end of the prompt string to the carriage
return is assigned to the string variable. A LINE INPUT may
be escaped by typing Control/C. At that point, BASIC
returns to command level and prints OK. Execution may be
resumed at the LINE INPUT by typing CONT. LINE INPUT
destroys the input buffer, so the command may not be edited
by Control/A for re-execution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>
The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables
may be elements of arrays. If one or both of the variables
are non-array variables which have not had values assigned
to them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

10 INPUT F$,L$
20 SWAP F$,L$
30 PRINT F$,L$
RUN

January, 1977 Page 34

?FIRST,LAST Data input
LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements
are provided to trace the execution of program instructions.
When the trace flag is turned on by the TRON statement, the
number of each line in the program is printed as it is
executed. The numbers appear enclosed in square brackets
([]). The function is disabled by execution of the TROFF
statement. Example:

TRON executed in direct mode
OK printed by computer
10 PRINT 1:PRINT "A" typed by programmer
20 STOP
RUN
[10] 1 line numbers and output printed by
A computer.
[20]

BREAK IN 20
The NEW command will also turn off the trace flag.

e. IF...THEN...ELSE. See section 2-2.
f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1
g. CONSOLE, WIDTH. CONSOLE allows the console

terminal to be switched from one I/O port to another. The
format of the statement is:

CONSOLE <1/0 port number>,<switch register setting^
The <1/0 port number> is the hardware port number of the low
order (status) port of the new I/O board. This value must
be a numeric expression between 0 and 255 inclusive. If it
is not in this range, an ILLEGAL FUNCTION CALL error will
occur. The <switch register setting> is also a value
between 0 and 255 inclusive which specifies the type of I/O
port (SIO, PIO, 4PI0 etc) being selected. Appropriate
values of the <switch register setting> may be found in
Appendix B in the table of sense switch settings or in the
table below.

Page 35

Table of values for <switch register setting>
I/O Board

2SI0 with 2 stop bits
2SI0 with 1 stop bit
SIO
ACR
4PI0
PIO
HSR
non-standard terminal
no terminal

Sense Switch
Setting
0
1
2
3
4
5
6

14
15

WIDTH Statement

The WIDTH statement sets the width in characters of the
printing terminal line. The format of the WIDTH statement
is as follows:

WIDTH Cinteger expressi.on>
Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trapping. Extended and Disk Altair BASIC
make it possible for the user to write error detection and
handling routines which can attempt to recover from errors
or provide more complete explanation of the cause of errors
than the simple error messages. This facility has been
added to Altair BASIC through the use of the ON ERROR GOTO,
RESUME and ERROR statements and with the ERR and ERL
variables.

1) Enabling Error Trapping. The ON ERROR GOTO
statement specifies the line of the Altair BASIC program on
which the error handling subroutine starts. The format is
as follows:

ON ERROR GOTO <line number>

January, 1977 Page 36

The ON ERROR GOTO statement should be executed before the
user expects any errors to occur. Once an ON ERROR GOTO
statement has been executed, all errors detected will cause
BASIC to start execution of the specified error handling
routine. If the <line number> specified in the ON ERROR
GOTO statement does not exist, an UNDEFINED LINE error will
occur.
Example:

10 ON ERROR GOTO 1000

2) Disabling the Error Routine. ON ERROR GOTO 0
disables trapping of errors so any subsequent error will
cause BASIC to print an error message and stop program
execution. If an ON ERROR GOTO 0 statement appears in an
error trapping subroutine, it will cause BASIC to stop and
print the error message which caused the trap. It is
recommended that all error trapping subroutines execute an
ON ERROR GOTO 0 subroutine if an error is encountered for
which they have no recovery action.

NOTE
If an error occurs during the execution of an error
trap routine, the system error message will be
printed and execution will be terminated. Error
trapping does not trap errors within the error trap
routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

Code Error
1 NEXT WITHOUT FOR
2 SYNTAX ERROR
3 RETURN WITHOUT GOSUB
4 OUT OF DATA
5 ILLEGAL FUNCTION CALL
6 OVERFLOW
7 OUT OF MEMORY
8 UNDEFINED LINE
9 SUBSCRIPT OUT OF RANGE

January, 1977 Page 37

10 REDIMENSIONED ARRAY
11 DIVISION BY ZERO
12 ILLEGAL DIRECT
13 TYPE MISMATCH
14 OUT OF STRING SPACE
15 STRING TOO LONG
16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE
18 UNDEFINED USER FUNCTION
19 UNPRINTABLE ERROR'-
20 NO RESUME
21 RESUME WITHOUT ERROR
2 2 MISSING OPERAND
23 LINE BUFFER OVERFLOW

Disk Errors
50 FIELD OVERFLOW
51 INTERNAL ERROR
52 BAD FILE NUMBER
53 FILE NOT FOUND
54 BAD FILE MODE
55 FILE ALREADY OPEN
56 DISK NOT MOUNTED
57 DISK I/O ERROR
58 FILE ALREADY EXISTS
59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL
62 INPUT PAST END
63 BAD RECORD NUMBER
64 BAD FILE NAME
65 MODE-MISMATCH
66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES
68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the line
where the error was detected. For instance, if the error
occured in line 1000, ERL will be equal to 1000. If the
statement which caused the error was a direct mode
statement, ERL will be equal to 65535 decimal. To test if
an error occurred in a direct statement, use

IF 65535=ERL THEN ...
In all other cases, use

IF ERL=<line number> THEN...

1977 Page 38

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section 1-la).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(0)
returns the number of the disk, ERR(l) returns the track
number (0-76) and ERR(2) returns the sector number (0-31).
ERR(3) and ERR(4) contain the low and high order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE
Neither ERL nor ERR may appear to the left of the =
sign in a LET or assignment statement.

5) The RESUME statement. The RESUME statement is used
to continue execution of the BASIC program after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement
that caused the error, at the statement after the one that
caused the error or at some other line. To RESUME execution
at the statement which caused the error, the user should
use:

RESUME
or

RESUME 0
To RESUME execution at the statement immediately after the
one which caused the error, the user should use:

RESUME NEXT
To RESUME execution at a line dfferent than the one where
the error occurred, use:

RESUME Cline number>
Where <line number> is not equal to zero.

6) Error Routine Example. The following example shows
how a simple error trapping subroutine operates.

1977 Page 39

100 ON ERROR GOTO 500
200 INPUT "WHAT ARE THE NUMBERS TO DIVIDE";X,Y
210 Z=X/Y
220 PRINT "QUOTIENT IS";Z
230 GOTO 200
500 IF ERR=11 AND ERL=210 THEN 520
510 ON ERROR GOTO 0
520 PRINT "YOU CANT HAVE A DIVISOR OF ZERO!"
530 RESUME 200

7) The ERROR statement. In order to force branching to
an error trapping routine, an ERROR statement has been
provided. The primary use of the ERROR statement is to
allow the user to define his own error codes which can then
conveniently be handled by a centralized error trap routine
as described above. The format of the ERROR statement is:

ERROR <integer expression>
When defining error codes, values should be picked which are
greater than the ones used by Altair BASIC. Since more
error messages may be added to Altair BASIC, user-defined
error codes should be assigned the highest possible numbers
to assure future compatibility. If the <numeric expression>
used in an ERROR statement is less than zero or greater than
255 decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERROR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force printout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR
message to be printed out.

5-2. Extended Operators.
Two operators are provided that are exclusive to the

Extended and Disk versions.
a. Integer Division. Integer division, denoted by \

(backslash), forces its arguments to integer form and
truncates the quotient to an integer. More precisely:

A\B= FIX(INT(A)/INT(B))
Its precedence is just after multiplication and floating
point divison. Integer division is approximately eight
times as fast as standard floating point division.

January, 1977 Page 40

b. Modulus Arithmetic - the MOD operator. A MOD B
gives the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)-(INT(B)*(A\B))
If B=0, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.
5-3. Extended Functions

a. Intrinsic Functions. Extended and Disk Altair
BASIC provide several intrinsic functions which are not
available in the other versions. For a list of these
functions and a description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

DEFUSR[<digit 0 through 9>]=<integer expression>
Example:

DEFUSR1=&100000
DEFUSR2=31096
DEFUSR9=ADR

The of the <integer expression> is the starting address of
the USR routine specified. When the USR subroutine is
entered, the A register contains the type of the argument
which was given to the USR function. This is also the
length of the descriptor for that argument type:
Value in A Meaning
2 Two byte signed two's complement integer.
3 String.
4 Single precision four byte floating point number.
8 Double precision floating point number.
When the USR subroutine is entered, the [H,L] register pair
contains a pointer to the floating point accumulator (FAC).
The [H,L] registers contain the address of FAC-3.
If the value in the FAC is a single precision floating point
number, it is stored as follows:
FAC-3: Lowest 8 bits of mantissa.
FAC-2: Middle 8 bits of mantissa.
FAC-1: Highest 7 bits of mantissa with hidden (implied)

leading one. Bit 7 is the sign of the number (0
positive, 1 negative).

January, 1977 Page 41

(FAC: Exponent excess 200 octal. If the contents of FAC is 200,
^ the exponent is 0. If contents of FAC is 0,the number is

zero.
If the argument is double precision floating point, the
FAC-7 to FAC-4 contain four more bytes of mantissa, low
order byte in FAC-7, etc. If the argument is an integer,
FAC-3 contains the low order byte and FAC-2 contains the
high order byte of the signed two's complement value. If
the argument is a string, [D,E] points to a string
descriptor of the argument, whose form is:
3yte Use
0 Length of string 0-255 decimal.
1-2 Sixteen bit address pointer to first byte of

strings text in memory (Caution - may point into
program text if argument is a string literal).

Normally, the value returned by a USR function will be the
same type (integer, string, single or double precision
floating point) as the argument which was passed to it.
However, calling the MAKINT routine whose address is stored
in location 6 will return the integer in [H,L] as the value
of the function, forcing the value returned by the function

. to be integer. Execute the following sequence to return
from the function:

PUSH
LHLD
XTHL
RET

ySAVE VALUE TO BE RETURNED
;GET ADDRESS OF MAKINT ROUTINE
;SAVE RETURN ON STACK &
;GET BACK [H,H

:RETURN
The argument of the function may be forced to an integer, no
matter what its type by calling the FRCINT routine whose
address is located in location 4 to get the integer value of
the argument in [H,L]:

LXI
PUSH
LHLD
PCHL

H,SUB1
H
4

;GET ADDRESS OF SUBROUTINE
?CONTINUATION
;PLACE ON STACK
;GET ADDRESS OF FRCINT
:CALL FRCINT

SUB1:

5-4. The EDIT Command.
C

January, 1977 Page 42

The EDIT command allows modifications and additions to
be made to existing program lines without having to retype
the entire line each time. Commands typed in the EDIT mode
are, as a rule, not echoed. That is, they usually do not
appear on the terminal screen or printout as they are typed.
Most commands may be preceded by an optional numeric
repetition factor which may be used to repeat the command a
number of times. This repetition factor should be in the
range 0 to 255 (0 is equivalent to 1). If the repetition
factor is omitted, it is assumed to be 1. In the following
examples, a lower case "n" before the command stands for the
repetition factor. In the following description of the EDIT
commands, the "cursor" refers to a pointer which is
positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return. The line number of the
line being EDITed will be printed followed by a space. The
cursor will now be positioned to the left of the first
character in the line.

NOTE
The best way of getting the "feel" of the EDIT
command is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered,
the computer prints a bell (control/G) and the command is
ignored.

In the following examples, the lines labelled "computer
prints" show the appearance of the line after each command.

a. Moving the Cursor. Typing a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause
the cursor to pass over and print out n characters. Typing
a Rubout causes the immediately previous character to be
printed effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

January, 1977 Page 43

Character insertion is stopped by typing Escape
, (or Altmode on some terminals). Control/C will not

interrupt the EDIT command while it is in Insert
mode, but will be inserted into the edited line.
Therefore, Control/C should not be used in the EDIT
command.

It is possible using EDIT to create a line
which, when listed with its line number, is longer
than 72 characters. Punched paper tapes containing
such lines will not read properly. However, such
lines may be CSAVEd and CLOADed without error.
I Inserts new characters into the line being edited.

Each character typed after the I is inserted at
the current cursor position and printed on the
terminal. Typing Escape (or Altmode on some
terminals) stops character insertion. If an
attempt is made to insert a character that will
make the line longer than 255 characters, a
Control/G (bell) is sent to the terminal and
the character is not printed.

A backarrow (or Rubout) typed during an insert
command (or-) will delete the character to the left
of the cursor. Characters up to the beginning of
the line may be deleted in this manner, and a
backarrow will be echoed for each character
deleted. However, if there are no characters to
the left of the cursor, a bell is echoed instead of
a backarrow. If a carriage return is typed during
an insert command, it is as if an escape and then
carriage return were typed. That is, all
characters to the right of the cursor will be
printed and the EDITed line will replace the
original line.

X X is similar to I, except that all characters to
the right of the cursor are printed, and the cursor
moves to the end of the line. At this point, it
will automatically enter the insert mode (see I
command). X is most useful when new statements are
to be added to the end of an existing line. For
example:

User types EDIT 50 (carriage return)
Computer prints 50
User types X
Computer prints 50 X=X+1
User types :Y=Y+1(CR)
Computer prints 50 X=X+1:Y=Y+1

Page 44

In the above example, the original line #50 was:
50 X=X+1
The new line #50 now reads:
50 X=X+1:Y=Y+1
H is the same as X, except that all characters to
the right of the cursor are deleted (they will not
be printed). The insert mode (see I command) will
then automatically be entered. H is most useful
when the last statements on a line are to be
replaced with new ones.

Deleting Characters
nD deletes n characters to the right of the
cursor. If n is ommitted, it defaults to 1. If
there are less than n characters to the right of
the cursor, characters will be deleted only to the
end of the line. The cursor is positioned to the
right of the last character deleted. The
characters deleted are enclosed in backslashes (\).
For example:

User types 20 X=X+1:REM JUST INCREMENT X
User types EDIT 20 (carriage return)
Computer prints 20
User types 6D (carriage return)
Computer prints 20 \X=X+1:\REM JUST INCREMENT
The new line #20 will no longer contain the characters
which are enclosed by the backslashes.

Searching.
The nSy command searches for the nth occurrence of the
character y in the line. N defaults to 1. The
search skips over the first character to the right
of the cursor and begins with the second character
to the right of the cursor. All characters passed
over during the search are printed. If the
character is not found, the cursor will be at the
end of the line. If it is found, the cursor will
stop to the right of the character and all of the
characters to its left will have been printed. For
example

User types : 50 REM INCREMENT X
User types : EDIT 50

January, 1977 Page 45

C

C

Computer prints 50
User types : 2SE
Computer prints 50 REM INCR

K nKy is equivalent to S except that all of the
characters passed over during the search are
deleted. The deleted characters are enclosed in
backslashes. For example:

User types 10 TEST LINE
User types EDIT 10
Computer prints 10
User types KL
Computer prints 10 \TEST \

e. Text Replacement.
C A character in a line may be changed by the use of

the command Cy which changes the character to the
right of the cursor to the character y. Y is
printed on the terminal and the cursor is advanced
one position. nCy may be used to change n
characters in a line as they are typed in from the
terminal. (See example below.) If an attempt is
made to change a character which does not exist,
the change mode will be exited. Example:

User types 10 FOR 1=1 TO 100
User types EDIT 10
Computer prints 10
User types 2S1
Computer prints 10 FOR 1=1 TO
User types 3C256
Computer prints 10 FOR 1=1 TO 256

f. Ending and Restarting
Carriage Return Terminates editing and prints the re-

mainder of the line. The edited line replaces the
original line.

E E is the same as a carriage return, except the
remainder of the line is not printed.

Q Q restores the original line and causes BASIC to
return to command level. Changes do not take
effect until an E or carriage return is typed, so Q
allows the user to restore the original line
without any changes which may have been made.

L L causes the remainder of the line to be printed, and
then prints the line number and restarts editing at

January, 1977 Page 46

the beginning of the line. The cursor will be
positioned to the left of the first character in
the line. L allows monitoring the effect of
changes on a line. Example:
User types
User types
Computer prints
User types
Computer prints
User types
Computer prints

50 REM INCREMENT X
EDIT 50
50

2SM
50 REM INCRE

L
50 REM INCREMENT X
50

A causes the original line to be restored
and editing to be restarted at the beginning of the
line. For example:
User types
User types
Computer prints
User types
Computer prints
User types
Computer prints

10 TEST LINE
EDIT 10
10

10D
10 \TEST LINE\
10 \TEST LINE\
10

In the above example, the user made a mistake when
he deleted TEST LINE. Suppose that he wants tb
type "ID" instead of 10D. As a result of the A
command, the original line 10 is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution
of a source program , BASIC will automatically begin EDITing
the line that caused the error as if an EDIT command had
been typed. Example:

10 APPLE
RUN
SYNTAX ERROR IN 10
10

Complete editing of a line causes the line edited to be
reinserted. Reinserting a line causes all variable values
to be deleted. To preserve those values for examination,
the EDIT command mode may be exited with the Q command after
the line number is printed. If this is done, BASIC will
return to command level and all variable values will be
preserved.

January, 1977 Page 47

The features of the EDIT command may be used on the
line currently being typed. To do this, type Control/A
instead of Carriage Return. The computer will respond with
a carriage return, an exclamation point (I) and a space.
The cursor will be positioned at the first character of the
line. At this point, any of the EDIT subcommands except
Control/A may be used to correct the line. Example:

User types 10 IF X GOTO #"/A
Computer prints !
User types S# 2C12
Computer prints i 10 IF X GOTO 12

The current line number may be designated by a period
(.) in any command requiring a line number. Examples:

User types 10 FOR 1= 1 TO 10
User types EDIT .
Computer prints 10

5-5. PRINT USING statement.
The PRINT USING statement can be employed in situations

where a specific output format is desired. This situation
might be encountered in such applications as printing
payroll checks or accounting reports. The general format
for the PRINT USING statement is as follows:

PRINT USING <string>;<value list>
The <string> may be a string variable , string expression or
a string constant which is a precise copy of the line to be
printed. All of the characters in the string will be
printed just as they appear, with the exception of the
formatting characters. The <value list> is a list of the
items to be printed. The string will be repeatedly scanned
until: 1) the string ends and there are no values in the
value list or, 2) a field is scanned in the string, out the
value list is exhausted. The string is constructed
according to the following rules:

a. String Fields.
! specifies a single character string field.

(The string itself is specified in the value list.)
\n spaces\ Specifies a string field consisting of 2+n char-

acters. Backslashes with no spaces between them

1977 Page 48

would indicate a field of 2 characters width, one
space between them would indicate a field 3
characters wide, etc.

In both cases above, if the string has more characters than
the field width, the extra characters will be ignored. If
the string has fewer characters than the field width, extra
spaces will be printed to fill out the entire field. Trying
to print a number in a string field will cause a TYPE
MISMATCH error to occur. Example:

10 A$="ABCDE":B$="FGH"
20 PRINT USING "!";A$;B$
30 PRINT USING "\ \";B$;A$
(the above would print out)
AF
FGH ABCD

Note that where the "!" was used only the first letter of
each string was printed. Where the backslashes enclosed two
spaces, four letters from each string were printed (an extra
space was printed for B$ which has only three characters).
The extra characters in the first case and for A$ in the
second case were ignored.

b. Numeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings for formatting numeric fields are
constructed from the following characters:

_ Numeric fields are specified by the # sign, each of
which will represent a digit position. These digit
positions are always filled. The numeric field
will be right justified; that is, if the number
printed is too small to fill all of the digit
positions specified, leading spaces will be printed
as necessary to fill the entire field.
The decimal point may be specified in any position
in the field. Rounding is performed as necessary.
If the field format specifies that a digit is to
precede the decimal point, the digit will always be
printed (as O if necessary).

The following program will help illustrate these rules:

Page 49

10 INPUT A$,A
20 PRINT USING A$;A
30 GOTO 10
RUN
?##,12
12

?###,12
12

? #####,12
12

?##.##,12
12.00

? ###.,12
12.

?#.###,.02
0.020

?##.#,2.36
2.4

?###,-12
-12

?#.##,-.12
-.12
?####,-12
-12
The + sign may be used at either the beginning or .
end of the numeric field. If the number is
positive, the + sign will be printed at the
specified end of the number. If the number is
negative, a - sign will be printed at the specified
end of the number.
The - sign, when used to the right of the numeric .
field designation, will force the minus sign to be
printed to the right of the number if it is
negative. If the number is positive, a space is
printed.
The ** placed at the beginning of a numeric field
designation will cause any unused spaces in the
leading portion of the number printed out to be
filled with asterisks. The ** also specifies
positions for 2 more digits. (Termed "asterisk
fill")
When the $$ is used at the beginning of a numeric
field designation, a $ sign will be printed in the
space immediately preceding the number printed.
Note that $$ also specifies positions for two more
digits, but that the $ itself takes up one of these
spaces. Exponential format cannot be used with
leading $ signs, nor can negative numbers be output

January, 1977 Page 50

unless the sign is forced to be trailing.
The **$ used at the beginning of a numeric field
designation causes both of the above (** and $$) to
be performed on the number being printed out. All
of the previous conditions apply, except that **$
allows for 3 additional digit positions, one of
which is the $ sign.
A comma appearing to the left of the decimal point
in a numeric field, designation will cause a comma
to be printed to the left of every third digit to
the left of the decimal point in the number being
printed. The comma also specifies another digit
position. A comma to the right of the decimal
point in a numeric field designation is considered
a part of the string itself and is treated as a
printing character.

(M t some terminals) Exponential Format.
If exponential format is desired in the printout,
the numeric field designation should be followed by

* (allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left justified and the exponent is adjusted.
Unless a leading + or a trailing + or - is used,
one position to the left of the decimal point will
be used to print a space or minus sign. Examples:

PRINT USING "[##]"; 13,17,-8
[1E+01][2E+01][-8E+00]
OK
PRINT USING "[.###### -]; 12345,-123456 -
[.123450E+05][.123456E+06-]
OK
PRINT USING "[+.##]"; 123,-126
[+.12E+03][-.13E+03]
OK

If the number to be printed out is larger than the
specified numeric field, a % character will be
printed followed by the number itself in standard
Altair BASIC format. (The user will see the entire
number.) If rounding a number causes it to exceed
the specified field, the % character will be
printed followed by the rounded number. If, for
example, A=.999, then

PRINT USING ".##",A
will print

January, 1977 Page 51

u %1.00.
If the number of digits specified exceeds 24, an
ILLEGAL FUNCTION CALL error will occur.

The following program will help illustrate the
preceding rules.
Program: 10 INPUT A$,A

20 PRINT USING A$;A
30 GOTO 10
RUN

The computer will start by typing a ?. The numeric field
designator and value list are entered and the output is
displayed as follows:

?+#,9
+9
?+#,10
%+10
? # # , - 2
- 2
? +#,-2

O -2
?#,-2
%-2
?+.###,.02
+ .020
? ####.#,100
100.0

? # # + , 2
2+

? THIS IS A NUMBER ##,2
THIS IS A NUMBER 21
? BEFORE ## AFTER,12
BEFORE 12 AFTER
? ####,44444
%44444
? **##,1
***!
? **##,12
**12
? **##,123
*123
? **##,1234
1234
? **##,12345
%12345
?**,1
*1
?**,22

C

January, 1977 Page 52

22
?**.##,12
12.00
? **####,1
*****!
(note: not floating $) ? $####.##,12.34

$ 12.34
(note: floating $) ? $$####.##,12.56

$12.56
? $$.##,1.23
$1.23
? $$.##,12.34
%$12.34
? $$###,0.23 $0

? $$####.##,0
$0 .00

? **$###.##,1.23
****$1.23
? **$.##,1.23
*$1.23
? **$###,1
****$!

?#,6.9
7

? #.#,6.99
7.0

?##-,2
2
? ##-,-2

2 -
?##+,2
2+

? # # + , - 2
2 -

? ## ,2
2E+00

? ## ,12
1E+01

? #####.### ,2.45678
2456.780E-03

? #.### ,123
0.123E+03

? #.## ,-123
-.12E+03
? "#####,###.#",1234567.89
1,234,570.0

Typing Control/C will stop the program.

January, 1977 Page 53

As many as sixteen floppy disks may be connected to a
single ALTAIR disk controller. These disks have been
assigned the physical disk numbers 0 through 15. Users with
one drive should address the drive at zero, and users with
two drives should address them at zero and one, etc.

In the following descriptions, <disk number> is an
integer expression whose value is the physical number of one
of the disks in the system. If the <disk number> is omitted
from a statement other than MOUNT or UNLOAD, the <disk
number> defaults to 0. If the <disk number> is omitted from
a MOUNT or UNLOAD statement, disks 0 through the highest
disk number specified at initialization are affected.

a. Opening, Closing and Naming Files. To initialize
disks for reading and writing, the the MOUNT command is
issued as follows:

MOUNT [<disk number>[,<disk number>...]]
Example:

MOUNT 0
Mounts the disk on drive zero, and

MOUNT 0,1
Mounts the disks on drives zero and one. If there is
already a disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be printed. Before
removing a disk which has been used for reading and writing
by-Disk Altair BASIC, the user should give an UNLOAD
command:

UNLOAD [<disk number>[,<disk number>...]]
UNLOAD closes all the files open on a disk, and marks the
disk as not mounted. Before any further I/O is done on an
UNLOADed disk, a MOUNT command must be given.

NOTE
MOUNT, UNLOAD or any other disk command may be used
as a program statement.

All data and program files on the disk have an associated
file name. This name is the result of evaluating a string

January, 1977 Page 54

expression and must be one to eight characters in length.
The first character of the file name cannot be a null (0)
byte or a byte of 255 decimal. An attempt to use a null
file name (zero characters in length) , a file name over 8
characters in length or containing a 0 or 255 in the first
character position will cause a BAD FILE NAME error. Any
other sequence of one to eight characters is acceptable.

Examples of valid file names:
ABC
abc (Not the same as ABC)
filename
file.ext
12345678
INVNTORY
FILE##22

NOTE
Commands that require a file name will use <file
name> in the appropriate position. Remember that a
<file name> can be any string expression as long as
the resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
print out the names of the files residing on a particular
disk. The format of the FILES command is:

FILES <disk number>
Example:

FILES (prints directory of files on disk 0)
STRTRK PIP CURFIT CISASM

Execution of the FILES command may be interrupted by typing
Control/C. A more complete listing of the information
stored in a particular file may be obtained by running the
PIP utility program (see Appendix I).

c. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

January, 1977 Page 55

SAVE <file name>[,<disk number>[,A]]
Example:

SAVE "TEST",0
or

SAVE "TEST"
would save the program TEST on disk zero. Whenever a
program is SAVEd, any existing copy of the program
previously SAVEd will be deleted, and the disk space used by
the previous program is made available. See section 5-6d
for a discussion of saving with the 'A' option.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>[,R]]
Correspondingly:

LOAD "TEST",0 or LOAD "TEST"
loads the program TEST from disk zero. If the file does not
exist, a FILE NOT FOUND error will occur.

LOAD "TEST",0,R
OK

LOADS the program TEST from disk zero and runs it. The LOAD
command with the "R" option may be used to chain or segment
programs into small pieces if the whole program is too large
to fit in the computer's memory. All variables and program
lines are deleted by LOAD, but all data files are kept
OPEN(see below) if the "R" option is used. Therefore,
information may be passed between programs through the use
of disk data files. If the "R" option is not used, all
files are automatically CLOSEd (see below) by a LOAD.

Example:
NEW
10 PRINT "F001":L0AD "FOO2",0,R
SAVE "FOO1",0
OK
10 PRINT "F002":L0AD "FOO1",0,R
SAVE "FOO2",0

January, 1977 Page 56

OK
RUN
F002
FOOl
F002
FOOl
...etc.

(Control/C may be used to stop execution at this point)

In this example, program F002 is RUN. F002 prints the
message "F002" and then calls the program FOOl on disk.
FOOl prints "FOOl" and calls the program F002 which prints
"F002" and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number>[,R]]
All files are closed unless ,R is specified after the disk
number.

d. SAVEing and LOADing Program Files in ASCII. Often
it is desirable to save a program in a form that allows the
program text to be read as data by another program, such as
a text editor or resequencing program. Unless otherwise
specified, Altair BASIC saves its programs in a compressed
binary format which takes a minimum of disk space and loads
very quickly. To save a program in ASCII, specify the "A"
option on the SAVE command:

SAVE "TEST",0,A
OK
LOAD "TEST",0
OK

Information in the file tells the
format in which the file is to be
character of an ASCII file is never 255, and
program file always starts with 255 (377 octal).
loading an ASCII file is much slower than loading
file.

LOAD command the
loaded. The first

a binary
Remember,
a binary

1977 Page 57

e. The MERGE Command. Sometimes it is very useful to
put parts of two programs together to form a new program
combining elements of both programs. The MERGE command is
provided for this purpose. As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore it
is more likely that MERGE would be used as a direct command
than as a statement in a program. The format of the MERGE
statement is as follows:

MERGE <file name>[,<disk number>]
Example:
MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the program already
in memory. The <file name> must specify an ASCII format
saved program or a BAD FILE MODE error will occur. If there
are lines in the program on disk which have the same line
numbers as lines in the program in memory, the lines from
the file on disk will replace the corresponding program
lines in memory. It is as if the program lines of the file
on disk were typed on the user terminal.

f. Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk space used by the file to
free disk space. The format of the KILL statement is as
follows:

KILL <file name>[,<disk number>]
If the file does not exist, a FILE NOT FOUND error will
occur. If a KILL statement is given for a file that is
currently OPEN (see below), a FILE ALREADY OPEN error
occurs.

g. Renaming Files - the NAME Statement. The NAME
statement is used to change the name of a file:

NAME <old file name> AS <new file name>[,<disk number>]
Example:
NAME "OLDFILE" AS "NEWFILE"

The Cold file name> must exist, or a FILE NOT FOUND error
will occur. A file with the same name as <new file name>
must not exist or a FILE ALREADY EXISTS error will occur.
After the NAME statement is executed, the file exists on the

January, 1977 Page 58

same disk in the same area of disk space. Only the name is
changed.

h. OPENing Data Files. Before a program can read or
write data to a disk file, it must first OPEN the file on
the appropriate disk in one of several modes. The general
form of the OPEN statement is:

OPEN <mode>,[#]<file number>,<file name>[,<disk number>]
<mode> is a string expression whose first character is one
of the following:

0 Specifies sequential output mode
1 Specifies sequential input mode
R Specifies random Input/Output mode

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read
from and write to the terminal. Random files are divided
into groups of 128 characters called records. The nth
record of a file may be read or written at any time. Random
files have other attributes that will be discussed later in
more detail.

<file number> is an integer expression between one and
fifteen. The number is associated with the file being
OPENed and is used to refer to the file in later I/O
operations.

Examples:
OPEN "0",2,"OUTPUT",0
OPEN "I",1,"INPUT"

The above two statements would open the file OUTPUT for
sequential output and the file INPUT for sequential input on
disk zero.

OPEN M$,N,F$,D
The above statement would open the file whose name was in
the string F$ in mode M$ as file number N on disk D.

i. Sequential ASCII file I/O Sequential input and
output files are the simplest form of disk input and output
since they involve the use of the INPUT and PRINT statements

1977 Page 59

with a file that has been previously OPENed.
INPUT is used to read data from a disk file as follows:
INPUT #<file number>,<variable list>

where <file number> represents the number of the file that
was OPENed for input and <variable list> is a list of the
variables to be read, as in a normal INPUT statement. When
data is read from a sequential input file using an INPUT
statement, no question mark (?) is printed on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the
terminal. When reading numeric values, leading spaces,
carriage returns and line feeds are ignored. When a
non-space, non-carriage return, non-line-feed character is
found, it is assumed to be part of a number in Altair BASIC
format. The number terminates on a space, a carriage return
, line-feed or a comma.

When scanning for string items, leading blanks,
carriage returns and line-feeds are also ignored. When a
character which is not a leading blank, carriage return or
line-feed is found, it is assumed to be the start of a
string item.If this first character is a quotation mark (")
the item is taken as being a quoted string, and all
characters between the first double quote (") and a matching
double quote are returned as characters in the string value.
This means that a quoted string in a file may contain any
characters except double quote. If the first character of a
string item is not a quotation mark, then it is assumed to
be an unquoted string constant. The string returned will
terminate on a comma, carriage return or line feed. The
string is immediately terminated after 255 characters have
been read.

For both numeric and string items, if end of file (EOF)
is reached when the item is being INPUT, the item is
terminated regardless of whether or not a closing quote was
seen.

Sequential I/O commands destroy the input buffer so
they may not be edited by Control/A for re-execution.

Example of sequential I/O (numeric items

500 OPEN "O",1,"FILE",0
510 PRINT #1,X,Y,Z
520 CLOSE #1

January, 1977 Page 60

530 OPEN "I",1,"FILE",0
540 INPUT #1",X,Y,Z

Note that CLOSE is used so that a file which has just been
written may be read. When FILE is re-OPENed, the data
pointer for that file is set back to the beginning of the
file so that the first INPUT on the file will read data from
the start of the file.

2) PRINT and PRINT USING statements are used to write
data into a sequential output file. Their formats are as
follows:

PRINT #<file number>,<expression list>
or

PRINT #<file number>,
USING <string expression>;<expression list>
Example of sequential I/O (quoted string items):

500 OPEN "0",1,"FILE"
510 PRINT #1,CHR$(34);X$;CHR$(34);
515 PRINT #1,CHR$(34);Y$?CHR$(34);CHR$(34);Z$?CHR$(34)
520 CLOSE 1
530 OPEN "I",1,"FILE",0
540 INPUT #1,X$,Y$,Z$

In this example, the strings being output (X$, Y$, Z$) are
surrounded with double quotes through the use of the CHR$
function to generate the ASCII value for a double quote.
This technique must be used if a string which is being
output to a sequential data file contains commas, carriage
returns, line-feeds or leading blanks that are significant.
When leading blanks are not significant and there are no
commas, carriage returns or line-feeds in the strings to be
output, it is sufficient to insert commas between the
strings being output as in the following example:

500 OPEN "0",1,"FILE"
510 PRINT #1,X$;",";Y$;",";Z$
520 CLOSE 1
530 OPEN "I",1,'FILE",0
540 INPUT #1,X$,Y$,Z$

3) CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [<file number>[,<file number>...]]

1977 Page 61

CLOSE is used to finish I/O to a particular Altair BASIC
data file. After CLOSE has been executed for a file, the
file may be reOPENed for input or output on the same or
different <file number>. A CLOSE for a sequential output
file writes the final buffer of output. A CLOSE to any OPEN
file finishes the connection between the <file number> and
the <file name> given in the OPEN for that file. It allows
the <file number> to be used again in another OPEN
statement.

A CLOSE with no argument CLOSES all OPEN files.

NOTE
A FILE can be OPENed for sequential input or random
access on more than one <file number> at a time but
may be OPEN for output on only one <file number> at
a time.

END and NEW always CLOSE all disk files automatically. STOP
does not CLOSE disk files.

4) LINE INPUT. Often it is desirable to read a whole
line of a file into a string without using quotes, commas or
other characters as delimiters. This is especially true if
certain fields of each line are being used to contain data
items, or if a BASIC program saved in ASCII mode is being
read as data by another program. The facility provided to
perform this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variable>
A LINE INPUT from a data file will return all characters up
to a carriage return in <string variable>. LINE INPUT then
skips over the following carriage return/line-feed sequence
so that a subsequent LINE INPUT from the file will return
the next line.

5) End of File (EOF) Detection. When reading a
sequential data file with INPUT statements it is usually
desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the EOF
function:

X=EOF(<file number>)
EOF returns TRUE (-1) when there is no more data in the file
and FALSE (0) otherwise. If an attempt is made to INPUT

anuary, 1977 Page 62

past the end of a data file, an INPUT PAST END error will
occur.

Example:
100 OPEN "I",1,"DATA",0
110 1=0
120 IF EOF(l) THEN 160
130 INPUT #1,A(I)
140 1=1+1
150 GOTO 120
160

In this example, numeric data from the sequential input file
DATA is read into the array A. When end of file is
detected, the IF statement at line 120 branches to line 160,
and the variable I "points" one beyond the last element of A
that was INPUT from the file.

The following is a program that will calculate the
number of lines in a BASIC program file that has been SAVEd
in ASCII mode:

10 INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
20 OPEN "I",1,P$,0
30 1=0
*40IFEOF(1) THEN 70
50 I=I+1:LINE INPUT #1,L$
60 GOTO 40
70 PRINT "PROGRAM ";P$;" IS "?I;" LINES LONG"
80 END

This example uses the LINE INPUT statement to read each line
of the program into the "dummy" string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is
sometimes necessary to determine the amount of free disk
space remaining on a particular disk before allocating
(writing) a file. The DSKF function provides the user with
the number of free groups left on a given disk, after the
disk has been MOUNTed. A group is the fundamental unit of
file allocation. That is, files are always allocated in
groups of eight sectors at a time. Each sector contains 128
characters (bytes). Therefore, the minimum size for a file
is 1024 bytes.
Syntax for the DSKF function:

DSKF(<disk number>)
Example:

1977 Page 63

PRINT DSKF(0)
200

The above example shows that there are 200*1024=204800
characters (bytes) that can still be stored on disk zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT from sequential data files.
However, it is often desirable to access data in a random
fashion, for instance to retrieve information on a
particular part number or customer from a large data base
stored on a floppy disk. If sequential files were used, the
whole file would have to be scanned from the start until the
particular item was found. Random files remove this
restriction and allow a program to access any record from
the first to the last in a speedy fashion. Also, random
files transfer data from variables to the disk ouput records
and vice versa in a much faster, more efficient fashion than
sequential files. Random file I/O is more complex than
sequential I/O, and it is recommended that beginners try
sequential I/O first.

1) OPENing a FILE for Random I/O. Random I/O files are
OPENed just like sequential files.

OPEN "R",1,"RANDOM",0
When a file is OPENed for random I/O, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, random
files must be closed when I/O operations are finished. To
CLOSE a random file, use the CLOSE command as described
previously.

CLOSE <file number>[,<file number>...]

3) Reading and writing data to a random file - GET and
PUT. Each random file has associated with it a "random
buffer" of 128 bytes. When a GET or PUT operation is
performed, data is transferred directly from the buffer to
the data file or from the data file to the buffer. The
syntax of GET and PUT is as follows:

anuary, 1977 Page 64

PUT [#]<file number>[,<record number>]
GET [#]<file number>[,<record number>]

If <record number> is omitted from a GET or PUT statement,
the record number that is one higher than the previous GET
or PUT is read into the random buffer. Initially a GET or
PUT without a record number will read or write the first
record. The largest possible record number is 2046. If an
attempt is made to GET a record which has never been PUT,
all zeroes are read into the record, and no error occurs.

4) LOC and LOF. LOC is used to determine what the
current record number is for random files. In other words,
it returns the record number that will be used if a GET or
PUT is executed with the Crecord number> parameter omitted.

LOC(<file number>)
PRINT LOC(l)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF(<file number>)
PRINT LOF(2)

200

An attempt to use LOF on a sequential file will cause a SAD
FILE MODE error.
The value returned by LOF is always 5 MOD 8. That is , when
the value LOF returns is divided by 8, the remainder is
always 5. Therefore,the values returned by LOF are 5, 13,
21, 29 etc. This is due to the way random files are
allocated.

January, 1977 Page 65

NOTE
It is important to note that the value returned by
LOF may be a record that has never been written in
by a user program. This is because of the way
random files are pre-extended.

5) Moving Data In and Out of the Random Buffer. So far
we have described techniques for writing (PUT) and reading
(GET) data from a file into its associated random buffer.
Now we will describe how data from string variables is moved
to and from the random buffer itself. This is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all
of a file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the
buffer will automatically have their contents read or
written. The format of the FIELD statement is:
FIELD [#] <file number> ,<field size> AS <string variable>[..
<file number> is used to specify the file number of the file
whose rajidom buffer is being referenced. If the file is not
a random file, a BAD FILE MODE error will occur. <field
size> sets the length of the string in the random buffer;
<string variable> is the string variable which is associated
with a certain number of characters (bytes) in the buffer.
Multiple fields may be associated with string variables in a
given FIELD statement. Each successive string variable is
assigned a successive field in the random buffer. Example:

FIELD 10 AS A$, 20ASB$, 30ASC$
The statement above would assign the first 10 characters of
the random buffer to the string variable A$, the next 20
characters to B$ and the next 30 characters to the variable
C$. It is important to note that the FIELD statement does
not cause any data to be transferred to or from the random
buffer. It only causes the string variables given as
arguments to "point" into the random buffer.

Often, it is necessary to divide the random buffer into
a number of sub-records to make more efficient use of disk
space. For instance, it might be desirable to divide the
128 character record into two identical subrecords. To
accomplish this a "dummy variable" would be placed in the
FIELD statement to represent one of the subrecords. One of
the following statements would be executed depending on
whether the first or second subrecord were needed:

1977 Page 66

FIELD #1,64 AS D$, 20 AS NAME$,
20 AS ADDRESSE$, 24 AS OCCUPATION

or
- FIELD #1,20 AS NAME$, 20 AS ADDRESSE$,

24 AS OCCUPATION$, 64 AS D$
where the dummy variable D$ is used to skip over one of the
subrecords. Another way to do the same thing would be to
set a variable I that would select the first or second
subrecord.

FIELD #1,64*(1-1) AS D$,
20 AS NAME$, 20 AS ADDRESS$, 24 AS OCCUPATION

Here, if the variable I is one, 1-1 *64 =0 characters will
be skipped over, selecting the first subrecord. If I is
two, 64 characters will be skipped over, selecting the
second subrecord. Another technique that is very useful is
to use a FOR...NEXT loop and an array to set up subrecords
in the random buffer:

1000 FOR 1=1 TO 16
1010 FIELD #1, (1-1)*8 AS D$, 4 AS A$(I),

4 AS B$(I)
1020 NEXT I

In this example, we have divided the random buffer into 16
subrecords composed of two fields each. The first
4-character field is in A$(X) and the second 4-character
field is in B$(X,) where X is the subrecord number.

NOTE
The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only space
allocation that occurs is for the string variables
mentioned in the FIELD statement. These string
variables have a one byte count and two byte pointer
set up which points into the random buffer for the
specified file.

1977 Page 67

7) Using Numeric Values in Random Files: MKI$, MKS$,
MKD$ and CVI, CVS, CVD. As we have seen, data is always
stored in the random buffer through the use of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
provided.
To convert between numbers and strings:
MKI$(<integer value>) Returns a two byte string

(FC error if value is not
>—32768 and <=+32767.
Fractional part is lost)

MKS$(<single precision value>) Returns a four byte string
MKD$(<double precision value>) Returns an eight byte string
To convert between strings and numbers:
CVI(<two byte string>) Returns an integer value
CVS(<four byte string>) Returns a single precision val^
CVD(<eight byte string>) Returns a double precision value

CVI, CVS, and CVD all give an ILLEGAL FUNCTION CALL error if
the string given as the argument is shorter than required.
If the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely fast,
since they convert between Altair BASIC'S internal
representations of integers, single and double precision
values and strings. Conventional sequential I/O must
perform time-consuming character scanning algorithms when
converting between numbers and strings.

8. LSET and RSET. When a GET operation is performed,
all string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e. inserting strings into the
random buffer before performing a PUT statement, a problem
arises. This is because of the way string assignments
usually take place. For example:

LET A$=B$
When a LET statement is executed, B$ is copied into string
space, A$ is pointed to the new string and the string length
of A$ is modified. However, for assignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the string variable
was FIELDed. In order to do this, two special assignment

anuary, 1977 Page 68

statements have been provided, LSET and RSET:
LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Examples:
LSET A$=MKS$(V)
RSET B$="TEST"
LSET C$(I)=MKD$(D#)

The difference between LSET and RSET concerns what happens
if the string value being assigned is shorter than the
length specified for the string variable in the FIELD
statement. LSET left justifies the string, adding blanks
(octal 40, decimal 32) to pad out the right side of the
string if it is too short. RSET right justifies the string,
padding on the left. If the string value is too long, the
extra characters at the end of the string are ignored.

NOTE
Do not use LSET or RSET on string variables which
have not been mentioned in a FIELD statement, or a
SET TO NON DISK STRING error will occur.

k. The DSKI$ and DSKO$ Primitives. Often it is
necessary for the user to perform disk I/O operations
directly without using any of the normal file structure
features of Altair BASIC. To allow this, two special
functions have been provided. These are the DSKI$ function
and the DSKO$ statement. First we will give examples of how
to perform simple disk I/O commands using Altair BASIC
statements,
To Enable disk 0:

OUT 8,0
To Enable disk N:

OUT 8,N
TO step the disk head out one track:

WAIT 8,2,2:OUT 9,2

1977 Page 69

To step the disk head in one track:
WAIT 8,2,2:OUT 9,1

To test for track 0:
IF (INP(8) AND 64)=0 THEN statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track 0. This is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector
=0, maximum = 31):

A$=DSKI$(Y)
The statement

DSKO$ <string expression>,<sector expression>
writes the string expression on the sector specified. The
high order bit (most signifigant) of the first character
output will always be set to one when the string is written
on the sector, and thus will always be one when the sector
is read back in using DSKI$. A maximum of 137 characters
are written; giving a string whose length exceeds 137
characters will cause an ILLEGAL FUNCTION CALL error. If
the string argument is less than 137 characters in length,
the end of the string will be padded with zeros to make a
string of length 137.

aaiuary, 1977 Page 9 0

6_L LISTS AND DIRECTORIES
6-1. Commands.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints
'OK' and is at command level. The table below lists the
commands in alphabetical order. The notation to the right
of the command name indicates the versions to which it
applies.
Command Version(s)
CLEAR All
Sets all program variables to zero.
CLEAR[<expression>] 8K, Extended, Disk
Same as CLEAR but sets string space to the value of the
expression. If no argument is given, string space will
remain unchanged. When Altair BASIC is loaded, string space
is set to 50 bytes in 8K and 200 bytes in extended.
CLOAD<string expression> 8K(cassette), Extended, Disk
Causes the program on cassette tape designated by the first
character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is loaded.
CLOAD?<string expression> 8K(cassette), Extended, Disk
Compares the program in memory with the file on cassette
with the same name. If they are the same, BASIC prints OK.
If not, BASIC prints NO GOOD.
CLOAD*<array name> 8K(cassette), Disk
Loads the specified array from cassette tape. May be used
as a program statement
CONT 8K, Extended, Disk
Continues program execution after a Control/C has been typed
or a STOP or END statement has been executed. Execution
resumes at the statement after the break occurred unless
input from the terminal was interrupted. In that case,

aaiuary, 1977 Page 9 0

execution resumes with the reprinting of the prompt (? or
prompt string). CONT is useful in debugging, especially
where an 'infinite loop' is suspected. An infinite loop is
a series of statements from which there is no escape.
Typing Control/C causes a break in execution and puts BASIC
in command level. Direct mode statements can then be used
to print intermediate values, change the values of
variables, etc. Execution can be restarted by typing the
CONT command, or by executing a direct mode GOTO statement,
which causes execution to resume at the specified line
number.

In 4K and 8K Altair BASIC, execution cannot be
continued if a direct mode error has occured during the
break. In all versions, execution cannot continue if the
program was modified during the break.
CSAVE<string expression> 8K(cassette), Extended, Disk
Causes the program currently in memory to be saved on
cassette tape under the name specified by the first
character of <string expressions
CSAVE*<arrayname> 8K(cassette), Disk
Causes the array named to be saved on cassette tape. May be
used as a program statement.
DELETE<line number> Extended, Disk
Deletes the line in the current program with the specified
number. If no such line exists, an ILLEGAL FUNCTION CALL
error occurs.
DELETE-<line number> Extended, Disk
Deletes every line of the current program up to and
including the specified line. If there is no such line, an
ILLEGAL FUNCTION CALL error occurs.
DELETE<line number>-<line number> Extended, Disk
Deletes all lines of the current program from the first line
number to the second inclusive. ILLEGAL FUNCTION CALL
occurs if no line has the second number.
EDIT<line number> Extended, Disk
Allows editing of the line specified without affecting any
other lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4.

1977 Page 72

LIST All
Lists the program currently in memory starting with the
lowest numbered line. Listing is terminated either by the
end of the program or by typing Control/C.

In 4K and 8K, prints the current program beginning at the
specified line. In Extended and Disk, prints the specified
line if it exists.
LIST[<line number>][-<line number>] Extended, Disk
Allows several listing options.
1. If the second number is omitted, lists all lines with

numbers greater than or equal to the number specified.
2. If the first number is omitted, lists all lines from

the beginning of the program to the specified line,
inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST[<line number>][-<line number>] Extended, Disk
Same as list with the same options, except prints on the
line printer.
NEW All
Deletes the current program and clears all variables. Used
before entering a new program.
NULLCinteger expression> 8K, Extended, Disk
Sets the number of nulls to be printed at the end of each
line. For 10 character per second tape punches, <integer
expression> should be >=3. For 30 cps punches, it should be
>=3. When tapes are not being punched, <integer expression>
should be 0 or 1 for Teletypes* and Teletype compatible
CRT's. It should be 2 or 3 for 30 cps hard copy printers.
The default value is 0. In the 4K version, the same affect
may be achieved by patching location 46 octal to contain the
number of nulls plus 1.

LIST[<line number>] All

* Teletype is a registered trademark of the Teletype
Corporation.

1977 Page 73

RUN[<line number>] All
Starts execution of the program currently in memory at the
line specified. If the line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statements.

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. In the table, X
and Y stand for any expressions allowed in the version under
consideration. I and J stand for expressions whose values
are truncated to integers. V and W are any variable names.
The format for a Altair BASIC line is as follows:

<nnnnn> <statement>[:<statement>...]

where nnnnn is the line number.

Name Format Version
CONSOLE CONSOLE <I>,<J> Extended, Disk
Allows terminal console device to be switched. I is the I/O
port number which is the address of the low order channel of
the new I/O board. J is the switch register setting (see
section 5-1 for the list of settings). 0<=I,J<=255.
DATA DATA<list> All
Specifies data to be read by a READ statement. List
elements can be numbers or, except in 4K, strings. 4K
allows expressions. List elements are separated by commas.
DEF DEF FNV(<W>)=<X> 8K, Extended, Disk
Defines a user-defined function. Function name is FN
followed by a legal variable name. Extended and Disk
versions allow user-defined string functions. Definitions
are restricted to one line (72 characters in 4K and 8K, 255
characters in extended versions).
DEFUSR DEFUSR[<digit>]=<X> Extended, Disk

anuary, 1977 Page 74

Defines starting address of assembly language subroutine.
Up to ten subroutines are allowed.
DIM DIM <V>(<I>[,J...])[,...] All

Allocates space for array variables. In 4K, only one
dimension is allowed per variable. More than one variable
may be dimensioned by one DIM statement up to the limit of
the line. The value of each expression gives the maximum
subscript possible. The smallest subscript is 0. Without a
DIM statement, an array is assumed to have maximum subscript
of 10 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(0,0) to A(10,10) unless
otherwise dimensioned in a DIM statement.
END END All
Terminates execution of a program. Closes all files in the
Disk version.
ERASE ERASE<V>[,<W>...] Extended, Disk
Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.
ERROR ERROR<I> Extended, Disk
Forces error with code specified by the expression. Used
primarily for user-defined error codes.
FOR FOR<V>=<X>TO<Y>[STEP<Z>] All
Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT
is encountered. Z is added to V, then, IF Z<0 and V>=Y, or
if Z>0 and V<=Y, BASIC branches back to the statement after
FOR. Otherwise, execution continues with the statement
after NEXT.
GOTO GOTO<nnnnn> All
Unconditional branch to line number
GOSUB GOSUB<nnnnn> All
Unconditional branch to subroutine beginning at line nnnnn.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk
Same as IF...THEN except GOTO can only be followed by a line
number and not another statement.

January, 1977 Page 75

IF...THEN [ELSE] IF<X>THEN<X>[ELSE<Y>] All
or IF<X>THEN<statement>[:statement...]

[ELSE<statement>[:statement...]
If value of XO0, branches to line number or statement after
THEN. Otherwise, branches to the line number or
statement(s) after ELSE. If ELSE is omitted, and the value
of X=0, execution proceeds at the line after the IF...THEN.
In 4K, X can only be a numeric expression. The ELSE clause
is only allowed in Extended and Disk Altair BASIC.
INPUT INPUT<V>[,<W>...] All
Causes BASIC to request input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list.
LET LET <V>=<X> All
Assigns the value of the expression to the variable. The
word LET is optional.
LPRINT LPRINT X[,Y...] Extended, Disk
Same as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A carriage return is printed
automatically after the 80th character on a line.
LPRINT USING LPRINT USING<string>;<list> Extended, Disk
Same as PRINT USING, but prints on the line printer. For a
detailed description, see section 5-5.
MID$ MID$(<X$>,<I>[,<J>])=Y$ Extended, Disk
Part of the string X$ is replaced by Y$. Replacement starts
with the 1th character of X$ and proceeds until Y$ is
exhausted, the end of X$ is reached or J characters have
been replaced, whichever comes first. If I is greater than
LEN(X$), an ILLEGAL FUNCTION CALL error results.
NEXT NEXT [<V>,<W>...] All
Last statement of a FOR loop. V is the variable of the most
recent loop, W of the next most recent and so on. Only one
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.
ON ERROR GOTO ON ERROR GOTO<line number> Extended, Disk
When an error occurs, branches to line specified. Sets
variable ERR to error code and ERL to line number where the

1977 Page 76

error occured. See section 6-5 for a list of error codes.
ON ERROR GOTO 0 (or without number) disables error trapping.
ON...GOTO ON<I>GOTO<list of line numbers> 8K, Ext., Disk
Branches to line whose number is 1th in the list. List
elements are separated by commas. If 1=0 or > number of
elements in the list, execution continues at next statement.
If I<0 or >255, an error results.
ON...GOSUB ON <I> GOSUB <list> 8K, Extended, Disk
Same as ON...GOTO except list elements are initial line
numbers of subroutines.
OUT OUT<I>,<J> 8K, Extended, Disk
Sends byte J to port I. 0<=I,J<=255.
POKE POKE<I>,<J> 8K, Extended, Disk
Stores byte J in memory location derived from I.
0<=J<=255;-32768<I<65536. If I is negative, address is
65535+1, if I is positive, address=I.
PRINT PRINT<X>[,<Y>...] All
Causes values of expressions in the list to be printed on
the terminal. Spacing is determined by punctuation.
Punctuation Spacing - next printing begins:

, at beginning of next 14 column zone
; immediately
other or none at beginning of next line

String literals may be printed if enclosed by (") marks.
String expressions may be printed in all but 4K.
PRINT USING PRINT USING<string>;<list> Extended, Disk
Prints the values of the expressions in the list edited
according to the string. The string is an expression which
represents the line to be printed. The list contains the
constants, variable names or expressions to be printed.
List entries are separated by punctuation as in the PRINT
statement. For a list of string characters and their
functions, see section 5-5.
READ READCV>[,<W>...] A11
Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the

ary, 1977 Page 77

first DATA statement.
REM REM[<remark>] All
Allows insertion of remarks. Not executed, but may be
branched into. In extended versions, remarks may be added
to the end of a line preceded by a single quotation mark
(').
RESTORE RESTORE All
Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement.
RESUME RESUME[<number>] Extended, Disk
Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes
resumption at the statement following the statement where
the error was made.
RETURN RETURN All
Terminates a subroutine. Branches to the statement after
the most recent GOSUB.
STOP STOP All
Stops program execution. BASIC enters command level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files.
SWAP SWAP <V>,<W> Extended, Disk
Exchanges values of the variables named. Variables must be
of the same type.
TROFF TROFF Extended, Disk
Turns off trace flag. The trace flag is turned on by TRON
(see below). NEW also turns off the trace flag.
TRON TRON Extended, Disk
Turns on trace flag. Prints number of each line in square
brackets as it is executed.
WAIT WAIT<I>,<J>[,<K>] 8K, Extended, Disk
Status of port I is XOR'd with K and AND'ed with J.

aaiuary, 1977 Page 9 0

Continued execution awaits non-zero result. K defaults to
0. 0<=I,J,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic
and string functions which may be called from any program
without further definition. If the functions are not
required for a program, they may be deleted when BASIC is
loaded to conserve memory space. The functions in the
following table are listed in alphabetical order. The
notation to the right of the Call Format is the versions in
which the function is available. As usual, X and Y stand
for expressions, I and J for integer expressions and X$ and
Y$ for string expressions.

Function Call Format Version
ABS ABS(X) All
Returns absolute value of expression X. ABS(X)=X if X>=0,
-X if X<0.
ASC ASC(X$) 8K, Extended, Disk
Returns the ASCII code of the first character of the string
X$. ASCII codes are in appendix A.
ATN ATN(X) 8K, Extended, Disk
Returns arctangent(X). Result is in radians in range -pi/2
to pi/2.
The following functions are available in Extended and Disk:
CINT CINT(X) Converts X to integer.
CSNG CSNG(X) Converts X to single precision.
CDBL CDBL(X) Converts X to double precision.
If the argument is in the range -32768 to 32767, the
CINT(X)=INT(X). Otherwise, CINT will produce an OVERFLOW
error.
CHR$ CHR$(I) 8K, Extended, Disk
Returns a string whose one element has ASCII code I. ASCII

1977 Page 79

codes are in Appendix A.
COS COS(X) 8K, Extended, Disk
Returns cos(X). X is in radians.
ERL Extended, Disk
Returns the number of the line in which the last error
occurred.
ERR Extended, Disk
Returns the error code of the last error.
ERR ERR(I) Disk
Returns parameters of disk errors. After a DISK I/O ERROR,
ERR(0) returns number of the disk, ERR(l) returns the track
number (0-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the
cumulative count of disk errors respectively.
EXP EXP(X) 8K, Extended, Disk
Returns e to the power X. X must be <=87.3365.
FIX FIX(X) Extended, Disk
Returns the truncated integer part of X. FIX(X) is
equivalent to SGN(X)*INT(ABS(X)). The major difference
between FIX and INT is that FIX does not return the next
lower number for negative X.
FRE FRE(0) 8K, Extended, Disk
Returns number of bytes in memory not being used by BASIC.
If argument is a string, returns number of free bytes in
string space.
HEX$ HEX$(X) Extended, Disk
Returns a string which represents the hexadecimal of the
decimal argument.
INP INP(I) 8K, Extended, Disk
Reads a byte from port I.
INSTR INSTR([I,]X$,Y$) Extended, Disk
Searches for the first occurrence of string Y$ in X$ and

aaiuary, 1977 Page 9 0

returns the position. Optional offset I sets position for
starting the search. 0<=I<=255. If I>LEN(X$), if X$ is
null or if Y$ cannot be found, INSTR returns 0. If Y$ is
null INSTR returns I or 1. Strings may be string variable
values, string expressions or string literals.
INT INT(X) All'
Returns the largest integer <=X
LEFT$ LEFT$(X$,I) 8K, Extended, Disk
Returns leftmost I characters of string X$.
LEN LEN(X$) 8K, Extended, Disk
Returns length of string X$. Non-printing characters and
blanks are counted.
LOG LOG(X) 8K, Extended, Disk
Returns natural log of X. X>0
LPOS LPOS(X) Extended, Disk
Returns the current position of the line printer print- head
within the line printer buffer. Does not necessarily give
the physical position of the print head. The expression X
must be given, but the value is ignored.
MID$ MID$(X$,I[,J]) 8K, Extended, Disk
Without J, returns rightmost characters from X$ beginning
with the 1th character. If I>LEN(X$), MID$ returns the null
string. 0<I<255. With 3 arguments, returns a string of
length J of characters from X$ beginning with the 1th
character. If J is greater than the number of characters in
X$ to the right of I, MID$ returns the rest of the string.
0<=J<=255.
OCT$ OCT$(X) 8K, Extended, Disk
Returns a string which represents the octal value of the
decimal argument.
RND RND(X) All
Returns a random number between 0 and 1. X<0 starts a new
sequence of random numbers. X>0 gives the next random
number in the sequence. X=0 gives the last number returned.
In 8K, Extended and Disk, sequences started with the same
negative number will be the same.

ary, 1977 Page 81

POS POS(I) 8K, Extended, Disk
Returns present column position of terminal's print head.
Leftmost position -0.
RIGHT$ RIGHT$(X$,I) 8K, Extended, Disk
Returns rightmost I characters of string X$. If I=LEN(X$),
returns X$.
SGN SGN(X) All
If X>0, returns 1, if X=*0 returns 0, if X<0, returns -1.
For example, ON SGN(X)+2 GOTO 100,200,300 branches to 100
if X is negative, 200 if X is 0 and 300 if X is positive.
SIN SIN(X) All
Returns the sine of the value of X in radians.
COS(X)-SIN(X+3.14159/2).
SPACE$ SPACE$(I) 8K, Extended, Disk
Returns a string of spaces of length I.
SPC SPC(I) 8K, Extended, Disk
Prints I blanks on terminal. 0<=I<=255.
SQR SQR(X) All
Returns square root of X. X must be >=0
STR$ STR$(X) 8K, Extended, Disk
Returns string representation of value of X.
STRING? STRING$(I,J) Extended, Disk
Returns a string of length I whose characters all have ASCII
code J. See Appendix A for ASCII codes.
TAB TAB (I) All
Spaces to position I on the terminal. Space 0 is the
leftmost space, 71 the rightmost. If the carriage is
already beyond space I, TAB has no effect. 0<=I<=255. May
only be used in PRINT and LPRINT statements.
TAN . TAN(X) All
Returns tangent(X). X is in radians.

1977 Page 82

USR USR(X) All
Calls the user's machine language subroutine with argument
X.
VAL VAL(X$) 8K, Extended, Disk
Returns numerical value of string X$. If first character of
X$ is not +,-, & or a digit, VAL(X$)=0.
VARPTR VARPTR(V) Extended, Disk

Returns the address of the variable given as the argument.
If the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error
will occur. The main use of the VARPTR function is to
obtain the address of variable or array so it may be passed
to an assembly language subroutine. Arrays are usually
passed by specifying VARPTR(A[0]) so that the lowest
addressed element of the array is returned.

NOTE
All simple variables should be assigned values in a
program before calling VARPTR for any array.
Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in carriage control,
editing and program interruption. Characters such as
Control/C, Control/S, etc. are typed by holding down the
Control key and typing the designated letter. The special
characters in the table are listed in the order of the
versions to which they apply, starting with those common to
all versions and ending with those that apply only to
extended versions.

Typed as Printed as
The following Special Characters are available in ALL
versions.

1977 Page 83

@ 9
Erases current line and executes carriage return,
(backarrow)
Erases last character typed. If there is no last character
types a carriage return.
_ _(underline)
same as backarrow.
Carriage Return
Returns print head or curser to beginning of the next line.
Control/C 'C (in extended)
Interrupts execution of current program or list command.
Takes effect after execution of the current statement or
after listing the current line. BASIC goes to command level
and types OK. CONT command resumes execution. See section
6-1.

Separates statements in a line.

The following special characters are available in 8K,
Extended and Disk versions only.
Control/0 "0 (in extended)
Suppresses all output until an INPUT statement is
encountered, another Control/0 is typed, an error occurs or
BASIC returns to command level.
? ?

equivalent to PRINT statement.
Rubout see explanation
Deletes previous character on an input line. First Rubout
prints \ and the last character to be printed. Each
successive Rubout prints the next character to the left.
Typing a new character causes another \ and the new
character to be printed. All characters between the
backslashes are deleted.

anuary, 1977 Page 84

Control/U U (in extended)
Same as @
Control/S
Causes program execution to pause until Control/Q or
Control/C is typed.
Control/Q
Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended
and Disk versions only.
Control/A
Allows use of the EDIT command on the line currently being
typed. Control/A is typed instead of Carriage Return. See
section 5-4.
Control/1 1 to 8 spaces
Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at
columns 1, 9, 17, etc. The tab character is especially
useful for formatting lines broken with line feeds.

100<tab>FOR 1=1 TO 10:<line feed>
<tab><tab>FOR J=1 TO 10:dine feed>
<tab><tab><tab>A(I,J)=0:<line feed>
<tab>NEXT J,I<carriage return>

lists as:
100 FOR 1=1 TO 10:

FOR J=1 TO 10:
A(I,J)=0:

NEXT J,I
Control/G bell
Rings terminal's bell
LINE FEED
Breaks a long line into shorter parts. The result is still
one BASIC line.

1977 Page 85

Denotes the number of the current line. May be used
wherever a line number is to be specified.

t,] [,1
Brackets are interchangable with parentheses as delimiters
for array subscripts.
Lower Case Input
Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case if the lower case characters are not part
of string literals, REM statements or single quote (')
remarks.

6-5. Error Messages.

After an error occurs, BASIC returns to command level and
types OK. Variable values and the program text remain
intact, but the program cannot be continued by the CONT
command. In 4K and 8K versions, all GOSUB and FOR context
is lost. The program may be continued by direct mode GOTO,
however. When an error occurs in a direct statement, no
line number is printed. Format of error messages:

Direct Statement ?XX ERROR
Indirect Statement ?XX ERROR IN YYYYY

where XX is the error code and YYYYY is the line number
where the error occurred. The following are the possible
error codes and their meanings:

ERROR CODE EXTENDED ERROR MESSAGE NUMBER
The following error codes apply in ALL versions.

BS SUBSCRIPT OUT OF RANGE 9
An attempt was made to reference an array element which is
outside the dimensions of the array. In the 8K and larger
versions, this error can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(1,1,1)=Z

ranuary, 1977 Page 86

when A has already been dimensioned by DIM A(10,10)
DD REDIMENSIONED ARRAY 10

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 10 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION CALL 5
The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. a negative array subscript (LET A(-1)=0)
2. an unreasonably large array subscript (>32767)
3. LOG with negative or zero argument
4. SQR with negative argument
5. A*B with A negative and B not an integer
6. a call to USR before the address of a machine language

subroutine has been entered.
7. calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK,

POKE, TAB, SPC, STRING?, SPACE$, INSTR or ON...GOTO with
an improper argument.

ID ILLEGAL DIRECT 12
INPUT and DEF are illegal in the direct mode. In extended
versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR 1
The variable in a NEXT statement corresponds to no
previously executed FOR statement.

OD OUT OF DATA 4
A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the
program.

1977 Page 87

OM OUT OF MEMORY 7
Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See
Appendix C.

OV OVERFLOW
The result of a calculation was too large to be represented
in Altair BASIC'S number format. If an underflow occurs,
zero is given as the result and execution continues without
any error message being printed.

SN SYNTAX ERROR 3
Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSUB 3
A RETURN statement was encountered before a previous GOSUB
statement was executed.

UL UNDEFINED LINE 8
The line reference in a GOTO, GOSUB, IF...THEN...ELSE or
DELETE was to a line which does not exist.

/0 DIVISION BY ZERO
Can occur with integer division and MOD as well as floating
point division. 0 to a negative power also causes a
DIVISION BY ZERO error.

The following error messages apply to
8K, Extended and Disk versions only

CN CAN'T CONTINUE 17
Attempt to continue a program when none exists, an error
occured, or after a modification was made to the program.

LS STRING TOO LONG 15
An attempt was made to create a string more than 255
characters long.

OS OUT OF STRING SPACE 14
String variables exceed amount of string space allocated for

anuary, 1977 Page 88

them. Use the CLEAR command to allocate more string space
or use smaller strings or fewer string variables.

ST STRING FORMULA TOO COMPLEX 16
A string expression was too long or too complex. Break it
into two or more shorter ones.

TM TYPE MISMATCH 13
The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or
vice-versa; or a function which expected a string argument
was given a numeric one or vice-versa.

UF UNDEFINED USER FUNCTION 18
Reference was made to a user defined function which had
never been defined.

The following error messages are available in
Extended and Disk versions only.

MISSING OPERAND '2 2
During evaluation of an expression, an operator was found
with no operand following it.

NO RESUME ,2 0 '
BASIC entered an error trapping routine, but the program
ended before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21
A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR 19
An error condition exists for which there is no error
message available. Probably there is an ERROR statement
with an undefined error code.

LINE BUFFER OVERFLOW 23
An attempt was made to input a program or data line which
has too many characters to be held in the line buffer.
Shorten the line or divide it into two or more parts.

muary, 1977 Page 89

Disk Altair BASIC Error Messages

FIELD OVERFLOW 50
An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.
INTERNAL ERROR 51
Internal error in Disk BASIC. Report conditions under which
error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds
of disk I/O errors.
BAD FILE NUMBER 52
An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog.
FILE NOT FOUND 53
Reference was made in a LOAD, KILL or OPEN statement to a
file which did not exist on the disk specified.
BAD FILE MODE 54,
Ah attempt was made to perform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a PUT
or GET 'on a sequential file, to load a random file or to
execute an OPEN statement where the file mode is not I, 0,
orR.
FILE ALREADY OPEN 55
A sequential output mode OPEN for a file was issued for a
file that was already OPEN and had never been CLOSEd or a
KILL statement was given for an OPEN file.
DISK NOT MOUNTED 56
An I/O operation was issued for a file that was not MOUNTed.
DISK I/O ERROR 57
An I/O error occured on disk X. A sector read (checksum)
error occurred eighteen (18) consecutive times.
SET TO NON-DISK STRING 58

aaiuary, 1977 Page 9 0

An LSET or RSET was given for a string variable which had
not previously been mentioned in a FIELD statement.

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

All disk storage is exhausted on the disk. Delete some old
disk files and try again.
INPUT PAST END
An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function
to detect End Of File will avoid this error.
BAD RECORD NUMBER 62
In a PUT or GET statement, the record number is either
greater than the allowable maximum (2046) or equal to zero.
BAD FILE NAME 63
A file name of 0 characters (null) or a file name whose
first byte was 0 or 377 octal (255 decimal) or a file name
with more than 8 characters was used as an argument to LOAD,
SAVE, KILL or OPEN.
MODE-MISMATCH 64
Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or
vice versa.
DIRECT STATEMENT IN FILE 65
A direct statement was encountered during a LOAD of a
program in ASCII format. The LOAD is terminated.
TOO MANY FILES
A SAVE or OPEN (0 or R) was executed which would create a
new file on the disk, but all 255 directory entries were
already full. Delete some files and try again.

DISK ALREADY MOUNTED 59

DISK FULL 60

OUT OF RANDOM BLOCKS 67

January, 1977 Page 91

An attempt was made to have more random files OPEN at once
than the number of random blocks that were allocated during
initialization by the response to the
"NUMBER OF RANDOM FILES?" question (see Appendix E).
FILE ALREADY EXISTS 68
The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try
a different name.
FILE LINK ERROR 69
During the reading of a file, a sector was read which did
not belong to the file.

6-6. Reserved Words.
Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc. and thus may
not be used for variable or function names. The reserved
words are listed below in order of the versions for which
they are reserved, starting with those reserved in all
versions and ending with those reserved only in Disk Altair
BASIC. Words reserved in larger versions may be used in
smaller versions, although one may want to avoid all
reserved words in the interest of compatibility. In
addition to the words listed below, intrinsic function names
are reserved words in all versions in which they are
available.
RESERVED WORDS
Words reserved in all versions.
CLEAR NEW
DATA NEXT
DIM PRINT
END READ
FOR REM
GOSUB RETURN
GOTO RUN
IF STOP
INPUT TO
LET TAB
LIST THEN

USR
Words reserved in 8K, Extended and Disk versions. All the above

plus:

aaiuary, 1977 Page 9 0

AND ON
CONT OR
DEF OUT
FN POKE
NOT SPC
NULL WAIT
Words reserved in Extended and Disk versions. All the above plus
AUTO LINE
CONSOLE kL
DEFDBL LPRINT
DEFINT MOD
DEFSNG RENUM
DEFSTR RESUME
DELETE SPACE$
EDIT STRING$
ELSE SWAP

TROFF
ERASE TRON
ERL VARPTR
ERR WIDTH
IMP XOR
INSTR
Words reserved in Disk. All the above plus:
CLOSE LSET
DSKI$ MERGE
DSKO$ MOUNT
FIELD NAME
FILES OPEN
GET PUT
KILL RSET
LOAD UNLOAD

January, 1977 Page 93

APPENDIX A
ASCII CHARACTER*CODES

DECIMAL CHAR. DECIMAL
300 NUL 043
001 SOH 044
002 STX 045
003 ETX 046
004 EOT 047
005 ENQ 048
006 ACK 049
007 BEL 053
008 BS 351
039 BT 352
010 LP <- . / ' 353
011 VT 354
012 pp - ' - ^ 355
013 CR ̂ ^ 356
014 SO" 357
015 SI 358
016 DLE 359
017 DC1 363
018 DC2 361
019 DC3 362
020 DC4 063
021 NAK 064
022 SYN 065
023 ETB 066
024 CAN 067
025 EM 068
026 SUB 069
027 ESCAPE 073
028 FS 071
029 GS 072
030 RS 073
031 US 074
032 SPACE 075
033 1 076
034 " 077
035 3 078
036 $ 079
037 % 080
338 & 081
039 ! 082
040 (083
041) 084
042 * 085
LF^Line Feed FF= Form Feed

CHAR. DECIMAL CHAR
+ 386 V
y 387 W

388 X
389 Y / 093 Z

0 391 t
1 392 \
2 393 !
3 394
4 095 <
5 096 <
6 397 a
7 398 b
8 099 c
9 133 d
: 131 e ; 132 f
< 133 5 at 134 h
> 135 i
? 136 j @ 107 k
A 108 1
B 109 m
C 113 n
D 111 0
E 112 P
F 113 3
G 114 r
H 115 s
1 116 t
J 117 u
K 118 V
L 119 V
M 123 X
N 121 y
0 122 z
P 123 (
Q 124
R 125
S 126
T 127 DEL
U
CR=Carriage Return DEL^Rubout

1977 Page 94

Using ASCII codes — the CHR$ function.
CHR$(X) returns a string whose one character is that

with ASCII code X. ASC(X$) converts the first character of
a string to its ASCII decimal value.

One of the most common uses of CHR$ is to send a
special character to the user's terminal. The most often
used of these characters is the BEL (ASCII 7). Printing
this character will cause a bell to ring on some terminals
and a beep on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user
if he has fallen asleep. Example:

PRINT CHR$(7);
Another major use of special characters is on those

CRT's that have cursor positioning and other special
functions (such as turning on a hard copy printer). For
example, on most CRT's a form feed (CHR$(12)) will cause the
screen to erase and the cursor to "home" or move to the
upper left corner.

Some CRT's give the user the capability of drawing
graphs and curves in a special point-plotter mode. This
feature may easily be taken advantage of through use of
Altair BASIC'S CHR$ function.

January, 1977 Page 95

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.
This appendix details the procedure for loading BASIC

in 4K, 8K and Extended versions from paper tape or tape
cassette. For instructions on loading Disk BASIC, see
appendix /V.

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
positions as "up" and "down", it is convenient to denote the
up position as 1 and the down position as 0. Taken in
groups of three, then, the switches can represent octal
digits. To save space, the switch positions in the
following loader program listings are shown in octal
notation. The leftmost two switches in an 8 bit set are
represented by the first digit, the next three by the second
digit and the low-order three switches by the last digit.

For example, if we wish to enter octal 315 on the data
switch register, the switches would have the following
positions:

7 6 5 4 3 2 1 0
up up down down up up down up

3 1 5
For data entry, only the rightmost 8 switches of the 16
switches on the ALTAIR 8800 front panel switch register are
used. All 16 switches would be used to enter a memory
address.

The following is the procedure for loading BASIC from
paper tape or cassette.
1. Turn the power switch on.
2. Raise the STOP switch and RESET switch simultaneously
3. Switch the terminal to LINE
4. Enter one of the following programs on the front panel

switches. The 38-MBL Multi-Boot Loader PROM contains
the necessary loader programs, so it is not necessary to
enter a loader from the front panel if it is installed.
Refer to the 88-MBL manual for more information.

January, 1977 Page 96

a. loading from paper tape with the SIO board (REV 1)
Octal Address Octal Data
000 041
001 302
002 0xx (17 for 4K, 37 for 8K, 77 for
003 061 Extended & Disk)
004 022
005 000
006 333
007 000
010 017
011 330
012 333
013 001
314 275
015 310
016 055
017 167
020 300
021 351
022 003
023 000

b. loading from cassette
Octal Address Octal Data
000 041
001 302
002 0xx (17 for 4K, 37 for 8K, 77 for
003 061 Extended and Disk) 004 022
005 000
006 333
007 006
010 017
011 338
012 333
013 007
314 275
015 310
016 055
017 167
020 300
321 351
022 003
023 330

January, 1977 Page 97

c. loading with the 88 PIO board
Octal Address Octal Code
000 041
001 302
002 0xx (17 for 4K, 37 for 8K, 77 for
003 061 Extended and Disk)
004 023
005 000
006 333
087 004
010 346
011 M l
012 310
013 333
014 005
015 275
016 310
017 055
020 167
021 300
022 351
023 003
024 000

d. loading with the 2SIO board
Octal Address Octal Data
000 076
001 303
002 323
003 020
004 076
005 021 (=2 stop bits, 025=1 stop bit)
306 323
007 020
010 041
011 302
012 0xx (17for 4K, 37 for 8K, 77 for
013 061 Extended and Disk)
014 032
315 000
016 333
017 020
020 017
021 320
022 333
023 021
024 275
025 310
026 055
027 167

January, 1977 Page 98

030
031
032
033

300
351
013
000

e. loading with the 4PI0 board

Octal Address Octal Data
000 257
001 323
002 040
003 323
004 041
005 076
006 054
007 323
010 040
011 041
012 302
013 0xx (17 for 4K, 37 for 8K, 77 for
014 061 Extended and Disk)
015 033
016 000
017 333
020 040
021 007
022 330
023 333
024 041
025 275
026 310
027 055
030 167
031 300
332 351 033 014
034 000

f. Loading with
Octal Address
000
001
002
003
034
005
336
887
310

High Speed Tape Reader
Octal Data
257
323
044
323
045
323
846
857
323

ary, 1977 Page 99

011 047
012 076
013 014
014 323
015 044
016 076
017 004
020 323
021 046
022 323
023 047
024 041
025 302
026 0xx (17 for 4K, 37 for 8K, 77 for
027 061 Extended and Disk)
030 047
031 000
032 333
033 044
034 346
035 100
036 310
037 333
040 045
041 275
042 310
043 055
044 167
045 300
046 351
047 027
050 000

To enter these programs,

1. Put switches 0 to 15 in the down positions
2. Raise EXAMINE
3. Put the data for address zero in switches 0 through 7.
4. Raise DEPOSIT
5. Put the data for the next address in the switches
6. Depress DEPOSIT NEXT
7. Repeat steps 5 and 6 until the whole loader is toggled

in

January, 1977 Page 100

8. Put switches 0 through 15 in the down position
9. Raise EXAMINE

10. Check to see that the lights D0 through D7 show the
data that should be in location 000. Light on =1, light
off = 0. If the correct value is there, go to step 13,
if not go to 11.

11. Put the correct value in the switches
12. Raise DEPOSIT
13. Depress EXAMINE NEXT
14. Repeat steps 10 through 13 to check the entire loader
15. If there were any mistakes, check the entire loader

again to make sure they were corrected.
16. If a paper tape is being loaded, put it into the reader

and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 302 octal punched in each column. If an
audio cassette is being loaded, put it in the cassette
recorder and make sure it is fully rewound.

17. Lower switches 0 through 15
18. Raise EXAMINE
19. Enter the sense switch settings. See the table in

section B.
20. If loading is through a SIOA, B or C or an 88PIO, turn

on the tape reader and then depress RUN. If a cassette
is being loaded, turn on the recorder, put it in PLAY
mode and wait 15 seconds. Then press RUN on the
computer. If loading is through a 4PI0, 2SI0 or High
Speed Tape Reader, depress RUN and then start the read
device.

21. Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes
for 4K. Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move any of
the switches while the tape is being read.

22. If a loading error occurs, the loading procedure must
start over from step 1. See section C below for error
conditions.

, 1977 Page 101

23. When the tape is read, BASIC should start up and print
MEMORY SIZE? See section D below for what to do next.

24. If BASIC will not load from cassette, the ACR module
may need realignment. The Input Test Program described
in the ACR Manual, pages 22 and 28 may be used to test
the ACR.

B. Sense Switch Settings

U

Sense switches (switches A8 through A15) must be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the load board
setting and the high order four switches contain the
terminal board setting. In the table below, the setting is
given for each I/O board option. As above, the setting is
an octal number which signifies the switch positions. The
Terminal Switch and Load Switch columns show the switches
that are raised for each of the load and terminal device
options.

Device
Sense Switch

Setting
2SI0 0

(2 stop bits)
2SIO 1

(1 stop bit)
SIO 2
ACR 3
4PI0 4
PIO 5
HSR 6
non-standard 14
terminal

no terminal 15

Terminal Load
Switches Switches Channels
none none 20, 21
A12 A8 20, 21
A13 A9 0, 1
A13,A12 A9,A8 6, 7
A14 A10 40, 41, 42, 43
A14,A12 A10,A8 4, 5
A14,A13 A10,A9 46, 47

Examples:

O

Input from audio cassette through ACR and CRT terminal
through 2SI0 with 1 stop bit.
Switch 15 14 13 12 11 10 9 8
Position 0 0 0 1 0 0 1 1
Input from high speed paper tape reader, terminal
through SIO.
Switch 15 14 13 12 11 10 9 8
Position 0 0 1 8 0 1 1 0

January, 1977 Page 102

C. Error Detection
The checksum loader turns on the Interrupt Enable light

on the front panel when a loading error occurs. The ASCII
code of the error letter is stored in location 0. In
addition, the error letter is sent out over all the terminal
channels and so will appear on whatever terminal is
connected to the terminal. The error letters are as
follows:

C checksum error. Bad tape data.
M memory error. Data won't store properly.

The address of the bad memory location is stored
in locations 1 and 2.

0 overlay error. Attempt was made to load data on top
of the loader.

1 invalid load device. Invalid setting on the
sense switches.

D. Initialization Dialog
Upon starting, BASIC prints
MEMORY SIZE?

To this, the user responds by typing the number of bytes of
memory to be used by BASIC and BASIC programs. Remember
that the BASIC interpreter itself takes 3.4K in the 4K
version, 6.2K in 8K and 14.6K in Extended. If the response
is just a carriage return, BASIC will use all the memory it
can find, starting at location zero up to the last byte of
read/write memory. Then BASIC asks,

TERMINAL WIDTH?
to which the user responds with the width of the printing
line of whatever output device is in use. Typing a carriage
return sets the terminal width to 72. Extended and Disk
Altair BASIC set the terminal width through the WIDTH
command, so the TERMINAL WIDTH question is not asked at
initialization and an initial width of 72 is assumed. In
4K, the response to MEMORY SIZE? and TERMINAL WIDTH? must
be less than 6 digits.

At this point BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the

J^jary, 1977 Page 103

next question
SQR? Y keeps SQR and RND

N deletes SQR, asks next question
RND? Y keeps RND

N deletes RND
8K and Extended BASIC ask,

WANT SIN-COS-TAN-ATN? Y keeps all four

Now BASIC prints,
XXXX BYTES FREE
ALTAIR BASIC VERSION 4.0
[FOUR-K VERSION]

or
[EIGHT-K VERSION]

or
[EXTENDED VERSION]
OK

BASIC is now in command level and is ready for use.
E. Echo Routines.

The Altair input/output channels work in a full-duplex
mode. This means that characters entered on an input/output
terminal will not, as a rule, be printed as they are entered
unless the computer is programmed to return them. The
following echo programs may be used to test the input/output
devices. To test an input-only device, dump the echoed
characters on an output device or store them in memory for
later examination. To test an output-only device, send the
echo characters through the front panel switches or send a
constant character. Be sure to check the ready-to-receive
bit of the output terminal before attempting output. If the
echo program works, but BASIC does not, make sure the load
device's I/O board is strapped for 8 data bits and that the
ready-to-recieve bit is set properly on the terminal device.

N deletes all four

CONSOLE function. Any
other answer deletes
CONSOLE.

88-PIO
OCTAL ADDRESS

001
OCTAL CODE

004
346
001

002
003

January, 1977 Page 104

004
005
006
007
010
011
012
013
014
015

312
000
000
333
005
323
005
303
000
000

2SI0
OCTAL ADDRESS

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024

OCTAL CODE
076
003
323
020 (flag ch.)
076
021 (=2 stop bits,
323 025=1 stop bit)
020
333
020
017
322
010
000
333
021 (data channel)
323
021
303
010
000

4PIO
OCTAL ADDRESS OCTAL CODE 000 257 001 323

002 040
003 323
004 041
005 323 006 042 007 057
010 323 011 043 012 076
013 054 014 323 015 040
016 323

January, 1977 Page 105

^ 017 042
020 333
021 040
022 346
023 200
024 312
025 020
026 000
027 333
030 042
031 346
032 200
033 312
034 027
035 000
036 333
037 041
040 323
041 043
042 303
043 020
044 000

January, 1977 Page 186

APPENDIX C
SPACE AND SPEED HINTS

A. Space Allocation
The memory space required for a program depends, of

course, on the number and kind of elements in the program.
The following table contains information on the space
required for the various program elements.
Element Space Required
Variables
numeric integer 5 bytes

single precision
double precision
string 6 bytes

7 bytes in Extended and Disk
6 bytes in 4K and 8K
11 bytes

Arrays
integer (# of elements)*
single precision
double precision
string
8K and 4K
strings and floating pt.

+(# of dimensions)*2 bytes

Functions
intrinsic 1 byte for the call (2 bytes in Extended and Disk)
user-defined 6 bytes for the definition

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Other Characters
1 byte each

Stack Space
active FOR
loop 17 bytes

16 bytes
active GOSUB 5 bytes
parentheses 6 bytes
temporary
result 12 bytes

10 bytes

in Extended and Disk,
in 4K and 8K
each set
in Extended and Disk
in 4K and 8K

1977 Page 107

BASIC itself takes about 3.4K in the 4K version, 6.2K
in 8K, 14.6K in Extended and 20 K in Disk.
B. Space Hints

The space required to run a program may be
significantly reduced without affecting exectuion by
following a few of the following hints.
1. Use multiple statements per line. Each line has a 5

byte overhead for the line number, etc., so the fewer
lines there are, the less storage is required.

2. Delete unnecessary spaces. Instead of writing
10 PRINT X, Y, Z

use
10 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4. Use variables instead of costants, expecially when the
same value is used several times. For example, using
the constant 3.14159 ten times in a program uses 40
bytes more space than assigning

10 P=3.14159
once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
variables.

7. Use subroutines instead of writing the same code
several times.

8. Use the smallest version of BASIC that will run the
program.

9. Use the zero elements of arrays. Remember the array
dimensioned by

100 DIM A(10)
has eleven elements, A(0) through A(10).

January, 1977 Page 108

10. In Extended and Disk, use integer variables wherever
possible.

C. Speed Hints

1. Deleting spaces and REM statements gives a small but
significant decrease in execution time.

2. Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. So, reuse
variable names and keep the list of variables as short
as possible.

3. In 8K, Extended and Disk use NEXT without the index
variable.

4. 8K, Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use
the larger versions.

5. The math functions in 8K, Extended and Disk are faster
than those in 4K.

6. In the 4K and 8K versions, use variables instead of
constants, especially in FOR loops and other code that
must be executed repeatedly.

7. In Extended and Disk use integer variables wherever
possible.

January, 1977 Page 109

APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions

The following functions, while not intrinsic to ALTAIR
BASIC, can be calculated using the existing BASIC functions.
Function:
SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT
INVERSE HYPERBOLIC
COTANGENT

BASIC equivalent:
SEC(X) = l/COS(X)
CSC(X) - 1/SIN(X)
COT(X) = 1/TAN(X)
ARCSIN(X) =ATN(X/SQR(-X*X+1))
ARCCOS(X) - -ATN X(X/SQR(-X*X+1))

+1.5708
ARCSEC(X) = ATN(XSQR(X*X-1))

+SGN(SGN(X)-1)*1.5708
ARCCSC(X) =ATN(1/SQR(X*X-1))

+(SGN(X)-1)*1.5708
ARCCOT(X) - ATN(X)+1.5708
SINH(X) = (EXP(X)-EXP(-X))/2

(EXP(X)+EXP(-X))/2
EXP(-X)/EXP(X)+EXP(-X))

COSH(X) -
TANH(X) =

*2+l
SECH(X) =
CSCH(X) *
COTH(X) =

*2+l
ARCSINH(X)
ARCCOSH(X)
ARCTANH(X)
ARCSECH(X)

2/(EXP(X)+EXP(*X))
2/(EXP(X)-EXP(-X))
EXP(-X)/(EXP(X)-EXP(-X))

LOG(X+SQR(X*X+l))
LOG(X+SQR(X*X+-l))
LOG((l+X)/(l-X))/2
LOG((SQR(-X*X+1)+1)/X)

ARCCSCH(X) = LOG((SGN(X)*
SQR(X*X+1)+1)/X

ARCCOTH(X) -LOG((X+l)/(X-l))/2

Simulated Math Functions.\&
The following subroutines are intended for 4K BASIC users

aaiuary, 1977 Page 9 0

who want to use the transcendental functions not built into
4K BASIC. The corresponding routines for these functions in
the 8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
purposes only, and should not be typed in because they take
up a large amount of memory. The following are the
subroutine calls and their 8K equivalents:

8K EQUIVALENT 4K SUBROUTINE CALL
P9=X9"Y9 GOSUB 60030
L9=LOG(X9) GOSUB 60090
E9=EXP(X9) GOSUB 60160
C9=COS(X9) GOSUB 60240
T9=TAN(X9) GOSUB 60280
A9=ATN(X9) GOSUB 60310

The unneeded subroutines should not be typed in. Please
note which variables are used by each subroutine. Also note
that TAN and COS require that the SIN function be retained
when BASIC is loaded and initialized.
60000 REM EXPONENTIATION: P9=X9"Y9
60010 REM NEED: EXP, LOG
60020 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,Y9
60030 REM P9 =1 : E9=0 : IF Y9=0 THEN RETURN
60040 IF X9<0 THEN IF INT(Y9)=Y9 THEN P9=l-2*Y9+4*INT(Y9/2)

: X9=-X9
60050 IF X9O0 THEN GOSUB 60090 : X9=Y9*L9 : GOSUB 60160 ^
60060 P9=P9*E9 : RETURN
60070 REM NATURAL LOGARITHM: L9=LOG(X9)
60080 REM VARIABLES USED: A9,B9,C9,E9,L9,X9 j
60090 E9=0 : IF X9<=0 THEN PRINT "LOG FC ERROR"; : STOP i
60100 A9=l: B9=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING
60110 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100
60120 X9=(X9-.707107)/(X9+.7077107) : L9=X9*X9
60130 L9=(((.598979*L9+.961471)*L9+2.88539)*X9+E9-.5)*

.693147 60135 RETURN
60140 REM EXPONENTIAL : E9=EXP(X9)
60150 REM VARIABLES USED: A9,E9,L9,X9
60160 L9=INT(1.4427*X9)+1 : IF L9<127 THEN 60180
60170 IF X9>0 THEN PRINT "EXP OV ERROR"; : STOP
60175 E9=0 : RETURN
60180 E9=.693147*L9-X9 : A9=1.32938E-3-1.41316E-4*E9
60190 A9=((A9*E9-8.30136E-3)*E9+4.16574E-2)*E9
60195 E9=((A9-.166665)*E9-1)*E9+1 : A9=2
60197 IF L9<=0 THEN A9=.5 : L9=-L9 : IF L9=0 THEN RETURN
60200 FOR X9=l TO L9 : E9=A9*E9 : NEXT X9 : RETURN
60210 REM COSINE: C9=COS(X9)
60220 REM N.B. SIN MUST BE RETAINED AT LOAD-TIME
60230 REM VARIABLES USED: C9,X9

a

1977 Page 111

60240 C9-SIN(X9+1.5708) : RETURN
60250 REM TANGENT: T9=TAN(X9)
60260 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
60270 REM VARIABLES USED: C9,T9,X9
60280 GOSUB 60240 : T9=SIN(X9)/C9 : RETURN
60290 REM ARCTANGENT : A9=ATN(X9)
60300 REM VARIABLES USED: A9,B9,C9,T9,X9
60310 T9=SGN(X9): X9=ABS(X9):C9=0: IF X>1 THEN C9-1: X9-1/X9
60320 A9=X9*X9 : B9-((2.86623E-3*A9-1.61657E-2)*A9

+4.29096E-2)*A9
60330 B9=((((B9-7.5289E-2)*A9+.106563)*A9-.1142089)*A9+.199936)*A9
60340 A9=((B9-.333332)*A9+1)*X9 : IF C9-1 THEN A9=1.5708-A9

January, 1977 Page 112

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR
function allows Altair BASIC programs to call assembly
language subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside
memory space. When BASIC asks, MEMORY SIZE? during
initialization, the response should be the size of memory
available, minus the amount needed for the assembly language
routine. BASIC uses all the bytes it can find from location
zero up, so only the topmost locations in memory can be used
for user supplied routines. If the answer to the MEMORY
SIZE? question is too small, BASIC will ask the question
again until it gets all the memory it needs. See Appendix
C.

The assembly language routine may be loaded into memory
from the front panel switches or from a BASIC program by
means of the POKE statement.

The starting address of the assembly language routine
goes in USRLOC, a two byte location in memory which varies
from version to version. USRLOC for 4K and 8K Altair BASIC
version 4.0 is 111 OC719& . In Extended and Disk, USRLOC
need not be known explicitly since it is defined
automatically by DEFUSR. See section 5-3b. The function
USR calls the routine whose address is in USRLOC.
Initially, USRLOC contains the address of ILLFUN, the
routine which gives the FC or ILLEGAL FUNCTION CALL error,
which is what happens if USR is called with no assembly
language routine having been loaded.

When USR is called, the stack pointer is set up for 8
levels (16 bytes) of stack storage. If more stack space is
needed, BASICs stack can be saved and a new stack set up for
use by the assembly language routine. BASIC'S stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly language routine. Of course, memory
locations within BASIC ought not to be changed, nor should
more bytes be popped off the stack than were put on it.

USR is called with a single argument. The assembly
language routine can retrieve this argument by calling the
routine whose address is in locations 4 and 5 decimal. The

January, 1977 Page 113

low-order byte of the address is in 4 and the high-order in
5. In 4K and 8K, this routine (DEINT) stores the argument
in the register pair [D,E]. In Extended, the argument is
passed in pair [H,L]. The argument is truncated to integer
in 4K and 8K, and if it is not in the range -32768 to 32767,
an FC error occurs. In extended, the register pair [H,L]
contains a pointer to the Floating Point Accumulator where
the argument is stored (see section 5-3b. for more
information).

To pass a result back from an assembly language
routine, load the value in register pair [A,B] in 4K and 8K,
or [H,L] in Extended. This value must be a signed, 16 bit
integer as defined above. Then call the routine whose
address is in locations 6 and 7. If this routine is not
called, USR(X) returns X. To return to BASIC, then, the
assembly language routine executes a RET instruction.

Assembly language routines can be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user supplied interrupt handling routine.
Location 56 initially holds a RET, so it must be set up by
the user or an interrupt will have no effect.

All interrupt handling routines should save the stack,
registers A-L and the PSW. They should also reenable
interrupts before returning since an interrupt automatically
disables all further interrupts once it is received.

There is only one way to call an assembly language
routine in 4K and 8K, but this does not limit the programmer
to only one assembly language routine. The argument of USR
can be used to designate which routine is being called. In
8K, additional arguments can be passed through the use of
POKE and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may be
called with the USR0 - USR9 functions. For more information
on this feature, see section 5-3b.

C

January, 1977 Page 114

APPENDIX F
USING THE ACR INTERFACE

NOTE
The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette, and in Extended and Disk versions. 8K
BASIC on paper tape will give the user about 250
additional bytes of free memory, but it will not
recognize the CLOAD or CSAVE commands.

Programs may be saved on cassette tape by means of the
CSAVE command. CSAVE may be used in either direct or
indirect mode, and its format is as follows:

CSAVE <string expression>
The program currently in memory is saved on cassette under
the name specified by the first character of the STRING

«7rF-TTA=r ^expression)*. CSAVE writes through channel 7 when the Write
'/Mtf̂ a Buffer Empty bit (bit 7) of channel 6 is low. After CSAVE
KQ^am ig completed, BASIC always returns to command level.

A'S programs are written on tape in BASIC'S internal
representation. Variable values are not saved on tape,
although an indirect mode CSAVE does not affect the variable
values of the program currently in memory. The number of
nulls (see NULL command) has no affect on the operation of
CSAVE. Before using CSAVE, turn on the cassette recorder,
make sure the tape is in the proper position and put the
recorder in RECORD mode.

Programs may be loaded from cassette tape by means of
the CLOAD command, which has the same format as CSAVE. The
effect of CLOAD is to execute a NEW command, clearing memory
and all variable values, and loading the specified file into
memory. When done reading and loading, BASIC returns to
command level. CLOAD reads a byte from channel 7 when the
Read Data Ready bit (bit 0) in channel 6 is low. Reading
continues until 3 consecutive zeros are read. BASIC will
not return to command level after a CLOAD if it could not
find the requested file or if the file was found but did not
end with 3 zeros. In that case, the computer will continue
to search until it is stopped and restarted at location 0.

January, 1977 Page 115

In the 8K cassette and Extended versions of ALTAIR
BASIC, data may be read and written with the CSAVE* and
CLOAD* commands. The formats are as follows:

CSAVE*<array variable name>
and

CLOAD*<array variable name>
See section 2-4d for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression> compares the program
currently in memory with the specified file on cassette. If
the two files match, BASIC prints OK. If not, BASIC prints
NO GOOD.

Data may also be read from and written on cassette in
the paper tape version of 8K Altair BASIC. To write data,
execute a WAIT 6,128 statement to check for the Write Buffer
Empty bit and then write with an OUT 7,<byte> statement. To
read, execute a WAIT 6,1 to check for Read Data Ready and
then read with an INP(7). The end of a block of data may be
conveniently designated by a special character. Data should
be stored in array form since there is no time during
reading and writing for computation.

G

aaiuary, 1977 Page 9 0

APPENDIX G
CONVERTING BASIC PROGRAMS

NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers.
1) Strings.
A number of BASICs require the length of strings to be
declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaration of the form DIM A$(I,J) declares
a string array of J elements each of which has a length I.
Convert DIM statements of this type to equivalent ones in
Altair BASIC: DIMA$(J). Altair BASIC uses " + " for
string concatenation, not " , " or " &." ALTAIR BASIC uses
LEFT$, RIGHT$ and MID$ to take substrings of strings. Some
other BASICs use A$(I) to access the 1th character of the
string A$, and A$(I,J) to take a substring of A$ from
character position I to character position J. Convert as
follows:

OLD NEW
A$(I) MID$(A$,I,1)
A$(I,J) MID$(A$,I,J-I+1)

This assumes that the reference to a subscript of A$ is in
an expression or is on the right side of an assignment. If
the reference to A$ is on the left hand side of an
assignment, and X$ is the string expression used to replace
characters in A$, convert as follows :

In 4K and 8K
OLD NEW
A$(I)=X$ A$=LEFT$(A$,1-1)+X$+MID$(A$,1+1)
A$(I,J)=X$ A$=LEFT$(A$,1-1)+X$+MID$(A$,J+l)
Extended and Disk
OLD NEW
A$(I)=X$ MID$(A$,1,1)=X$
A$(I,J)=X$ MID$(A$,I,J-I+1)=X$

January, 1977 Page 117

2) Multiple assignments.
Some BASICS allow statements of the form:

500 LET B=C=0
This statement would set the variables B and C to zero. In
8K Altair BASIC this has an entirely different effect. All
the " - " signs to the right of the first one would be
interpreted as logical comparison operators. This would set
the variable B to -1 if C equaled 0. If C did not equal 0,
B would be set to 0. The easiest way to convert statements
like this one is to rewrite them as follows.

500 C=0:B=C
3) Some BASICs use " \ " instead of " : " t o delimit
multiple statements on a line. Change each " \ " to " : "
in the program.
4) Paper tapes punched by other BASICs may have no nulls at
the end of each line, instead of the three per line
recommended for use with Altair BASIC. To get around this,
try to use the tape feed control on the Teletype to stop the
tape from reading as soon as Altair BASIC prints a carriage
return at the end of the line. Wait a moment, and then
continue feeding in the tape. When reading has finished, be
sure to punch a new tape in Altair BASIC'S format.

A program for converting tapes to Altair BASIC'S format
was published in MITS Computer Notes, November 1976, p. 25.
5) Programs which use the MAT functions available in some
BASICs will have to be re-written using FOR...NEXT loops to
perform the appropriate operations.

January, 1977 Page 118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:
Tracks Use
0-5 . Disk BASIC memory image.
6-69 Space for either random or sequential files.
70 Directory track. See below.
71-76 Space for sequential files only.
Format of DISK BASIC Memory Image (Tracks 0-5):

BASIC is loaded starting at track 0 sector 0 then track 0
sector 1, etc. Each sector contains 128 bytes of BASIC.
The first 128 bytes are loaded first, second 128 second,
etc.

Sector format (Tracks 0-5):
Byte Use
0 Track Number+128 decimal.
1-2 Sixteen bit address of the next

higher byte of memory than the highest memory location
saved on this sector.

3-130 128 bytes of BASIC.
131 255 decimal stop byte.
132 Checksum - sum of bytes 3-130 with no carry in 8 bits.

Sector format (Tracks 6-76):
Byte Use
0 Most Significant Bit always on.

Contains track number plus 200 octal.
1 Sector number * 17 MOD 32.
2 File number in directory. Zero file number means

that the sector is not part of any file. If the
sector is the first file of a group of 8 sectors
0 means the whole group of 8 sectors is free.

1977 Page 119

3 Number of data bytes written (0 to 128) . Always
128 for random files. (Except for the random file
index blocks in which case this byte indicates how many

groups are allocated to the file.)
4 Checksum. The sum of all the data on the sector

except for the track number, the sector
number and the terminating 255 byte.

5,6 Pointer to the next group of data. This is set up for
random files and sequential files, and is even valid
in the middle of a group. If it is zero it means there
is no more data in the file. The track is the first byte
and the sector number is the second byte.

7-134 Data
135 A 255 (octal 377) to make sure the right number

of data bytes were read.
136 Unused.
Directory Track (70) Format:

Each sector of the directory (which is all of track 70)
is composed of up to 8 file name slots, 16 bytes per slot.
Each slot can contain a file name (8 bytes), a link to the
start of file data (2 bytes), and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
bytes are not currently used. Any slot which has the first
filename byte equal to zero contains a file which has been
deleted. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond
the "stopper" are garbage. File numbers are calculated by
multiplying the sector number of the directory track the
file is in by ^ and adding the position of the slot in the
sector (0-7) plus 1.

NOTE
The ith logical sector on a track is actually mapped
to the i*17 MOD 32 physical sector to improve
latency in BASIC I/O operations.

Format of Random Files

Each random file starts with two random index blocks. The
"number of data bytes" field in the first block indicates
how many groups are currently allocated to this random file.
The next 256 bytes in the two random index blocks give the
location of each group in the random file in order of their
position in the file. The upper two bits give the group
number , and the lower six bits give the track number - 6.

January, 1977 Page 120

Assembly Code to Read and Write a Sector

The following code has been provided to help users write
their own assembly language subroutines to read and write
data on the floppy disk. It is assumed that the disk being
used has already been enabled and positioned to the correct
track. Two data bytes are always read or written at a time
so that the CPU can keep up with the data rate (32
microseconds/byte) of the floppy disk. After two bytes are
read or written, the CPU re-synchronizes with the next 'byte
ready' status from the floppy disk controller.
; CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]
; AND POINTER TO DATA BUFFER IN [H,L]
; ALL REGS DESTROYED.
DSKO: MOV C,A ySAVE # OF BYTES IN C

MVI A,136 yCALCULATE NUMBER OF ZEROS TO WRITE
SUB C ySUBTRACT THE NUMBER OF DATA BYTES
MOV B,A yNUMBER OF ZEROS+1
CALL SECGET yLATENCY
MVI A,128 yENABLE WRITE WITHOUT SPECIAL CURRENT
OUT 9

CALL WITH [B]=NUMBER OF ZEROS [C]=NUMBER OF DATA BYTES
AND [H,L] POINTING AT OUTPUT DATA

OHLDSK: MVI D,1 ;SETUP A MASK (READY TO WRITE)
MVI A,128 yHIGH BIT (D7) ALWAYS ON IN FIRST BYTE
ORA M ;OR ON DATA BYTE
MOV E,A ySAVE FOR LATER
INX H INCREMENT BUFFER POINTER

NOTYTD: IN 8 ;GET WRITE DATA READY STATUS
ANA D yTEST STATUS BIT
JNZ NOTYTD ;NOT READY TO WRITE, WAIT
ADD E ;ADD BYTE WE WANT TO SEND TO ZERO
OUT 10 ;SEND THE BYTE
MOV A,M yGET NEXT BYTE TO SEND
INX H ?MOVE BUFFER POINTER AHEAD
MOV E,M yGET NEXT DATA BYTE
INX H ;MOVE BUFFER POINTER AHEAD AGAIN
DCR C yDECREMENT COUNT OF CHARS TO SEND
JZ ZRLOP ylF DONE, QUIT & GO TO ZRLOP
DCR C yDECREMENT COUNT OF CHARS AGAIN-
OUT 10 ySEND THIS BYTE
JNZ NOTYTD ySTILL MORE CHARS, DO THEM.

ZRLOP: IN 8 yGET READY TO WRITE
ANA D ;IS IT READY
JNZ ZRLOP ylF NOT, LOOP
OUT 10 yKEEP SENDING FINAL BYTE
DCR B ;DECREMENT COUNT OF BYTES TO SEND

January, 1977
C

Page 121

DSKI: CALL SECGET 7 POINT TO RIGHT SECTOR
MVI C,137 ?GET # OF CHARS TO READ

READOK: IN 8 7GET DISK STATUS
ORA A 7READY TO READ BYTE
JM READOK
IN 10 7READ THE STUFF
MOV M,A 7SAVE IN BUFFER
INX H 7BUMP DESTINATION POINTER
M R C 7LESS CHARS
JZ RETDO ;IF OUT OF CHARS, RETURN
DCR C 7DECREMENT COUNT OF CHARS
NOP 7DELAY INTO NEXT BYTE
IN 10 7GET NEXT BYTE
MOV M,A 7SAVE BYTE IN BUFFER
INX H 7MOVE BUFFER POINTER
JNZ READOK 7IF CHARS STILL LEFT, LOOP BACK

RETDO: EI 7RE-ENABLE INTERRUPTS
MVI A,8 7UNLOAD HEAD
OUT 9 ?SEND COMMAND
RET

SECGET: MVI A, 4 7LOAD THE HEAD
OUT 9
DI 7DISABLE INTERRUPTS

SECLP2: IN 9 7GET SECTOR INFO

C RETDO:

IN
MOV
INX
DCR
JZ
DCR
NOP
IN
MOV
INX
JNZ
MVI
OUT
RET

SECGET:
OUT
DI

SECLP2:
RAR
JC
ANI
CMP
JNZ
RET

10
M,A
H
C
RETDO
C
10
M,A
H
READOK
EI
A,8
9

MVI
9
IN
SECLP2
31
E
SECLP2

A, 4

9

7 KEEP WAITING
?RE-ENABLE INTERRUPTS
?UNLOAD HEAD
ySEND COMMAND
7 DONE

, ALL REGS DESTROYED.
7 POINT TO RIGHT SECTOR
-GET # OF CHARS TO READ

;GET DISK STATUS
;READY TO READ BYTE
;READ THE STUFF
?SAVE IN BUFFER
7 BUMP DESTINATION POINTER
7 LESS CHARS
-IF OUT OF CHARS, RETURN
;DECREMENT COUNT OF CHARS
;DELAY INTO NEXT BYTE
;GET NEXT BYTE
ySAVE BYTE IN BUFFER
-MOVE BUFFER POINTER
?IF CHARS STILL LEFT, LOOP BACK

?RE-ENABLE INTERRUPTS
;UNLOAD HEAD
7 SEND COMMAND

7LOAD THE HEAD
?DISABLE INTERRUPTS

7GET SECTOR INFO
7 FIX UP SECTOR #
7IF NOT, KEEP WAITING
7GET SECTOR #
7 IS IT THE ONE WE WANTED
7TRY TO FIND IT

The Disk PROM Bootstrap Loader

The Disk bootstrap loader PROM must be installed in the
highest position on the PROM board and the PROM board must
be strapped at the proper address. The proper position is
the PROM IC socket on the opposite side of the board from
the black finned heat sink. The black dot or '1' on the
PROM should be in the upper left corner. The address
jumpers on the PROM board must be in the '1' position.

January, 1977 Page 122

To use the Disk bootstrap loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177400 (address switches A15-A8
up, rest down) and then set the sense switches for the
terminal I/O board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or display):
MEMORY SIZE?
For the rest of the initialization procedure, see below.

Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap PROM is not in use, a paper tape or
cassette program must be loaded which then reads in BASIC
from the disk. This is done by following the procedure
below:
1. Key in the applicable paper tape or cassette bootstrap

loader from the listings in Appendix B. Make
location 2=07y octal. Set the sense switches for the
terminal

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, and then start the computer as in the
instructions for loading BASIC from paper tape from
cassette as given in Appendix B.

BASIC should respond:
MEMORY SIZE?
For the rest of the initialization procdure, see below.

Disk Initialization Dialog

The initialization dialog has been expanded to allow the
user to select the proper amount of memory needed to use the
disk(s) on the system. After the the MEMORY SIZE question
is answered, BASIC will ask:
HIGHEST DISK NUMBER?
The user should answer with the highest physical disk
address in the system or with carriage return to default to
0. Each additional disk uses 40 bytes of memory.
Example:

ary, 1977 Page 123

HIGHEST DISK NUMBER? 1
BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and
sequential files. If the user types carriage return, the
default is zero. Each file allocated requires 138 bytes for
buffer space. Example:
HOW MANY FILES? 2
Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on
the floppy disk where groups of a random file reside. Thus,
the total memory required for each random file is
138+257=395 bytes. Example:
HOW MANY RANDOM FILES? 1
A typical dialog might appear as follows:
MEMORY SIZE? <carriage return>
HIGHEST DISK NUMBER? Ccarriage return>
HOW MANY FILES? 2 <carriage return>
HOW MANY RANDOM FILES? 1 <carriage return>
xxxxx BYTES FREE
Altair BASIC REV. 4.0
[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.
OK

January, 1977 Page 124

APPENDIX I
THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such
such common functions as printing directories, initializing
disks, copying disks etc.

NOTE
Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering
the "HOW MANY FILES?" question with a value greater
than zero. If an attempt is made to perfrom a LIS
or DIR without following this procedure, a
BAD FILE NUMBER error will occur.

Once the BASIC disk has been mounted, type the following
command:

RUN "PIP"<carriage return>
(PIP will type) *

PIP is now ready to accept commands. To exit PIP, type a
carriage return to the prompt asterisk. To initialize the
floppy disk in drive 0, type:

*INI0
PIP will type "DONE" when it is finished. Any disk number
may be substituted for the 0 in the above command and PIP
will format the disk in that drive. Any previous files on
the disk initialized will be lost. If you wish to use blank
disks with Disk BASIC, they must be initialized in this
fashion before they can be MOUNTed.

NOTE
DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC
ON IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON
THE DISK.

January, 1977 Page 125

Printing a Directory

Giving PIP the command:
*DIR<disk number>

prints out a directory of the files on the specified disk.
The name of each file is printed, along with the file's
"mode" (S for sequential, R for random), and the starting
track and sector number of the first block in the file.

SRT<disk number>
prints a sorted directory of the files on the specified
disk.

Listing Sequential Files

The LIS command is used to list the contents of a sequential
data file on the terminal:

Syntax:
LIS<disk number>,<file name>

Example:
*LIS0,PIPA user types
7 CLEAR 1000 computer prints

*

COPying Disks

The COP command is used to copy a disk placed in one drive
to a disk on another drive. Neither disk need be MOUNTed
for the COP command to work properly.

Syntax:
COPCold disk number>,<new disk number>

aaiuary, 1977 Page 9 0

Before the copy is done, PIP verifies the actionn by
printing the following massage:

FROM<disk number>TO<disk number>
Typing Y followed by a carriage return causes execution to
proceed. Any other responce aborts the command. Example:
*COP0,1 FROM 0 TO 1?V<CARRIAGE return> DONE *

The DAT command

The DAT command is used to dump out a particular sector of
the disk in octal.
Syntax:

DAT<disk number>
When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dumped. Example: *DAT0

TRACK? 0 SECTOR? 0 000 000 000 000 000 000
000 000 000 000 000 000 000 etc.

The CNV command

CNV converts disks written under Altair BASIC version 3.4
and 3.3 to a format useable by version 4.0. The format of
the command is as follows:.

CNV<disk number>
CNV makes sure that the next to last byte of each sector is
255.

Other Programs Provided on the System Disk

Program Name
STARTREK

Use
Plays game based on TV series.

January, 1977 Page 127

U APPENDIX J
BASIC TEXTS

Below are a few of the many texts that may be helpful
in learning BASIC.
1) BASIC PROGRAMMING, John G. Kemeny, Thomas E. Kurtz,
1967, 145pp.
2) BASIC, Albrecht, Finkel and Brown, 1973
3) A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A.
Dwyer and Michael S. Kaufman; Boston: Houghton Mifflin
Co., 1973
Books numbered 1 and 2 may be obtained from:

People's Computer Company
P.O. Box 310
Menlo Park, California 94025

They also have other books of interest, such as:
101 BASIC GAMES, David Ahl, Ed., 1974, 250pp.
WHAT TO DO AFTER YOU HIT RETURN or PCC's FIRST BOOK OF
COMPUTER GAMES
COMPUTER LIB AND DREAM MACHINES, Theodore H. Nelson, 1974,
186pp.

January, 1977 Page 128

APPENDIX K
USING Altair BASIC ON THE

INTELLEC* 8/MOD 80 AND MPS SYSTEMS.

This appendix covers procedures for loading and
operating Altair BASIC on Intellec and MDS development
systems.

A. Loading BASIC. To load Altair BASIC, put the hex
paper tape of BASIC in the system reader device. Now enter
the System and assign the CONSOLE I/O device as desired (see
Section 4.2.1 of the Intellec 8/Mod 88 Operator's Manual).
Now read in BASIC with the following R command.

.R(Cr)

The BASIC tape will be loaded into memory and the
system monitor will type a period on the CONSOLE device. If
you are only using contiguous RAM memory below the system
monitor (3800H) or are using BASIC on a MDS System, proceed
to step 2. If you have RAM memory above the PROM Intellec
monitor which you wish BASIC to use for program and variable
storage, you must patch the two locations known as INTLOC to
point to the bottom (lowest address) of memory. The is most
easily accomplished by using the System Monitor S command.
INTLOC is given below under "Memory Requirements."

.SXXXX 00 40 (Cr)
The above S command would make INTLOC point to RAM, starting
at 16K.

NOTE
If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentially, this means that the WANT
SIN-COS-TAN-ATN? questions asked by BASIC'S
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? question
with the highest decimal or RAM address in your
system.

January, 1977 Page 129

U

Start BASIC by giving the monitor GOTO command
.G0000<carriage return>

NOTE
Once BASIC has been started, it may always be
restarted by depressing the RESET switch on the
Intellec 8 console.

When BASIC types MEMORY SIZE?, Typing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to specify an exact
amount of memory, type the decimal address of the highest
byte of memory in the computer and type carriage return.
B. BASIC I/O.

The system devices used for terminal I/O in BASIC are
CI, CO and CSTS.
C. Saving and Loading Programs.

To save a program on paper tape, re-enter the PROM
monitor and reassign the CO device to the paper tape punch
or other output device. Then restart BASIC by using the
G0000 command and type LIST(Cr). The characters of the LIST
command will not be echoed, but the BASIC program currently
saved in memory will be put on the output device.

To load a program enter the system monitor, re-assign
CI to the input device where the program resides, and then
start BASIC with a G0000. When the program has been
completely read in, reassign CI to the user console. Then
re-enter BASIC with a G0000, and start the I/O device. The
program will be echoed on CO as it is read in.
D. Memory Requirements

BASIC uses locations 0000H-0003H and
0010H-approximately 19DFH in the 8K version, and 0010H-2F0EH
in the Extended version. For Intellec 8K and MDS 8K BASICs,
INTLOC is 6520 decimal. For MDS Extended, INTLOC is 14 257
decimal.
E. Calling Assembly Language Routines

C

January, 1977 Page 130

USRLOC for 8K BASIC is 0055H. ADR(DEINT) is stored in
locations 0043H. ADR(GIVACF) is stored in location 0045H.
In the Extended version these locations contain the
addresses of FRCINT and MAKINT, respectively. Interrupt
driven subroutines using RST 7 are not allowed in the
Intellec/MDS version of Altair BASIC. See Appendix C. for
further information on calling assembly language
subroutines.

* Intellec is a registered trademark of the Intel
Corporation.

January, 1977
C

APPENDIX L
PATCHING BASIC'S I/O ROUTINES

Page 131

BASIC'S I/O routines may be changed to accommodate
non-standard terminal equipment. After BASIC is loaded and
before it has been initialized, location 71 contains a
pointer to a list of addresses. These addresses contain the
I/O routines of BASIC:

ORG 71 <3
DW IOLST 7TWO BYTE ADDRESS OF ADDRESS LIST

C

IOLST: DW
DW
DW
DW
DW
DW
DW
DW
DW
DW

TRYOUT
TRYIN
ISCNTC
NEWSTT
IN2SIO
IN4PI0
LPTCOD
LPTCD2
LPTCD3
IOCHNL

yADDRESS OF OUTPUT ROUTINE
;CHARACTER INPUT ROUTINE
yPOLL FOR CONTROL/C CHECK
;FAST POLL FOR CONTROL/C CHECK
;8K AND LARGER ONLY
yADDRESS OF INITIALIZATION
?ROUTINE FOR 2SIO BOARDS
yADDRESS OF INITIALIZATION ROUTINE FOR
;4PIO BOARDS
yADDRESS OF LPT ROUTINE (IN EXTENDED
yAND DISK ONLY.)
;2ND LPT ROUTINE
y3RD LPT ROUTINE
yADDRESS OF I/O RESET LOCATION
y(IN EXTENDED AND DISK ONLY)

TRYOUT: IN
AN I
JNZ
POP
OUT
PUSH
NOP
NOP
POP
RET

200
TRYOUT
PSW
1
PSW

PSW

yGET DEVICE STATUS
AND OFF BIT 7
WAIT UNTIL TERMINAL CAN OUTPUT
GET CHARACTER TO OUTPUT OFF STACK
TRANSMIT IT
SAVE CHARACTER BACK ON STACK
CHANGED TO "IN 41" FOR 4PIO BOARDS
GET CHARACTER BACK OFF STACK
ALL DONE WITH CHARACTER OUTPUT ROUTINE

c
TRYIN: IN

AN I
JNZ

1
TRYIN

yGET TERMINAL STATUS
yCHARACTER READY?
;NO, KEEP WAITING

aaiuary, 1977 Page 9 0

IN
AN I
CP I
RNZ

1
127
CONTO

;READ IN THE CHARACTER
;GET RID OF PARITY BIT
7CONTROL/O?
;RETURN IF NOT

ISCNTC: IN 0

ANI 11

RNZ

;READ TERMINAL STATUS

7 HAS THE TERMINAL A CHARACTER
;TO SEND?

;NO, RETURN

;FOLLOWING ROUTINE IS IN 8K AND LARGER VERSIONS ONLY
;AND IS EXECUTED FOR EACH STATEMENT
NEWSTT: IN

ANI
CZ

0
1
CNTCCN

7 READ TERMINAL STATUS
yTEST BIT 0
7 YES, SEE IF CHARACTER CONTROL/C

IN2SIO: CPI
RNC
ADI
PUSH
MVI
CALL
POP
JMP

2*4
21
PSW
A,3
DOIO20
PSW
DOIO20

;ISIT2SIO
yNO, OTHER GO DIRECTLY TO SETIO
yGET PROPER INITIALIZATION BYTE
7 SAVE IT
^INITIALIZE THE 2SIO

;GET BACK SECOND INITIALIZATION BYTE
;PROGRAM TO DATA AND STOP BITS

IN4PIO: MVI A,54Q
M R M
CALL DOIO20

7RESET FOR DATA TRANSFER
7CHANNEL=22

LPTCOD: LDA
ORA
JZ
POP
PUSH
CPI
JNZ

MORSPL: MVI
OUTCHR
LDA
ANI

PRTFLG
A
TTYCHR
PSW
PSW
9
NOTABL

A,32
LPTPOS
7

7SEE IF WE WANT TO TALK TO LPT
7TEST BITS
7IF ZERO THEN NOT
7GET BACK CHAR

7 TAB
7 NO

7GET SPACE
7SEND IT
7GET CURRENT PRINT POSIT
7AT TAB STOP?

January, 1977 Page 133

JNZ MORSPL 7GO BACK IF MORE TO PRINT
POP PSW 7POP OFF CHAR
RET 7RETURN

NOTABL:
POP PSW yGET CHARACTER WE WANT TO

PUSH PSW
CPI 13 ylS IT CARRIAGE RETURN?
CZ PRINTW yFORCE OUT A LINE
CPI 13 yGET CONDITION CODES BACK
JC PPSWRT 7 IF FUNNY CONTROL CHARACTER

7(LF), DO NOTHING
LDA LPTPOS 7WHERE ARE WE?
CPI LPTLEN-1 7ARE WE AT END OF LINE?
JNZ NOTELP 7NO, JUST SEND CHAR
MVI A,1 7SET LPTLST"1 AND LPTPOS-0
CALL FINLP2
DCR A 7MAKE SURE LPTPOS ZERO.

NOTELP: INR A
STA LPTPOS

LPTWAT: IN 2
ORI 245
INR A
JNZ LPTWAT
POP PSW
OUT 3 7SEND OUT CHAR
RET 7RETURN

7THIS ROUTINE IS CALLED TO FORCE OUT A PARTIAL BUFFER

LDA
CP I
JNZ
MVI

LPTPOS
LPTLEN-1
NOTELP
A,1

ORI 245
INR A
JNZ PRINTW 7 B I T
IF BUFFER MUST BE EMPTIED
LDA LPTPOS
ORA A yCHARACTERS IN THE BUFFER?
JNZ PRINTR ylF SO DON'T CLEAR THE BUFFER
LDA LPTLST yPRINT BLANK LINE.

yCHECK IF PRINT WAS LAST
ORA A ylF SO, DO SPECIAL DELAY BECAUSE

yOF DESIGN
JZ NTEXDL 7 PROBLEM
PUSH H 7SAVE [H,L]
LXI H,19000 7DELAY COUNT

7 GO BACK IF MORE TO PRINT
.POP OFF CHAR
7RETURN

-GET CHARACTER WE WANT TO PRINT

7 IS IT CARRIAGE RETURN?
yFORCE OUT A LINE
yGET CONDITION CODES BACK
ylF FUNNY CONTROL CHARACTER

y(LF), DO NOTHING
yWHERE ARE WE?
yARE WE AT END OF LINE?
yNO, JUST SEND CHAR
ySET LPTLST"1 AND LPTPOS-0
yMAKE SURE LPTPOS ZERO.

C

POP
OUT
RET

THIS ROUTINE

PSW
3 ySEND OUT CHAR

yRETURN
IS CALLED TO FORCE OUT A PARTIAL BUFFER

FOR THE LINE PRINTER. IT ALSO RESETS PRTFLG SO ALL
FURTHUR I/O GOES TO THE USER'S TERMINAL

FINLPT: XRA A yRESET PRINT FLAG SO OUTPUT
STA
LDA
ORA
RZ

PRTFLG
LPTPOS
A

GOES TO THE TERMINAL
SEE IF ANY LEFTOVERS MUST BE
FORCED OUT
BY LOOKING AT LPTPOS

yTHE ROUTINE PRINTW IS CALLED TO FORCE OUT A LINE CURRENTLY
yIN THE LINE PRINTER BUFFER. THE CARRIAGE RETURN/LINE FEED
yOUTPUT SUBROUTINE CALLS PRINTW
PRINTW: IN 2 yMAKE SURE LAST PRINT

ORI 245
INR A
JNZ PRINTW yBIT

: SEE IF BUFFER MUST BE EMPTIED
LDA
ORA
JNZ
LDA
ORA

JZ
PUSH
LXI

C

LPTPOS
A
PRINTR
LPTLST
A

NTEXDL
H
H,19000

yCHARACTERS IN THE BUFFER?
ylF SO DON'T CLEAR THE BUFFER
yPRINT BLANK LINE.

yCHECK IF PRINT WAS LAST
ylF SO, DO SPECIAL DELAY BECAUSE
yOF DESIGN
7 PROBLEM
7SAVE [H,L]
7DELAY COUNT

January, 1977 Page 134

LPTDLY: DCX
MOV
ORA
JNZ
POP
STA

NTEXDL: MVI
OUT
XRA
RET

PRINTR: MVI
OUT

FINLP2: STA
DCR
STA
RET

H
A,H
L
LPTDLY
H
LPTLST
A,2

2
A
A,1

2
LPTLST

A
LPTPOS

yCOUNT DOWN
yUNTIL ZERO
yRESTORE [H,L] REGS
yRECORD LINE FEED LAST
ySEND A LINE FEED COMMAND

yRETURN WITH 0 &CC'S=0
yTELL LPT TO PRINT

ySTATUS REG
;[A]=0
yRESET LINE PRINTER POSITION

LPTCD2: LDA
ADD
CPI
JMP

LPTPOS
M
LPTLEN
LINCHK

yGET CURRENT LPT PRINT HEAD POSITION
yWILL THIS NUMBER OVERLAP?

LPTCD3: LDA

NLPPOS

CPI
JMP

LPTPOS

EQU

NLPPOS
CHKCOM

yGET LINE PRINTER POSITION
yNOTE: COLUMN WIDTH (CLMWID)=
yl4 CHARACTERS

(((LPTLEN/CLMWID)-1)+CLMWID)yPOSITION BEYOND
yWHICH THERE ARE
yNO MORE COMMA FIELDS, SO
yCOMMA JUST DOES A "CRDO"
yUSE TELETYPE CHECK

IOCHNL: 0 yDEPOSIT BOARD TYPE HERE
0 yCHANNEL GETS DEPOSITED HERE.

IOREST: LXI H,IOCHNL yGRAB POINTER TO IT
CALL HELPIO ySET UP THE NEW CONSOLE DEVICE
CALL STKINI yMAKE STACK OK
JMP READY yAND TYPE "OK" HOPEFULLY ON GOOD CONSOLE

To patch the I/O routines, stop the machine after loading
BASIC and insert the patches using the front panel switches
or read in a tape containing the patches. Restart BASIC at
location zero with all sense switches up. This will prevent
BASIC from modifying the I/O routines. In general, these
guidelines should be followed in writing I/O routines:

January, 1977 Page 135
U

1. Insert a JMP at TRYOUT to the custom output routine. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Make sure all registers are
left unchanged when the routine is exited.

2. Insert a JMP at TRYIN to the custom input routine.
Return the input character in the A register and do not
change any of the other registers. The PSW may be
changed.

3. To modify ISCNTC insert a CALL to the custom poll
routine. This routine returns a non-zero condition code
setting if no character is present, and zero if a
character is present. The A register and the condition
codes may be changed.

4. To change the initialization of the 2SIO board, change
the "ADI 23Q" to "MVI A,XXX" where XXX is the new
initialization byte.

5. To change the initialization of the 4PI0 board, change
the "MVI A,54Q" to a "MVI A,XXX" where XXX is the new
initialization byte.

/ 6. To patch in a new line printer driver change the code at
^ LPTCOD. Note that PRINTW is also called by the routine

which prints a carriage return line feed. The code at
LPTCD2 and LPTCD3 must be changed if the line printer is
not 80 characters wide.

7. To recover ..from an incorrect CONSOLE command, deposit
the board in IOCHNL, the board type in IOCHNL+1,
and start the machine at IOCHNL+2.

Patching Disk BASIC - the PTD program. After Disk
BASIC is loaded, deposit the desired patches in memory.
Then examine and run PTD at location 54000 octal. After two
or three seconds, the patched version of BASIC will be saved
on disk. The save is complete when the Disk Enable light on
disk drive zero goes out.

To save a patched version of BASIC on a disk which did
not previously contain release 4.0 Altair BASIC, track 0
must be copied from a 4.0 disk.

PTD may also be used to save programs other than BASIC
on tracks 0-4 of a diskette by loading the program after
BASIC is loaded and running PTD. All memory locations
between 0 and 46000 octal will be saved on tracks 0-4 on
diskette zero.

January, 1977 Page 136

APPENDIX M
USING ALTAIR DISK BASIC

An Example

The following is a discussion of how to program a
typical application in BASIC. The example is the MITS
in-house inventory system which is designed to run on the
following hardware:

Altair 8800b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SI0 serial
I/O board

Two disk drives
24-line Lear-Sigler CRT terminal
Line printer
The most important part of the design for an

application is setting up the files. Files that are
correctly set up will be easy to use and maintain. Poorly
set up files will be a perpetual headache, causing either an
eventual rewrite or, more likely, abandonment of the system.

The first listing at the end of the appendix, INVEN,
contains modules from the main program in the inventory
system. INVEN shows how the central file (a random file) in
the system is set up and how it is handled. The INVEN
listing also shows the use of another random file and a
sequential file. The CALC listing shows how to read
programs as data files. CODE1 is a partial listing of a
program that will be read as a data file.

The INVEN modules listed were included to show the
following features:

1. program startup initialization and comments about the
files used by the program (lines 1-35)

2. what the complete program does (lines 60-1000)
3. an example of how to modify records in a random file

(lines 9S0-1040)
4. an example of how sequential files are used (lines

1800-1868 and 2700-2820)

1977 Page 137

5. one approach to the problem of handling a random file
that spans more than one disk (lines 2000-2030)

6. three subroutines (lines 300-340, 9000-9020 and
9200-9220) that are called by the INVEN modules.

The function FNY (line 6) is used to round dollar
amounts to thousandths of a cent. FNQ (line 7) is used to
round quantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INV1 and INV2 are repeatedly fielded by calls to the
subroutine at line 2000. The IF F>255 (line 60) avoids the
possibility that the program can be stopped by an illegal
function call at line 61.

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory
module, etc. This prevents updating one file but not the
other. (This could happen if PUT Z, R1 was at line 1010.)

Line 2000 sets Z to 1 and R1 to N if the item wanted,
N, is less than 2001. It sets Z to 2 and R1 to N-2000 if
the item wanted is greater than 2000. Line 2020 then sets
the pointers for the variables in the field statement to
point into either the buffer for INV1 or the buffer for
INV2, depending on whether the item wanted is less than 2001
or greater than 2000.

The CALC listing is a program which determines if there
are enough parts in inventory to meet projected demands.
Line 60 waits while the disk comes up to speed so the
message "ENABLE DISK 1" will not be printed on the terminal.
Lines 100-140 input up to fifty different product codes and
the number of each product to be built. Line 170 opens a
file for each product that contains the parts required for
the product. Lines 220-250 build up a report heading
extracting the product description contained in line 10 of
each file.

Lines 120-150 accumulate the number of parts required
for each product into the array Q. If more than 32767 of a
part is required, a pointer is set in the array Q and the
number of the part is accumuulated in the array Q!. This
maneuvering is necessary since the system does not have
enough memory to dimension Q as single precision instead of
integer.

January, 1977 Page 138

The parts lists for a product are programs saved with
the A option. Since they are programs, their maintenance is
very easy. For example, suppose that part 1071 in the 8800b
is too marginal and that from now on part 1173 should be
used instead. With the parts lists disk mounted on drive 0,
the following sequence will update the 8800b file:

LOAD "C0DE1"
160,1,1173
SAVE "CODE1",0,A
The programmer who is cramped for memory will find that

programs can still be documented adequately if comments are
set up as separate files. The memory used for variables
when a program runs can be used for comments if the comments
are merged in when the program is to be listed.
Alternatively, the program could be listed in two or more
parts. Additional memory can be obtained by bringing BASIC
up without optional functions and with no files.

The main inventory program is set up so that a carriage
return typed in responce to any prompt cause the program to
dump the function descriptions on the CRT and to return to
the FUNCTION NUMBER prompt. If the program were to be run
on a printing terminal, instead of a 9600 baud CRT, it would
not be set up to print the descriptions every time the
operator wanted to get back to the FUNCTION NUMBER prompt.
The list of function descriptions might be taped on the wall
next to the terminal instead.

Listing of INVEN
1 DEFINT F-N
2 DEFINT R
3 DEFINT Z
5 DEFDBL P
6 DEF FNY#(Q8#)=INT(Q8#*A#+.5#)/A#
7 DEF FNQ#(Q9!)=INT(VAL(STR$(Q9!))*1000#+.5#)/1000#
8 A$=MKD$(0):B$=MKS$(0):A#=100000#
10 DIM Q$(2),P$(2)
11 '

INV1 ON DRIVE 0 HOLDS ITEMS 1-2000
INV2 ON DRIVE 1 HOLDS ITEMS 2001-4000
INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 '
WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;
CONTAIN THE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY
THE WEEKLY,MONTHLY RESETS.
14 '
Q$() <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES

January, 1977 Page 139
U

[P(0) OLDEST, P(l) NEXT OLDEST, Q(0)<>0 IF Q(1)<>0,
Q(1)O0IFQ(2)<>0]
D$ <-> DESCRIPTION LEFT$(D$,3)="$$$" <-> INACTVE ITEM #
15 '
11$ <=> WEEKLY QTY IN
12$ <=> MONTHLY QTY IN
01$ <=> WEEKLY QTY OUT
02$ <=> MONTHLY QTY OUT
T$ <=> REORDER LEVEL
DI1$ <=> WEEKLY $ IN
ID2$ <=> MONTHLY $ IN
D01$ <=> WEEKLY $ OUT
0D2$ <=> MONTHLY $ OUT
17 '
DT1$ <=> WEEKLY DEPT $ TAKEN
DX2$ <=> MONTHLY DEPT $ TAKEN
DG1$ <=> WEEKLY DEPT $ GIVEN
DY2$ <-> MONTHLY DEPT $ GIVEN
20 OPEN "R",#1,"INV1"
30 OPEN "R",#2,"INV2",1
32 OPEN "R",#3,"INV3",1
35 FIELD #3,8 AS DT1$,8 AS DX2$,8 AS DG1$,8 AS DY2$
60 PRINT:F=0:INPUT"FUNCTION NUMBER";F:IFF>255THEN63
61 ON F GOTO 210,350,350,1900,600,900,1700,

^ 2700,2500,2300,2400,1880,2900'
2 3 4 5 6 7 8 9 10 11 12 13
14 15 16

63 PRINT"1 - ENTER NEW ITEM"
64 PRINT"2 - LIST ITEM ON CRT (SHORT FORM)"
65 PRINT"3 - LIST ITEM ON CRT (LONG FORM)"
66 PRINT"4 - PRINT ITEMS ON LINE PRINTER
67 PRINT"5 - ADD TO INVENTORY"
68 PRINT"6 - REMOVE FROM INVENTORY"
69 PRINT"7 - PRINT WEEKLY DEPT DOLLAR RECORD ON LINE PRINTER
70 PRINT"8 - PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
71 PRINT"9 - WEEKLY RESET
72 PRINT"10- PRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRINT"11- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
74 PRINT"12- MONTHLY RESET
75 PRINT"13- RESET ORDER LEVELS
76 PRINT"14- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"15- DELETE OLD ITEM
78 PRINT"16- ERRORS BACKOUT
100 GOTO60
298 ' *
SUB - INPUT PART # & GET RECORD
300 PRINT:PRINT:N=0:INPUT"PART NUMBER";N:IFN<1THENRETURN
310 I?N>4000THENPRINT:PRINT'"'# TOO HIGH'"':GOTO 300
320 GOSUB2000:GETZ,R1

January, 1977 Page 140

330 IFLEFT$(D$,3)="$$$"THENPRINT:
PRINT" "NO INFORMATION ON PART""yN:GOTO300

340 RETURN
890 ' *
F=6 - REMOVE FROM INVENTORY *
900 GOSUB300:IFN=0GOTO63
920 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY"?

DN:IFDN=-1THEN63
950 IFCVS(Q$(0))+CVS(Q$(1))+CVS(Q$(2))<DNTHENPRINT"

ATTEMPT TO REMOVE MORE THAN ON HAND":PRINT:G0T063
960 D0=DN:P=0
970 IFD0<CVS(Q$(0))THEN

P=P+FNQ#(D0)*CVD(P$(0)):LSETQ$(0)=MKS$(CVS(Q$(0))-D0):
GOTO1000

980 P=P+FNQ#(CVS(Q$(0)))*CVD(P$(0)):D0=D0-CVS(Q$(0)):
LSETQ$(0)=Q$(1):LSETQ$(1)=Q$(2):LSETQ$(2)=B$:
LSETP$ (0) =P$ (1) :LSETP$ (1) =p$ (2) :LSETP$ (2) =A$:IFD0THEN

GOTO970
1000 LSET01$=MKS$(CVS(01$)+DN):LSET02$-MKS$(CVS(02$)+DN):

LSETD01$=MKD$(CVD(D01$)+P):LSETOD2$=MKD$(CVD(OD2$)+P)
1020 GOSUB9200:IFC%=-1GOTO63
1030 LSETDT1$=MKD$(CVD(DT1$)+P):LSETDX2$=MKD$(CVD(DX2$)+P)
1040 PUT3,C%:PUTZ,R1:GOTO900
1790 ' *
F=9 - WEEKLY RESET *
1800 PRINT"7 - WEEKLY DEPARTMENT RECORD
1802 PRINT"8 - WEEKLY ACTIVE ITEMS
1804 Z$="":INPUT"HAVE THE ABOVE BEEN LISTED FOR TODAY";Z$
1813 IFLEFT?(Z$,1)<>"Y"THENPRINT:PRINT

"WEEKLY RESET NOT PERFORMED":G0T063
1843 OPEN"I",4,"WEKLYRST"
1845 IFEOF(4)THENCLOSE4:KILL"WEKLYRST":G0T01862
1850 INPUT#4,N:IF 1<=NANDN<=4000 THENGOSUB2000:GETZ,R1

ELSEPRINTN;"OUT OF BOUNDS. RESET ABORTED.":END
1855 LSETI1$=B$:LSET01$=B$:LSETDI1$=A$:LSETD01$=A$:PUTZ,R1
1860 G0T01845
1862 FORI=1TO20
1864 GET3,I:LSETDT1$=A$:LSETDG1$=A$:PUT3,I
1866 NEXT
1868 GOTO60 1999 ' *
SUB - GET Z,R1 FOR N AND FIELD TO INV1,2 *
2000 Z=1-(N>2000):R1=N+(Z=2)*2000
2020 FIELD Z,4 AS Q$(0),4 AS Q$(l),4 AS Q$(2), 8 AS P$(0),

8 AS P$(l),8 AS P$(2),40 AS D$,4 AS 11$,4 AS 12$,
4 AS 01$,4 AS 02$,8 AS DI1$,8 AS ID2$,8 AS D01$,8 AS 0D2$

January, 1977 Page 141

2030 RETURN
2690 ' *
F=8,ll - WEEKLY,MONTHLY ACTIVE ITEMS LIST *
2700 N=-1:GOSUB2000:GOSUB2855
2703 IFF=8THEN0PEN"0",4,"WEKLYRST"ELSE0PEN"0",4,"MONTHRST"
2705 IT#=0:OT#=0:TT#=0
2710 FORI-1TO2000
2720 GETZ,I:IFLEFT$(D$,3)="$$$"THEN2800
2723 Q0"CVS(Q$(0)):Q1=CVS(Q$(1)):Q2-CVS(Q$(2))
2725 IFF-8THENn=CVS(Il$):0i-CVS(01$):I#-CVD(DI1$):0#"CVD(001$)

ELSEH-CVS(I2$) :0!=CVS(02$) :I#-CVD(ID2$) :0#-CVD(0D2$)
2727 TT#=TT#+CVD(P$(0))*Q0+CVD(P$(1))*Q1+CVD(P$(2))*Q2
2730 IFH+Oi-0THEN2800
2733 PRINT#4,N+I-1
2735 IT#=IT#+I#:0T#=0T#+0#
2740 IFL9>59ANDKK=0THENGOSUB2850
2750 LPRINTUSING"######"?99999!+N+Iy
2770 LPRINTUSING"## ,###,###"?H,Oi ,Q0+Q1+Q2, Q0+Q1+Q2+O i - H ?
2780 LPRINTUSING"$$,###,###.##";I#,0#
2790 L9=L9+1
2795 KK-KK+1:IFKK=5THENLPRINT:L9=L9+1:KK-0
2800 NEXT
2810 IFN=1THENN=2001:GOSUB2000:GOTO2710
2811 CLOSE4
2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$$##,###,###.##";TT#
2815 REM *GOTO2820 IN F=7,10
2820 LPRINT:LPRINTUSING"TOTAL IN - $$##,###,###.##";IT#
2830 LPRINTUSING"TOTAL OUT =$$##,###,###.##";OT#
2837 LPRINT:LPRINT
2840 GOTO50
2850 F0RJ=L9T066:LPRINT:NEXT
2855 IFF=8THENLPRINT"WEEKLY"?:ELSELPRINT"MONTHLY"?
2860 LPRINT" ACTIVE ITEMS LIST";:GOSUB9000
2865 LPRINTTAB(39);"STARTED"
2870 LPRINT"ITEM # QTY-IN QTY-OUT ON-HAND MO-WITH

DOLLARS-IN DOLLARS-OUT"
2880 LPRINT:KK=0:L9=6:RETURN
8990 ' *
SUB - PRINT TODAY'S DATE *
9000 IFTD$=""THENLINEINPUT"TODAY'S DATE ?";TD$:IFTD$=""THEN63
9010 LPRINT" ";TD$
9015 LPRINT
9020 RETURN
9190 ' *
INPUT DEPARTMENT # AND GET TOTALS *
9200 C%=-1:INPUT"ENTER DEPARTMENT C0DE":C%:IFC%=-1THENRETURN

January, 1977 Page 142

9210 IF1<=C%ANDC%<=20THENGET3,C%:RETURN
9220 PRINT"INVALID CODE":GOTO9200

Listing of C0DE1
5 C0DE1
10 PARTS LIST FOR: 8800B
20 OCT 30,1976
90 REM THIS IS THE -START OF DATA
100 ,11,1042
110 ,3,1134
120 ,4,1040
130 ,1,1020
140 ,1,1021
150 ,1,1024
160 ,1,1071
170 ,1,1074
180 ,1,2105
190 ,24,348
200 ,2,326

Listing of CALC
10 CLEAR600
20 DEFINT A-Z
30 DIM CN(49),NU(49),Q(4000),Q!(200)
40 CLOSE:UNLOADl
50 INPUT"PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";G$
60 FORK!=1T05000:NEXT:MOUNTl
90 LINEINPUT"TODAY'S MO/DA/YR ";DT$:H$(0)=DT$+" PARTS AVAILABLE FOR
95 '
INPUT QUANTITY OF EACH PRODUCT REQUIRED *****
100 INPUT"CODE NUMBER(0 WHEN FINISHED)";CN(I)
110 IF CN(I)=0 THEN 150
120 IF CN(I)<1 OR 50<CN(I) THEN PRINT"INVALID CODE NUMBER":

GOTO 100
130 INFUT"NUMBER OF UNITS TO BE MADE";NU(I)
140 I=I+1:IF I<50 THEN 100
145 '
ACCUMULATE QUANTITY OF EACH PART REQUIRED *****
150 FOR K=0 TO 1-1
160 ONERRORGOTO610
170 OPEN"I",#l,"CODE"+MID$(STR$(CN(K)),2),1
180 ONERRORGOTO0
190 LINEINPUT#1,A$:IFA$=""THEN190
200 IFLEFT$(A$,3)="90 "THEN260
210 IFLEFT$(A$,3)<>"10 "THEN190
220 IFKTHENH$(HK)=H$(HK)+","

ary, 1977 Page 143

230 HH$=STR$(NU(K))+STR$(CN(K))+"=("+MID$(A$,20)+")"
240 IFLEN(HH$)+LEN(H$(HK))>72THENHK=HK+1
250 H$(HK)=H$(HK)+HH$:GOTO190
260 ONERRORGOTO630
270 IFEOF(1)THEN310
280 INPUT #1,A,QN,PN
290 IFQ(PN)<0THENQi(-Q(PN))=Qi(-Q(PN))+NU(K)*QN

ELSEQ(PN)=Q(PN)+NU(K)*QN
300 GOTO270
310 ONERRORGOTO0:CLOSE 1:NEXT K
315 ' GET SECOND HALF OF INVENTORY BACK ON LINE *****
320 CLOSE:UNLOADl
330 INPUT"
PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT"
340 FORI!=1T05000:NEXT:MOUNTl
360 OPEN"R",#2,"INVl"
370 FIELD #2,4 AS Ql$,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS D$
375 '
PRINT REPORT *****
380 GOSUB570
390 FOR 1=1 TO 4000
400 IF Q(I)=0 THEN 530
410 QQ!=Q(I):IFQ(I)<0THENQQl=Qi(-Q(I))
420 IFL9>59ANDKK=0THENGOSUB560
430 L9=L9+1
440 RN=I
450 IFI<2000THEN460ELSERN=RN-2000:IFFLAG=0THEN

CLOSE2:OPEN"R",#2,"INV2",1:FLAG=1:
FIELD#2,4 AS Ql$,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS D$

460 GET #2,RN
470 IFLEFT$(D$,3)="$$$"THENLPRINTI+100000!;

"********* no INFORMATION ON PART ********";:
LPRINTUSING"##,######";QQi:GOTO520

480 QH!=CVS(Q1$)+CVS(Q2$)+CVS(Q3$):QD!=QH!-QQ!
500 LPRINTI+100000I;D$;" ";
510 LPRINT USING "##,######";QQi;QHI;QD!
520 KK=KK+1:IFKK=5THENKK=0:LPRINT:L9=L9+1
530 NEXTI:CLOSE:END
560 F0RK=L9T066:LPRINT:NEXT
565 '
PRINT PAGE HEADING *****
570 FORK=0TOHK:LPRINTH$(K):NEXT
580 LPRINT:LPRINTTAB(52);"NEEDED ON HAND EXCESS":LPRINT
590 KK=0:L9=5+HK:RETURN
605 '
TRAP ROUTINE: BAD CODE NUMBER *****
610 IFERR=53THENPRINT:PRINT"NO CODE";MID$(STR$(CN(K)),2);" FILE

January, 1977 Page 144

620 ONERRORGOTO0
625 '
TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED *****
630 IFERRO6ORERLO290THENONERRORGOTO0
640 NQ=NQ+1:Q!(NQ)=Q(PN)+NU(K)*QN:Q(PN)=-NQ
670 RESUME270

January, 1977 Page 145
O INDEX

e 10
ABS 78
ACR interface 114
AND 17
Array variables 14
ASC 78
ASCII character codes 93
ATN 78
AUTO 6
Backarrow 83
BASIC texts 127
Boot loaders 96
Branch, conditional 19
Branch, unconditional 19
Branching 19
Carriage Return 4
Carriage return 83
Character, alphanumeric . . . 4
CHR$. . - .78
CLEAR 70
CLOAD 70
CLOAD* for arrays 25
CLOAD? 70
CLOSE 60
CLOSE, random files 63
Command Level 4
Commands List 70
CONSOLE 34
Constants 10
CONT 70
Control/A 10
Control/C 83
Control/1 84
Control/O 83
Control/Q 84
Control/S 84
Control/U 10
Conversion from non-Altair BASIC 116
COS 79
CSAVE* for arrays 25
CVD 67
CVI 67
cvs 67

January, 1977 Page 146

DATA 24
DEF 29
DEFDBL 13
Definitions 4
DEFINT 13
DEFSNG 13
DEFSTR .13
DEFUSR 40
DELETE 71
DIM 15
Dimensions 14
Direct Mode 5
Disk format 118
Disk number 53
Disk operations 53
Disk PROM bootstrap loader . . 121
Disk read and write, assembly code 120
Division,integer 39
Double precision 11
DSKF 62
DSKI$ and DSKO$ primitives . . 68
Echo routines 103
EDIT 40
Edit, definition 5
Editing, elementary provisions 9
END 61, 74
EOF 61
EQV 18
ERASE 32
ERL 36
ERR 36, 79
Error codes 36
Error message format 8
Error messages, disk 89
ERROR statement 39
Error trapping 35
EXP 79
Expression, integer 5
Expressions, string 31
FIELD 65
Fields, numeric 48
Fields, string 47
File name 54
FILES command 54
FIX 79
FOR 21
FRCINT 41
FRE 79
Functions 28
Functions, derived 109
Functions, extended 40
Functions, intrinsic 28
Functions, simulated (for 4k) 109

aaiuary, 1977 Page 9 0

Functions, string 32
Functions, user-defined . . . 29
GET . . . 63
GOSUB 22
GOTO 19
HEX$ 79
Hexadecimal constants 12
IF...GOTO 20
IF...THEN 19
IF...THEN...ELSE 20
IMP 18
Indirect Mode 5
Initialization dialog 102
Initialization dialog, disk . 122
Initializing a disk 124
INP 28
INPUT .23
INPUT, disk 59
INSTR .79
INT 80
Intellec systems, Altair BASIC on. 128
KILL .57
LEFT$.80
LEN .80
LET 18
Line 6
LINEFEED 84
LINE INPUT 33
LINE INPUT, disk 61
Line LENGTH 8
Line Number 6
LIST 72
Lists and Directories 70
LLIST 72
LOAD 55
Loader errors 102
Loading BASIC 95
LOC 64
LOF 64
LOG 80
Loops 21
Lower case input . 35
LPOS .80
LPRINT 75
LPRINT USING 75
LSET 67
MAKINT 41
MERGE 57
MID$ 75

aaiuary, 1977 Page 9 0

MID$ function 80
MKD$ 67
MKI$ 67
MKS$ 67
MOD operator 40
MOUNT 53
NAME 57
NEW 72
NEW in disk 61
NEXT 22
NOT 17
OCT$ 80
Octal constants 12
ON ERROR GOTO 36
ON... GOSUB 23
ON...GOTO 21
OPEN 58
OPEN, random files 63
Operators 15
OPERATORS, extended and disk . 39
Operators, logical 17
Operators, precedence of . . . 15
Operators, relational 16
Operators, string 31
OR 17
OUT 27
PEEK 27
PIP utility program 124
PIP, CNV command 126
PIP, COP command 125
PIP, DAT command 126
PIP, DIR command 125
PIP, INI command 124
PIP, LIS command 125
PIP, SRT command 125
POKE 27
POS 81
Precedence, table of 16
PRINT 24
PRINT USING 47
PRINT, disk 60
Prompt string 23
PTD program 135
PUT 63
Random buffer 63
Random File I/O 63
Random files 58
READ 25
Remarks 8
RENUM 6
Reserved WORDS 5

aaiuary, 1977 Page 9 0

Reserved words 91
RESTORE 25
RESUME 38
RESUME NEXT 38
RETURN 22
RIGHT$ 81 80

67
RUBOUT 9
Rubout 83
RON 73
RUN, disk files 56
SAVE 54
Scientific notation 11
Sense switch settings 101
Sequential File I/O 58
Sequential mode 58
SGN . 81
SIN 81
Single precision 11
Space allocation 106
Space hints 107
SPACE$ 81
SPC 81

, Special Characters 82
(y Speed hints 103

SQR 81
Statements . . .73
Statements, extended 32
STOP 61, 77
STR$ 81
String Literal 5
STRING$ 81
Strings 30
Subroutines22
Subroutines, machine language 112
SWAP 33
TAB 81
TAN 81
TROFF 34
TRON . 34
Type of constants il
Type of variables 13
Type,definition 5
UNLOAD 53
USR 112
VAL 82

/ Variable types. . 13
^ ^ Variables 12

VARPTR 82

January, 1977 Page 150

WAIT 26
WIDTH 35
XOR 18

. v 83 g 83

